1/*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
4 *
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
7 *
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
10 *
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
13 *
14 * Copyright (C) 1999-2005  Hewlett Packard Co
15 *               Stephane Eranian <eranian@hpl.hp.com>
16 *               David Mosberger-Tang <davidm@hpl.hp.com>
17 *
18 * More information about perfmon available at:
19 * 	http://www.hpl.hp.com/research/linux/perfmon
20 */
21
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/sched.h>
25#include <linux/interrupt.h>
26#include <linux/proc_fs.h>
27#include <linux/seq_file.h>
28#include <linux/init.h>
29#include <linux/vmalloc.h>
30#include <linux/mm.h>
31#include <linux/sysctl.h>
32#include <linux/list.h>
33#include <linux/file.h>
34#include <linux/poll.h>
35#include <linux/vfs.h>
36#include <linux/smp.h>
37#include <linux/pagemap.h>
38#include <linux/mount.h>
39#include <linux/bitops.h>
40#include <linux/capability.h>
41#include <linux/rcupdate.h>
42#include <linux/completion.h>
43#include <linux/tracehook.h>
44#include <linux/slab.h>
45#include <linux/cpu.h>
46
47#include <asm/errno.h>
48#include <asm/intrinsics.h>
49#include <asm/page.h>
50#include <asm/perfmon.h>
51#include <asm/processor.h>
52#include <asm/signal.h>
53#include <asm/uaccess.h>
54#include <asm/delay.h>
55
56#ifdef CONFIG_PERFMON
57/*
58 * perfmon context state
59 */
60#define PFM_CTX_UNLOADED	1	/* context is not loaded onto any task */
61#define PFM_CTX_LOADED		2	/* context is loaded onto a task */
62#define PFM_CTX_MASKED		3	/* context is loaded but monitoring is masked due to overflow */
63#define PFM_CTX_ZOMBIE		4	/* owner of the context is closing it */
64
65#define PFM_INVALID_ACTIVATION	(~0UL)
66
67#define PFM_NUM_PMC_REGS	64	/* PMC save area for ctxsw */
68#define PFM_NUM_PMD_REGS	64	/* PMD save area for ctxsw */
69
70/*
71 * depth of message queue
72 */
73#define PFM_MAX_MSGS		32
74#define PFM_CTXQ_EMPTY(g)	((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
75
76/*
77 * type of a PMU register (bitmask).
78 * bitmask structure:
79 * 	bit0   : register implemented
80 * 	bit1   : end marker
81 * 	bit2-3 : reserved
82 * 	bit4   : pmc has pmc.pm
83 * 	bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
84 * 	bit6-7 : register type
85 * 	bit8-31: reserved
86 */
87#define PFM_REG_NOTIMPL		0x0 /* not implemented at all */
88#define PFM_REG_IMPL		0x1 /* register implemented */
89#define PFM_REG_END		0x2 /* end marker */
90#define PFM_REG_MONITOR		(0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
91#define PFM_REG_COUNTING	(0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
92#define PFM_REG_CONTROL		(0x4<<4|PFM_REG_IMPL) /* PMU control register */
93#define	PFM_REG_CONFIG		(0x8<<4|PFM_REG_IMPL) /* configuration register */
94#define PFM_REG_BUFFER	 	(0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
95
96#define PMC_IS_LAST(i)	(pmu_conf->pmc_desc[i].type & PFM_REG_END)
97#define PMD_IS_LAST(i)	(pmu_conf->pmd_desc[i].type & PFM_REG_END)
98
99#define PMC_OVFL_NOTIFY(ctx, i)	((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
100
101/* i assumed unsigned */
102#define PMC_IS_IMPL(i)	  (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
103#define PMD_IS_IMPL(i)	  (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
104
105/* XXX: these assume that register i is implemented */
106#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
108#define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
109#define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
110
111#define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
112#define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
113#define PMD_PMD_DEP(i)	   pmu_conf->pmd_desc[i].dep_pmd[0]
114#define PMC_PMD_DEP(i)	   pmu_conf->pmc_desc[i].dep_pmd[0]
115
116#define PFM_NUM_IBRS	  IA64_NUM_DBG_REGS
117#define PFM_NUM_DBRS	  IA64_NUM_DBG_REGS
118
119#define CTX_OVFL_NOBLOCK(c)	((c)->ctx_fl_block == 0)
120#define CTX_HAS_SMPL(c)		((c)->ctx_fl_is_sampling)
121#define PFM_CTX_TASK(h)		(h)->ctx_task
122
123#define PMU_PMC_OI		5 /* position of pmc.oi bit */
124
125/* XXX: does not support more than 64 PMDs */
126#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
127#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
128
129#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
130
131#define CTX_USED_IBR(ctx,n) 	(ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
132#define CTX_USED_DBR(ctx,n) 	(ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
133#define CTX_USES_DBREGS(ctx)	(((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
134#define PFM_CODE_RR	0	/* requesting code range restriction */
135#define PFM_DATA_RR	1	/* requestion data range restriction */
136
137#define PFM_CPUINFO_CLEAR(v)	pfm_get_cpu_var(pfm_syst_info) &= ~(v)
138#define PFM_CPUINFO_SET(v)	pfm_get_cpu_var(pfm_syst_info) |= (v)
139#define PFM_CPUINFO_GET()	pfm_get_cpu_var(pfm_syst_info)
140
141#define RDEP(x)	(1UL<<(x))
142
143/*
144 * context protection macros
145 * in SMP:
146 * 	- we need to protect against CPU concurrency (spin_lock)
147 * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
148 * in UP:
149 * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
150 *
151 * spin_lock_irqsave()/spin_unlock_irqrestore():
152 * 	in SMP: local_irq_disable + spin_lock
153 * 	in UP : local_irq_disable
154 *
155 * spin_lock()/spin_lock():
156 * 	in UP : removed automatically
157 * 	in SMP: protect against context accesses from other CPU. interrupts
158 * 	        are not masked. This is useful for the PMU interrupt handler
159 * 	        because we know we will not get PMU concurrency in that code.
160 */
161#define PROTECT_CTX(c, f) \
162	do {  \
163		DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
164		spin_lock_irqsave(&(c)->ctx_lock, f); \
165		DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
166	} while(0)
167
168#define UNPROTECT_CTX(c, f) \
169	do { \
170		DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
171		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
172	} while(0)
173
174#define PROTECT_CTX_NOPRINT(c, f) \
175	do {  \
176		spin_lock_irqsave(&(c)->ctx_lock, f); \
177	} while(0)
178
179
180#define UNPROTECT_CTX_NOPRINT(c, f) \
181	do { \
182		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
183	} while(0)
184
185
186#define PROTECT_CTX_NOIRQ(c) \
187	do {  \
188		spin_lock(&(c)->ctx_lock); \
189	} while(0)
190
191#define UNPROTECT_CTX_NOIRQ(c) \
192	do { \
193		spin_unlock(&(c)->ctx_lock); \
194	} while(0)
195
196
197#ifdef CONFIG_SMP
198
199#define GET_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)
200#define INC_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)++
201#define SET_ACTIVATION(c)	(c)->ctx_last_activation = GET_ACTIVATION()
202
203#else /* !CONFIG_SMP */
204#define SET_ACTIVATION(t) 	do {} while(0)
205#define GET_ACTIVATION(t) 	do {} while(0)
206#define INC_ACTIVATION(t) 	do {} while(0)
207#endif /* CONFIG_SMP */
208
209#define SET_PMU_OWNER(t, c)	do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
210#define GET_PMU_OWNER()		pfm_get_cpu_var(pmu_owner)
211#define GET_PMU_CTX()		pfm_get_cpu_var(pmu_ctx)
212
213#define LOCK_PFS(g)	    	spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
214#define UNLOCK_PFS(g)	    	spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
215
216#define PFM_REG_RETFLAG_SET(flags, val)	do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
217
218/*
219 * cmp0 must be the value of pmc0
220 */
221#define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
222
223#define PFMFS_MAGIC 0xa0b4d889
224
225/*
226 * debugging
227 */
228#define PFM_DEBUGGING 1
229#ifdef PFM_DEBUGGING
230#define DPRINT(a) \
231	do { \
232		if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
233	} while (0)
234
235#define DPRINT_ovfl(a) \
236	do { \
237		if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
238	} while (0)
239#endif
240
241/*
242 * 64-bit software counter structure
243 *
244 * the next_reset_type is applied to the next call to pfm_reset_regs()
245 */
246typedef struct {
247	unsigned long	val;		/* virtual 64bit counter value */
248	unsigned long	lval;		/* last reset value */
249	unsigned long	long_reset;	/* reset value on sampling overflow */
250	unsigned long	short_reset;    /* reset value on overflow */
251	unsigned long	reset_pmds[4];  /* which other pmds to reset when this counter overflows */
252	unsigned long	smpl_pmds[4];   /* which pmds are accessed when counter overflow */
253	unsigned long	seed;		/* seed for random-number generator */
254	unsigned long	mask;		/* mask for random-number generator */
255	unsigned int 	flags;		/* notify/do not notify */
256	unsigned long	eventid;	/* overflow event identifier */
257} pfm_counter_t;
258
259/*
260 * context flags
261 */
262typedef struct {
263	unsigned int block:1;		/* when 1, task will blocked on user notifications */
264	unsigned int system:1;		/* do system wide monitoring */
265	unsigned int using_dbreg:1;	/* using range restrictions (debug registers) */
266	unsigned int is_sampling:1;	/* true if using a custom format */
267	unsigned int excl_idle:1;	/* exclude idle task in system wide session */
268	unsigned int going_zombie:1;	/* context is zombie (MASKED+blocking) */
269	unsigned int trap_reason:2;	/* reason for going into pfm_handle_work() */
270	unsigned int no_msg:1;		/* no message sent on overflow */
271	unsigned int can_restart:1;	/* allowed to issue a PFM_RESTART */
272	unsigned int reserved:22;
273} pfm_context_flags_t;
274
275#define PFM_TRAP_REASON_NONE		0x0	/* default value */
276#define PFM_TRAP_REASON_BLOCK		0x1	/* we need to block on overflow */
277#define PFM_TRAP_REASON_RESET		0x2	/* we need to reset PMDs */
278
279
280/*
281 * perfmon context: encapsulates all the state of a monitoring session
282 */
283
284typedef struct pfm_context {
285	spinlock_t		ctx_lock;		/* context protection */
286
287	pfm_context_flags_t	ctx_flags;		/* bitmask of flags  (block reason incl.) */
288	unsigned int		ctx_state;		/* state: active/inactive (no bitfield) */
289
290	struct task_struct 	*ctx_task;		/* task to which context is attached */
291
292	unsigned long		ctx_ovfl_regs[4];	/* which registers overflowed (notification) */
293
294	struct completion	ctx_restart_done;  	/* use for blocking notification mode */
295
296	unsigned long		ctx_used_pmds[4];	/* bitmask of PMD used            */
297	unsigned long		ctx_all_pmds[4];	/* bitmask of all accessible PMDs */
298	unsigned long		ctx_reload_pmds[4];	/* bitmask of force reload PMD on ctxsw in */
299
300	unsigned long		ctx_all_pmcs[4];	/* bitmask of all accessible PMCs */
301	unsigned long		ctx_reload_pmcs[4];	/* bitmask of force reload PMC on ctxsw in */
302	unsigned long		ctx_used_monitors[4];	/* bitmask of monitor PMC being used */
303
304	unsigned long		ctx_pmcs[PFM_NUM_PMC_REGS];	/*  saved copies of PMC values */
305
306	unsigned int		ctx_used_ibrs[1];		/* bitmask of used IBR (speedup ctxsw in) */
307	unsigned int		ctx_used_dbrs[1];		/* bitmask of used DBR (speedup ctxsw in) */
308	unsigned long		ctx_dbrs[IA64_NUM_DBG_REGS];	/* DBR values (cache) when not loaded */
309	unsigned long		ctx_ibrs[IA64_NUM_DBG_REGS];	/* IBR values (cache) when not loaded */
310
311	pfm_counter_t		ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
312
313	unsigned long		th_pmcs[PFM_NUM_PMC_REGS];	/* PMC thread save state */
314	unsigned long		th_pmds[PFM_NUM_PMD_REGS];	/* PMD thread save state */
315
316	unsigned long		ctx_saved_psr_up;	/* only contains psr.up value */
317
318	unsigned long		ctx_last_activation;	/* context last activation number for last_cpu */
319	unsigned int		ctx_last_cpu;		/* CPU id of current or last CPU used (SMP only) */
320	unsigned int		ctx_cpu;		/* cpu to which perfmon is applied (system wide) */
321
322	int			ctx_fd;			/* file descriptor used my this context */
323	pfm_ovfl_arg_t		ctx_ovfl_arg;		/* argument to custom buffer format handler */
324
325	pfm_buffer_fmt_t	*ctx_buf_fmt;		/* buffer format callbacks */
326	void			*ctx_smpl_hdr;		/* points to sampling buffer header kernel vaddr */
327	unsigned long		ctx_smpl_size;		/* size of sampling buffer */
328	void			*ctx_smpl_vaddr;	/* user level virtual address of smpl buffer */
329
330	wait_queue_head_t 	ctx_msgq_wait;
331	pfm_msg_t		ctx_msgq[PFM_MAX_MSGS];
332	int			ctx_msgq_head;
333	int			ctx_msgq_tail;
334	struct fasync_struct	*ctx_async_queue;
335
336	wait_queue_head_t 	ctx_zombieq;		/* termination cleanup wait queue */
337} pfm_context_t;
338
339/*
340 * magic number used to verify that structure is really
341 * a perfmon context
342 */
343#define PFM_IS_FILE(f)		((f)->f_op == &pfm_file_ops)
344
345#define PFM_GET_CTX(t)	 	((pfm_context_t *)(t)->thread.pfm_context)
346
347#ifdef CONFIG_SMP
348#define SET_LAST_CPU(ctx, v)	(ctx)->ctx_last_cpu = (v)
349#define GET_LAST_CPU(ctx)	(ctx)->ctx_last_cpu
350#else
351#define SET_LAST_CPU(ctx, v)	do {} while(0)
352#define GET_LAST_CPU(ctx)	do {} while(0)
353#endif
354
355
356#define ctx_fl_block		ctx_flags.block
357#define ctx_fl_system		ctx_flags.system
358#define ctx_fl_using_dbreg	ctx_flags.using_dbreg
359#define ctx_fl_is_sampling	ctx_flags.is_sampling
360#define ctx_fl_excl_idle	ctx_flags.excl_idle
361#define ctx_fl_going_zombie	ctx_flags.going_zombie
362#define ctx_fl_trap_reason	ctx_flags.trap_reason
363#define ctx_fl_no_msg		ctx_flags.no_msg
364#define ctx_fl_can_restart	ctx_flags.can_restart
365
366#define PFM_SET_WORK_PENDING(t, v)	do { (t)->thread.pfm_needs_checking = v; } while(0);
367#define PFM_GET_WORK_PENDING(t)		(t)->thread.pfm_needs_checking
368
369/*
370 * global information about all sessions
371 * mostly used to synchronize between system wide and per-process
372 */
373typedef struct {
374	spinlock_t		pfs_lock;		   /* lock the structure */
375
376	unsigned int		pfs_task_sessions;	   /* number of per task sessions */
377	unsigned int		pfs_sys_sessions;	   /* number of per system wide sessions */
378	unsigned int		pfs_sys_use_dbregs;	   /* incremented when a system wide session uses debug regs */
379	unsigned int		pfs_ptrace_use_dbregs;	   /* incremented when a process uses debug regs */
380	struct task_struct	*pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
381} pfm_session_t;
382
383/*
384 * information about a PMC or PMD.
385 * dep_pmd[]: a bitmask of dependent PMD registers
386 * dep_pmc[]: a bitmask of dependent PMC registers
387 */
388typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
389typedef struct {
390	unsigned int		type;
391	int			pm_pos;
392	unsigned long		default_value;	/* power-on default value */
393	unsigned long		reserved_mask;	/* bitmask of reserved bits */
394	pfm_reg_check_t		read_check;
395	pfm_reg_check_t		write_check;
396	unsigned long		dep_pmd[4];
397	unsigned long		dep_pmc[4];
398} pfm_reg_desc_t;
399
400/* assume cnum is a valid monitor */
401#define PMC_PM(cnum, val)	(((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
402
403/*
404 * This structure is initialized at boot time and contains
405 * a description of the PMU main characteristics.
406 *
407 * If the probe function is defined, detection is based
408 * on its return value:
409 * 	- 0 means recognized PMU
410 * 	- anything else means not supported
411 * When the probe function is not defined, then the pmu_family field
412 * is used and it must match the host CPU family such that:
413 * 	- cpu->family & config->pmu_family != 0
414 */
415typedef struct {
416	unsigned long  ovfl_val;	/* overflow value for counters */
417
418	pfm_reg_desc_t *pmc_desc;	/* detailed PMC register dependencies descriptions */
419	pfm_reg_desc_t *pmd_desc;	/* detailed PMD register dependencies descriptions */
420
421	unsigned int   num_pmcs;	/* number of PMCS: computed at init time */
422	unsigned int   num_pmds;	/* number of PMDS: computed at init time */
423	unsigned long  impl_pmcs[4];	/* bitmask of implemented PMCS */
424	unsigned long  impl_pmds[4];	/* bitmask of implemented PMDS */
425
426	char	      *pmu_name;	/* PMU family name */
427	unsigned int  pmu_family;	/* cpuid family pattern used to identify pmu */
428	unsigned int  flags;		/* pmu specific flags */
429	unsigned int  num_ibrs;		/* number of IBRS: computed at init time */
430	unsigned int  num_dbrs;		/* number of DBRS: computed at init time */
431	unsigned int  num_counters;	/* PMC/PMD counting pairs : computed at init time */
432	int           (*probe)(void);   /* customized probe routine */
433	unsigned int  use_rr_dbregs:1;	/* set if debug registers used for range restriction */
434} pmu_config_t;
435/*
436 * PMU specific flags
437 */
438#define PFM_PMU_IRQ_RESEND	1	/* PMU needs explicit IRQ resend */
439
440/*
441 * debug register related type definitions
442 */
443typedef struct {
444	unsigned long ibr_mask:56;
445	unsigned long ibr_plm:4;
446	unsigned long ibr_ig:3;
447	unsigned long ibr_x:1;
448} ibr_mask_reg_t;
449
450typedef struct {
451	unsigned long dbr_mask:56;
452	unsigned long dbr_plm:4;
453	unsigned long dbr_ig:2;
454	unsigned long dbr_w:1;
455	unsigned long dbr_r:1;
456} dbr_mask_reg_t;
457
458typedef union {
459	unsigned long  val;
460	ibr_mask_reg_t ibr;
461	dbr_mask_reg_t dbr;
462} dbreg_t;
463
464
465/*
466 * perfmon command descriptions
467 */
468typedef struct {
469	int		(*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
470	char		*cmd_name;
471	int		cmd_flags;
472	unsigned int	cmd_narg;
473	size_t		cmd_argsize;
474	int		(*cmd_getsize)(void *arg, size_t *sz);
475} pfm_cmd_desc_t;
476
477#define PFM_CMD_FD		0x01	/* command requires a file descriptor */
478#define PFM_CMD_ARG_READ	0x02	/* command must read argument(s) */
479#define PFM_CMD_ARG_RW		0x04	/* command must read/write argument(s) */
480#define PFM_CMD_STOP		0x08	/* command does not work on zombie context */
481
482
483#define PFM_CMD_NAME(cmd)	pfm_cmd_tab[(cmd)].cmd_name
484#define PFM_CMD_READ_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
485#define PFM_CMD_RW_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
486#define PFM_CMD_USE_FD(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
487#define PFM_CMD_STOPPED(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
488
489#define PFM_CMD_ARG_MANY	-1 /* cannot be zero */
490
491typedef struct {
492	unsigned long pfm_spurious_ovfl_intr_count;	/* keep track of spurious ovfl interrupts */
493	unsigned long pfm_replay_ovfl_intr_count;	/* keep track of replayed ovfl interrupts */
494	unsigned long pfm_ovfl_intr_count; 		/* keep track of ovfl interrupts */
495	unsigned long pfm_ovfl_intr_cycles;		/* cycles spent processing ovfl interrupts */
496	unsigned long pfm_ovfl_intr_cycles_min;		/* min cycles spent processing ovfl interrupts */
497	unsigned long pfm_ovfl_intr_cycles_max;		/* max cycles spent processing ovfl interrupts */
498	unsigned long pfm_smpl_handler_calls;
499	unsigned long pfm_smpl_handler_cycles;
500	char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
501} pfm_stats_t;
502
503/*
504 * perfmon internal variables
505 */
506static pfm_stats_t		pfm_stats[NR_CPUS];
507static pfm_session_t		pfm_sessions;	/* global sessions information */
508
509static DEFINE_SPINLOCK(pfm_alt_install_check);
510static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
511
512static struct proc_dir_entry 	*perfmon_dir;
513static pfm_uuid_t		pfm_null_uuid = {0,};
514
515static spinlock_t		pfm_buffer_fmt_lock;
516static LIST_HEAD(pfm_buffer_fmt_list);
517
518static pmu_config_t		*pmu_conf;
519
520/* sysctl() controls */
521pfm_sysctl_t pfm_sysctl;
522EXPORT_SYMBOL(pfm_sysctl);
523
524static struct ctl_table pfm_ctl_table[] = {
525	{
526		.procname	= "debug",
527		.data		= &pfm_sysctl.debug,
528		.maxlen		= sizeof(int),
529		.mode		= 0666,
530		.proc_handler	= proc_dointvec,
531	},
532	{
533		.procname	= "debug_ovfl",
534		.data		= &pfm_sysctl.debug_ovfl,
535		.maxlen		= sizeof(int),
536		.mode		= 0666,
537		.proc_handler	= proc_dointvec,
538	},
539	{
540		.procname	= "fastctxsw",
541		.data		= &pfm_sysctl.fastctxsw,
542		.maxlen		= sizeof(int),
543		.mode		= 0600,
544		.proc_handler	= proc_dointvec,
545	},
546	{
547		.procname	= "expert_mode",
548		.data		= &pfm_sysctl.expert_mode,
549		.maxlen		= sizeof(int),
550		.mode		= 0600,
551		.proc_handler	= proc_dointvec,
552	},
553	{}
554};
555static struct ctl_table pfm_sysctl_dir[] = {
556	{
557		.procname	= "perfmon",
558		.mode		= 0555,
559		.child		= pfm_ctl_table,
560	},
561 	{}
562};
563static struct ctl_table pfm_sysctl_root[] = {
564	{
565		.procname	= "kernel",
566		.mode		= 0555,
567		.child		= pfm_sysctl_dir,
568	},
569 	{}
570};
571static struct ctl_table_header *pfm_sysctl_header;
572
573static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
574
575#define pfm_get_cpu_var(v)		__ia64_per_cpu_var(v)
576#define pfm_get_cpu_data(a,b)		per_cpu(a, b)
577
578static inline void
579pfm_put_task(struct task_struct *task)
580{
581	if (task != current) put_task_struct(task);
582}
583
584static inline void
585pfm_reserve_page(unsigned long a)
586{
587	SetPageReserved(vmalloc_to_page((void *)a));
588}
589static inline void
590pfm_unreserve_page(unsigned long a)
591{
592	ClearPageReserved(vmalloc_to_page((void*)a));
593}
