1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
8 * Copyright (C) 2007  Maciej W. Rozycki
9 * Copyright (C) 2014, Imagination Technologies Ltd.
10 */
11#ifndef _ASM_UACCESS_H
12#define _ASM_UACCESS_H
13
14#include <linux/kernel.h>
15#include <linux/errno.h>
16#include <linux/thread_info.h>
17#include <asm/asm-eva.h>
18
19/*
20 * The fs value determines whether argument validity checking should be
21 * performed or not.  If get_fs() == USER_DS, checking is performed, with
22 * get_fs() == KERNEL_DS, checking is bypassed.
23 *
24 * For historical reasons, these macros are grossly misnamed.
25 */
26#ifdef CONFIG_32BIT
27
28#ifdef CONFIG_KVM_GUEST
29#define __UA_LIMIT 0x40000000UL
30#else
31#define __UA_LIMIT 0x80000000UL
32#endif
33
34#define __UA_ADDR	".word"
35#define __UA_LA		"la"
36#define __UA_ADDU	"addu"
37#define __UA_t0		"$8"
38#define __UA_t1		"$9"
39
40#endif /* CONFIG_32BIT */
41
42#ifdef CONFIG_64BIT
43
44extern u64 __ua_limit;
45
46#define __UA_LIMIT	__ua_limit
47
48#define __UA_ADDR	".dword"
49#define __UA_LA		"dla"
50#define __UA_ADDU	"daddu"
51#define __UA_t0		"$12"
52#define __UA_t1		"$13"
53
54#endif /* CONFIG_64BIT */
55
56/*
57 * USER_DS is a bitmask that has the bits set that may not be set in a valid
58 * userspace address.  Note that we limit 32-bit userspace to 0x7fff8000 but
59 * the arithmetic we're doing only works if the limit is a power of two, so
60 * we use 0x80000000 here on 32-bit kernels.  If a process passes an invalid
61 * address in this range it's the process's problem, not ours :-)
62 */
63
64#ifdef CONFIG_KVM_GUEST
65#define KERNEL_DS	((mm_segment_t) { 0x80000000UL })
66#define USER_DS		((mm_segment_t) { 0xC0000000UL })
67#else
68#define KERNEL_DS	((mm_segment_t) { 0UL })
69#define USER_DS		((mm_segment_t) { __UA_LIMIT })
70#endif
71
72#define VERIFY_READ    0
73#define VERIFY_WRITE   1
74
75#define get_ds()	(KERNEL_DS)
76#define get_fs()	(current_thread_info()->addr_limit)
77#define set_fs(x)	(current_thread_info()->addr_limit = (x))
78
79#define segment_eq(a, b)	((a).seg == (b).seg)
80
81/*
82 * eva_kernel_access() - determine whether kernel memory access on an EVA system
83 *
84 * Determines whether memory accesses should be performed to kernel memory
85 * on a system using Extended Virtual Addressing (EVA).
86 *
87 * Return: true if a kernel memory access on an EVA system, else false.
88 */
89static inline bool eva_kernel_access(void)
90{
91	if (!config_enabled(CONFIG_EVA))
92		return false;
93
94	return segment_eq(get_fs(), get_ds());
95}
96
97/*
98 * Is a address valid? This does a straighforward calculation rather
99 * than tests.
100 *
101 * Address valid if:
102 *  - "addr" doesn't have any high-bits set
103 *  - AND "size" doesn't have any high-bits set
104 *  - AND "addr+size" doesn't have any high-bits set
105 *  - OR we are in kernel mode.
106 *
107 * __ua_size() is a trick to avoid runtime checking of positive constant
108 * sizes; for those we already know at compile time that the size is ok.
109 */
110#define __ua_size(size)							\
111	((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
112
113/*
114 * access_ok: - Checks if a user space pointer is valid
115 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE.  Note that
116 *	  %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
117 *	  to write to a block, it is always safe to read from it.
118 * @addr: User space pointer to start of block to check
119 * @size: Size of block to check
120 *
121 * Context: User context only. This function may sleep if pagefaults are
122 *          enabled.
123 *
124 * Checks if a pointer to a block of memory in user space is valid.
125 *
126 * Returns true (nonzero) if the memory block may be valid, false (zero)
127 * if it is definitely invalid.
128 *
129 * Note that, depending on architecture, this function probably just
130 * checks that the pointer is in the user space range - after calling
131 * this function, memory access functions may still return -EFAULT.
132 */
133
134#define __access_mask get_fs().seg
135
136#define __access_ok(addr, size, mask)					\
137({									\
138	unsigned long __addr = (unsigned long) (addr);			\
139	unsigned long __size = size;					\
140	unsigned long __mask = mask;					\
141	unsigned long __ok;						\
142									\
143	__chk_user_ptr(addr);						\
144	__ok = (signed long)(__mask & (__addr | (__addr + __size) |	\
145		__ua_size(__size)));					\
146	__ok == 0;							\
147})
148
149#define access_ok(type, addr, size)					\
150	likely(__access_ok((addr), (size), __access_mask))
151
152/*
153 * put_user: - Write a simple value into user space.
154 * @x:	 Value to copy to user space.
155 * @ptr: Destination address, in user space.
156 *
157 * Context: User context only. This function may sleep if pagefaults are
158 *          enabled.
159 *
160 * This macro copies a single simple value from kernel space to user
161 * space.  It supports simple types like char and int, but not larger
162 * data types like structures or arrays.
163 *
164 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
165 * to the result of dereferencing @ptr.
166 *
167 * Returns zero on success, or -EFAULT on error.
168 */
169#define put_user(x,ptr) \
170	__put_user_check((x), (ptr), sizeof(*(ptr)))
171
172/*
173 * get_user: - Get a simple variable from user space.
174 * @x:	 Variable to store result.
175 * @ptr: Source address, in user space.
176 *
177 * Context: User context only. This function may sleep if pagefaults are
178 *          enabled.
179 *
180 * This macro copies a single simple variable from user space to kernel
181 * space.  It supports simple types like char and int, but not larger
182 * data types like structures or arrays.
183 *
184 * @ptr must have pointer-to-simple-variable type, and the result of
185 * dereferencing @ptr must be assignable to @x without a cast.
186 *
187 * Returns zero on success, or -EFAULT on error.
188 * On error, the variable @x is set to zero.
189 */
190#define get_user(x,ptr) \
191	__get_user_check((x), (ptr), sizeof(*(ptr)))
192
193/*
194 * __put_user: - Write a simple value into user space, with less checking.
195 * @x:	 Value to copy to user space.
196 * @ptr: Destination address, in user space.
197 *
198 * Context: User context only. This function may sleep if pagefaults are
199 *          enabled.
