1/*
2 * OMAP Voltage Controller (VC) interface
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 *
6 * This file is licensed under the terms of the GNU General Public
7 * License version 2. This program is licensed "as is" without any
8 * warranty of any kind, whether express or implied.
9 */
10#include <linux/kernel.h>
11#include <linux/delay.h>
12#include <linux/init.h>
13#include <linux/bug.h>
14#include <linux/io.h>
15
16#include <asm/div64.h>
17
18#include "iomap.h"
19#include "soc.h"
20#include "voltage.h"
21#include "vc.h"
22#include "prm-regbits-34xx.h"
23#include "prm-regbits-44xx.h"
24#include "prm44xx.h"
25#include "pm.h"
26#include "scrm44xx.h"
27#include "control.h"
28
29/**
30 * struct omap_vc_channel_cfg - describe the cfg_channel bitfield
31 * @sa: bit for slave address
32 * @rav: bit for voltage configuration register
33 * @rac: bit for command configuration register
34 * @racen: enable bit for RAC
35 * @cmd: bit for command value set selection
36 *
37 * Channel configuration bits, common for OMAP3+
38 * OMAP3 register: PRM_VC_CH_CONF
39 * OMAP4 register: PRM_VC_CFG_CHANNEL
40 * OMAP5 register: PRM_VC_SMPS_<voltdm>_CONFIG
41 */
42struct omap_vc_channel_cfg {
43	u8 sa;
44	u8 rav;
45	u8 rac;
46	u8 racen;
47	u8 cmd;
48};
49
50static struct omap_vc_channel_cfg vc_default_channel_cfg = {
51	.sa    = BIT(0),
52	.rav   = BIT(1),
53	.rac   = BIT(2),
54	.racen = BIT(3),
55	.cmd   = BIT(4),
56};
57
58/*
59 * On OMAP3+, all VC channels have the above default bitfield
60 * configuration, except the OMAP4 MPU channel.  This appears
61 * to be a freak accident as every other VC channel has the
62 * default configuration, thus creating a mutant channel config.
63 */
64static struct omap_vc_channel_cfg vc_mutant_channel_cfg = {
65	.sa    = BIT(0),
66	.rav   = BIT(2),
67	.rac   = BIT(3),
68	.racen = BIT(4),
69	.cmd   = BIT(1),
70};
71
72static struct omap_vc_channel_cfg *vc_cfg_bits;
73
74/* Default I2C trace length on pcb, 6.3cm. Used for capacitance calculations. */
75static u32 sr_i2c_pcb_length = 63;
76#define CFG_CHANNEL_MASK 0x1f
77
78/**
79 * omap_vc_config_channel - configure VC channel to PMIC mappings
80 * @voltdm: pointer to voltagdomain defining the desired VC channel
81 *
82 * Configures the VC channel to PMIC mappings for the following
83 * PMIC settings
84 * - i2c slave address (SA)
85 * - voltage configuration address (RAV)
86 * - command configuration address (RAC) and enable bit (RACEN)
87 * - command values for ON, ONLP, RET and OFF (CMD)
88 *
89 * This function currently only allows flexible configuration of the
90 * non-default channel.  Starting with OMAP4, there are more than 2
91 * channels, with one defined as the default (on OMAP4, it's MPU.)
92 * Only the non-default channel can be configured.
93 */
94static int omap_vc_config_channel(struct voltagedomain *voltdm)
95{
96	struct omap_vc_channel *vc = voltdm->vc;
97
98	/*
99	 * For default channel, the only configurable bit is RACEN.
100	 * All others must stay at zero (see function comment above.)
