1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2004-2007 Cavium Networks
7 * Copyright (C) 2008, 2009 Wind River Systems
8 *   written by Ralf Baechle <ralf@linux-mips.org>
9 */
10#include <linux/compiler.h>
11#include <linux/vmalloc.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
14#include <linux/console.h>
15#include <linux/delay.h>
16#include <linux/export.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/serial.h>
20#include <linux/smp.h>
21#include <linux/types.h>
22#include <linux/string.h>	/* for memset */
23#include <linux/tty.h>
24#include <linux/time.h>
25#include <linux/platform_device.h>
26#include <linux/serial_core.h>
27#include <linux/serial_8250.h>
28#include <linux/of_fdt.h>
29#include <linux/libfdt.h>
30#include <linux/kexec.h>
31
32#include <asm/processor.h>
33#include <asm/reboot.h>
34#include <asm/smp-ops.h>
35#include <asm/irq_cpu.h>
36#include <asm/mipsregs.h>
37#include <asm/bootinfo.h>
38#include <asm/sections.h>
39#include <asm/time.h>
40
41#include <asm/octeon/octeon.h>
42#include <asm/octeon/pci-octeon.h>
43#include <asm/octeon/cvmx-mio-defs.h>
44#include <asm/octeon/cvmx-rst-defs.h>
45
46extern struct plat_smp_ops octeon_smp_ops;
47
48#ifdef CONFIG_PCI
49extern void pci_console_init(const char *arg);
50#endif
51
52static unsigned long long MAX_MEMORY = 512ull << 20;
53
54DEFINE_SEMAPHORE(octeon_bootbus_sem);
55EXPORT_SYMBOL(octeon_bootbus_sem);
56
57struct octeon_boot_descriptor *octeon_boot_desc_ptr;
58
59struct cvmx_bootinfo *octeon_bootinfo;
60EXPORT_SYMBOL(octeon_bootinfo);
61
62static unsigned long long RESERVE_LOW_MEM = 0ull;
63#ifdef CONFIG_KEXEC
64#ifdef CONFIG_SMP
65/*
66 * Wait for relocation code is prepared and send
67 * secondary CPUs to spin until kernel is relocated.
68 */
69static void octeon_kexec_smp_down(void *ignored)
70{
71	int cpu = smp_processor_id();
72
73	local_irq_disable();
74	set_cpu_online(cpu, false);
75	while (!atomic_read(&kexec_ready_to_reboot))
76		cpu_relax();
77
78	asm volatile (
79	"	sync						\n"
80	"	synci	($0)					\n");
81
82	relocated_kexec_smp_wait(NULL);
83}
84#endif
85
86#define OCTEON_DDR0_BASE    (0x0ULL)
87#define OCTEON_DDR0_SIZE    (0x010000000ULL)
88#define OCTEON_DDR1_BASE    (0x410000000ULL)
89#define OCTEON_DDR1_SIZE    (0x010000000ULL)
90#define OCTEON_DDR2_BASE    (0x020000000ULL)
91#define OCTEON_DDR2_SIZE    (0x3e0000000ULL)
92#define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
93
94static struct kimage *kimage_ptr;
95
96static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
97{
98	int64_t addr;
99	struct cvmx_bootmem_desc *bootmem_desc;
100
101	bootmem_desc = cvmx_bootmem_get_desc();
102
103	if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
104		mem_size = OCTEON_MAX_PHY_MEM_SIZE;
105		pr_err("Error: requested memory too large,"
106		       "truncating to maximum size\n");
107	}
108
109	bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
110	bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
111
112	addr = (OCTEON_DDR0_BASE + RESERVE_LOW_MEM + low_reserved_bytes);
113	bootmem_desc->head_addr = 0;
114
115	if (mem_size <= OCTEON_DDR0_SIZE) {
116		__cvmx_bootmem_phy_free(addr,
117				mem_size - RESERVE_LOW_MEM -
118				low_reserved_bytes, 0);
119		return;
120	}
121
122	__cvmx_bootmem_phy_free(addr,
123			OCTEON_DDR0_SIZE - RESERVE_LOW_MEM -
124			low_reserved_bytes, 0);
125
126	mem_size -= OCTEON_DDR0_SIZE;
127
128	if (mem_size > OCTEON_DDR1_SIZE) {
129		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
130		__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
131				mem_size - OCTEON_DDR1_SIZE, 0);
132	} else
133		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
134}
135
136static int octeon_kexec_prepare(struct kimage *image)
137{
138	int i;
139	char *bootloader = "kexec";
140
141	octeon_boot_desc_ptr->argc = 0;
142	for (i = 0; i < image->nr_segments; i++) {
143		if (!strncmp(bootloader, (char *)image->segment[i].buf,
144				strlen(bootloader))) {
145			/*
146			 * convert command line string to array
147			 * of parameters (as bootloader does).
