1/*
2 * arch/arm/probes/decode.h
3 *
4 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
5 *
6 * Some contents moved here from arch/arm/include/asm/kprobes.h which is
7 * Copyright (C) 2006, 2007 Motorola Inc.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * General Public License for more details.
17 */
18
19#ifndef _ARM_KERNEL_PROBES_H
20#define  _ARM_KERNEL_PROBES_H
21
22#include <linux/types.h>
23#include <linux/stddef.h>
24#include <asm/probes.h>
25
26void __init arm_probes_decode_init(void);
27
28extern probes_check_cc * const probes_condition_checks[16];
29
30#if __LINUX_ARM_ARCH__ >= 7
31
32/* str_pc_offset is architecturally defined from ARMv7 onwards */
33#define str_pc_offset 8
34#define find_str_pc_offset()
35
36#else /* __LINUX_ARM_ARCH__ < 7 */
37
38/* We need a run-time check to determine str_pc_offset */
39extern int str_pc_offset;
40void __init find_str_pc_offset(void);
41
42#endif
43
44
45/*
46 * Update ITSTATE after normal execution of an IT block instruction.
47 *
48 * The 8 IT state bits are split into two parts in CPSR:
49 *	ITSTATE<1:0> are in CPSR<26:25>
50 *	ITSTATE<7:2> are in CPSR<15:10>
51 */
52static inline unsigned long it_advance(unsigned long cpsr)
53	{
54	if ((cpsr & 0x06000400) == 0) {
55		/* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */
56		cpsr &= ~PSR_IT_MASK;
57	} else {
58		/* We need to shift left ITSTATE<4:0> */
59		const unsigned long mask = 0x06001c00;  /* Mask ITSTATE<4:0> */
60		unsigned long it = cpsr & mask;
61		it <<= 1;
62		it |= it >> (27 - 10);  /* Carry ITSTATE<2> to correct place */
63		it &= mask;
64		cpsr &= ~mask;
65		cpsr |= it;
66	}
67	return cpsr;
68}
69
70static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs)
71{
72	long cpsr = regs->ARM_cpsr;
73	if (pcv & 0x1) {
74		cpsr |= PSR_T_BIT;
75		pcv &= ~0x1;
76	} else {
77		cpsr &= ~PSR_T_BIT;
78		pcv &= ~0x2;	/* Avoid UNPREDICTABLE address allignment */
79	}
80	regs->ARM_cpsr = cpsr;
81	regs->ARM_pc = pcv;
82}
83
84
85#if __LINUX_ARM_ARCH__ >= 6
86
87/* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */
88#define load_write_pc_interworks true
89#define test_load_write_pc_interworking()
90
91#else /* __LINUX_ARM_ARCH__ < 6 */
92
93/* We need run-time testing to determine if load_write_pc() should interwork. */
94extern bool load_write_pc_interworks;
95void __init test_load_write_pc_interworking(void);
96
97#endif
98
99static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs)
100{
101	if (load_write_pc_interworks)
102		bx_write_pc(pcv, regs);
103	else
104		regs->ARM_pc = pcv;
105}
106
107
108#if __LINUX_ARM_ARCH__ >= 7
109
110#define alu_write_pc_interworks true
111#define test_alu_write_pc_interworking()
112
113#elif __LINUX_ARM_ARCH__ <= 5
114
115/* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */
116#define alu_write_pc_interworks false
117#define test_alu_write_pc_interworking()
118
119#else /* __LINUX_ARM_ARCH__ == 6 */
120
121/* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */
122extern bool alu_write_pc_interworks;
123void __init test_alu_write_pc_interworking(void);
124
125#endif /* __LINUX_ARM_ARCH__ == 6 */
126
127static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs)
128{
129	if (alu_write_pc_interworks)
130		bx_write_pc(pcv, regs);
131	else
132		regs->ARM_pc = pcv;
133}
134
135
136/*
137 * Test if load/store instructions writeback the address register.
138 * if P (bit 24) == 0 or W (bit 21) == 1
139 */
140#define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)
141
142/*
143 * The following definitions and macros are used to build instruction
144 * decoding tables for use by probes_decode_insn.
145 *
146 * These tables are a concatenation of entries each of which consist of one of
147 * the decode_* structs. All of the fields in every type of decode structure
148 * are of the union type decode_item, therefore the entire decode table can be
149 * viewed as an array of these and declared like:
150 *
151 *	static const union decode_item table_name[] = {};
152 *
153 * In order to construct each entry in the table, macros are used to
154 * initialise a number of sequential decode_item values in a layout which
155 * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct
156 * decode_simulate by initialising four decode_item objects like this...
