1/*
2 * pci.c - Low-Level PCI Access in IA-64
3 *
4 * Derived from bios32.c of i386 tree.
5 *
6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7 *	David Mosberger-Tang <davidm@hpl.hp.com>
8 *	Bjorn Helgaas <bjorn.helgaas@hp.com>
9 * Copyright (C) 2004 Silicon Graphics, Inc.
10 *
11 * Note: Above list of copyright holders is incomplete...
12 */
13
14#include <linux/acpi.h>
15#include <linux/types.h>
16#include <linux/kernel.h>
17#include <linux/pci.h>
18#include <linux/pci-acpi.h>
19#include <linux/init.h>
20#include <linux/ioport.h>
21#include <linux/slab.h>
22#include <linux/spinlock.h>
23#include <linux/bootmem.h>
24#include <linux/export.h>
25
26#include <asm/machvec.h>
27#include <asm/page.h>
28#include <asm/io.h>
29#include <asm/sal.h>
30#include <asm/smp.h>
31#include <asm/irq.h>
32#include <asm/hw_irq.h>
33
34/*
35 * Low-level SAL-based PCI configuration access functions. Note that SAL
36 * calls are already serialized (via sal_lock), so we don't need another
37 * synchronization mechanism here.
38 */
39
40#define PCI_SAL_ADDRESS(seg, bus, devfn, reg)		\
41	(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
42
43/* SAL 3.2 adds support for extended config space. */
44
45#define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg)	\
46	(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
47
48int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
49	      int reg, int len, u32 *value)
50{
51	u64 addr, data = 0;
52	int mode, result;
53
54	if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
55		return -EINVAL;
56
57	if ((seg | reg) <= 255) {
58		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
59		mode = 0;
60	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
61		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
62		mode = 1;
63	} else {
64		return -EINVAL;
65	}
66
67	result = ia64_sal_pci_config_read(addr, mode, len, &data);
68	if (result != 0)
69		return -EINVAL;
70
71	*value = (u32) data;
72	return 0;
73}
74
75int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
76	       int reg, int len, u32 value)
77{
78	u64 addr;
79	int mode, result;
80
81	if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
82		return -EINVAL;
83
84	if ((seg | reg) <= 255) {
85		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
86		mode = 0;
87	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
88		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
89		mode = 1;
90	} else {
91		return -EINVAL;
92	}
93	result = ia64_sal_pci_config_write(addr, mode, len, value);
94	if (result != 0)
95		return -EINVAL;
96	return 0;
97}
98
99static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
100							int size, u32 *value)
101{
102	return raw_pci_read(pci_domain_nr(bus), bus->number,
103				 devfn, where, size, value);
104}
105
106static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
107							int size, u32 value)
108{
109	return raw_pci_write(pci_domain_nr(bus), bus->number,
110				  devfn, where, size, value);
111}
112
113struct pci_ops pci_root_ops = {
114	.read = pci_read,
115	.write = pci_write,
116};
117
118struct pci_root_info {
119	struct acpi_pci_root_info common;
120	struct pci_controller controller;
121	struct list_head io_resources;
122};
123
124static unsigned int new_space(u64 phys_base, int sparse)
125{
126	u64 mmio_base;
127	int i;
128
129	if (phys_base == 0)
130		return 0;	/* legacy I/O port space */
131
132	mmio_base = (u64) ioremap(phys_base, 0);
133	for (i = 0; i < num_io_spaces; i++)
134		if (io_space[i].mmio_base == mmio_base &&
135		    io_space[i].sparse == sparse)
136			return i;
137
138	if (num_io_spaces == MAX_IO_SPACES) {
139		pr_err("PCI: Too many IO port spaces "
140			"(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
141		return ~0;
142	}
143
144	i = num_io_spaces++;
145	io_space[i].mmio_base = mmio_base;
146	io_space[i].sparse = sparse;
147
148	return i;
149}
150
151static int add_io_space(struct device *dev, struct pci_root_info *info,
152			struct resource_entry *entry)
153{
154	struct resource_entry *iospace;
155	struct resource *resource, *res = entry->res;
156	char *name;
157	unsigned long base, min, max, base_port;
158	unsigned int sparse = 0, space_nr, len;
159
160	len = strlen(info->common.name) + 32;
161	iospace = resource_list_create_entry(NULL, len);
162	if (!iospace) {
163		dev_err(dev, "PCI: No memory for %s I/O port space\n",
164			info->common.name);
165		return -ENOMEM;
166	}
167
168	if (res->flags & IORESOURCE_IO_SPARSE)
169		sparse = 1;
170	space_nr = new_space(entry->offset, sparse);
171	if (space_nr == ~0)
172		goto free_resource;
173
174	name = (char *)(iospace + 1);
175	min = res->start - entry->offset;
176	max = res->end - entry->offset;
177	base = __pa(io_space[space_nr].mmio_base);
178	base_port = IO_SPACE_BASE(space_nr);
179	snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->common.name,
180		 base_port + min, base_port + max);
181
182	/*
183	 * The SDM guarantees the legacy 0-64K space is sparse, but if the
184	 * mapping is done by the processor (not the bridge), ACPI may not
185	 * mark it as sparse.
