1/* 2 * SWIOTLB-based DMA API implementation 3 * 4 * Copyright (C) 2012 ARM Ltd. 5 * Author: Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20#include <linux/gfp.h> 21#include <linux/acpi.h> 22#include <linux/export.h> 23#include <linux/slab.h> 24#include <linux/genalloc.h> 25#include <linux/dma-mapping.h> 26#include <linux/dma-contiguous.h> 27#include <linux/vmalloc.h> 28#include <linux/swiotlb.h> 29 30#include <asm/cacheflush.h> 31 32static pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot, 33 bool coherent) 34{ 35 if (!coherent || dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs)) 36 return pgprot_writecombine(prot); 37 return prot; 38} 39 40static struct gen_pool *atomic_pool; 41 42#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 43static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE; 44 45static int __init early_coherent_pool(char *p) 46{ 47 atomic_pool_size = memparse(p, &p); 48 return 0; 49} 50early_param("coherent_pool", early_coherent_pool); 51 52static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags) 53{ 54 unsigned long val; 55 void *ptr = NULL; 56 57 if (!atomic_pool) { 58 WARN(1, "coherent pool not initialised!\n"); 59 return NULL; 60 } 61 62 val = gen_pool_alloc(atomic_pool, size); 63 if (val) { 64 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 65 66 *ret_page = phys_to_page(phys); 67 ptr = (void *)val; 68 memset(ptr, 0, size); 69 } 70 71 return ptr; 72} 73 74static bool __in_atomic_pool(void *start, size_t size) 75{ 76 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 77} 78 79static int __free_from_pool(void *start, size_t size) 80{ 81 if (!__in_atomic_pool(start, size)) 82 return 0; 83 84 gen_pool_free(atomic_pool, (unsigned long)start, size); 85 86 return 1; 87} 88 89static void *__dma_alloc_coherent(struct device *dev, size_t size, 90 dma_addr_t *dma_handle, gfp_t flags, 91 struct dma_attrs *attrs) 92{ 93 if (dev == NULL) { 94 WARN_ONCE(1, "Use an actual device structure for DMA allocation\n"); 95 return NULL; 96 } 97 98 if (IS_ENABLED(CONFIG_ZONE_DMA) && 99 dev->coherent_dma_mask <= DMA_BIT_MASK(32)) 100 flags |= GFP_DMA; 101 if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) { 102 struct page *page; 103 void *addr; 104 105 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT, 106 get_order(size)); 107 if (!page) 108 return NULL; 109 110 *dma_handle = phys_to_dma(dev, page_to_phys(page)); 111 addr = page_address(page); 112 memset(addr, 0, size); 113 return addr; 114 } else { 115 return swiotlb_alloc_coherent(dev, size, dma_handle, flags); 116 } 117} 118 119static void __dma_free_coherent(struct device *dev, size_t size, 120 void *vaddr, dma_addr_t dma_handle, 121 struct dma_attrs *attrs) 122{ 123 bool freed; 124 phys_addr_t paddr = dma_to_phys(dev, dma_handle); 125 126 if (dev == NULL) { 127 WARN_ONCE(1, "Use an actual device structure for DMA allocation\n"); 128 return; 129 } 130 131 freed = dma_release_from_contiguous(dev, 132 phys_to_page(paddr), 133 size >> PAGE_SHIFT); 134 if (!freed) 135 swiotlb_free_coherent(dev, size, vaddr, dma_handle); 136} 137 138static void *__dma_alloc(struct device *dev, size_t size, 139 dma_addr_t *dma_handle, gfp_t flags, 140 struct dma_attrs *attrs) 141{ 142 struct page *page; 143 void *ptr, *coherent_ptr; 144 bool coherent = is_device_dma_coherent(dev); 145 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false); 146 147 size = PAGE_ALIGN(size); 148 149 if (!coherent && !gfpflags_allow_blocking(flags)) { 150 struct page *page = NULL; 151 void *addr = __alloc_from_pool(size, &page, flags); 152 153 if (addr) 154 *dma_handle = phys_to_dma(dev, page_to_phys(page)); 155 156 return addr; 157 } 158 159 ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs); 160 if (!ptr) 161 goto no_mem; 162 163 /* no need for non-cacheable mapping if coherent */ 164 if (coherent) 165 return ptr; 166 167 /* remove any dirty cache lines on the kernel alias */ 168 __dma_flush_range(ptr, ptr + size); 169 170 /* create a coherent mapping */ 171 