1 /*
2  *  arch/cris/mm/fault.c
3  *
4  *  Copyright (C) 2000-2010  Axis Communications AB
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/interrupt.h>
9 #include <linux/module.h>
10 #include <linux/wait.h>
11 #include <linux/uaccess.h>
12 #include <arch/system.h>
13 
14 extern int find_fixup_code(struct pt_regs *);
15 extern void die_if_kernel(const char *, struct pt_regs *, long);
16 extern void show_registers(struct pt_regs *regs);
17 
18 /* debug of low-level TLB reload */
19 #undef DEBUG
20 
21 #ifdef DEBUG
22 #define D(x) x
23 #else
24 #define D(x)
25 #endif
26 
27 /* debug of higher-level faults */
28 #define DPG(x)
29 
30 /* current active page directory */
31 
32 DEFINE_PER_CPU(pgd_t *, current_pgd);
33 unsigned long cris_signal_return_page;
34 
35 /*
36  * This routine handles page faults.  It determines the address,
37  * and the problem, and then passes it off to one of the appropriate
38  * routines.
39  *
40  * Notice that the address we're given is aligned to the page the fault
41  * occurred in, since we only get the PFN in R_MMU_CAUSE not the complete
42  * address.
43  *
44  * error_code:
45  *      bit 0 == 0 means no page found, 1 means protection fault
46  *      bit 1 == 0 means read, 1 means write
47  *
48  * If this routine detects a bad access, it returns 1, otherwise it
49  * returns 0.
50  */
51 
52 asmlinkage void
do_page_fault(unsigned long address,struct pt_regs * regs,int protection,int writeaccess)53 do_page_fault(unsigned long address, struct pt_regs *regs,
54 	      int protection, int writeaccess)
55 {
56 	struct task_struct *tsk;
57 	struct mm_struct *mm;
58 	struct vm_area_struct * vma;
59 	siginfo_t info;
60 	int fault;
61 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
62 
63 	D(printk(KERN_DEBUG
64 		 "Page fault for %lX on %X at %lX, prot %d write %d\n",
65 		 address, smp_processor_id(), instruction_pointer(regs),
66 		 protection, writeaccess));
67 
68 	tsk = current;
69 
70 	/*
71 	 * We fault-in kernel-space virtual memory on-demand. The
72 	 * 'reference' page table is init_mm.pgd.
73 	 *
74 	 * NOTE! We MUST NOT take any locks for this case. We may
75 	 * be in an interrupt or a critical region, and should
76 	 * only copy the information from the master page table,
77 	 * nothing more.
78 	 *
79 	 * NOTE2: This is done so that, when updating the vmalloc
80 	 * mappings we don't have to walk all processes pgdirs and
81 	 * add the high mappings all at once. Instead we do it as they
82 	 * are used. However vmalloc'ed page entries have the PAGE_GLOBAL
83 	 * bit set so sometimes the TLB can use a lingering entry.
84 	 *
85 	 * This verifies that the fault happens in kernel space
86 	 * and that the fault was not a protection error (error_code & 1).
87 	 */
88 
89 	if (address >= VMALLOC_START &&
90 	    !protection &&
91 	    !user_mode(regs))
92 		goto vmalloc_fault;
93 
94 	/* When stack execution is not allowed we store the signal
95 	 * trampolines in the reserved cris_signal_return_page.
96 	 * Handle this in the exact same way as vmalloc (we know
97 	 * that the mapping is there and is valid so no need to
98 	 * call handle_mm_fault).
99 	 */
100 	if (cris_signal_return_page &&
101 	    address == cris_signal_return_page &&
102 	    !protection && user_mode(regs))
103 		goto vmalloc_fault;
104 
105 	/* we can and should enable interrupts at this point */
106 	local_irq_enable();
107 
108 	mm = tsk->mm;
109 	info.si_code = SEGV_MAPERR;
110 
111 	/*
112 	 * If we're in an interrupt, have pagefaults disabled or have no
113 	 * user context, we must not take the fault.
114 	 */
115 
116 	if (faulthandler_disabled() || !mm)
117 		goto no_context;
118 
119 	if (user_mode(regs))
120 		flags |= FAULT_FLAG_USER;
121 retry:
122 	down_read(&mm->mmap_sem);
123 	vma = find_vma(mm, address);
124 	if (!vma)
125 		goto bad_area;
126 	if (vma->vm_start <= address)
127 		goto good_area;
128 	if (!(vma->vm_flags & VM_GROWSDOWN))
129 		goto bad_area;
130 	if (user_mode(regs)) {
131 		/*
132 		 * accessing the stack below usp is always a bug.
