1/*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 *          Christoffer Dall <c.dall@virtualopensystems.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <linux/kvm_host.h>
24#include <linux/mm.h>
25#include <linux/uaccess.h>
26
27#include <asm/cacheflush.h>
28#include <asm/cputype.h>
29#include <asm/debug-monitors.h>
30#include <asm/esr.h>
31#include <asm/kvm_arm.h>
32#include <asm/kvm_coproc.h>
33#include <asm/kvm_emulate.h>
34#include <asm/kvm_host.h>
35#include <asm/kvm_mmu.h>
36
37#include <trace/events/kvm.h>
38
39#include "sys_regs.h"
40
41#include "trace.h"
42
43/*
44 * All of this file is extremly similar to the ARM coproc.c, but the
45 * types are different. My gut feeling is that it should be pretty
46 * easy to merge, but that would be an ABI breakage -- again. VFP
47 * would also need to be abstracted.
48 *
49 * For AArch32, we only take care of what is being trapped. Anything
50 * that has to do with init and userspace access has to go via the
51 * 64bit interface.
52 */
53
54/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
55static u32 cache_levels;
56
57/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
58#define CSSELR_MAX 12
59
60/* Which cache CCSIDR represents depends on CSSELR value. */
61static u32 get_ccsidr(u32 csselr)
62{
63	u32 ccsidr;
64
65	/* Make sure noone else changes CSSELR during this! */
66	local_irq_disable();
67	/* Put value into CSSELR */
68	asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
69	isb();
70	/* Read result out of CCSIDR */
71	asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
72	local_irq_enable();
73
74	return ccsidr;
75}
76
77/*
78 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
79 */
80static bool access_dcsw(struct kvm_vcpu *vcpu,
81			struct sys_reg_params *p,
82			const struct sys_reg_desc *r)
83{
84	if (!p->is_write)
85		return read_from_write_only(vcpu, p);
86
87	kvm_set_way_flush(vcpu);
88	return true;
89}
90
91/*
92 * Generic accessor for VM registers. Only called as long as HCR_TVM
93 * is set. If the guest enables the MMU, we stop trapping the VM
94 * sys_regs and leave it in complete control of the caches.
95 */
96static bool access_vm_reg(struct kvm_vcpu *vcpu,
97			  struct sys_reg_params *p,
98			  const struct sys_reg_desc *r)
99{
100	bool was_enabled = vcpu_has_cache_enabled(vcpu);
101
102	BUG_ON(!p->is_write);
103
104	if (!p->is_aarch32) {
105		vcpu_sys_reg(vcpu, r->reg) = p->regval;
106	} else {
107		if (!p->is_32bit)
108			vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
109		vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
110	}
111
112	kvm_toggle_cache(vcpu, was_enabled);
113	return true;
114}
115
116/*
117 * Trap handler for the GICv3 SGI generation system register.
118 * Forward the request to the VGIC emulation.
119 * The cp15_64 code makes sure this automatically works
120 * for both AArch64 and AArch32 accesses.
121 */
122static bool access_gic_sgi(struct kvm_vcpu *vcpu,
123			   struct sys_reg_params *p,
124			   const struct sys_reg_desc *r)
125{
126	if (!p->is_write)
127		return read_from_write_only(vcpu, p);
128
129	vgic_v3_dispatch_sgi(vcpu, p->regval);
130
131	return true;
132}
133
134static bool trap_raz_wi(struct kvm_vcpu *vcpu,
135			struct sys_reg_params *p,
136			const struct sys_reg_desc *r)
137{
138	if (p->is_write)
139		return ignore_write(vcpu, p);
140	else
141		return read_zero(vcpu, p);
142}
143
144static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
145			   struct sys_reg_params *p,
146			   const struct sys_reg_desc *r)
147{
148	if (p->is_write) {
149		return ignore_write(vcpu, p);
150	} else {
151		p->regval = (1 << 3);
152		return true;
153	}
154}
155
156static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
157				   struct sys_reg_params *p,
158				   const struct sys_reg_desc *r)
159{
160	if (p->is_write) {
161		return ignore_write(vcpu, p);
162	} else {
163		u32 val;
164		asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
165		p->regval = val;
166		return true;
167	}
168}
169
170/*
171 * We want to avoid world-switching all the DBG registers all the
172 * time:
173 *
174 * - If we've touched any debug register, it is likely that we're
175 *   going to touch more of them. It then makes sense to disable the
176 *   traps and start doing the save/restore dance
177 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
178 *   then mandatory to save/restore the registers, as the guest
179 *   depends on them.
180 *
181 * For this, we use a DIRTY bit, indicating the guest has modified the
182 * debug registers, used as follow:
183 *
184 * On guest entry:
185 * - If the dirty bit is set (because we're coming back from trapping),
186 *   disable the traps, save host registers, restore guest registers.
187 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
188 *   set the dirty bit, disable the traps, save host registers,
189 *   restore guest registers.
190 * - Otherwise, enable the traps
191 *
192 * On guest exit:
193 * - If the dirty bit is set, save guest registers, restore host
194 *   registers and clear the dirty bit. This ensure that the host can
195 *   now use the debug registers.
196 */
197static bool trap_debug_regs(struct kvm_vcpu *vcpu,
198			    struct sys_reg_params *p,
199			    const struct sys_reg_desc *r)
200{
201	if (p->is_write) {
202		vcpu_sys_reg(vcpu, r->reg) = p->regval;
203		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
204	} else {
205		p->regval = vcpu_sys_reg(vcpu, r->reg);
206	}
207
208	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
209
210	return true;
211}
212
213/*
214 * reg_to_dbg/dbg_to_reg
215 *
216 * A 32 bit write to a debug register leave top bits alone
217 * A 32 bit read from a debug register only returns the bottom bits
218 *
219 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
220 * hyp.S code switches between host and guest values in future.
