1/*
2 *  linux/arch/arm/mm/dma-mapping.c
3 *
4 *  Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 *  DMA uncached mapping support.
11 */
12#include <linux/bootmem.h>
13#include <linux/module.h>
14#include <linux/mm.h>
15#include <linux/genalloc.h>
16#include <linux/gfp.h>
17#include <linux/errno.h>
18#include <linux/list.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/dma-mapping.h>
22#include <linux/dma-contiguous.h>
23#include <linux/highmem.h>
24#include <linux/memblock.h>
25#include <linux/slab.h>
26#include <linux/iommu.h>
27#include <linux/io.h>
28#include <linux/vmalloc.h>
29#include <linux/sizes.h>
30#include <linux/cma.h>
31
32#include <asm/memory.h>
33#include <asm/highmem.h>
34#include <asm/cacheflush.h>
35#include <asm/tlbflush.h>
36#include <asm/mach/arch.h>
37#include <asm/dma-iommu.h>
38#include <asm/mach/map.h>
39#include <asm/system_info.h>
40#include <asm/dma-contiguous.h>
41
42#include "dma.h"
43#include "mm.h"
44
45/*
46 * The DMA API is built upon the notion of "buffer ownership".  A buffer
47 * is either exclusively owned by the CPU (and therefore may be accessed
48 * by it) or exclusively owned by the DMA device.  These helper functions
49 * represent the transitions between these two ownership states.
50 *
51 * Note, however, that on later ARMs, this notion does not work due to
52 * speculative prefetches.  We model our approach on the assumption that
53 * the CPU does do speculative prefetches, which means we clean caches
54 * before transfers and delay cache invalidation until transfer completion.
55 *
56 */
57static void __dma_page_cpu_to_dev(struct page *, unsigned long,
58		size_t, enum dma_data_direction);
59static void __dma_page_dev_to_cpu(struct page *, unsigned long,
60		size_t, enum dma_data_direction);
61
62/**
63 * arm_dma_map_page - map a portion of a page for streaming DMA
64 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
65 * @page: page that buffer resides in
66 * @offset: offset into page for start of buffer
67 * @size: size of buffer to map
68 * @dir: DMA transfer direction
69 *
70 * Ensure that any data held in the cache is appropriately discarded
71 * or written back.
72 *
73 * The device owns this memory once this call has completed.  The CPU
74 * can regain ownership by calling dma_unmap_page().
75 */
76static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
77	     unsigned long offset, size_t size, enum dma_data_direction dir,
78	     struct dma_attrs *attrs)
79{
80	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
81		__dma_page_cpu_to_dev(page, offset, size, dir);
82	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
83}
84
85static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
86	     unsigned long offset, size_t size, enum dma_data_direction dir,
87	     struct dma_attrs *attrs)
88{
89	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
90}
91
92/**
93 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
94 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
95 * @handle: DMA address of buffer
96 * @size: size of buffer (same as passed to dma_map_page)
97 * @dir: DMA transfer direction (same as passed to dma_map_page)
98 *
99 * Unmap a page streaming mode DMA translation.  The handle and size
100 * must match what was provided in the previous dma_map_page() call.
101 * All other usages are undefined.
102 *
103 * After this call, reads by the CPU to the buffer are guaranteed to see
104 * whatever the device wrote there.
105 */
106static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
107		size_t size, enum dma_data_direction dir,
108		struct dma_attrs *attrs)
109{
110	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
111		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
112				      handle & ~PAGE_MASK, size, dir);
113}
114
115static void arm_dma_sync_single_for_cpu(struct device *dev,
116		dma_addr_t handle, size_t size, enum dma_data_direction dir)
117{
118	unsigned int offset = handle & (PAGE_SIZE - 1);
119	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
120	__dma_page_dev_to_cpu(page, offset, size, dir);
121}
122
123static void arm_dma_sync_single_for_device(struct device *dev,
124		dma_addr_t handle, size_t size, enum dma_data_direction dir)
125{
126	unsigned int offset = handle & (PAGE_SIZE - 1);
127	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
128	__dma_page_cpu_to_dev(page, offset, size, dir);
129}
130
131struct dma_map_ops arm_dma_ops = {
132	.alloc			= arm_dma_alloc,
133	.free			= arm_dma_free,
134	.mmap			= arm_dma_mmap,
135	.get_sgtable		= arm_dma_get_sgtable,
136	.map_page		= arm_dma_map_page,
137	.unmap_page		= arm_dma_unmap_page,
138	.map_sg			= arm_dma_map_sg,
139	.unmap_sg		= arm_dma_unmap_sg,
140	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
141	.sync_single_for_device	= arm_dma_sync_single_for_device,
142	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
143	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
144	.set_dma_mask		= arm_dma_set_mask,
145};
146EXPORT_SYMBOL(arm_dma_ops);
147
148static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
149	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
150static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
151				  dma_addr_t handle, struct dma_attrs *attrs);
152static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
153		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
154		 struct dma_attrs *attrs);
155
156struct dma_map_ops arm_coherent_dma_ops = {
157	.alloc			= arm_coherent_dma_alloc,
158	.free			= arm_coherent_dma_free,
159	.mmap			= arm_coherent_dma_mmap,
160	.get_sgtable		= arm_dma_get_sgtable,
161	.map_page		= arm_coherent_dma_map_page,
162	.map_sg			= arm_dma_map_sg,
163	.set_dma_mask		= arm_dma_set_mask,
164};
165EXPORT_SYMBOL(arm_coherent_dma_ops);
166
167static int __dma_supported(struct device *dev, u64 mask, bool warn)
168{
169	unsigned long max_dma_pfn;
170
171	/*
172	 * If the mask allows for more memory than we can address,
173	 * and we actually have that much memory, then we must
174	 * indicate that DMA to this device is not supported.
175	 */
176	if (sizeof(mask) != sizeof(dma_addr_t) &&
177	    mask > (dma_addr_t)~0 &&
178	    dma_to_pfn(dev, ~0) < max_pfn - 1) {
179		if (warn) {
180			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
181				 mask);
182			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
183		}
184		return 0;
185	}
186
187	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
188
189	/*
190	 * Translate the device's DMA mask to a PFN limit.  This
191	 * PFN number includes the page which we can DMA to.
192	 */
193	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
194		if (warn)
195			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
196				 mask,
197				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
198				 max_dma_pfn + 1);
199		return 0;
200	}
201
202	return 1;
203}
204
205static u64 get_coherent_dma_mask(struct device *dev)
206{
207	u64 mask = (u64)DMA_BIT_MASK(32);
208
209	if (dev) {
210		mask = dev->coherent_dma_mask;
211
212		/*
213		 * Sanity check the DMA mask - it must be non-zero, and
214		 * must be able to be satisfied by a DMA allocation.
215		 */
216		if (mask == 0) {
217			dev_warn(dev, "coherent DMA mask is unset\n");
218			return 0;
219		}
220
221		if (!__dma_supported(dev, mask, true))
222			return 0;
223	}
224
225	return mask;
226}
227
228static void __dma_clear_buffer(struct page *page, size_t size)
229{
230	/*
231	 * Ensure that the allocated pages are zeroed, and that any data
232	 * lurking in the kernel direct-mapped region is invalidated.