186	 */
187	if (space_nr == 0)
188		sparse = 1;
189
190	resource = iospace->res;
191	resource->name  = name;
192	resource->flags = IORESOURCE_MEM;
193	resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
194	resource->end   = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
195	if (insert_resource(&iomem_resource, resource)) {
196		dev_err(dev,
197			"can't allocate host bridge io space resource  %pR\n",
198			resource);
199		goto free_resource;
200	}
201
202	entry->offset = base_port;
203	res->start = min + base_port;
204	res->end = max + base_port;
205	resource_list_add_tail(iospace, &info->io_resources);
206
207	return 0;
208
209free_resource:
210	resource_list_free_entry(iospace);
211	return -ENOSPC;
212}
213
214/*
215 * An IO port or MMIO resource assigned to a PCI host bridge may be
216 * consumed by the host bridge itself or available to its child
217 * bus/devices. The ACPI specification defines a bit (Producer/Consumer)
218 * to tell whether the resource is consumed by the host bridge itself,
219 * but firmware hasn't used that bit consistently, so we can't rely on it.
220 *
221 * On x86 and IA64 platforms, all IO port and MMIO resources are assumed
222 * to be available to child bus/devices except one special case:
223 *     IO port [0xCF8-0xCFF] is consumed by the host bridge itself
224 *     to access PCI configuration space.
225 *
226 * So explicitly filter out PCI CFG IO ports[0xCF8-0xCFF].
227 */
228static bool resource_is_pcicfg_ioport(struct resource *res)
229{
230	return (res->flags & IORESOURCE_IO) &&
231		res->start == 0xCF8 && res->end == 0xCFF;
232}
233
234static int pci_acpi_root_prepare_resources(struct acpi_pci_root_info *ci)
235{
236	struct device *dev = &ci->bridge->dev;
237	struct pci_root_info *info;
238	struct resource *res;
239	struct resource_entry *entry, *tmp;
240	int status;
241
242	status = acpi_pci_probe_root_resources(ci);
243	if (status > 0) {
244		info = container_of(ci, struct pci_root_info, common);
245		resource_list_for_each_entry_safe(entry, tmp, &ci->resources) {
246			res = entry->res;
247			if (res->flags & IORESOURCE_MEM) {
248				/*
249				 * HP's firmware has a hack to work around a
250				 * Windows bug. Ignore these tiny memory ranges.
251				 */
252				if (resource_size(res) <= 16) {
253					resource_list_del(entry);
254					insert_resource(&iomem_resource,
255							entry->res);
256					resource_list_add_tail(entry,
257							&info->io_resources);
258				}
259			} else if (res->flags & IORESOURCE_IO) {
260				if (resource_is_pcicfg_ioport(entry->res))
261					resource_list_destroy_entry(entry);
262				else if (add_io_space(dev, info, entry))
263					resource_list_destroy_entry(entry);
264			}
265		}
266	}
267
268	return status;
269}
270
271static void pci_acpi_root_release_info(struct acpi_pci_root_info *ci)
272{
273	struct pci_root_info *info;
274	struct resource_entry *entry, *tmp;
275
276	info = container_of(ci, struct pci_root_info, common);
277	resource_list_for_each_entry_safe(entry, tmp, &info->io_resources) {
278		release_resource(entry->res);
279		resource_list_destroy_entry(entry);
280	}
281	kfree(info);
282}
283
284static struct acpi_pci_root_ops pci_acpi_root_ops = {
285	.pci_ops = &pci_root_ops,
286	.release_info = pci_acpi_root_release_info,
287	.prepare_resources = pci_acpi_root_prepare_resources,
288};
289
290struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root)
291{
292	struct acpi_device *device = root->device;
293	struct pci_root_info *info;
294
295	info = kzalloc(sizeof(*info), GFP_KERNEL);
296	if (!info) {
297		dev_err(&device->dev,
298			"pci_bus %04x:%02x: ignored (out of memory)\n",
299			root->segment, (int)root->secondary.start);
300		return NULL;
301	}
302
303	info->controller.segment = root->segment;
304	info->controller.companion = device;
305	info->controller.node = acpi_get_node(device->handle);
306	INIT_LIST_HEAD(&info->io_resources);
307	return acpi_pci_root_create(root, &pci_acpi_root_ops,
308				    &info->common, &info->controller);
309}
310
311int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
312{
313	/*
314	 * We pass NULL as parent to pci_create_root_bus(), so if it is not NULL
315	 * here, pci_create_root_bus() has been called by someone else and
316	 * sysdata is likely to be different from what we expect.  Let it go in
317	 * that case.