page = virt_to_page(ptr); 172 coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP, 173 prot, NULL); 174 if (!coherent_ptr) 175 goto no_map; 176 177 return coherent_ptr; 178 179no_map: 180 __dma_free_coherent(dev, size, ptr, *dma_handle, attrs); 181no_mem: 182 *dma_handle = DMA_ERROR_CODE; 183 return NULL; 184} 185 186static void __dma_free(struct device *dev, size_t size, 187 void *vaddr, dma_addr_t dma_handle, 188 struct dma_attrs *attrs) 189{ 190 void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle)); 191 192 size = PAGE_ALIGN(size); 193 194 if (!is_device_dma_coherent(dev)) { 195 if (__free_from_pool(vaddr, size)) 196 return; 197 vunmap(vaddr); 198 } 199 __dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs); 200} 201 202static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page, 203 unsigned long offset, size_t size, 204 enum dma_data_direction dir, 205 struct dma_attrs *attrs) 206{ 207 dma_addr_t dev_addr; 208 209 dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs); 210 if (!is_device_dma_coherent(dev)) 211 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 212 213 return dev_addr; 214} 215 216 217static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr, 218 size_t size, enum dma_data_direction dir, 219 struct dma_attrs *attrs) 220{ 221 if (!is_device_dma_coherent(dev)) 222 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 223 swiotlb_unmap_page(dev, dev_addr, size, dir, attrs); 224} 225 226static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl, 227 int nelems, enum dma_data_direction dir, 228 struct dma_attrs *attrs) 229{ 230 struct scatterlist *sg; 231 int i, ret; 232 233 ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs); 234 if (!is_device_dma_coherent(dev)) 235 for_each_sg(sgl, sg, ret, i) 236 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 237 sg->length, dir); 238 239 return ret; 240} 241 242static void __swiotlb_unmap_sg_attrs(struct device *dev, 243 struct scatterlist *sgl, int nelems, 244 enum dma_data_direction dir, 245 struct dma_attrs *attrs) 246{ 247 struct scatterlist *sg; 248 int i; 249 250 if (!is_device_dma_coherent(dev)) 251 for_each_sg(sgl, sg, nelems, i) 252 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 253 sg->length, dir); 254 swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs); 255} 256 257static void __swiotlb_sync_single_for_cpu(struct device *dev, 258 dma_addr_t dev_addr, size_t size, 259 enum dma_data_direction dir) 260{ 261 if (!is_device_dma_coherent(dev)) 262 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 263 swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir); 264} 265 266static void __swiotlb_sync_single_for_device(struct device *dev, 267 dma_addr_t dev_addr, size_t size, 268 enum dma_data_direction dir) 269{ 270 swiotlb_sync_single_for_device(dev, dev_addr, size, dir); 271 if (!is_device_dma_coherent(dev)) 272 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 273} 274 275static void __swiotlb_sync_sg_for_cpu(struct device *dev, 276 struct scatterlist *sgl, int nelems, 277 enum dma_data_direction dir) 278{ 279 struct scatterlist *sg; 280 int i; 281 282 if (!is_device_dma_coherent(dev)) 283 for_each_sg(sgl, sg, nelems, i) 284 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 285 sg->length, dir); 286 swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir); 287} 288 289static void __swiotlb_sync_sg_for_device(struct device *dev, 290 struct scatterlist *sgl, int nelems, 291 enum dma_data_direction dir) 292{ 293 struct scatterlist *sg; 294 int i; 295 296 swiotlb_sync_sg_for_device(dev, sgl, nelems, dir); 297 if (!is_device_dma_coherent(dev)) 298 for_each_sg(sgl, sg, nelems, i) 299 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 300 sg->length, dir); 301} 302 303static int __swiotlb_mmap(struct device *dev, 304 struct vm_area_struct *vma, 305 void *cpu_addr, dma_addr_t dma_addr, size_t size, 306 struct dma_attrs *attrs) 307{ 308 int ret = -ENXIO; 309 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> 