233	 */
234	if (PageHighMem(page)) {
235		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
236		phys_addr_t end = base + size;
237		while (size > 0) {
238			void *ptr = kmap_atomic(page);
239			memset(ptr, 0, PAGE_SIZE);
240			dmac_flush_range(ptr, ptr + PAGE_SIZE);
241			kunmap_atomic(ptr);
242			page++;
243			size -= PAGE_SIZE;
244		}
245		outer_flush_range(base, end);
246	} else {
247		void *ptr = page_address(page);
248		memset(ptr, 0, size);
249		dmac_flush_range(ptr, ptr + size);
250		outer_flush_range(__pa(ptr), __pa(ptr) + size);
251	}
252}
253
254/*
255 * Allocate a DMA buffer for 'dev' of size 'size' using the
256 * specified gfp mask.  Note that 'size' must be page aligned.
257 */
258static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
259{
260	unsigned long order = get_order(size);
261	struct page *page, *p, *e;
262
263	page = alloc_pages(gfp, order);
264	if (!page)
265		return NULL;
266
267	/*
268	 * Now split the huge page and free the excess pages
269	 */
270	split_page(page, order);
271	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
272		__free_page(p);
273
274	__dma_clear_buffer(page, size);
275
276	return page;
277}
278
279/*
280 * Free a DMA buffer.  'size' must be page aligned.
281 */
282static void __dma_free_buffer(struct page *page, size_t size)
283{
284	struct page *e = page + (size >> PAGE_SHIFT);
285
286	while (page < e) {
287		__free_page(page);
288		page++;
289	}
290}
291
292#ifdef CONFIG_MMU
293
294static void *__alloc_from_contiguous(struct device *dev, size_t size,
295				     pgprot_t prot, struct page **ret_page,
296				     const void *caller, bool want_vaddr);
297
298static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
299				 pgprot_t prot, struct page **ret_page,
300				 const void *caller, bool want_vaddr);
301
302static void *
303__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
304	const void *caller)
305{
306	/*
307	 * DMA allocation can be mapped to user space, so lets
308	 * set VM_USERMAP flags too.
309	 */
310	return dma_common_contiguous_remap(page, size,
311			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
312			prot, caller);
313}
314
315static void __dma_free_remap(void *cpu_addr, size_t size)
316{
317	dma_common_free_remap(cpu_addr, size,
318			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
319}
320
321#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
322static struct gen_pool *atomic_pool;
323
324static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
325
326static int __init early_coherent_pool(char *p)
327{
328	atomic_pool_size = memparse(p, &p);
329	return 0;
330}
331early_param("coherent_pool", early_coherent_pool);
332
333void __init init_dma_coherent_pool_size(unsigned long size)
334{
335	/*
336	 * Catch any attempt to set the pool size too late.
337	 */
338	BUG_ON(atomic_pool);
339
340	/*
341	 * Set architecture specific coherent pool size only if
342	 * it has not been changed by kernel command line parameter.
343	 */
344	if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
345		atomic_pool_size = size;
346}
347
348/*
349 * Initialise the coherent pool for atomic allocations.
350 */
351static int __init atomic_pool_init(void)
352{
353	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
354	gfp_t gfp = GFP_KERNEL | GFP_DMA;
355	struct page *page;
356	void *ptr;
357
358	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
359	if (!atomic_pool)
360		goto out;
361
362	if (dev_get_cma_area(NULL))
363		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
364					      &page, atomic_pool_init, true);
365	else
366		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
367					   &page, atomic_pool_init, true);
368	if (ptr) {
369		int ret;
370
371		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
372					page_to_phys(page),
373					atomic_pool_size, -1);
374		if (ret)
375			goto destroy_genpool;
376
377		gen_pool_set_algo(atomic_pool,
378				gen_pool_first_fit_order_align,
379				(void *)PAGE_SHIFT);
380		pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
381		       atomic_pool_size / 1024);
382		return 0;
383	}
384
385destroy_genpool:
386	gen_pool_destroy(atomic_pool);
387	atomic_pool = NULL;
388out:
389	pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
390	       atomic_pool_size / 1024);
391	return -ENOMEM;
392}
393/*
394 * CMA is activated by core_initcall, so we must be called after it.
395 */
396postcore_initcall(atomic_pool_init);
397
398struct dma_contig_early_reserve {
399	phys_addr_t base;
400	unsigned long size;
401};
402
403static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
404
405static int dma_mmu_remap_num __initdata;
406
407void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
408{
409	dma_mmu_remap[dma_mmu_remap_num].base = base;
410	dma_mmu_remap[dma_mmu_remap_num].size = size;
411	dma_mmu_remap_num++;
412}
413
414void __init dma_contiguous_remap(void)
415{
416	int i;
417	for (i = 0; i < dma_mmu_remap_num; i++) {
418		phys_addr_t start = dma_mmu_remap[i].base;
419		phys_addr_t end = start + dma_mmu_remap[i].size;
420		struct map_desc map;
421		unsigned long addr;
422
423		if (end > arm_lowmem_limit)
424			end = arm_lowmem_limit;
425		if (start >= end)
426			continue;
427
428		map.pfn = __phys_to_pfn(start);
429		map.virtual = __phys_to_virt(start);
430		map.length = end - start;
431		map.type = MT_MEMORY_DMA_READY;
432
433		/*
434		 * Clear previous low-memory mapping to ensure that the
435		 * TLB does not see any conflicting entries, then flush
436		 * the TLB of the old entries before creating new mappings.
437		 *
438		 * This ensures that any speculatively loaded TLB entries
439		 * (even though they may be rare) can not cause any problems,
440		 * and ensures that this code is architecturally compliant.