221 */
222static inline void reg_to_dbg(struct kvm_vcpu *vcpu,
223			      struct sys_reg_params *p,
224			      u64 *dbg_reg)
225{
226	u64 val = p->regval;
227
228	if (p->is_32bit) {
229		val &= 0xffffffffUL;
230		val |= ((*dbg_reg >> 32) << 32);
231	}
232
233	*dbg_reg = val;
234	vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
235}
236
237static inline void dbg_to_reg(struct kvm_vcpu *vcpu,
238			      struct sys_reg_params *p,
239			      u64 *dbg_reg)
240{
241	p->regval = *dbg_reg;
242	if (p->is_32bit)
243		p->regval &= 0xffffffffUL;
244}
245
246static inline bool trap_bvr(struct kvm_vcpu *vcpu,
247			    struct sys_reg_params *p,
248			    const struct sys_reg_desc *rd)
249{
250	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
251
252	if (p->is_write)
253		reg_to_dbg(vcpu, p, dbg_reg);
254	else
255		dbg_to_reg(vcpu, p, dbg_reg);
256
257	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
258
259	return true;
260}
261
262static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
263		const struct kvm_one_reg *reg, void __user *uaddr)
264{
265	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
266
267	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
268		return -EFAULT;
269	return 0;
270}
271
272static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
273	const struct kvm_one_reg *reg, void __user *uaddr)
274{
275	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
276
277	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
278		return -EFAULT;
279	return 0;
280}
281
282static inline void reset_bvr(struct kvm_vcpu *vcpu,
283			     const struct sys_reg_desc *rd)
284{
285	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
286}
287
288static inline bool trap_bcr(struct kvm_vcpu *vcpu,
289			    struct sys_reg_params *p,
290			    const struct sys_reg_desc *rd)
291{
292	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
293
294	if (p->is_write)
295		reg_to_dbg(vcpu, p, dbg_reg);
296	else
297		dbg_to_reg(vcpu, p, dbg_reg);
298
299	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
300
301	return true;
302}
303
304static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
305		const struct kvm_one_reg *reg, void __user *uaddr)
306{
307	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
308
309	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
310		return -EFAULT;
311
312	return 0;
313}
314
315static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
316	const struct kvm_one_reg *reg, void __user *uaddr)
317{
318	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
319
320	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
321		return -EFAULT;
322	return 0;
323}
324
325static inline void reset_bcr(struct kvm_vcpu *vcpu,
326			     const struct sys_reg_desc *rd)
327{
328	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
329}
330
331static inline bool trap_wvr(struct kvm_vcpu *vcpu,
332			    struct sys_reg_params *p,
333			    const struct sys_reg_desc *rd)
334{
335	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
336
337	if (p->is_write)
338		reg_to_dbg(vcpu, p, dbg_reg);
339	else
340		dbg_to_reg(vcpu, p, dbg_reg);
341
342	trace_trap_reg(__func__, rd->reg, p->is_write,
343		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
344
345	return true;
346}
347
348static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
349		const struct kvm_one_reg *reg, void __user *uaddr)
350{
351	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
352
353	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
354		return -EFAULT;
355	return 0;
356}
357
358static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
359	const struct kvm_one_reg *reg, void __user *uaddr)
360{
361	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
362
363	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
364		return -EFAULT;
365	return 0;
366}
367
368static inline void reset_wvr(struct kvm_vcpu *vcpu,
369			     const struct sys_reg_desc *rd)
370{
371	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
372}
373
374static inline bool trap_wcr(struct kvm_vcpu *vcpu,
375			    struct sys_reg_params *p,
376			    const struct sys_reg_desc *rd)
377{
378	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
379
380	if (p->is_write)
381		reg_to_dbg(vcpu, p, dbg_reg);
382	else
383		dbg_to_reg(vcpu, p, dbg_reg);
384
385	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
386
387	return true;
388}
389
390static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
391		const struct kvm_one_reg *reg, void __user *uaddr)
392{
393	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
394
395	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
396		return -EFAULT;
397	return 0;
398}
399
400static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
401	const struct kvm_one_reg *reg, void __user *uaddr)
402{
403	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
404
405	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
406		return -EFAULT;
407	return 0;
408}
409
410static inline void reset_wcr(struct kvm_vcpu *vcpu,
411			     const struct sys_reg_desc *rd)
412{
413	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
414}
415
416static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
417{
418	u64 amair;
419
420	asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
421	vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
422}
423
424static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
425{
426	u64 mpidr;
427
428	/*
429	 * Map the vcpu_id into the first three affinity level fields of
430	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
431	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
432	 * of the GICv3 to be able to address each CPU directly when
433	 * sending IPIs.
434	 */
435	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
436	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
437	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
438	vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
439}
440
441/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
442#define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
443	/* DBGBVRn_EL1 */						\
444	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100),	\
445	  trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },		\
446	/* DBGBCRn_EL1 */						\
447	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101),	\
448	  trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },		\
449	/* DBGWVRn_EL1 */						\
450	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110),	\
451	  trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },		\
452	/* DBGWCRn_EL1 */						\
453	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111),	\
454	  trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
455
456/*
457 * Architected system registers.
458 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
459 *
460 * We could trap ID_DFR0 and tell the guest we don't support performance
461 * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
462 * NAKed, so it will read the PMCR anyway.
463 *
464 * Therefore we tell the guest we have 0 counters.  Unfortunately, we
465 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
466 * all PM registers, which doesn't crash the guest kernel at least.
467 *
468 * Debug handling: We do trap most, if not all debug related system
469 * registers. The implementation is good enough to ensure that a guest
470 * can use these with minimal performance degradation. The drawback is
471 * that we don't implement any of the external debug, none of the
472 * OSlock protocol. This should be revisited if we ever encounter a
473 * more demanding guest...