200 *
201 * This macro copies a single simple value from kernel space to user
202 * space.  It supports simple types like char and int, but not larger
203 * data types like structures or arrays.
204 *
205 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
206 * to the result of dereferencing @ptr.
207 *
208 * Caller must check the pointer with access_ok() before calling this
209 * function.
210 *
211 * Returns zero on success, or -EFAULT on error.
212 */
213#define __put_user(x,ptr) \
214	__put_user_nocheck((x), (ptr), sizeof(*(ptr)))
215
216/*
217 * __get_user: - Get a simple variable from user space, with less checking.
218 * @x:	 Variable to store result.
219 * @ptr: Source address, in user space.
220 *
221 * Context: User context only. This function may sleep if pagefaults are
222 *          enabled.
223 *
224 * This macro copies a single simple variable from user space to kernel
225 * space.  It supports simple types like char and int, but not larger
226 * data types like structures or arrays.
227 *
228 * @ptr must have pointer-to-simple-variable type, and the result of
229 * dereferencing @ptr must be assignable to @x without a cast.
230 *
231 * Caller must check the pointer with access_ok() before calling this
232 * function.
233 *
234 * Returns zero on success, or -EFAULT on error.
235 * On error, the variable @x is set to zero.
236 */
237#define __get_user(x,ptr) \
238	__get_user_nocheck((x), (ptr), sizeof(*(ptr)))
239
240struct __large_struct { unsigned long buf[100]; };
241#define __m(x) (*(struct __large_struct __user *)(x))
242
243/*
244 * Yuck.  We need two variants, one for 64bit operation and one
245 * for 32 bit mode and old iron.
246 */
247#ifndef CONFIG_EVA
248#define __get_kernel_common(val, size, ptr) __get_user_common(val, size, ptr)
249#else
250/*
251 * Kernel specific functions for EVA. We need to use normal load instructions
252 * to read data from kernel when operating in EVA mode. We use these macros to
253 * avoid redefining __get_user_asm for EVA.
254 */
255#undef _loadd
256#undef _loadw
257#undef _loadh
258#undef _loadb
259#ifdef CONFIG_32BIT
260#define _loadd			_loadw
261#else
262#define _loadd(reg, addr)	"ld " reg ", " addr
263#endif
264#define _loadw(reg, addr)	"lw " reg ", " addr
265#define _loadh(reg, addr)	"lh " reg ", " addr
266#define _loadb(reg, addr)	"lb " reg ", " addr
267
268#define __get_kernel_common(val, size, ptr)				\
269do {									\
270	switch (size) {							\
271	case 1: __get_data_asm(val, _loadb, ptr); break;		\
272	case 2: __get_data_asm(val, _loadh, ptr); break;		\
273	case 4: __get_data_asm(val, _loadw, ptr); break;		\
274	case 8: __GET_DW(val, _loadd, ptr); break;			\
275	default: __get_user_unknown(); break;				\
276	}								\
277} while (0)
278#endif
279
280#ifdef CONFIG_32BIT
281#define __GET_DW(val, insn, ptr) __get_data_asm_ll32(val, insn, ptr)
282#endif
283#ifdef CONFIG_64BIT
284#define __GET_DW(val, insn, ptr) __get_data_asm(val, insn, ptr)
285#endif
286
287extern void __get_user_unknown(void);
288
289#define __get_user_common(val, size, ptr)				\
290do {									\
291	switch (size) {							\
292	case 1: __get_data_asm(val, user_lb, ptr); break;		\
293	case 2: __get_data_asm(val, user_lh, ptr); break;		\
294	case 4: __get_data_asm(val, user_lw, ptr); break;		\
295	case 8: __GET_DW(val, user_ld, ptr); break;			\
296	default: __get_user_unknown(); break;				\
297	}								\
298} while (0)
299
300#define __get_user_nocheck(x, ptr, size)				\
301({									\
302	int __gu_err;							\
303									\
304	if (eva_kernel_access()) {					\
305		__get_kernel_common((x), size, ptr);			\
306	} else {							\
307		__chk_user_ptr(ptr);					\
308		__get_user_common((x), size, ptr);			\
309	}								\
310	__gu_err;							\
311})
312
313#define __get_user_check(x, ptr, size)					\
314({									\
315	int __gu_err = -EFAULT;						\
316	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
317									\
318	might_fault();							\
319	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size))) {		\
320		if (eva_kernel_access())				\
321			__get_kernel_common((x), size, __gu_ptr);	\
322		else							\
323			__get_user_common((x), size, __gu_ptr);		\
324	} else								\
325		(x) = 0;						\
326									\
327	__gu_err;							\
328})
329
330#define __get_data_asm(val, insn, addr)					\
331{									\
332	long __gu_tmp;							\
333									\
334	__asm__ __volatile__(						\
335	"1:	"insn("%1", "%3")"				\n"	\
336	"2:							\n"	\
337	"	.insn						\n"	\
338	"	.section .fixup,\"ax\"				\n"	\
339	"3:	li	%0, %4					\n"	\
340	"	move	%1, $0					\n"	\
341	"	j	2b					\n"	\
342	"	.previous					\n"	\
343	"	.section __ex_table,\"a\"			\n"	\
344	"	"__UA_ADDR "\t1b, 3b				\n"	\
345	"	.previous					\n"	\
346	: "=r" (__gu_err), "=r" (__gu_tmp)				\
347	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
348									\
349	(val) = (__typeof__(*(addr))) __gu_tmp;				\
350}
351
352/*
353 * Get a long long 64 using 32 bit registers.
354 */
355#define __get_data_asm_ll32(val, insn, addr)				\
356{									\
357	union {								\
358		unsigned long long	l;				\
359		__typeof__(*(addr))	t;				\
360	} __gu_tmp;							\
361									\
362	__asm__ __volatile__(						\
363	"1:	" insn("%1", "(%3)")"				\n"	\
364	"2:	" insn("%D1", "4(%3)")"				\n"	\
365	"3:							\n"	\
366	"	.insn						\n"	\
367	"	.section	.fixup,\"ax\"			\n"	\
368	"4:	li	%0, %4					\n"	\
369	"	move	%1, $0					\n"	\
370	"	move	%D1, $0					\n"	\
371	"	j	3b					\n"	\
372	"	.previous					\n"	\
373	"	.section	__ex_table,\"a\"		\n"	\
374	"	" __UA_ADDR "	1b, 4b				\n"	\
375	"	" __UA_ADDR "	2b, 4b				\n"	\
376	"	.previous					\n"	\
377	: "=r" (__gu_err), "=&r" (__gu_tmp.l)				\
378	: "0" (0), "r" (addr), "i" (-EFAULT));				\
379									\
380	(val) = __gu_tmp.t;						\
381}
382
383#ifndef CONFIG_EVA
384#define __put_kernel_common(ptr, size) __put_user_common(ptr, size)
385#else
386/*
387 * Kernel specific functions for EVA. We need to use normal load instructions
388 * to read data from kernel when operating in EVA mode. We use these macros to
389 * avoid redefining __get_data_asm for EVA.