101	 */
102	if (vc->flags & OMAP_VC_CHANNEL_DEFAULT)
103		vc->cfg_channel &= vc_cfg_bits->racen;
104
105	voltdm->rmw(CFG_CHANNEL_MASK << vc->cfg_channel_sa_shift,
106		    vc->cfg_channel << vc->cfg_channel_sa_shift,
107		    vc->cfg_channel_reg);
108
109	return 0;
110}
111
112/* Voltage scale and accessory APIs */
113int omap_vc_pre_scale(struct voltagedomain *voltdm,
114		      unsigned long target_volt,
115		      u8 *target_vsel, u8 *current_vsel)
116{
117	struct omap_vc_channel *vc = voltdm->vc;
118	u32 vc_cmdval;
119
120	/* Check if sufficient pmic info is available for this vdd */
121	if (!voltdm->pmic) {
122		pr_err("%s: Insufficient pmic info to scale the vdd_%s\n",
123			__func__, voltdm->name);
124		return -EINVAL;
125	}
126
127	if (!voltdm->pmic->uv_to_vsel) {
128		pr_err("%s: PMIC function to convert voltage in uV to vsel not registered. Hence unable to scale voltage for vdd_%s\n",
129		       __func__, voltdm->name);
130		return -ENODATA;
131	}
132
133	if (!voltdm->read || !voltdm->write) {
134		pr_err("%s: No read/write API for accessing vdd_%s regs\n",
135			__func__, voltdm->name);
136		return -EINVAL;
137	}
138
139	*target_vsel = voltdm->pmic->uv_to_vsel(target_volt);
140	*current_vsel = voltdm->pmic->uv_to_vsel(voltdm->nominal_volt);
141
142	/* Setting the ON voltage to the new target voltage */
143	vc_cmdval = voltdm->read(vc->cmdval_reg);
144	vc_cmdval &= ~vc->common->cmd_on_mask;
145	vc_cmdval |= (*target_vsel << vc->common->cmd_on_shift);
146	voltdm->write(vc_cmdval, vc->cmdval_reg);
147
148	voltdm->vc_param->on = target_volt;
149
150	omap_vp_update_errorgain(voltdm, target_volt);
151
152	return 0;
153}
154
155void omap_vc_post_scale(struct voltagedomain *voltdm,
156			unsigned long target_volt,
157			u8 target_vsel, u8 current_vsel)
158{
159	u32 smps_steps = 0, smps_delay = 0;
160
161	smps_steps = abs(target_vsel - current_vsel);
162	/* SMPS slew rate / step size. 2us added as buffer. */
163	smps_delay = ((smps_steps * voltdm->pmic->step_size) /
164			voltdm->pmic->slew_rate) + 2;
165	udelay(smps_delay);
166}
167
168/* vc_bypass_scale - VC bypass method of voltage scaling */
169int omap_vc_bypass_scale(struct voltagedomain *voltdm,
170			 unsigned long target_volt)
171{
172	struct omap_vc_channel *vc = voltdm->vc;
173	u32 loop_cnt = 0, retries_cnt = 0;
174	u32 vc_valid, vc_bypass_val_reg, vc_bypass_value;
175	u8 target_vsel, current_vsel;
176	int ret;
177
178	ret = omap_vc_pre_scale(voltdm, target_volt, &target_vsel, &current_vsel);
179	if (ret)
180		return ret;
181
182	vc_valid = vc->common->valid;
183	vc_bypass_val_reg = vc->common->bypass_val_reg;
184	vc_bypass_value = (target_vsel << vc->common->data_shift) |
185		(vc->volt_reg_addr << vc->common->regaddr_shift) |
186		(vc->i2c_slave_addr << vc->common->slaveaddr_shift);
187
188	voltdm->write(vc_bypass_value, vc_bypass_val_reg);
189	voltdm->write(vc_bypass_value | vc_valid, vc_bypass_val_reg);
190
191	vc_bypass_value = voltdm->read(vc_bypass_val_reg);
192	/*
193	 * Loop till the bypass command is acknowledged from the SMPS.
194	 * NOTE: This is legacy code. The loop count and retry count needs
195	 * to be revisited.