474 */
475static const struct sys_reg_desc sys_reg_descs[] = {
476	/* DC ISW */
477	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
478	  access_dcsw },
479	/* DC CSW */
480	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
481	  access_dcsw },
482	/* DC CISW */
483	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
484	  access_dcsw },
485
486	DBG_BCR_BVR_WCR_WVR_EL1(0),
487	DBG_BCR_BVR_WCR_WVR_EL1(1),
488	/* MDCCINT_EL1 */
489	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
490	  trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
491	/* MDSCR_EL1 */
492	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
493	  trap_debug_regs, reset_val, MDSCR_EL1, 0 },
494	DBG_BCR_BVR_WCR_WVR_EL1(2),
495	DBG_BCR_BVR_WCR_WVR_EL1(3),
496	DBG_BCR_BVR_WCR_WVR_EL1(4),
497	DBG_BCR_BVR_WCR_WVR_EL1(5),
498	DBG_BCR_BVR_WCR_WVR_EL1(6),
499	DBG_BCR_BVR_WCR_WVR_EL1(7),
500	DBG_BCR_BVR_WCR_WVR_EL1(8),
501	DBG_BCR_BVR_WCR_WVR_EL1(9),
502	DBG_BCR_BVR_WCR_WVR_EL1(10),
503	DBG_BCR_BVR_WCR_WVR_EL1(11),
504	DBG_BCR_BVR_WCR_WVR_EL1(12),
505	DBG_BCR_BVR_WCR_WVR_EL1(13),
506	DBG_BCR_BVR_WCR_WVR_EL1(14),
507	DBG_BCR_BVR_WCR_WVR_EL1(15),
508
509	/* MDRAR_EL1 */
510	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
511	  trap_raz_wi },
512	/* OSLAR_EL1 */
513	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
514	  trap_raz_wi },
515	/* OSLSR_EL1 */
516	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
517	  trap_oslsr_el1 },
518	/* OSDLR_EL1 */
519	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
520	  trap_raz_wi },
521	/* DBGPRCR_EL1 */
522	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
523	  trap_raz_wi },
524	/* DBGCLAIMSET_EL1 */
525	{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
526	  trap_raz_wi },
527	/* DBGCLAIMCLR_EL1 */
528	{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
529	  trap_raz_wi },
530	/* DBGAUTHSTATUS_EL1 */
531	{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
532	  trap_dbgauthstatus_el1 },
533
534	/* MDCCSR_EL1 */
535	{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
536	  trap_raz_wi },
537	/* DBGDTR_EL0 */
538	{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
539	  trap_raz_wi },
540	/* DBGDTR[TR]X_EL0 */
541	{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
542	  trap_raz_wi },
543
544	/* DBGVCR32_EL2 */
545	{ Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
546	  NULL, reset_val, DBGVCR32_EL2, 0 },
547
548	/* MPIDR_EL1 */
549	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
550	  NULL, reset_mpidr, MPIDR_EL1 },
551	/* SCTLR_EL1 */
552	{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
553	  access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
554	/* CPACR_EL1 */
555	{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
556	  NULL, reset_val, CPACR_EL1, 0 },
557	/* TTBR0_EL1 */
558	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
559	  access_vm_reg, reset_unknown, TTBR0_EL1 },
560	/* TTBR1_EL1 */
561	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
562	  access_vm_reg, reset_unknown, TTBR1_EL1 },
563	/* TCR_EL1 */
564	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
565	  access_vm_reg, reset_val, TCR_EL1, 0 },
566
567	/* AFSR0_EL1 */
568	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
569	  access_vm_reg, reset_unknown, AFSR0_EL1 },
570	/* AFSR1_EL1 */
571	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
572	  access_vm_reg, reset_unknown, AFSR1_EL1 },
573	/* ESR_EL1 */
574	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
575	  access_vm_reg, reset_unknown, ESR_EL1 },
576	/* FAR_EL1 */
577	{ Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
578	  access_vm_reg, reset_unknown, FAR_EL1 },
579	/* PAR_EL1 */
580	{ Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
581	  NULL, reset_unknown, PAR_EL1 },
582
583	/* PMINTENSET_EL1 */
584	{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
585	  trap_raz_wi },
586	/* PMINTENCLR_EL1 */
587	{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
588	  trap_raz_wi },
589
590	/* MAIR_EL1 */
591	{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
592	  access_vm_reg, reset_unknown, MAIR_EL1 },
593	/* AMAIR_EL1 */
594	{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
595	  access_vm_reg, reset_amair_el1, AMAIR_EL1 },
596
597	/* VBAR_EL1 */
598	{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
599	  NULL, reset_val, VBAR_EL1, 0 },
600
601	/* ICC_SGI1R_EL1 */
602	{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
603	  access_gic_sgi },
604	/* ICC_SRE_EL1 */
605	{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
606	  trap_raz_wi },
607
608	/* CONTEXTIDR_EL1 */
609	{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
610	  access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
611	/* TPIDR_EL1 */
612	{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
613	  NULL, reset_unknown, TPIDR_EL1 },
614
615	/* CNTKCTL_EL1 */
616	{ Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
617	  NULL, reset_val, CNTKCTL_EL1, 0},
618
619	/* CSSELR_EL1 */
620	{ Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
621	  NULL, reset_unknown, CSSELR_EL1 },
622
623	/* PMCR_EL0 */
624	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
625	  trap_raz_wi },
626	/* PMCNTENSET_EL0 */
627	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
628	  trap_raz_wi },
629	/* PMCNTENCLR_EL0 */
630	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
631	  trap_raz_wi },
632	/* PMOVSCLR_EL0 */
633	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
634	  trap_raz_wi },
635	/* PMSWINC_EL0 */
636	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
637	  trap_raz_wi },
638	/* PMSELR_EL0 */
639	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
640	  trap_raz_wi },
641	/* PMCEID0_EL0 */
642	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
643	  trap_raz_wi },
644	/* PMCEID1_EL0 */
645	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
646	  trap_raz_wi },
647	/* PMCCNTR_EL0 */
648	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
649	  trap_raz_wi },
650	/* PMXEVTYPER_EL0 */
651	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
652	  trap_raz_wi },
653	/* PMXEVCNTR_EL0 */
654	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
655	  trap_raz_wi },
656	/* PMUSERENR_EL0 */
657	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
658	  trap_raz_wi },
659	/* PMOVSSET_EL0 */
660	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
661	  trap_raz_wi },
662
663	/* TPIDR_EL0 */
664	{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
665	  NULL, reset_unknown, TPIDR_EL0 },
666	/* TPIDRRO_EL0 */
667	{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
668	  NULL, reset_unknown, TPIDRRO_EL0 },
669
670	/* DACR32_EL2 */
671	{ Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
672	  NULL, reset_unknown, DACR32_EL2 },
673	/* IFSR32_EL2 */
674	{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
675	  NULL, reset_unknown, IFSR32_EL2 },
676	/* FPEXC32_EL2 */
677	{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
678	  NULL, reset_val, FPEXC32_EL2, 0x70 },
679};
680
681static bool trap_dbgidr(struct kvm_vcpu *vcpu,
682			struct sys_reg_params *p,
683			const struct sys_reg_desc *r)
684{
685	if (p->is_write) {
686		return ignore_write(vcpu, p);
687	} else {
688		u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
689		u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
690		u32 el3 = !!cpuid_feature_extract_field(pfr, ID_AA64PFR0_EL3_SHIFT);
691
692		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
693			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
694			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
695			     | (6 << 16) | (el3 << 14) | (el3 << 12));
696		return true;
697	}
698}
699
700static bool trap_debug32(struct kvm_vcpu *vcpu,
701			 struct sys_reg_params *p,
702			 const struct sys_reg_desc *r)
703{
704	if (p->is_write) {
705		vcpu_cp14(vcpu, r->reg) = p->regval;
706		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
707	} else {
708		p->regval = vcpu_cp14(vcpu, r->reg);
709	}
710
711	return true;
712}
713
714/* AArch32 debug register mappings
715 *
716 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
717 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
718 *
719 * All control registers and watchpoint value registers are mapped to
720 * the lower 32 bits of their AArch64 equivalents. We share the trap
721 * handlers with the above AArch64 code which checks what mode the
722 * system is in.
