1/* 2 * linux/arch/cris/kernel/process.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright (C) 2000-2002 Axis Communications AB 6 * 7 * Authors: Bjorn Wesen (bjornw@axis.com) 8 * Mikael Starvik (starvik@axis.com) 9 * 10 * This file handles the architecture-dependent parts of process handling.. 11 */ 12 13#include <linux/sched.h> 14#include <linux/slab.h> 15#include <linux/err.h> 16#include <linux/fs.h> 17#include <arch/svinto.h> 18#include <linux/init.h> 19#include <arch/system.h> 20#include <linux/ptrace.h> 21 22#ifdef CONFIG_ETRAX_GPIO 23void etrax_gpio_wake_up_check(void); /* drivers/gpio.c */ 24#endif 25 26/* 27 * We use this if we don't have any better 28 * idle routine.. 29 */ 30void default_idle(void) 31{ 32#ifdef CONFIG_ETRAX_GPIO 33 etrax_gpio_wake_up_check(); 34#endif 35 local_irq_enable(); 36} 37 38/* 39 * Free current thread data structures etc.. 40 */ 41 42void exit_thread(void) 43{ 44 /* Nothing needs to be done. */ 45} 46 47/* if the watchdog is enabled, we can simply disable interrupts and go 48 * into an eternal loop, and the watchdog will reset the CPU after 0.1s 49 * if on the other hand the watchdog wasn't enabled, we just enable it and wait 50 */ 51 52void hard_reset_now (void) 53{ 54 /* 55 * Don't declare this variable elsewhere. We don't want any other 56 * code to know about it than the watchdog handler in entry.S and 57 * this code, implementing hard reset through the watchdog. 58 */ 59#if defined(CONFIG_ETRAX_WATCHDOG) 60 extern int cause_of_death; 61#endif 62 63 printk("*** HARD RESET ***\n"); 64 local_irq_disable(); 65 66#if defined(CONFIG_ETRAX_WATCHDOG) 67 cause_of_death = 0xbedead; 68#else 69 /* Since we dont plan to keep on resetting the watchdog, 70 the key can be arbitrary hence three */ 71 *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, 3) | 72 IO_STATE(R_WATCHDOG, enable, start); 73#endif 74 75 while(1) /* waiting for RETRIBUTION! */ ; 76} 77 78/* 79 * Return saved PC of a blocked thread. 80 */ 81unsigned long thread_saved_pc(struct task_struct *t) 82{ 83 return task_pt_regs(t)->irp; 84} 85 86/* setup the child's kernel stack with a pt_regs and switch_stack on it. 87 * it will be un-nested during _resume and _ret_from_sys_call when the 88 * new thread is scheduled. 89 * 90 * also setup the thread switching structure which is used to keep 91 * thread-specific data during _resumes. 92 * 93 */ 94asmlinkage void ret_from_fork(void); 95asmlinkage void ret_from_kernel_thread(void); 96 97int copy_thread(unsigned long clone_flags, unsigned long usp, 98 unsigned long arg, struct task_struct *p) 99{ 100 struct pt_regs *childregs = task_pt_regs(p); 101 struct switch_stack *swstack = ((struct switch_stack *)childregs) - 1; 102 103 /* put the pt_regs structure at the end of the new kernel stack page and fix it up 104 * remember that the task_struct doubles as the kernel stack for the task 105 */ 106 107 if (unlikely(p->flags & PF_KTHREAD)) { 108 memset(swstack, 0, 109 sizeof(struct switch_stack) + sizeof(struct pt_regs)); 110 swstack->r1 = usp; 111 swstack->r2 = arg; 112 childregs->dccr = 1 << I_DCCR_BITNR; 113 swstack->return_ip = (unsigned long) ret_from_kernel_thread; 114 p->thread.ksp = (unsigned long) swstack; 115 p->thread.usp = 0; 116 return 0; 117 } 118 *childregs = *current_pt_regs(); /* struct copy of pt_regs */ 119 120 childregs->r10 = 0; /* child returns 0 after a fork/clone */ 121 122 /* put the switch stack right below the pt_regs */ 123 124 swstack->r9 = 0; /* parameter to ret_from_sys_call, 0 == dont restart the syscall */ 125 126 /* we want to return into ret_from_sys_call after the _resume */ 127 128 swstack->return_ip = (unsigned long) ret_from_fork; /* Will call ret_from_sys_call */ 129 130 /* fix the user-mode stackpointer */ 131 132 p->thread.usp = usp ?: rdusp(); 133 134 /* and the kernel-mode one */ 135 136 p->thread.ksp = (unsigned long) swstack; 137 138#ifdef DEBUG 139 printk("copy_thread: new regs at 0x%p, as shown below:\n", childregs); 140 show_registers(childregs); 141#endif 142 143 return 0; 144} 145 146unsigned long get_wchan(struct task_struct *p) 147{ 148#if 0 149 /* YURGH. TODO. */ 150 151 unsigned long ebp, esp, eip; 152 unsigned long stack_page; 153 int count = 0; 154 if (!p || p == current || p->state == TASK_RUNNING) 155 return 0; 156 stack_page = (unsigned long)p; 157 esp = p->thread.esp; 158 if (!stack_page || esp < stack_page || esp > 8188+stack_page) 159 return 0; 160 /* include/asm-i386/system.h:switch_to() pushes ebp last. */ 161 ebp = *(unsigned long *) esp; 162 do { 163 if (ebp < stack_page || ebp > 8184+stack_page) 164 return 0; 165 eip = *(unsigned long *) (ebp+4); 166 if (!in_sched_functions(eip)) 167 return eip; 168 ebp = *(unsigned long *) ebp; 169 } while (count++ < 16); 170#endif 171 return 0; 172} 173#undef last_sched 174#undef first_sched 175 176void show_regs(struct pt_regs * regs) 177{ 178 unsigned long usp = rdusp(); 179 180 show_regs_print_info(KERN_DEFAULT); 181 182 printk("IRP: %08lx SRP: %08lx DCCR: %08lx USP: %08lx MOF: %08lx\n", 183 regs->irp, regs->srp, regs->dccr, usp, regs->mof ); 184 printk(" r0: %08lx r1: %08lx r2: %08lx r3: %08lx\n", 185 regs->r0, regs->r1, regs->r2, regs->r3); 186 printk(" r4: %08lx r5: %08lx r6: %08lx r7: %08lx\n", 187 regs->r4, regs->r5, regs->r6, regs->r7); 188 printk(" r8: %08lx r9: %08lx r10: %08lx r11: %08lx\n", 189 regs->r8, regs->r9, regs->r10, regs->r11); 190 printk("r12: %08lx r13: %08lx oR10: %08lx\n", 191 regs->r12, regs->r13, regs->orig_r10); 192} 193 194