1/*
2 *  linux/arch/arm/mm/nommu.c
3 *
4 * ARM uCLinux supporting functions.
5 */
6#include <linux/module.h>
7#include <linux/mm.h>
8#include <linux/pagemap.h>
9#include <linux/io.h>
10#include <linux/memblock.h>
11#include <linux/kernel.h>
12
13#include <asm/cacheflush.h>
14#include <asm/sections.h>
15#include <asm/page.h>
16#include <asm/setup.h>
17#include <asm/traps.h>
18#include <asm/mach/arch.h>
19#include <asm/cputype.h>
20#include <asm/mpu.h>
21#include <asm/procinfo.h>
22
23#include "mm.h"
24
25#ifdef CONFIG_ARM_MPU
26struct mpu_rgn_info mpu_rgn_info;
27
28/* Region number */
29static void rgnr_write(u32 v)
30{
31	asm("mcr        p15, 0, %0, c6, c2, 0" : : "r" (v));
32}
33
34/* Data-side / unified region attributes */
35
36/* Region access control register */
37static void dracr_write(u32 v)
38{
39	asm("mcr        p15, 0, %0, c6, c1, 4" : : "r" (v));
40}
41
42/* Region size register */
43static void drsr_write(u32 v)
44{
45	asm("mcr        p15, 0, %0, c6, c1, 2" : : "r" (v));
46}
47
48/* Region base address register */
49static void drbar_write(u32 v)
50{
51	asm("mcr        p15, 0, %0, c6, c1, 0" : : "r" (v));
52}
53
54static u32 drbar_read(void)
55{
56	u32 v;
57	asm("mrc        p15, 0, %0, c6, c1, 0" : "=r" (v));
58	return v;
59}
60/* Optional instruction-side region attributes */
61
62/* I-side Region access control register */
63static void iracr_write(u32 v)
64{
65	asm("mcr        p15, 0, %0, c6, c1, 5" : : "r" (v));
66}
67
68/* I-side Region size register */
69static void irsr_write(u32 v)
70{
71	asm("mcr        p15, 0, %0, c6, c1, 3" : : "r" (v));
72}
73
74/* I-side Region base address register */
75static void irbar_write(u32 v)
76{
77	asm("mcr        p15, 0, %0, c6, c1, 1" : : "r" (v));
78}
79
80static unsigned long irbar_read(void)
81{
82	unsigned long v;
83	asm("mrc        p15, 0, %0, c6, c1, 1" : "=r" (v));
84	return v;
85}
86
87/* MPU initialisation functions */
88void __init sanity_check_meminfo_mpu(void)
89{
90	int i;
91	phys_addr_t phys_offset = PHYS_OFFSET;
92	phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size;
93	struct memblock_region *reg;
94	bool first = true;
95	phys_addr_t mem_start;
96	phys_addr_t mem_end;
97
98	for_each_memblock(memory, reg) {
99		if (first) {
100			/*
101			 * Initially only use memory continuous from
102			 * PHYS_OFFSET */
103			if (reg->base != phys_offset)
104				panic("First memory bank must be contiguous from PHYS_OFFSET");
105
106			mem_start = reg->base;
107			mem_end = reg->base + reg->size;
108			specified_mem_size = reg->size;
109			first = false;
110		} else {
111			/*
112			 * memblock auto merges contiguous blocks, remove
113			 * all blocks afterwards
114			 */
115			pr_notice("Ignoring RAM after %pa, memory at %pa ignored\n",
116				  &mem_start, &reg->base);
117			memblock_remove(reg->base, reg->size);
118		}
119	}
120
121	/*
122	 * MPU has curious alignment requirements: Size must be power of 2, and
123	 * region start must be aligned to the region size
124	 */
125	if (phys_offset != 0)
126		pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n");
127
128	/*
129	 * Maximum aligned region might overflow phys_addr_t if phys_offset is
130	 * 0. Hence we keep everything below 4G until we take the smaller of
131	 * the aligned_region_size and rounded_mem_size, one of which is
132	 * guaranteed to be smaller than the maximum physical address.