441		 */
442		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
443		     addr += PMD_SIZE)
444			pmd_clear(pmd_off_k(addr));
445
446		flush_tlb_kernel_range(__phys_to_virt(start),
447				       __phys_to_virt(end));
448
449		iotable_init(&map, 1);
450	}
451}
452
453static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
454			    void *data)
455{
456	struct page *page = virt_to_page(addr);
457	pgprot_t prot = *(pgprot_t *)data;
458
459	set_pte_ext(pte, mk_pte(page, prot), 0);
460	return 0;
461}
462
463static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
464{
465	unsigned long start = (unsigned long) page_address(page);
466	unsigned end = start + size;
467
468	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
469	flush_tlb_kernel_range(start, end);
470}
471
472static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
473				 pgprot_t prot, struct page **ret_page,
474				 const void *caller, bool want_vaddr)
475{
476	struct page *page;
477	void *ptr = NULL;
478	page = __dma_alloc_buffer(dev, size, gfp);
479	if (!page)
480		return NULL;
481	if (!want_vaddr)
482		goto out;
483
484	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
485	if (!ptr) {
486		__dma_free_buffer(page, size);
487		return NULL;
488	}
489
490 out:
491	*ret_page = page;
492	return ptr;
493}
494
495static void *__alloc_from_pool(size_t size, struct page **ret_page)
496{
497	unsigned long val;
498	void *ptr = NULL;
499
500	if (!atomic_pool) {
501		WARN(1, "coherent pool not initialised!\n");
502		return NULL;
503	}
504
505	val = gen_pool_alloc(atomic_pool, size);
506	if (val) {
507		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
508
509		*ret_page = phys_to_page(phys);
510		ptr = (void *)val;
511	}
512
513	return ptr;
514}
515
516static bool __in_atomic_pool(void *start, size_t size)
517{
518	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
519}
520
521static int __free_from_pool(void *start, size_t size)
522{
523	if (!__in_atomic_pool(start, size))
524		return 0;
525
526	gen_pool_free(atomic_pool, (unsigned long)start, size);
527
528	return 1;
529}
530
531static void *__alloc_from_contiguous(struct device *dev, size_t size,
532				     pgprot_t prot, struct page **ret_page,
533				     const void *caller, bool want_vaddr)
534{
535	unsigned long order = get_order(size);
536	size_t count = size >> PAGE_SHIFT;
537	struct page *page;
538	void *ptr = NULL;
539
540	page = dma_alloc_from_contiguous(dev, count, order);
541	if (!page)
542		return NULL;
543
544	__dma_clear_buffer(page, size);
545
546	if (!want_vaddr)
547		goto out;
548
549	if (PageHighMem(page)) {
550		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
551		if (!ptr) {
552			dma_release_from_contiguous(dev, page, count);
553			return NULL;
554		}
555	} else {
556		__dma_remap(page, size, prot);
557		ptr = page_address(page);
558	}
559
560 out:
561	*ret_page = page;
562	return ptr;
563}
564
565static void __free_from_contiguous(struct device *dev, struct page *page,
566				   void *cpu_addr, size_t size, bool want_vaddr)
567{
568	if (want_vaddr) {
569		if (PageHighMem(page))
570			__dma_free_remap(cpu_addr, size);
571		else
572			__dma_remap(page, size, PAGE_KERNEL);
573	}
574	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
575}
576
577static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
578{
579	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
580			    pgprot_writecombine(prot) :
581			    pgprot_dmacoherent(prot);
582	return prot;
583}
584
585#define nommu() 0
586
587#else	/* !CONFIG_MMU */
588
589#define nommu() 1
590
591#define __get_dma_pgprot(attrs, prot)				__pgprot(0)
592#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv)	NULL
593#define __alloc_from_pool(size, ret_page)			NULL
594#define __alloc_from_contiguous(dev, size, prot, ret, c, wv)	NULL
595#define __free_from_pool(cpu_addr, size)			0
596#define __free_from_contiguous(dev, page, cpu_addr, size, wv)	do { } while (0)
597#define __dma_free_remap(cpu_addr, size)			do { } while (0)
598
599#endif	/* CONFIG_MMU */
600
601static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
602				   struct page **ret_page)
603{
604	struct page *page;
605	page = __dma_alloc_buffer(dev, size, gfp);
606	if (!page)
607		return NULL;
608
609	*ret_page = page;
610	return page_address(page);
611}
612
613
614
615static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
616			 gfp_t gfp, pgprot_t prot, bool is_coherent,
617			 struct dma_attrs *attrs, const void *caller)
618{
619	u64 mask = get_coherent_dma_mask(dev);
620	struct page *page = NULL;
621	void *addr;
622	bool want_vaddr;
623
624#ifdef CONFIG_DMA_API_DEBUG
625	u64 limit = (mask + 1) & ~mask;
626	if (limit && size >= limit) {
627		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
628			size, mask);
629		return NULL;
630	}
631#endif
632
633	if (!mask)
634		return NULL;
635
636	if (mask < 0xffffffffULL)
637		gfp |= GFP_DMA;
638
639	/*
640	 * Following is a work-around (a.k.a. hack) to prevent pages
641	 * with __GFP_COMP being passed to split_page() which cannot
642	 * handle them.  The real problem is that this flag probably
643	 * should be 0 on ARM as it is not supported on this
644	 * platform; see CONFIG_HUGETLBFS.
645	 */
646	gfp &= ~(__GFP_COMP);
647
648	*handle = DMA_ERROR_CODE;
649	size = PAGE_ALIGN(size);
650	want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
651
652	if (nommu())
653		addr = __alloc_simple_buffer(dev, size, gfp, &page);
654	else if (dev_get_cma_area(dev) && (gfp & __GFP_DIRECT_RECLAIM))
655		addr = __alloc_from_contiguous(dev, size, prot, &page,
656					       caller, want_vaddr);
657	else if (is_coherent)
658		addr = __alloc_simple_buffer(dev, size, gfp, &page);
659	else if (!gfpflags_allow_blocking(gfp))
660		addr = __alloc_from_pool(size, &page);
661	else
662		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page,
663					    caller, want_vaddr);
664
665	if (page)
666		*handle = pfn_to_dma(dev, page_to_pfn(page));
667
668	return want_vaddr ? addr : page;
669}
670
671/*
672 * Allocate DMA-coherent memory space and return both the kernel remapped
673 * virtual and bus address for that space.
674 */
675void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
676		    gfp_t gfp, struct dma_attrs *attrs)
677{
678	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
679
680	return __dma_alloc(dev, size, handle, gfp, prot, false,
681			   attrs, __builtin_return_address(0));
682}
683
684static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
685	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
686{
687	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
688			   attrs, __builtin_return_address(0));
689}
690
691static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
692		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
693		 struct dma_attrs *attrs)
694{
695	int ret = -ENXIO;
696#ifdef CONFIG_MMU
697	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
698	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
699	unsigned long pfn = dma_to_pfn(dev, dma_addr);
700	unsigned long off = vma->vm_pgoff;
701
702	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
703		return ret;
704
705	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
706		ret = remap_pfn_range(vma, vma->vm_start,
707				      pfn + off,
708				      vma->vm_end - vma->vm_start,
709				      vma->vm_page_prot);
710	}
711#endif	/* CONFIG_MMU */
712
713	return ret;
714}
715
716/*
717 * Create userspace mapping for the DMA-coherent memory.
718 */
719static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
720		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
721		 struct dma_attrs *attrs)
722{
723	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
724}
725
726int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
727		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
728		 struct dma_attrs *attrs)
729{
730#ifdef CONFIG_MMU
731	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
732#endif	/* CONFIG_MMU */
733	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
734}
735
736/*
737 * Free a buffer as defined by the above mapping.
738 */
739static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
740			   dma_addr_t handle, struct dma_attrs *attrs,
741			   bool is_coherent)
742{
743	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
744	bool want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
745
746	size = PAGE_ALIGN(size);
747
748	if (nommu()) {
749		__dma_free_buffer(page, size);
750	} else if (!is_coherent && __free_from_pool(cpu_addr, size)) {
751		return;
752	} else if (!dev_get_cma_area(dev)) {
753		if (want_vaddr && !is_coherent)
754			__dma_free_remap(cpu_addr, size);
755		__dma_free_buffer(page, size);
756	} else {
757		/*
758		 * Non-atomic allocations cannot be freed with IRQs disabled
759		 */
760		WARN_ON(irqs_disabled());
761		__free_from_contiguous(dev, page, cpu_addr, size, want_vaddr);
762	}
763}
764
765void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
766		  dma_addr_t handle, struct dma_attrs *attrs)
767{
768	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
769}
770
771static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
772				  dma_addr_t handle, struct dma_attrs *attrs)
773{
774	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
775}
776
777int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
778		 void *cpu_addr, dma_addr_t handle, size_t size,
779		 struct dma_attrs *attrs)
780{
781	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
782	int ret;
783
784	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
785	if (unlikely(ret))
786		return ret;
787
788	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
789	return 0;
790}
791
792static void dma_cache_maint_page(struct page *page, unsigned long offset,
793	size_t size, enum dma_data_direction dir,
794	void (*op)(const void *, size_t, int))
795{
796	unsigned long pfn;
797	size_t left = size;
798
799	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
800	offset %= PAGE_SIZE;
801
802	/*
803	 * A single sg entry may refer to multiple physically contiguous
804	 * pages.  But we still need to process highmem pages individually.