196	 */
197	while (!(vc_bypass_value & vc_valid)) {
198		loop_cnt++;
199
200		if (retries_cnt > 10) {
201			pr_warn("%s: Retry count exceeded\n", __func__);
202			return -ETIMEDOUT;
203		}
204
205		if (loop_cnt > 50) {
206			retries_cnt++;
207			loop_cnt = 0;
208			udelay(10);
209		}
210		vc_bypass_value = voltdm->read(vc_bypass_val_reg);
211	}
212
213	omap_vc_post_scale(voltdm, target_volt, target_vsel, current_vsel);
214	return 0;
215}
216
217/* Convert microsecond value to number of 32kHz clock cycles */
218static inline u32 omap_usec_to_32k(u32 usec)
219{
220	return DIV_ROUND_UP_ULL(32768ULL * (u64)usec, 1000000ULL);
221}
222
223struct omap3_vc_timings {
224	u32 voltsetup1;
225	u32 voltsetup2;
226};
227
228struct omap3_vc {
229	struct voltagedomain *vd;
230	u32 voltctrl;
231	u32 voltsetup1;
232	u32 voltsetup2;
233	struct omap3_vc_timings timings[2];
234};
235static struct omap3_vc vc;
236
237void omap3_vc_set_pmic_signaling(int core_next_state)
238{
239	struct voltagedomain *vd = vc.vd;
240	struct omap3_vc_timings *c = vc.timings;
241	u32 voltctrl, voltsetup1, voltsetup2;
242
243	voltctrl = vc.voltctrl;
244	voltsetup1 = vc.voltsetup1;
245	voltsetup2 = vc.voltsetup2;
246
247	switch (core_next_state) {
248	case PWRDM_POWER_OFF:
249		voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_RET |
250			      OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP);
251		voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_OFF;
252		if (voltctrl & OMAP3430_PRM_VOLTCTRL_SEL_OFF)
253			voltsetup2 = c->voltsetup2;
254		else
255			voltsetup1 = c->voltsetup1;
256		break;
257	case PWRDM_POWER_RET:
258	default:
259		c++;
260		voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_OFF |
261			      OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP);
262		voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_RET;
263		voltsetup1 = c->voltsetup1;
264		break;
265	}
266
267	if (voltctrl != vc.voltctrl) {
268		vd->write(voltctrl, OMAP3_PRM_VOLTCTRL_OFFSET);
269		vc.voltctrl = voltctrl;
270	}
271	if (voltsetup1 != vc.voltsetup1) {
272		vd->write(c->voltsetup1,
273			  OMAP3_PRM_VOLTSETUP1_OFFSET);
274		vc.voltsetup1 = voltsetup1;
275	}
276	if (voltsetup2 != vc.voltsetup2) {
277		vd->write(c->voltsetup2,
278			  OMAP3_PRM_VOLTSETUP2_OFFSET);
279		vc.voltsetup2 = voltsetup2;
280	}
281}
282
283/*
284 * Configure signal polarity for sys_clkreq and sys_off_mode pins
285 * as the default values are wrong and can cause the system to hang
286 * if any twl4030 scripts are loaded.
287 */
288static void __init omap3_vc_init_pmic_signaling(struct voltagedomain *voltdm)
289{
290	u32 val;
291
292	if (vc.vd)
293		return;
294
295	vc.vd = voltdm;
296
297	val = voltdm->read(OMAP3_PRM_POLCTRL_OFFSET);
298	if (!(val & OMAP3430_PRM_POLCTRL_CLKREQ_POL) ||
299	    (val & OMAP3430_PRM_POLCTRL_OFFMODE_POL)) {
300		val |= OMAP3430_PRM_POLCTRL_CLKREQ_POL;
301		val &= ~OMAP3430_PRM_POLCTRL_OFFMODE_POL;
302		pr_debug("PM: fixing sys_clkreq and sys_off_mode polarity to 0x%x\n",
303			 val);
304		voltdm->write(val, OMAP3_PRM_POLCTRL_OFFSET);
305	}
306
307	/*
308	 * By default let's use I2C4 signaling for retention idle
309	 * and sys_off_mode pin signaling for off idle. This way we
310	 * have sys_clk_req pin go down for retention and both
311	 * sys_clk_req and sys_off_mode pins will go down for off
312	 * idle. And we can also scale voltages to zero for off-idle.
313	 * Note that no actual voltage scaling during off-idle will
314	 * happen unless the board specific twl4030 PMIC scripts are
315	 * loaded. See also omap_vc_i2c_init for comments regarding
316	 * erratum i531.