133	 */
134	aligned_region_size = (phys_offset - 1) ^ (phys_offset);
135	/* Find the max power-of-two sized region that fits inside our bank */
136	rounded_mem_size = (1 <<  __fls(specified_mem_size)) - 1;
137
138	/* The actual region size is the smaller of the two */
139	aligned_region_size = aligned_region_size < rounded_mem_size
140				? aligned_region_size + 1
141				: rounded_mem_size + 1;
142
143	if (aligned_region_size != specified_mem_size) {
144		pr_warn("Truncating memory from %pa to %pa (MPU region constraints)",
145				&specified_mem_size, &aligned_region_size);
146		memblock_remove(mem_start + aligned_region_size,
147				specified_mem_size - aligned_round_size);
148
149		mem_end = mem_start + aligned_region_size;
150	}
151
152	pr_debug("MPU Region from %pa size %pa (end %pa))\n",
153		&phys_offset, &aligned_region_size, &mem_end);
154
155}
156
157static int mpu_present(void)
158{
159	return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7);
160}
161
162static int mpu_max_regions(void)
163{
164	/*
165	 * We don't support a different number of I/D side regions so if we
166	 * have separate instruction and data memory maps then return
167	 * whichever side has a smaller number of supported regions.
168	 */
169	u32 dregions, iregions, mpuir;
170	mpuir = read_cpuid(CPUID_MPUIR);
171
172	dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
173
174	/* Check for separate d-side and i-side memory maps */
175	if (mpuir & MPUIR_nU)
176		iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
177
178	/* Use the smallest of the two maxima */
179	return min(dregions, iregions);
180}
181
182static int mpu_iside_independent(void)
183{
184	/* MPUIR.nU specifies whether there is *not* a unified memory map */
185	return read_cpuid(CPUID_MPUIR) & MPUIR_nU;
186}
187
188static int mpu_min_region_order(void)
189{
190	u32 drbar_result, irbar_result;
191	/* We've kept a region free for this probing */
192	rgnr_write(MPU_PROBE_REGION);
193	isb();
194	/*
195	 * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
196	 * region order
197	*/
198	drbar_write(0xFFFFFFFC);
199	drbar_result = irbar_result = drbar_read();
200	drbar_write(0x0);
201	/* If the MPU is non-unified, we use the larger of the two minima*/
202	if (mpu_iside_independent()) {
203		irbar_write(0xFFFFFFFC);
204		irbar_result = irbar_read();
205		irbar_write(0x0);
206	}
207	isb(); /* Ensure that MPU region operations have completed */
208	/* Return whichever result is larger */
209	return __ffs(max(drbar_result, irbar_result));
210}
211
212static int mpu_setup_region(unsigned int number, phys_addr_t start,
213			unsigned int size_order, unsigned int properties)
214{
215	u32 size_data;
216
217	/* We kept a region free for probing resolution of MPU regions*/
218	if (number > mpu_max_regions() || number == MPU_PROBE_REGION)
219		return -ENOENT;
220
221	if (size_order > 32)
222		return -ENOMEM;
223
224	if (size_order < mpu_min_region_order())
225		return -ENOMEM;
226
227	/* Writing N to bits 5:1 (RSR_SZ)  specifies region size 2^N+1 */
228	size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN;
229
230	dsb(); /* Ensure all previous data accesses occur with old mappings */
231	rgnr_write(number);
232	isb();
233	drbar_write(start);
234	dracr_write(properties);
235	isb(); /* Propagate properties before enabling region */
236	drsr_write(size_data);
237
238	/* Check for independent I-side registers */
239	if (mpu_iside_independent()) {
240		irbar_write(start);
241		iracr_write(properties);
242		isb();
243		irsr_write(size_data);
244	}
245	isb();
246
247	/* Store region info (we treat i/d side the same, so only store d) */
248	mpu_rgn_info.rgns[number].dracr = properties;
249	mpu_rgn_info.rgns[number].drbar = start;
250	mpu_rgn_info.rgns[number].drsr = size_data;
251	return 0;
252}
253
254/*
255* Set up default MPU regions, doing nothing if there is no MPU
256*/
257void __init mpu_setup(void)
258{
259	int region_err;
260	if (!mpu_present())
261		return;
262
263	region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET,
264					ilog2(meminfo.bank[0].size),
265					MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL);
266	if (region_err) {
267		panic("MPU region initialization failure! %d", region_err);
268	} else {
269		pr_info("Using ARMv7 PMSA Compliant MPU. "
270			 "Region independence: %s, Max regions: %d\n",
271			mpu_iside_independent() ? "Yes" : "No",
272			mpu_max_regions());
273	}
274}
275#else
276static void sanity_check_meminfo_mpu(void) {}
277static void __init mpu_setup(void) {}
278#endif /* CONFIG_ARM_MPU */
279
280void __init arm_mm_memblock_reserve(void)
281{
282#ifndef CONFIG_CPU_V7M
283	/*
284	 * Register the exception vector page.