805	 * If highmem is not configured then the bulk of this loop gets
806	 * optimized out.
807	 */
808	do {
809		size_t len = left;
810		void *vaddr;
811
812		page = pfn_to_page(pfn);
813
814		if (PageHighMem(page)) {
815			if (len + offset > PAGE_SIZE)
816				len = PAGE_SIZE - offset;
817
818			if (cache_is_vipt_nonaliasing()) {
819				vaddr = kmap_atomic(page);
820				op(vaddr + offset, len, dir);
821				kunmap_atomic(vaddr);
822			} else {
823				vaddr = kmap_high_get(page);
824				if (vaddr) {
825					op(vaddr + offset, len, dir);
826					kunmap_high(page);
827				}
828			}
829		} else {
830			vaddr = page_address(page) + offset;
831			op(vaddr, len, dir);
832		}
833		offset = 0;
834		pfn++;
835		left -= len;
836	} while (left);
837}
838
839/*
840 * Make an area consistent for devices.
841 * Note: Drivers should NOT use this function directly, as it will break
842 * platforms with CONFIG_DMABOUNCE.
843 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
844 */
845static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
846	size_t size, enum dma_data_direction dir)
847{
848	phys_addr_t paddr;
849
850	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
851
852	paddr = page_to_phys(page) + off;
853	if (dir == DMA_FROM_DEVICE) {
854		outer_inv_range(paddr, paddr + size);
855	} else {
856		outer_clean_range(paddr, paddr + size);
857	}
858	/* FIXME: non-speculating: flush on bidirectional mappings? */
859}
860
861static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
862	size_t size, enum dma_data_direction dir)
863{
864	phys_addr_t paddr = page_to_phys(page) + off;
865
866	/* FIXME: non-speculating: not required */
867	/* in any case, don't bother invalidating if DMA to device */
868	if (dir != DMA_TO_DEVICE) {
869		outer_inv_range(paddr, paddr + size);
870
871		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
872	}
873
874	/*
875	 * Mark the D-cache clean for these pages to avoid extra flushing.
876	 */
877	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
878		unsigned long pfn;
879		size_t left = size;
880
881		pfn = page_to_pfn(page) + off / PAGE_SIZE;
882		off %= PAGE_SIZE;
883		if (off) {
884			pfn++;
885			left -= PAGE_SIZE - off;
886		}
887		while (left >= PAGE_SIZE) {
888			page = pfn_to_page(pfn++);
889			set_bit(PG_dcache_clean, &page->flags);
890			left -= PAGE_SIZE;
891		}
892	}
893}
894
895/**
896 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
897 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
898 * @sg: list of buffers
899 * @nents: number of buffers to map
900 * @dir: DMA transfer direction
901 *
902 * Map a set of buffers described by scatterlist in streaming mode for DMA.
903 * This is the scatter-gather version of the dma_map_single interface.
904 * Here the scatter gather list elements are each tagged with the
905 * appropriate dma address and length.  They are obtained via
906 * sg_dma_{address,length}.
907 *
908 * Device ownership issues as mentioned for dma_map_single are the same
909 * here.
910 */
911int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
912		enum dma_data_direction dir, struct dma_attrs *attrs)
913{
914	struct dma_map_ops *ops = get_dma_ops(dev);
915	struct scatterlist *s;
916	int i, j;
917
918	for_each_sg(sg, s, nents, i) {
919#ifdef CONFIG_NEED_SG_DMA_LENGTH
920		s->dma_length = s->length;
921#endif
922		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
923						s->length, dir, attrs);
924		if (dma_mapping_error(dev, s->dma_address))
925			goto bad_mapping;
926	}
927	return nents;
928
929 bad_mapping:
930	for_each_sg(sg, s, i, j)
931		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
932	return 0;
933}
934
935/**
936 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
937 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
938 * @sg: list of buffers
939 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
940 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
941 *
942 * Unmap a set of streaming mode DMA translations.  Again, CPU access
943 * rules concerning calls here are the same as for dma_unmap_single().
944 */
945void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
946		enum dma_data_direction dir, struct dma_attrs *attrs)
947{
948	struct dma_map_ops *ops = get_dma_ops(dev);
949	struct scatterlist *s;
950
951	int i;
952
953	for_each_sg(sg, s, nents, i)
954		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
955}
956
957/**
958 * arm_dma_sync_sg_for_cpu
959 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
960 * @sg: list of buffers
961 * @nents: number of buffers to map (returned from dma_map_sg)
962 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
963 */
964void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
965			int nents, enum dma_data_direction dir)
966{
967	struct dma_map_ops *ops = get_dma_ops(dev);
968	struct scatterlist *s;
969	int i;
970
971	for_each_sg(sg, s, nents, i)
972		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
973					 dir);
974}
975
976/**
977 * arm_dma_sync_sg_for_device
978 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
979 * @sg: list of buffers
980 * @nents: number of buffers to map (returned from dma_map_sg)
981 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
982 */
983void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
984			int nents, enum dma_data_direction dir)
985{
986	struct dma_map_ops *ops = get_dma_ops(dev);
987	struct scatterlist *s;
988	int i;
989
990	for_each_sg(sg, s, nents, i)
991		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
992					    dir);
993}
994
995/*
996 * Return whether the given device DMA address mask can be supported
997 * properly.  For example, if your device can only drive the low 24-bits
998 * during bus mastering, then you would pass 0x00ffffff as the mask
999 * to this function.
1000 */
1001int dma_supported(struct device *dev, u64 mask)
1002{
1003	return __dma_supported(dev, mask, false);
1004}
1005EXPORT_SYMBOL(dma_supported);
1006
1007int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1008{
1009	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1010		return -EIO;
1011
1012	*dev->dma_mask = dma_mask;
1013
1014	return 0;
1015}
1016
1017#define PREALLOC_DMA_DEBUG_ENTRIES	4096
1018
1019static int __init dma_debug_do_init(void)
1020{
1021	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1022	return 0;
1023}
1024fs_initcall(dma_debug_do_init);
1025
1026#ifdef CONFIG_ARM_DMA_USE_IOMMU
1027
1028/* IOMMU */
1029
1030static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1031
1032static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1033				      size_t size)
1034{
1035	unsigned int order = get_order(size);
1036	unsigned int align = 0;
1037	unsigned int count, start;
1038	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1039	unsigned long flags;
1040	dma_addr_t iova;
1041	int i;
1042
1043	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1044		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1045
1046	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1047	align = (1 << order) - 1;
1048
1049	spin_lock_irqsave(&mapping->lock, flags);
1050	for (i = 0; i < mapping->nr_bitmaps; i++) {
1051		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1052				mapping->bits, 0, count, align);
1053
1054		if (start > mapping->bits)
1055			continue;
1056
1057		bitmap_set(mapping->bitmaps[i], start, count);
1058		break;
1059	}
1060
1061	/*
1062	 * No unused range found. Try to extend the existing mapping
1063	 * and perform a second attempt to reserve an IO virtual
1064	 * address range of size bytes.