317	 */
318	val = voltdm->read(OMAP3_PRM_VOLTCTRL_OFFSET);
319	if (!(val & OMAP3430_PRM_VOLTCTRL_SEL_OFF)) {
320		val |= OMAP3430_PRM_VOLTCTRL_SEL_OFF;
321		pr_debug("PM: setting voltctrl sys_off_mode signaling to 0x%x\n",
322			 val);
323		voltdm->write(val, OMAP3_PRM_VOLTCTRL_OFFSET);
324	}
325	vc.voltctrl = val;
326
327	omap3_vc_set_pmic_signaling(PWRDM_POWER_ON);
328}
329
330static void omap3_init_voltsetup1(struct voltagedomain *voltdm,
331				  struct omap3_vc_timings *c, u32 idle)
332{
333	unsigned long val;
334
335	val = (voltdm->vc_param->on - idle) / voltdm->pmic->slew_rate;
336	val *= voltdm->sys_clk.rate / 8 / 1000000 + 1;
337	val <<= __ffs(voltdm->vfsm->voltsetup_mask);
338	c->voltsetup1 &= ~voltdm->vfsm->voltsetup_mask;
339	c->voltsetup1 |= val;
340}
341
342/**
343 * omap3_set_i2c_timings - sets i2c sleep timings for a channel
344 * @voltdm: channel to configure
345 * @off_mode: select whether retention or off mode values used
346 *
347 * Calculates and sets up voltage controller to use I2C based
348 * voltage scaling for sleep modes. This can be used for either off mode
349 * or retention. Off mode has additionally an option to use sys_off_mode
350 * pad, which uses a global signal to program the whole power IC to
351 * off-mode.
352 *
353 * Note that pmic is not controlling the voltage scaling during
354 * retention signaled over I2C4, so we can keep voltsetup2 as 0.
355 * And the oscillator is not shut off over I2C4, so no need to
356 * set clksetup.
357 */
358static void omap3_set_i2c_timings(struct voltagedomain *voltdm)
359{
360	struct omap3_vc_timings *c = vc.timings;
361
362	/* Configure PRWDM_POWER_OFF over I2C4 */
363	omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->off);
364	c++;
365	/* Configure PRWDM_POWER_RET over I2C4 */
366	omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->ret);
367}
368
369/**
370 * omap3_set_off_timings - sets off-mode timings for a channel
371 * @voltdm: channel to configure
372 *
373 * Calculates and sets up off-mode timings for a channel. Off-mode
374 * can use either I2C based voltage scaling, or alternatively
375 * sys_off_mode pad can be used to send a global command to power IC.n,
376 * sys_off_mode has the additional benefit that voltages can be
377 * scaled to zero volt level with TWL4030 / TWL5030, I2C can only
378 * scale to 600mV.
379 *
380 * Note that omap is not controlling the voltage scaling during
381 * off idle signaled by sys_off_mode, so we can keep voltsetup1
382 * as 0.
383 */
384static void omap3_set_off_timings(struct voltagedomain *voltdm)
385{
386	struct omap3_vc_timings *c = vc.timings;
387	u32 tstart, tshut, clksetup, voltoffset;
388
389	if (c->voltsetup2)
390		return;
391
392	omap_pm_get_oscillator(&tstart, &tshut);
393	if (tstart == ULONG_MAX) {
394		pr_debug("PM: oscillator start-up time not initialized, using 10ms\n");
395		clksetup = omap_usec_to_32k(10000);
396	} else {
397		clksetup = omap_usec_to_32k(tstart);
398	}
399
400	/*
401	 * For twl4030 errata 27, we need to allow minimum ~488.32 us wait to
402	 * switch from HFCLKIN to internal oscillator. That means timings
403	 * have voltoffset fixed to 0xa in rounded up 32 KiHz cycles. And
404	 * that means we can calculate the value based on the oscillator
405	 * start-up time since voltoffset2 = clksetup - voltoffset.