285	 * some architectures which the DRAM is the exception vector to trap,
286	 * alloc_page breaks with error, although it is not NULL, but "0."
287	 */
288	memblock_reserve(CONFIG_VECTORS_BASE, PAGE_SIZE);
289#else /* ifndef CONFIG_CPU_V7M */
290	/*
291	 * There is no dedicated vector page on V7-M. So nothing needs to be
292	 * reserved here.
293	 */
294#endif
295}
296
297void __init sanity_check_meminfo(void)
298{
299	phys_addr_t end;
300	sanity_check_meminfo_mpu();
301	end = memblock_end_of_DRAM();
302	high_memory = __va(end - 1) + 1;
303	memblock_set_current_limit(end);
304}
305
306/*
307 * paging_init() sets up the page tables, initialises the zone memory
308 * maps, and sets up the zero page, bad page and bad page tables.
309 */
310void __init paging_init(const struct machine_desc *mdesc)
311{
312	early_trap_init((void *)CONFIG_VECTORS_BASE);
313	mpu_setup();
314	bootmem_init();
315}
316
317/*
318 * We don't need to do anything here for nommu machines.
319 */
320void setup_mm_for_reboot(void)
321{
322}
323
324void flush_dcache_page(struct page *page)
325{
326	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
327}
328EXPORT_SYMBOL(flush_dcache_page);
329
330void flush_kernel_dcache_page(struct page *page)
331{
332	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
333}
334EXPORT_SYMBOL(flush_kernel_dcache_page);
335
336void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
337		       unsigned long uaddr, void *dst, const void *src,
338		       unsigned long len)
339{
340	memcpy(dst, src, len);
341	if (vma->vm_flags & VM_EXEC)
342		__cpuc_coherent_user_range(uaddr, uaddr + len);
343}
344
345void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
346				size_t size, unsigned int mtype)
347{
348	if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
349		return NULL;
350	return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
351}
352EXPORT_SYMBOL(__arm_ioremap_pfn);
353
354void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
355				   unsigned int mtype, void *caller)
356{
357	return (void __iomem *)phys_addr;
358}
359
360void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);
361
362void __iomem *ioremap(resource_size_t res_cookie, size_t size)
363{
364	return __arm_ioremap_caller(res_cookie, size, MT_DEVICE,
365				    __builtin_return_address(0));
366}
367EXPORT_SYMBOL(ioremap);
368
369void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
370{
371	return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
372				    __builtin_return_address(0));
373}
374EXPORT_SYMBOL(ioremap_cache);
375
376void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
377{
378	return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
379				    __builtin_return_address(0));
380}
381EXPORT_SYMBOL(ioremap_wc);
382
383void __iounmap(volatile void __iomem *addr)
384{
385}
386EXPORT_SYMBOL(__iounmap);
387
388void (*arch_iounmap)(volatile void __iomem *);
389
390void iounmap(volatile void __iomem *addr)
391{
392}
393EXPORT_SYMBOL(iounmap);
394