318	 */
319	if (!bridge->dev.parent) {
320		struct pci_controller *controller = bridge->bus->sysdata;
321		ACPI_COMPANION_SET(&bridge->dev, controller->companion);
322	}
323	return 0;
324}
325
326void pcibios_fixup_device_resources(struct pci_dev *dev)
327{
328	int idx;
329
330	if (!dev->bus)
331		return;
332
333	for (idx = 0; idx < PCI_BRIDGE_RESOURCES; idx++) {
334		struct resource *r = &dev->resource[idx];
335
336		if (!r->flags || r->parent || !r->start)
337			continue;
338
339		pci_claim_resource(dev, idx);
340	}
341}
342EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
343
344static void pcibios_fixup_bridge_resources(struct pci_dev *dev)
345{
346	int idx;
347
348	if (!dev->bus)
349		return;
350
351	for (idx = PCI_BRIDGE_RESOURCES; idx < PCI_NUM_RESOURCES; idx++) {
352		struct resource *r = &dev->resource[idx];
353
354		if (!r->flags || r->parent || !r->start)
355			continue;
356
357		pci_claim_bridge_resource(dev, idx);
358	}
359}
360
361/*
362 *  Called after each bus is probed, but before its children are examined.
363 */
364void pcibios_fixup_bus(struct pci_bus *b)
365{
366	struct pci_dev *dev;
367
368	if (b->self) {
369		pci_read_bridge_bases(b);
370		pcibios_fixup_bridge_resources(b->self);
371	}
372	list_for_each_entry(dev, &b->devices, bus_list)
373		pcibios_fixup_device_resources(dev);
374	platform_pci_fixup_bus(b);
375}
376
377void pcibios_add_bus(struct pci_bus *bus)
378{
379	acpi_pci_add_bus(bus);
380}
381
382void pcibios_remove_bus(struct pci_bus *bus)
383{
384	acpi_pci_remove_bus(bus);
385}
386
387void pcibios_set_master (struct pci_dev *dev)
388{
389	/* No special bus mastering setup handling */
390}
391
392int
393pcibios_enable_device (struct pci_dev *dev, int mask)
394{
395	int ret;
396
397	ret = pci_enable_resources(dev, mask);
398	if (ret < 0)
399		return ret;
400
401	if (!dev->msi_enabled)
402		return acpi_pci_irq_enable(dev);
403	return 0;
404}
405
406void
407pcibios_disable_device (struct pci_dev *dev)
408{
409	BUG_ON(atomic_read(&dev->enable_cnt));
410	if (!dev->msi_enabled)
411		acpi_pci_irq_disable(dev);
412}
413
414resource_size_t
415pcibios_align_resource (void *data, const struct resource *res,
416		        resource_size_t size, resource_size_t align)
417{
418	return res->start;
419}
420
421int
422pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
423		     enum pci_mmap_state mmap_state, int write_combine)
424{
425	unsigned long size = vma->vm_end - vma->vm_start;
426	pgprot_t prot;
427
428	/*
429	 * I/O space cannot be accessed via normal processor loads and
430	 * stores on this platform.
431	 */
432	if (mmap_state == pci_mmap_io)
433		/*
434		 * XXX we could relax this for I/O spaces for which ACPI
435		 * indicates that the space is 1-to-1 mapped.  But at the
436		 * moment, we don't support multiple PCI address spaces and
437		 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
438		 */
439		return -EINVAL;
440
441	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
442		return -EINVAL;
443
444	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
445				    vma->vm_page_prot);
446
447	/*
448	 * If the user requested WC, the kernel uses UC or WC for this region,
449	 * and the chipset supports WC, we can use WC. Otherwise, we have to
450	 * use the same attribute the kernel uses.
451	 */
452	if (write_combine &&
453	    ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
454	     (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
455	    efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
456		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
457	else
458		vma->vm_page_prot = prot;
459
460	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
461			     vma->vm_end - vma->vm_start, vma->vm_page_prot))
462		return -EAGAIN;
463
464	return 0;
465}
466
467/**
468 * ia64_pci_get_legacy_mem - generic legacy mem routine
469 * @bus: bus to get legacy memory base address for
470 *
471 * Find the base of legacy memory for @bus.  This is typically the first
472 * megabyte of bus address space for @bus or is simply 0 on platforms whose
473 * chipsets support legacy I/O and memory routing.  Returns the base address
474 * or an error pointer if an error occurred.