594
595static inline unsigned long
596pfm_protect_ctx_ctxsw(pfm_context_t *x)
597{
598	spin_lock(&(x)->ctx_lock);
599	return 0UL;
600}
601
602static inline void
603pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
604{
605	spin_unlock(&(x)->ctx_lock);
606}
607
608/* forward declaration */
609static const struct dentry_operations pfmfs_dentry_operations;
610
611static struct dentry *
612pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
613{
614	return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
615			PFMFS_MAGIC);
616}
617
618static struct file_system_type pfm_fs_type = {
619	.name     = "pfmfs",
620	.mount    = pfmfs_mount,
621	.kill_sb  = kill_anon_super,
622};
623MODULE_ALIAS_FS("pfmfs");
624
625DEFINE_PER_CPU(unsigned long, pfm_syst_info);
626DEFINE_PER_CPU(struct task_struct *, pmu_owner);
627DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
628DEFINE_PER_CPU(unsigned long, pmu_activation_number);
629EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
630
631
632/* forward declaration */
633static const struct file_operations pfm_file_ops;
634
635/*
636 * forward declarations
637 */
638#ifndef CONFIG_SMP
639static void pfm_lazy_save_regs (struct task_struct *ta);
640#endif
641
642void dump_pmu_state(const char *);
643static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
644
645#include "perfmon_itanium.h"
646#include "perfmon_mckinley.h"
647#include "perfmon_montecito.h"
648#include "perfmon_generic.h"
649
650static pmu_config_t *pmu_confs[]={
651	&pmu_conf_mont,
652	&pmu_conf_mck,
653	&pmu_conf_ita,
654	&pmu_conf_gen, /* must be last */
655	NULL
656};
657
658
659static int pfm_end_notify_user(pfm_context_t *ctx);
660
661static inline void
662pfm_clear_psr_pp(void)
663{
664	ia64_rsm(IA64_PSR_PP);
665	ia64_srlz_i();
666}
667
668static inline void
669pfm_set_psr_pp(void)
670{
671	ia64_ssm(IA64_PSR_PP);
672	ia64_srlz_i();
673}
674
675static inline void
676pfm_clear_psr_up(void)
677{
678	ia64_rsm(IA64_PSR_UP);
679	ia64_srlz_i();
680}
681
682static inline void
683pfm_set_psr_up(void)
684{
685	ia64_ssm(IA64_PSR_UP);
686	ia64_srlz_i();
687}
688
689static inline unsigned long
690pfm_get_psr(void)
691{
692	unsigned long tmp;
693	tmp = ia64_getreg(_IA64_REG_PSR);
694	ia64_srlz_i();
695	return tmp;
696}
697
698static inline void
699pfm_set_psr_l(unsigned long val)
700{
701	ia64_setreg(_IA64_REG_PSR_L, val);
702	ia64_srlz_i();
703}
704
705static inline void
706pfm_freeze_pmu(void)
707{
708	ia64_set_pmc(0,1UL);
709	ia64_srlz_d();
710}
711
712static inline void
713pfm_unfreeze_pmu(void)
714{
715	ia64_set_pmc(0,0UL);
716	ia64_srlz_d();
717}
718
719static inline void
720pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
721{
722	int i;
723
724	for (i=0; i < nibrs; i++) {
725		ia64_set_ibr(i, ibrs[i]);
726		ia64_dv_serialize_instruction();
727	}
728	ia64_srlz_i();
729}
730
731static inline void
732pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
733{
734	int i;
735
736	for (i=0; i < ndbrs; i++) {
737		ia64_set_dbr(i, dbrs[i]);
738		ia64_dv_serialize_data();
739	}
740	ia64_srlz_d();
741}
742
743/*
744 * PMD[i] must be a counter. no check is made
745 */
746static inline unsigned long
747pfm_read_soft_counter(pfm_context_t *ctx, int i)
748{
749	return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
750}
751
752/*
753 * PMD[i] must be a counter. no check is made
754 */
755static inline void
756pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
757{
758	unsigned long ovfl_val = pmu_conf->ovfl_val;
759
760	ctx->ctx_pmds[i].val = val  & ~ovfl_val;
761	/*
762	 * writing to unimplemented part is ignore, so we do not need to
763	 * mask off top part
764	 */
765	ia64_set_pmd(i, val & ovfl_val);
766}
767
768static pfm_msg_t *
769pfm_get_new_msg(pfm_context_t *ctx)
770{
771	int idx, next;
772
773	next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
774
775	DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
776	if (next == ctx->ctx_msgq_head) return NULL;
777
778 	idx = 	ctx->ctx_msgq_tail;
779	ctx->ctx_msgq_tail = next;
780
781	DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
782
783	return ctx->ctx_msgq+idx;
784}
785
786static pfm_msg_t *
787pfm_get_next_msg(pfm_context_t *ctx)
788{
789	pfm_msg_t *msg;
790
791	DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
792
793	if (PFM_CTXQ_EMPTY(ctx)) return NULL;
794
795	/*
796	 * get oldest message
797	 */
798	msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
799
800	/*
801	 * and move forward
802	 */
803	ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
804
805	DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
806
807	return msg;
808}
809
810static void
811pfm_reset_msgq(pfm_context_t *ctx)
812{
813	ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
814	DPRINT(("ctx=%p msgq reset\n", ctx));
815}
816
817static void *
818pfm_rvmalloc(unsigned long size)
819{
820	void *mem;
821	unsigned long addr;
822
823	size = PAGE_ALIGN(size);
824	mem  = vzalloc(size);
825	if (mem) {
826		//printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
827		addr = (unsigned long)mem;
828		while (size > 0) {
829			pfm_reserve_page(addr);
830			addr+=PAGE_SIZE;
831			size-=PAGE_SIZE;
832		}
833	}
834	return mem;
835}
836
837static void
838pfm_rvfree(void *mem, unsigned long size)
839{
840	unsigned long addr;
841
842	if (mem) {
843		DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
844		addr = (unsigned long) mem;
845		while ((long) size > 0) {
846			pfm_unreserve_page(addr);
847			addr+=PAGE_SIZE;
848			size-=PAGE_SIZE;
849		}
850		vfree(mem);
851	}
852	return;
853}
854
855static pfm_context_t *
856pfm_context_alloc(int ctx_flags)
857{
858	pfm_context_t *ctx;
859
860	/*
861	 * allocate context descriptor
862	 * must be able to free with interrupts disabled
863	 */
864	ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
865	if (ctx) {
866		DPRINT(("alloc ctx @%p\n", ctx));
867
868		/*
869		 * init context protection lock
870		 */
871		spin_lock_init(&ctx->ctx_lock);
872
873		/*
874		 * context is unloaded
875		 */
876		ctx->ctx_state = PFM_CTX_UNLOADED;
877
878		/*
879		 * initialization of context's flags
880		 */
881		ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
882		ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
883		ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
884		/*
885		 * will move to set properties
886		 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
887		 */
888
889		/*
890		 * init restart semaphore to locked
891		 */
892		init_completion(&ctx->ctx_restart_done);
893
894		/*
895		 * activation is used in SMP only
896		 */
897		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
898		SET_LAST_CPU(ctx, -1);
899
900		/*
901		 * initialize notification message queue
902		 */
903		ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
904		init_waitqueue_head(&ctx->ctx_msgq_wait);
905		init_waitqueue_head(&ctx->ctx_zombieq);
906
907	}
908	return ctx;
909}
910
911static void
912pfm_context_free(pfm_context_t *ctx)
913{
914	if (ctx) {
915		DPRINT(("free ctx @%p\n", ctx));
916		kfree(ctx);
917	}
918}
919
920static void
921pfm_mask_monitoring(struct task_struct *task)
922{
923	pfm_context_t *ctx = PFM_GET_CTX(task);
924	unsigned long mask, val, ovfl_mask;
925	int i;
926
927	DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
928
929	ovfl_mask = pmu_conf->ovfl_val;
930	/*
931	 * monitoring can only be masked as a result of a valid
932	 * counter overflow. In UP, it means that the PMU still
933	 * has an owner. Note that the owner can be different
934	 * from the current task. However the PMU state belongs
935	 * to the owner.
936	 * In SMP, a valid overflow only happens when task is
937	 * current. Therefore if we come here, we know that
938	 * the PMU state belongs to the current task, therefore
939	 * we can access the live registers.
940	 *
941	 * So in both cases, the live register contains the owner's
942	 * state. We can ONLY touch the PMU registers and NOT the PSR.
943	 *
944	 * As a consequence to this call, the ctx->th_pmds[] array
945	 * contains stale information which must be ignored
946	 * when context is reloaded AND monitoring is active (see
947	 * pfm_restart).
948	 */
949	mask = ctx->ctx_used_pmds[0];
950	for (i = 0; mask; i++, mask>>=1) {
951		/* skip non used pmds */
952		if ((mask & 0x1) == 0) continue;
953		val = ia64_get_pmd(i);
954
955		if (PMD_IS_COUNTING(i)) {
956			/*
957		 	 * we rebuild the full 64 bit value of the counter
958		 	 */
959			ctx->ctx_pmds[i].val += (val & ovfl_mask);
960		} else {
961			ctx->ctx_pmds[i].val = val;
962		}
963		DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
964			i,
965			ctx->ctx_pmds[i].val,
966			val & ovfl_mask));
967	}
968	/*
969	 * mask monitoring by setting the privilege level to 0
970	 * we cannot use psr.pp/psr.up for this, it is controlled by
971	 * the user
972	 *
973	 * if task is current, modify actual registers, otherwise modify
974	 * thread save state, i.e., what will be restored in pfm_load_regs()
975	 */
976	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
977	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
978		if ((mask & 0x1) == 0UL) continue;
979		ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
980		ctx->th_pmcs[i] &= ~0xfUL;
981		DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
982	}
983	/*
984	 * make all of this visible
985	 */
986	ia64_srlz_d();
987}
988
989/*
990 * must always be done with task == current
991 *
992 * context must be in MASKED state when calling
993 */
994static void
995pfm_restore_monitoring(struct task_struct *task)
996{
997	pfm_context_t *ctx = PFM_GET_CTX(task);
998	unsigned long mask, ovfl_mask;
999	unsigned long psr, val;
1000	int i, is_system;
1001
1002	is_system = ctx->ctx_fl_system;
1003	ovfl_mask = pmu_conf->ovfl_val;
1004
1005	if (task != current) {
1006		printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1007		return;
1008	}
1009	if (ctx->ctx_state != PFM_CTX_MASKED) {
1010		printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1011			task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1012		return;
1013	}
1014	psr = pfm_get_psr();
1015	/*
1016	 * monitoring is masked via the PMC.
1017	 * As we restore their value, we do not want each counter to
1018	 * restart right away. We stop monitoring using the PSR,
1019	 * restore the PMC (and PMD) and then re-establish the psr
1020	 * as it was. Note that there can be no pending overflow at
1021	 * this point, because monitoring was MASKED.
1022	 *
1023	 * system-wide session are pinned and self-monitoring
1024	 */
1025	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1026		/* disable dcr pp */
1027		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1028		pfm_clear_psr_pp();
1029	} else {
1030		pfm_clear_psr_up();
1031	}
1032	/*
1033	 * first, we restore the PMD
1034	 */
1035	mask = ctx->ctx_used_pmds[0];
1036	for (i = 0; mask; i++, mask>>=1) {
1037		/* skip non used pmds */
1038		if ((mask & 0x1) == 0) continue;
1039
1040		if (PMD_IS_COUNTING(i)) {
1041			/*
1042			 * we split the 64bit value according to
1043			 * counter width
1044			 */
1045			val = ctx->ctx_pmds[i].val & ovfl_mask;
1046			ctx->ctx_pmds[i].val &= ~ovfl_mask;
1047		} else {
1048			val = ctx->ctx_pmds[i].val;
1049		}
1050		ia64_set_pmd(i, val);
1051
1052		DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1053			i,
1054			ctx->ctx_pmds[i].val,
1055			val));
1056	}
1057	/*
1058	 * restore the PMCs
1059	 */
1060	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1061	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1062		if ((mask & 0x1) == 0UL) continue;
1063		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1064		ia64_set_pmc(i, ctx->th_pmcs[i]);
1065		DPRINT(("[%d] pmc[%d]=0x%lx\n",
1066					task_pid_nr(task), i, ctx->th_pmcs[i]));
1067	}
1068	ia64_srlz_d();
1069
1070	/*
1071	 * must restore DBR/IBR because could be modified while masked
1072	 * XXX: need to optimize
1073	 */
1074	if (ctx->ctx_fl_using_dbreg) {
1075		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1076		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1077	}
1078
1079	/*
1080	 * now restore PSR
1081	 */
1082	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1083		/* enable dcr pp */
1084		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1085		ia64_srlz_i();
1086	}
1087	pfm_set_psr_l(psr);
1088}
1089
1090static inline void
1091pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1092{
1093	int i;
1094
1095	ia64_srlz_d();
1096
1097	for (i=0; mask; i++, mask>>=1) {
1098		if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1099	}
1100}
1101
1102/*
1103 * reload from thread state (used for ctxw only)
1104 */
1105static inline void
1106pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1107{
1108	int i;
1109	unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1110
1111	for (i=0; mask; i++, mask>>=1) {
1112		if ((mask & 0x1) == 0) continue;
1113		val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1114		ia64_set_pmd(i, val);
1115	}
1116	ia64_srlz_d();
1117}
1118
1119/*
1120 * propagate PMD from context to thread-state
1121 */
1122static inline void
1123pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1124{
1125	unsigned long ovfl_val = pmu_conf->ovfl_val;
1126	unsigned long mask = ctx->ctx_all_pmds[0];
1127	unsigned long val;
1128	int i;
1129
1130	DPRINT(("mask=0x%lx\n", mask));
1131
1132	for (i=0; mask; i++, mask>>=1) {
1133
1134		val = ctx->ctx_pmds[i].val;
1135
1136		/*
1137		 * We break up the 64 bit value into 2 pieces
1138		 * the lower bits go to the machine state in the
1139		 * thread (will be reloaded on ctxsw in).
1140		 * The upper part stays in the soft-counter.
1141		 */
1142		if (PMD_IS_COUNTING(i)) {
1143			ctx->ctx_pmds[i].val = val & ~ovfl_val;
1144			 val &= ovfl_val;
1145		}
1146		ctx->th_pmds[i] = val;
1147
1148		DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1149			i,
1150			ctx->th_pmds[i],
1151			ctx->ctx_pmds[i].val));
1152	}
1153}
1154
1155/*
1156 * propagate PMC from context to thread-state
1157 */
1158static inline void
1159pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1160{
1161	unsigned long mask = ctx->ctx_all_pmcs[0];
1162	int i;
1163
1164	DPRINT(("mask=0x%lx\n", mask));
1165
1166	for (i=0; mask; i++, mask>>=1) {
1167		/* masking 0 with ovfl_val yields 0 */
1168		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1169		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1170	}
1171}
1172
1173
1174
1175static inline void
1176pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1177{
1178	int i;
1179
1180	for (i=0; mask; i++, mask>>=1) {
1181		if ((mask & 0x1) == 0) continue;
1182		ia64_set_pmc(i, pmcs[i]);
1183	}
1184	ia64_srlz_d();
1185}
1186
1187static inline int
1188pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1189{
1190	return memcmp(a, b, sizeof(pfm_uuid_t));
1191}
1192
1193static inline int
1194pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1195{
1196	int ret = 0;
1197	if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1198	return ret;
1199}
1200
1201static inline int
1202pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1203{
1204	int ret = 0;
1205	if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1206	return ret;
1207}
1208
1209
1210static inline int
1211pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1212		     int cpu, void *arg)
1213{
1214	int ret = 0;
1215	if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1216	return ret;
1217}
1218
1219static inline int
1220pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1221		     int cpu, void *arg)
1222{
1223	int ret = 0;
1224	if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1225	return ret;
1226}
1227
1228static inline int
1229pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1230{
1231	int ret = 0;
1232	if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1233	return ret;
1234}
1235
1236static inline int
1237pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1238{
1239	int ret = 0;
1240	if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1241	return ret;
1242}
1243
1244static pfm_buffer_fmt_t *
1245__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1246{
1247	struct list_head * pos;
1248	pfm_buffer_fmt_t * entry;
1249
1250	list_for_each(pos, &pfm_buffer_fmt_list) {
1251		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1252		if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1253			return entry;
1254	}
1255	return NULL;
1256}
1257
1258/*
1259 * find a buffer format based on its uuid
1260 */
1261static pfm_buffer_fmt_t *
1262pfm_find_buffer_fmt(pfm_uuid_t uuid)
1263{
1264	pfm_buffer_fmt_t * fmt;
1265	spin_lock(&pfm_buffer_fmt_lock);
1266	fmt = __pfm_find_buffer_fmt(uuid);
1267	spin_unlock(&pfm_buffer_fmt_lock);
1268	return fmt;
1269}
1270
1271int
1272pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1273{
1274	int ret = 0;
1275
1276	/* some sanity checks */
1277	if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1278
1279	/* we need at least a handler */
1280	if (fmt->fmt_handler == NULL) return -EINVAL;
1281
1282	/*
1283	 * XXX: need check validity of fmt_arg_size
1284	 */
1285
1286	spin_lock(&pfm_buffer_fmt_lock);
1287
1288	if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1289		printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1290		ret = -EBUSY;
1291		goto out;
1292	}
1293	list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1294	printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1295
1296out:
1297	spin_unlock(&pfm_buffer_fmt_lock);
1298 	return ret;
1299}
1300EXPORT_SYMBOL(pfm_register_buffer_fmt);
1301
1302int
1303pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1304{
1305	pfm_buffer_fmt_t *fmt;
1306	int ret = 0;
1307
1308	spin_lock(&pfm_buffer_fmt_lock);
1309
1310	fmt = __pfm_find_buffer_fmt(uuid);
1311	if (!fmt) {
1312		printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1313		ret = -EINVAL;
1314		goto out;
1315	}
1316	list_del_init(&fmt->fmt_list);
1317	printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1318
1319out:
1320	spin_unlock(&pfm_buffer_fmt_lock);
1321	return ret;
1322
1323}
1324EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1325
1326static int
1327pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1328{
1329	unsigned long flags;
1330	/*
1331	 * validity checks on cpu_mask have been done upstream
1332	 */
1333	LOCK_PFS(flags);
1334
1335	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1336		pfm_sessions.pfs_sys_sessions,
1337		pfm_sessions.pfs_task_sessions,
1338		pfm_sessions.pfs_sys_use_dbregs,
1339		is_syswide,
1340		cpu));
1341
1342	if (is_syswide) {
1343		/*
1344		 * cannot mix system wide and per-task sessions
1345		 */
1346		if (pfm_sessions.pfs_task_sessions > 0UL) {
1347			DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1348			  	pfm_sessions.pfs_task_sessions));
1349			goto abort;
1350		}
1351
1352		if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1353
1354		DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1355
1356		pfm_sessions.pfs_sys_session[cpu] = task;
1357
1358		pfm_sessions.pfs_sys_sessions++ ;
1359
1360	} else {
1361		if (pfm_sessions.pfs_sys_sessions) goto abort;
1362		pfm_sessions.pfs_task_sessions++;
1363	}
1364
1365	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1366		pfm_sessions.pfs_sys_sessions,
1367		pfm_sessions.pfs_task_sessions,
1368		pfm_sessions.pfs_sys_use_dbregs,
1369		is_syswide,
1370		cpu));
1371
1372	/*
1373	 * Force idle() into poll mode
1374	 */
1375	cpu_idle_poll_ctrl(true);
1376
1377	UNLOCK_PFS(flags);
1378
1379	return 0;
1380
1381error_conflict:
1382	DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1383  		task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1384		cpu));
1385abort:
1386	UNLOCK_PFS(flags);
1387
1388	return -EBUSY;
1389
1390}
1391
1392static int
1393pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1394{
1395	unsigned long flags;
1396	/*
1397	 * validity checks on cpu_mask have been done upstream
1398	 */
1399	LOCK_PFS(flags);
1400
1401	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1402		pfm_sessions.pfs_sys_sessions,
1403		pfm_sessions.pfs_task_sessions,
1404		pfm_sessions.pfs_sys_use_dbregs,
1405		is_syswide,
1406		cpu));
1407
1408
1409	if (is_syswide) {
1410		pfm_sessions.pfs_sys_session[cpu] = NULL;
1411		/*
1412		 * would not work with perfmon+more than one bit in cpu_mask
1413		 */
1414		if (ctx && ctx->ctx_fl_using_dbreg) {
1415			if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1416				printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1417			} else {
1418				pfm_sessions.pfs_sys_use_dbregs--;
1419			}
1420		}
1421		pfm_sessions.pfs_sys_sessions--;
1422	} else {
1423		pfm_sessions.pfs_task_sessions--;
1424	}
1425	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1426		pfm_sessions.pfs_sys_sessions,
1427		pfm_sessions.pfs_task_sessions,
1428		pfm_sessions.pfs_sys_use_dbregs,
1429		is_syswide,
1430		cpu));
1431
1432	/* Undo forced polling. Last session reenables pal_halt */
1433	cpu_idle_poll_ctrl(false);
1434
1435	UNLOCK_PFS(flags);
1436
1437	return 0;
1438}
1439
1440/*
1441 * removes virtual mapping of the sampling buffer.
1442 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1443 * a PROTECT_CTX() section.