406	 */
407	voltoffset = omap_usec_to_32k(488);
408	c->voltsetup2 = clksetup - voltoffset;
409	voltdm->write(clksetup, OMAP3_PRM_CLKSETUP_OFFSET);
410	voltdm->write(voltoffset, OMAP3_PRM_VOLTOFFSET_OFFSET);
411}
412
413static void __init omap3_vc_init_channel(struct voltagedomain *voltdm)
414{
415	omap3_vc_init_pmic_signaling(voltdm);
416	omap3_set_off_timings(voltdm);
417	omap3_set_i2c_timings(voltdm);
418}
419
420/**
421 * omap4_calc_volt_ramp - calculates voltage ramping delays on omap4
422 * @voltdm: channel to calculate values for
423 * @voltage_diff: voltage difference in microvolts
424 *
425 * Calculates voltage ramp prescaler + counter values for a voltage
426 * difference on omap4. Returns a field value suitable for writing to
427 * VOLTSETUP register for a channel in following format:
428 * bits[8:9] prescaler ... bits[0:5] counter. See OMAP4 TRM for reference.
429 */
430static u32 omap4_calc_volt_ramp(struct voltagedomain *voltdm, u32 voltage_diff)
431{
432	u32 prescaler;
433	u32 cycles;
434	u32 time;
435
436	time = voltage_diff / voltdm->pmic->slew_rate;
437
438	cycles = voltdm->sys_clk.rate / 1000 * time / 1000;
439
440	cycles /= 64;
441	prescaler = 0;
442
443	/* shift to next prescaler until no overflow */
444
445	/* scale for div 256 = 64 * 4 */
446	if (cycles > 63) {
447		cycles /= 4;
448		prescaler++;
449	}
450
451	/* scale for div 512 = 256 * 2 */
452	if (cycles > 63) {
453		cycles /= 2;
454		prescaler++;
455	}
456
457	/* scale for div 2048 = 512 * 4 */
458	if (cycles > 63) {
459		cycles /= 4;
460		prescaler++;
461	}
462
463	/* check for overflow => invalid ramp time */
464	if (cycles > 63) {
465		pr_warn("%s: invalid setuptime for vdd_%s\n", __func__,
466			voltdm->name);
467		return 0;
468	}
469
470	cycles++;
471
472	return (prescaler << OMAP4430_RAMP_UP_PRESCAL_SHIFT) |
473		(cycles << OMAP4430_RAMP_UP_COUNT_SHIFT);
474}
475
476/**
477 * omap4_usec_to_val_scrm - convert microsecond value to SCRM module bitfield
478 * @usec: microseconds
479 * @shift: number of bits to shift left
480 * @mask: bitfield mask
481 *
482 * Converts microsecond value to OMAP4 SCRM bitfield. Bitfield is
483 * shifted to requested position, and checked agains the mask value.
484 * If larger, forced to the max value of the field (i.e. the mask itself.)
485 * Returns the SCRM bitfield value.
486 */
487static u32 omap4_usec_to_val_scrm(u32 usec, int shift, u32 mask)
488{
489	u32 val;
490
491	val = omap_usec_to_32k(usec) << shift;
492
493	/* Check for overflow, if yes, force to max value */
494	if (val > mask)
495		val = mask;
496
497	return val;
498}
499
500/**
501 * omap4_set_timings - set voltage ramp timings for a channel
502 * @voltdm: channel to configure
503 * @off_mode: whether off-mode values are used
504 *
505 * Calculates and sets the voltage ramp up / down values for a channel.