133 		 * we get page-aligned addresses so we can only check
134 		 * if we're within a page from usp, but that might be
135 		 * enough to catch brutal errors at least.
136 		 */
137 		if (address + PAGE_SIZE < rdusp())
138 			goto bad_area;
139 	}
140 	if (expand_stack(vma, address))
141 		goto bad_area;
142 
143 	/*
144 	 * Ok, we have a good vm_area for this memory access, so
145 	 * we can handle it..
146 	 */
147 
148  good_area:
149 	info.si_code = SEGV_ACCERR;
150 
151 	/* first do some preliminary protection checks */
152 
153 	if (writeaccess == 2){
154 		if (!(vma->vm_flags & VM_EXEC))
155 			goto bad_area;
156 	} else if (writeaccess == 1) {
157 		if (!(vma->vm_flags & VM_WRITE))
158 			goto bad_area;
159 		flags |= FAULT_FLAG_WRITE;
160 	} else {
161 		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
162 			goto bad_area;
163 	}
164 
165 	/*
166 	 * If for any reason at all we couldn't handle the fault,
167 	 * make sure we exit gracefully rather than endlessly redo
168 	 * the fault.
169 	 */
170 
171 	fault = handle_mm_fault(mm, vma, address, flags);
172 
173 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
174 		return;
175 
176 	if (unlikely(fault & VM_FAULT_ERROR)) {
177 		if (fault & VM_FAULT_OOM)
178 			goto out_of_memory;
179 		else if (fault & VM_FAULT_SIGSEGV)
180 			goto bad_area;
181 		else if (fault & VM_FAULT_SIGBUS)
182 			goto do_sigbus;
183 		BUG();
184 	}
185 
186 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
187 		if (fault & VM_FAULT_MAJOR)
188 			tsk->maj_flt++;
189 		else
190 			tsk->min_flt++;
191 		if (fault & VM_FAULT_RETRY) {
192 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
193 			flags |= FAULT_FLAG_TRIED;
194 
195 			/*
196 			 * No need to up_read(&mm->mmap_sem) as we would
197 			 * have already released it in __lock_page_or_retry
198 			 * in mm/filemap.c.
199 			 */
200 
201 			goto retry;
202 		}
203 	}
204 
205 	up_read(&mm->mmap_sem);
206 	return;
207 
208 	/*
209 	 * Something tried to access memory that isn't in our memory map..
210 	 * Fix it, but check if it's kernel or user first..
211 	 */
212 
213  bad_area:
214 	up_read(&mm->mmap_sem);
215 
216  bad_area_nosemaphore:
217 	DPG(show_registers(regs));
218 
219 	/* User mode accesses just cause a SIGSEGV */
220 
221 	if (user_mode(regs)) {
222 #ifdef CONFIG_NO_SEGFAULT_TERMINATION
223 		DECLARE_WAIT_QUEUE_HEAD(wq);
224 #endif
225 		printk(KERN_NOTICE "%s (pid %d) segfaults for page "
226 			"address %08lx at pc %08lx\n",
227 			tsk->comm, tsk->pid,
228 			address, instruction_pointer(regs));
229 
230 		/* With DPG on, we've already dumped registers above.  */
231 		DPG(if (0))
232 			show_registers(regs);
233 
234 #ifdef CONFIG_NO_SEGFAULT_TERMINATION
235 		wait_event_interruptible(wq, 0 == 1);
236 #else
237 		info.si_signo = SIGSEGV;
238 		info.si_errno = 0;
239 		/* info.si_code has been set above */
240 		info.si_addr = (void *)address;
241 		force_sig_info(SIGSEGV, &info, tsk);
242 #endif
243 		return;
244 	}
245 
246  no_context:
247 
248 	/* Are we prepared to handle this kernel fault?
249 	 *
250 	 * (The kernel has valid exception-points in the source
251 	 *  when it accesses user-memory. When it fails in one
252 	 *  of those points, we find it in a table and do a jump
253 	 *  to some fixup code that loads an appropriate error
254 	 *  code)
255 	 */
256 
257 	if (find_fixup_code(regs))
258 		return;
259 
260 	/*
261 	 * Oops. The kernel tried to access some bad page. We'll have to
262 	 * terminate things with extreme prejudice.