310 PAGE_SHIFT; 311 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 312 unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT; 313 unsigned long off = vma->vm_pgoff; 314 315 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, 316 is_device_dma_coherent(dev)); 317 318 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 319 return ret; 320 321 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 322 ret = remap_pfn_range(vma, vma->vm_start, 323 pfn + off, 324 vma->vm_end - vma->vm_start, 325 vma->vm_page_prot); 326 } 327 328 return ret; 329} 330 331static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt, 332 void *cpu_addr, dma_addr_t handle, size_t size, 333 struct dma_attrs *attrs) 334{ 335 int ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 336 337 if (!ret) 338 sg_set_page(sgt->sgl, phys_to_page(dma_to_phys(dev, handle)), 339 PAGE_ALIGN(size), 0); 340 341 return ret; 342} 343 344static struct dma_map_ops swiotlb_dma_ops = { 345 .alloc = __dma_alloc, 346 .free = __dma_free, 347 .mmap = __swiotlb_mmap, 348 .get_sgtable = __swiotlb_get_sgtable, 349 .map_page = __swiotlb_map_page, 350 .unmap_page = __swiotlb_unmap_page, 351 .map_sg = __swiotlb_map_sg_attrs, 352 .unmap_sg = __swiotlb_unmap_sg_attrs, 353 .sync_single_for_cpu = __swiotlb_sync_single_for_cpu, 354 .sync_single_for_device = __swiotlb_sync_single_for_device, 355 .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu, 356 .sync_sg_for_device = __swiotlb_sync_sg_for_device, 357 .dma_supported = swiotlb_dma_supported, 358 .mapping_error = swiotlb_dma_mapping_error, 359}; 360 361static int __init atomic_pool_init(void) 362{ 363 pgprot_t prot = __pgprot(PROT_NORMAL_NC); 364 unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT; 365 struct page *page; 366 void *addr; 367 unsigned int pool_size_order = get_order(atomic_pool_size); 368 369 if (dev_get_cma_area(NULL)) 370 page = dma_alloc_from_contiguous(NULL, nr_pages, 371 pool_size_order); 372 else 373 page = alloc_pages(GFP_DMA, pool_size_order); 374 375 if (page) { 376 int ret; 377 void *page_addr = page_address(page); 378 379 memset(page_addr, 0, atomic_pool_size); 380 __dma_flush_range(page_addr, page_addr + atomic_pool_size); 381 382 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 383 if (!atomic_pool) 384 goto free_page; 385 386 addr = dma_common_contiguous_remap(page, atomic_pool_size, 387 VM_USERMAP, prot, atomic_pool_init); 388 389 if (!addr) 390 goto destroy_genpool; 391 392 ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr, 393 page_to_phys(page), 394 atomic_pool_size, -1); 395 if (ret) 396 goto remove_mapping; 397 398 gen_pool_set_algo(atomic_pool, 399 gen_pool_first_fit_order_align, 400 (void *)PAGE_SHIFT); 401 402 pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n", 403 atomic_pool_size / 1024); 404 return 0; 405 } 406 goto out; 407 408remove_mapping: 409 dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP); 410destroy_genpool: 411 gen_pool_destroy(atomic_pool); 412 atomic_pool = NULL; 413free_page: 414 if (!dma_release_from_contiguous(NULL, page, nr_pages)) 415 __free_pages(page, pool_size_order); 416out: 417 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 418 atomic_pool_size / 1024); 419 return -ENOMEM; 420} 421 422/******************************************** 423 * The following APIs are for dummy DMA ops * 424 ********************************************/ 425 426static void *__dummy_alloc(struct device *dev, size_t size, 427 dma_addr_t *dma_handle, gfp_t flags, 428 struct dma_attrs *attrs) 429{ 430 return NULL; 431} 432 433static void __dummy_free(struct device *dev, size_t size, 434 void *vaddr, dma_addr_t dma_handle, 435 struct dma_attrs *attrs) 436{ 437} 438 439static int __dummy_mmap(struct device *dev, 440 struct vm_area_struct *vma, 441 void *cpu_addr, dma_addr_t dma_addr, size_t size, 442 struct dma_attrs *attrs) 443{ 444 return -ENXIO; 445} 446 447static dma_addr_t __dummy_map_page(struct device *dev, struct page *page, 448 unsigned long offset, size_t