148			 */
149			int argc = 0, offt;
150			char *str = (char *)image->segment[i].buf;
151			char *ptr = strchr(str, ' ');
152			while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
153				*ptr = '\0';
154				if (ptr[1] != ' ') {
155					offt = (int)(ptr - str + 1);
156					octeon_boot_desc_ptr->argv[argc] =
157						image->segment[i].mem + offt;
158					argc++;
159				}
160				ptr = strchr(ptr + 1, ' ');
161			}
162			octeon_boot_desc_ptr->argc = argc;
163			break;
164		}
165	}
166
167	/*
168	 * Information about segments will be needed during pre-boot memory
169	 * initialization.
170	 */
171	kimage_ptr = image;
172	return 0;
173}
174
175static void octeon_generic_shutdown(void)
176{
177	int i;
178#ifdef CONFIG_SMP
179	int cpu;
180#endif
181	struct cvmx_bootmem_desc *bootmem_desc;
182	void *named_block_array_ptr;
183
184	bootmem_desc = cvmx_bootmem_get_desc();
185	named_block_array_ptr =
186		cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
187
188#ifdef CONFIG_SMP
189	/* disable watchdogs */
190	for_each_online_cpu(cpu)
191		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
192#else
193	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
194#endif
195	if (kimage_ptr != kexec_crash_image) {
196		memset(named_block_array_ptr,
197			0x0,
198			CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
199			sizeof(struct cvmx_bootmem_named_block_desc));
200		/*
201		 * Mark all memory (except low 0x100000 bytes) as free.
202		 * It is the same thing that bootloader does.
203		 */
204		kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
205				0x100000);
206		/*
207		 * Allocate all segments to avoid their corruption during boot.
208		 */
209		for (i = 0; i < kimage_ptr->nr_segments; i++)
210			cvmx_bootmem_alloc_address(
211				kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
212				kimage_ptr->segment[i].mem - PAGE_SIZE,
213				PAGE_SIZE);
214	} else {
215		/*
216		 * Do not mark all memory as free. Free only named sections
217		 * leaving the rest of memory unchanged.
218		 */
219		struct cvmx_bootmem_named_block_desc *ptr =
220			(struct cvmx_bootmem_named_block_desc *)
221			named_block_array_ptr;
222
223		for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
224			if (ptr[i].size)
225				cvmx_bootmem_free_named(ptr[i].name);
226	}
227	kexec_args[2] = 1UL; /* running on octeon_main_processor */
228	kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
229#ifdef CONFIG_SMP
230	secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
231	secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
232#endif
233}
234
235static void octeon_shutdown(void)
236{
237	octeon_generic_shutdown();
238#ifdef CONFIG_SMP
239	smp_call_function(octeon_kexec_smp_down, NULL, 0);
240	smp_wmb();
241	while (num_online_cpus() > 1) {
242		cpu_relax();
243		mdelay(1);
244	}
245#endif
246}
247
248static void octeon_crash_shutdown(struct pt_regs *regs)
249{
250	octeon_generic_shutdown();
251	default_machine_crash_shutdown(regs);
252}
253
254#endif /* CONFIG_KEXEC */
255
256#ifdef CONFIG_CAVIUM_RESERVE32
257uint64_t octeon_reserve32_memory;
258EXPORT_SYMBOL(octeon_reserve32_memory);
259#endif
260
261#ifdef CONFIG_KEXEC
262/* crashkernel cmdline parameter is parsed _after_ memory setup
263 * we also parse it here (workaround for EHB5200) */
264static uint64_t crashk_size, crashk_base;
265#endif
266
267static int octeon_uart;
268
269extern asmlinkage void handle_int(void);
270
271/**
272 * Return non zero if we are currently running in the Octeon simulator
273 *
274 * Returns
275 */
276int octeon_is_simulation(void)
277{
278	return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
279}
280EXPORT_SYMBOL(octeon_is_simulation);
281
282/**
283 * Return true if Octeon is in PCI Host mode. This means
284 * Linux can control the PCI bus.
285 *
286 * Returns Non zero if Octeon in host mode.
287 */
288int octeon_is_pci_host(void)
289{
290#ifdef CONFIG_PCI
291	return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
292#else
293	return 0;
294#endif
295}
296
297/**
298 * Get the clock rate of Octeon
299 *
300 * Returns Clock rate in HZ
301 */
302uint64_t octeon_get_clock_rate(void)
303{
304	struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
305
306	return sysinfo->cpu_clock_hz;
307}
308EXPORT_SYMBOL(octeon_get_clock_rate);
309
310static u64 octeon_io_clock_rate;
311
312u64 octeon_get_io_clock_rate(void)
313{
314	return octeon_io_clock_rate;
315}
316EXPORT_SYMBOL(octeon_get_io_clock_rate);
317
318
319/**
320 * Write to the LCD display connected to the bootbus. This display
321 * exists on most Cavium evaluation boards. If it doesn't exist, then
322 * this function doesn't do anything.