506 */
507static void omap4_set_timings(struct voltagedomain *voltdm, bool off_mode)
508{
509	u32 val;
510	u32 ramp;
511	int offset;
512	u32 tstart, tshut;
513
514	if (off_mode) {
515		ramp = omap4_calc_volt_ramp(voltdm,
516			voltdm->vc_param->on - voltdm->vc_param->off);
517		offset = voltdm->vfsm->voltsetup_off_reg;
518	} else {
519		ramp = omap4_calc_volt_ramp(voltdm,
520			voltdm->vc_param->on - voltdm->vc_param->ret);
521		offset = voltdm->vfsm->voltsetup_reg;
522	}
523
524	if (!ramp)
525		return;
526
527	val = voltdm->read(offset);
528
529	val |= ramp << OMAP4430_RAMP_DOWN_COUNT_SHIFT;
530
531	val |= ramp << OMAP4430_RAMP_UP_COUNT_SHIFT;
532
533	voltdm->write(val, offset);
534
535	omap_pm_get_oscillator(&tstart, &tshut);
536
537	val = omap4_usec_to_val_scrm(tstart, OMAP4_SETUPTIME_SHIFT,
538		OMAP4_SETUPTIME_MASK);
539	val |= omap4_usec_to_val_scrm(tshut, OMAP4_DOWNTIME_SHIFT,
540		OMAP4_DOWNTIME_MASK);
541
542	writel_relaxed(val, OMAP4_SCRM_CLKSETUPTIME);
543}
544
545/* OMAP4 specific voltage init functions */
546static void __init omap4_vc_init_channel(struct voltagedomain *voltdm)
547{
548	omap4_set_timings(voltdm, true);
549	omap4_set_timings(voltdm, false);
550}
551
552struct i2c_init_data {
553	u8 loadbits;
554	u8 load;
555	u8 hsscll_38_4;
556	u8 hsscll_26;
557	u8 hsscll_19_2;
558	u8 hsscll_16_8;
559	u8 hsscll_12;
560};
561
562static const struct i2c_init_data const omap4_i2c_timing_data[] __initconst = {
563	{
564		.load = 50,
565		.loadbits = 0x3,
566		.hsscll_38_4 = 13,
567		.hsscll_26 = 11,
568		.hsscll_19_2 = 9,
569		.hsscll_16_8 = 9,
570		.hsscll_12 = 8,
571	},
572	{
573		.load = 25,
574		.loadbits = 0x2,
575		.hsscll_38_4 = 13,
576		.hsscll_26 = 11,
577		.hsscll_19_2 = 9,
578		.hsscll_16_8 = 9,
579		.hsscll_12 = 8,
580	},
581	{
582		.load = 12,
583		.loadbits = 0x1,
584		.hsscll_38_4 = 11,
585		.hsscll_26 = 10,
586		.hsscll_19_2 = 9,
587		.hsscll_16_8 = 9,
588		.hsscll_12 = 8,
589	},
590	{
591		.load = 0,
592		.loadbits = 0x0,
593		.hsscll_38_4 = 12,
594		.hsscll_26 = 10,
595		.hsscll_19_2 = 9,
596		.hsscll_16_8 = 8,
597		.hsscll_12 = 8,
598	},
599};
600
601/**
602 * omap4_vc_i2c_timing_init - sets up board I2C timing parameters
603 * @voltdm: voltagedomain pointer to get data from
604 *
605 * Use PMIC + board supplied settings for calculating the total I2C
606 * channel capacitance and set the timing parameters based on this.
607 * Pre-calculated values are provided in data tables, as it is not
608 * too straightforward to calculate these runtime.
609 */
610static void __init omap4_vc_i2c_timing_init(struct voltagedomain *voltdm)
611{
612	u32 capacitance;
613	u32 val;
614	u16 hsscll;
615	const struct i2c_init_data *i2c_data;
616
617	if (!voltdm->pmic->i2c_high_speed) {
618		pr_warn("%s: only high speed supported!\n", __func__);
619		return;
620	}
621
622	/* PCB trace capacitance, 0.125pF / mm => mm / 8 */
623	capacitance = DIV_ROUND_UP(sr_i2c_pcb_length, 8);
624
625	/* OMAP pad capacitance */
626	capacitance += 4;
627
628	/* PMIC pad capacitance */
629	capacitance += voltdm->pmic->i2c_pad_load;
630
631	/* Search for capacitance match in the table */
632	i2c_data = omap4_i2c_timing_data;
633
634	while (i2c_data->load > capacitance)
635		i2c_data++;
636
637	/* Select proper values based on sysclk frequency */