size, 449 enum dma_data_direction dir, 450 struct dma_attrs *attrs) 451{ 452 return DMA_ERROR_CODE; 453} 454 455static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr, 456 size_t size, enum dma_data_direction dir, 457 struct dma_attrs *attrs) 458{ 459} 460 461static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl, 462 int nelems, enum dma_data_direction dir, 463 struct dma_attrs *attrs) 464{ 465 return 0; 466} 467 468static void __dummy_unmap_sg(struct device *dev, 469 struct scatterlist *sgl, int nelems, 470 enum dma_data_direction dir, 471 struct dma_attrs *attrs) 472{ 473} 474 475static void __dummy_sync_single(struct device *dev, 476 dma_addr_t dev_addr, size_t size, 477 enum dma_data_direction dir) 478{ 479} 480 481static void __dummy_sync_sg(struct device *dev, 482 struct scatterlist *sgl, int nelems, 483 enum dma_data_direction dir) 484{ 485} 486 487static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr) 488{ 489 return 1; 490} 491 492static int __dummy_dma_supported(struct device *hwdev, u64 mask) 493{ 494 return 0; 495} 496 497struct dma_map_ops dummy_dma_ops = { 498 .alloc = __dummy_alloc, 499 .free = __dummy_free, 500 .mmap = __dummy_mmap, 501 .map_page = __dummy_map_page, 502 .unmap_page = __dummy_unmap_page, 503 .map_sg = __dummy_map_sg, 504 .unmap_sg = __dummy_unmap_sg, 505 .sync_single_for_cpu = __dummy_sync_single, 506 .sync_single_for_device = __dummy_sync_single, 507 .sync_sg_for_cpu = __dummy_sync_sg, 508 .sync_sg_for_device = __dummy_sync_sg, 509 .mapping_error = __dummy_mapping_error, 510 .dma_supported = __dummy_dma_supported, 511}; 512EXPORT_SYMBOL(dummy_dma_ops); 513 514static int __init arm64_dma_init(void) 515{ 516 return atomic_pool_init(); 517} 518arch_initcall(arm64_dma_init); 519 520#define PREALLOC_DMA_DEBUG_ENTRIES 4096 521 522static int __init dma_debug_do_init(void) 523{ 524 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 525 return 0; 526} 527fs_initcall(dma_debug_do_init); 528 529 530#ifdef CONFIG_IOMMU_DMA 531#include <linux/dma-iommu.h> 532#include <linux/platform_device.h> 533#include <linux/amba/bus.h> 534 535/* Thankfully, all cache ops are by VA so we can ignore phys here */ 536static void flush_page(struct device *dev, const void *virt, phys_addr_t phys) 537{ 538 __dma_flush_range(virt, virt + PAGE_SIZE); 539} 540 541static void *__iommu_alloc_attrs(struct device *dev, size_t size, 542 dma_addr_t *handle, gfp_t gfp, 543 struct dma_attrs *attrs) 544{ 545 bool coherent = is_device_dma_coherent(dev); 546 int ioprot = dma_direction_to_prot(DMA_BIDIRECTIONAL, coherent); 547 size_t iosize = size; 548 void *addr; 549 550 if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n")) 551 return NULL; 552 553 size = PAGE_ALIGN(size); 554 555 /* 556 * Some drivers rely on this, and we probably don't want the 557 * possibility of stale kernel data being read by devices anyway. 558 */ 559 gfp |= __GFP_ZERO; 560 561 if (gfpflags_allow_blocking(gfp)) { 562 struct page **pages; 563 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent); 564 565 pages = iommu_dma_alloc(dev, iosize, gfp, ioprot, handle, 566 flush_page); 567 if (!pages) 568 return NULL; 569 570 addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot, 571 __builtin_return_address(0)); 572 if (!addr) 573 iommu_dma_free(dev, pages, iosize, handle); 574 } else { 575 struct page *page; 576 /* 577 * In atomic context we can't remap anything, so we'll only 578 * get the virtually contiguous buffer we need by way of a 579 * physically contiguous allocation. 580 */ 581 if (coherent) { 582 page = alloc_pages(gfp, get_order(size)); 583 addr = page ? page_address(page) : NULL; 584 } else { 585 addr = __alloc_from_pool(size, &page, gfp); 586 } 587 if (!addr) 588 return NULL; 589 590 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot); 591 if (iommu_dma_mapping_error(dev, *handle)) { 592 if (coherent) 593 __free_pages(page, get_order(size)); 594 else 595 __free_from_pool(addr, size); 596 addr = NULL; 597 } 598 } 599 return addr; 600} 601 602static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 603 dma_addr_t handle, struct dma_attrs *attrs) 604{ 605 size_t iosize = size; 606 607 size = PAGE_ALIGN(size); 608 /* 609 * @cpu_addr will be one of 3 things depending on how it was allocated: 610 * - A remapped array of pages from iommu_dma_alloc(), for all 611 * non-atomic allocations. 