323 *
324 * @s:	    String to write
325 */
326void octeon_write_lcd(const char *s)
327{
328	if (octeon_bootinfo->led_display_base_addr) {
329		void __iomem *lcd_address =
330			ioremap_nocache(octeon_bootinfo->led_display_base_addr,
331					8);
332		int i;
333		for (i = 0; i < 8; i++, s++) {
334			if (*s)
335				iowrite8(*s, lcd_address + i);
336			else
337				iowrite8(' ', lcd_address + i);
338		}
339		iounmap(lcd_address);
340	}
341}
342
343/**
344 * Return the console uart passed by the bootloader
345 *
346 * Returns uart	  (0 or 1)
347 */
348int octeon_get_boot_uart(void)
349{
350	int uart;
351#ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
352	uart = 1;
353#else
354	uart = (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
355		1 : 0;
356#endif
357	return uart;
358}
359
360/**
361 * Get the coremask Linux was booted on.
362 *
363 * Returns Core mask
364 */
365int octeon_get_boot_coremask(void)
366{
367	return octeon_boot_desc_ptr->core_mask;
368}
369
370/**
371 * Check the hardware BIST results for a CPU
372 */
373void octeon_check_cpu_bist(void)
374{
375	const int coreid = cvmx_get_core_num();
376	unsigned long long mask;
377	unsigned long long bist_val;
378
379	/* Check BIST results for COP0 registers */
380	mask = 0x1f00000000ull;
381	bist_val = read_octeon_c0_icacheerr();
382	if (bist_val & mask)
383		pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
384		       coreid, bist_val);
385
386	bist_val = read_octeon_c0_dcacheerr();
387	if (bist_val & 1)
388		pr_err("Core%d L1 Dcache parity error: "
389		       "CacheErr(dcache) = 0x%llx\n",
390		       coreid, bist_val);
391
392	mask = 0xfc00000000000000ull;
393	bist_val = read_c0_cvmmemctl();
394	if (bist_val & mask)
395		pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
396		       coreid, bist_val);
397
398	write_octeon_c0_dcacheerr(0);
399}
400
401/**
402 * Reboot Octeon
403 *
404 * @command: Command to pass to the bootloader. Currently ignored.
405 */
406static void octeon_restart(char *command)
407{
408	/* Disable all watchdogs before soft reset. They don't get cleared */
409#ifdef CONFIG_SMP
410	int cpu;
411	for_each_online_cpu(cpu)
412		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
413#else
414	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
415#endif
416
417	mb();
418	while (1)
419		if (OCTEON_IS_OCTEON3())
420			cvmx_write_csr(CVMX_RST_SOFT_RST, 1);
421		else
422			cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
423}
424
425
426/**
427 * Permanently stop a core.
428 *
429 * @arg: Ignored.
430 */
431static void octeon_kill_core(void *arg)
432{
433	if (octeon_is_simulation())
434		/* A break instruction causes the simulator stop a core */
435		asm volatile ("break" ::: "memory");
436
437	local_irq_disable();
438	/* Disable watchdog on this core. */
439	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
440	/* Spin in a low power mode. */
441	while (true)
442		asm volatile ("wait" ::: "memory");
443}
444
445
446/**
447 * Halt the system
448 */
449static void octeon_halt(void)
450{
451	smp_call_function(octeon_kill_core, NULL, 0);
452
453	switch (octeon_bootinfo->board_type) {
454	case CVMX_BOARD_TYPE_NAO38:
455		/* Driving a 1 to GPIO 12 shuts off this board */
456		cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
457		cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
458		break;
459	default:
460		octeon_write_lcd("PowerOff");
461		break;
462	}
463
464	octeon_kill_core(NULL);
465}
466
467static char __read_mostly octeon_system_type[80];
468
469static int __init init_octeon_system_type(void)
470{
471	snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)",
472		cvmx_board_type_to_string(octeon_bootinfo->board_type),
473		octeon_model_get_string(read_c0_prid()));
474
475	return 0;
476}
477early_initcall(init_octeon_system_type);
478
479/**
480 * Return a string representing the system type
481 *
482 * Returns
483 */
484const char *octeon_board_type_string(void)
485{
486	return octeon_system_type;
487}
488
489const char *get_system_type(void)
490	__attribute__ ((alias("octeon_board_type_string")));
491
492void octeon_user_io_init(void)
493{
494	union octeon_cvmemctl cvmmemctl;
495	union cvmx_iob_fau_timeout fau_timeout;
496	union cvmx_pow_nw_tim nm_tim;
497
498	/* Get the current settings for CP0_CVMMEMCTL_REG */
499	cvmmemctl.u64 = read_c0_cvmmemctl();
500	/* R/W If set, marked write-buffer entries time out the same
501	 * as as other entries; if clear, marked write-buffer entries
502	 * use the maximum timeout. */
503	cvmmemctl.s.dismarkwblongto = 1;
504	/* R/W If set, a merged store does not clear the write-buffer