723 */
724
725static inline bool trap_xvr(struct kvm_vcpu *vcpu,
726			    struct sys_reg_params *p,
727			    const struct sys_reg_desc *rd)
728{
729	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
730
731	if (p->is_write) {
732		u64 val = *dbg_reg;
733
734		val &= 0xffffffffUL;
735		val |= p->regval << 32;
736		*dbg_reg = val;
737
738		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
739	} else {
740		p->regval = *dbg_reg >> 32;
741	}
742
743	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
744
745	return true;
746}
747
748#define DBG_BCR_BVR_WCR_WVR(n)						\
749	/* DBGBVRn */							\
750	{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, 	\
751	/* DBGBCRn */							\
752	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	\
753	/* DBGWVRn */							\
754	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	\
755	/* DBGWCRn */							\
756	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
757
758#define DBGBXVR(n)							\
759	{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
760
761/*
762 * Trapped cp14 registers. We generally ignore most of the external
763 * debug, on the principle that they don't really make sense to a
764 * guest. Revisit this one day, would this principle change.
765 */
766static const struct sys_reg_desc cp14_regs[] = {
767	/* DBGIDR */
768	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
769	/* DBGDTRRXext */
770	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
771
772	DBG_BCR_BVR_WCR_WVR(0),
773	/* DBGDSCRint */
774	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
775	DBG_BCR_BVR_WCR_WVR(1),
776	/* DBGDCCINT */
777	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
778	/* DBGDSCRext */
779	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
780	DBG_BCR_BVR_WCR_WVR(2),
781	/* DBGDTR[RT]Xint */
782	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
783	/* DBGDTR[RT]Xext */
784	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
785	DBG_BCR_BVR_WCR_WVR(3),
786	DBG_BCR_BVR_WCR_WVR(4),
787	DBG_BCR_BVR_WCR_WVR(5),
788	/* DBGWFAR */
789	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
790	/* DBGOSECCR */
791	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
792	DBG_BCR_BVR_WCR_WVR(6),
793	/* DBGVCR */
794	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
795	DBG_BCR_BVR_WCR_WVR(7),
796	DBG_BCR_BVR_WCR_WVR(8),
797	DBG_BCR_BVR_WCR_WVR(9),
798	DBG_BCR_BVR_WCR_WVR(10),
799	DBG_BCR_BVR_WCR_WVR(11),
800	DBG_BCR_BVR_WCR_WVR(12),
801	DBG_BCR_BVR_WCR_WVR(13),
802	DBG_BCR_BVR_WCR_WVR(14),
803	DBG_BCR_BVR_WCR_WVR(15),
804
805	/* DBGDRAR (32bit) */
806	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
807
808	DBGBXVR(0),
809	/* DBGOSLAR */
810	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
811	DBGBXVR(1),
812	/* DBGOSLSR */
813	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
814	DBGBXVR(2),
815	DBGBXVR(3),
816	/* DBGOSDLR */
817	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
818	DBGBXVR(4),
819	/* DBGPRCR */
820	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
821	DBGBXVR(5),
822	DBGBXVR(6),
823	DBGBXVR(7),
824	DBGBXVR(8),
825	DBGBXVR(9),
826	DBGBXVR(10),
827	DBGBXVR(11),
828	DBGBXVR(12),
829	DBGBXVR(13),
830	DBGBXVR(14),
831	DBGBXVR(15),
832
833	/* DBGDSAR (32bit) */
834	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
835
836	/* DBGDEVID2 */
837	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
838	/* DBGDEVID1 */
839	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
840	/* DBGDEVID */
841	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
842	/* DBGCLAIMSET */
843	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
844	/* DBGCLAIMCLR */
845	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
846	/* DBGAUTHSTATUS */
847	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
848};
849
850/* Trapped cp14 64bit registers */
851static const struct sys_reg_desc cp14_64_regs[] = {
852	/* DBGDRAR (64bit) */
853	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
854
855	/* DBGDSAR (64bit) */
856	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
857};
858
859/*
860 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
861 * depending on the way they are accessed (as a 32bit or a 64bit
862 * register).