263 	 */
264 
265 	if (!oops_in_progress) {
266 		oops_in_progress = 1;
267 		if ((unsigned long) (address) < PAGE_SIZE)
268 			printk(KERN_ALERT "Unable to handle kernel NULL "
269 				"pointer dereference");
270 		else
271 			printk(KERN_ALERT "Unable to handle kernel access"
272 				" at virtual address %08lx\n", address);
273 
274 		die_if_kernel("Oops", regs, (writeaccess << 1) | protection);
275 		oops_in_progress = 0;
276 	}
277 
278 	do_exit(SIGKILL);
279 
280 	/*
281 	 * We ran out of memory, or some other thing happened to us that made
282 	 * us unable to handle the page fault gracefully.
283 	 */
284 
285  out_of_memory:
286 	up_read(&mm->mmap_sem);
287 	if (!user_mode(regs))
288 		goto no_context;
289 	pagefault_out_of_memory();
290 	return;
291 
292  do_sigbus:
293 	up_read(&mm->mmap_sem);
294 
295 	/*
296 	 * Send a sigbus, regardless of whether we were in kernel
297 	 * or user mode.
298 	 */
299 	info.si_signo = SIGBUS;
300 	info.si_errno = 0;
301 	info.si_code = BUS_ADRERR;
302 	info.si_addr = (void *)address;
303 	force_sig_info(SIGBUS, &info, tsk);
304 
305 	/* Kernel mode? Handle exceptions or die */
306 	if (!user_mode(regs))
307 		goto no_context;
308 	return;
309 
310 vmalloc_fault:
311 	{
312 		/*
313 		 * Synchronize this task's top level page-table
314 		 * with the 'reference' page table.
315 		 *
316 		 * Use current_pgd instead of tsk->active_mm->pgd
317 		 * since the latter might be unavailable if this
318 		 * code is executed in a misfortunately run irq
319 		 * (like inside schedule() between switch_mm and
320 		 *  switch_to...).
321 		 */
322 
323 		int offset = pgd_index(address);
324 		pgd_t *pgd, *pgd_k;
325 		pud_t *pud, *pud_k;
326 		pmd_t *pmd, *pmd_k;
327 		pte_t *pte_k;
328 
329 		pgd = (pgd_t *)per_cpu(current_pgd, smp_processor_id()) + offset;
330 		pgd_k = init_mm.pgd + offset;
331 
332 		/* Since we're two-level, we don't need to do both
333 		 * set_pgd and set_pmd (they do the same thing). If
334 		 * we go three-level at some point, do the right thing
335 		 * with pgd_present and set_pgd here.
336 		 *
337 		 * Also, since the vmalloc area is global, we don't
338 		 * need to copy individual PTE's, it is enough to
339 		 * copy the pgd pointer into the pte page of the
340 		 * root task. If that is there, we'll find our pte if
341 		 * it exists.
342 		 */
343 
344 		pud = pud_offset(pgd, address);
345 		pud_k = pud_offset(pgd_k, address);
346 		if (!pud_present(*pud_k))
347 			goto no_context;
348 
349 		pmd = pmd_offset(pud, address);
350 		pmd_k = pmd_offset(pud_k, address);
351 
352 		if (!pmd_present(*pmd_k))
353 			goto bad_area_nosemaphore;
354 
355 		set_pmd(pmd, *pmd_k);
356 
357 		/* Make sure the actual PTE exists as well to
358 		 * catch kernel vmalloc-area accesses to non-mapped
359 		 * addresses. If we don't do this, this will just
360 		 * silently loop forever.
361 		 */
362 
363 		pte_k = pte_offset_kernel(pmd_k, address);
364 		if (!pte_present(*pte_k))
365 			goto no_context;
366 
367 		return;
368 	}
369 }
370 
371 /* Find fixup code. */
372 int
find_fixup_code(struct pt_regs * regs)373 find_fixup_code(struct pt_regs *regs)
374 {
375 	const struct exception_table_entry *fixup;
376 	/* in case of delay slot fault (v32) */
377 	unsigned long ip = (instruction_pointer(regs) & ~0x1);
378 
379 	fixup = search_exception_tables(ip);
380 	if (fixup != 0) {
381 		/* Adjust the instruction pointer in the stackframe. */
382 		instruction_pointer(regs) = fixup->fixup;
383 		arch_fixup(regs);
384 		return 1;
385 	}
386 
387 	return 0;
388 }
389