1065	 */
1066	if (i == mapping->nr_bitmaps) {
1067		if (extend_iommu_mapping(mapping)) {
1068			spin_unlock_irqrestore(&mapping->lock, flags);
1069			return DMA_ERROR_CODE;
1070		}
1071
1072		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1073				mapping->bits, 0, count, align);
1074
1075		if (start > mapping->bits) {
1076			spin_unlock_irqrestore(&mapping->lock, flags);
1077			return DMA_ERROR_CODE;
1078		}
1079
1080		bitmap_set(mapping->bitmaps[i], start, count);
1081	}
1082	spin_unlock_irqrestore(&mapping->lock, flags);
1083
1084	iova = mapping->base + (mapping_size * i);
1085	iova += start << PAGE_SHIFT;
1086
1087	return iova;
1088}
1089
1090static inline void __free_iova(struct dma_iommu_mapping *mapping,
1091			       dma_addr_t addr, size_t size)
1092{
1093	unsigned int start, count;
1094	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1095	unsigned long flags;
1096	dma_addr_t bitmap_base;
1097	u32 bitmap_index;
1098
1099	if (!size)
1100		return;
1101
1102	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1103	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1104
1105	bitmap_base = mapping->base + mapping_size * bitmap_index;
1106
1107	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1108
1109	if (addr + size > bitmap_base + mapping_size) {
1110		/*
1111		 * The address range to be freed reaches into the iova
1112		 * range of the next bitmap. This should not happen as
1113		 * we don't allow this in __alloc_iova (at the
1114		 * moment).
1115		 */
1116		BUG();
1117	} else
1118		count = size >> PAGE_SHIFT;
1119
1120	spin_lock_irqsave(&mapping->lock, flags);
1121	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1122	spin_unlock_irqrestore(&mapping->lock, flags);
1123}
1124
1125static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1126					  gfp_t gfp, struct dma_attrs *attrs)
1127{
1128	struct page **pages;
1129	int count = size >> PAGE_SHIFT;
1130	int array_size = count * sizeof(struct page *);
1131	int i = 0;
1132
1133	if (array_size <= PAGE_SIZE)
1134		pages = kzalloc(array_size, GFP_KERNEL);
1135	else
1136		pages = vzalloc(array_size);
1137	if (!pages)
1138		return NULL;
1139
1140	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1141	{
1142		unsigned long order = get_order(size);
1143		struct page *page;
1144
1145		page = dma_alloc_from_contiguous(dev, count, order);
1146		if (!page)
1147			goto error;
1148
1149		__dma_clear_buffer(page, size);
1150
1151		for (i = 0; i < count; i++)
1152			pages[i] = page + i;
1153
1154		return pages;
1155	}
1156
1157	/*
1158	 * IOMMU can map any pages, so himem can also be used here
1159	 */
1160	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1161
1162	while (count) {
1163		int j, order;
1164
1165		for (order = __fls(count); order > 0; --order) {
1166			/*
1167			 * We do not want OOM killer to be invoked as long
1168			 * as we can fall back to single pages, so we force
1169			 * __GFP_NORETRY for orders higher than zero.
1170			 */
1171			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1172			if (pages[i])
1173				break;
1174		}
1175
1176		if (!pages[i]) {
1177			/*
1178			 * Fall back to single page allocation.
1179			 * Might invoke OOM killer as last resort.
1180			 */
1181			pages[i] = alloc_pages(gfp, 0);
1182			if (!pages[i])
1183				goto error;
1184		}
1185
1186		if (order) {
1187			split_page(pages[i], order);
1188			j = 1 << order;
1189			while (--j)
1190				pages[i + j] = pages[i] + j;
1191		}
1192
1193		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1194		i += 1 << order;
1195		count -= 1 << order;
1196	}
1197
1198	return pages;
1199error:
1200	while (i--)
1201		if (pages[i])
1202			__free_pages(pages[i], 0);
1203	if (array_size <= PAGE_SIZE)
1204		kfree(pages);
1205	else
1206		vfree(pages);
1207	return NULL;
1208}
1209
1210static int __iommu_free_buffer(struct device *dev, struct page **pages,
1211			       size_t size, struct dma_attrs *attrs)
1212{
1213	int count = size >> PAGE_SHIFT;
1214	int array_size = count * sizeof(struct page *);
1215	int i;
1216
1217	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1218		dma_release_from_contiguous(dev, pages[0], count);
1219	} else {
1220		for (i = 0; i < count; i++)
1221			if (pages[i])
1222				__free_pages(pages[i], 0);
1223	}
1224
1225	if (array_size <= PAGE_SIZE)
1226		kfree(pages);
1227	else
1228		vfree(pages);
1229	return 0;
1230}
1231
1232/*
1233 * Create a CPU mapping for a specified pages
1234 */
1235static void *
1236__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1237		    const void *caller)
1238{
1239	return dma_common_pages_remap(pages, size,
1240			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1241}
1242
1243/*
1244 * Create a mapping in device IO address space for specified pages
1245 */
1246static dma_addr_t
1247__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1248{
1249	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1250	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1251	dma_addr_t dma_addr, iova;
1252	int i;
1253
1254	dma_addr = __alloc_iova(mapping, size);
1255	if (dma_addr == DMA_ERROR_CODE)
1256		return dma_addr;
1257
1258	iova = dma_addr;
1259	for (i = 0; i < count; ) {
1260		int ret;
1261
1262		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1263		phys_addr_t phys = page_to_phys(pages[i]);
1264		unsigned int len, j;
1265
1266		for (j = i + 1; j < count; j++, next_pfn++)
1267			if (page_to_pfn(pages[j]) != next_pfn)
1268				break;
1269
1270		len = (j - i) << PAGE_SHIFT;
1271		ret = iommu_map(mapping->domain, iova, phys, len,
1272				IOMMU_READ|IOMMU_WRITE);
1273		if (ret < 0)
1274			goto fail;
1275		iova += len;
1276		i = j;
1277	}
1278	return dma_addr;
1279fail:
1280	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1281	__free_iova(mapping, dma_addr, size);
1282	return DMA_ERROR_CODE;
1283}
1284
1285static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1286{
1287	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1288
1289	/*
1290	 * add optional in-page offset from iova to size and align
1291	 * result to page size
1292	 */
1293	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1294	iova &= PAGE_MASK;
1295
1296	iommu_unmap(mapping->domain, iova, size);
1297	__free_iova(mapping, iova, size);
1298	return 0;
1299}
1300
1301static struct page **__atomic_get_pages(void *addr)
1302{
1303	struct page *page;
1304	phys_addr_t phys;
1305
1306	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1307	page = phys_to_page(phys);
1308
1309	return (struct page **)page;
1310}
1311
1312static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1313{
1314	struct vm_struct *area;
1315
1316	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1317		return __atomic_get_pages(cpu_addr);
1318
1319	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1320		return cpu_addr;
1321
1322	area = find_vm_area(cpu_addr);
1323	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1324		return area->pages;
1325	return NULL;
1326}
1327
1328static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1329				  dma_addr_t *handle)
1330{
1331	struct page *page;
1332	void *addr;
1333
1334	addr = __alloc_from_pool(size, &page);
1335	if (!addr)
1336		return NULL;
1337
1338	*handle = __iommu_create_mapping(dev, &page, size);
1339	if (*handle == DMA_ERROR_CODE)
1340		goto err_mapping;
1341
1342	return addr;
1343
1344err_mapping:
1345	__free_from_pool(addr, size);
1346	return NULL;
1347}
1348
1349static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1350				dma_addr_t handle, size_t size)
1351{
1352	__iommu_remove_mapping(dev, handle, size);
1353	__free_from_pool(cpu_addr, size);
1354}
1355
1356static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1357	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1358{
1359	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1360	struct page **pages;
1361	void *addr = NULL;
1362
1363	*handle = DMA_ERROR_CODE;
1364	size = PAGE_ALIGN(size);
1365
1366	if (!gfpflags_allow_blocking(gfp))
1367		return __iommu_alloc_atomic(dev, size, handle);
1368
1369	/*
1370	 * Following is a work-around (a.k.a. hack) to prevent pages
1371	 * with __GFP_COMP being passed to split_page() which cannot
1372	 * handle them.  The real problem is that this flag probably
1373	 * should be 0 on ARM as it is not supported on this
1374	 * platform; see CONFIG_HUGETLBFS.