863 */
864static const struct sys_reg_desc cp15_regs[] = {
865	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
866
867	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
868	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
869	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
870	{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
871	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
872	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
873	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
874	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
875	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
876	{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
877	{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
878
879	/*
880	 * DC{C,I,CI}SW operations:
881	 */
882	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
883	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
884	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
885
886	/* PMU */
887	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
888	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
889	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
890	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
891	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
892	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
893	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
894	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
895	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
896	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
897	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
898	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
899	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
900
901	{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
902	{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
903	{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
904	{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
905
906	/* ICC_SRE */
907	{ Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
908
909	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
910};
911
912static const struct sys_reg_desc cp15_64_regs[] = {
913	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
914	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
915	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
916};
917
918/* Target specific emulation tables */
919static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
920
921void kvm_register_target_sys_reg_table(unsigned int target,
922				       struct kvm_sys_reg_target_table *table)
923{
924	target_tables[target] = table;
925}
926
927/* Get specific register table for this target. */
928static const struct sys_reg_desc *get_target_table(unsigned target,
929						   bool mode_is_64,
930						   size_t *num)
931{
932	struct kvm_sys_reg_target_table *table;
933
934	table = target_tables[target];
935	if (mode_is_64) {
936		*num = table->table64.num;
937		return table->table64.table;
938	} else {
939		*num = table->table32.num;
940		return table->table32.table;
941	}
942}
943
944static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
945					 const struct sys_reg_desc table[],
946					 unsigned int num)
947{
948	unsigned int i;
949
950	for (i = 0; i < num; i++) {
951		const struct sys_reg_desc *r = &table[i];
952
953		if (params->Op0 != r->Op0)
954			continue;
955		if (params->Op1 != r->Op1)
956			continue;
957		if (params->CRn != r->CRn)
958			continue;
959		if (params->CRm != r->CRm)
960			continue;
961		if (params->Op2 != r->Op2)
962			continue;
963
964		return r;
965	}
966	return NULL;
967}
968
969int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
970{
971	kvm_inject_undefined(vcpu);
972	return 1;
973}
974
975/*
976 * emulate_cp --  tries to match a sys_reg access in a handling table, and
977 *                call the corresponding trap handler.
978 *
979 * @params: pointer to the descriptor of the access
980 * @table: array of trap descriptors
981 * @num: size of the trap descriptor array
982 *
983 * Return 0 if the access has been handled, and -1 if not.
984 */
985static int emulate_cp(struct kvm_vcpu *vcpu,
986		      struct sys_reg_params *params,
987		      const struct sys_reg_desc *table,
988		      size_t num)
989{
990	const struct sys_reg_desc *r;
991
992	if (!table)
993		return -1;	/* Not handled */
994
995	r = find_reg(params, table, num);
996
997	if (r) {
998		/*
999		 * Not having an accessor means that we have
1000		 * configured a trap that we don't know how to
1001		 * handle. This certainly qualifies as a gross bug
1002		 * that should be fixed right away.
1003		 */
1004		BUG_ON(!r->access);
1005
1006		if (likely(r->access(vcpu, params, r))) {
1007			/* Skip instruction, since it was emulated */
1008			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1009		}
1010
1011		/* Handled */
1012		return 0;
1013	}
1014
1015	/* Not handled */
1016	return -1;
1017}
1018
1019static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1020				struct sys_reg_params *params)
1021{
1022	u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1023	int cp;
1024
1025	switch(hsr_ec) {
1026	case ESR_ELx_EC_CP15_32:
1027	case ESR_ELx_EC_CP15_64:
1028		cp = 15;
1029		break;
1030	case ESR_ELx_EC_CP14_MR:
1031	case ESR_ELx_EC_CP14_64:
1032		cp = 14;
1033		break;
1034	default:
1035		WARN_ON((cp = -1));
1036	}
1037
1038	kvm_err("Unsupported guest CP%d access at: %08lx\n",
1039		cp, *vcpu_pc(vcpu));
1040	print_sys_reg_instr(params);
1041	kvm_inject_undefined(vcpu);
1042}
1043
1044/**
1045 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
1046 * @vcpu: The VCPU pointer
1047 * @run:  The kvm_run struct
1048 */
1049static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1050			    const struct sys_reg_desc *global,
1051			    size_t nr_global,
1052			    const struct sys_reg_desc *target_specific,
1053			    size_t nr_specific)
1054{
1055	struct sys_reg_params params;
1056	u32 hsr = kvm_vcpu_get_hsr(vcpu);
1057	int Rt = (hsr >> 5) & 0xf;
1058	int Rt2 = (hsr >> 10) & 0xf;
1059
1060	params.is_aarch32 = true;
1061	params.is_32bit = false;
1062	params.CRm = (hsr >> 1) & 0xf;
1063	params.is_write = ((hsr & 1) == 0);
1064
1065	params.Op0 = 0;
1066	params.Op1 = (hsr >> 16) & 0xf;
1067	params.Op2 = 0;
1068	params.CRn = 0;
1069
1070	/*
1071	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1072	 * backends between AArch32 and AArch64, we get away with it.