390 */
391#undef _stored
392#undef _storew
393#undef _storeh
394#undef _storeb
395#ifdef CONFIG_32BIT
396#define _stored			_storew
397#else
398#define _stored(reg, addr)	"ld " reg ", " addr
399#endif
400
401#define _storew(reg, addr)	"sw " reg ", " addr
402#define _storeh(reg, addr)	"sh " reg ", " addr
403#define _storeb(reg, addr)	"sb " reg ", " addr
404
405#define __put_kernel_common(ptr, size)					\
406do {									\
407	switch (size) {							\
408	case 1: __put_data_asm(_storeb, ptr); break;			\
409	case 2: __put_data_asm(_storeh, ptr); break;			\
410	case 4: __put_data_asm(_storew, ptr); break;			\
411	case 8: __PUT_DW(_stored, ptr); break;				\
412	default: __put_user_unknown(); break;				\
413	}								\
414} while(0)
415#endif
416
417/*
418 * Yuck.  We need two variants, one for 64bit operation and one
419 * for 32 bit mode and old iron.
420 */
421#ifdef CONFIG_32BIT
422#define __PUT_DW(insn, ptr) __put_data_asm_ll32(insn, ptr)
423#endif
424#ifdef CONFIG_64BIT
425#define __PUT_DW(insn, ptr) __put_data_asm(insn, ptr)
426#endif
427
428#define __put_user_common(ptr, size)					\
429do {									\
430	switch (size) {							\
431	case 1: __put_data_asm(user_sb, ptr); break;			\
432	case 2: __put_data_asm(user_sh, ptr); break;			\
433	case 4: __put_data_asm(user_sw, ptr); break;			\
434	case 8: __PUT_DW(user_sd, ptr); break;				\
435	default: __put_user_unknown(); break;				\
436	}								\
437} while (0)
438
439#define __put_user_nocheck(x, ptr, size)				\
440({									\
441	__typeof__(*(ptr)) __pu_val;					\
442	int __pu_err = 0;						\
443									\
444	__pu_val = (x);							\
445	if (eva_kernel_access()) {					\
446		__put_kernel_common(ptr, size);				\
447	} else {							\
448		__chk_user_ptr(ptr);					\
449		__put_user_common(ptr, size);				\
450	}								\
451	__pu_err;							\
452})
453
454#define __put_user_check(x, ptr, size)					\
455({									\
456	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
457	__typeof__(*(ptr)) __pu_val = (x);				\
458	int __pu_err = -EFAULT;						\
459									\
460	might_fault();							\
461	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size))) {	\
462		if (eva_kernel_access())				\
463			__put_kernel_common(__pu_addr, size);		\
464		else							\
465			__put_user_common(__pu_addr, size);		\
466	}								\
467									\
468	__pu_err;							\
469})
470
471#define __put_data_asm(insn, ptr)					\
472{									\
473	__asm__ __volatile__(						\
474	"1:	"insn("%z2", "%3")"	# __put_data_asm	\n"	\
475	"2:							\n"	\
476	"	.insn						\n"	\
477	"	.section	.fixup,\"ax\"			\n"	\
478	"3:	li	%0, %4					\n"	\
479	"	j	2b					\n"	\
480	"	.previous					\n"	\
481	"	.section	__ex_table,\"a\"		\n"	\
482	"	" __UA_ADDR "	1b, 3b				\n"	\
483	"	.previous					\n"	\
484	: "=r" (__pu_err)						\
485	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
486	  "i" (-EFAULT));						\
487}
488
489#define __put_data_asm_ll32(insn, ptr)					\
490{									\
491	__asm__ __volatile__(						\
492	"1:	"insn("%2", "(%3)")"	# __put_data_asm_ll32	\n"	\
493	"2:	"insn("%D2", "4(%3)")"				\n"	\
494	"3:							\n"	\
495	"	.insn						\n"	\
496	"	.section	.fixup,\"ax\"			\n"	\
497	"4:	li	%0, %4					\n"	\
498	"	j	3b					\n"	\
499	"	.previous					\n"	\
500	"	.section	__ex_table,\"a\"		\n"	\
501	"	" __UA_ADDR "	1b, 4b				\n"	\
502	"	" __UA_ADDR "	2b, 4b				\n"	\
503	"	.previous"						\
504	: "=r" (__pu_err)						\
505	: "0" (0), "r" (__pu_val), "r" (ptr),				\
506	  "i" (-EFAULT));						\
507}
508
509extern void __put_user_unknown(void);
510
511/*
512 * ul{b,h,w} are macros and there are no equivalent macros for EVA.
513 * EVA unaligned access is handled in the ADE exception handler.
514 */
515#ifndef CONFIG_EVA
516/*
517 * put_user_unaligned: - Write a simple value into user space.
518 * @x:	 Value to copy to user space.
519 * @ptr: Destination address, in user space.
520 *
521 * Context: User context only. This function may sleep if pagefaults are
522 *          enabled.
523 *
524 * This macro copies a single simple value from kernel space to user
525 * space.  It supports simple types like char and int, but not larger
526 * data types like structures or arrays.
527 *
528 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
529 * to the result of dereferencing @ptr.
530 *
531 * Returns zero on success, or -EFAULT on error.
532 */
533#define put_user_unaligned(x,ptr)	\
534	__put_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
535
536/*
537 * get_user_unaligned: - Get a simple variable from user space.
538 * @x:	 Variable to store result.
539 * @ptr: Source address, in user space.
540 *
541 * Context: User context only. This function may sleep if pagefaults are
542 *          enabled.
543 *
544 * This macro copies a single simple variable from user space to kernel
545 * space.  It supports simple types like char and int, but not larger
546 * data types like structures or arrays.
547 *
548 * @ptr must have pointer-to-simple-variable type, and the result of
549 * dereferencing @ptr must be assignable to @x without a cast.
550 *
551 * Returns zero on success, or -EFAULT on error.
552 * On error, the variable @x is set to zero.
553 */
554#define get_user_unaligned(x,ptr) \
555	__get_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
556
557/*
558 * __put_user_unaligned: - Write a simple value into user space, with less checking.
559 * @x:	 Value to copy to user space.
560 * @ptr: Destination address, in user space.
561 *
562 * Context: User context only. This function may sleep if pagefaults are
563 *          enabled.