1444 */
1445static int
1446pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1447{
1448	struct task_struct *task = current;
1449	int r;
1450
1451	/* sanity checks */
1452	if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1453		printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1454		return -EINVAL;
1455	}
1456
1457	DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1458
1459	/*
1460	 * does the actual unmapping
1461	 */
1462	r = vm_munmap((unsigned long)vaddr, size);
1463
1464	if (r !=0) {
1465		printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1466	}
1467
1468	DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1469
1470	return 0;
1471}
1472
1473/*
1474 * free actual physical storage used by sampling buffer
1475 */
1476#if 0
1477static int
1478pfm_free_smpl_buffer(pfm_context_t *ctx)
1479{
1480	pfm_buffer_fmt_t *fmt;
1481
1482	if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1483
1484	/*
1485	 * we won't use the buffer format anymore
1486	 */
1487	fmt = ctx->ctx_buf_fmt;
1488
1489	DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1490		ctx->ctx_smpl_hdr,
1491		ctx->ctx_smpl_size,
1492		ctx->ctx_smpl_vaddr));
1493
1494	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1495
1496	/*
1497	 * free the buffer
1498	 */
1499	pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1500
1501	ctx->ctx_smpl_hdr  = NULL;
1502	ctx->ctx_smpl_size = 0UL;
1503
1504	return 0;
1505
1506invalid_free:
1507	printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1508	return -EINVAL;
1509}
1510#endif
1511
1512static inline void
1513pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1514{
1515	if (fmt == NULL) return;
1516
1517	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1518
1519}
1520
1521/*
1522 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1523 * no real gain from having the whole whorehouse mounted. So we don't need
1524 * any operations on the root directory. However, we need a non-trivial
1525 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1526 */
1527static struct vfsmount *pfmfs_mnt __read_mostly;
1528
1529static int __init
1530init_pfm_fs(void)
1531{
1532	int err = register_filesystem(&pfm_fs_type);
1533	if (!err) {
1534		pfmfs_mnt = kern_mount(&pfm_fs_type);
1535		err = PTR_ERR(pfmfs_mnt);
1536		if (IS_ERR(pfmfs_mnt))
1537			unregister_filesystem(&pfm_fs_type);
1538		else
1539			err = 0;
1540	}
1541	return err;
1542}
1543
1544static ssize_t
1545pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1546{
1547	pfm_context_t *ctx;
1548	pfm_msg_t *msg;
1549	ssize_t ret;
1550	unsigned long flags;
1551  	DECLARE_WAITQUEUE(wait, current);
1552	if (PFM_IS_FILE(filp) == 0) {
1553		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1554		return -EINVAL;
1555	}
1556
1557	ctx = filp->private_data;
1558	if (ctx == NULL) {
1559		printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1560		return -EINVAL;
1561	}
1562
1563	/*
1564	 * check even when there is no message
1565	 */
1566	if (size < sizeof(pfm_msg_t)) {
1567		DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1568		return -EINVAL;
1569	}
1570
1571	PROTECT_CTX(ctx, flags);
1572
1573  	/*
1574	 * put ourselves on the wait queue
1575	 */
1576  	add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1577
1578
1579  	for(;;) {
1580		/*
1581		 * check wait queue
1582		 */
1583
1584  		set_current_state(TASK_INTERRUPTIBLE);
1585
1586		DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1587
1588		ret = 0;
1589		if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1590
1591		UNPROTECT_CTX(ctx, flags);
1592
1593		/*
1594		 * check non-blocking read
1595		 */
1596      		ret = -EAGAIN;
1597		if(filp->f_flags & O_NONBLOCK) break;
1598
1599		/*
1600		 * check pending signals
1601		 */
1602		if(signal_pending(current)) {
1603			ret = -EINTR;
1604			break;
1605		}
1606      		/*
1607		 * no message, so wait
1608		 */
1609      		schedule();
1610
1611		PROTECT_CTX(ctx, flags);
1612	}
1613	DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1614  	set_current_state(TASK_RUNNING);
1615	remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1616
1617	if (ret < 0) goto abort;
1618
1619	ret = -EINVAL;
1620	msg = pfm_get_next_msg(ctx);
1621	if (msg == NULL) {
1622		printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1623		goto abort_locked;
1624	}
1625
1626	DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1627
1628	ret = -EFAULT;
1629  	if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1630
1631abort_locked:
1632	UNPROTECT_CTX(ctx, flags);
1633abort:
1634	return ret;
1635}
1636
1637static ssize_t
1638pfm_write(struct file *file, const char __user *ubuf,
1639			  size_t size, loff_t *ppos)
1640{
1641	DPRINT(("pfm_write called\n"));
1642	return -EINVAL;
1643}
1644
1645static unsigned int
1646pfm_poll(struct file *filp, poll_table * wait)
1647{
1648	pfm_context_t *ctx;
1649	unsigned long flags;
1650	unsigned int mask = 0;
1651
1652	if (PFM_IS_FILE(filp) == 0) {
1653		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1654		return 0;
1655	}
1656
1657	ctx = filp->private_data;
1658	if (ctx == NULL) {
1659		printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1660		return 0;
1661	}
1662
1663
1664	DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1665
1666	poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1667
1668	PROTECT_CTX(ctx, flags);
1669
1670	if (PFM_CTXQ_EMPTY(ctx) == 0)
1671		mask =  POLLIN | POLLRDNORM;
1672
1673	UNPROTECT_CTX(ctx, flags);
1674
1675	DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1676
1677	return mask;
1678}
1679
1680static long
1681pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1682{
1683	DPRINT(("pfm_ioctl called\n"));
1684	return -EINVAL;
1685}
1686
1687/*
1688 * interrupt cannot be masked when coming here
1689 */
1690static inline int
1691pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1692{
1693	int ret;
1694
1695	ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1696
1697	DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1698		task_pid_nr(current),
1699		fd,
1700		on,
1701		ctx->ctx_async_queue, ret));
1702
1703	return ret;
1704}
1705
1706static int
1707pfm_fasync(int fd, struct file *filp, int on)
1708{
1709	pfm_context_t *ctx;
1710	int ret;
1711
1712	if (PFM_IS_FILE(filp) == 0) {
1713		printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1714		return -EBADF;
1715	}
1716
1717	ctx = filp->private_data;
1718	if (ctx == NULL) {
1719		printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1720		return -EBADF;
1721	}
1722	/*
1723	 * we cannot mask interrupts during this call because this may
1724	 * may go to sleep if memory is not readily avalaible.
1725	 *
1726	 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1727	 * done in caller. Serialization of this function is ensured by caller.
1728	 */
1729	ret = pfm_do_fasync(fd, filp, ctx, on);
1730
1731
1732	DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1733		fd,
1734		on,
1735		ctx->ctx_async_queue, ret));
1736
1737	return ret;
1738}
1739
1740#ifdef CONFIG_SMP
1741/*
1742 * this function is exclusively called from pfm_close().
1743 * The context is not protected at that time, nor are interrupts
1744 * on the remote CPU. That's necessary to avoid deadlocks.
1745 */
1746static void
1747pfm_syswide_force_stop(void *info)
1748{
1749	pfm_context_t   *ctx = (pfm_context_t *)info;
1750	struct pt_regs *regs = task_pt_regs(current);
1751	struct task_struct *owner;
1752	unsigned long flags;
1753	int ret;
1754
1755	if (ctx->ctx_cpu != smp_processor_id()) {
1756		printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1757			ctx->ctx_cpu,
1758			smp_processor_id());
1759		return;
1760	}
1761	owner = GET_PMU_OWNER();
1762	if (owner != ctx->ctx_task) {
1763		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1764			smp_processor_id(),
1765			task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1766		return;
1767	}
1768	if (GET_PMU_CTX() != ctx) {
1769		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1770			smp_processor_id(),
1771			GET_PMU_CTX(), ctx);
1772		return;
1773	}
1774
1775	DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1776	/*
1777	 * the context is already protected in pfm_close(), we simply
1778	 * need to mask interrupts to avoid a PMU interrupt race on
1779	 * this CPU
1780	 */
1781	local_irq_save(flags);
1782
1783	ret = pfm_context_unload(ctx, NULL, 0, regs);
1784	if (ret) {
1785		DPRINT(("context_unload returned %d\n", ret));
1786	}
1787
1788	/*
1789	 * unmask interrupts, PMU interrupts are now spurious here
1790	 */
1791	local_irq_restore(flags);
1792}
1793
1794static void
1795pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1796{
1797	int ret;
1798
1799	DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1800	ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1801	DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1802}
1803#endif /* CONFIG_SMP */
1804
1805/*
1806 * called for each close(). Partially free resources.
1807 * When caller is self-monitoring, the context is unloaded.
1808 */
1809static int
1810pfm_flush(struct file *filp, fl_owner_t id)
1811{
1812	pfm_context_t *ctx;
1813	struct task_struct *task;
1814	struct pt_regs *regs;
1815	unsigned long flags;
1816	unsigned long smpl_buf_size = 0UL;
1817	void *smpl_buf_vaddr = NULL;
1818	int state, is_system;
1819
1820	if (PFM_IS_FILE(filp) == 0) {
1821		DPRINT(("bad magic for\n"));
1822		return -EBADF;
1823	}
1824
1825	ctx = filp->private_data;
1826	if (ctx == NULL) {
1827		printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1828		return -EBADF;
1829	}
1830
1831	/*
1832	 * remove our file from the async queue, if we use this mode.
1833	 * This can be done without the context being protected. We come
1834	 * here when the context has become unreachable by other tasks.
1835	 *
1836	 * We may still have active monitoring at this point and we may
1837	 * end up in pfm_overflow_handler(). However, fasync_helper()
1838	 * operates with interrupts disabled and it cleans up the
1839	 * queue. If the PMU handler is called prior to entering
1840	 * fasync_helper() then it will send a signal. If it is
1841	 * invoked after, it will find an empty queue and no
1842	 * signal will be sent. In both case, we are safe
1843	 */
1844	PROTECT_CTX(ctx, flags);
1845
1846	state     = ctx->ctx_state;
1847	is_system = ctx->ctx_fl_system;
1848
1849	task = PFM_CTX_TASK(ctx);
1850	regs = task_pt_regs(task);
1851
1852	DPRINT(("ctx_state=%d is_current=%d\n",
1853		state,
1854		task == current ? 1 : 0));
1855
1856	/*
1857	 * if state == UNLOADED, then task is NULL
1858	 */
1859
1860	/*
1861	 * we must stop and unload because we are losing access to the context.
1862	 */
1863	if (task == current) {
1864#ifdef CONFIG_SMP
1865		/*
1866		 * the task IS the owner but it migrated to another CPU: that's bad
1867		 * but we must handle this cleanly. Unfortunately, the kernel does
1868		 * not provide a mechanism to block migration (while the context is loaded).
1869		 *
1870		 * We need to release the resource on the ORIGINAL cpu.
1871		 */
1872		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1873
1874			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1875			/*
1876			 * keep context protected but unmask interrupt for IPI
1877			 */
1878			local_irq_restore(flags);
1879
1880			pfm_syswide_cleanup_other_cpu(ctx);
1881
1882			/*
1883			 * restore interrupt masking
1884			 */
1885			local_irq_save(flags);
1886
1887			/*
1888			 * context is unloaded at this point
1889			 */
1890		} else
1891#endif /* CONFIG_SMP */
1892		{
1893
1894			DPRINT(("forcing unload\n"));
1895			/*
1896		 	* stop and unload, returning with state UNLOADED
1897		 	* and session unreserved.
1898		 	*/
1899			pfm_context_unload(ctx, NULL, 0, regs);
1900
1901			DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1902		}
1903	}
1904
1905	/*
1906	 * remove virtual mapping, if any, for the calling task.
1907	 * cannot reset ctx field until last user is calling close().
1908	 *
1909	 * ctx_smpl_vaddr must never be cleared because it is needed
1910	 * by every task with access to the context
1911	 *
1912	 * When called from do_exit(), the mm context is gone already, therefore
1913	 * mm is NULL, i.e., the VMA is already gone  and we do not have to
1914	 * do anything here
1915	 */
1916	if (ctx->ctx_smpl_vaddr && current->mm) {
1917		smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1918		smpl_buf_size  = ctx->ctx_smpl_size;
1919	}
1920
1921	UNPROTECT_CTX(ctx, flags);
1922
1923	/*
1924	 * if there was a mapping, then we systematically remove it
1925	 * at this point. Cannot be done inside critical section
1926	 * because some VM function reenables interrupts.
1927	 *
1928	 */
1929	if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1930
1931	return 0;
1932}
1933/*
1934 * called either on explicit close() or from exit_files().
1935 * Only the LAST user of the file gets to this point, i.e., it is
1936 * called only ONCE.
1937 *
1938 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1939 * (fput()),i.e, last task to access the file. Nobody else can access the
1940 * file at this point.
1941 *
1942 * When called from exit_files(), the VMA has been freed because exit_mm()
1943 * is executed before exit_files().
1944 *
1945 * When called from exit_files(), the current task is not yet ZOMBIE but we
1946 * flush the PMU state to the context.
1947 */
1948static int
1949pfm_close(struct inode *inode, struct file *filp)
1950{
1951	pfm_context_t *ctx;
1952	struct task_struct *task;
1953	struct pt_regs *regs;
1954  	DECLARE_WAITQUEUE(wait, current);
1955	unsigned long flags;
1956	unsigned long smpl_buf_size = 0UL;
1957	void *smpl_buf_addr = NULL;
1958	int free_possible = 1;
1959	int state, is_system;
1960
1961	DPRINT(("pfm_close called private=%p\n", filp->private_data));
1962
1963	if (PFM_IS_FILE(filp) == 0) {
1964		DPRINT(("bad magic\n"));
1965		return -EBADF;
1966	}
1967
1968	ctx = filp->private_data;
1969	if (ctx == NULL) {
1970		printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1971		return -EBADF;
1972	}
1973
1974	PROTECT_CTX(ctx, flags);
1975
1976	state     = ctx->ctx_state;
1977	is_system = ctx->ctx_fl_system;
1978
1979	task = PFM_CTX_TASK(ctx);
1980	regs = task_pt_regs(task);
1981
1982	DPRINT(("ctx_state=%d is_current=%d\n",
1983		state,
1984		task == current ? 1 : 0));
1985
1986	/*
1987	 * if task == current, then pfm_flush() unloaded the context
1988	 */
1989	if (state == PFM_CTX_UNLOADED) goto doit;
1990
1991	/*
1992	 * context is loaded/masked and task != current, we need to
1993	 * either force an unload or go zombie
1994	 */
1995
1996	/*
1997	 * The task is currently blocked or will block after an overflow.
1998	 * we must force it to wakeup to get out of the
1999	 * MASKED state and transition to the unloaded state by itself.
2000	 *
2001	 * This situation is only possible for per-task mode
2002	 */
2003	if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2004
2005		/*
2006		 * set a "partial" zombie state to be checked
2007		 * upon return from down() in pfm_handle_work().
2008		 *
2009		 * We cannot use the ZOMBIE state, because it is checked
2010		 * by pfm_load_regs() which is called upon wakeup from down().
2011		 * In such case, it would free the context and then we would
2012		 * return to pfm_handle_work() which would access the
2013		 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2014		 * but visible to pfm_handle_work().
2015		 *
2016		 * For some window of time, we have a zombie context with
2017		 * ctx_state = MASKED  and not ZOMBIE
2018		 */
2019		ctx->ctx_fl_going_zombie = 1;
2020
2021		/*
2022		 * force task to wake up from MASKED state
2023		 */
2024		complete(&ctx->ctx_restart_done);
2025
2026		DPRINT(("waking up ctx_state=%d\n", state));
2027
2028		/*
2029		 * put ourself to sleep waiting for the other
2030		 * task to report completion
2031		 *
2032		 * the context is protected by mutex, therefore there
2033		 * is no risk of being notified of completion before
2034		 * begin actually on the waitq.
2035		 */
2036  		set_current_state(TASK_INTERRUPTIBLE);
2037  		add_wait_queue(&ctx->ctx_zombieq, &wait);
2038
2039		UNPROTECT_CTX(ctx, flags);
2040
2041		/*
2042		 * XXX: check for signals :
2043		 * 	- ok for explicit close
2044		 * 	- not ok when coming from exit_files()
2045		 */
2046      		schedule();
2047
2048
2049		PROTECT_CTX(ctx, flags);
2050
2051
2052		remove_wait_queue(&ctx->ctx_zombieq, &wait);
2053  		set_current_state(TASK_RUNNING);
2054
2055		/*
2056		 * context is unloaded at this point
2057		 */
2058		DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2059	}
2060	else if (task != current) {
2061#ifdef CONFIG_SMP
2062		/*
2063	 	 * switch context to zombie state
2064	 	 */
2065		ctx->ctx_state = PFM_CTX_ZOMBIE;
2066
2067		DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2068		/*
2069		 * cannot free the context on the spot. deferred until
2070		 * the task notices the ZOMBIE state
2071		 */
2072		free_possible = 0;
2073#else
2074		pfm_context_unload(ctx, NULL, 0, regs);
2075#endif
2076	}
2077
2078doit:
2079	/* reload state, may have changed during  opening of critical section */
2080	state = ctx->ctx_state;
2081
2082	/*
2083	 * the context is still attached to a task (possibly current)
2084	 * we cannot destroy it right now
2085	 */
2086
2087	/*
2088	 * we must free the sampling buffer right here because
2089	 * we cannot rely on it being cleaned up later by the
2090	 * monitored task. It is not possible to free vmalloc'ed
2091	 * memory in pfm_load_regs(). Instead, we remove the buffer
2092	 * now. should there be subsequent PMU overflow originally
2093	 * meant for sampling, the will be converted to spurious
2094	 * and that's fine because the monitoring tools is gone anyway.
2095	 */
2096	if (ctx->ctx_smpl_hdr) {
2097		smpl_buf_addr = ctx->ctx_smpl_hdr;
2098		smpl_buf_size = ctx->ctx_smpl_size;
2099		/* no more sampling */
2100		ctx->ctx_smpl_hdr = NULL;
2101		ctx->ctx_fl_is_sampling = 0;
2102	}
2103
2104	DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2105		state,
2106		free_possible,
2107		smpl_buf_addr,
2108		smpl_buf_size));
2109
2110	if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2111
2112	/*
2113	 * UNLOADED that the session has already been unreserved.
2114	 */
2115	if (state == PFM_CTX_ZOMBIE) {
2116		pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2117	}
2118
2119	/*
2120	 * disconnect file descriptor from context must be done
2121	 * before we unlock.
2122	 */
2123	filp->private_data = NULL;
2124
2125	/*
2126	 * if we free on the spot, the context is now completely unreachable
2127	 * from the callers side. The monitored task side is also cut, so we
2128	 * can freely cut.
2129	 *
2130	 * If we have a deferred free, only the caller side is disconnected.
2131	 */
2132	UNPROTECT_CTX(ctx, flags);
2133
2134	/*
2135	 * All memory free operations (especially for vmalloc'ed memory)
2136	 * MUST be done with interrupts ENABLED.
2137	 */
2138	if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2139
2140	/*
2141	 * return the memory used by the context
2142	 */
2143	if (free_possible) pfm_context_free(ctx);
2144
2145	return 0;
2146}
2147
2148static const struct file_operations pfm_file_ops = {
2149	.llseek		= no_llseek,
2150	.read		= pfm_read,
2151	.write		= pfm_write,
2152	.poll		= pfm_poll,
2153	.unlocked_ioctl = pfm_ioctl,
2154	.fasync		= pfm_fasync,
2155	.release	= pfm_close,
2156	.flush		= pfm_flush
2157};
2158
2159static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2160{
2161	return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2162			     d_inode(dentry)->i_ino);
2163}
2164
2165static const struct dentry_operations pfmfs_dentry_operations = {
2166	.d_delete = always_delete_dentry,
2167	.d_dname = pfmfs_dname,
2168};
2169
2170
2171static struct file *
2172pfm_alloc_file(pfm_context_t *ctx)
2173{
2174	struct file *file;
2175	struct inode *inode;
2176	struct path path;
2177	struct qstr this = { .name = "" };
2178
2179	/*
2180	 * allocate a new inode
2181	 */
2182	inode = new_inode(pfmfs_mnt->mnt_sb);
2183	if (!inode)
2184		return ERR_PTR(-ENOMEM);
2185
2186	DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2187
2188	inode->i_mode = S_IFCHR|S_IRUGO;
2189	inode->i_uid  = current_fsuid();
2190	inode->i_gid  = current_fsgid();
2191
2192	/*
2193	 * allocate a new dcache entry
2194	 */
2195	path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2196	if (!path.dentry) {
2197		iput(inode);
2198		return ERR_PTR(-ENOMEM);
2199	}
2200	path.mnt = mntget(pfmfs_mnt);
2201
2202	d_add(path.dentry, inode);
2203
2204	file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2205	if (IS_ERR(file)) {
2206		path_put(&path);
2207		return file;
2208	}
2209
2210	file->f_flags = O_RDONLY;
2211	file->private_data = ctx;
2212
2213	return file;
2214}
2215
2216static int
2217pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2218{
2219	DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2220
2221	while (size > 0) {
2222		unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2223
2224
2225		if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2226			return -ENOMEM;
2227
2228		addr  += PAGE_SIZE;
2229		buf   += PAGE_SIZE;
2230		size  -= PAGE_SIZE;
2231	}
2232	return 0;
2233}
2234
2235/*
2236 * allocate a sampling buffer and remaps it into the user address space of the task
2237 */
2238static int
2239pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2240{
2241	struct mm_struct *mm = task->mm;
2242	struct vm_area_struct *vma = NULL;
2243	unsigned long size;
2244	void *smpl_buf;
2245
2246
2247	/*
2248	 * the fixed header + requested size and align to page boundary
2249	 */
2250	size = PAGE_ALIGN(rsize);
2251
2252	DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2253
2254	/*
2255	 * check requested size to avoid Denial-of-service attacks
2256	 * XXX: may have to refine this test
2257	 * Check against address space limit.
2258	 *
2259	 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2260	 * 	return -ENOMEM;
2261	 */
2262	if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2263		return -ENOMEM;
2264
2265	/*
2266	 * We do the easy to undo allocations first.
2267 	 *
2268	 * pfm_rvmalloc(), clears the buffer, so there is no leak
2269	 */
2270	smpl_buf = pfm_rvmalloc(size);
2271	if (smpl_buf == NULL) {
2272		DPRINT(("Can't allocate sampling buffer\n"));
2273		return -ENOMEM;
2274	}
2275
2276	DPRINT(("smpl_buf @%p\n", smpl_buf));
2277
2278	/* allocate vma */
2279	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2280	if (!vma) {
2281		DPRINT(("Cannot allocate vma\n"));
2282		goto error_kmem;
2283	}
2284	INIT_LIST_HEAD(&vma->anon_vma_chain);
2285
2286	/*
2287	 * partially initialize the vma for the sampling buffer
2288	 */
2289	vma->vm_mm	     = mm;
2290	vma->vm_file	     = get_file(filp);
2291	vma->vm_flags	     = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2292	vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2293
2294	/*
2295	 * Now we have everything we need and we can initialize
2296	 * and connect all the data structures
2297	 */
2298
2299	ctx->ctx_smpl_hdr   = smpl_buf;
2300	ctx->ctx_smpl_size  = size; /* aligned size */
2301
2302	/*
2303	 * Let's do the difficult operations next.
2304	 *
2305	 * now we atomically find some area in the address space and
2306	 * remap the buffer in it.
2307	 */
2308	down_write(&task->mm->mmap_sem);
2309
2310	/* find some free area in address space, must have mmap sem held */
2311	vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2312	if (IS_ERR_VALUE(vma->vm_start)) {
2313		DPRINT(("Cannot find unmapped area for size %ld\n", size));
2314		up_write(&task->mm->mmap_sem);
2315		goto error;
2316	}
2317	vma->vm_end = vma->vm_start + size;
2318	vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2319
2320	DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2321
2322	/* can only be applied to current task, need to have the mm semaphore held when called */
2323	if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2324		DPRINT(("Can't remap buffer\n"));
2325		up_write(&task->mm->mmap_sem);
2326		goto error;
2327	}
2328
2329	/*
2330	 * now insert the vma in the vm list for the process, must be
2331	 * done with mmap lock held
2332	 */
2333	insert_vm_struct(mm, vma);
2334
2335	vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2336							vma_pages(vma));
2337	up_write(&task->mm->mmap_sem);
2338
2339	/*
2340	 * keep track of user level virtual address
2341	 */
2342	ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2343	*(unsigned long *)user_vaddr = vma->vm_start;
2344
2345	return 0;
2346
2347error:
2348	kmem_cache_free(vm_area_cachep, vma);
2349error_kmem:
2350	pfm_rvfree(smpl_buf, size);
2351
2352	return -ENOMEM;
2353}
2354
2355/*
2356 * XXX: do something better here
2357 */
2358static int
2359pfm_bad_permissions(struct task_struct *task)
2360{
2361	const struct cred *tcred;
2362	kuid_t uid = current_uid();
2363	kgid_t gid = current_gid();
2364	int ret;
2365
2366	rcu_read_lock();
2367	tcred = __task_cred(task);
2368
2369	/* inspired by ptrace_attach() */
2370	DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2371		from_kuid(&init_user_ns, uid),
2372		from_kgid(&init_user_ns, gid),
2373		from_kuid(&init_user_ns, tcred->euid),
2374		from_kuid(&init_user_ns, tcred->suid),
2375		from_kuid(&init_user_ns, tcred->uid),
2376		from_kgid(&init_user_ns, tcred->egid),
2377		from_kgid(&init_user_ns, tcred->sgid)));
2378
2379	ret = ((!uid_eq(uid, tcred->euid))
2380	       || (!uid_eq(uid, tcred->suid))
2381	       || (!uid_eq(uid, tcred->uid))
2382	       || (!gid_eq(gid, tcred->egid))
2383	       || (!gid_eq(gid, tcred->sgid))
2384	       || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2385
2386	rcu_read_unlock();
2387	return ret;
2388}
2389
2390static int
2391pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2392{
2393	int ctx_flags;
2394
2395	/* valid signal */
2396
2397	ctx_flags = pfx->ctx_flags;
2398
2399	if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2400
2401		/*
2402		 * cannot block in this mode
2403		 */
2404		if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2405			DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2406			return -EINVAL;
2407		}
2408	} else {
2409	}
2410	/* probably more to add here */
2411
2412	return 0;
2413}
2414
2415static int
2416pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2417		     unsigned int cpu, pfarg_context_t *arg)
2418{
2419	pfm_buffer_fmt_t *fmt = NULL;
2420	unsigned long size = 0UL;
2421	void *uaddr = NULL;
2422	void *fmt_arg = NULL;
2423	int ret = 0;
2424#define PFM_CTXARG_BUF_ARG(a)	(pfm_buffer_fmt_t *)(a+1)
2425
2426	/* invoke and lock buffer format, if found */
2427	fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2428	if (fmt == NULL) {
2429		DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2430		return -EINVAL;
2431	}
2432
2433	/*
2434	 * buffer argument MUST be contiguous to pfarg_context_t
2435	 */
2436	if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2437
2438	ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2439
2440	DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2441
2442	if (ret) goto error;
2443
2444	/* link buffer format and context */
2445	ctx->ctx_buf_fmt = fmt;
2446	ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2447
2448	/*
2449	 * check if buffer format wants to use perfmon buffer allocation/mapping service
2450	 */
2451	ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2452	if (ret) goto error;
2453
2454	if (size) {
2455		/*
2456		 * buffer is always remapped into the caller's address space
2457		 */
2458		ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2459		if (ret) goto error;
2460
2461		/* keep track of user address of buffer */
2462		arg->ctx_smpl_vaddr = uaddr;
2463	}
2464	ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2465
2466error:
2467	return ret;
2468}
2469
2470static void
2471pfm_reset_pmu_state(pfm_context_t *ctx)
2472{
2473	int i;
2474
2475	/*
2476	 * install reset values for PMC.
