1/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17 */
18
19#include <linux/mman.h>
20#include <linux/kvm_host.h>
21#include <linux/io.h>
22#include <linux/hugetlb.h>
23#include <trace/events/kvm.h>
24#include <asm/pgalloc.h>
25#include <asm/cacheflush.h>
26#include <asm/kvm_arm.h>
27#include <asm/kvm_mmu.h>
28#include <asm/kvm_mmio.h>
29#include <asm/kvm_asm.h>
30#include <asm/kvm_emulate.h>
31
32#include "trace.h"
33
34extern char  __hyp_idmap_text_start[], __hyp_idmap_text_end[];
35
36static pgd_t *boot_hyp_pgd;
37static pgd_t *hyp_pgd;
38static pgd_t *merged_hyp_pgd;
39static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
40
41static unsigned long hyp_idmap_start;
42static unsigned long hyp_idmap_end;
43static phys_addr_t hyp_idmap_vector;
44
45#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
46
47#define kvm_pmd_huge(_x)	(pmd_huge(_x) || pmd_trans_huge(_x))
48#define kvm_pud_huge(_x)	pud_huge(_x)
49
50#define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
51#define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)
52
53static bool memslot_is_logging(struct kvm_memory_slot *memslot)
54{
55	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
56}
57
58/**
59 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
60 * @kvm:	pointer to kvm structure.
61 *
62 * Interface to HYP function to flush all VM TLB entries
63 */
64void kvm_flush_remote_tlbs(struct kvm *kvm)
65{
66	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
67}
68
69static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
70{
71	/*
72	 * This function also gets called when dealing with HYP page
73	 * tables. As HYP doesn't have an associated struct kvm (and
74	 * the HYP page tables are fairly static), we don't do
75	 * anything there.
76	 */
77	if (kvm)
78		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
79}
80
81/*
82 * D-Cache management functions. They take the page table entries by
83 * value, as they are flushing the cache using the kernel mapping (or
84 * kmap on 32bit).
85 */
86static void kvm_flush_dcache_pte(pte_t pte)
87{
88	__kvm_flush_dcache_pte(pte);
89}
90
91static void kvm_flush_dcache_pmd(pmd_t pmd)
92{
93	__kvm_flush_dcache_pmd(pmd);
94}
95
96static void kvm_flush_dcache_pud(pud_t pud)
97{
98	__kvm_flush_dcache_pud(pud);
99}
100
101static bool kvm_is_device_pfn(unsigned long pfn)
102{
103	return !pfn_valid(pfn);
104}
105
106/**
107 * stage2_dissolve_pmd() - clear and flush huge PMD entry
108 * @kvm:	pointer to kvm structure.
109 * @addr:	IPA
110 * @pmd:	pmd pointer for IPA
111 *
112 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
113 * pages in the range dirty.
114 */
115static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
116{
117	if (!kvm_pmd_huge(*pmd))
118		return;
119
120	pmd_clear(pmd);
121	kvm_tlb_flush_vmid_ipa(kvm, addr);
122	put_page(virt_to_page(pmd));
123}
124
125static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
126				  int min, int max)
127{
128	void *page;
129
130	BUG_ON(max > KVM_NR_MEM_OBJS);
131	if (cache->nobjs >= min)
132		return 0;
133	while (cache->nobjs < max) {
134		page = (void *)__get_free_page(PGALLOC_GFP);
135		if (!page)
136			return -ENOMEM;
137		cache->objects[cache->nobjs++] = page;
138	}
139	return 0;
140}
141
142static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
143{
144	while (mc->nobjs)
145		free_page((unsigned long)mc->objects[--mc->nobjs]);
146}
147
148static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
149{
150	void *p;
151
152	BUG_ON(!mc || !mc->nobjs);
153	p = mc->objects[--mc->nobjs];
154	return p;
155}
156
157static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
158{
159	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
160	pgd_clear(pgd);
161	kvm_tlb_flush_vmid_ipa(kvm, addr);
162	pud_free(NULL, pud_table);
163	put_page(virt_to_page(pgd));
164}
165
166static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
167{
168	pmd_t *pmd_table = pmd_offset(pud, 0);
169	VM_BUG_ON(pud_huge(*pud));
170	pud_clear(pud);
171	kvm_tlb_flush_vmid_ipa(kvm, addr);
172	pmd_free(NULL, pmd_table);
173	put_page(virt_to_page(pud));
174}
175
176static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
177{
178	pte_t *pte_table = pte_offset_kernel(pmd, 0);
179	VM_BUG_ON(kvm_pmd_huge(*pmd));
180	pmd_clear(pmd);
181	kvm_tlb_flush_vmid_ipa(kvm, addr);
182	pte_free_kernel(NULL, pte_table);
183	put_page(virt_to_page(pmd));
184}
185
186/*
187 * Unmapping vs dcache management:
188 *
189 * If a guest maps certain memory pages as uncached, all writes will
190 * bypass the data cache and go directly to RAM.  However, the CPUs
191 * can still speculate reads (not writes) and fill cache lines with
192 * data.