564 *
565 * This macro copies a single simple value from kernel space to user
566 * space.  It supports simple types like char and int, but not larger
567 * data types like structures or arrays.
568 *
569 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
570 * to the result of dereferencing @ptr.
571 *
572 * Caller must check the pointer with access_ok() before calling this
573 * function.
574 *
575 * Returns zero on success, or -EFAULT on error.
576 */
577#define __put_user_unaligned(x,ptr) \
578	__put_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
579
580/*
581 * __get_user_unaligned: - Get a simple variable from user space, with less checking.
582 * @x:	 Variable to store result.
583 * @ptr: Source address, in user space.
584 *
585 * Context: User context only. This function may sleep if pagefaults are
586 *          enabled.
587 *
588 * This macro copies a single simple variable from user space to kernel
589 * space.  It supports simple types like char and int, but not larger
590 * data types like structures or arrays.
591 *
592 * @ptr must have pointer-to-simple-variable type, and the result of
593 * dereferencing @ptr must be assignable to @x without a cast.
594 *
595 * Caller must check the pointer with access_ok() before calling this
596 * function.
597 *
598 * Returns zero on success, or -EFAULT on error.
599 * On error, the variable @x is set to zero.
600 */
601#define __get_user_unaligned(x,ptr) \
602	__get_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
603
604/*
605 * Yuck.  We need two variants, one for 64bit operation and one
606 * for 32 bit mode and old iron.
607 */
608#ifdef CONFIG_32BIT
609#define __GET_USER_UNALIGNED_DW(val, ptr)				\
610	__get_user_unaligned_asm_ll32(val, ptr)
611#endif
612#ifdef CONFIG_64BIT
613#define __GET_USER_UNALIGNED_DW(val, ptr)				\
614	__get_user_unaligned_asm(val, "uld", ptr)
615#endif
616
617extern void __get_user_unaligned_unknown(void);
618
619#define __get_user_unaligned_common(val, size, ptr)			\
620do {									\
621	switch (size) {							\
622	case 1: __get_data_asm(val, "lb", ptr); break;			\
623	case 2: __get_data_unaligned_asm(val, "ulh", ptr); break;	\
624	case 4: __get_data_unaligned_asm(val, "ulw", ptr); break;	\
625	case 8: __GET_USER_UNALIGNED_DW(val, ptr); break;		\
626	default: __get_user_unaligned_unknown(); break;			\
627	}								\
628} while (0)
629
630#define __get_user_unaligned_nocheck(x,ptr,size)			\
631({									\
632	int __gu_err;							\
633									\
634	__get_user_unaligned_common((x), size, ptr);			\
635	__gu_err;							\
636})
637
638#define __get_user_unaligned_check(x,ptr,size)				\
639({									\
640	int __gu_err = -EFAULT;						\
641	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
642									\
643	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size)))		\
644		__get_user_unaligned_common((x), size, __gu_ptr);	\
645									\
646	__gu_err;							\
647})
648
649#define __get_data_unaligned_asm(val, insn, addr)			\
650{									\
651	long __gu_tmp;							\
652									\
653	__asm__ __volatile__(						\
654	"1:	" insn "	%1, %3				\n"	\
655	"2:							\n"	\
656	"	.insn						\n"	\
657	"	.section .fixup,\"ax\"				\n"	\
658	"3:	li	%0, %4					\n"	\
659	"	move	%1, $0					\n"	\
660	"	j	2b					\n"	\
661	"	.previous					\n"	\
662	"	.section __ex_table,\"a\"			\n"	\
663	"	"__UA_ADDR "\t1b, 3b				\n"	\
664	"	"__UA_ADDR "\t1b + 4, 3b			\n"	\
665	"	.previous					\n"	\
666	: "=r" (__gu_err), "=r" (__gu_tmp)				\
667	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
668									\
669	(val) = (__typeof__(*(addr))) __gu_tmp;				\
670}
671
672/*
673 * Get a long long 64 using 32 bit registers.
674 */
675#define __get_user_unaligned_asm_ll32(val, addr)			\
676{									\
677	unsigned long long __gu_tmp;					\
678									\
679	__asm__ __volatile__(						\
680	"1:	ulw	%1, (%3)				\n"	\
681	"2:	ulw	%D1, 4(%3)				\n"	\
682	"	move	%0, $0					\n"	\
683	"3:							\n"	\
684	"	.insn						\n"	\
685	"	.section	.fixup,\"ax\"			\n"	\
686	"4:	li	%0, %4					\n"	\
687	"	move	%1, $0					\n"	\
688	"	move	%D1, $0					\n"	\
689	"	j	3b					\n"	\
690	"	.previous					\n"	\
691	"	.section	__ex_table,\"a\"		\n"	\
692	"	" __UA_ADDR "	1b, 4b				\n"	\
693	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
694	"	" __UA_ADDR "	2b, 4b				\n"	\
695	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
696	"	.previous					\n"	\
697	: "=r" (__gu_err), "=&r" (__gu_tmp)				\
698	: "0" (0), "r" (addr), "i" (-EFAULT));				\
699	(val) = (__typeof__(*(addr))) __gu_tmp;				\
700}
701
702/*
703 * Yuck.  We need two variants, one for 64bit operation and one
704 * for 32 bit mode and old iron.