638	switch (voltdm->sys_clk.rate) {
639	case 38400000:
640		hsscll = i2c_data->hsscll_38_4;
641		break;
642	case 26000000:
643		hsscll = i2c_data->hsscll_26;
644		break;
645	case 19200000:
646		hsscll = i2c_data->hsscll_19_2;
647		break;
648	case 16800000:
649		hsscll = i2c_data->hsscll_16_8;
650		break;
651	case 12000000:
652		hsscll = i2c_data->hsscll_12;
653		break;
654	default:
655		pr_warn("%s: unsupported sysclk rate: %d!\n", __func__,
656			voltdm->sys_clk.rate);
657		return;
658	}
659
660	/* Loadbits define pull setup for the I2C channels */
661	val = i2c_data->loadbits << 25 | i2c_data->loadbits << 29;
662
663	/* Write to SYSCTRL_PADCONF_WKUP_CTRL_I2C_2 to setup I2C pull */
664	writel_relaxed(val, OMAP2_L4_IO_ADDRESS(OMAP4_CTRL_MODULE_PAD_WKUP +
665				OMAP4_CTRL_MODULE_PAD_WKUP_CONTROL_I2C_2));
666
667	/* HSSCLH can always be zero */
668	val = hsscll << OMAP4430_HSSCLL_SHIFT;
669	val |= (0x28 << OMAP4430_SCLL_SHIFT | 0x2c << OMAP4430_SCLH_SHIFT);
670
671	/* Write setup times to I2C config register */
672	voltdm->write(val, OMAP4_PRM_VC_CFG_I2C_CLK_OFFSET);
673}
674
675
676
677/**
678 * omap_vc_i2c_init - initialize I2C interface to PMIC
679 * @voltdm: voltage domain containing VC data
680 *
681 * Use PMIC supplied settings for I2C high-speed mode and
682 * master code (if set) and program the VC I2C configuration
683 * register.
684 *
685 * The VC I2C configuration is common to all VC channels,
686 * so this function only configures I2C for the first VC
687 * channel registers.  All other VC channels will use the
688 * same configuration.
689 */
690static void __init omap_vc_i2c_init(struct voltagedomain *voltdm)
691{
692	struct omap_vc_channel *vc = voltdm->vc;
693	static bool initialized;
694	static bool i2c_high_speed;
695	u8 mcode;
696
697	if (initialized) {
698		if (voltdm->pmic->i2c_high_speed != i2c_high_speed)
699			pr_warn("%s: I2C config for vdd_%s does not match other channels (%u).\n",
700				__func__, voltdm->name, i2c_high_speed);
701		return;
702	}
703
704	/*
705	 * Note that for omap3 OMAP3430_SREN_MASK clears SREN to work around
706	 * erratum i531 "Extra Power Consumed When Repeated Start Operation
707	 * Mode Is Enabled on I2C Interface Dedicated for Smart Reflex (I2C4)".
708	 * Otherwise I2C4 eventually leads into about 23mW extra power being
709	 * consumed even during off idle using VMODE.
710	 */
711	i2c_high_speed = voltdm->pmic->i2c_high_speed;
712	if (i2c_high_speed)
713		voltdm->rmw(vc->common->i2c_cfg_clear_mask,
714			    vc->common->i2c_cfg_hsen_mask,
715			    vc->common->i2c_cfg_reg);
716
717	mcode = voltdm->pmic->i2c_mcode;
718	if (mcode)
719		voltdm->rmw(vc->common->i2c_mcode_mask,
720			    mcode << __ffs(vc->common->i2c_mcode_mask),
721			    vc->common->i2c_cfg_reg);
722
723	if (cpu_is_omap44xx())
724		omap4_vc_i2c_timing_init(voltdm);
725
726	initialized = true;
727}
728
729/**
730 * omap_vc_calc_vsel - calculate vsel value for a channel
731 * @voltdm: channel to calculate value for
732 * @uvolt: microvolt value to convert to vsel
733 *
734 * Converts a microvolt value to vsel value for the used PMIC.
735 * This checks whether the microvolt value is out of bounds, and
736 * adjusts the value accordingly. If unsupported value detected,
737 * warning is thrown.