193 *
194 * Those cache lines will be *clean* cache lines though, so a
195 * clean+invalidate operation is equivalent to an invalidate
196 * operation, because no cache lines are marked dirty.
197 *
198 * Those clean cache lines could be filled prior to an uncached write
199 * by the guest, and the cache coherent IO subsystem would therefore
200 * end up writing old data to disk.
201 *
202 * This is why right after unmapping a page/section and invalidating
203 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
204 * the IO subsystem will never hit in the cache.
205 */
206static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
207		       phys_addr_t addr, phys_addr_t end)
208{
209	phys_addr_t start_addr = addr;
210	pte_t *pte, *start_pte;
211
212	start_pte = pte = pte_offset_kernel(pmd, addr);
213	do {
214		if (!pte_none(*pte)) {
215			pte_t old_pte = *pte;
216
217			kvm_set_pte(pte, __pte(0));
218			kvm_tlb_flush_vmid_ipa(kvm, addr);
219
220			/* No need to invalidate the cache for device mappings */
221			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
222				kvm_flush_dcache_pte(old_pte);
223
224			put_page(virt_to_page(pte));
225		}
226	} while (pte++, addr += PAGE_SIZE, addr != end);
227
228	if (kvm_pte_table_empty(kvm, start_pte))
229		clear_pmd_entry(kvm, pmd, start_addr);
230}
231
232static void unmap_pmds(struct kvm *kvm, pud_t *pud,
233		       phys_addr_t addr, phys_addr_t end)
234{
235	phys_addr_t next, start_addr = addr;
236	pmd_t *pmd, *start_pmd;
237
238	start_pmd = pmd = pmd_offset(pud, addr);
239	do {
240		next = kvm_pmd_addr_end(addr, end);
241		if (!pmd_none(*pmd)) {
242			if (kvm_pmd_huge(*pmd)) {
243				pmd_t old_pmd = *pmd;
244
245				pmd_clear(pmd);
246				kvm_tlb_flush_vmid_ipa(kvm, addr);
247
248				kvm_flush_dcache_pmd(old_pmd);
249
250				put_page(virt_to_page(pmd));
251			} else {
252				unmap_ptes(kvm, pmd, addr, next);
253			}
254		}
255	} while (pmd++, addr = next, addr != end);
256
257	if (kvm_pmd_table_empty(kvm, start_pmd))
258		clear_pud_entry(kvm, pud, start_addr);
259}
260
261static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
262		       phys_addr_t addr, phys_addr_t end)
263{
264	phys_addr_t next, start_addr = addr;
265	pud_t *pud, *start_pud;
266
267	start_pud = pud = pud_offset(pgd, addr);
268	do {
269		next = kvm_pud_addr_end(addr, end);
270		if (!pud_none(*pud)) {
271			if (pud_huge(*pud)) {
272				pud_t old_pud = *pud;
273
274				pud_clear(pud);
275				kvm_tlb_flush_vmid_ipa(kvm, addr);
276
277				kvm_flush_dcache_pud(old_pud);
278
279				put_page(virt_to_page(pud));
280			} else {
281				unmap_pmds(kvm, pud, addr, next);
282			}
283		}
284	} while (pud++, addr = next, addr != end);
285
286	if (kvm_pud_table_empty(kvm, start_pud))
287		clear_pgd_entry(kvm, pgd, start_addr);
288}
289
290
291static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
292			phys_addr_t start, u64 size)
293{
294	pgd_t *pgd;
295	phys_addr_t addr = start, end = start + size;
296	phys_addr_t next;
297
298	pgd = pgdp + kvm_pgd_index(addr);
299	do {
300		next = kvm_pgd_addr_end(addr, end);
301		if (!pgd_none(*pgd))
302			unmap_puds(kvm, pgd, addr, next);
303	} while (pgd++, addr = next, addr != end);
304}
305
306static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