505	 * entry timeout state. */
506	cvmmemctl.s.dismrgclrwbto = 0;
507	/* R/W Two bits that are the MSBs of the resultant CVMSEG LM
508	 * word location for an IOBDMA. The other 8 bits come from the
509	 * SCRADDR field of the IOBDMA. */
510	cvmmemctl.s.iobdmascrmsb = 0;
511	/* R/W If set, SYNCWS and SYNCS only order marked stores; if
512	 * clear, SYNCWS and SYNCS only order unmarked
513	 * stores. SYNCWSMARKED has no effect when DISSYNCWS is
514	 * set. */
515	cvmmemctl.s.syncwsmarked = 0;
516	/* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
517	cvmmemctl.s.dissyncws = 0;
518	/* R/W If set, no stall happens on write buffer full. */
519	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
520		cvmmemctl.s.diswbfst = 1;
521	else
522		cvmmemctl.s.diswbfst = 0;
523	/* R/W If set (and SX set), supervisor-level loads/stores can
524	 * use XKPHYS addresses with <48>==0 */
525	cvmmemctl.s.xkmemenas = 0;
526
527	/* R/W If set (and UX set), user-level loads/stores can use
528	 * XKPHYS addresses with VA<48>==0 */
529	cvmmemctl.s.xkmemenau = 0;
530
531	/* R/W If set (and SX set), supervisor-level loads/stores can
532	 * use XKPHYS addresses with VA<48>==1 */
533	cvmmemctl.s.xkioenas = 0;
534
535	/* R/W If set (and UX set), user-level loads/stores can use
536	 * XKPHYS addresses with VA<48>==1 */
537	cvmmemctl.s.xkioenau = 0;
538
539	/* R/W If set, all stores act as SYNCW (NOMERGE must be set
540	 * when this is set) RW, reset to 0. */
541	cvmmemctl.s.allsyncw = 0;
542
543	/* R/W If set, no stores merge, and all stores reach the
544	 * coherent bus in order. */
545	cvmmemctl.s.nomerge = 0;
546	/* R/W Selects the bit in the counter used for DID time-outs 0
547	 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
548	 * between 1x and 2x this interval. For example, with
549	 * DIDTTO=3, expiration interval is between 16K and 32K. */
550	cvmmemctl.s.didtto = 0;
551	/* R/W If set, the (mem) CSR clock never turns off. */
552	cvmmemctl.s.csrckalwys = 0;
553	/* R/W If set, mclk never turns off. */
554	cvmmemctl.s.mclkalwys = 0;
555	/* R/W Selects the bit in the counter used for write buffer
556	 * flush time-outs (WBFLT+11) is the bit position in an
557	 * internal counter used to determine expiration. The write
558	 * buffer expires between 1x and 2x this interval. For
559	 * example, with WBFLT = 0, a write buffer expires between 2K
560	 * and 4K cycles after the write buffer entry is allocated. */
561	cvmmemctl.s.wbfltime = 0;
562	/* R/W If set, do not put Istream in the L2 cache. */
563	cvmmemctl.s.istrnol2 = 0;
564
565	/*
566	 * R/W The write buffer threshold. As per erratum Core-14752
567	 * for CN63XX, a sc/scd might fail if the write buffer is
568	 * full.  Lowering WBTHRESH greatly lowers the chances of the
569	 * write buffer ever being full and triggering the erratum.
570	 */
571	if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
572		cvmmemctl.s.wbthresh = 4;
573	else
574		cvmmemctl.s.wbthresh = 10;
575
576	/* R/W If set, CVMSEG is available for loads/stores in
577	 * kernel/debug mode. */
578#if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
579	cvmmemctl.s.cvmsegenak = 1;
580#else
581	cvmmemctl.s.cvmsegenak = 0;
582#endif
583	/* R/W If set, CVMSEG is available for loads/stores in
584	 * supervisor mode. */
585	cvmmemctl.s.cvmsegenas = 0;
586	/* R/W If set, CVMSEG is available for loads/stores in user
587	 * mode. */
588	cvmmemctl.s.cvmsegenau = 0;
589
590	write_c0_cvmmemctl(cvmmemctl.u64);
591
592	/* Setup of CVMSEG is done in kernel-entry-init.h */
593	if (smp_processor_id() == 0)
594		pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
595			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
596			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
597
598	/* Set a default for the hardware timeouts */
599	fau_timeout.u64 = 0;
600	fau_timeout.s.tout_val = 0xfff;
601	/* Disable tagwait FAU timeout */
602	fau_timeout.s.tout_enb = 0;
603	cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
604
605	nm_tim.u64 = 0;
606	/* 4096 cycles */
607	nm_tim.s.nw_tim = 3;
608	cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
609
610	write_octeon_c0_icacheerr(0);
611	write_c0_derraddr1(0);
612}
613
614/**
615 * Early entry point for arch setup
616 */
617void __init prom_init(void)
618{
619	struct cvmx_sysinfo *sysinfo;
620	const char *arg;
621	char *p;
622	int i;
623	u64 t;
624	int argc;
625#ifdef CONFIG_CAVIUM_RESERVE32
626	int64_t addr = -1;
627#endif
628	/*
629	 * The bootloader passes a pointer to the boot descriptor in
630	 * $a3, this is available as fw_arg3.