1073	 */
1074	if (params.is_write) {
1075		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1076		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1077	}
1078
1079	if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1080		goto out;
1081	if (!emulate_cp(vcpu, &params, global, nr_global))
1082		goto out;
1083
1084	unhandled_cp_access(vcpu, &params);
1085
1086out:
1087	/* Split up the value between registers for the read side */
1088	if (!params.is_write) {
1089		vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1090		vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1091	}
1092
1093	return 1;
1094}
1095
1096/**
1097 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
1098 * @vcpu: The VCPU pointer
1099 * @run:  The kvm_run struct
1100 */
1101static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1102			    const struct sys_reg_desc *global,
1103			    size_t nr_global,
1104			    const struct sys_reg_desc *target_specific,
1105			    size_t nr_specific)
1106{
1107	struct sys_reg_params params;
1108	u32 hsr = kvm_vcpu_get_hsr(vcpu);
1109	int Rt  = (hsr >> 5) & 0xf;
1110
1111	params.is_aarch32 = true;
1112	params.is_32bit = true;
1113	params.CRm = (hsr >> 1) & 0xf;
1114	params.regval = vcpu_get_reg(vcpu, Rt);
1115	params.is_write = ((hsr & 1) == 0);
1116	params.CRn = (hsr >> 10) & 0xf;
1117	params.Op0 = 0;
1118	params.Op1 = (hsr >> 14) & 0x7;
1119	params.Op2 = (hsr >> 17) & 0x7;
1120
1121	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1122	    !emulate_cp(vcpu, &params, global, nr_global)) {
1123		if (!params.is_write)
1124			vcpu_set_reg(vcpu, Rt, params.regval);
1125		return 1;
1126	}
1127
1128	unhandled_cp_access(vcpu, &params);
1129	return 1;
1130}
1131
1132int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1133{
1134	const struct sys_reg_desc *target_specific;
1135	size_t num;
1136
1137	target_specific = get_target_table(vcpu->arch.target, false, &num);
1138	return kvm_handle_cp_64(vcpu,
1139				cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1140				target_specific, num);
1141}
1142
1143int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1144{
1145	const struct sys_reg_desc *target_specific;
1146	size_t num;
1147
1148	target_specific = get_target_table(vcpu->arch.target, false, &num);
1149	return kvm_handle_cp_32(vcpu,
1150				cp15_regs, ARRAY_SIZE(cp15_regs),
1151				target_specific, num);
1152}
1153
1154int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1155{
1156	return kvm_handle_cp_64(vcpu,
1157				cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1158				NULL, 0);
1159}
1160
1161int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1162{
1163	return kvm_handle_cp_32(vcpu,
1164				cp14_regs, ARRAY_SIZE(cp14_regs),
1165				NULL, 0);
1166}
1167
1168static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1169			   struct sys_reg_params *params)
1170{
1171	size_t num;
1172	const struct sys_reg_desc *table, *r;
1173
1174	table = get_target_table(vcpu->arch.target, true, &num);
1175
1176	/* Search target-specific then generic table. */
1177	r = find_reg(params, table, num);
1178	if (!r)
1179		r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1180
1181	if (likely(r)) {
1182		/*
1183		 * Not having an accessor means that we have
1184		 * configured a trap that we don't know how to
1185		 * handle. This certainly qualifies as a gross bug
1186		 * that should be fixed right away.
1187		 */
1188		BUG_ON(!r->access);
1189
1190		if (likely(r->access(vcpu, params, r))) {
1191			/* Skip instruction, since it was emulated */
1192			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1193			return 1;
1194		}
1195		/* If access function fails, it should complain. */
1196	} else {
1197		kvm_err("Unsupported guest sys_reg access at: %lx\n",
1198			*vcpu_pc(vcpu));
1199		print_sys_reg_instr(params);
1200	}
1201	kvm_inject_undefined(vcpu);
1202	return 1;
1203}
1204
1205static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1206			      const struct sys_reg_desc *table, size_t num)
1207{
1208	unsigned long i;
1209
1210	for (i = 0; i < num; i++)
1211		if (table[i].reset)
1212			table[i].reset(vcpu, &table[i]);
1213}
1214
1215/**
1216 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1217 * @vcpu: The VCPU pointer
1218 * @run:  The kvm_run struct
1219 */
1220int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1221{
1222	struct sys_reg_params params;
1223	unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1224	int Rt = (esr >> 5) & 0x1f;
1225	int ret;
1226
1227	trace_kvm_handle_sys_reg(esr);
1228
1229	params.is_aarch32 = false;
1230	params.is_32bit = false;
1231	params.Op0 = (esr >> 20) & 3;
1232	params.Op1 = (esr >> 14) & 0x7;
1233	params.CRn = (esr >> 10) & 0xf;
1234	params.CRm = (esr >> 1) & 0xf;
1235	params.Op2 = (esr >> 17) & 0x7;
1236	params.regval = vcpu_get_reg(vcpu, Rt);
1237	params.is_write = !(esr & 1);
1238
1239	ret = emulate_sys_reg(vcpu, &params);
1240
1241	if (!params.is_write)
1242		vcpu_set_reg(vcpu, Rt, params.regval);
1243	return ret;
1244}
1245
1246/******************************************************************************
1247 * Userspace API
1248 *****************************************************************************/
1249
1250static bool index_to_params(u64 id, struct sys_reg_params *params)
1251{
1252	switch (id & KVM_REG_SIZE_MASK) {
1253	case KVM_REG_SIZE_U64:
1254		/* Any unused index bits means it's not valid. */
1255		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1256			      | KVM_REG_ARM_COPROC_MASK
1257			      | KVM_REG_ARM64_SYSREG_OP0_MASK
1258			      | KVM_REG_ARM64_SYSREG_OP1_MASK
1259			      | KVM_REG_ARM64_SYSREG_CRN_MASK
1260			      | KVM_REG_ARM64_SYSREG_CRM_MASK
1261			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
1262			return false;
1263		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1264			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1265		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1266			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1267		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1268			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1269		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1270			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1271		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1272			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1273		return true;
1274	default:
1275		return false;
1276	}
1277}
1278
1279/* Decode an index value, and find the sys_reg_desc entry. */
1280static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1281						    u64 id)
1282{
1283	size_t num;
1284	const struct sys_reg_desc *table, *r;
1285	struct sys_reg_params params;
1286
1287	/* We only do sys_reg for now. */
1288	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1289		return NULL;
1290
1291	if (!index_to_params(id, &params))
1292		return NULL;
1293
1294	table = get_target_table(vcpu->arch.target, true, &num);
1295	r = find_reg(&params, table, num);
1296	if (!r)
1297		r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1298
1299	/* Not saved in the sys_reg array? */
1300	if (r && !r->reg)
1301		r = NULL;
1302
1303	return r;
1304}
1305
1306/*
1307 * These are the invariant sys_reg registers: we let the guest see the
1308 * host versions of these, so they're part of the guest state.
1309 *
1310 * A future CPU may provide a mechanism to present different values to
1311 * the guest, or a future kvm may trap them.