1375	 */
1376	gfp &= ~(__GFP_COMP);
1377
1378	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1379	if (!pages)
1380		return NULL;
1381
1382	*handle = __iommu_create_mapping(dev, pages, size);
1383	if (*handle == DMA_ERROR_CODE)
1384		goto err_buffer;
1385
1386	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1387		return pages;
1388
1389	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1390				   __builtin_return_address(0));
1391	if (!addr)
1392		goto err_mapping;
1393
1394	return addr;
1395
1396err_mapping:
1397	__iommu_remove_mapping(dev, *handle, size);
1398err_buffer:
1399	__iommu_free_buffer(dev, pages, size, attrs);
1400	return NULL;
1401}
1402
1403static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1404		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1405		    struct dma_attrs *attrs)
1406{
1407	unsigned long uaddr = vma->vm_start;
1408	unsigned long usize = vma->vm_end - vma->vm_start;
1409	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1410	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1411	unsigned long off = vma->vm_pgoff;
1412
1413	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1414
1415	if (!pages)
1416		return -ENXIO;
1417
1418	if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1419		return -ENXIO;
1420
1421	pages += off;
1422
1423	do {
1424		int ret = vm_insert_page(vma, uaddr, *pages++);
1425		if (ret) {
1426			pr_err("Remapping memory failed: %d\n", ret);
1427			return ret;
1428		}
1429		uaddr += PAGE_SIZE;
1430		usize -= PAGE_SIZE;
1431	} while (usize > 0);
1432
1433	return 0;
1434}
1435
1436/*
1437 * free a page as defined by the above mapping.
1438 * Must not be called with IRQs disabled.
1439 */
1440void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1441			  dma_addr_t handle, struct dma_attrs *attrs)
1442{
1443	struct page **pages;
1444	size = PAGE_ALIGN(size);
1445
1446	if (__in_atomic_pool(cpu_addr, size)) {
1447		__iommu_free_atomic(dev, cpu_addr, handle, size);
1448		return;
1449	}
1450
1451	pages = __iommu_get_pages(cpu_addr, attrs);
1452	if (!pages) {
1453		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1454		return;
1455	}
1456
1457	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1458		dma_common_free_remap(cpu_addr, size,
1459			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1460	}
1461
1462	__iommu_remove_mapping(dev, handle, size);
1463	__iommu_free_buffer(dev, pages, size, attrs);
1464}
1465
1466static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1467				 void *cpu_addr, dma_addr_t dma_addr,
1468				 size_t size, struct dma_attrs *attrs)
1469{
1470	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1471	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1472
1473	if (!pages)
1474		return -ENXIO;
1475
1476	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1477					 GFP_KERNEL);
1478}
1479
1480static int __dma_direction_to_prot(enum dma_data_direction dir)
1481{
1482	int prot;
1483
1484	switch (dir) {
1485	case DMA_BIDIRECTIONAL:
1486		prot = IOMMU_READ | IOMMU_WRITE;
1487		break;
1488	case DMA_TO_DEVICE:
1489		prot = IOMMU_READ;
1490		break;
1491	case DMA_FROM_DEVICE:
1492		prot = IOMMU_WRITE;
1493		break;
1494	default:
1495		prot = 0;
1496	}
1497
1498	return prot;
1499}
1500
1501/*
1502 * Map a part of the scatter-gather list into contiguous io address space
1503 */
1504static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1505			  size_t size, dma_addr_t *handle,
1506			  enum dma_data_direction dir, struct dma_attrs *attrs,
1507			  bool is_coherent)
1508{
1509	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1510	dma_addr_t iova, iova_base;
1511	int ret = 0;
1512	unsigned int count;
1513	struct scatterlist *s;
1514	int prot;
1515
1516	size = PAGE_ALIGN(size);
1517	*handle = DMA_ERROR_CODE;
1518
1519	iova_base = iova = __alloc_iova(mapping, size);
1520	if (iova == DMA_ERROR_CODE)
1521		return -ENOMEM;
1522
1523	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1524		phys_addr_t phys = page_to_phys(sg_page(s));
1525		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1526
1527		if (!is_coherent &&
1528			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1529			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1530
1531		prot = __dma_direction_to_prot(dir);
1532
1533		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1534		if (ret < 0)
1535			goto fail;
1536		count += len >> PAGE_SHIFT;
1537		iova += len;
1538	}
1539	*handle = iova_base;
1540
1541	return 0;
1542fail:
1543	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1544	__free_iova(mapping, iova_base, size);
1545	return ret;
1546}
1547
1548static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1549		     enum dma_data_direction dir, struct dma_attrs *attrs,
1550		     bool is_coherent)
1551{
1552	struct scatterlist *s = sg, *dma = sg, *start = sg;
1553	int i, count = 0;
1554	unsigned int offset = s->offset;
1555	unsigned int size = s->offset + s->length;
1556	unsigned int max = dma_get_max_seg_size(dev);
1557
1558	for (i = 1; i < nents; i++) {
1559		s = sg_next(s);
1560
1561		s->dma_address = DMA_ERROR_CODE;
1562		s->dma_length = 0;
1563
1564		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1565			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1566			    dir, attrs, is_coherent) < 0)
1567				goto bad_mapping;
1568
1569			dma->dma_address += offset;
1570			dma->dma_length = size - offset;
1571
1572			size = offset = s->offset;
1573			start = s;
1574			dma = sg_next(dma);
1575			count += 1;
1576		}
1577		size += s->length;
1578	}
1579	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1580		is_coherent) < 0)
1581		goto bad_mapping;
1582
1583	dma->dma_address += offset;
1584	dma->dma_length = size - offset;
1585
1586	return count+1;
1587
1588bad_mapping:
1589	for_each_sg(sg, s, count, i)
1590		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1591	return 0;
1592}
1593
1594/**
1595 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1596 * @dev: valid struct device pointer
1597 * @sg: list of buffers
1598 * @nents: number of buffers to map
1599 * @dir: DMA transfer direction
1600 *
1601 * Map a set of i/o coherent buffers described by scatterlist in streaming
1602 * mode for DMA. The scatter gather list elements are merged together (if
1603 * possible) and tagged with the appropriate dma address and length. They are
1604 * obtained via sg_dma_{address,length}.
1605 */
1606int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1607		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1608{
1609	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1610}
1611
1612/**
1613 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1614 * @dev: valid struct device pointer
1615 * @sg: list of buffers
1616 * @nents: number of buffers to map
1617 * @dir: DMA transfer direction
1618 *
1619 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1620 * The scatter gather list elements are merged together (if possible) and
1621 * tagged with the appropriate dma address and length. They are obtained via
1622 * sg_dma_{address,length}.