307			      phys_addr_t addr, phys_addr_t end)
308{
309	pte_t *pte;
310
311	pte = pte_offset_kernel(pmd, addr);
312	do {
313		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
314			kvm_flush_dcache_pte(*pte);
315	} while (pte++, addr += PAGE_SIZE, addr != end);
316}
317
318static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
319			      phys_addr_t addr, phys_addr_t end)
320{
321	pmd_t *pmd;
322	phys_addr_t next;
323
324	pmd = pmd_offset(pud, addr);
325	do {
326		next = kvm_pmd_addr_end(addr, end);
327		if (!pmd_none(*pmd)) {
328			if (kvm_pmd_huge(*pmd))
329				kvm_flush_dcache_pmd(*pmd);
330			else
331				stage2_flush_ptes(kvm, pmd, addr, next);
332		}
333	} while (pmd++, addr = next, addr != end);
334}
335
336static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
337			      phys_addr_t addr, phys_addr_t end)
338{
339	pud_t *pud;
340	phys_addr_t next;
341
342	pud = pud_offset(pgd, addr);
343	do {
344		next = kvm_pud_addr_end(addr, end);
345		if (!pud_none(*pud)) {
346			if (pud_huge(*pud))
347				kvm_flush_dcache_pud(*pud);
348			else
349				stage2_flush_pmds(kvm, pud, addr, next);
350		}
351	} while (pud++, addr = next, addr != end);
352}
353
354static void stage2_flush_memslot(struct kvm *kvm,
355				 struct kvm_memory_slot *memslot)
356{
357	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
358	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
359	phys_addr_t next;
360	pgd_t *pgd;
361
362	pgd = kvm->arch.pgd + kvm_pgd_index(addr);
363	do {
364		next = kvm_pgd_addr_end(addr, end);
365		stage2_flush_puds(kvm, pgd, addr, next);
366	} while (pgd++, addr = next, addr != end);
367}
368
369/**
370 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
371 * @kvm: The struct kvm pointer
372 *
373 * Go through the stage 2 page tables and invalidate any cache lines
374 * backing memory already mapped to the VM.
375 */
376static void stage2_flush_vm(struct kvm *kvm)
377{
378	struct kvm_memslots *slots;
379	struct kvm_memory_slot *memslot;
380	int idx;
381
382	idx = srcu_read_lock(&kvm->srcu);
383	spin_lock(&kvm->mmu_lock);
384
385	slots = kvm_memslots(kvm);
386	kvm_for_each_memslot(memslot, slots)
387		stage2_flush_memslot(kvm, memslot);
388
389	spin_unlock(&kvm->mmu_lock);
390	srcu_read_unlock(&kvm->srcu, idx);
391}
392
393/**
394 * free_boot_hyp_pgd - free HYP boot page tables
395 *
396 * Free the HYP boot page tables. The bounce page is also freed.
397 */
398void free_boot_hyp_pgd(void)
399{
400	mutex_lock(&kvm_hyp_pgd_mutex);
401
402	if (boot_hyp_pgd) {
403		unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
404		unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
405		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
406		boot_hyp_pgd = NULL;
407	}
408
409	if (hyp_pgd)
410		unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
411
412	mutex_unlock(&kvm_hyp_pgd_mutex);
413}
414
415/**
416 * free_hyp_pgds - free Hyp-mode page tables
417 *
418 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
419 * therefore contains either mappings in the kernel memory area (above
420 * PAGE_OFFSET), or device mappings in the vmalloc range (from
421 * VMALLOC_START to VMALLOC_END).
422 *
423 * boot_hyp_pgd should only map two pages for the init code.