705 */
706#ifdef CONFIG_32BIT
707#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm_ll32(ptr)
708#endif
709#ifdef CONFIG_64BIT
710#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm("usd", ptr)
711#endif
712
713#define __put_user_unaligned_common(ptr, size)				\
714do {									\
715	switch (size) {							\
716	case 1: __put_data_asm("sb", ptr); break;			\
717	case 2: __put_user_unaligned_asm("ush", ptr); break;		\
718	case 4: __put_user_unaligned_asm("usw", ptr); break;		\
719	case 8: __PUT_USER_UNALIGNED_DW(ptr); break;			\
720	default: __put_user_unaligned_unknown(); break;			\
721} while (0)
722
723#define __put_user_unaligned_nocheck(x,ptr,size)			\
724({									\
725	__typeof__(*(ptr)) __pu_val;					\
726	int __pu_err = 0;						\
727									\
728	__pu_val = (x);							\
729	__put_user_unaligned_common(ptr, size);				\
730	__pu_err;							\
731})
732
733#define __put_user_unaligned_check(x,ptr,size)				\
734({									\
735	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
736	__typeof__(*(ptr)) __pu_val = (x);				\
737	int __pu_err = -EFAULT;						\
738									\
739	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size)))		\
740		__put_user_unaligned_common(__pu_addr, size);		\
741									\
742	__pu_err;							\
743})
744
745#define __put_user_unaligned_asm(insn, ptr)				\
746{									\
747	__asm__ __volatile__(						\
748	"1:	" insn "	%z2, %3		# __put_user_unaligned_asm\n" \
749	"2:							\n"	\
750	"	.insn						\n"	\
751	"	.section	.fixup,\"ax\"			\n"	\
752	"3:	li	%0, %4					\n"	\
753	"	j	2b					\n"	\
754	"	.previous					\n"	\
755	"	.section	__ex_table,\"a\"		\n"	\
756	"	" __UA_ADDR "	1b, 3b				\n"	\
757	"	.previous					\n"	\
758	: "=r" (__pu_err)						\
759	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
760	  "i" (-EFAULT));						\
761}
762
763#define __put_user_unaligned_asm_ll32(ptr)				\
764{									\
765	__asm__ __volatile__(						\
766	"1:	sw	%2, (%3)	# __put_user_unaligned_asm_ll32 \n" \
767	"2:	sw	%D2, 4(%3)				\n"	\
768	"3:							\n"	\
769	"	.insn						\n"	\
770	"	.section	.fixup,\"ax\"			\n"	\
771	"4:	li	%0, %4					\n"	\
772	"	j	3b					\n"	\
773	"	.previous					\n"	\
774	"	.section	__ex_table,\"a\"		\n"	\
775	"	" __UA_ADDR "	1b, 4b				\n"	\
776	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
777	"	" __UA_ADDR "	2b, 4b				\n"	\
778	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
779	"	.previous"						\
780	: "=r" (__pu_err)						\
781	: "0" (0), "r" (__pu_val), "r" (ptr),				\
782	  "i" (-EFAULT));						\
783}
784
785extern void __put_user_unaligned_unknown(void);
786#endif
787
788/*
789 * We're generating jump to subroutines which will be outside the range of
790 * jump instructions
791 */
792#ifdef MODULE
793#define __MODULE_JAL(destination)					\
794	".set\tnoat\n\t"						\
795	__UA_LA "\t$1, " #destination "\n\t"				\
796	"jalr\t$1\n\t"							\
797	".set\tat\n\t"
798#else
799#define __MODULE_JAL(destination)					\
800	"jal\t" #destination "\n\t"
801#endif
802
803#if defined(CONFIG_CPU_DADDI_WORKAROUNDS) || (defined(CONFIG_EVA) &&	\
804					      defined(CONFIG_CPU_HAS_PREFETCH))
805#define DADDI_SCRATCH "$3"
806#else
807#define DADDI_SCRATCH "$0"
808#endif
809
810extern size_t __copy_user(void *__to, const void *__from, size_t __n);
811
812#ifndef CONFIG_EVA
813#define __invoke_copy_to_user(to, from, n)				\
814({									\
815	register void __user *__cu_to_r __asm__("$4");			\
816	register const void *__cu_from_r __asm__("$5");			\
817	register long __cu_len_r __asm__("$6");				\
818									\
819	__cu_to_r = (to);						\
820	__cu_from_r = (from);						\
821	__cu_len_r = (n);						\
822	__asm__ __volatile__(						\
823	__MODULE_JAL(__copy_user)					\
824	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
825	:								\
826	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
827	  DADDI_SCRATCH, "memory");					\
828	__cu_len_r;							\
829})
830
831#define __invoke_copy_to_kernel(to, from, n)				\
832	__invoke_copy_to_user(to, from, n)
833
834#endif
835
836/*
837 * __copy_to_user: - Copy a block of data into user space, with less checking.
838 * @to:	  Destination address, in user space.
839 * @from: Source address, in kernel space.
840 * @n:	  Number of bytes to copy.
841 *
842 * Context: User context only. This function may sleep if pagefaults are
843 *          enabled.
844 *
845 * Copy data from kernel space to user space.  Caller must check
846 * the specified block with access_ok() before calling this function.
847 *
848 * Returns number of bytes that could not be copied.
849 * On success, this will be zero.
850 */
851#define __copy_to_user(to, from, n)					\
852({									\
853	void __user *__cu_to;						\
854	const void *__cu_from;						\
855	long __cu_len;							\
856									\
857	__cu_to = (to);							\
858	__cu_from = (from);						\
859	__cu_len = (n);							\
860	might_fault();							\
861	if (eva_kernel_access())					\
862		__cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from,	\
863						   __cu_len);		\
864	else								\
865		__cu_len = __invoke_copy_to_user(__cu_to, __cu_from,	\
866						 __cu_len);		\
867	__cu_len;							\
868})
869
870extern size_t __copy_user_inatomic(void *__to, const void *__from, size_t __n);
871
872#define __copy_to_user_inatomic(to, from, n)				\
873({									\
874	void __user *__cu_to;						\
875	const void *__cu_from;						\
876	long __cu_len;							\
877									\
878	__cu_to = (to);							\
879	__cu_from = (from);						\
880	__cu_len = (n);							\
881	if (eva_kernel_access())					\
882		__cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from,	\
883						   __cu_len);		\
884	else								\
885		__cu_len = __invoke_copy_to_user(__cu_to, __cu_from,	\
886						 __cu_len);		\
887	__cu_len;							\
888})
889
890#define __copy_from_user_inatomic(to, from, n)				\
891({									\
892	void *__cu_to;							\
893	const void __user *__cu_from;					\
894	long __cu_len;							\
895									\
896	__cu_to = (to);							\
897	__cu_from = (from);						\
898	__cu_len = (n);							\
899	if (eva_kernel_access())					\
900		__cu_len = __invoke_copy_from_kernel_inatomic(__cu_to,	\
901							      __cu_from,\
902							      __cu_len);\
903	else								\
904		__cu_len = __invoke_copy_from_user_inatomic(__cu_to,	\
905							    __cu_from,	\
906							    __cu_len);	\
907	__cu_len;							\
908})
909
910/*
911 * copy_to_user: - Copy a block of data into user space.
912 * @to:	  Destination address, in user space.
913 * @from: Source address, in kernel space.
914 * @n:	  Number of bytes to copy.
915 *
916 * Context: User context only. This function may sleep if pagefaults are
917 *          enabled.
918 *
919 * Copy data from kernel space to user space.
920 *
921 * Returns number of bytes that could not be copied.
922 * On success, this will be zero.