1312 */
1313
1314#define FUNCTION_INVARIANT(reg)						\
1315	static void get_##reg(struct kvm_vcpu *v,			\
1316			      const struct sys_reg_desc *r)		\
1317	{								\
1318		u64 val;						\
1319									\
1320		asm volatile("mrs %0, " __stringify(reg) "\n"		\
1321			     : "=r" (val));				\
1322		((struct sys_reg_desc *)r)->val = val;			\
1323	}
1324
1325FUNCTION_INVARIANT(midr_el1)
1326FUNCTION_INVARIANT(ctr_el0)
1327FUNCTION_INVARIANT(revidr_el1)
1328FUNCTION_INVARIANT(id_pfr0_el1)
1329FUNCTION_INVARIANT(id_pfr1_el1)
1330FUNCTION_INVARIANT(id_dfr0_el1)
1331FUNCTION_INVARIANT(id_afr0_el1)
1332FUNCTION_INVARIANT(id_mmfr0_el1)
1333FUNCTION_INVARIANT(id_mmfr1_el1)
1334FUNCTION_INVARIANT(id_mmfr2_el1)
1335FUNCTION_INVARIANT(id_mmfr3_el1)
1336FUNCTION_INVARIANT(id_isar0_el1)
1337FUNCTION_INVARIANT(id_isar1_el1)
1338FUNCTION_INVARIANT(id_isar2_el1)
1339FUNCTION_INVARIANT(id_isar3_el1)
1340FUNCTION_INVARIANT(id_isar4_el1)
1341FUNCTION_INVARIANT(id_isar5_el1)
1342FUNCTION_INVARIANT(clidr_el1)
1343FUNCTION_INVARIANT(aidr_el1)
1344
1345/* ->val is filled in by kvm_sys_reg_table_init() */
1346static struct sys_reg_desc invariant_sys_regs[] = {
1347	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1348	  NULL, get_midr_el1 },
1349	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1350	  NULL, get_revidr_el1 },
1351	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1352	  NULL, get_id_pfr0_el1 },
1353	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1354	  NULL, get_id_pfr1_el1 },
1355	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1356	  NULL, get_id_dfr0_el1 },
1357	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1358	  NULL, get_id_afr0_el1 },
1359	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1360	  NULL, get_id_mmfr0_el1 },
1361	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1362	  NULL, get_id_mmfr1_el1 },
1363	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1364	  NULL, get_id_mmfr2_el1 },
1365	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1366	  NULL, get_id_mmfr3_el1 },
1367	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1368	  NULL, get_id_isar0_el1 },
1369	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1370	  NULL, get_id_isar1_el1 },
1371	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1372	  NULL, get_id_isar2_el1 },
1373	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1374	  NULL, get_id_isar3_el1 },
1375	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1376	  NULL, get_id_isar4_el1 },
1377	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1378	  NULL, get_id_isar5_el1 },
1379	{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1380	  NULL, get_clidr_el1 },
1381	{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1382	  NULL, get_aidr_el1 },
1383	{ Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1384	  NULL, get_ctr_el0 },
1385};
1386
1387static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1388{
1389	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1390		return -EFAULT;
1391	return 0;
1392}
1393
1394static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1395{
1396	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1397		return -EFAULT;
1398	return 0;
1399}
1400
1401static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1402{
1403	struct sys_reg_params params;
1404	const struct sys_reg_desc *r;
1405
1406	if (!index_to_params(id, &params))
1407		return -ENOENT;
1408
1409	r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1410	if (!r)
1411		return -ENOENT;
1412
1413	return reg_to_user(uaddr, &r->val, id);
1414}
1415
1416static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1417{
1418	struct sys_reg_params params;
1419	const struct sys_reg_desc *r;
1420	int err;
1421	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1422
1423	if (!index_to_params(id, &params))
1424		return -ENOENT;
1425	r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1426	if (!r)
1427		return -ENOENT;
1428
1429	err = reg_from_user(&val, uaddr, id);
1430	if (err)
1431		return err;
1432
1433	/* This is what we mean by invariant: you can't change it. */
1434	if (r->val != val)
1435		return -EINVAL;
1436
1437	return 0;
1438}
1439
1440static bool is_valid_cache(u32 val)
1441{
1442	u32 level, ctype;
1443
1444	if (val >= CSSELR_MAX)
1445		return false;
1446
1447	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
1448	level = (val >> 1);
1449	ctype = (cache_levels >> (level * 3)) & 7;
1450
1451	switch (ctype) {
1452	case 0: /* No cache */
1453		return false;
1454	case 1: /* Instruction cache only */
1455		return (val & 1);
1456	case 2: /* Data cache only */
1457	case 4: /* Unified cache */
1458		return !(val & 1);
1459	case 3: /* Separate instruction and data caches */
1460		return true;
1461	default: /* Reserved: we can't know instruction or data. */
1462		return false;
1463	}
1464}
1465
1466static int demux_c15_get(u64 id, void __user *uaddr)
1467{
1468	u32 val;
1469	u32 __user *uval = uaddr;
1470
1471	/* Fail if we have unknown bits set. */
1472	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1473		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1474		return -ENOENT;
1475
1476	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1477	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1478		if (KVM_REG_SIZE(id) != 4)
1479			return -ENOENT;
1480		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1481			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1482		if (!is_valid_cache(val))
1483			return -ENOENT;
1484
1485		return put_user(get_ccsidr(val), uval);
1486	default:
1487		return -ENOENT;
1488	}
1489}
1490
1491static int demux_c15_set(u64 id, void __user *uaddr)
1492{
1493	u32 val, newval;
1494	u32 __user *uval = uaddr;
1495
1496	/* Fail if we have unknown bits set. */
1497	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1498		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1499		return -ENOENT;
1500
1501	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1502	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1503		if (KVM_REG_SIZE(id) != 4)
1504			return -ENOENT;
1505		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1506			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1507		if (!is_valid_cache(val))
1508			return -ENOENT;
1509
1510		if (get_user(newval, uval))
1511			return -EFAULT;
1512
1513		/* This is also invariant: you can't change it. */
1514		if (newval != get_ccsidr(val))
1515			return -EINVAL;
1516		return 0;
1517	default:
1518		return -ENOENT;
1519	}
1520}
1521
1522int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1523{
1524	const struct sys_reg_desc *r;
1525	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1526
1527	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1528		return demux_c15_get(reg->id, uaddr);
1529