157 *
158 *	{.bits = _type},
159 *	{.bits = _mask},
160 *	{.bits = _value},
161 *	{.action = _handler},
162 *
163 * Initialising a specified member of the union means that the compiler
164 * will produce a warning if the argument is of an incorrect type.
165 *
166 * Below is a list of each of the macros used to initialise entries and a
167 * description of the action performed when that entry is matched to an
168 * instruction. A match is found when (instruction & mask) == value.
169 *
170 * DECODE_TABLE(mask, value, table)
171 *	Instruction decoding jumps to parsing the new sub-table 'table'.
172 *
173 * DECODE_CUSTOM(mask, value, decoder)
174 *	The value of 'decoder' is used as an index into the array of
175 *	action functions, and the retrieved decoder function is invoked
176 *	to complete decoding of the instruction.
177 *
178 * DECODE_SIMULATE(mask, value, handler)
179 *	The probes instruction handler is set to the value found by
180 *	indexing into the action array using the value of 'handler'. This
181 *	will be used to simulate the instruction when the probe is hit.
182 *	Decoding returns with INSN_GOOD_NO_SLOT.
183 *
184 * DECODE_EMULATE(mask, value, handler)
185 *	The probes instruction handler is set to the value found by
186 *	indexing into the action array using the value of 'handler'. This
187 *	will be used to emulate the instruction when the probe is hit. The
188 *	modified instruction (see below) is placed in the probes instruction
189 *	slot so it may be called by the emulation code. Decoding returns
190 *	with INSN_GOOD.
191 *
192 * DECODE_REJECT(mask, value)
193 *	Instruction decoding fails with INSN_REJECTED
194 *
195 * DECODE_OR(mask, value)
196 *	This allows the mask/value test of multiple table entries to be
197 *	logically ORed. Once an 'or' entry is matched the decoding action to
198 *	be performed is that of the next entry which isn't an 'or'. E.g.
199 *
200 *		DECODE_OR	(mask1, value1)
201 *		DECODE_OR	(mask2, value2)
202 *		DECODE_SIMULATE	(mask3, value3, simulation_handler)
203 *
204 *	This means that if any of the three mask/value pairs match the
205 *	instruction being decoded, then 'simulation_handler' will be used
206 *	for it.
207 *
208 * Both the SIMULATE and EMULATE macros have a second form which take an
209 * additional 'regs' argument.
210 *
211 *	DECODE_SIMULATEX(mask, value, handler, regs)
212 *	DECODE_EMULATEX	(mask, value, handler, regs)
213 *
214 * These are used to specify what kind of CPU register is encoded in each of the
215 * least significant 5 nibbles of the instruction being decoded. The regs value
216 * is specified using the REGS macro, this takes any of the REG_TYPE_* values
217 * from enum decode_reg_type as arguments; only the '*' part of the name is
218 * given. E.g.
219 *
220 *	REGS(0, ANY, NOPC, 0, ANY)
221 *
222 * This indicates an instruction is encoded like:
223 *
224 *	bits 19..16	ignore
225 *	bits 15..12	any register allowed here
226 *	bits 11.. 8	any register except PC allowed here
227 *	bits  7.. 4	ignore
228 *	bits  3.. 0	any register allowed here
229 *
230 * This register specification is checked after a decode table entry is found to
231 * match an instruction (through the mask/value test). Any invalid register then
232 * found in the instruction will cause decoding to fail with INSN_REJECTED. In
233 * the above example this would happen if bits 11..8 of the instruction were
234 * 1111, indicating R15 or PC.
235 *
236 * As well as checking for legal combinations of registers, this data is also
237 * used to modify the registers encoded in the instructions so that an
238 * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.)
239 *
240 * Here is a real example which matches ARM instructions of the form
241 * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>"
242 *
243 *	DECODE_EMULATEX	(0x0e000090, 0x00000010, PROBES_DATA_PROCESSING_REG,
244 *						 REGS(ANY, ANY, NOPC, 0, ANY)),
245 *						      ^    ^    ^        ^
246 *						      Rn   Rd   Rs       Rm
247 *
248 * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because
249 * Rs == R15
250 *
251 * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the
252 * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into
253 * the kprobes instruction slot. This can then be called later by the handler
254 * function emulate_rd12rn16rm0rs8_rwflags (a pointer to which is retrieved from
255 * the indicated slot in the action array), in order to simulate the instruction.