631	 */
632	octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
633	octeon_bootinfo =
634		cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
635	cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
636
637	sysinfo = cvmx_sysinfo_get();
638	memset(sysinfo, 0, sizeof(*sysinfo));
639	sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
640	sysinfo->phy_mem_desc_ptr =
641		cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr);
642	sysinfo->core_mask = octeon_bootinfo->core_mask;
643	sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
644	sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
645	sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
646	sysinfo->board_type = octeon_bootinfo->board_type;
647	sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
648	sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
649	memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
650	       sizeof(sysinfo->mac_addr_base));
651	sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
652	memcpy(sysinfo->board_serial_number,
653	       octeon_bootinfo->board_serial_number,
654	       sizeof(sysinfo->board_serial_number));
655	sysinfo->compact_flash_common_base_addr =
656		octeon_bootinfo->compact_flash_common_base_addr;
657	sysinfo->compact_flash_attribute_base_addr =
658		octeon_bootinfo->compact_flash_attribute_base_addr;
659	sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
660	sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
661	sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
662
663	if (OCTEON_IS_OCTEON2()) {
664		/* I/O clock runs at a different rate than the CPU. */
665		union cvmx_mio_rst_boot rst_boot;
666		rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
667		octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
668	} else if (OCTEON_IS_OCTEON3()) {
669		/* I/O clock runs at a different rate than the CPU. */
670		union cvmx_rst_boot rst_boot;
671		rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
672		octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
673	} else {
674		octeon_io_clock_rate = sysinfo->cpu_clock_hz;
675	}
676
677	t = read_c0_cvmctl();
678	if ((t & (1ull << 27)) == 0) {
679		/*
680		 * Setup the multiplier save/restore code if
681		 * CvmCtl[NOMUL] clear.
682		 */
683		void *save;
684		void *save_end;
685		void *restore;
686		void *restore_end;
687		int save_len;
688		int restore_len;
689		int save_max = (char *)octeon_mult_save_end -
690			(char *)octeon_mult_save;
691		int restore_max = (char *)octeon_mult_restore_end -
692			(char *)octeon_mult_restore;
693		if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) {
694			save = octeon_mult_save3;
695			save_end = octeon_mult_save3_end;
696			restore = octeon_mult_restore3;
697			restore_end = octeon_mult_restore3_end;
698		} else {
699			save = octeon_mult_save2;
700			save_end = octeon_mult_save2_end;
701			restore = octeon_mult_restore2;
702			restore_end = octeon_mult_restore2_end;
703		}
704		save_len = (char *)save_end - (char *)save;
705		restore_len = (char *)restore_end - (char *)restore;
706		if (!WARN_ON(save_len > save_max ||
707				restore_len > restore_max)) {
708			memcpy(octeon_mult_save, save, save_len);
709			memcpy(octeon_mult_restore, restore, restore_len);
710		}
711	}
712
713	/*
714	 * Only enable the LED controller if we're running on a CN38XX, CN58XX,
715	 * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
716	 */
717	if (!octeon_is_simulation() &&
718	    octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
719		cvmx_write_csr(CVMX_LED_EN, 0);
720		cvmx_write_csr(CVMX_LED_PRT, 0);
721		cvmx_write_csr(CVMX_LED_DBG, 0);
722		cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
723		cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
724		cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
725		cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
726		cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
727		cvmx_write_csr(CVMX_LED_EN, 1);
728	}
729#ifdef CONFIG_CAVIUM_RESERVE32
730	/*
731	 * We need to temporarily allocate all memory in the reserve32
732	 * region. This makes sure the kernel doesn't allocate this
733	 * memory when it is getting memory from the
734	 * bootloader. Later, after the memory allocations are
735	 * complete, the reserve32 will be freed.
736	 *
737	 * Allocate memory for RESERVED32 aligned on 2MB boundary. This
738	 * is in case we later use hugetlb entries with it.