612 * - A non-cacheable alias from the atomic pool, for atomic 613 * allocations by non-coherent devices. 614 * - A normal lowmem address, for atomic allocations by 615 * coherent devices. 616 * Hence how dodgy the below logic looks... 617 */ 618 if (__in_atomic_pool(cpu_addr, size)) { 619 iommu_dma_unmap_page(dev, handle, iosize, 0, NULL); 620 __free_from_pool(cpu_addr, size); 621 } else if (is_vmalloc_addr(cpu_addr)){ 622 struct vm_struct *area = find_vm_area(cpu_addr); 623 624 if (WARN_ON(!area || !area->pages)) 625 return; 626 iommu_dma_free(dev, area->pages, iosize, &handle); 627 dma_common_free_remap(cpu_addr, size, VM_USERMAP); 628 } else { 629 iommu_dma_unmap_page(dev, handle, iosize, 0, NULL); 630 __free_pages(virt_to_page(cpu_addr), get_order(size)); 631 } 632} 633 634static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 635 void *cpu_addr, dma_addr_t dma_addr, size_t size, 636 struct dma_attrs *attrs) 637{ 638 struct vm_struct *area; 639 int ret; 640 641 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, 642 is_device_dma_coherent(dev)); 643 644 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 645 return ret; 646 647 area = find_vm_area(cpu_addr); 648 if (WARN_ON(!area || !area->pages)) 649 return -ENXIO; 650 651 return iommu_dma_mmap(area->pages, size, vma); 652} 653 654static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 655 void *cpu_addr, dma_addr_t dma_addr, 656 size_t size, struct dma_attrs *attrs) 657{ 658 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 659 struct vm_struct *area = find_vm_area(cpu_addr); 660 661 if (WARN_ON(!area || !area->pages)) 662 return -ENXIO; 663 664 return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size, 665 GFP_KERNEL); 666} 667 668static void __iommu_sync_single_for_cpu(struct device *dev, 669 dma_addr_t dev_addr, size_t size, 670 enum dma_data_direction dir) 671{ 672 phys_addr_t phys; 673 674 if (is_device_dma_coherent(dev)) 675 return; 676 677 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); 678 __dma_unmap_area(phys_to_virt(phys), size, dir); 679} 680 681static void __iommu_sync_single_for_device(struct device *dev, 682 dma_addr_t dev_addr, size_t size, 683 enum dma_data_direction dir) 684{ 685 phys_addr_t phys; 686 687 if (is_device_dma_coherent(dev)) 688 return; 689 690 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); 691 __dma_map_area(phys_to_virt(phys), size, dir); 692} 693 694static dma_addr_t __iommu_map_page(struct device *dev, struct page *page, 695 unsigned long offset, size_t size, 696 enum dma_data_direction dir, 697 struct dma_attrs *attrs) 698{ 699 bool coherent = is_device_dma_coherent(dev); 700 int prot = dma_direction_to_prot(dir, coherent); 701 dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot); 702 703 if (!iommu_dma_mapping_error(dev, dev_addr) && 704 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 705 __iommu_sync_single_for_device(dev, dev_addr, size, dir); 706 707 return dev_addr; 708} 709 710static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr, 711 size_t size, enum dma_data_direction dir, 712 struct dma_attrs *attrs) 713{ 714 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 715 __iommu_sync_single_for_cpu(dev, dev_addr, size, dir); 716 717 iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs); 718} 719 720static void __iommu_sync_sg_for_cpu(struct device *dev, 721 struct scatterlist *sgl, int nelems, 722 enum dma_data_direction dir) 723{ 724 struct scatterlist *sg; 725 int i; 726 727 if (is_device_dma_coherent(dev)) 728 return; 729 730 for_each_sg(sgl, sg, nelems, i) 731 __dma_unmap_area(sg_virt(sg), sg->length, dir); 