2477	 */
2478	for (i=1; PMC_IS_LAST(i) == 0; i++) {
2479		if (PMC_IS_IMPL(i) == 0) continue;
2480		ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2481		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2482	}
2483	/*
2484	 * PMD registers are set to 0UL when the context in memset()
2485	 */
2486
2487	/*
2488	 * On context switched restore, we must restore ALL pmc and ALL pmd even
2489	 * when they are not actively used by the task. In UP, the incoming process
2490	 * may otherwise pick up left over PMC, PMD state from the previous process.
2491	 * As opposed to PMD, stale PMC can cause harm to the incoming
2492	 * process because they may change what is being measured.
2493	 * Therefore, we must systematically reinstall the entire
2494	 * PMC state. In SMP, the same thing is possible on the
2495	 * same CPU but also on between 2 CPUs.
2496	 *
2497	 * The problem with PMD is information leaking especially
2498	 * to user level when psr.sp=0
2499	 *
2500	 * There is unfortunately no easy way to avoid this problem
2501	 * on either UP or SMP. This definitively slows down the
2502	 * pfm_load_regs() function.
2503	 */
2504
2505	 /*
2506	  * bitmask of all PMCs accessible to this context
2507	  *
2508	  * PMC0 is treated differently.
2509	  */
2510	ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2511
2512	/*
2513	 * bitmask of all PMDs that are accessible to this context
2514	 */
2515	ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2516
2517	DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2518
2519	/*
2520	 * useful in case of re-enable after disable
2521	 */
2522	ctx->ctx_used_ibrs[0] = 0UL;
2523	ctx->ctx_used_dbrs[0] = 0UL;
2524}
2525
2526static int
2527pfm_ctx_getsize(void *arg, size_t *sz)
2528{
2529	pfarg_context_t *req = (pfarg_context_t *)arg;
2530	pfm_buffer_fmt_t *fmt;
2531
2532	*sz = 0;
2533
2534	if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2535
2536	fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2537	if (fmt == NULL) {
2538		DPRINT(("cannot find buffer format\n"));
2539		return -EINVAL;
2540	}
2541	/* get just enough to copy in user parameters */
2542	*sz = fmt->fmt_arg_size;
2543	DPRINT(("arg_size=%lu\n", *sz));
2544
2545	return 0;
2546}
2547
2548
2549
2550/*
2551 * cannot attach if :
2552 * 	- kernel task
2553 * 	- task not owned by caller
2554 * 	- task incompatible with context mode
2555 */
2556static int
2557pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2558{
2559	/*
2560	 * no kernel task or task not owner by caller
2561	 */
2562	if (task->mm == NULL) {
2563		DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2564		return -EPERM;
2565	}
2566	if (pfm_bad_permissions(task)) {
2567		DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2568		return -EPERM;
2569	}
2570	/*
2571	 * cannot block in self-monitoring mode
2572	 */
2573	if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2574		DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2575		return -EINVAL;
2576	}
2577
2578	if (task->exit_state == EXIT_ZOMBIE) {
2579		DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2580		return -EBUSY;
2581	}
2582
2583	/*
2584	 * always ok for self
2585	 */
2586	if (task == current) return 0;
2587
2588	if (!task_is_stopped_or_traced(task)) {
2589		DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2590		return -EBUSY;
2591	}
2592	/*
2593	 * make sure the task is off any CPU
2594	 */
2595	wait_task_inactive(task, 0);
2596
2597	/* more to come... */
2598
2599	return 0;
2600}
2601
2602static int
2603pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2604{
2605	struct task_struct *p = current;
2606	int ret;
2607
2608	/* XXX: need to add more checks here */
2609	if (pid < 2) return -EPERM;
2610
2611	if (pid != task_pid_vnr(current)) {
2612
2613		read_lock(&tasklist_lock);
2614
2615		p = find_task_by_vpid(pid);
2616
2617		/* make sure task cannot go away while we operate on it */
2618		if (p) get_task_struct(p);
2619
2620		read_unlock(&tasklist_lock);
2621
2622		if (p == NULL) return -ESRCH;
2623	}
2624
2625	ret = pfm_task_incompatible(ctx, p);
2626	if (ret == 0) {
2627		*task = p;
2628	} else if (p != current) {
2629		pfm_put_task(p);
2630	}
2631	return ret;
2632}
2633
2634
2635
2636static int
2637pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2638{
2639	pfarg_context_t *req = (pfarg_context_t *)arg;
2640	struct file *filp;
2641	struct path path;
2642	int ctx_flags;
2643	int fd;
2644	int ret;
2645
2646	/* let's check the arguments first */
2647	ret = pfarg_is_sane(current, req);
2648	if (ret < 0)
2649		return ret;
2650
2651	ctx_flags = req->ctx_flags;
2652
2653	ret = -ENOMEM;
2654
2655	fd = get_unused_fd_flags(0);
2656	if (fd < 0)
2657		return fd;
2658
2659	ctx = pfm_context_alloc(ctx_flags);
2660	if (!ctx)
2661		goto error;
2662
2663	filp = pfm_alloc_file(ctx);
2664	if (IS_ERR(filp)) {
2665		ret = PTR_ERR(filp);
2666		goto error_file;
2667	}
2668
2669	req->ctx_fd = ctx->ctx_fd = fd;
2670
2671	/*
2672	 * does the user want to sample?
2673	 */
2674	if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2675		ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2676		if (ret)
2677			goto buffer_error;
2678	}
2679
2680	DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2681		ctx,
2682		ctx_flags,
2683		ctx->ctx_fl_system,
2684		ctx->ctx_fl_block,
2685		ctx->ctx_fl_excl_idle,
2686		ctx->ctx_fl_no_msg,
2687		ctx->ctx_fd));
2688
2689	/*
2690	 * initialize soft PMU state
2691	 */
2692	pfm_reset_pmu_state(ctx);
2693
2694	fd_install(fd, filp);
2695
2696	return 0;
2697
2698buffer_error:
2699	path = filp->f_path;
2700	put_filp(filp);
2701	path_put(&path);
2702
2703	if (ctx->ctx_buf_fmt) {
2704		pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2705	}
2706error_file:
2707	pfm_context_free(ctx);
2708
2709error:
2710	put_unused_fd(fd);
2711	return ret;
2712}
2713
2714static inline unsigned long
2715pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2716{
2717	unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2718	unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2719	extern unsigned long carta_random32 (unsigned long seed);
2720
2721	if (reg->flags & PFM_REGFL_RANDOM) {
2722		new_seed = carta_random32(old_seed);
2723		val -= (old_seed & mask);	/* counter values are negative numbers! */
2724		if ((mask >> 32) != 0)
2725			/* construct a full 64-bit random value: */
2726			new_seed |= carta_random32(old_seed >> 32) << 32;
2727		reg->seed = new_seed;
2728	}
2729	reg->lval = val;
2730	return val;
2731}
2732
2733static void
2734pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2735{
2736	unsigned long mask = ovfl_regs[0];
2737	unsigned long reset_others = 0UL;
2738	unsigned long val;
2739	int i;
2740
2741	/*
2742	 * now restore reset value on sampling overflowed counters
2743	 */
2744	mask >>= PMU_FIRST_COUNTER;
2745	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2746
2747		if ((mask & 0x1UL) == 0UL) continue;
2748
2749		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2750		reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2751
2752		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2753	}
2754
2755	/*
2756	 * Now take care of resetting the other registers
2757	 */
2758	for(i = 0; reset_others; i++, reset_others >>= 1) {
2759
2760		if ((reset_others & 0x1) == 0) continue;
2761
2762		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2763
2764		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2765			  is_long_reset ? "long" : "short", i, val));
2766	}
2767}
2768
2769static void
2770pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2771{
2772	unsigned long mask = ovfl_regs[0];
2773	unsigned long reset_others = 0UL;
2774	unsigned long val;
2775	int i;
2776
2777	DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2778
2779	if (ctx->ctx_state == PFM_CTX_MASKED) {
2780		pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2781		return;
2782	}
2783
2784	/*
2785	 * now restore reset value on sampling overflowed counters
2786	 */
2787	mask >>= PMU_FIRST_COUNTER;
2788	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2789
2790		if ((mask & 0x1UL) == 0UL) continue;
2791
2792		val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2793		reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2794
2795		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2796
2797		pfm_write_soft_counter(ctx, i, val);
2798	}
2799
2800	/*
2801	 * Now take care of resetting the other registers
2802	 */
2803	for(i = 0; reset_others; i++, reset_others >>= 1) {
2804
2805		if ((reset_others & 0x1) == 0) continue;
2806
2807		val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2808
2809		if (PMD_IS_COUNTING(i)) {
2810			pfm_write_soft_counter(ctx, i, val);
2811		} else {
2812			ia64_set_pmd(i, val);
2813		}
2814		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2815			  is_long_reset ? "long" : "short", i, val));
2816	}
2817	ia64_srlz_d();
2818}
2819
2820static int
2821pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2822{
2823	struct task_struct *task;
2824	pfarg_reg_t *req = (pfarg_reg_t *)arg;
2825	unsigned long value, pmc_pm;
2826	unsigned long smpl_pmds, reset_pmds, impl_pmds;
2827	unsigned int cnum, reg_flags, flags, pmc_type;
2828	int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2829	int is_monitor, is_counting, state;
2830	int ret = -EINVAL;
2831	pfm_reg_check_t	wr_func;
2832#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2833
2834	state     = ctx->ctx_state;
2835	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2836	is_system = ctx->ctx_fl_system;
2837	task      = ctx->ctx_task;
2838	impl_pmds = pmu_conf->impl_pmds[0];
2839
2840	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2841
2842	if (is_loaded) {
2843		/*
2844		 * In system wide and when the context is loaded, access can only happen
2845		 * when the caller is running on the CPU being monitored by the session.
2846		 * It does not have to be the owner (ctx_task) of the context per se.
2847		 */
2848		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2849			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2850			return -EBUSY;
2851		}
2852		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2853	}
2854	expert_mode = pfm_sysctl.expert_mode;
2855
2856	for (i = 0; i < count; i++, req++) {
2857
2858		cnum       = req->reg_num;
2859		reg_flags  = req->reg_flags;
2860		value      = req->reg_value;
2861		smpl_pmds  = req->reg_smpl_pmds[0];
2862		reset_pmds = req->reg_reset_pmds[0];
2863		flags      = 0;
2864
2865
2866		if (cnum >= PMU_MAX_PMCS) {
2867			DPRINT(("pmc%u is invalid\n", cnum));
2868			goto error;
2869		}
2870
2871		pmc_type   = pmu_conf->pmc_desc[cnum].type;
2872		pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2873		is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2874		is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2875
2876		/*
2877		 * we reject all non implemented PMC as well
2878		 * as attempts to modify PMC[0-3] which are used
2879		 * as status registers by the PMU
2880		 */
2881		if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2882			DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2883			goto error;
2884		}
2885		wr_func = pmu_conf->pmc_desc[cnum].write_check;
2886		/*
2887		 * If the PMC is a monitor, then if the value is not the default:
2888		 * 	- system-wide session: PMCx.pm=1 (privileged monitor)
2889		 * 	- per-task           : PMCx.pm=0 (user monitor)
2890		 */
2891		if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2892			DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2893				cnum,
2894				pmc_pm,
2895				is_system));
2896			goto error;
2897		}
2898
2899		if (is_counting) {
2900			/*
2901		 	 * enforce generation of overflow interrupt. Necessary on all
2902		 	 * CPUs.
2903		 	 */
2904			value |= 1 << PMU_PMC_OI;
2905
2906			if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2907				flags |= PFM_REGFL_OVFL_NOTIFY;
2908			}
2909
2910			if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2911
2912			/* verify validity of smpl_pmds */
2913			if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2914				DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2915				goto error;
2916			}
2917
2918			/* verify validity of reset_pmds */
2919			if ((reset_pmds & impl_pmds) != reset_pmds) {
2920				DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2921				goto error;
2922			}
2923		} else {
2924			if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2925				DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2926				goto error;
2927			}
2928			/* eventid on non-counting monitors are ignored */
2929		}
2930
2931		/*
2932		 * execute write checker, if any
2933		 */
2934		if (likely(expert_mode == 0 && wr_func)) {
2935			ret = (*wr_func)(task, ctx, cnum, &value, regs);
2936			if (ret) goto error;
2937			ret = -EINVAL;
2938		}
2939
2940		/*
2941		 * no error on this register
2942		 */
2943		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2944
2945		/*
2946		 * Now we commit the changes to the software state
2947		 */
2948
2949		/*
2950		 * update overflow information
2951		 */
2952		if (is_counting) {
2953			/*
2954		 	 * full flag update each time a register is programmed
2955		 	 */
2956			ctx->ctx_pmds[cnum].flags = flags;
2957
2958			ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2959			ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
2960			ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
2961
2962			/*
2963			 * Mark all PMDS to be accessed as used.
2964			 *
2965			 * We do not keep track of PMC because we have to
2966			 * systematically restore ALL of them.
2967			 *
2968			 * We do not update the used_monitors mask, because
2969			 * if we have not programmed them, then will be in
2970			 * a quiescent state, therefore we will not need to
2971			 * mask/restore then when context is MASKED.
2972			 */
2973			CTX_USED_PMD(ctx, reset_pmds);
2974			CTX_USED_PMD(ctx, smpl_pmds);
2975			/*
2976		 	 * make sure we do not try to reset on
2977		 	 * restart because we have established new values
2978		 	 */
2979			if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2980		}
2981		/*
2982		 * Needed in case the user does not initialize the equivalent
2983		 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2984		 * possible leak here.
2985		 */
2986		CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
2987
2988		/*
2989		 * keep track of the monitor PMC that we are using.
2990		 * we save the value of the pmc in ctx_pmcs[] and if
2991		 * the monitoring is not stopped for the context we also
2992		 * place it in the saved state area so that it will be
2993		 * picked up later by the context switch code.
2994		 *
2995		 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
2996		 *
2997		 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
2998		 * monitoring needs to be stopped.
2999		 */
3000		if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3001
3002		/*
3003		 * update context state
3004		 */
3005		ctx->ctx_pmcs[cnum] = value;
3006
3007		if (is_loaded) {
3008			/*
3009			 * write thread state
3010			 */
3011			if (is_system == 0) ctx->th_pmcs[cnum] = value;
3012
3013			/*
3014			 * write hardware register if we can
3015			 */
3016			if (can_access_pmu) {
3017				ia64_set_pmc(cnum, value);
3018			}
3019#ifdef CONFIG_SMP
3020			else {
3021				/*
3022				 * per-task SMP only here
3023				 *
3024			 	 * we are guaranteed that the task is not running on the other CPU,
3025			 	 * we indicate that this PMD will need to be reloaded if the task
3026			 	 * is rescheduled on the CPU it ran last on.
3027			 	 */
3028				ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3029			}
3030#endif
3031		}
3032
3033		DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3034			  cnum,
3035			  value,
3036			  is_loaded,
3037			  can_access_pmu,
3038			  flags,
3039			  ctx->ctx_all_pmcs[0],
3040			  ctx->ctx_used_pmds[0],
3041			  ctx->ctx_pmds[cnum].eventid,
3042			  smpl_pmds,
3043			  reset_pmds,
3044			  ctx->ctx_reload_pmcs[0],
3045			  ctx->ctx_used_monitors[0],
3046			  ctx->ctx_ovfl_regs[0]));
3047	}
3048
3049	/*
3050	 * make sure the changes are visible
3051	 */
3052	if (can_access_pmu) ia64_srlz_d();
3053
3054	return 0;
3055error:
3056	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3057	return ret;
3058}
3059
3060static int
3061pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3062{
3063	struct task_struct *task;
3064	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3065	unsigned long value, hw_value, ovfl_mask;
3066	unsigned int cnum;
3067	int i, can_access_pmu = 0, state;
3068	int is_counting, is_loaded, is_system, expert_mode;
3069	int ret = -EINVAL;
3070	pfm_reg_check_t wr_func;
3071
3072
3073	state     = ctx->ctx_state;
3074	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3075	is_system = ctx->ctx_fl_system;
3076	ovfl_mask = pmu_conf->ovfl_val;
3077	task      = ctx->ctx_task;
3078
3079	if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3080
3081	/*
3082	 * on both UP and SMP, we can only write to the PMC when the task is
3083	 * the owner of the local PMU.
3084	 */
3085	if (likely(is_loaded)) {
3086		/*
3087		 * In system wide and when the context is loaded, access can only happen
3088		 * when the caller is running on the CPU being monitored by the session.
3089		 * It does not have to be the owner (ctx_task) of the context per se.
3090		 */
3091		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3092			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3093			return -EBUSY;
3094		}
3095		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3096	}
3097	expert_mode = pfm_sysctl.expert_mode;
3098
3099	for (i = 0; i < count; i++, req++) {
3100
3101		cnum  = req->reg_num;
3102		value = req->reg_value;
3103
3104		if (!PMD_IS_IMPL(cnum)) {
3105			DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3106			goto abort_mission;
3107		}
3108		is_counting = PMD_IS_COUNTING(cnum);
3109		wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3110
3111		/*
3112		 * execute write checker, if any
3113		 */
3114		if (unlikely(expert_mode == 0 && wr_func)) {
3115			unsigned long v = value;
3116
3117			ret = (*wr_func)(task, ctx, cnum, &v, regs);
3118			if (ret) goto abort_mission;
3119
3120			value = v;
3121			ret   = -EINVAL;
3122		}
3123
3124		/*
3125		 * no error on this register
3126		 */
3127		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3128
3129		/*
3130		 * now commit changes to software state
3131		 */
3132		hw_value = value;
3133
3134		/*
3135		 * update virtualized (64bits) counter
3136		 */
3137		if (is_counting) {
3138			/*
3139			 * write context state
3140			 */
3141			ctx->ctx_pmds[cnum].lval = value;
3142
3143			/*
3144			 * when context is load we use the split value
3145			 */
3146			if (is_loaded) {
3147				hw_value = value &  ovfl_mask;
3148				value    = value & ~ovfl_mask;
3149			}
3150		}
3151		/*
3152		 * update reset values (not just for counters)
3153		 */
3154		ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3155		ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3156
3157		/*
3158		 * update randomization parameters (not just for counters)
3159		 */
3160		ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3161		ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3162
3163		/*
3164		 * update context value
3165		 */
3166		ctx->ctx_pmds[cnum].val  = value;
3167
3168		/*
3169		 * Keep track of what we use
3170		 *
3171		 * We do not keep track of PMC because we have to
3172		 * systematically restore ALL of them.
3173		 */
3174		CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3175
3176		/*
3177		 * mark this PMD register used as well
3178		 */
3179		CTX_USED_PMD(ctx, RDEP(cnum));
3180
3181		/*
3182		 * make sure we do not try to reset on
3183		 * restart because we have established new values
3184		 */
3185		if (is_counting && state == PFM_CTX_MASKED) {
3186			ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3187		}
3188
3189		if (is_loaded) {
3190			/*
3191		 	 * write thread state
3192		 	 */
3193			if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3194
3195			/*
3196			 * write hardware register if we can
3197			 */
3198			if (can_access_pmu) {
3199				ia64_set_pmd(cnum, hw_value);
3200			} else {
3201#ifdef CONFIG_SMP
3202				/*
3203			 	 * we are guaranteed that the task is not running on the other CPU,
3204			 	 * we indicate that this PMD will need to be reloaded if the task
3205			 	 * is rescheduled on the CPU it ran last on.
3206			 	 */
3207				ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3208#endif
3209			}
3210		}
3211
3212		DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3213			  "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3214			cnum,
3215			value,
3216			is_loaded,
3217			can_access_pmu,
3218			hw_value,
3219			ctx->ctx_pmds[cnum].val,
3220			ctx->ctx_pmds[cnum].short_reset,
3221			ctx->ctx_pmds[cnum].long_reset,
3222			PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3223			ctx->ctx_pmds[cnum].seed,
3224			ctx->ctx_pmds[cnum].mask,
3225			ctx->ctx_used_pmds[0],
3226			ctx->ctx_pmds[cnum].reset_pmds[0],
3227			ctx->ctx_reload_pmds[0],
3228			ctx->ctx_all_pmds[0],
3229			ctx->ctx_ovfl_regs[0]));
3230	}
3231
3232	/*
3233	 * make changes visible
3234	 */
3235	if (can_access_pmu) ia64_srlz_d();
3236
3237	return 0;
3238
3239abort_mission:
3240	/*
3241	 * for now, we have only one possibility for error
3242	 */
3243	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3244	return ret;
3245}
3246
3247/*
3248 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3249 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3250 * interrupt is delivered during the call, it will be kept pending until we leave, making
3251 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3252 * guaranteed to return consistent data to the user, it may simply be old. It is not
3253 * trivial to treat the overflow while inside the call because you may end up in
3254 * some module sampling buffer code causing deadlocks.
3255 */
3256static int
3257pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3258{
3259	struct task_struct *task;
3260	unsigned long val = 0UL, lval, ovfl_mask, sval;
3261	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3262	unsigned int cnum, reg_flags = 0;
3263	int i, can_access_pmu = 0, state;
3264	int is_loaded, is_system, is_counting, expert_mode;
3265	int ret = -EINVAL;
3266	pfm_reg_check_t rd_func;
3267
3268	/*
3269	 * access is possible when loaded only for
3270	 * self-monitoring tasks or in UP mode
3271	 */
3272
3273	state     = ctx->ctx_state;
3274	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3275	is_system = ctx->ctx_fl_system;
3276	ovfl_mask = pmu_conf->ovfl_val;
3277	task      = ctx->ctx_task;
3278
3279	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3280
3281	if (likely(is_loaded)) {
3282		/*
3283		 * In system wide and when the context is loaded, access can only happen
3284		 * when the caller is running on the CPU being monitored by the session.
3285		 * It does not have to be the owner (ctx_task) of the context per se.
3286		 */
3287		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3288			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3289			return -EBUSY;
3290		}
3291		/*
3292		 * this can be true when not self-monitoring only in UP
3293		 */
3294		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3295
3296		if (can_access_pmu) ia64_srlz_d();
3297	}
3298	expert_mode = pfm_sysctl.expert_mode;
3299
3300	DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3301		is_loaded,
3302		can_access_pmu,
3303		state));
3304
3305	/*
3306	 * on both UP and SMP, we can only read the PMD from the hardware register when
3307	 * the task is the owner of the local PMU.
3308	 */
3309
3310	for (i = 0; i < count; i++, req++) {
3311
3312		cnum        = req->reg_num;
3313		reg_flags   = req->reg_flags;
3314
3315		if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3316		/*
3317		 * we can only read the register that we use. That includes
3318		 * the one we explicitly initialize AND the one we want included
3319		 * in the sampling buffer (smpl_regs).