256 */
257
258enum decode_type {
259	DECODE_TYPE_END,
260	DECODE_TYPE_TABLE,
261	DECODE_TYPE_CUSTOM,
262	DECODE_TYPE_SIMULATE,
263	DECODE_TYPE_EMULATE,
264	DECODE_TYPE_OR,
265	DECODE_TYPE_REJECT,
266	NUM_DECODE_TYPES /* Must be last enum */
267};
268
269#define DECODE_TYPE_BITS	4
270#define DECODE_TYPE_MASK	((1 << DECODE_TYPE_BITS) - 1)
271
272enum decode_reg_type {
273	REG_TYPE_NONE = 0, /* Not a register, ignore */
274	REG_TYPE_ANY,	   /* Any register allowed */
275	REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */
276	REG_TYPE_SP,	   /* Register must be SP */
277	REG_TYPE_PC,	   /* Register must be PC */
278	REG_TYPE_NOSP,	   /* Register must not be SP */
279	REG_TYPE_NOSPPC,   /* Register must not be SP or PC */
280	REG_TYPE_NOPC,	   /* Register must not be PC */
281	REG_TYPE_NOPCWB,   /* No PC if load/store write-back flag also set */
282
283	/* The following types are used when the encoding for PC indicates
284	 * another instruction form. This distiction only matters for test
285	 * case coverage checks.
286	 */
287	REG_TYPE_NOPCX,	   /* Register must not be PC */
288	REG_TYPE_NOSPPCX,  /* Register must not be SP or PC */
289
290	/* Alias to allow '0' arg to be used in REGS macro. */
291	REG_TYPE_0 = REG_TYPE_NONE
292};
293
294#define REGS(r16, r12, r8, r4, r0)	\
295	(((REG_TYPE_##r16) << 16) +	\
296	((REG_TYPE_##r12) << 12) +	\
297	((REG_TYPE_##r8) << 8) +	\
298	((REG_TYPE_##r4) << 4) +	\
299	(REG_TYPE_##r0))
300
301union decode_item {
302	u32			bits;
303	const union decode_item	*table;
304	int			action;
305};
306
307struct decode_header;
308typedef enum probes_insn (probes_custom_decode_t)(probes_opcode_t,
309						  struct arch_probes_insn *,
310						  const struct decode_header *);
311
312union decode_action {
313	probes_insn_handler_t	*handler;
314	probes_custom_decode_t	*decoder;
315};
316
317typedef enum probes_insn (probes_check_t)(probes_opcode_t,
318					   struct arch_probes_insn *,
319					   const struct decode_header *);
320
321struct decode_checker {
322	probes_check_t	*checker;
323};
324
325#define DECODE_END			\
326	{.bits = DECODE_TYPE_END}
327
328
329struct decode_header {
330	union decode_item	type_regs;
331	union decode_item	mask;
332	union decode_item	value;
333};
334
335#define DECODE_HEADER(_type, _mask, _value, _regs)		\
336	{.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)},	\
337	{.bits = (_mask)},					\
338	{.bits = (_value)}
339
340
341struct decode_table {
342	struct decode_header	header;
343	union decode_item	table;
344};
345
346#define DECODE_TABLE(_mask, _value, _table)			\
347	DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0),	\
348	{.table = (_table)}
349
350
351struct decode_custom {
352	struct decode_header	header;
353	union decode_item	decoder;
354};
355
356#define DECODE_CUSTOM(_mask, _value, _decoder)			\
357	DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0),	\
358	{.action = (_decoder)}
359
360
361struct decode_simulate {
362	struct decode_header	header;
363	union decode_item	handler;
364};
365
366#define DECODE_SIMULATEX(_mask, _value, _handler, _regs)		\
367	DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs),	\
368	{.action = (_handler)}
369
370#define DECODE_SIMULATE(_mask, _value, _handler)	\
371	DECODE_SIMULATEX(_mask, _value, _handler, 0)
372
373
374struct decode_emulate {
375	struct decode_header	header;
376	union decode_item	handler;
377};
378
379#define DECODE_EMULATEX(_mask, _value, _handler, _regs)			\
380	DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs),	\
381	{.action = (_handler)}
382
383#define DECODE_EMULATE(_mask, _value, _handler)		\
384	DECODE_EMULATEX(_mask, _value, _handler, 0)
385
386
387struct decode_or {
388	struct decode_header	header;
389};
390
391#define DECODE_OR(_mask, _value)				\
392	DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0)
393
394enum probes_insn {
395	INSN_REJECTED,
396	INSN_GOOD,
397	INSN_GOOD_NO_SLOT
398};
399
400struct decode_reject {
401	struct decode_header	header;
402};
403
404#define DECODE_REJECT(_mask, _value)				\
405	DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0)
406
407probes_insn_handler_t probes_simulate_nop;
408probes_insn_handler_t probes_emulate_none;
409
410int __kprobes
411probes_decode_insn(probes_opcode_t insn, struct arch_probes_insn *asi,
412		const union decode_item *table, bool thumb, bool emulate,
413		const union decode_action *actions,
414		const struct decode_checker **checkers);
415
416#endif
417