738 */
739static u8 omap_vc_calc_vsel(struct voltagedomain *voltdm, u32 uvolt)
740{
741	if (voltdm->pmic->vddmin > uvolt)
742		uvolt = voltdm->pmic->vddmin;
743	if (voltdm->pmic->vddmax < uvolt) {
744		WARN(1, "%s: voltage not supported by pmic: %u vs max %u\n",
745			__func__, uvolt, voltdm->pmic->vddmax);
746		/* Lets try maximum value anyway */
747		uvolt = voltdm->pmic->vddmax;
748	}
749
750	return voltdm->pmic->uv_to_vsel(uvolt);
751}
752
753#ifdef CONFIG_PM
754/**
755 * omap_pm_setup_sr_i2c_pcb_length - set length of SR I2C traces on PCB
756 * @mm: length of the PCB trace in millimetres
757 *
758 * Sets the PCB trace length for the I2C channel. By default uses 63mm.
759 * This is needed for properly calculating the capacitance value for
760 * the PCB trace, and for setting the SR I2C channel timing parameters.
761 */
762void __init omap_pm_setup_sr_i2c_pcb_length(u32 mm)
763{
764	sr_i2c_pcb_length = mm;
765}
766#endif
767
768void __init omap_vc_init_channel(struct voltagedomain *voltdm)
769{
770	struct omap_vc_channel *vc = voltdm->vc;
771	u8 on_vsel, onlp_vsel, ret_vsel, off_vsel;
772	u32 val;
773
774	if (!voltdm->pmic || !voltdm->pmic->uv_to_vsel) {
775		pr_err("%s: No PMIC info for vdd_%s\n", __func__, voltdm->name);
776		return;
777	}
778
779	if (!voltdm->read || !voltdm->write) {
780		pr_err("%s: No read/write API for accessing vdd_%s regs\n",
781			__func__, voltdm->name);
782		return;
783	}
784
785	vc->cfg_channel = 0;
786	if (vc->flags & OMAP_VC_CHANNEL_CFG_MUTANT)
787		vc_cfg_bits = &vc_mutant_channel_cfg;
788	else
789		vc_cfg_bits = &vc_default_channel_cfg;
790
791	/* get PMIC/board specific settings */
792	vc->i2c_slave_addr = voltdm->pmic->i2c_slave_addr;
793	vc->volt_reg_addr = voltdm->pmic->volt_reg_addr;
794	vc->cmd_reg_addr = voltdm->pmic->cmd_reg_addr;
795
796	/* Configure the i2c slave address for this VC */
797	voltdm->rmw(vc->smps_sa_mask,
798		    vc->i2c_slave_addr << __ffs(vc->smps_sa_mask),
799		    vc->smps_sa_reg);
800	vc->cfg_channel |= vc_cfg_bits->sa;
801
802	/*
803	 * Configure the PMIC register addresses.
804	 */
805	voltdm->rmw(vc->smps_volra_mask,
806		    vc->volt_reg_addr << __ffs(vc->smps_volra_mask),
807		    vc->smps_volra_reg);
808	vc->cfg_channel |= vc_cfg_bits->rav;
809
810	if (vc->cmd_reg_addr) {
811		voltdm->rmw(vc->smps_cmdra_mask,
812			    vc->cmd_reg_addr << __ffs(vc->smps_cmdra_mask),
813			    vc->smps_cmdra_reg);
814		vc->cfg_channel |= vc_cfg_bits->rac;
815	}
816
817	if (vc->cmd_reg_addr == vc->volt_reg_addr)
818		vc->cfg_channel |= vc_cfg_bits->racen;
819
820	/* Set up the on, inactive, retention and off voltage */
821	on_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->on);
822	onlp_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->onlp);
823	ret_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->ret);
824	off_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->off);
825
826	val = ((on_vsel << vc->common->cmd_on_shift) |
827	       (onlp_vsel << vc->common->cmd_onlp_shift) |
828	       (ret_vsel << vc->common->cmd_ret_shift) |
829	       (off_vsel << vc->common->cmd_off_shift));
830	voltdm->write(val, vc->cmdval_reg);
831	vc->cfg_channel |= vc_cfg_bits->cmd;
832
833	/* Channel configuration */
834	omap_vc_config_channel(voltdm);
835
836	omap_vc_i2c_init(voltdm);
837
838	if (cpu_is_omap34xx())
839		omap3_vc_init_channel(voltdm);
840	else if (cpu_is_omap44xx())
841		omap4_vc_init_channel(voltdm);
842}
843
844