3320		 *
3321		 * Having this restriction allows optimization in the ctxsw routine
3322		 * without compromising security (leaks)
3323		 */
3324		if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3325
3326		sval        = ctx->ctx_pmds[cnum].val;
3327		lval        = ctx->ctx_pmds[cnum].lval;
3328		is_counting = PMD_IS_COUNTING(cnum);
3329
3330		/*
3331		 * If the task is not the current one, then we check if the
3332		 * PMU state is still in the local live register due to lazy ctxsw.
3333		 * If true, then we read directly from the registers.
3334		 */
3335		if (can_access_pmu){
3336			val = ia64_get_pmd(cnum);
3337		} else {
3338			/*
3339			 * context has been saved
3340			 * if context is zombie, then task does not exist anymore.
3341			 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3342			 */
3343			val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3344		}
3345		rd_func = pmu_conf->pmd_desc[cnum].read_check;
3346
3347		if (is_counting) {
3348			/*
3349			 * XXX: need to check for overflow when loaded
3350			 */
3351			val &= ovfl_mask;
3352			val += sval;
3353		}
3354
3355		/*
3356		 * execute read checker, if any
3357		 */
3358		if (unlikely(expert_mode == 0 && rd_func)) {
3359			unsigned long v = val;
3360			ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3361			if (ret) goto error;
3362			val = v;
3363			ret = -EINVAL;
3364		}
3365
3366		PFM_REG_RETFLAG_SET(reg_flags, 0);
3367
3368		DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3369
3370		/*
3371		 * update register return value, abort all if problem during copy.
3372		 * we only modify the reg_flags field. no check mode is fine because
3373		 * access has been verified upfront in sys_perfmonctl().
3374		 */
3375		req->reg_value            = val;
3376		req->reg_flags            = reg_flags;
3377		req->reg_last_reset_val   = lval;
3378	}
3379
3380	return 0;
3381
3382error:
3383	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3384	return ret;
3385}
3386
3387int
3388pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3389{
3390	pfm_context_t *ctx;
3391
3392	if (req == NULL) return -EINVAL;
3393
3394 	ctx = GET_PMU_CTX();
3395
3396	if (ctx == NULL) return -EINVAL;
3397
3398	/*
3399	 * for now limit to current task, which is enough when calling
3400	 * from overflow handler
3401	 */
3402	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3403
3404	return pfm_write_pmcs(ctx, req, nreq, regs);
3405}
3406EXPORT_SYMBOL(pfm_mod_write_pmcs);
3407
3408int
3409pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3410{
3411	pfm_context_t *ctx;
3412
3413	if (req == NULL) return -EINVAL;
3414
3415 	ctx = GET_PMU_CTX();
3416
3417	if (ctx == NULL) return -EINVAL;
3418
3419	/*
3420	 * for now limit to current task, which is enough when calling
3421	 * from overflow handler
3422	 */
3423	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3424
3425	return pfm_read_pmds(ctx, req, nreq, regs);
3426}
3427EXPORT_SYMBOL(pfm_mod_read_pmds);
3428
3429/*
3430 * Only call this function when a process it trying to
3431 * write the debug registers (reading is always allowed)
3432 */
3433int
3434pfm_use_debug_registers(struct task_struct *task)
3435{
3436	pfm_context_t *ctx = task->thread.pfm_context;
3437	unsigned long flags;
3438	int ret = 0;
3439
3440	if (pmu_conf->use_rr_dbregs == 0) return 0;
3441
3442	DPRINT(("called for [%d]\n", task_pid_nr(task)));
3443
3444	/*
3445	 * do it only once
3446	 */
3447	if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3448
3449	/*
3450	 * Even on SMP, we do not need to use an atomic here because
3451	 * the only way in is via ptrace() and this is possible only when the
3452	 * process is stopped. Even in the case where the ctxsw out is not totally
3453	 * completed by the time we come here, there is no way the 'stopped' process
3454	 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3455	 * So this is always safe.
3456	 */
3457	if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3458
3459	LOCK_PFS(flags);
3460
3461	/*
3462	 * We cannot allow setting breakpoints when system wide monitoring
3463	 * sessions are using the debug registers.
3464	 */
3465	if (pfm_sessions.pfs_sys_use_dbregs> 0)
3466		ret = -1;
3467	else
3468		pfm_sessions.pfs_ptrace_use_dbregs++;
3469
3470	DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3471		  pfm_sessions.pfs_ptrace_use_dbregs,
3472		  pfm_sessions.pfs_sys_use_dbregs,
3473		  task_pid_nr(task), ret));
3474
3475	UNLOCK_PFS(flags);
3476
3477	return ret;
3478}
3479
3480/*
3481 * This function is called for every task that exits with the
3482 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3483 * able to use the debug registers for debugging purposes via
3484 * ptrace(). Therefore we know it was not using them for
3485 * performance monitoring, so we only decrement the number
3486 * of "ptraced" debug register users to keep the count up to date
3487 */
3488int
3489pfm_release_debug_registers(struct task_struct *task)
3490{
3491	unsigned long flags;
3492	int ret;
3493
3494	if (pmu_conf->use_rr_dbregs == 0) return 0;
3495
3496	LOCK_PFS(flags);
3497	if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3498		printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3499		ret = -1;
3500	}  else {
3501		pfm_sessions.pfs_ptrace_use_dbregs--;
3502		ret = 0;
3503	}
3504	UNLOCK_PFS(flags);
3505
3506	return ret;
3507}
3508
3509static int
3510pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3511{
3512	struct task_struct *task;
3513	pfm_buffer_fmt_t *fmt;
3514	pfm_ovfl_ctrl_t rst_ctrl;
3515	int state, is_system;
3516	int ret = 0;
3517
3518	state     = ctx->ctx_state;
3519	fmt       = ctx->ctx_buf_fmt;
3520	is_system = ctx->ctx_fl_system;
3521	task      = PFM_CTX_TASK(ctx);
3522
3523	switch(state) {
3524		case PFM_CTX_MASKED:
3525			break;
3526		case PFM_CTX_LOADED:
3527			if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3528			/* fall through */
3529		case PFM_CTX_UNLOADED:
3530		case PFM_CTX_ZOMBIE:
3531			DPRINT(("invalid state=%d\n", state));
3532			return -EBUSY;
3533		default:
3534			DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3535			return -EINVAL;
3536	}
3537
3538	/*
3539 	 * In system wide and when the context is loaded, access can only happen
3540 	 * when the caller is running on the CPU being monitored by the session.
3541 	 * It does not have to be the owner (ctx_task) of the context per se.
3542 	 */
3543	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3544		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3545		return -EBUSY;
3546	}
3547
3548	/* sanity check */
3549	if (unlikely(task == NULL)) {
3550		printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3551		return -EINVAL;
3552	}
3553
3554	if (task == current || is_system) {
3555
3556		fmt = ctx->ctx_buf_fmt;
3557
3558		DPRINT(("restarting self %d ovfl=0x%lx\n",
3559			task_pid_nr(task),
3560			ctx->ctx_ovfl_regs[0]));
3561
3562		if (CTX_HAS_SMPL(ctx)) {
3563
3564			prefetch(ctx->ctx_smpl_hdr);
3565
3566			rst_ctrl.bits.mask_monitoring = 0;
3567			rst_ctrl.bits.reset_ovfl_pmds = 0;
3568
3569			if (state == PFM_CTX_LOADED)
3570				ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3571			else
3572				ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3573		} else {
3574			rst_ctrl.bits.mask_monitoring = 0;
3575			rst_ctrl.bits.reset_ovfl_pmds = 1;
3576		}
3577
3578		if (ret == 0) {
3579			if (rst_ctrl.bits.reset_ovfl_pmds)
3580				pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3581
3582			if (rst_ctrl.bits.mask_monitoring == 0) {
3583				DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3584
3585				if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3586			} else {
3587				DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3588
3589				// cannot use pfm_stop_monitoring(task, regs);
3590			}
3591		}
3592		/*
3593		 * clear overflowed PMD mask to remove any stale information
3594		 */
3595		ctx->ctx_ovfl_regs[0] = 0UL;
3596
3597		/*
3598		 * back to LOADED state
3599		 */
3600		ctx->ctx_state = PFM_CTX_LOADED;
3601
3602		/*
3603		 * XXX: not really useful for self monitoring
3604		 */
3605		ctx->ctx_fl_can_restart = 0;
3606
3607		return 0;
3608	}
3609
3610	/*
3611	 * restart another task
3612	 */
3613
3614	/*
3615	 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3616	 * one is seen by the task.
3617	 */
3618	if (state == PFM_CTX_MASKED) {
3619		if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3620		/*
3621		 * will prevent subsequent restart before this one is
3622		 * seen by other task
3623		 */
3624		ctx->ctx_fl_can_restart = 0;
3625	}
3626
3627	/*
3628	 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3629	 * the task is blocked or on its way to block. That's the normal
3630	 * restart path. If the monitoring is not masked, then the task
3631	 * can be actively monitoring and we cannot directly intervene.
3632	 * Therefore we use the trap mechanism to catch the task and
3633	 * force it to reset the buffer/reset PMDs.
3634	 *
3635	 * if non-blocking, then we ensure that the task will go into
3636	 * pfm_handle_work() before returning to user mode.
3637	 *
3638	 * We cannot explicitly reset another task, it MUST always
3639	 * be done by the task itself. This works for system wide because
3640	 * the tool that is controlling the session is logically doing
3641	 * "self-monitoring".
3642	 */
3643	if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3644		DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3645		complete(&ctx->ctx_restart_done);
3646	} else {
3647		DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3648
3649		ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3650
3651		PFM_SET_WORK_PENDING(task, 1);
3652
3653		set_notify_resume(task);
3654
3655		/*
3656		 * XXX: send reschedule if task runs on another CPU
3657		 */
3658	}
3659	return 0;
3660}
3661
3662static int
3663pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3664{
3665	unsigned int m = *(unsigned int *)arg;
3666
3667	pfm_sysctl.debug = m == 0 ? 0 : 1;
3668
3669	printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3670
3671	if (m == 0) {
3672		memset(pfm_stats, 0, sizeof(pfm_stats));
3673		for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3674	}
3675	return 0;
3676}
3677
3678/*
3679 * arg can be NULL and count can be zero for this function
3680 */
3681static int
3682pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3683{
3684	struct thread_struct *thread = NULL;
3685	struct task_struct *task;
3686	pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3687	unsigned long flags;
3688	dbreg_t dbreg;
3689	unsigned int rnum;
3690	int first_time;
3691	int ret = 0, state;
3692	int i, can_access_pmu = 0;
3693	int is_system, is_loaded;
3694
3695	if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3696
3697	state     = ctx->ctx_state;
3698	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3699	is_system = ctx->ctx_fl_system;
3700	task      = ctx->ctx_task;
3701
3702	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3703
3704	/*
3705	 * on both UP and SMP, we can only write to the PMC when the task is
3706	 * the owner of the local PMU.
3707	 */
3708	if (is_loaded) {
3709		thread = &task->thread;
3710		/*
3711		 * In system wide and when the context is loaded, access can only happen
3712		 * when the caller is running on the CPU being monitored by the session.
3713		 * It does not have to be the owner (ctx_task) of the context per se.
3714		 */
3715		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3716			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3717			return -EBUSY;
3718		}
3719		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3720	}
3721
3722	/*
3723	 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3724	 * ensuring that no real breakpoint can be installed via this call.
3725	 *
3726	 * IMPORTANT: regs can be NULL in this function
3727	 */
3728
3729	first_time = ctx->ctx_fl_using_dbreg == 0;
3730
3731	/*
3732	 * don't bother if we are loaded and task is being debugged
3733	 */
3734	if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3735		DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3736		return -EBUSY;
3737	}
3738
3739	/*
3740	 * check for debug registers in system wide mode
3741	 *
3742	 * If though a check is done in pfm_context_load(),
3743	 * we must repeat it here, in case the registers are
3744	 * written after the context is loaded
3745	 */
3746	if (is_loaded) {
3747		LOCK_PFS(flags);
3748
3749		if (first_time && is_system) {
3750			if (pfm_sessions.pfs_ptrace_use_dbregs)
3751				ret = -EBUSY;
3752			else
3753				pfm_sessions.pfs_sys_use_dbregs++;
3754		}
3755		UNLOCK_PFS(flags);
3756	}
3757
3758	if (ret != 0) return ret;
3759
3760	/*
3761	 * mark ourself as user of the debug registers for
3762	 * perfmon purposes.
3763	 */
3764	ctx->ctx_fl_using_dbreg = 1;
3765
3766	/*
3767 	 * clear hardware registers to make sure we don't
3768 	 * pick up stale state.
3769	 *
3770	 * for a system wide session, we do not use
3771	 * thread.dbr, thread.ibr because this process
3772	 * never leaves the current CPU and the state
3773	 * is shared by all processes running on it
3774 	 */
3775	if (first_time && can_access_pmu) {
3776		DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3777		for (i=0; i < pmu_conf->num_ibrs; i++) {
3778			ia64_set_ibr(i, 0UL);
3779			ia64_dv_serialize_instruction();
3780		}
3781		ia64_srlz_i();
3782		for (i=0; i < pmu_conf->num_dbrs; i++) {
3783			ia64_set_dbr(i, 0UL);
3784			ia64_dv_serialize_data();
3785		}
3786		ia64_srlz_d();
3787	}
3788
3789	/*
3790	 * Now install the values into the registers
3791	 */
3792	for (i = 0; i < count; i++, req++) {
3793
3794		rnum      = req->dbreg_num;
3795		dbreg.val = req->dbreg_value;
3796
3797		ret = -EINVAL;
3798
3799		if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3800			DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3801				  rnum, dbreg.val, mode, i, count));
3802
3803			goto abort_mission;
3804		}
3805
3806		/*
3807		 * make sure we do not install enabled breakpoint
3808		 */
3809		if (rnum & 0x1) {
3810			if (mode == PFM_CODE_RR)
3811				dbreg.ibr.ibr_x = 0;
3812			else
3813				dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3814		}
3815
3816		PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3817
3818		/*
3819		 * Debug registers, just like PMC, can only be modified
3820		 * by a kernel call. Moreover, perfmon() access to those
3821		 * registers are centralized in this routine. The hardware
3822		 * does not modify the value of these registers, therefore,
3823		 * if we save them as they are written, we can avoid having
3824		 * to save them on context switch out. This is made possible
3825		 * by the fact that when perfmon uses debug registers, ptrace()
3826		 * won't be able to modify them concurrently.
3827		 */
3828		if (mode == PFM_CODE_RR) {
3829			CTX_USED_IBR(ctx, rnum);
3830
3831			if (can_access_pmu) {
3832				ia64_set_ibr(rnum, dbreg.val);
3833				ia64_dv_serialize_instruction();
3834			}
3835
3836			ctx->ctx_ibrs[rnum] = dbreg.val;
3837
3838			DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3839				rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3840		} else {
3841			CTX_USED_DBR(ctx, rnum);
3842
3843			if (can_access_pmu) {
3844				ia64_set_dbr(rnum, dbreg.val);
3845				ia64_dv_serialize_data();
3846			}
3847			ctx->ctx_dbrs[rnum] = dbreg.val;
3848
3849			DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3850				rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3851		}
3852	}
3853
3854	return 0;
3855
3856abort_mission:
3857	/*
3858	 * in case it was our first attempt, we undo the global modifications
3859	 */
3860	if (first_time) {
3861		LOCK_PFS(flags);
3862		if (ctx->ctx_fl_system) {
3863			pfm_sessions.pfs_sys_use_dbregs--;
3864		}
3865		UNLOCK_PFS(flags);
3866		ctx->ctx_fl_using_dbreg = 0;
3867	}
3868	/*
3869	 * install error return flag
3870	 */
3871	PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3872
3873	return ret;
3874}
3875
3876static int
3877pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3878{
3879	return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3880}
3881
3882static int
3883pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3884{
3885	return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3886}
3887
3888int
3889pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3890{
3891	pfm_context_t *ctx;
3892
3893	if (req == NULL) return -EINVAL;
3894
3895 	ctx = GET_PMU_CTX();
3896
3897	if (ctx == NULL) return -EINVAL;
3898
3899	/*
3900	 * for now limit to current task, which is enough when calling
3901	 * from overflow handler
3902	 */
3903	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3904
3905	return pfm_write_ibrs(ctx, req, nreq, regs);
3906}
3907EXPORT_SYMBOL(pfm_mod_write_ibrs);
3908
3909int
3910pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3911{
3912	pfm_context_t *ctx;
3913
3914	if (req == NULL) return -EINVAL;
3915
3916 	ctx = GET_PMU_CTX();
3917
3918	if (ctx == NULL) return -EINVAL;
3919
3920	/*
3921	 * for now limit to current task, which is enough when calling
3922	 * from overflow handler
3923	 */
3924	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3925
3926	return pfm_write_dbrs(ctx, req, nreq, regs);
3927}
3928EXPORT_SYMBOL(pfm_mod_write_dbrs);
3929
3930
3931static int
3932pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3933{
3934	pfarg_features_t *req = (pfarg_features_t *)arg;
3935
3936	req->ft_version = PFM_VERSION;
3937	return 0;
3938}
3939
3940static int
3941pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3942{
3943	struct pt_regs *tregs;
3944	struct task_struct *task = PFM_CTX_TASK(ctx);
3945	int state, is_system;
3946
3947	state     = ctx->ctx_state;
3948	is_system = ctx->ctx_fl_system;
3949
3950	/*
3951	 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3952	 */
3953	if (state == PFM_CTX_UNLOADED) return -EINVAL;
3954
3955	/*
3956 	 * In system wide and when the context is loaded, access can only happen
3957 	 * when the caller is running on the CPU being monitored by the session.
3958 	 * It does not have to be the owner (ctx_task) of the context per se.
3959 	 */
3960	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3961		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3962		return -EBUSY;
3963	}
3964	DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3965		task_pid_nr(PFM_CTX_TASK(ctx)),
3966		state,
3967		is_system));
3968	/*
3969	 * in system mode, we need to update the PMU directly
3970	 * and the user level state of the caller, which may not
3971	 * necessarily be the creator of the context.
3972	 */
3973	if (is_system) {
3974		/*
3975		 * Update local PMU first
3976		 *
3977		 * disable dcr pp
3978		 */
3979		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3980		ia64_srlz_i();
3981
3982		/*
3983		 * update local cpuinfo
3984		 */
3985		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
3986
3987		/*
3988		 * stop monitoring, does srlz.i
3989		 */
3990		pfm_clear_psr_pp();
3991
3992		/*
3993		 * stop monitoring in the caller
3994		 */
3995		ia64_psr(regs)->pp = 0;
3996
3997		return 0;
3998	}
3999	/*
4000	 * per-task mode
4001	 */
4002
4003	if (task == current) {
4004		/* stop monitoring  at kernel level */
4005		pfm_clear_psr_up();
4006
4007		/*
4008	 	 * stop monitoring at the user level
4009	 	 */
4010		ia64_psr(regs)->up = 0;
4011	} else {
4012		tregs = task_pt_regs(task);
4013
4014		/*
4015	 	 * stop monitoring at the user level
4016	 	 */
4017		ia64_psr(tregs)->up = 0;
4018
4019		/*
4020		 * monitoring disabled in kernel at next reschedule
4021		 */
4022		ctx->ctx_saved_psr_up = 0;
4023		DPRINT(("task=[%d]\n", task_pid_nr(task)));
4024	}
4025	return 0;
4026}
4027
4028
4029static int
4030pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4031{
4032	struct pt_regs *tregs;
4033	int state, is_system;
4034
4035	state     = ctx->ctx_state;
4036	is_system = ctx->ctx_fl_system;
4037
4038	if (state != PFM_CTX_LOADED) return -EINVAL;
4039
4040	/*
4041 	 * In system wide and when the context is loaded, access can only happen
4042 	 * when the caller is running on the CPU being monitored by the session.
4043 	 * It does not have to be the owner (ctx_task) of the context per se.
4044 	 */
4045	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4046		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4047		return -EBUSY;
4048	}
4049
4050	/*
4051	 * in system mode, we need to update the PMU directly
4052	 * and the user level state of the caller, which may not
4053	 * necessarily be the creator of the context.
4054	 */
4055	if (is_system) {
4056
4057		/*
4058		 * set user level psr.pp for the caller
4059		 */
4060		ia64_psr(regs)->pp = 1;
4061
4062		/*
4063		 * now update the local PMU and cpuinfo
4064		 */
4065		PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4066
4067		/*
4068		 * start monitoring at kernel level
4069		 */
4070		pfm_set_psr_pp();
4071
4072		/* enable dcr pp */
4073		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4074		ia64_srlz_i();
4075
4076		return 0;
4077	}
4078
4079	/*
4080	 * per-process mode
4081	 */
4082
4083	if (ctx->ctx_task == current) {
4084
4085		/* start monitoring at kernel level */
4086		pfm_set_psr_up();
4087
4088		/*
4089		 * activate monitoring at user level
4090		 */
4091		ia64_psr(regs)->up = 1;
4092
4093	} else {
4094		tregs = task_pt_regs(ctx->ctx_task);
4095
4096		/*
4097		 * start monitoring at the kernel level the next
4098		 * time the task is scheduled
4099		 */
4100		ctx->ctx_saved_psr_up = IA64_PSR_UP;
4101
4102		/*
4103		 * activate monitoring at user level
4104		 */
4105		ia64_psr(tregs)->up = 1;
4106	}
4107	return 0;
4108}
4109
4110static int
4111pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4112{
4113	pfarg_reg_t *req = (pfarg_reg_t *)arg;
4114	unsigned int cnum;
4115	int i;
4116	int ret = -EINVAL;
4117
4118	for (i = 0; i < count; i++, req++) {
4119
4120		cnum = req->reg_num;
4121
4122		if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4123
4124		req->reg_value = PMC_DFL_VAL(cnum);
4125
4126		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4127
4128		DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4129	}
4130	return 0;
4131
4132abort_mission:
4133	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4134	return ret;
4135}
4136
4137static int
4138pfm_check_task_exist(pfm_context_t *ctx)
4139{
4140	struct task_struct *g, *t;
4141	int ret = -ESRCH;
4142
4143	read_lock(&tasklist_lock);
4144
4145	do_each_thread (g, t) {
4146		if (t->thread.pfm_context == ctx) {
4147			ret = 0;
4148			goto out;
4149		}
4150	} while_each_thread (g, t);
4151out:
4152	read_unlock(&tasklist_lock);
4153
4154	DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4155
4156	return ret;
4157}
4158
4159static int
4160pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4161{
4162	struct task_struct *task;
4163	struct thread_struct *thread;
4164	struct pfm_context_t *old;
4165	unsigned long flags;
4166#ifndef CONFIG_SMP
4167	struct task_struct *owner_task = NULL;
4168#endif
4169	pfarg_load_t *req = (pfarg_load_t *)arg;
4170	unsigned long *pmcs_source, *pmds_source;
4171	int the_cpu;
4172	int ret = 0;
4173	int state, is_system, set_dbregs = 0;
4174
4175	state     = ctx->ctx_state;
4176	is_system = ctx->ctx_fl_system;
4177	/*
4178	 * can only load from unloaded or terminated state
4179	 */
4180	if (state != PFM_CTX_UNLOADED) {
4181		DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4182			req->load_pid,
4183			ctx->ctx_state));
4184		return -EBUSY;
4185	}
4186
4187	DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4188
4189	if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4190		DPRINT(("cannot use blocking mode on self\n"));
4191		return -EINVAL;
4192	}
4193
4194	ret = pfm_get_task(ctx, req->load_pid, &task);
4195	if (ret) {
4196		DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4197		return ret;
4198	}
4199
4200	ret = -EINVAL;
4201
4202	/*
4203	 * system wide is self monitoring only
4204	 */
4205	if (is_system && task != current) {
4206		DPRINT(("system wide is self monitoring only load_pid=%d\n",
4207			req->load_pid));
4208		goto error;
4209	}
4210
4211	thread = &task->thread;
4212
4213	ret = 0;
4214	/*
4215	 * cannot load a context which is using range restrictions,
4216	 * into a task that is being debugged.