424 */
425void free_hyp_pgds(void)
426{
427	unsigned long addr;
428
429	free_boot_hyp_pgd();
430
431	mutex_lock(&kvm_hyp_pgd_mutex);
432
433	if (hyp_pgd) {
434		for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
435			unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
436		for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
437			unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
438
439		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
440		hyp_pgd = NULL;
441	}
442	if (merged_hyp_pgd) {
443		clear_page(merged_hyp_pgd);
444		free_page((unsigned long)merged_hyp_pgd);
445		merged_hyp_pgd = NULL;
446	}
447
448	mutex_unlock(&kvm_hyp_pgd_mutex);
449}
450
451static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
452				    unsigned long end, unsigned long pfn,
453				    pgprot_t prot)
454{
455	pte_t *pte;
456	unsigned long addr;
457
458	addr = start;
459	do {
460		pte = pte_offset_kernel(pmd, addr);
461		kvm_set_pte(pte, pfn_pte(pfn, prot));
462		get_page(virt_to_page(pte));
463		kvm_flush_dcache_to_poc(pte, sizeof(*pte));
464		pfn++;
465	} while (addr += PAGE_SIZE, addr != end);
466}
467
468static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
469				   unsigned long end, unsigned long pfn,
470				   pgprot_t prot)
471{
472	pmd_t *pmd;
473	pte_t *pte;
474	unsigned long addr, next;
475
476	addr = start;
477	do {
478		pmd = pmd_offset(pud, addr);
479
480		BUG_ON(pmd_sect(*pmd));
481
482		if (pmd_none(*pmd)) {
483			pte = pte_alloc_one_kernel(NULL, addr);
484			if (!pte) {
485				kvm_err("Cannot allocate Hyp pte\n");
486				return -ENOMEM;
487			}
488			pmd_populate_kernel(NULL, pmd, pte);
489			get_page(virt_to_page(pmd));
490			kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
491		}
492
493		next = pmd_addr_end(addr, end);
494
495		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
496		pfn += (next - addr) >> PAGE_SHIFT;
497	} while (addr = next, addr != end);
498
499	return 0;
500}
501
502static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
503				   unsigned long end, unsigned long pfn,
504				   pgprot_t prot)
505{
506	pud_t *pud;
507	pmd_t *pmd;
508	unsigned long addr, next;
509	int ret;
510
511	addr = start;
512	do {
513		pud = pud_offset(pgd, addr);
514
515		if (pud_none_or_clear_bad(pud)) {
516			pmd = pmd_alloc_one(NULL, addr);
517			if (!pmd) {
518				kvm_err("Cannot allocate Hyp pmd\n");
519				return -ENOMEM;
520			}
521			pud_populate(NULL, pud, pmd);
522			get_page(virt_to_page(pud));
523			kvm_flush_dcache_to_poc(pud, sizeof(*pud));
524		}
525
526		next = pud_addr_end(addr, end);
527		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
528		if (ret)
529			return ret;
530		pfn += (next - addr) >> PAGE_SHIFT;
531	} while (addr = next, addr != end);
532
533	return 0;
534}
535
536static int __create_hyp_mappings(pgd_t *pgdp,
537				 unsigned long start, unsigned long end,
538				 unsigned long pfn, pgprot_t prot)
539{
540	pgd_t *pgd;
541	pud_t *pud;
542	unsigned long addr, next;
543	int err = 0;
544
545	mutex_lock(&kvm_hyp_pgd_mutex);
546	addr = start & PAGE_MASK;
547	end = PAGE_ALIGN(end);
548	do {
549		pgd = pgdp + pgd_index(addr);
550
551		if (pgd_none(*pgd)) {
552			pud = pud_alloc_one(NULL, addr);
553			if (!pud) {
554				kvm_err("Cannot allocate Hyp pud\n");
555				err = -ENOMEM;
556				goto out;
557			}
558			pgd_populate(NULL, pgd, pud);
559			get_page(virt_to_page(pgd));
560			kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
561		}
562
563		next = pgd_addr_end(addr, end);
564		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
565		if (err)
566			goto out;
567		pfn += (next - addr) >> PAGE_SHIFT;
568	} while (addr = next, addr != end);
569out:
570	mutex_unlock(&kvm_hyp_pgd_mutex);
571	return err;
572}
573
574static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
575{
576	if (!is_vmalloc_addr(kaddr)) {
577		BUG_ON(!virt_addr_valid(kaddr));
578		return __pa(kaddr);
579	} else {
580		return page_to_phys(vmalloc_to_page(kaddr)) +
581		       offset_in_page(kaddr);
582	}
583}
584
585/**
586 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
587 * @from:	The virtual kernel start address of the range
588 * @to:		The virtual kernel end address of the range (exclusive)
589 *
590 * The same virtual address as the kernel virtual address is also used
591 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
592 * physical pages.