923 */
924#define copy_to_user(to, from, n)					\
925({									\
926	void __user *__cu_to;						\
927	const void *__cu_from;						\
928	long __cu_len;							\
929									\
930	__cu_to = (to);							\
931	__cu_from = (from);						\
932	__cu_len = (n);							\
933	if (eva_kernel_access()) {					\
934		__cu_len = __invoke_copy_to_kernel(__cu_to,		\
935						   __cu_from,		\
936						   __cu_len);		\
937	} else {							\
938		if (access_ok(VERIFY_WRITE, __cu_to, __cu_len)) {       \
939			might_fault();                                  \
940			__cu_len = __invoke_copy_to_user(__cu_to,	\
941							 __cu_from,	\
942							 __cu_len);     \
943		}							\
944	}								\
945	__cu_len;							\
946})
947
948#ifndef CONFIG_EVA
949
950#define __invoke_copy_from_user(to, from, n)				\
951({									\
952	register void *__cu_to_r __asm__("$4");				\
953	register const void __user *__cu_from_r __asm__("$5");		\
954	register long __cu_len_r __asm__("$6");				\
955									\
956	__cu_to_r = (to);						\
957	__cu_from_r = (from);						\
958	__cu_len_r = (n);						\
959	__asm__ __volatile__(						\
960	".set\tnoreorder\n\t"						\
961	__MODULE_JAL(__copy_user)					\
962	".set\tnoat\n\t"						\
963	__UA_ADDU "\t$1, %1, %2\n\t"					\
964	".set\tat\n\t"							\
965	".set\treorder"							\
966	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
967	:								\
968	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
969	  DADDI_SCRATCH, "memory");					\
970	__cu_len_r;							\
971})
972
973#define __invoke_copy_from_kernel(to, from, n)				\
974	__invoke_copy_from_user(to, from, n)
975
976/* For userland <-> userland operations */
977#define ___invoke_copy_in_user(to, from, n)				\
978	__invoke_copy_from_user(to, from, n)
979
980/* For kernel <-> kernel operations */
981#define ___invoke_copy_in_kernel(to, from, n)				\
982	__invoke_copy_from_user(to, from, n)
983
984#define __invoke_copy_from_user_inatomic(to, from, n)			\
985({									\
986	register void *__cu_to_r __asm__("$4");				\
987	register const void __user *__cu_from_r __asm__("$5");		\
988	register long __cu_len_r __asm__("$6");				\
989									\
990	__cu_to_r = (to);						\
991	__cu_from_r = (from);						\
992	__cu_len_r = (n);						\
993	__asm__ __volatile__(						\
994	".set\tnoreorder\n\t"						\
995	__MODULE_JAL(__copy_user_inatomic)				\
996	".set\tnoat\n\t"						\
997	__UA_ADDU "\t$1, %1, %2\n\t"					\
998	".set\tat\n\t"							\
999	".set\treorder"							\
1000	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
1001	:								\
1002	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
1003	  DADDI_SCRATCH, "memory");					\
1004	__cu_len_r;							\
1005})
1006
1007#define __invoke_copy_from_kernel_inatomic(to, from, n)			\
1008	__invoke_copy_from_user_inatomic(to, from, n)			\
1009
1010#else
1011
1012/* EVA specific functions */
1013
1014extern size_t __copy_user_inatomic_eva(void *__to, const void *__from,
1015				       size_t __n);
1016extern size_t __copy_from_user_eva(void *__to, const void *__from,
1017				   size_t __n);
1018extern size_t __copy_to_user_eva(void *__to, const void *__from,
1019				 size_t __n);
1020extern size_t __copy_in_user_eva(void *__to, const void *__from, size_t __n);
1021
1022#define __invoke_copy_from_user_eva_generic(to, from, n, func_ptr)	\
1023({									\
1024	register void *__cu_to_r __asm__("$4");				\
1025	register const void __user *__cu_from_r __asm__("$5");		\
1026	register long __cu_len_r __asm__("$6");				\
1027									\
1028	__cu_to_r = (to);						\
1029	__cu_from_r = (from);						\
1030	__cu_len_r = (n);						\
1031	__asm__ __volatile__(						\
1032	".set\tnoreorder\n\t"						\
1033	__MODULE_JAL(func_ptr)						\
1034	".set\tnoat\n\t"						\
1035	__UA_ADDU "\t$1, %1, %2\n\t"					\
1036	".set\tat\n\t"							\
1037	".set\treorder"							\
1038	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
1039	:								\
1040	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
1041	  DADDI_SCRATCH, "memory");					\
1042	__cu_len_r;							\
1043})
1044
1045#define __invoke_copy_to_user_eva_generic(to, from, n, func_ptr)	\
1046({									\
1047	register void *__cu_to_r __asm__("$4");				\
1048	register const void __user *__cu_from_r __asm__("$5");		\
1049	register long __cu_len_r __asm__("$6");				\
1050									\
1051	__cu_to_r = (to);						\
1052	__cu_from_r = (from);						\
1053	__cu_len_r = (n);						\
1054	__asm__ __volatile__(						\
1055	__MODULE_JAL(func_ptr)						\
1056	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
1057	:								\
1058	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
1059	  DADDI_SCRATCH, "memory");					\
1060	__cu_len_r;							\
1061})
1062
1063/*
1064 * Source or destination address is in userland. We need to go through
1065 * the TLB
1066 */
1067#define __invoke_copy_from_user(to, from, n)				\
1068	__invoke_copy_from_user_eva_generic(to, from, n, __copy_from_user_eva)
1069
1070#define __invoke_copy_from_user_inatomic(to, from, n)			\
1071	__invoke_copy_from_user_eva_generic(to, from, n,		\
1072					    __copy_user_inatomic_eva)
1073
1074#define __invoke_copy_to_user(to, from, n)				\
1075	__invoke_copy_to_user_eva_generic(to, from, n, __copy_to_user_eva)
1076
1077#define ___invoke_copy_in_user(to, from, n)				\
1078	__invoke_copy_from_user_eva_generic(to, from, n, __copy_in_user_eva)
1079
1080/*
1081 * Source or destination address in the kernel. We are not going through
1082 * the TLB
1083 */
1084#define __invoke_copy_from_kernel(to, from, n)				\
1085	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1086
1087#define __invoke_copy_from_kernel_inatomic(to, from, n)			\
1088	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user_inatomic)
1089
1090#define __invoke_copy_to_kernel(to, from, n)				\
1091	__invoke_copy_to_user_eva_generic(to, from, n, __copy_user)
1092
1093#define ___invoke_copy_in_kernel(to, from, n)				\
1094	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1095
1096#endif /* CONFIG_EVA */
1097
1098/*
1099 * __copy_from_user: - Copy a block of data from user space, with less checking.
1100 * @to:	  Destination address, in kernel space.
1101 * @from: Source address, in user space.
1102 * @n:	  Number of bytes to copy.
1103 *
1104 * Context: User context only. This function may sleep if pagefaults are
1105 *          enabled.
1106 *
1107 * Copy data from user space to kernel space.  Caller must check
1108 * the specified block with access_ok() before calling this function.
1109 *
1110 * Returns number of bytes that could not be copied.
1111 * On success, this will be zero.