4217	 */
4218	if (ctx->ctx_fl_using_dbreg) {
4219		if (thread->flags & IA64_THREAD_DBG_VALID) {
4220			ret = -EBUSY;
4221			DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4222			goto error;
4223		}
4224		LOCK_PFS(flags);
4225
4226		if (is_system) {
4227			if (pfm_sessions.pfs_ptrace_use_dbregs) {
4228				DPRINT(("cannot load [%d] dbregs in use\n",
4229							task_pid_nr(task)));
4230				ret = -EBUSY;
4231			} else {
4232				pfm_sessions.pfs_sys_use_dbregs++;
4233				DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4234				set_dbregs = 1;
4235			}
4236		}
4237
4238		UNLOCK_PFS(flags);
4239
4240		if (ret) goto error;
4241	}
4242
4243	/*
4244	 * SMP system-wide monitoring implies self-monitoring.
4245	 *
4246	 * The programming model expects the task to
4247	 * be pinned on a CPU throughout the session.
4248	 * Here we take note of the current CPU at the
4249	 * time the context is loaded. No call from
4250	 * another CPU will be allowed.
4251	 *
4252	 * The pinning via shed_setaffinity()
4253	 * must be done by the calling task prior
4254	 * to this call.
4255	 *
4256	 * systemwide: keep track of CPU this session is supposed to run on
4257	 */
4258	the_cpu = ctx->ctx_cpu = smp_processor_id();
4259
4260	ret = -EBUSY;
4261	/*
4262	 * now reserve the session
4263	 */
4264	ret = pfm_reserve_session(current, is_system, the_cpu);
4265	if (ret) goto error;
4266
4267	/*
4268	 * task is necessarily stopped at this point.
4269	 *
4270	 * If the previous context was zombie, then it got removed in
4271	 * pfm_save_regs(). Therefore we should not see it here.
4272	 * If we see a context, then this is an active context
4273	 *
4274	 * XXX: needs to be atomic
4275	 */
4276	DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4277		thread->pfm_context, ctx));
4278
4279	ret = -EBUSY;
4280	old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4281	if (old != NULL) {
4282		DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4283		goto error_unres;
4284	}
4285
4286	pfm_reset_msgq(ctx);
4287
4288	ctx->ctx_state = PFM_CTX_LOADED;
4289
4290	/*
4291	 * link context to task
4292	 */
4293	ctx->ctx_task = task;
4294
4295	if (is_system) {
4296		/*
4297		 * we load as stopped
4298		 */
4299		PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4300		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4301
4302		if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4303	} else {
4304		thread->flags |= IA64_THREAD_PM_VALID;
4305	}
4306
4307	/*
4308	 * propagate into thread-state
4309	 */
4310	pfm_copy_pmds(task, ctx);
4311	pfm_copy_pmcs(task, ctx);
4312
4313	pmcs_source = ctx->th_pmcs;
4314	pmds_source = ctx->th_pmds;
4315
4316	/*
4317	 * always the case for system-wide
4318	 */
4319	if (task == current) {
4320
4321		if (is_system == 0) {
4322
4323			/* allow user level control */
4324			ia64_psr(regs)->sp = 0;
4325			DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4326
4327			SET_LAST_CPU(ctx, smp_processor_id());
4328			INC_ACTIVATION();
4329			SET_ACTIVATION(ctx);
4330#ifndef CONFIG_SMP
4331			/*
4332			 * push the other task out, if any
4333			 */
4334			owner_task = GET_PMU_OWNER();
4335			if (owner_task) pfm_lazy_save_regs(owner_task);
4336#endif
4337		}
4338		/*
4339		 * load all PMD from ctx to PMU (as opposed to thread state)
4340		 * restore all PMC from ctx to PMU
4341		 */
4342		pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4343		pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4344
4345		ctx->ctx_reload_pmcs[0] = 0UL;
4346		ctx->ctx_reload_pmds[0] = 0UL;
4347
4348		/*
4349		 * guaranteed safe by earlier check against DBG_VALID
4350		 */
4351		if (ctx->ctx_fl_using_dbreg) {
4352			pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4353			pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4354		}
4355		/*
4356		 * set new ownership
4357		 */
4358		SET_PMU_OWNER(task, ctx);
4359
4360		DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4361	} else {
4362		/*
4363		 * when not current, task MUST be stopped, so this is safe
4364		 */
4365		regs = task_pt_regs(task);
4366
4367		/* force a full reload */
4368		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4369		SET_LAST_CPU(ctx, -1);
4370
4371		/* initial saved psr (stopped) */
4372		ctx->ctx_saved_psr_up = 0UL;
4373		ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4374	}
4375
4376	ret = 0;
4377
4378error_unres:
4379	if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4380error:
4381	/*
4382	 * we must undo the dbregs setting (for system-wide)
4383	 */
4384	if (ret && set_dbregs) {
4385		LOCK_PFS(flags);
4386		pfm_sessions.pfs_sys_use_dbregs--;
4387		UNLOCK_PFS(flags);
4388	}
4389	/*
4390	 * release task, there is now a link with the context
4391	 */
4392	if (is_system == 0 && task != current) {
4393		pfm_put_task(task);
4394
4395		if (ret == 0) {
4396			ret = pfm_check_task_exist(ctx);
4397			if (ret) {
4398				ctx->ctx_state = PFM_CTX_UNLOADED;
4399				ctx->ctx_task  = NULL;
4400			}
4401		}
4402	}
4403	return ret;
4404}
4405
4406/*
4407 * in this function, we do not need to increase the use count
4408 * for the task via get_task_struct(), because we hold the
4409 * context lock. If the task were to disappear while having
4410 * a context attached, it would go through pfm_exit_thread()
4411 * which also grabs the context lock  and would therefore be blocked
4412 * until we are here.
4413 */
4414static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4415
4416static int
4417pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4418{
4419	struct task_struct *task = PFM_CTX_TASK(ctx);
4420	struct pt_regs *tregs;
4421	int prev_state, is_system;
4422	int ret;
4423
4424	DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4425
4426	prev_state = ctx->ctx_state;
4427	is_system  = ctx->ctx_fl_system;
4428
4429	/*
4430	 * unload only when necessary
4431	 */
4432	if (prev_state == PFM_CTX_UNLOADED) {
4433		DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4434		return 0;
4435	}
4436
4437	/*
4438	 * clear psr and dcr bits
4439	 */
4440	ret = pfm_stop(ctx, NULL, 0, regs);
4441	if (ret) return ret;
4442
4443	ctx->ctx_state = PFM_CTX_UNLOADED;
4444
4445	/*
4446	 * in system mode, we need to update the PMU directly
4447	 * and the user level state of the caller, which may not
4448	 * necessarily be the creator of the context.
4449	 */
4450	if (is_system) {
4451
4452		/*
4453		 * Update cpuinfo
4454		 *
4455		 * local PMU is taken care of in pfm_stop()
4456		 */
4457		PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4458		PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4459
4460		/*
4461		 * save PMDs in context
4462		 * release ownership
4463		 */
4464		pfm_flush_pmds(current, ctx);
4465
4466		/*
4467		 * at this point we are done with the PMU
4468		 * so we can unreserve the resource.
4469		 */
4470		if (prev_state != PFM_CTX_ZOMBIE)
4471			pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4472
4473		/*
4474		 * disconnect context from task
4475		 */
4476		task->thread.pfm_context = NULL;
4477		/*
4478		 * disconnect task from context
4479		 */
4480		ctx->ctx_task = NULL;
4481
4482		/*
4483		 * There is nothing more to cleanup here.
4484		 */
4485		return 0;
4486	}
4487
4488	/*
4489	 * per-task mode
4490	 */
4491	tregs = task == current ? regs : task_pt_regs(task);
4492
4493	if (task == current) {
4494		/*
4495		 * cancel user level control
4496		 */
4497		ia64_psr(regs)->sp = 1;
4498
4499		DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4500	}
4501	/*
4502	 * save PMDs to context
4503	 * release ownership
4504	 */
4505	pfm_flush_pmds(task, ctx);
4506
4507	/*
4508	 * at this point we are done with the PMU
4509	 * so we can unreserve the resource.
4510	 *
4511	 * when state was ZOMBIE, we have already unreserved.
4512	 */
4513	if (prev_state != PFM_CTX_ZOMBIE)
4514		pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4515
4516	/*
4517	 * reset activation counter and psr
4518	 */
4519	ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4520	SET_LAST_CPU(ctx, -1);
4521
4522	/*
4523	 * PMU state will not be restored
4524	 */
4525	task->thread.flags &= ~IA64_THREAD_PM_VALID;
4526
4527	/*
4528	 * break links between context and task
4529	 */
4530	task->thread.pfm_context  = NULL;
4531	ctx->ctx_task             = NULL;
4532
4533	PFM_SET_WORK_PENDING(task, 0);
4534
4535	ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4536	ctx->ctx_fl_can_restart  = 0;
4537	ctx->ctx_fl_going_zombie = 0;
4538
4539	DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4540
4541	return 0;
4542}
4543
4544
4545/*
4546 * called only from exit_thread(): task == current
4547 * we come here only if current has a context attached (loaded or masked)
4548 */
4549void
4550pfm_exit_thread(struct task_struct *task)
4551{
4552	pfm_context_t *ctx;
4553	unsigned long flags;
4554	struct pt_regs *regs = task_pt_regs(task);
4555	int ret, state;
4556	int free_ok = 0;
4557
4558	ctx = PFM_GET_CTX(task);
4559
4560	PROTECT_CTX(ctx, flags);
4561
4562	DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4563
4564	state = ctx->ctx_state;
4565	switch(state) {
4566		case PFM_CTX_UNLOADED:
4567			/*
4568	 		 * only comes to this function if pfm_context is not NULL, i.e., cannot
4569			 * be in unloaded state
4570	 		 */
4571			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4572			break;
4573		case PFM_CTX_LOADED:
4574		case PFM_CTX_MASKED:
4575			ret = pfm_context_unload(ctx, NULL, 0, regs);
4576			if (ret) {
4577				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4578			}
4579			DPRINT(("ctx unloaded for current state was %d\n", state));
4580
4581			pfm_end_notify_user(ctx);
4582			break;
4583		case PFM_CTX_ZOMBIE:
4584			ret = pfm_context_unload(ctx, NULL, 0, regs);
4585			if (ret) {
4586				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4587			}
4588			free_ok = 1;
4589			break;
4590		default:
4591			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4592			break;
4593	}
4594	UNPROTECT_CTX(ctx, flags);
4595
4596	{ u64 psr = pfm_get_psr();
4597	  BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4598	  BUG_ON(GET_PMU_OWNER());
4599	  BUG_ON(ia64_psr(regs)->up);
4600	  BUG_ON(ia64_psr(regs)->pp);
4601	}
4602
4603	/*
4604	 * All memory free operations (especially for vmalloc'ed memory)
4605	 * MUST be done with interrupts ENABLED.
4606	 */
4607	if (free_ok) pfm_context_free(ctx);
4608}
4609
4610/*
4611 * functions MUST be listed in the increasing order of their index (see permfon.h)
4612 */
4613#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4614#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4615#define PFM_CMD_PCLRWS	(PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4616#define PFM_CMD_PCLRW	(PFM_CMD_FD|PFM_CMD_ARG_RW)
4617#define PFM_CMD_NONE	{ NULL, "no-cmd", 0, 0, 0, NULL}
4618
4619static pfm_cmd_desc_t pfm_cmd_tab[]={
4620/* 0  */PFM_CMD_NONE,
4621/* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4622/* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4623/* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4624/* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4625/* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4626/* 6  */PFM_CMD_NONE,
4627/* 7  */PFM_CMD_NONE,
4628/* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4629/* 9  */PFM_CMD_NONE,
4630/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4631/* 11 */PFM_CMD_NONE,
4632/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4633/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4634/* 14 */PFM_CMD_NONE,
4635/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4636/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4637/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4638/* 18 */PFM_CMD_NONE,
4639/* 19 */PFM_CMD_NONE,
4640/* 20 */PFM_CMD_NONE,
4641/* 21 */PFM_CMD_NONE,
4642/* 22 */PFM_CMD_NONE,
4643/* 23 */PFM_CMD_NONE,
4644/* 24 */PFM_CMD_NONE,
4645/* 25 */PFM_CMD_NONE,
4646/* 26 */PFM_CMD_NONE,
4647/* 27 */PFM_CMD_NONE,
4648/* 28 */PFM_CMD_NONE,
4649/* 29 */PFM_CMD_NONE,
4650/* 30 */PFM_CMD_NONE,
4651/* 31 */PFM_CMD_NONE,
4652/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4653/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4654};
4655#define PFM_CMD_COUNT	(sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4656
4657static int
4658pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4659{
4660	struct task_struct *task;
4661	int state, old_state;
4662
4663recheck:
4664	state = ctx->ctx_state;
4665	task  = ctx->ctx_task;
4666
4667	if (task == NULL) {
4668		DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4669		return 0;
4670	}
4671
4672	DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4673		ctx->ctx_fd,
4674		state,
4675		task_pid_nr(task),
4676		task->state, PFM_CMD_STOPPED(cmd)));
4677
4678	/*
4679	 * self-monitoring always ok.
4680	 *
4681	 * for system-wide the caller can either be the creator of the
4682	 * context (to one to which the context is attached to) OR
4683	 * a task running on the same CPU as the session.
4684	 */
4685	if (task == current || ctx->ctx_fl_system) return 0;
4686
4687	/*
4688	 * we are monitoring another thread
4689	 */
4690	switch(state) {
4691		case PFM_CTX_UNLOADED:
4692			/*
4693			 * if context is UNLOADED we are safe to go
4694			 */
4695			return 0;
4696		case PFM_CTX_ZOMBIE:
4697			/*
4698			 * no command can operate on a zombie context
4699			 */
4700			DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4701			return -EINVAL;
4702		case PFM_CTX_MASKED:
4703			/*
4704			 * PMU state has been saved to software even though
4705			 * the thread may still be running.
4706			 */
4707			if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4708	}
4709
4710	/*
4711	 * context is LOADED or MASKED. Some commands may need to have
4712	 * the task stopped.
4713	 *
4714	 * We could lift this restriction for UP but it would mean that
4715	 * the user has no guarantee the task would not run between
4716	 * two successive calls to perfmonctl(). That's probably OK.
4717	 * If this user wants to ensure the task does not run, then
4718	 * the task must be stopped.
4719	 */
4720	if (PFM_CMD_STOPPED(cmd)) {
4721		if (!task_is_stopped_or_traced(task)) {
4722			DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4723			return -EBUSY;
4724		}
4725		/*
4726		 * task is now stopped, wait for ctxsw out
4727		 *
4728		 * This is an interesting point in the code.
4729		 * We need to unprotect the context because
4730		 * the pfm_save_regs() routines needs to grab
4731		 * the same lock. There are danger in doing
4732		 * this because it leaves a window open for
4733		 * another task to get access to the context
4734		 * and possibly change its state. The one thing
4735		 * that is not possible is for the context to disappear
4736		 * because we are protected by the VFS layer, i.e.,
4737		 * get_fd()/put_fd().
4738		 */
4739		old_state = state;
4740
4741		UNPROTECT_CTX(ctx, flags);
4742
4743		wait_task_inactive(task, 0);
4744
4745		PROTECT_CTX(ctx, flags);
4746
4747		/*
4748		 * we must recheck to verify if state has changed
4749		 */
4750		if (ctx->ctx_state != old_state) {
4751			DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4752			goto recheck;
4753		}
4754	}
4755	return 0;
4756}
4757
4758/*
4759 * system-call entry point (must return long)
4760 */
4761asmlinkage long
4762sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4763{
4764	struct fd f = {NULL, 0};
4765	pfm_context_t *ctx = NULL;
4766	unsigned long flags = 0UL;
4767	void *args_k = NULL;
4768	long ret; /* will expand int return types */
4769	size_t base_sz, sz, xtra_sz = 0;
4770	int narg, completed_args = 0, call_made = 0, cmd_flags;
4771	int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4772	int (*getsize)(void *arg, size_t *sz);
4773#define PFM_MAX_ARGSIZE	4096
4774
4775	/*
4776	 * reject any call if perfmon was disabled at initialization
4777	 */
4778	if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4779
4780	if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4781		DPRINT(("invalid cmd=%d\n", cmd));
4782		return -EINVAL;
4783	}
4784
4785	func      = pfm_cmd_tab[cmd].cmd_func;
4786	narg      = pfm_cmd_tab[cmd].cmd_narg;
4787	base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4788	getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4789	cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4790
4791	if (unlikely(func == NULL)) {
4792		DPRINT(("invalid cmd=%d\n", cmd));
4793		return -EINVAL;
4794	}
4795
4796	DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4797		PFM_CMD_NAME(cmd),
4798		cmd,
4799		narg,
4800		base_sz,
4801		count));
4802
4803	/*
4804	 * check if number of arguments matches what the command expects
4805	 */
4806	if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4807		return -EINVAL;
4808
4809restart_args:
4810	sz = xtra_sz + base_sz*count;
4811	/*
4812	 * limit abuse to min page size
4813	 */
4814	if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4815		printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4816		return -E2BIG;
4817	}
4818
4819	/*
4820	 * allocate default-sized argument buffer
4821	 */
4822	if (likely(count && args_k == NULL)) {
4823		args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4824		if (args_k == NULL) return -ENOMEM;
4825	}
4826
4827	ret = -EFAULT;
4828
4829	/*
4830	 * copy arguments
4831	 *
4832	 * assume sz = 0 for command without parameters
4833	 */
4834	if (sz && copy_from_user(args_k, arg, sz)) {
4835		DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4836		goto error_args;
4837	}
4838
4839	/*
4840	 * check if command supports extra parameters
4841	 */
4842	if (completed_args == 0 && getsize) {
4843		/*
4844		 * get extra parameters size (based on main argument)
4845		 */
4846		ret = (*getsize)(args_k, &xtra_sz);
4847		if (ret) goto error_args;
4848
4849		completed_args = 1;
4850
4851		DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4852
4853		/* retry if necessary */
4854		if (likely(xtra_sz)) goto restart_args;
4855	}
4856
4857	if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4858
4859	ret = -EBADF;
4860
4861	f = fdget(fd);
4862	if (unlikely(f.file == NULL)) {
4863		DPRINT(("invalid fd %d\n", fd));
4864		goto error_args;
4865	}
4866	if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4867		DPRINT(("fd %d not related to perfmon\n", fd));
4868		goto error_args;
4869	}
4870
4871	ctx = f.file->private_data;
4872	if (unlikely(ctx == NULL)) {
4873		DPRINT(("no context for fd %d\n", fd));
4874		goto error_args;
4875	}
4876	prefetch(&ctx->ctx_state);
4877
4878	PROTECT_CTX(ctx, flags);
4879
4880	/*
4881	 * check task is stopped
4882	 */
4883	ret = pfm_check_task_state(ctx, cmd, flags);
4884	if (unlikely(ret)) goto abort_locked;
4885
4886skip_fd:
4887	ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4888
4889	call_made = 1;
4890
4891abort_locked:
4892	if (likely(ctx)) {
4893		DPRINT(("context unlocked\n"));
4894		UNPROTECT_CTX(ctx, flags);
4895	}
4896
4897	/* copy argument back to user, if needed */
4898	if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4899
4900error_args:
4901	if (f.file)
4902		fdput(f);
4903
4904	kfree(args_k);
4905
4906	DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4907
4908	return ret;
4909}
4910
4911static void
4912pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4913{
4914	pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4915	pfm_ovfl_ctrl_t rst_ctrl;
4916	int state;
4917	int ret = 0;
4918
4919	state = ctx->ctx_state;
4920	/*
4921	 * Unlock sampling buffer and reset index atomically
4922	 * XXX: not really needed when blocking
4923	 */
4924	if (CTX_HAS_SMPL(ctx)) {
4925
4926		rst_ctrl.bits.mask_monitoring = 0;
4927		rst_ctrl.bits.reset_ovfl_pmds = 0;
4928
4929		if (state == PFM_CTX_LOADED)
4930			ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4931		else
4932			ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4933	} else {
4934		rst_ctrl.bits.mask_monitoring = 0;
4935		rst_ctrl.bits.reset_ovfl_pmds = 1;
4936	}
4937
4938	if (ret == 0) {
4939		if (rst_ctrl.bits.reset_ovfl_pmds) {
4940			pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4941		}
4942		if (rst_ctrl.bits.mask_monitoring == 0) {
4943			DPRINT(("resuming monitoring\n"));
4944			if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4945		} else {
4946			DPRINT(("stopping monitoring\n"));
4947			//pfm_stop_monitoring(current, regs);
4948		}
4949		ctx->ctx_state = PFM_CTX_LOADED;
4950	}
4951}
4952
4953/*
4954 * context MUST BE LOCKED when calling
4955 * can only be called for current
4956 */
4957static void
4958pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4959{
4960	int ret;
4961
4962	DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4963
4964	ret = pfm_context_unload(ctx, NULL, 0, regs);
4965	if (ret) {
4966		printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4967	}
4968
4969	/*
4970	 * and wakeup controlling task, indicating we are now disconnected
4971	 */
4972	wake_up_interruptible(&ctx->ctx_zombieq);
4973
4974	/*
4975	 * given that context is still locked, the controlling
4976	 * task will only get access when we return from
4977	 * pfm_handle_work().
4978	 */
4979}
4980
4981static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4982
4983 /*
4984  * pfm_handle_work() can be called with interrupts enabled
4985  * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4986  * call may sleep, therefore we must re-enable interrupts
4987  * to avoid deadlocks. It is safe to do so because this function
4988  * is called ONLY when returning to user level (pUStk=1), in which case
4989  * there is no risk of kernel stack overflow due to deep
4990  * interrupt nesting.
4991  */
4992void
4993pfm_handle_work(void)
4994{
4995	pfm_context_t *ctx;
4996	struct pt_regs *regs;
4997	unsigned long flags, dummy_flags;
4998	unsigned long ovfl_regs;
4999	unsigned int reason;
5000	int ret;
5001
5002	ctx = PFM_GET_CTX(current);
5003	if (ctx == NULL) {
5004		printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5005			task_pid_nr(current));
5006		return;
5007	}
5008
5009	PROTECT_CTX(ctx, flags);
5010
5011	PFM_SET_WORK_PENDING(current, 0);
5012
5013	regs = task_pt_regs(current);
5014
5015	/*
5016	 * extract reason for being here and clear
5017	 */
5018	reason = ctx->ctx_fl_trap_reason;
5019	ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5020	ovfl_regs = ctx->ctx_ovfl_regs[0];
5021
5022	DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5023
5024	/*
5025	 * must be done before we check for simple-reset mode
5026	 */
5027	if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5028		goto do_zombie;
5029
5030	//if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5031	if (reason == PFM_TRAP_REASON_RESET)
5032		goto skip_blocking;
5033
5034	/*
5035	 * restore interrupt mask to what it was on entry.
5036	 * Could be enabled/diasbled.
5037	 */
5038	UNPROTECT_CTX(ctx, flags);
5039
5040	/*
5041	 * force interrupt enable because of down_interruptible()
5042	 */
5043	local_irq_enable();
5044
5045	DPRINT(("before block sleeping\n"));
5046
5047	/*
5048	 * may go through without blocking on SMP systems
5049	 * if restart has been received already by the time we call down()
5050	 */
5051	ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5052
5053	DPRINT(("after block sleeping ret=%d\n", ret));
5054
5055	/*
5056	 * lock context and mask interrupts again
5057	 * We save flags into a dummy because we may have
5058	 * altered interrupts mask compared to entry in this
5059	 * function.