593 */
594int create_hyp_mappings(void *from, void *to)
595{
596	phys_addr_t phys_addr;
597	unsigned long virt_addr;
598	unsigned long start = KERN_TO_HYP((unsigned long)from);
599	unsigned long end = KERN_TO_HYP((unsigned long)to);
600
601	start = start & PAGE_MASK;
602	end = PAGE_ALIGN(end);
603
604	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
605		int err;
606
607		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
608		err = __create_hyp_mappings(hyp_pgd, virt_addr,
609					    virt_addr + PAGE_SIZE,
610					    __phys_to_pfn(phys_addr),
611					    PAGE_HYP);
612		if (err)
613			return err;
614	}
615
616	return 0;
617}
618
619/**
620 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
621 * @from:	The kernel start VA of the range
622 * @to:		The kernel end VA of the range (exclusive)
623 * @phys_addr:	The physical start address which gets mapped
624 *
625 * The resulting HYP VA is the same as the kernel VA, modulo
626 * HYP_PAGE_OFFSET.
627 */
628int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
629{
630	unsigned long start = KERN_TO_HYP((unsigned long)from);
631	unsigned long end = KERN_TO_HYP((unsigned long)to);
632
633	/* Check for a valid kernel IO mapping */
634	if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
635		return -EINVAL;
636
637	return __create_hyp_mappings(hyp_pgd, start, end,
638				     __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
639}
640
641/* Free the HW pgd, one page at a time */
642static void kvm_free_hwpgd(void *hwpgd)
643{
644	free_pages_exact(hwpgd, kvm_get_hwpgd_size());
645}
646
647/* Allocate the HW PGD, making sure that each page gets its own refcount */
648static void *kvm_alloc_hwpgd(void)
649{
650	unsigned int size = kvm_get_hwpgd_size();
651
652	return alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
653}
654
655/**
656 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
657 * @kvm:	The KVM struct pointer for the VM.
658 *
659 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
660 * support either full 40-bit input addresses or limited to 32-bit input
661 * addresses). Clears the allocated pages.
662 *
663 * Note we don't need locking here as this is only called when the VM is
664 * created, which can only be done once.
665 */
666int kvm_alloc_stage2_pgd(struct kvm *kvm)
667{
668	pgd_t *pgd;
669	void *hwpgd;
670
671	if (kvm->arch.pgd != NULL) {
672		kvm_err("kvm_arch already initialized?\n");
673		return -EINVAL;
674	}
675
676	hwpgd = kvm_alloc_hwpgd();
677	if (!hwpgd)
678		return -ENOMEM;
679
680	/* When the kernel uses more levels of page tables than the
681	 * guest, we allocate a fake PGD and pre-populate it to point
682	 * to the next-level page table, which will be the real
683	 * initial page table pointed to by the VTTBR.
684	 *
685	 * When KVM_PREALLOC_LEVEL==2, we allocate a single page for
686	 * the PMD and the kernel will use folded pud.
687	 * When KVM_PREALLOC_LEVEL==1, we allocate 2 consecutive PUD
688	 * pages.
689	 */
690	if (KVM_PREALLOC_LEVEL > 0) {
691		int i;
692
693		/*
694		 * Allocate fake pgd for the page table manipulation macros to
695		 * work.  This is not used by the hardware and we have no
696		 * alignment requirement for this allocation.