1112 *
1113 * If some data could not be copied, this function will pad the copied
1114 * data to the requested size using zero bytes.
1115 */
1116#define __copy_from_user(to, from, n)					\
1117({									\
1118	void *__cu_to;							\
1119	const void __user *__cu_from;					\
1120	long __cu_len;							\
1121									\
1122	__cu_to = (to);							\
1123	__cu_from = (from);						\
1124	__cu_len = (n);							\
1125	if (eva_kernel_access()) {					\
1126		__cu_len = __invoke_copy_from_kernel(__cu_to,		\
1127						     __cu_from,		\
1128						     __cu_len);		\
1129	} else {							\
1130		might_fault();						\
1131		__cu_len = __invoke_copy_from_user(__cu_to, __cu_from,	\
1132						   __cu_len);		\
1133	}								\
1134	__cu_len;							\
1135})
1136
1137/*
1138 * copy_from_user: - Copy a block of data from user space.
1139 * @to:	  Destination address, in kernel space.
1140 * @from: Source address, in user space.
1141 * @n:	  Number of bytes to copy.
1142 *
1143 * Context: User context only. This function may sleep if pagefaults are
1144 *          enabled.
1145 *
1146 * Copy data from user space to kernel space.
1147 *
1148 * Returns number of bytes that could not be copied.
1149 * On success, this will be zero.
1150 *
1151 * If some data could not be copied, this function will pad the copied
1152 * data to the requested size using zero bytes.
1153 */
1154#define copy_from_user(to, from, n)					\
1155({									\
1156	void *__cu_to;							\
1157	const void __user *__cu_from;					\
1158	long __cu_len;							\
1159									\
1160	__cu_to = (to);							\
1161	__cu_from = (from);						\
1162	__cu_len = (n);							\
1163	if (eva_kernel_access()) {					\
1164		__cu_len = __invoke_copy_from_kernel(__cu_to,		\
1165						     __cu_from,		\
1166						     __cu_len);		\
1167	} else {							\
1168		if (access_ok(VERIFY_READ, __cu_from, __cu_len)) {	\
1169			might_fault();                                  \
1170			__cu_len = __invoke_copy_from_user(__cu_to,	\
1171							   __cu_from,	\
1172							   __cu_len);   \
1173		}							\
1174	}								\
1175	__cu_len;							\
1176})
1177
1178#define __copy_in_user(to, from, n)					\
1179({									\
1180	void __user *__cu_to;						\
1181	const void __user *__cu_from;					\
1182	long __cu_len;							\
1183									\
1184	__cu_to = (to);							\
1185	__cu_from = (from);						\
1186	__cu_len = (n);							\
1187	if (eva_kernel_access()) {					\
1188		__cu_len = ___invoke_copy_in_kernel(__cu_to, __cu_from,	\
1189						    __cu_len);		\
1190	} else {							\
1191		might_fault();						\
1192		__cu_len = ___invoke_copy_in_user(__cu_to, __cu_from,	\
1193						  __cu_len);		\
1194	}								\
1195	__cu_len;							\
1196})
1197
1198#define copy_in_user(to, from, n)					\
1199({									\
1200	void __user *__cu_to;						\
1201	const void __user *__cu_from;					\
1202	long __cu_len;							\
1203									\
1204	__cu_to = (to);							\
1205	__cu_from = (from);						\
1206	__cu_len = (n);							\
1207	if (eva_kernel_access()) {					\
1208		__cu_len = ___invoke_copy_in_kernel(__cu_to,__cu_from,	\
1209						    __cu_len);		\
1210	} else {							\
1211		if (likely(access_ok(VERIFY_READ, __cu_from, __cu_len) &&\
1212			   access_ok(VERIFY_WRITE, __cu_to, __cu_len))) {\
1213			might_fault();					\
1214			__cu_len = ___invoke_copy_in_user(__cu_to,	\
1215							  __cu_from,	\
1216							  __cu_len);	\
1217		}							\
1218	}								\
1219	__cu_len;							\
1220})
1221
1222/*
1223 * __clear_user: - Zero a block of memory in user space, with less checking.
1224 * @to:	  Destination address, in user space.
1225 * @n:	  Number of bytes to zero.
1226 *
1227 * Zero a block of memory in user space.  Caller must check
1228 * the specified block with access_ok() before calling this function.
1229 *
1230 * Returns number of bytes that could not be cleared.
1231 * On success, this will be zero.
1232 */
1233static inline __kernel_size_t
1234__clear_user(void __user *addr, __kernel_size_t size)
1235{
1236	__kernel_size_t res;
1237
1238	if (eva_kernel_access()) {
1239		__asm__ __volatile__(
1240			"move\t$4, %1\n\t"
1241			"move\t$5, $0\n\t"
1242			"move\t$6, %2\n\t"
1243			__MODULE_JAL(__bzero_kernel)
1244			"move\t%0, $6"
1245			: "=r" (res)
1246			: "r" (addr), "r" (size)
1247			: "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
1248	} else {
1249		might_fault();
1250		__asm__ __volatile__(
1251			"move\t$4, %1\n\t"
1252			"move\t$5, $0\n\t"
1253			"move\t$6, %2\n\t"
1254			__MODULE_JAL(__bzero)
1255			"move\t%0, $6"
1256			: "=r" (res)
1257			: "r" (addr), "r" (size)
1258			: "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
1259	}
1260
1261	return res;
1262}
1263
1264#define clear_user(addr,n)						\
1265({									\
1266	void __user * __cl_addr = (addr);				\
1267	unsigned long __cl_size = (n);					\
1268	if (__cl_size && access_ok(VERIFY_WRITE,			\
1269					__cl_addr, __cl_size))		\
1270		__cl_size = __clear_user(__cl_addr, __cl_size);		\
1271	__cl_size;							\
1272})
1273
1274/*
1275 * __strncpy_from_user: - Copy a NUL terminated string from userspace, with less checking.
1276 * @dst:   Destination address, in kernel space.  This buffer must be at
1277 *	   least @count bytes long.
1278 * @src:   Source address, in user space.
1279 * @count: Maximum number of bytes to copy, including the trailing NUL.
1280 *
1281 * Copies a NUL-terminated string from userspace to kernel space.
1282 * Caller must check the specified block with access_ok() before calling
1283 * this function.
1284 *
1285 * On success, returns the length of the string (not including the trailing
1286 * NUL).
1287 *
1288 * If access to userspace fails, returns -EFAULT (some data may have been
1289 * copied).
1290 *
1291 * If @count is smaller than the length of the string, copies @count bytes
1292 * and returns @count.