5060	 */
5061	PROTECT_CTX(ctx, dummy_flags);
5062
5063	/*
5064	 * we need to read the ovfl_regs only after wake-up
5065	 * because we may have had pfm_write_pmds() in between
5066	 * and that can changed PMD values and therefore
5067	 * ovfl_regs is reset for these new PMD values.
5068	 */
5069	ovfl_regs = ctx->ctx_ovfl_regs[0];
5070
5071	if (ctx->ctx_fl_going_zombie) {
5072do_zombie:
5073		DPRINT(("context is zombie, bailing out\n"));
5074		pfm_context_force_terminate(ctx, regs);
5075		goto nothing_to_do;
5076	}
5077	/*
5078	 * in case of interruption of down() we don't restart anything
5079	 */
5080	if (ret < 0)
5081		goto nothing_to_do;
5082
5083skip_blocking:
5084	pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5085	ctx->ctx_ovfl_regs[0] = 0UL;
5086
5087nothing_to_do:
5088	/*
5089	 * restore flags as they were upon entry
5090	 */
5091	UNPROTECT_CTX(ctx, flags);
5092}
5093
5094static int
5095pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5096{
5097	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5098		DPRINT(("ignoring overflow notification, owner is zombie\n"));
5099		return 0;
5100	}
5101
5102	DPRINT(("waking up somebody\n"));
5103
5104	if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5105
5106	/*
5107	 * safe, we are not in intr handler, nor in ctxsw when
5108	 * we come here
5109	 */
5110	kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5111
5112	return 0;
5113}
5114
5115static int
5116pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5117{
5118	pfm_msg_t *msg = NULL;
5119
5120	if (ctx->ctx_fl_no_msg == 0) {
5121		msg = pfm_get_new_msg(ctx);
5122		if (msg == NULL) {
5123			printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5124			return -1;
5125		}
5126
5127		msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5128		msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5129		msg->pfm_ovfl_msg.msg_active_set   = 0;
5130		msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5131		msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5132		msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5133		msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5134		msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5135	}
5136
5137	DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5138		msg,
5139		ctx->ctx_fl_no_msg,
5140		ctx->ctx_fd,
5141		ovfl_pmds));
5142
5143	return pfm_notify_user(ctx, msg);
5144}
5145
5146static int
5147pfm_end_notify_user(pfm_context_t *ctx)
5148{
5149	pfm_msg_t *msg;
5150
5151	msg = pfm_get_new_msg(ctx);
5152	if (msg == NULL) {
5153		printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5154		return -1;
5155	}
5156	/* no leak */
5157	memset(msg, 0, sizeof(*msg));
5158
5159	msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5160	msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5161	msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5162
5163	DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5164		msg,
5165		ctx->ctx_fl_no_msg,
5166		ctx->ctx_fd));
5167
5168	return pfm_notify_user(ctx, msg);
5169}
5170
5171/*
5172 * main overflow processing routine.
5173 * it can be called from the interrupt path or explicitly during the context switch code
5174 */
5175static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5176				unsigned long pmc0, struct pt_regs *regs)
5177{
5178	pfm_ovfl_arg_t *ovfl_arg;
5179	unsigned long mask;
5180	unsigned long old_val, ovfl_val, new_val;
5181	unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5182	unsigned long tstamp;
5183	pfm_ovfl_ctrl_t	ovfl_ctrl;
5184	unsigned int i, has_smpl;
5185	int must_notify = 0;
5186
5187	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5188
5189	/*
5190	 * sanity test. Should never happen
5191	 */
5192	if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5193
5194	tstamp   = ia64_get_itc();
5195	mask     = pmc0 >> PMU_FIRST_COUNTER;
5196	ovfl_val = pmu_conf->ovfl_val;
5197	has_smpl = CTX_HAS_SMPL(ctx);
5198
5199	DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5200		     "used_pmds=0x%lx\n",
5201			pmc0,
5202			task ? task_pid_nr(task): -1,
5203			(regs ? regs->cr_iip : 0),
5204			CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5205			ctx->ctx_used_pmds[0]));
5206
5207
5208	/*
5209	 * first we update the virtual counters
5210	 * assume there was a prior ia64_srlz_d() issued
5211	 */
5212	for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5213
5214		/* skip pmd which did not overflow */
5215		if ((mask & 0x1) == 0) continue;
5216
5217		/*
5218		 * Note that the pmd is not necessarily 0 at this point as qualified events
5219		 * may have happened before the PMU was frozen. The residual count is not
5220		 * taken into consideration here but will be with any read of the pmd via
5221		 * pfm_read_pmds().
5222		 */
5223		old_val              = new_val = ctx->ctx_pmds[i].val;
5224		new_val             += 1 + ovfl_val;
5225		ctx->ctx_pmds[i].val = new_val;
5226
5227		/*
5228		 * check for overflow condition
5229		 */
5230		if (likely(old_val > new_val)) {
5231			ovfl_pmds |= 1UL << i;
5232			if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5233		}
5234
5235		DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5236			i,
5237			new_val,
5238			old_val,
5239			ia64_get_pmd(i) & ovfl_val,
5240			ovfl_pmds,
5241			ovfl_notify));
5242	}
5243
5244	/*
5245	 * there was no 64-bit overflow, nothing else to do
5246	 */
5247	if (ovfl_pmds == 0UL) return;
5248
5249	/*
5250	 * reset all control bits
5251	 */
5252	ovfl_ctrl.val = 0;
5253	reset_pmds    = 0UL;
5254
5255	/*
5256	 * if a sampling format module exists, then we "cache" the overflow by
5257	 * calling the module's handler() routine.
5258	 */
5259	if (has_smpl) {
5260		unsigned long start_cycles, end_cycles;
5261		unsigned long pmd_mask;
5262		int j, k, ret = 0;
5263		int this_cpu = smp_processor_id();
5264
5265		pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5266		ovfl_arg = &ctx->ctx_ovfl_arg;
5267
5268		prefetch(ctx->ctx_smpl_hdr);
5269
5270		for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5271
5272			mask = 1UL << i;
5273
5274			if ((pmd_mask & 0x1) == 0) continue;
5275
5276			ovfl_arg->ovfl_pmd      = (unsigned char )i;
5277			ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5278			ovfl_arg->active_set    = 0;
5279			ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5280			ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5281
5282			ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5283			ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5284			ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5285
5286			/*
5287		 	 * copy values of pmds of interest. Sampling format may copy them
5288		 	 * into sampling buffer.
5289		 	 */
5290			if (smpl_pmds) {
5291				for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5292					if ((smpl_pmds & 0x1) == 0) continue;
5293					ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5294					DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5295				}
5296			}
5297
5298			pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5299
5300			start_cycles = ia64_get_itc();
5301
5302			/*
5303		 	 * call custom buffer format record (handler) routine
5304		 	 */
5305			ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5306
5307			end_cycles = ia64_get_itc();
5308
5309			/*
5310			 * For those controls, we take the union because they have
5311			 * an all or nothing behavior.
5312			 */
5313			ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5314			ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5315			ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5316			/*
5317			 * build the bitmask of pmds to reset now
5318			 */
5319			if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5320
5321			pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5322		}
5323		/*
5324		 * when the module cannot handle the rest of the overflows, we abort right here
5325		 */
5326		if (ret && pmd_mask) {
5327			DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5328				pmd_mask<<PMU_FIRST_COUNTER));
5329		}
5330		/*
5331		 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5332		 */
5333		ovfl_pmds &= ~reset_pmds;
5334	} else {
5335		/*
5336		 * when no sampling module is used, then the default
5337		 * is to notify on overflow if requested by user
5338		 */
5339		ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5340		ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5341		ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5342		ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5343		/*
5344		 * if needed, we reset all overflowed pmds
5345		 */
5346		if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5347	}
5348
5349	DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5350
5351	/*
5352	 * reset the requested PMD registers using the short reset values
5353	 */
5354	if (reset_pmds) {
5355		unsigned long bm = reset_pmds;
5356		pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5357	}
5358
5359	if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5360		/*
5361		 * keep track of what to reset when unblocking
5362		 */
5363		ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5364
5365		/*
5366		 * check for blocking context
5367		 */
5368		if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5369
5370			ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5371
5372			/*
5373			 * set the perfmon specific checking pending work for the task
5374			 */
5375			PFM_SET_WORK_PENDING(task, 1);
5376
5377			/*
5378			 * when coming from ctxsw, current still points to the
5379			 * previous task, therefore we must work with task and not current.
5380			 */
5381			set_notify_resume(task);
5382		}
5383		/*
5384		 * defer until state is changed (shorten spin window). the context is locked
5385		 * anyway, so the signal receiver would come spin for nothing.
5386		 */
5387		must_notify = 1;
5388	}
5389
5390	DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5391			GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5392			PFM_GET_WORK_PENDING(task),
5393			ctx->ctx_fl_trap_reason,
5394			ovfl_pmds,
5395			ovfl_notify,
5396			ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5397	/*
5398	 * in case monitoring must be stopped, we toggle the psr bits
5399	 */
5400	if (ovfl_ctrl.bits.mask_monitoring) {
5401		pfm_mask_monitoring(task);
5402		ctx->ctx_state = PFM_CTX_MASKED;
5403		ctx->ctx_fl_can_restart = 1;
5404	}
5405
5406	/*
5407	 * send notification now
5408	 */
5409	if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5410
5411	return;
5412
5413sanity_check:
5414	printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5415			smp_processor_id(),
5416			task ? task_pid_nr(task) : -1,
5417			pmc0);
5418	return;
5419
5420stop_monitoring:
5421	/*
5422	 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5423	 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5424	 * come here as zombie only if the task is the current task. In which case, we
5425	 * can access the PMU  hardware directly.
5426	 *
5427	 * Note that zombies do have PM_VALID set. So here we do the minimal.
5428	 *
5429	 * In case the context was zombified it could not be reclaimed at the time
5430	 * the monitoring program exited. At this point, the PMU reservation has been
5431	 * returned, the sampiing buffer has been freed. We must convert this call
5432	 * into a spurious interrupt. However, we must also avoid infinite overflows
5433	 * by stopping monitoring for this task. We can only come here for a per-task
5434	 * context. All we need to do is to stop monitoring using the psr bits which
5435	 * are always task private. By re-enabling secure montioring, we ensure that
5436	 * the monitored task will not be able to re-activate monitoring.
5437	 * The task will eventually be context switched out, at which point the context
5438	 * will be reclaimed (that includes releasing ownership of the PMU).
5439	 *
5440	 * So there might be a window of time where the number of per-task session is zero
5441	 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5442	 * context. This is safe because if a per-task session comes in, it will push this one
5443	 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5444	 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5445	 * also push our zombie context out.
5446	 *
5447	 * Overall pretty hairy stuff....
5448	 */
5449	DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5450	pfm_clear_psr_up();
5451	ia64_psr(regs)->up = 0;
5452	ia64_psr(regs)->sp = 1;
5453	return;
5454}
5455
5456static int
5457pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5458{
5459	struct task_struct *task;
5460	pfm_context_t *ctx;
5461	unsigned long flags;
5462	u64 pmc0;
5463	int this_cpu = smp_processor_id();
5464	int retval = 0;
5465
5466	pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5467
5468	/*
5469	 * srlz.d done before arriving here
5470	 */
5471	pmc0 = ia64_get_pmc(0);
5472
5473	task = GET_PMU_OWNER();
5474	ctx  = GET_PMU_CTX();
5475
5476	/*
5477	 * if we have some pending bits set
5478	 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5479	 */
5480	if (PMC0_HAS_OVFL(pmc0) && task) {
5481		/*
5482		 * we assume that pmc0.fr is always set here
5483		 */
5484
5485		/* sanity check */
5486		if (!ctx) goto report_spurious1;
5487
5488		if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5489			goto report_spurious2;
5490
5491		PROTECT_CTX_NOPRINT(ctx, flags);
5492
5493		pfm_overflow_handler(task, ctx, pmc0, regs);
5494
5495		UNPROTECT_CTX_NOPRINT(ctx, flags);
5496
5497	} else {
5498		pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5499		retval = -1;
5500	}
5501	/*
5502	 * keep it unfrozen at all times
5503	 */
5504	pfm_unfreeze_pmu();
5505
5506	return retval;
5507
5508report_spurious1:
5509	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5510		this_cpu, task_pid_nr(task));
5511	pfm_unfreeze_pmu();
5512	return -1;
5513report_spurious2:
5514	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5515		this_cpu,
5516		task_pid_nr(task));
5517	pfm_unfreeze_pmu();
5518	return -1;
5519}
5520
5521static irqreturn_t
5522pfm_interrupt_handler(int irq, void *arg)
5523{
5524	unsigned long start_cycles, total_cycles;
5525	unsigned long min, max;
5526	int this_cpu;
5527	int ret;
5528	struct pt_regs *regs = get_irq_regs();
5529
5530	this_cpu = get_cpu();
5531	if (likely(!pfm_alt_intr_handler)) {
5532		min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5533		max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5534
5535		start_cycles = ia64_get_itc();
5536
5537		ret = pfm_do_interrupt_handler(arg, regs);
5538
5539		total_cycles = ia64_get_itc();
5540
5541		/*
5542		 * don't measure spurious interrupts
5543		 */
5544		if (likely(ret == 0)) {
5545			total_cycles -= start_cycles;
5546
5547			if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5548			if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5549
5550			pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5551		}
5552	}
5553	else {
5554		(*pfm_alt_intr_handler->handler)(irq, arg, regs);
5555	}
5556
5557	put_cpu();
5558	return IRQ_HANDLED;
5559}
5560
5561/*
5562 * /proc/perfmon interface, for debug only
5563 */
5564
5565#define PFM_PROC_SHOW_HEADER	((void *)(long)nr_cpu_ids+1)
5566
5567static void *
5568pfm_proc_start(struct seq_file *m, loff_t *pos)
5569{
5570	if (*pos == 0) {
5571		return PFM_PROC_SHOW_HEADER;
5572	}
5573
5574	while (*pos <= nr_cpu_ids) {
5575		if (cpu_online(*pos - 1)) {
5576			return (void *)*pos;
5577		}
5578		++*pos;
5579	}
5580	return NULL;
5581}
5582
5583static void *
5584pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5585{
5586	++*pos;
5587	return pfm_proc_start(m, pos);
5588}
5589
5590static void
5591pfm_proc_stop(struct seq_file *m, void *v)
5592{
5593}
5594
5595static void
5596pfm_proc_show_header(struct seq_file *m)
5597{
5598	struct list_head * pos;
5599	pfm_buffer_fmt_t * entry;
5600	unsigned long flags;
5601
5602 	seq_printf(m,
5603		"perfmon version           : %u.%u\n"
5604		"model                     : %s\n"
5605		"fastctxsw                 : %s\n"
5606		"expert mode               : %s\n"
5607		"ovfl_mask                 : 0x%lx\n"
5608		"PMU flags                 : 0x%x\n",
5609		PFM_VERSION_MAJ, PFM_VERSION_MIN,
5610		pmu_conf->pmu_name,
5611		pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5612		pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5613		pmu_conf->ovfl_val,
5614		pmu_conf->flags);
5615
5616  	LOCK_PFS(flags);
5617
5618 	seq_printf(m,
5619 		"proc_sessions             : %u\n"
5620 		"sys_sessions              : %u\n"
5621 		"sys_use_dbregs            : %u\n"
5622 		"ptrace_use_dbregs         : %u\n",
5623 		pfm_sessions.pfs_task_sessions,
5624 		pfm_sessions.pfs_sys_sessions,
5625 		pfm_sessions.pfs_sys_use_dbregs,
5626 		pfm_sessions.pfs_ptrace_use_dbregs);
5627
5628  	UNLOCK_PFS(flags);
5629
5630	spin_lock(&pfm_buffer_fmt_lock);
5631
5632	list_for_each(pos, &pfm_buffer_fmt_list) {
5633		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5634		seq_printf(m, "format                    : %16phD %s\n",
5635			   entry->fmt_uuid, entry->fmt_name);
5636	}
5637	spin_unlock(&pfm_buffer_fmt_lock);
5638
5639}
5640
5641static int
5642pfm_proc_show(struct seq_file *m, void *v)
5643{
5644	unsigned long psr;
5645	unsigned int i;
5646	int cpu;
5647
5648	if (v == PFM_PROC_SHOW_HEADER) {
5649		pfm_proc_show_header(m);
5650		return 0;
5651	}
5652
5653	/* show info for CPU (v - 1) */
5654
5655	cpu = (long)v - 1;
5656	seq_printf(m,
5657		"CPU%-2d overflow intrs      : %lu\n"
5658		"CPU%-2d overflow cycles     : %lu\n"
5659		"CPU%-2d overflow min        : %lu\n"
5660		"CPU%-2d overflow max        : %lu\n"
5661		"CPU%-2d smpl handler calls  : %lu\n"
5662		"CPU%-2d smpl handler cycles : %lu\n"
5663		"CPU%-2d spurious intrs      : %lu\n"
5664		"CPU%-2d replay   intrs      : %lu\n"
5665		"CPU%-2d syst_wide           : %d\n"
5666		"CPU%-2d dcr_pp              : %d\n"
5667		"CPU%-2d exclude idle        : %d\n"
5668		"CPU%-2d owner               : %d\n"
5669		"CPU%-2d context             : %p\n"
5670		"CPU%-2d activations         : %lu\n",
5671		cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5672		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5673		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5674		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5675		cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5676		cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5677		cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5678		cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5679		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5680		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5681		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5682		cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5683		cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5684		cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5685
5686	if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5687
5688		psr = pfm_get_psr();
5689
5690		ia64_srlz_d();
5691
5692		seq_printf(m,
5693			"CPU%-2d psr                 : 0x%lx\n"
5694			"CPU%-2d pmc0                : 0x%lx\n",
5695			cpu, psr,
5696			cpu, ia64_get_pmc(0));
5697
5698		for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5699			if (PMC_IS_COUNTING(i) == 0) continue;
5700   			seq_printf(m,
5701				"CPU%-2d pmc%u                : 0x%lx\n"
5702   				"CPU%-2d pmd%u                : 0x%lx\n",
5703				cpu, i, ia64_get_pmc(i),
5704				cpu, i, ia64_get_pmd(i));
5705  		}
5706	}
5707	return 0;
5708}
5709
5710const struct seq_operations pfm_seq_ops = {
5711	.start =	pfm_proc_start,
5712 	.next =		pfm_proc_next,
5713 	.stop =		pfm_proc_stop,
5714 	.show =		pfm_proc_show
5715};
5716
5717static int
5718pfm_proc_open(struct inode *inode, struct file *file)
5719{
5720	return seq_open(file, &pfm_seq_ops);
5721}
5722
5723
5724/*
5725 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5726 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5727 * is active or inactive based on mode. We must rely on the value in
5728 * local_cpu_data->pfm_syst_info
5729 */
5730void
5731pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5732{
5733	struct pt_regs *regs;
5734	unsigned long dcr;
5735	unsigned long dcr_pp;
5736
5737	dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5738
5739	/*
5740	 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5741	 * on every CPU, so we can rely on the pid to identify the idle task.
5742	 */
5743	if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5744		regs = task_pt_regs(task);
5745		ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5746		return;
5747	}
5748	/*
5749	 * if monitoring has started
5750	 */
5751	if (dcr_pp) {
5752		dcr = ia64_getreg(_IA64_REG_CR_DCR);
5753		/*
5754		 * context switching in?
5755		 */
5756		if (is_ctxswin) {
5757			/* mask monitoring for the idle task */
5758			ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5759			pfm_clear_psr_pp();
5760			ia64_srlz_i();
5761			return;
5762		}
5763		/*
5764		 * context switching out
5765		 * restore monitoring for next task
5766		 *
5767		 * Due to inlining this odd if-then-else construction generates
5768		 * better code.
5769		 */
5770		ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5771		pfm_set_psr_pp();
5772		ia64_srlz_i();
5773	}
5774}
5775
5776#ifdef CONFIG_SMP
5777
5778static void
5779pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5780{
5781	struct task_struct *task = ctx->ctx_task;
5782
5783	ia64_psr(regs)->up = 0;
5784	ia64_psr(regs)->sp = 1;
5785
5786	if (GET_PMU_OWNER() == task) {
5787		DPRINT(("cleared ownership for [%d]\n",
5788					task_pid_nr(ctx->ctx_task)));
5789		SET_PMU_OWNER(NULL, NULL);
5790	}
5791
5792	/*
5793	 * disconnect the task from the context and vice-versa
5794	 */
5795	PFM_SET_WORK_PENDING(task, 0);
5796
5797	task->thread.pfm_context  = NULL;
5798	task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5799
5800	DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5801}
5802
5803
5804/*
5805 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5806 */
5807void
5808pfm_save_regs(struct task_struct *task)
5809{
5810	pfm_context_t *ctx;
5811	unsigned long flags;
5812	u64 psr;
5813
5814
5815	ctx = PFM_GET_CTX(task);
5816	if (ctx == NULL) return;
5817
5818	/*
5819 	 * we always come here with interrupts ALREADY disabled by
5820 	 * the scheduler. So we simply need to protect against concurrent
5821	 * access, not CPU concurrency.
5822	 */
5823	flags = pfm_protect_ctx_ctxsw(ctx);
5824
5825	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5826		struct pt_regs *regs = task_pt_regs(task);
5827
5828		pfm_clear_psr_up();
5829
5830		pfm_force_cleanup(ctx, regs);
5831
5832		BUG_ON(ctx->ctx_smpl_hdr);
5833
5834		pfm_unprotect_ctx_ctxsw(ctx, flags);
5835
5836		pfm_context_free(ctx);
5837		return;
5838	}
5839
5840	/*
5841	 * save current PSR: needed because we modify it
5842	 */
5843	ia64_srlz_d();
5844	psr = pfm_get_psr();
5845
5846	BUG_ON(psr & (IA64_PSR_I));
5847
5848	/*
5849	 * stop monitoring:
5850	 * This is the last instruction which may generate an overflow
5851	 *
5852	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5853	 * It will be restored from ipsr when going back to user level
5854	 */
5855	pfm_clear_psr_up();
5856
5857	/*
5858	 * keep a copy of psr.up (for reload)
5859	 */
5860	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5861
5862	/*
5863	 * release ownership of this PMU.
5864	 * PM interrupts are masked, so nothing
5865	 * can happen.
5866	 */
5867	SET_PMU_OWNER(NULL, NULL);
5868
5869	/*
5870	 * we systematically save the PMD as we have no
5871	 * guarantee we will be schedule at that same
5872	 * CPU again.
5873	 */
5874	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5875
5876	/*
5877	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5878	 * we will need it on the restore path to check
5879	 * for pending overflow.
5880	 */
5881	ctx->th_pmcs[0] = ia64_get_pmc(0);
5882
5883	/*
5884	 * unfreeze PMU if had pending overflows
5885	 */
5886	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5887
5888	/*
5889	 * finally, allow context access.
5890	 * interrupts will still be masked after this call.
5891	 */
5892	pfm_unprotect_ctx_ctxsw(ctx, flags);
5893}
5894
5895#else /* !CONFIG_SMP */
5896void
5897pfm_save_regs(struct task_struct *task)
5898{
5899	pfm_context_t *ctx;
5900	u64 psr;
5901
5902	ctx = PFM_GET_CTX(task);
5903	if (ctx == NULL) return;
5904
5905	/*
5906	 * save current PSR: needed because we modify it
5907	 */
5908	psr = pfm_get_psr();
5909
5910	BUG_ON(psr & (IA64_PSR_I));
5911
5912	/*
5913	 * stop monitoring:
5914	 * This is the last instruction which may generate an overflow
5915	 *
5916	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5917	 * It will be restored from ipsr when going back to user level
5918	 */
5919	pfm_clear_psr_up();
5920
5921	/*
5922	 * keep a copy of psr.up (for reload)
5923	 */
5924	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5925}
5926
5927static void
5928pfm_lazy_save_regs (struct task_struct *task)
5929{
5930	pfm_context_t *ctx;
5931	unsigned long flags;
5932
5933	{ u64 psr  = pfm_get_psr();
5934	  BUG_ON(psr & IA64_PSR_UP);
5935	}
5936
5937	ctx = PFM_GET_CTX(task);
5938
5939	/*
5940	 * we need to mask PMU overflow here to
5941	 * make sure that we maintain pmc0 until
5942	 * we save it. overflow interrupts are
5943	 * treated as spurious if there is no
5944	 * owner.