739	 */
740	addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
741						0, 0, 2 << 20,
742						"CAVIUM_RESERVE32", 0);
743	if (addr < 0)
744		pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
745	else
746		octeon_reserve32_memory = addr;
747#endif
748
749#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
750	if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
751		pr_info("Skipping L2 locking due to reduced L2 cache size\n");
752	} else {
753		uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
754#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
755		/* TLB refill */
756		cvmx_l2c_lock_mem_region(ebase, 0x100);
757#endif
758#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
759		/* General exception */
760		cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
761#endif
762#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
763		/* Interrupt handler */
764		cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
765#endif
766#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
767		cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
768		cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
769#endif
770#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
771		cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
772#endif
773	}
774#endif
775
776	octeon_check_cpu_bist();
777
778	octeon_uart = octeon_get_boot_uart();
779
780#ifdef CONFIG_SMP
781	octeon_write_lcd("LinuxSMP");
782#else
783	octeon_write_lcd("Linux");
784#endif
785
786	octeon_setup_delays();
787
788	/*
789	 * BIST should always be enabled when doing a soft reset. L2
790	 * Cache locking for instance is not cleared unless BIST is
791	 * enabled.  Unfortunately due to a chip errata G-200 for
792	 * Cn38XX and CN31XX, BIST msut be disabled on these parts.
793	 */
794	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
795	    OCTEON_IS_MODEL(OCTEON_CN31XX))
796		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
797	else
798		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
799
800	/* Default to 64MB in the simulator to speed things up */
801	if (octeon_is_simulation())
802		MAX_MEMORY = 64ull << 20;
803
804	arg = strstr(arcs_cmdline, "mem=");
805	if (arg) {
806		MAX_MEMORY = memparse(arg + 4, &p);
807		if (MAX_MEMORY == 0)
808			MAX_MEMORY = 32ull << 30;
809		if (*p == '@')
810			RESERVE_LOW_MEM = memparse(p + 1, &p);
811	}
812
813	arcs_cmdline[0] = 0;
814	argc = octeon_boot_desc_ptr->argc;
815	for (i = 0; i < argc; i++) {
816		const char *arg =
817			cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
818		if ((strncmp(arg, "MEM=", 4) == 0) ||
819		    (strncmp(arg, "mem=", 4) == 0)) {
820			MAX_MEMORY = memparse(arg + 4, &p);
821			if (MAX_MEMORY == 0)
822				MAX_MEMORY = 32ull << 30;
823			if (*p == '@')
824				RESERVE_LOW_MEM = memparse(p + 1, &p);
825#ifdef CONFIG_KEXEC
826		} else if (strncmp(arg, "crashkernel=", 12) == 0) {
827			crashk_size = memparse(arg+12, &p);
828			if (*p == '@')
829				crashk_base = memparse(p+1, &p);
830			strcat(arcs_cmdline, " ");
831			strcat(arcs_cmdline, arg);
832			/*
833			 * To do: switch parsing to new style, something like:
834			 * parse_crashkernel(arg, sysinfo->system_dram_size,
835			 *		  &crashk_size, &crashk_base);
836			 */
837#endif
838		} else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
839			   sizeof(arcs_cmdline) - 1) {
840			strcat(arcs_cmdline, " ");
841			strcat(arcs_cmdline, arg);
842		}
843	}
844
845	if (strstr(arcs_cmdline, "console=") == NULL) {
846#ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
847		strcat(arcs_cmdline, " console=ttyS0,115200");
848#else
849		if (octeon_uart == 1)
850			strcat(arcs_cmdline, " console=ttyS1,115200");
851		else
852			strcat(arcs_cmdline, " console=ttyS0,115200");
853#endif
854	}
855
856	mips_hpt_frequency = octeon_get_clock_rate();
857
858	octeon_init_cvmcount();
859
860	_machine_restart = octeon_restart;
861	_machine_halt = octeon_halt;
862
863#ifdef CONFIG_KEXEC
864	_machine_kexec_shutdown = octeon_shutdown;
865	_machine_crash_shutdown = octeon_crash_shutdown;
866	_machine_kexec_prepare = octeon_kexec_prepare;
867#endif
868
869	octeon_user_io_init();
870	register_smp_ops(&octeon_smp_ops);
871}
872
873/* Exclude a single page from the regions obtained in plat_mem_setup. */
874#ifndef CONFIG_CRASH_DUMP
875static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
876{
877	if (addr > *mem && addr < *mem + *size) {
878		u64 inc = addr - *mem;
879		add_memory_region(*mem, inc, BOOT_MEM_RAM);
880		*mem += inc;
881		*size -= inc;
882	}
883
884	if (addr == *mem && *size > PAGE_SIZE) {
885		*mem += PAGE_SIZE;
886		*size -= PAGE_SIZE;
887	}
888}
889#endif /* CONFIG_CRASH_DUMP */
890
891void __init plat_mem_setup(void)
892{
893	uint64_t mem_alloc_size;
894	uint64_t total;
895	uint64_t crashk_end;
896#ifndef CONFIG_CRASH_DUMP
897	int64_t memory;
898	uint64_t kernel_start;
899	uint64_t kernel_size;
900#endif
901
902	total = 0;
903	crashk_end = 0;
904
905	/*
906	 * The Mips memory init uses the first memory location for
907	 * some memory vectors. When SPARSEMEM is in use, it doesn't
908	 * verify that the size is big enough for the final
909	 * vectors. Making the smallest chuck 4MB seems to be enough
910	 * to consistently work.