1530	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1531		return -ENOENT;
1532
1533	r = index_to_sys_reg_desc(vcpu, reg->id);
1534	if (!r)
1535		return get_invariant_sys_reg(reg->id, uaddr);
1536
1537	if (r->get_user)
1538		return (r->get_user)(vcpu, r, reg, uaddr);
1539
1540	return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1541}
1542
1543int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1544{
1545	const struct sys_reg_desc *r;
1546	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1547
1548	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1549		return demux_c15_set(reg->id, uaddr);
1550
1551	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1552		return -ENOENT;
1553
1554	r = index_to_sys_reg_desc(vcpu, reg->id);
1555	if (!r)
1556		return set_invariant_sys_reg(reg->id, uaddr);
1557
1558	if (r->set_user)
1559		return (r->set_user)(vcpu, r, reg, uaddr);
1560
1561	return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1562}
1563
1564static unsigned int num_demux_regs(void)
1565{
1566	unsigned int i, count = 0;
1567
1568	for (i = 0; i < CSSELR_MAX; i++)
1569		if (is_valid_cache(i))
1570			count++;
1571
1572	return count;
1573}
1574
1575static int write_demux_regids(u64 __user *uindices)
1576{
1577	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1578	unsigned int i;
1579
1580	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1581	for (i = 0; i < CSSELR_MAX; i++) {
1582		if (!is_valid_cache(i))
1583			continue;
1584		if (put_user(val | i, uindices))
1585			return -EFAULT;
1586		uindices++;
1587	}
1588	return 0;
1589}
1590
1591static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1592{
1593	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1594		KVM_REG_ARM64_SYSREG |
1595		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1596		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1597		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1598		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1599		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1600}
1601
1602static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1603{
1604	if (!*uind)
1605		return true;
1606
1607	if (put_user(sys_reg_to_index(reg), *uind))
1608		return false;
1609
1610	(*uind)++;
1611	return true;
1612}
1613
1614/* Assumed ordered tables, see kvm_sys_reg_table_init. */
1615static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1616{
1617	const struct sys_reg_desc *i1, *i2, *end1, *end2;
1618	unsigned int total = 0;
1619	size_t num;
1620
1621	/* We check for duplicates here, to allow arch-specific overrides. */
1622	i1 = get_target_table(vcpu->arch.target, true, &num);
1623	end1 = i1 + num;
1624	i2 = sys_reg_descs;
1625	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1626
1627	BUG_ON(i1 == end1 || i2 == end2);
1628
1629	/* Walk carefully, as both tables may refer to the same register. */
1630	while (i1 || i2) {
1631		int cmp = cmp_sys_reg(i1, i2);
1632		/* target-specific overrides generic entry. */
1633		if (cmp <= 0) {
1634			/* Ignore registers we trap but don't save. */
1635			if (i1->reg) {
1636				if (!copy_reg_to_user(i1, &uind))
1637					return -EFAULT;
1638				total++;
1639			}
1640		} else {
1641			/* Ignore registers we trap but don't save. */
1642			if (i2->reg) {
1643				if (!copy_reg_to_user(i2, &uind))
1644					return -EFAULT;
1645				total++;
1646			}
1647		}
1648
1649		if (cmp <= 0 && ++i1 == end1)
1650			i1 = NULL;
1651		if (cmp >= 0 && ++i2 == end2)
1652			i2 = NULL;
1653	}
1654	return total;
1655}
1656
1657unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1658{
1659	return ARRAY_SIZE(invariant_sys_regs)
1660		+ num_demux_regs()
1661		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
1662}
1663
1664int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1665{
1666	unsigned int i;
1667	int err;
1668
1669	/* Then give them all the invariant registers' indices. */
1670	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1671		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1672			return -EFAULT;
1673		uindices++;
1674	}
1675
1676	err = walk_sys_regs(vcpu, uindices);
1677	if (err < 0)
1678		return err;
1679	uindices += err;
1680
1681	return write_demux_regids(uindices);
1682}
1683
1684static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
1685{
1686	unsigned int i;
1687
1688	for (i = 1; i < n; i++) {
1689		if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
1690			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
1691			return 1;
1692		}
1693	}
1694
1695	return 0;
1696}
1697
1698void kvm_sys_reg_table_init(void)
1699{
1700	unsigned int i;
1701	struct sys_reg_desc clidr;
1702
1703	/* Make sure tables are unique and in order. */
1704	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
1705	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
1706	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
1707	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1708	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
1709	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
1710
1711	/* We abuse the reset function to overwrite the table itself. */
1712	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1713		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1714
1715	/*
1716	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1717	 *
1718	 *   If software reads the Cache Type fields from Ctype1
1719	 *   upwards, once it has seen a value of 0b000, no caches
1720	 *   exist at further-out levels of the hierarchy. So, for
1721	 *   example, if Ctype3 is the first Cache Type field with a
1722	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
1723	 *   ignored.
1724	 */
1725	get_clidr_el1(NULL, &clidr); /* Ugly... */
1726	cache_levels = clidr.val;
1727	for (i = 0; i < 7; i++)
1728		if (((cache_levels >> (i*3)) & 7) == 0)
1729			break;
1730	/* Clear all higher bits. */
1731	cache_levels &= (1 << (i*3))-1;
1732}
1733
1734/**
1735 * kvm_reset_sys_regs - sets system registers to reset value
1736 * @vcpu: The VCPU pointer
1737 *
1738 * This function finds the right table above and sets the registers on the
1739 * virtual CPU struct to their architecturally defined reset values.
1740 */
1741void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1742{
1743	size_t num;
1744	const struct sys_reg_desc *table;
1745
1746	/* Catch someone adding a register without putting in reset entry. */
1747	memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1748
1749	/* Generic chip reset first (so target could override). */
1750	reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1751
1752	table = get_target_table(vcpu->arch.target, true, &num);
1753	reset_sys_reg_descs(vcpu, table, num);
1754
1755	for (num = 1; num < NR_SYS_REGS; num++)
1756		if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1757			panic("Didn't reset vcpu_sys_reg(%zi)", num);
1758}
1759