1623 */
1624int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1625		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1626{
1627	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1628}
1629
1630static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1631		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1632		bool is_coherent)
1633{
1634	struct scatterlist *s;
1635	int i;
1636
1637	for_each_sg(sg, s, nents, i) {
1638		if (sg_dma_len(s))
1639			__iommu_remove_mapping(dev, sg_dma_address(s),
1640					       sg_dma_len(s));
1641		if (!is_coherent &&
1642		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1643			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1644					      s->length, dir);
1645	}
1646}
1647
1648/**
1649 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1650 * @dev: valid struct device pointer
1651 * @sg: list of buffers
1652 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1653 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1654 *
1655 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1656 * rules concerning calls here are the same as for dma_unmap_single().
1657 */
1658void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1659		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1660{
1661	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1662}
1663
1664/**
1665 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1666 * @dev: valid struct device pointer
1667 * @sg: list of buffers
1668 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1669 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1670 *
1671 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1672 * rules concerning calls here are the same as for dma_unmap_single().
1673 */
1674void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1675			enum dma_data_direction dir, struct dma_attrs *attrs)
1676{
1677	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1678}
1679
1680/**
1681 * arm_iommu_sync_sg_for_cpu
1682 * @dev: valid struct device pointer
1683 * @sg: list of buffers
1684 * @nents: number of buffers to map (returned from dma_map_sg)
1685 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1686 */
1687void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1688			int nents, enum dma_data_direction dir)
1689{
1690	struct scatterlist *s;
1691	int i;
1692
1693	for_each_sg(sg, s, nents, i)
1694		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1695
1696}
1697
1698/**
1699 * arm_iommu_sync_sg_for_device
1700 * @dev: valid struct device pointer
1701 * @sg: list of buffers
1702 * @nents: number of buffers to map (returned from dma_map_sg)
1703 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1704 */
1705void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1706			int nents, enum dma_data_direction dir)
1707{
1708	struct scatterlist *s;
1709	int i;
1710
1711	for_each_sg(sg, s, nents, i)
1712		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1713}
1714
1715
1716/**
1717 * arm_coherent_iommu_map_page
1718 * @dev: valid struct device pointer
1719 * @page: page that buffer resides in
1720 * @offset: offset into page for start of buffer
1721 * @size: size of buffer to map
1722 * @dir: DMA transfer direction
1723 *
1724 * Coherent IOMMU aware version of arm_dma_map_page()
1725 */
1726static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1727	     unsigned long offset, size_t size, enum dma_data_direction dir,
1728	     struct dma_attrs *attrs)
1729{
1730	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1731	dma_addr_t dma_addr;
1732	int ret, prot, len = PAGE_ALIGN(size + offset);
1733
1734	dma_addr = __alloc_iova(mapping, len);
1735	if (dma_addr == DMA_ERROR_CODE)
1736		return dma_addr;
1737
1738	prot = __dma_direction_to_prot(dir);
1739
1740	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1741	if (ret < 0)
1742		goto fail;
1743
1744	return dma_addr + offset;
1745fail:
1746	__free_iova(mapping, dma_addr, len);
1747	return DMA_ERROR_CODE;
1748}
1749
1750/**
1751 * arm_iommu_map_page
1752 * @dev: valid struct device pointer
1753 * @page: page that buffer resides in
1754 * @offset: offset into page for start of buffer
1755 * @size: size of buffer to map
1756 * @dir: DMA transfer direction
1757 *
1758 * IOMMU aware version of arm_dma_map_page()
1759 */
1760static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1761	     unsigned long offset, size_t size, enum dma_data_direction dir,
1762	     struct dma_attrs *attrs)
1763{
1764	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1765		__dma_page_cpu_to_dev(page, offset, size, dir);
1766
1767	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1768}
1769
1770/**
1771 * arm_coherent_iommu_unmap_page
1772 * @dev: valid struct device pointer
1773 * @handle: DMA address of buffer
1774 * @size: size of buffer (same as passed to dma_map_page)
1775 * @dir: DMA transfer direction (same as passed to dma_map_page)
1776 *
1777 * Coherent IOMMU aware version of arm_dma_unmap_page()
1778 */
1779static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1780		size_t size, enum dma_data_direction dir,
1781		struct dma_attrs *attrs)
1782{
1783	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1784	dma_addr_t iova = handle & PAGE_MASK;
1785	int offset = handle & ~PAGE_MASK;
1786	int len = PAGE_ALIGN(size + offset);
1787
1788	if (!iova)
1789		return;
1790
1791	iommu_unmap(mapping->domain, iova, len);
1792	__free_iova(mapping, iova, len);
1793}
1794
1795/**
1796 * arm_iommu_unmap_page
1797 * @dev: valid struct device pointer
1798 * @handle: DMA address of buffer
1799 * @size: size of buffer (same as passed to dma_map_page)
1800 * @dir: DMA transfer direction (same as passed to dma_map_page)
1801 *
1802 * IOMMU aware version of arm_dma_unmap_page()
1803 */
1804static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1805		size_t size, enum dma_data_direction dir,
1806		struct dma_attrs *attrs)
1807{
1808	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1809	dma_addr_t iova = handle & PAGE_MASK;
1810	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1811	int offset = handle & ~PAGE_MASK;
1812	int len = PAGE_ALIGN(size + offset);
1813
1814	if (!iova)
1815		return;
1816
1817	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1818		__dma_page_dev_to_cpu(page, offset, size, dir);
1819
1820	iommu_unmap(mapping->domain, iova, len);
1821	__free_iova(mapping, iova, len);
1822}
1823
1824static void arm_iommu_sync_single_for_cpu(struct device *dev,
1825		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1826{
1827	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1828	dma_addr_t iova = handle & PAGE_MASK;
1829	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1830	unsigned int offset = handle & ~PAGE_MASK;
1831
1832	if (!iova)
1833		return;
1834
1835	__dma_page_dev_to_cpu(page, offset, size, dir);
1836}
1837
1838static void arm_iommu_sync_single_for_device(struct device *dev,
1839		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1840{
1841	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1842	dma_addr_t iova = handle & PAGE_MASK;
1843	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1844	unsigned int offset = handle & ~PAGE_MASK;
1845
1846	if (!iova)
1847		return;
1848
1849	__dma_page_cpu_to_dev(page, offset, size, dir);
1850}
1851
1852struct dma_map_ops iommu_ops = {
1853	.alloc		= arm_iommu_alloc_attrs,
1854	.free		= arm_iommu_free_attrs,
1855	.mmap		= arm_iommu_mmap_attrs,
1856	.get_sgtable	= arm_iommu_get_sgtable,
1857
1858	.map_page		= arm_iommu_map_page,
1859	.unmap_page		= arm_iommu_unmap_page,
1860	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1861	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1862
1863	.map_sg			= arm_iommu_map_sg,
1864	.unmap_sg		= arm_iommu_unmap_sg,
1865	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1866	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1867
1868	.set_dma_mask		= arm_dma_set_mask,
1869};
1870
1871struct dma_map_ops iommu_coherent_ops = {
1872	.alloc		= arm_iommu_alloc_attrs,
1873	.free		= arm_iommu_free_attrs,
1874	.mmap		= arm_iommu_mmap_attrs,
1875	.get_sgtable	= arm_iommu_get_sgtable,
1876
1877	.map_page	= arm_coherent_iommu_map_page,
1878	.unmap_page	= arm_coherent_iommu_unmap_page,
1879
1880	.map_sg		= arm_coherent_iommu_map_sg,
1881	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1882
1883	.set_dma_mask	= arm_dma_set_mask,
1884};
1885
1886/**
1887 * arm_iommu_create_mapping
1888 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1889 * @base: start address of the valid IO address space
1890 * @size: maximum size of the valid IO address space
1891 *
1892 * Creates a mapping structure which holds information about used/unused
1893 * IO address ranges, which is required to perform memory allocation and
1894 * mapping with IOMMU aware functions.