732} 733 734static void __iommu_sync_sg_for_device(struct device *dev, 735 struct scatterlist *sgl, int nelems, 736 enum dma_data_direction dir) 737{ 738 struct scatterlist *sg; 739 int i; 740 741 if (is_device_dma_coherent(dev)) 742 return; 743 744 for_each_sg(sgl, sg, nelems, i) 745 __dma_map_area(sg_virt(sg), sg->length, dir); 746} 747 748static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl, 749 int nelems, enum dma_data_direction dir, 750 struct dma_attrs *attrs) 751{ 752 bool coherent = is_device_dma_coherent(dev); 753 754 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 755 __iommu_sync_sg_for_device(dev, sgl, nelems, dir); 756 757 return iommu_dma_map_sg(dev, sgl, nelems, 758 dma_direction_to_prot(dir, coherent)); 759} 760 761static void __iommu_unmap_sg_attrs(struct device *dev, 762 struct scatterlist *sgl, int nelems, 763 enum dma_data_direction dir, 764 struct dma_attrs *attrs) 765{ 766 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 767 __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir); 768 769 iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs); 770} 771 772static struct dma_map_ops iommu_dma_ops = { 773 .alloc = __iommu_alloc_attrs, 774 .free = __iommu_free_attrs, 775 .mmap = __iommu_mmap_attrs, 776 .get_sgtable = __iommu_get_sgtable, 777 .map_page = __iommu_map_page, 778 .unmap_page = __iommu_unmap_page, 779 .map_sg = __iommu_map_sg_attrs, 780 .unmap_sg = __iommu_unmap_sg_attrs, 781 .sync_single_for_cpu = __iommu_sync_single_for_cpu, 782 .sync_single_for_device = __iommu_sync_single_for_device, 783 .sync_sg_for_cpu = __iommu_sync_sg_for_cpu, 784 .sync_sg_for_device = __iommu_sync_sg_for_device, 785 .dma_supported = iommu_dma_supported, 786 .mapping_error = iommu_dma_mapping_error, 787}; 788 789/* 790 * TODO: Right now __iommu_setup_dma_ops() gets called too early to do 791 * everything it needs to - the device is only partially created and the 792 * IOMMU driver hasn't seen it yet, so it can't have a group. Thus we 793 * need this delayed attachment dance. Once IOMMU probe ordering is sorted 794 * to move the arch_setup_dma_ops() call later, all the notifier bits below 795 * become unnecessary, and will go away. 796 */ 797struct iommu_dma_notifier_data { 798 struct list_head list; 799 struct device *dev; 800 const struct iommu_ops *ops; 801 u64 dma_base; 802 u64 size; 803}; 804static LIST_HEAD(iommu_dma_masters); 805static DEFINE_MUTEX(iommu_dma_notifier_lock); 806 807/* 808 * Temporarily "borrow" a domain feature flag to to tell if we had to resort 809 * to creating our own domain here, in case we need to clean it up again. 810 */ 811#define __IOMMU_DOMAIN_FAKE_DEFAULT (1U << 31) 812 813static bool do_iommu_attach(struct device *dev, const struct iommu_ops *ops, 814 u64 dma_base, u64 size) 815{ 816 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 817 818 /* 819 * Best case: The device is either part of a group which was 820 * already attached to a domain in a previous call, or it's 821 * been put in a default DMA domain by the IOMMU core. 822 */ 823 if (!domain) { 824 /* 825 * Urgh. The IOMMU core isn't going to do default domains 826 * for non-PCI devices anyway, until it has some means of 827 * abstracting the entirely implementation-specific 828 * sideband data/SoC topology/unicorn dust that may or 829 * may not differentiate upstream masters. 830 * So until then, HORRIBLE HACKS! 831 */ 832 domain = ops->domain_alloc(IOMMU_DOMAIN_DMA); 833 if (!domain) 834 goto out_no_domain; 835 836 domain->ops = ops; 837 domain->type = IOMMU_DOMAIN_DMA | __IOMMU_DOMAIN_FAKE_DEFAULT; 838 839 if (iommu_attach_device(domain, dev)) 840 goto out_put_domain; 841 } 842 843 if (iommu_dma_init_domain(domain, dma_base, size)) 844 goto out_detach; 845 846 dev->archdata.dma_ops = &iommu_dma_ops; 847 return true; 848 849out_detach: 850 iommu_detach_device(domain, dev); 851out_put_domain: 852 if (domain->type & __IOMMU_DOMAIN_FAKE_DEFAULT) 853 iommu_domain_free(domain); 854out_no_domain: 855 