475 *
476 * This is the ia64 generic version of this routine.  Other platforms
477 * are free to override it with a machine vector.
478 */
479char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
480{
481	return (char *)__IA64_UNCACHED_OFFSET;
482}
483
484/**
485 * pci_mmap_legacy_page_range - map legacy memory space to userland
486 * @bus: bus whose legacy space we're mapping
487 * @vma: vma passed in by mmap
488 *
489 * Map legacy memory space for this device back to userspace using a machine
490 * vector to get the base address.
491 */
492int
493pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
494			   enum pci_mmap_state mmap_state)
495{
496	unsigned long size = vma->vm_end - vma->vm_start;
497	pgprot_t prot;
498	char *addr;
499
500	/* We only support mmap'ing of legacy memory space */
501	if (mmap_state != pci_mmap_mem)
502		return -ENOSYS;
503
504	/*
505	 * Avoid attribute aliasing.  See Documentation/ia64/aliasing.txt
506	 * for more details.
507	 */
508	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
509		return -EINVAL;
510	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
511				    vma->vm_page_prot);
512
513	addr = pci_get_legacy_mem(bus);
514	if (IS_ERR(addr))
515		return PTR_ERR(addr);
516
517	vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
518	vma->vm_page_prot = prot;
519
520	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
521			    size, vma->vm_page_prot))
522		return -EAGAIN;
523
524	return 0;
525}
526
527/**
528 * ia64_pci_legacy_read - read from legacy I/O space
529 * @bus: bus to read
530 * @port: legacy port value
531 * @val: caller allocated storage for returned value
532 * @size: number of bytes to read
533 *
534 * Simply reads @size bytes from @port and puts the result in @val.
535 *
536 * Again, this (and the write routine) are generic versions that can be
537 * overridden by the platform.  This is necessary on platforms that don't
538 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
539 */
540int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
541{
542	int ret = size;
543
544	switch (size) {
545	case 1:
546		*val = inb(port);
547		break;
548	case 2:
549		*val = inw(port);
550		break;
551	case 4:
552		*val = inl(port);
553		break;
554	default:
555		ret = -EINVAL;
556		break;
557	}
558
559	return ret;
560}
561
562/**
563 * ia64_pci_legacy_write - perform a legacy I/O write
564 * @bus: bus pointer
565 * @port: port to write
566 * @val: value to write
567 * @size: number of bytes to write from @val
568 *
569 * Simply writes @size bytes of @val to @port.
570 */
571int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
572{
573	int ret = size;
574
575	switch (size) {
576	case 1:
577		outb(val, port);
578		break;
579	case 2:
580		outw(val, port);
581		break;
582	case 4:
583		outl(val, port);
584		break;
585	default:
586		ret = -EINVAL;
587		break;
588	}
589
590	return ret;
591}
592
593/**
594 * set_pci_cacheline_size - determine cacheline size for PCI devices
595 *
596 * We want to use the line-size of the outer-most cache.  We assume
597 * that this line-size is the same for all CPUs.
598 *
599 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
600 */
601static void __init set_pci_dfl_cacheline_size(void)
602{
603	unsigned long levels, unique_caches;
604	long status;
605	pal_cache_config_info_t cci;
606
607	status = ia64_pal_cache_summary(&levels, &unique_caches);
608	if (status != 0) {
609		pr_err("%s: ia64_pal_cache_summary() failed "
610			"(status=%ld)\n", __func__, status);
611		return;
612	}
613
614	status = ia64_pal_cache_config_info(levels - 1,
615				/* cache_type (data_or_unified)= */ 2, &cci);
616	if (status != 0) {
617		pr_err("%s: ia64_pal_cache_config_info() failed "
618			"(status=%ld)\n", __func__, status);
619		return;
620	}
621	pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
622}
623
624u64 ia64_dma_get_required_mask(struct device *dev)
625{
626	u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
627	u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
628	u64 mask;
629
630	if (!high_totalram) {
631		/* convert to mask just covering totalram */
632		low_totalram = (1 << (fls(low_totalram) - 1));
633		low_totalram += low_totalram - 1;
634		mask = low_totalram;
635	} else {
636		high_totalram = (1 << (fls(high_totalram) - 1));
637		high_totalram += high_totalram - 1;
638		mask = (((u64)high_totalram) << 32) + 0xffffffff;
639	}
640	return mask;
641}
642EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
643
644u64 dma_get_required_mask(struct device *dev)
645{
646	return platform_dma_get_required_mask(dev);
647}
648EXPORT_SYMBOL_GPL(dma_get_required_mask);
649
650static int __init pcibios_init(void)
651{
652	set_pci_dfl_cacheline_size();
653	return 0;
654}
655
656subsys_initcall(pcibios_init);
657