1895 *
1896 * The client device need to be attached to the mapping with
1897 * arm_iommu_attach_device function.
1898 */
1899struct dma_iommu_mapping *
1900arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
1901{
1902	unsigned int bits = size >> PAGE_SHIFT;
1903	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1904	struct dma_iommu_mapping *mapping;
1905	int extensions = 1;
1906	int err = -ENOMEM;
1907
1908	/* currently only 32-bit DMA address space is supported */
1909	if (size > DMA_BIT_MASK(32) + 1)
1910		return ERR_PTR(-ERANGE);
1911
1912	if (!bitmap_size)
1913		return ERR_PTR(-EINVAL);
1914
1915	if (bitmap_size > PAGE_SIZE) {
1916		extensions = bitmap_size / PAGE_SIZE;
1917		bitmap_size = PAGE_SIZE;
1918	}
1919
1920	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1921	if (!mapping)
1922		goto err;
1923
1924	mapping->bitmap_size = bitmap_size;
1925	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1926				GFP_KERNEL);
1927	if (!mapping->bitmaps)
1928		goto err2;
1929
1930	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1931	if (!mapping->bitmaps[0])
1932		goto err3;
1933
1934	mapping->nr_bitmaps = 1;
1935	mapping->extensions = extensions;
1936	mapping->base = base;
1937	mapping->bits = BITS_PER_BYTE * bitmap_size;
1938
1939	spin_lock_init(&mapping->lock);
1940
1941	mapping->domain = iommu_domain_alloc(bus);
1942	if (!mapping->domain)
1943		goto err4;
1944
1945	kref_init(&mapping->kref);
1946	return mapping;
1947err4:
1948	kfree(mapping->bitmaps[0]);
1949err3:
1950	kfree(mapping->bitmaps);
1951err2:
1952	kfree(mapping);
1953err:
1954	return ERR_PTR(err);
1955}
1956EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1957
1958static void release_iommu_mapping(struct kref *kref)
1959{
1960	int i;
1961	struct dma_iommu_mapping *mapping =
1962		container_of(kref, struct dma_iommu_mapping, kref);
1963
1964	iommu_domain_free(mapping->domain);
1965	for (i = 0; i < mapping->nr_bitmaps; i++)
1966		kfree(mapping->bitmaps[i]);
1967	kfree(mapping->bitmaps);
1968	kfree(mapping);
1969}
1970
1971static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1972{
1973	int next_bitmap;
1974
1975	if (mapping->nr_bitmaps >= mapping->extensions)
1976		return -EINVAL;
1977
1978	next_bitmap = mapping->nr_bitmaps;
1979	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1980						GFP_ATOMIC);
1981	if (!mapping->bitmaps[next_bitmap])
1982		return -ENOMEM;
1983
1984	mapping->nr_bitmaps++;
1985
1986	return 0;
1987}
1988
1989void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1990{
1991	if (mapping)
1992		kref_put(&mapping->kref, release_iommu_mapping);
1993}
1994EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1995
1996static int __arm_iommu_attach_device(struct device *dev,
1997				     struct dma_iommu_mapping *mapping)
1998{
1999	int err;
2000
2001	err = iommu_attach_device(mapping->domain, dev);
2002	if (err)
2003		return err;
2004
2005	kref_get(&mapping->kref);
2006	to_dma_iommu_mapping(dev) = mapping;
2007
2008	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2009	return 0;
2010}
2011
2012/**
2013 * arm_iommu_attach_device
2014 * @dev: valid struct device pointer
2015 * @mapping: io address space mapping structure (returned from
2016 *	arm_iommu_create_mapping)
2017 *
2018 * Attaches specified io address space mapping to the provided device.
2019 * This replaces the dma operations (dma_map_ops pointer) with the
2020 * IOMMU aware version.
2021 *
2022 * More than one client might be attached to the same io address space
2023 * mapping.
2024 */
2025int arm_iommu_attach_device(struct device *dev,
2026			    struct dma_iommu_mapping *mapping)
2027{
2028	int err;
2029
2030	err = __arm_iommu_attach_device(dev, mapping);
2031	if (err)
2032		return err;
2033
2034	set_dma_ops(dev, &iommu_ops);
2035	return 0;
2036}
2037EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2038
2039static void __arm_iommu_detach_device(struct device *dev)
2040{
2041	struct dma_iommu_mapping *mapping;
2042
2043	mapping = to_dma_iommu_mapping(dev);
2044	if (!mapping) {
2045		dev_warn(dev, "Not attached\n");
2046		return;
2047	}
2048
2049	iommu_detach_device(mapping->domain, dev);
2050	kref_put(&mapping->kref, release_iommu_mapping);
2051	to_dma_iommu_mapping(dev) = NULL;
2052
2053	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2054}
2055
2056/**
2057 * arm_iommu_detach_device
2058 * @dev: valid struct device pointer
2059 *
2060 * Detaches the provided device from a previously attached map.
2061 * This voids the dma operations (dma_map_ops pointer)
2062 */
2063void arm_iommu_detach_device(struct device *dev)
2064{
2065	__arm_iommu_detach_device(dev);
2066	set_dma_ops(dev, NULL);
2067}
2068EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2069
2070static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2071{
2072	return coherent ? &iommu_coherent_ops : &iommu_ops;
2073}
2074
2075static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2076				    struct iommu_ops *iommu)
2077{
2078	struct dma_iommu_mapping *mapping;
2079
2080	if (!iommu)
2081		return false;
2082
2083	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2084	if (IS_ERR(mapping)) {
2085		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2086				size, dev_name(dev));
2087		return false;
2088	}
2089
2090	if (__arm_iommu_attach_device(dev, mapping)) {
2091		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2092				dev_name(dev));
2093		arm_iommu_release_mapping(mapping);
2094		return false;
2095	}
2096
2097	return true;
2098}
2099
2100static void arm_teardown_iommu_dma_ops(struct device *dev)
2101{
2102	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2103
2104	if (!mapping)
2105		return;
2106
2107	__arm_iommu_detach_device(dev);
2108	arm_iommu_release_mapping(mapping);
2109}
2110
2111#else
2112
2113static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2114				    struct iommu_ops *iommu)
2115{
2116	return false;
2117}
2118
2119static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2120
2121#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2122
2123#endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2124
2125static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2126{
2127	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2128}
2129
2130void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2131			struct iommu_ops *iommu, bool coherent)
2132{
2133	struct dma_map_ops *dma_ops;
2134
2135	dev->archdata.dma_coherent = coherent;
2136	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2137		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2138	else
2139		dma_ops = arm_get_dma_map_ops(coherent);
2140
2141	set_dma_ops(dev, dma_ops);
2142}
2143
2144void arch_teardown_dma_ops(struct device *dev)
2145{
2146	arm_teardown_iommu_dma_ops(dev);
2147}
2148