1293 */
1294static inline long
1295__strncpy_from_user(char *__to, const char __user *__from, long __len)
1296{
1297	long res;
1298
1299	if (eva_kernel_access()) {
1300		__asm__ __volatile__(
1301			"move\t$4, %1\n\t"
1302			"move\t$5, %2\n\t"
1303			"move\t$6, %3\n\t"
1304			__MODULE_JAL(__strncpy_from_kernel_nocheck_asm)
1305			"move\t%0, $2"
1306			: "=r" (res)
1307			: "r" (__to), "r" (__from), "r" (__len)
1308			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1309	} else {
1310		might_fault();
1311		__asm__ __volatile__(
1312			"move\t$4, %1\n\t"
1313			"move\t$5, %2\n\t"
1314			"move\t$6, %3\n\t"
1315			__MODULE_JAL(__strncpy_from_user_nocheck_asm)
1316			"move\t%0, $2"
1317			: "=r" (res)
1318			: "r" (__to), "r" (__from), "r" (__len)
1319			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1320	}
1321
1322	return res;
1323}
1324
1325/*
1326 * strncpy_from_user: - Copy a NUL terminated string from userspace.
1327 * @dst:   Destination address, in kernel space.  This buffer must be at
1328 *	   least @count bytes long.
1329 * @src:   Source address, in user space.
1330 * @count: Maximum number of bytes to copy, including the trailing NUL.
1331 *
1332 * Copies a NUL-terminated string from userspace to kernel space.
1333 *
1334 * On success, returns the length of the string (not including the trailing
1335 * NUL).
1336 *
1337 * If access to userspace fails, returns -EFAULT (some data may have been
1338 * copied).
1339 *
1340 * If @count is smaller than the length of the string, copies @count bytes
1341 * and returns @count.
1342 */
1343static inline long
1344strncpy_from_user(char *__to, const char __user *__from, long __len)
1345{
1346	long res;
1347
1348	if (eva_kernel_access()) {
1349		__asm__ __volatile__(
1350			"move\t$4, %1\n\t"
1351			"move\t$5, %2\n\t"
1352			"move\t$6, %3\n\t"
1353			__MODULE_JAL(__strncpy_from_kernel_asm)
1354			"move\t%0, $2"
1355			: "=r" (res)
1356			: "r" (__to), "r" (__from), "r" (__len)
1357			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1358	} else {
1359		might_fault();
1360		__asm__ __volatile__(
1361			"move\t$4, %1\n\t"
1362			"move\t$5, %2\n\t"
1363			"move\t$6, %3\n\t"
1364			__MODULE_JAL(__strncpy_from_user_asm)
1365			"move\t%0, $2"
1366			: "=r" (res)
1367			: "r" (__to), "r" (__from), "r" (__len)
1368			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1369	}
1370
1371	return res;
1372}
1373
1374/*
1375 * strlen_user: - Get the size of a string in user space.
1376 * @str: The string to measure.
1377 *
1378 * Context: User context only. This function may sleep if pagefaults are
1379 *          enabled.
1380 *
1381 * Get the size of a NUL-terminated string in user space.
1382 *
1383 * Returns the size of the string INCLUDING the terminating NUL.
1384 * On exception, returns 0.
1385 *
1386 * If there is a limit on the length of a valid string, you may wish to
1387 * consider using strnlen_user() instead.
1388 */
1389static inline long strlen_user(const char __user *s)
1390{
1391	long res;
1392
1393	if (eva_kernel_access()) {
1394		__asm__ __volatile__(
1395			"move\t$4, %1\n\t"
1396			__MODULE_JAL(__strlen_kernel_asm)
1397			"move\t%0, $2"
1398			: "=r" (res)
1399			: "r" (s)
1400			: "$2", "$4", __UA_t0, "$31");
1401	} else {
1402		might_fault();
1403		__asm__ __volatile__(
1404			"move\t$4, %1\n\t"
1405			__MODULE_JAL(__strlen_user_asm)
1406			"move\t%0, $2"
1407			: "=r" (res)
1408			: "r" (s)
1409			: "$2", "$4", __UA_t0, "$31");
1410	}
1411
1412	return res;
1413}
1414
1415/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1416static inline long __strnlen_user(const char __user *s, long n)
1417{
1418	long res;
1419
1420	if (eva_kernel_access()) {
1421		__asm__ __volatile__(
1422			"move\t$4, %1\n\t"
1423			"move\t$5, %2\n\t"
1424			__MODULE_JAL(__strnlen_kernel_nocheck_asm)
1425			"move\t%0, $2"
1426			: "=r" (res)
1427			: "r" (s), "r" (n)
1428			: "$2", "$4", "$5", __UA_t0, "$31");
1429	} else {
1430		might_fault();
1431		__asm__ __volatile__(
1432			"move\t$4, %1\n\t"
1433			"move\t$5, %2\n\t"
1434			__MODULE_JAL(__strnlen_user_nocheck_asm)
1435			"move\t%0, $2"
1436			: "=r" (res)
1437			: "r" (s), "r" (n)
1438			: "$2", "$4", "$5", __UA_t0, "$31");
1439	}
1440
1441	return res;
1442}
1443
1444/*
1445 * strnlen_user: - Get the size of a string in user space.
1446 * @str: The string to measure.
1447 *
1448 * Context: User context only. This function may sleep if pagefaults are
1449 *          enabled.
1450 *
1451 * Get the size of a NUL-terminated string in user space.
1452 *
1453 * Returns the size of the string INCLUDING the terminating NUL.
1454 * On exception, returns 0.
1455 * If the string is too long, returns a value greater than @n.
1456 */
1457static inline long strnlen_user(const char __user *s, long n)
1458{
1459	long res;
1460
1461	might_fault();
1462	if (eva_kernel_access()) {
1463		__asm__ __volatile__(
1464			"move\t$4, %1\n\t"
1465			"move\t$5, %2\n\t"
1466			__MODULE_JAL(__strnlen_kernel_asm)
1467			"move\t%0, $2"
1468			: "=r" (res)
1469			: "r" (s), "r" (n)
1470			: "$2", "$4", "$5", __UA_t0, "$31");
1471	} else {
1472		__asm__ __volatile__(
1473			"move\t$4, %1\n\t"
1474			"move\t$5, %2\n\t"
1475			__MODULE_JAL(__strnlen_user_asm)
1476			"move\t%0, $2"
1477			: "=r" (res)
1478			: "r" (s), "r" (n)
1479			: "$2", "$4", "$5", __UA_t0, "$31");
1480	}
1481
1482	return res;
1483}
1484
1485struct exception_table_entry
1486{
1487	unsigned long insn;
1488	unsigned long nextinsn;
1489};
1490
1491extern int fixup_exception(struct pt_regs *regs);
1492
1493#endif /* _ASM_UACCESS_H */
1494