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 856 dev_name(dev)); 857 return false; 858} 859 860static void queue_iommu_attach(struct device *dev, const struct iommu_ops *ops, 861 u64 dma_base, u64 size) 862{ 863 struct iommu_dma_notifier_data *iommudata; 864 865 iommudata = kzalloc(sizeof(*iommudata), GFP_KERNEL); 866 if (!iommudata) 867 return; 868 869 iommudata->dev = dev; 870 iommudata->ops = ops; 871 iommudata->dma_base = dma_base; 872 iommudata->size = size; 873 874 mutex_lock(&iommu_dma_notifier_lock); 875 list_add(&iommudata->list, &iommu_dma_masters); 876 mutex_unlock(&iommu_dma_notifier_lock); 877} 878 879static int __iommu_attach_notifier(struct notifier_block *nb, 880 unsigned long action, void *data) 881{ 882 struct iommu_dma_notifier_data *master, *tmp; 883 884 if (action != BUS_NOTIFY_ADD_DEVICE) 885 return 0; 886 887 mutex_lock(&iommu_dma_notifier_lock); 888 list_for_each_entry_safe(master, tmp, &iommu_dma_masters, list) { 889 if (do_iommu_attach(master->dev, master->ops, 890 master->dma_base, master->size)) { 891 list_del(&master->list); 892 kfree(master); 893 } 894 } 895 mutex_unlock(&iommu_dma_notifier_lock); 896 return 0; 897} 898 899static int register_iommu_dma_ops_notifier(struct bus_type *bus) 900{ 901 struct notifier_block *nb = kzalloc(sizeof(*nb), GFP_KERNEL); 902 int ret; 903 904 if (!nb) 905 return -ENOMEM; 906 /* 907 * The device must be attached to a domain before the driver probe 908 * routine gets a chance to start allocating DMA buffers. However, 909 * the IOMMU driver also needs a chance to configure the iommu_group 910 * via its add_device callback first, so we need to make the attach 911 * happen between those two points. Since the IOMMU core uses a bus 912 * notifier with default priority for add_device, do the same but 913 * with a lower priority to ensure the appropriate ordering. 914 */ 915 nb->notifier_call = __iommu_attach_notifier; 916 nb->priority = -100; 917 918 ret = bus_register_notifier(bus, nb); 919 if (ret) { 920 pr_warn("Failed to register DMA domain notifier; IOMMU DMA ops unavailable on bus '%s'\n", 921 bus->name); 922 kfree(nb); 923 } 924 return ret; 925} 926 927static int __init __iommu_dma_init(void) 928{ 929 int ret; 930 931 ret = iommu_dma_init(); 932 if (!ret) 933 ret = register_iommu_dma_ops_notifier(&platform_bus_type); 934 if (!ret) 935 ret = register_iommu_dma_ops_notifier(&amba_bustype); 936 937 /* handle devices queued before this arch_initcall */ 938 if (!ret) 939 __iommu_attach_notifier(NULL, BUS_NOTIFY_ADD_DEVICE, NULL); 940 return ret; 941} 942arch_initcall(__iommu_dma_init); 943 944static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 945 const struct iommu_ops *ops) 946{ 947 struct iommu_group *group; 948 949 if (!ops) 950 return; 951 /* 952 * TODO: As a concession to the future, we're ready to handle being 953 * called both early and late (i.e. after bus_add_device). Once all 954 * the platform bus code is reworked to call us late and the notifier 955 * junk above goes away, move the body of do_iommu_attach here. 956 */ 957 group = iommu_group_get(dev); 958 if (group) { 959 do_iommu_attach(dev, ops, dma_base, size); 960 iommu_group_put(group); 961 } else { 962 queue_iommu_attach(dev, ops, dma_base, size); 963 } 964} 965 966void arch_teardown_dma_ops(struct device *dev) 967{ 968 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 969 970 if (domain) { 971 iommu_detach_device(domain, dev); 972 if (domain->type & __IOMMU_DOMAIN_FAKE_DEFAULT) 973 iommu_domain_free(domain); 974 } 975 976 dev->archdata.dma_ops = NULL; 977} 978 979#else 980 981static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 982 struct iommu_ops *iommu) 983{ } 984 985#endif /* CONFIG_IOMMU_DMA */ 986 987void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 988 struct iommu_ops *iommu, bool coherent) 989{ 990 if (!dev->archdata.dma_ops) 991 dev->archdata.dma_ops = &swiotlb_dma_ops; 992 993 dev->archdata.dma_coherent = coherent; 994 __iommu_setup_dma_ops(dev, dma_base, size, iommu); 995} 996