911	 */
912	mem_alloc_size = 4 << 20;
913	if (mem_alloc_size > MAX_MEMORY)
914		mem_alloc_size = MAX_MEMORY;
915
916/* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
917#ifdef CONFIG_CRASH_DUMP
918	add_memory_region(RESERVE_LOW_MEM, MAX_MEMORY, BOOT_MEM_RAM);
919	total += MAX_MEMORY;
920#else
921#ifdef CONFIG_KEXEC
922	if (crashk_size > 0) {
923		add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
924		crashk_end = crashk_base + crashk_size;
925	}
926#endif
927	/*
928	 * When allocating memory, we want incrementing addresses from
929	 * bootmem_alloc so the code in add_memory_region can merge
930	 * regions next to each other.
931	 */
932	cvmx_bootmem_lock();
933	while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX)
934		&& (total < MAX_MEMORY)) {
935		memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
936						__pa_symbol(&_end), -1,
937						0x100000,
938						CVMX_BOOTMEM_FLAG_NO_LOCKING);
939		if (memory >= 0) {
940			u64 size = mem_alloc_size;
941#ifdef CONFIG_KEXEC
942			uint64_t end;
943#endif
944
945			/*
946			 * exclude a page at the beginning and end of
947			 * the 256MB PCIe 'hole' so the kernel will not
948			 * try to allocate multi-page buffers that
949			 * span the discontinuity.
950			 */
951			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
952					    &memory, &size);
953			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
954					    CVMX_PCIE_BAR1_PHYS_SIZE,
955					    &memory, &size);
956#ifdef CONFIG_KEXEC
957			end = memory + mem_alloc_size;
958
959			/*
960			 * This function automatically merges address regions
961			 * next to each other if they are received in
962			 * incrementing order
963			 */
964			if (memory < crashk_base && end >  crashk_end) {
965				/* region is fully in */
966				add_memory_region(memory,
967						  crashk_base - memory,
968						  BOOT_MEM_RAM);
969				total += crashk_base - memory;
970				add_memory_region(crashk_end,
971						  end - crashk_end,
972						  BOOT_MEM_RAM);
973				total += end - crashk_end;
974				continue;
975			}
976
977			if (memory >= crashk_base && end <= crashk_end)
978				/*
979				 * Entire memory region is within the new
980				 *  kernel's memory, ignore it.
981				 */
982				continue;
983
984			if (memory > crashk_base && memory < crashk_end &&
985			    end > crashk_end) {
986				/*
987				 * Overlap with the beginning of the region,
988				 * reserve the beginning.
989				  */
990				mem_alloc_size -= crashk_end - memory;
991				memory = crashk_end;
992			} else if (memory < crashk_base && end > crashk_base &&
993				   end < crashk_end)
994				/*
995				 * Overlap with the beginning of the region,
996				 * chop of end.
997				 */
998				mem_alloc_size -= end - crashk_base;
999#endif
1000			add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
1001			total += mem_alloc_size;
1002			/* Recovering mem_alloc_size */
1003			mem_alloc_size = 4 << 20;
1004		} else {
1005			break;
1006		}
1007	}
1008	cvmx_bootmem_unlock();
1009	/* Add the memory region for the kernel. */
1010	kernel_start = (unsigned long) _text;
1011	kernel_size = _end - _text;
1012
1013	/* Adjust for physical offset. */
1014	kernel_start &= ~0xffffffff80000000ULL;
1015	add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
1016#endif /* CONFIG_CRASH_DUMP */
1017
1018#ifdef CONFIG_CAVIUM_RESERVE32
1019	/*
1020	 * Now that we've allocated the kernel memory it is safe to
1021	 * free the reserved region. We free it here so that builtin
1022	 * drivers can use the memory.
1023	 */
1024	if (octeon_reserve32_memory)
1025		cvmx_bootmem_free_named("CAVIUM_RESERVE32");
1026#endif /* CONFIG_CAVIUM_RESERVE32 */
1027
1028	if (total == 0)
1029		panic("Unable to allocate memory from "
1030		      "cvmx_bootmem_phy_alloc");
1031}
1032
1033/*
1034 * Emit one character to the boot UART.	 Exported for use by the
1035 * watchdog timer.