5945	 *
5946	 * XXX: I don't think this is necessary
5947	 */
5948	PROTECT_CTX(ctx,flags);
5949
5950	/*
5951	 * release ownership of this PMU.
5952	 * must be done before we save the registers.
5953	 *
5954	 * after this call any PMU interrupt is treated
5955	 * as spurious.
5956	 */
5957	SET_PMU_OWNER(NULL, NULL);
5958
5959	/*
5960	 * save all the pmds we use
5961	 */
5962	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5963
5964	/*
5965	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5966	 * it is needed to check for pended overflow
5967	 * on the restore path
5968	 */
5969	ctx->th_pmcs[0] = ia64_get_pmc(0);
5970
5971	/*
5972	 * unfreeze PMU if had pending overflows
5973	 */
5974	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5975
5976	/*
5977	 * now get can unmask PMU interrupts, they will
5978	 * be treated as purely spurious and we will not
5979	 * lose any information
5980	 */
5981	UNPROTECT_CTX(ctx,flags);
5982}
5983#endif /* CONFIG_SMP */
5984
5985#ifdef CONFIG_SMP
5986/*
5987 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5988 */
5989void
5990pfm_load_regs (struct task_struct *task)
5991{
5992	pfm_context_t *ctx;
5993	unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
5994	unsigned long flags;
5995	u64 psr, psr_up;
5996	int need_irq_resend;
5997
5998	ctx = PFM_GET_CTX(task);
5999	if (unlikely(ctx == NULL)) return;
6000
6001	BUG_ON(GET_PMU_OWNER());
6002
6003	/*
6004	 * possible on unload
6005	 */
6006	if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6007
6008	/*
6009 	 * we always come here with interrupts ALREADY disabled by
6010 	 * the scheduler. So we simply need to protect against concurrent
6011	 * access, not CPU concurrency.
6012	 */
6013	flags = pfm_protect_ctx_ctxsw(ctx);
6014	psr   = pfm_get_psr();
6015
6016	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6017
6018	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6019	BUG_ON(psr & IA64_PSR_I);
6020
6021	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6022		struct pt_regs *regs = task_pt_regs(task);
6023
6024		BUG_ON(ctx->ctx_smpl_hdr);
6025
6026		pfm_force_cleanup(ctx, regs);
6027
6028		pfm_unprotect_ctx_ctxsw(ctx, flags);
6029
6030		/*
6031		 * this one (kmalloc'ed) is fine with interrupts disabled
6032		 */
6033		pfm_context_free(ctx);
6034
6035		return;
6036	}
6037
6038	/*
6039	 * we restore ALL the debug registers to avoid picking up
6040	 * stale state.
6041	 */
6042	if (ctx->ctx_fl_using_dbreg) {
6043		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6044		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6045	}
6046	/*
6047	 * retrieve saved psr.up
6048	 */
6049	psr_up = ctx->ctx_saved_psr_up;
6050
6051	/*
6052	 * if we were the last user of the PMU on that CPU,
6053	 * then nothing to do except restore psr
6054	 */
6055	if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6056
6057		/*
6058		 * retrieve partial reload masks (due to user modifications)
6059		 */
6060		pmc_mask = ctx->ctx_reload_pmcs[0];
6061		pmd_mask = ctx->ctx_reload_pmds[0];
6062
6063	} else {
6064		/*
6065	 	 * To avoid leaking information to the user level when psr.sp=0,
6066	 	 * we must reload ALL implemented pmds (even the ones we don't use).
6067	 	 * In the kernel we only allow PFM_READ_PMDS on registers which
6068	 	 * we initialized or requested (sampling) so there is no risk there.
6069	 	 */
6070		pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6071
6072		/*
6073	 	 * ALL accessible PMCs are systematically reloaded, unused registers
6074	 	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6075	 	 * up stale configuration.
6076	 	 *
6077	 	 * PMC0 is never in the mask. It is always restored separately.
6078	 	 */
6079		pmc_mask = ctx->ctx_all_pmcs[0];
6080	}
6081	/*
6082	 * when context is MASKED, we will restore PMC with plm=0
6083	 * and PMD with stale information, but that's ok, nothing
6084	 * will be captured.
6085	 *
6086	 * XXX: optimize here
6087	 */
6088	if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6089	if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6090
6091	/*
6092	 * check for pending overflow at the time the state
6093	 * was saved.
6094	 */
6095	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6096		/*
6097		 * reload pmc0 with the overflow information
6098		 * On McKinley PMU, this will trigger a PMU interrupt
6099		 */
6100		ia64_set_pmc(0, ctx->th_pmcs[0]);
6101		ia64_srlz_d();
6102		ctx->th_pmcs[0] = 0UL;
6103
6104		/*
6105		 * will replay the PMU interrupt
6106		 */
6107		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6108
6109		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6110	}
6111
6112	/*
6113	 * we just did a reload, so we reset the partial reload fields
6114	 */
6115	ctx->ctx_reload_pmcs[0] = 0UL;
6116	ctx->ctx_reload_pmds[0] = 0UL;
6117
6118	SET_LAST_CPU(ctx, smp_processor_id());
6119
6120	/*
6121	 * dump activation value for this PMU
6122	 */
6123	INC_ACTIVATION();
6124	/*
6125	 * record current activation for this context
6126	 */
6127	SET_ACTIVATION(ctx);
6128
6129	/*
6130	 * establish new ownership.
6131	 */
6132	SET_PMU_OWNER(task, ctx);
6133
6134	/*
6135	 * restore the psr.up bit. measurement
6136	 * is active again.
6137	 * no PMU interrupt can happen at this point
6138	 * because we still have interrupts disabled.
6139	 */
6140	if (likely(psr_up)) pfm_set_psr_up();
6141
6142	/*
6143	 * allow concurrent access to context
6144	 */
6145	pfm_unprotect_ctx_ctxsw(ctx, flags);
6146}
6147#else /*  !CONFIG_SMP */
6148/*
6149 * reload PMU state for UP kernels
6150 * in 2.5 we come here with interrupts disabled
6151 */
6152void
6153pfm_load_regs (struct task_struct *task)
6154{
6155	pfm_context_t *ctx;
6156	struct task_struct *owner;
6157	unsigned long pmd_mask, pmc_mask;
6158	u64 psr, psr_up;
6159	int need_irq_resend;
6160
6161	owner = GET_PMU_OWNER();
6162	ctx   = PFM_GET_CTX(task);
6163	psr   = pfm_get_psr();
6164
6165	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6166	BUG_ON(psr & IA64_PSR_I);
6167
6168	/*
6169	 * we restore ALL the debug registers to avoid picking up
6170	 * stale state.
6171	 *
6172	 * This must be done even when the task is still the owner
6173	 * as the registers may have been modified via ptrace()
6174	 * (not perfmon) by the previous task.
6175	 */
6176	if (ctx->ctx_fl_using_dbreg) {
6177		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6178		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6179	}
6180
6181	/*
6182	 * retrieved saved psr.up
6183	 */
6184	psr_up = ctx->ctx_saved_psr_up;
6185	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6186
6187	/*
6188	 * short path, our state is still there, just
6189	 * need to restore psr and we go
6190	 *
6191	 * we do not touch either PMC nor PMD. the psr is not touched
6192	 * by the overflow_handler. So we are safe w.r.t. to interrupt
6193	 * concurrency even without interrupt masking.
6194	 */
6195	if (likely(owner == task)) {
6196		if (likely(psr_up)) pfm_set_psr_up();
6197		return;
6198	}
6199
6200	/*
6201	 * someone else is still using the PMU, first push it out and
6202	 * then we'll be able to install our stuff !
6203	 *
6204	 * Upon return, there will be no owner for the current PMU
6205	 */
6206	if (owner) pfm_lazy_save_regs(owner);
6207
6208	/*
6209	 * To avoid leaking information to the user level when psr.sp=0,
6210	 * we must reload ALL implemented pmds (even the ones we don't use).
6211	 * In the kernel we only allow PFM_READ_PMDS on registers which
6212	 * we initialized or requested (sampling) so there is no risk there.
6213	 */
6214	pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6215
6216	/*
6217	 * ALL accessible PMCs are systematically reloaded, unused registers
6218	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6219	 * up stale configuration.
6220	 *
6221	 * PMC0 is never in the mask. It is always restored separately
6222	 */
6223	pmc_mask = ctx->ctx_all_pmcs[0];
6224
6225	pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6226	pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6227
6228	/*
6229	 * check for pending overflow at the time the state
6230	 * was saved.
6231	 */
6232	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6233		/*
6234		 * reload pmc0 with the overflow information
6235		 * On McKinley PMU, this will trigger a PMU interrupt
6236		 */
6237		ia64_set_pmc(0, ctx->th_pmcs[0]);
6238		ia64_srlz_d();
6239
6240		ctx->th_pmcs[0] = 0UL;
6241
6242		/*
6243		 * will replay the PMU interrupt
6244		 */
6245		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6246
6247		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6248	}
6249
6250	/*
6251	 * establish new ownership.
6252	 */
6253	SET_PMU_OWNER(task, ctx);
6254
6255	/*
6256	 * restore the psr.up bit. measurement
6257	 * is active again.
6258	 * no PMU interrupt can happen at this point
6259	 * because we still have interrupts disabled.
6260	 */
6261	if (likely(psr_up)) pfm_set_psr_up();
6262}
6263#endif /* CONFIG_SMP */
6264
6265/*
6266 * this function assumes monitoring is stopped
6267 */
6268static void
6269pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6270{
6271	u64 pmc0;
6272	unsigned long mask2, val, pmd_val, ovfl_val;
6273	int i, can_access_pmu = 0;
6274	int is_self;
6275
6276	/*
6277	 * is the caller the task being monitored (or which initiated the
6278	 * session for system wide measurements)
6279	 */
6280	is_self = ctx->ctx_task == task ? 1 : 0;
6281
6282	/*
6283	 * can access PMU is task is the owner of the PMU state on the current CPU
6284	 * or if we are running on the CPU bound to the context in system-wide mode
6285	 * (that is not necessarily the task the context is attached to in this mode).
6286	 * In system-wide we always have can_access_pmu true because a task running on an
6287	 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6288	 */
6289	can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6290	if (can_access_pmu) {
6291		/*
6292		 * Mark the PMU as not owned
6293		 * This will cause the interrupt handler to do nothing in case an overflow
6294		 * interrupt was in-flight
6295		 * This also guarantees that pmc0 will contain the final state
6296		 * It virtually gives us full control on overflow processing from that point
6297		 * on.
6298		 */
6299		SET_PMU_OWNER(NULL, NULL);
6300		DPRINT(("releasing ownership\n"));
6301
6302		/*
6303		 * read current overflow status:
6304		 *
6305		 * we are guaranteed to read the final stable state
6306		 */
6307		ia64_srlz_d();
6308		pmc0 = ia64_get_pmc(0); /* slow */
6309
6310		/*
6311		 * reset freeze bit, overflow status information destroyed
6312		 */
6313		pfm_unfreeze_pmu();
6314	} else {
6315		pmc0 = ctx->th_pmcs[0];
6316		/*
6317		 * clear whatever overflow status bits there were
6318		 */
6319		ctx->th_pmcs[0] = 0;
6320	}
6321	ovfl_val = pmu_conf->ovfl_val;
6322	/*
6323	 * we save all the used pmds
6324	 * we take care of overflows for counting PMDs
6325	 *
6326	 * XXX: sampling situation is not taken into account here
6327	 */
6328	mask2 = ctx->ctx_used_pmds[0];
6329
6330	DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6331
6332	for (i = 0; mask2; i++, mask2>>=1) {
6333
6334		/* skip non used pmds */
6335		if ((mask2 & 0x1) == 0) continue;
6336
6337		/*
6338		 * can access PMU always true in system wide mode
6339		 */
6340		val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6341
6342		if (PMD_IS_COUNTING(i)) {
6343			DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6344				task_pid_nr(task),
6345				i,
6346				ctx->ctx_pmds[i].val,
6347				val & ovfl_val));
6348
6349			/*
6350			 * we rebuild the full 64 bit value of the counter
6351			 */
6352			val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6353
6354			/*
6355			 * now everything is in ctx_pmds[] and we need
6356			 * to clear the saved context from save_regs() such that
6357			 * pfm_read_pmds() gets the correct value
6358			 */
6359			pmd_val = 0UL;
6360
6361			/*
6362			 * take care of overflow inline
6363			 */
6364			if (pmc0 & (1UL << i)) {
6365				val += 1 + ovfl_val;
6366				DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6367			}
6368		}
6369
6370		DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6371
6372		if (is_self) ctx->th_pmds[i] = pmd_val;
6373
6374		ctx->ctx_pmds[i].val = val;
6375	}
6376}
6377
6378static struct irqaction perfmon_irqaction = {
6379	.handler = pfm_interrupt_handler,
6380	.name    = "perfmon"
6381};
6382
6383static void
6384pfm_alt_save_pmu_state(void *data)
6385{
6386	struct pt_regs *regs;
6387
6388	regs = task_pt_regs(current);
6389
6390	DPRINT(("called\n"));
6391
6392	/*
6393	 * should not be necessary but
6394	 * let's take not risk
6395	 */
6396	pfm_clear_psr_up();
6397	pfm_clear_psr_pp();
6398	ia64_psr(regs)->pp = 0;
6399
6400	/*
6401	 * This call is required
6402	 * May cause a spurious interrupt on some processors
6403	 */
6404	pfm_freeze_pmu();
6405
6406	ia64_srlz_d();
6407}
6408
6409void
6410pfm_alt_restore_pmu_state(void *data)
6411{
6412	struct pt_regs *regs;
6413
6414	regs = task_pt_regs(current);
6415
6416	DPRINT(("called\n"));
6417
6418	/*
6419	 * put PMU back in state expected
6420	 * by perfmon
6421	 */
6422	pfm_clear_psr_up();
6423	pfm_clear_psr_pp();
6424	ia64_psr(regs)->pp = 0;
6425
6426	/*
6427	 * perfmon runs with PMU unfrozen at all times
6428	 */
6429	pfm_unfreeze_pmu();
6430
6431	ia64_srlz_d();
6432}
6433
6434int
6435pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6436{
6437	int ret, i;
6438	int reserve_cpu;
6439
6440	/* some sanity checks */
6441	if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6442
6443	/* do the easy test first */
6444	if (pfm_alt_intr_handler) return -EBUSY;
6445
6446	/* one at a time in the install or remove, just fail the others */
6447	if (!spin_trylock(&pfm_alt_install_check)) {
6448		return -EBUSY;
6449	}
6450
6451	/* reserve our session */
6452	for_each_online_cpu(reserve_cpu) {
6453		ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6454		if (ret) goto cleanup_reserve;
6455	}
6456
6457	/* save the current system wide pmu states */
6458	ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6459	if (ret) {
6460		DPRINT(("on_each_cpu() failed: %d\n", ret));
6461		goto cleanup_reserve;
6462	}
6463
6464	/* officially change to the alternate interrupt handler */
6465	pfm_alt_intr_handler = hdl;
6466
6467	spin_unlock(&pfm_alt_install_check);
6468
6469	return 0;
6470
6471cleanup_reserve:
6472	for_each_online_cpu(i) {
6473		/* don't unreserve more than we reserved */
6474		if (i >= reserve_cpu) break;
6475
6476		pfm_unreserve_session(NULL, 1, i);
6477	}
6478
6479	spin_unlock(&pfm_alt_install_check);
6480
6481	return ret;
6482}
6483EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6484
6485int
6486pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6487{
6488	int i;
6489	int ret;
6490
6491	if (hdl == NULL) return -EINVAL;
6492
6493	/* cannot remove someone else's handler! */
6494	if (pfm_alt_intr_handler != hdl) return -EINVAL;
6495
6496	/* one at a time in the install or remove, just fail the others */
6497	if (!spin_trylock(&pfm_alt_install_check)) {
6498		return -EBUSY;
6499	}
6500
6501	pfm_alt_intr_handler = NULL;
6502
6503	ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6504	if (ret) {
6505		DPRINT(("on_each_cpu() failed: %d\n", ret));
6506	}
6507
6508	for_each_online_cpu(i) {
6509		pfm_unreserve_session(NULL, 1, i);
6510	}
6511
6512	spin_unlock(&pfm_alt_install_check);
6513
6514	return 0;
6515}
6516EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6517
6518/*
6519 * perfmon initialization routine, called from the initcall() table
6520 */
6521static int init_pfm_fs(void);
6522
6523static int __init
6524pfm_probe_pmu(void)
6525{
6526	pmu_config_t **p;
6527	int family;
6528
6529	family = local_cpu_data->family;
6530	p      = pmu_confs;
6531
6532	while(*p) {
6533		if ((*p)->probe) {
6534			if ((*p)->probe() == 0) goto found;
6535		} else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6536			goto found;
6537		}
6538		p++;
6539	}
6540	return -1;
6541found:
6542	pmu_conf = *p;
6543	return 0;
6544}
6545
6546static const struct file_operations pfm_proc_fops = {
6547	.open		= pfm_proc_open,
6548	.read		= seq_read,
6549	.llseek		= seq_lseek,
6550	.release	= seq_release,
6551};
6552
6553int __init
6554pfm_init(void)
6555{
6556	unsigned int n, n_counters, i;
6557
6558	printk("perfmon: version %u.%u IRQ %u\n",
6559		PFM_VERSION_MAJ,
6560		PFM_VERSION_MIN,
6561		IA64_PERFMON_VECTOR);
6562
6563	if (pfm_probe_pmu()) {
6564		printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6565				local_cpu_data->family);
6566		return -ENODEV;
6567	}
6568
6569	/*
6570	 * compute the number of implemented PMD/PMC from the
6571	 * description tables
6572	 */
6573	n = 0;
6574	for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6575		if (PMC_IS_IMPL(i) == 0) continue;
6576		pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6577		n++;
6578	}
6579	pmu_conf->num_pmcs = n;
6580
6581	n = 0; n_counters = 0;
6582	for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6583		if (PMD_IS_IMPL(i) == 0) continue;
6584		pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6585		n++;
6586		if (PMD_IS_COUNTING(i)) n_counters++;
6587	}
6588	pmu_conf->num_pmds      = n;
6589	pmu_conf->num_counters  = n_counters;
6590
6591	/*
6592	 * sanity checks on the number of debug registers
6593	 */
6594	if (pmu_conf->use_rr_dbregs) {
6595		if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6596			printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6597			pmu_conf = NULL;
6598			return -1;
6599		}
6600		if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6601			printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6602			pmu_conf = NULL;
6603			return -1;
6604		}
6605	}
6606
6607	printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6608	       pmu_conf->pmu_name,
6609	       pmu_conf->num_pmcs,
6610	       pmu_conf->num_pmds,
6611	       pmu_conf->num_counters,
6612	       ffz(pmu_conf->ovfl_val));
6613
6614	/* sanity check */
6615	if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6616		printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6617		pmu_conf = NULL;
6618		return -1;
6619	}
6620
6621	/*
6622	 * create /proc/perfmon (mostly for debugging purposes)
6623	 */
6624	perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6625	if (perfmon_dir == NULL) {
6626		printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6627		pmu_conf = NULL;
6628		return -1;
6629	}
6630
6631	/*
6632	 * create /proc/sys/kernel/perfmon (for debugging purposes)
6633	 */
6634	pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6635
6636	/*
6637	 * initialize all our spinlocks
6638	 */
6639	spin_lock_init(&pfm_sessions.pfs_lock);
6640	spin_lock_init(&pfm_buffer_fmt_lock);
6641
6642	init_pfm_fs();
6643
6644	for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6645
6646	return 0;
6647}
6648
6649__initcall(pfm_init);
6650
6651/*
6652 * this function is called before pfm_init()
6653 */
6654void
6655pfm_init_percpu (void)
6656{
6657	static int first_time=1;
6658	/*
6659	 * make sure no measurement is active
6660	 * (may inherit programmed PMCs from EFI).
6661	 */
6662	pfm_clear_psr_pp();
6663	pfm_clear_psr_up();
6664
6665	/*
6666	 * we run with the PMU not frozen at all times
6667	 */
6668	pfm_unfreeze_pmu();
6669
6670	if (first_time) {
6671		register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6672		first_time=0;
6673	}
6674
6675	ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6676	ia64_srlz_d();
6677}
6678
6679/*
6680 * used for debug purposes only
6681 */
6682void
6683dump_pmu_state(const char *from)
6684{
6685	struct task_struct *task;
6686	struct pt_regs *regs;
6687	pfm_context_t *ctx;
6688	unsigned long psr, dcr, info, flags;
6689	int i, this_cpu;
6690
6691	local_irq_save(flags);
6692
6693	this_cpu = smp_processor_id();
6694	regs     = task_pt_regs(current);
6695	info     = PFM_CPUINFO_GET();
6696	dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6697
6698	if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6699		local_irq_restore(flags);
6700		return;
6701	}
6702
6703	printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6704		this_cpu,
6705		from,
6706		task_pid_nr(current),
6707		regs->cr_iip,
6708		current->comm);
6709
6710	task = GET_PMU_OWNER();
6711	ctx  = GET_PMU_CTX();
6712
6713	printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6714
6715	psr = pfm_get_psr();
6716
6717	printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6718		this_cpu,
6719		ia64_get_pmc(0),
6720		psr & IA64_PSR_PP ? 1 : 0,
6721		psr & IA64_PSR_UP ? 1 : 0,
6722		dcr & IA64_DCR_PP ? 1 : 0,
6723		info,
6724		ia64_psr(regs)->up,
6725		ia64_psr(regs)->pp);
6726
6727	ia64_psr(regs)->up = 0;
6728	ia64_psr(regs)->pp = 0;
6729
6730	for (i=1; PMC_IS_LAST(i) == 0; i++) {
6731		if (PMC_IS_IMPL(i) == 0) continue;
6732		printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6733	}
6734
6735	for (i=1; PMD_IS_LAST(i) == 0; i++) {
6736		if (PMD_IS_IMPL(i) == 0) continue;
6737		printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6738	}
6739
6740	if (ctx) {
6741		printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6742				this_cpu,
6743				ctx->ctx_state,
6744				ctx->ctx_smpl_vaddr,
6745				ctx->ctx_smpl_hdr,
6746				ctx->ctx_msgq_head,
6747				ctx->ctx_msgq_tail,
6748				ctx->ctx_saved_psr_up);
6749	}
6750	local_irq_restore(flags);
6751}
6752
6753/*
6754 * called from process.c:copy_thread(). task is new child.
6755 */
6756void
6757pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6758{
6759	struct thread_struct *thread;
6760
6761	DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6762
6763	thread = &task->thread;
6764
6765	/*
6766	 * cut links inherited from parent (current)
6767	 */
6768	thread->pfm_context = NULL;
6769
6770	PFM_SET_WORK_PENDING(task, 0);
6771
6772	/*
6773	 * the psr bits are already set properly in copy_threads()
6774	 */
6775}
6776#else  /* !CONFIG_PERFMON */
6777asmlinkage long
6778sys_perfmonctl (int fd, int cmd, void *arg, int count)
6779{
6780	return -ENOSYS;
6781}
6782#endif /* CONFIG_PERFMON */
6783