1036 */
1037int prom_putchar(char c)
1038{
1039	uint64_t lsrval;
1040
1041	/* Spin until there is room */
1042	do {
1043		lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1044	} while ((lsrval & 0x20) == 0);
1045
1046	/* Write the byte */
1047	cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1048	return 1;
1049}
1050EXPORT_SYMBOL(prom_putchar);
1051
1052void __init prom_free_prom_memory(void)
1053{
1054	if (CAVIUM_OCTEON_DCACHE_PREFETCH_WAR) {
1055		/* Check for presence of Core-14449 fix.  */
1056		u32 insn;
1057		u32 *foo;
1058
1059		foo = &insn;
1060
1061		asm volatile("# before" : : : "memory");
1062		prefetch(foo);
1063		asm volatile(
1064			".set push\n\t"
1065			".set noreorder\n\t"
1066			"bal 1f\n\t"
1067			"nop\n"
1068			"1:\tlw %0,-12($31)\n\t"
1069			".set pop\n\t"
1070			: "=r" (insn) : : "$31", "memory");
1071
1072		if ((insn >> 26) != 0x33)
1073			panic("No PREF instruction at Core-14449 probe point.");
1074
1075		if (((insn >> 16) & 0x1f) != 28)
1076			panic("OCTEON II DCache prefetch workaround not in place (%04x).\n"
1077			      "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).",
1078			      insn);
1079	}
1080}
1081
1082int octeon_prune_device_tree(void);
1083
1084extern const char __appended_dtb;
1085extern const char __dtb_octeon_3xxx_begin;
1086extern const char __dtb_octeon_68xx_begin;
1087void __init device_tree_init(void)
1088{
1089	const void *fdt;
1090	bool do_prune;
1091
1092#ifdef CONFIG_MIPS_ELF_APPENDED_DTB
1093	if (!fdt_check_header(&__appended_dtb)) {
1094		fdt = &__appended_dtb;
1095		do_prune = false;
1096		pr_info("Using appended Device Tree.\n");
1097	} else
1098#endif
1099	if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1100		fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1101		if (fdt_check_header(fdt))
1102			panic("Corrupt Device Tree passed to kernel.");
1103		do_prune = false;
1104		pr_info("Using passed Device Tree.\n");
1105	} else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1106		fdt = &__dtb_octeon_68xx_begin;
1107		do_prune = true;
1108	} else {
1109		fdt = &__dtb_octeon_3xxx_begin;
1110		do_prune = true;
1111	}
1112
1113	initial_boot_params = (void *)fdt;
1114
1115	if (do_prune) {
1116		octeon_prune_device_tree();
1117		pr_info("Using internal Device Tree.\n");
1118	}
1119	unflatten_and_copy_device_tree();
1120}
1121
1122static int __initdata disable_octeon_edac_p;
1123
1124static int __init disable_octeon_edac(char *str)
1125{
1126	disable_octeon_edac_p = 1;
1127	return 0;
1128}
1129early_param("disable_octeon_edac", disable_octeon_edac);
1130
1131static char *edac_device_names[] = {
1132	"octeon_l2c_edac",
1133	"octeon_pc_edac",
1134};
1135
1136static int __init edac_devinit(void)
1137{
1138	struct platform_device *dev;
1139	int i, err = 0;
1140	int num_lmc;
1141	char *name;
1142
1143	if (disable_octeon_edac_p)
1144		return 0;
1145
1146	for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1147		name = edac_device_names[i];
1148		dev = platform_device_register_simple(name, -1, NULL, 0);
1149		if (IS_ERR(dev)) {
1150			pr_err("Registration of %s failed!\n", name);
1151			err = PTR_ERR(dev);
1152		}
1153	}
1154
1155	num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1156		(OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1157	for (i = 0; i < num_lmc; i++) {
1158		dev = platform_device_register_simple("octeon_lmc_edac",
1159						      i, NULL, 0);
1160		if (IS_ERR(dev)) {
1161			pr_err("Registration of octeon_lmc_edac %d failed!\n", i);
1162			err = PTR_ERR(dev);
1163		}
1164	}
1165
1166	return err;
1167}
1168device_initcall(edac_devinit);
1169
1170static void __initdata *octeon_dummy_iospace;
1171
1172static int __init octeon_no_pci_init(void)
1173{
1174	/*
1175	 * Initially assume there is no PCI. The PCI/PCIe platform code will
1176	 * later re-initialize these to correct values if they are present.
1177	 */
1178	octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1179	set_io_port_base((unsigned long)octeon_dummy_iospace);
1180	ioport_resource.start = MAX_RESOURCE;
1181	ioport_resource.end = 0;
1182	return 0;
1183}
1184core_initcall(octeon_no_pci_init);
1185
1186static int __init octeon_no_pci_release(void)
1187{
1188	/*
1189	 * Release the allocated memory if a real IO space is there.
1190	 */
1191	if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1192		vfree(octeon_dummy_iospace);
1193	return 0;
1194}
1195late_initcall(octeon_no_pci_release);
1196