697		 */
698		pgd = kmalloc(PTRS_PER_S2_PGD * sizeof(pgd_t),
699				GFP_KERNEL | __GFP_ZERO);
700
701		if (!pgd) {
702			kvm_free_hwpgd(hwpgd);
703			return -ENOMEM;
704		}
705
706		/* Plug the HW PGD into the fake one. */
707		for (i = 0; i < PTRS_PER_S2_PGD; i++) {
708			if (KVM_PREALLOC_LEVEL == 1)
709				pgd_populate(NULL, pgd + i,
710					     (pud_t *)hwpgd + i * PTRS_PER_PUD);
711			else if (KVM_PREALLOC_LEVEL == 2)
712				pud_populate(NULL, pud_offset(pgd, 0) + i,
713					     (pmd_t *)hwpgd + i * PTRS_PER_PMD);
714		}
715	} else {
716		/*
717		 * Allocate actual first-level Stage-2 page table used by the
718		 * hardware for Stage-2 page table walks.
719		 */
720		pgd = (pgd_t *)hwpgd;
721	}
722
723	kvm_clean_pgd(pgd);
724	kvm->arch.pgd = pgd;
725	return 0;
726}
727
728/**
729 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
730 * @kvm:   The VM pointer
731 * @start: The intermediate physical base address of the range to unmap
732 * @size:  The size of the area to unmap
733 *
734 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
735 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
736 * destroying the VM), otherwise another faulting VCPU may come in and mess
737 * with things behind our backs.
738 */
739static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
740{
741	unmap_range(kvm, kvm->arch.pgd, start, size);
742}
743
744static void stage2_unmap_memslot(struct kvm *kvm,
745				 struct kvm_memory_slot *memslot)
746{
747	hva_t hva = memslot->userspace_addr;
748	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
749	phys_addr_t size = PAGE_SIZE * memslot->npages;
750	hva_t reg_end = hva + size;
751
752	/*
753	 * A memory region could potentially cover multiple VMAs, and any holes
754	 * between them, so iterate over all of them to find out if we should
755	 * unmap any of them.
756	 *
757	 *     +--------------------------------------------+
758	 * +---------------+----------------+   +----------------+
759	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
760	 * +---------------+----------------+   +----------------+
761	 *     |               memory region                |
762	 *     +--------------------------------------------+
763	 */
764	do {
765		struct vm_area_struct *vma = find_vma(current->mm, hva);
766		hva_t vm_start, vm_end;
767
768		if (!vma || vma->vm_start >= reg_end)
769			break;
770
771		/*
772		 * Take the intersection of this VMA with the memory region
773		 */
774		vm_start = max(hva, vma->vm_start);
775		vm_end = min(reg_end, vma->vm_end);
776
777		if (!(vma->vm_flags & VM_PFNMAP)) {
778			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
779			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
780		}
781		hva = vm_end;
782	} while (hva < reg_end);
783}
784
785/**
786 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
787 * @kvm: The struct kvm pointer
788 *
789 * Go through the memregions and unmap any reguler RAM
790 * backing memory already mapped to the VM.
791 */
792void stage2_unmap_vm(struct kvm *kvm)
793{
794	struct kvm_memslots *slots;
795	struct kvm_memory_slot *memslot;
796	int idx;
797
798	idx = srcu_read_lock(&kvm->srcu);
799	spin_lock(&kvm->mmu_lock);
800
801	slots = kvm_memslots(kvm);
802	kvm_for_each_memslot(memslot, slots)
803		stage2_unmap_memslot(kvm, memslot);
804
805	spin_unlock(&kvm->mmu_lock);
806	srcu_read_unlock(&kvm->srcu, idx);
807}
808
809/**
810 * kvm_free_stage2_pgd - free all stage-2 tables
811 * @kvm:	The KVM struct pointer for the VM.
812 *
813 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
814 * underlying level-2 and level-3 tables before freeing the actual level-1 table
815 * and setting the struct pointer to NULL.
816 *
817 * Note we don't need locking here as this is only called when the VM is
818 * destroyed, which can only be done once.
819 */
820void kvm_free_stage2_pgd(struct kvm *kvm)
821{
822	if (kvm->arch.pgd == NULL)
823		return;
824
825	unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
826	kvm_free_hwpgd(kvm_get_hwpgd(kvm));
827	if (KVM_PREALLOC_LEVEL > 0)
828		kfree(kvm->arch.pgd);
829
830	kvm->arch.pgd = NULL;
831}
832
833static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
834			     phys_addr_t addr)
835{
836	pgd_t *pgd;
837	pud_t *pud;
838
839	pgd = kvm->arch.pgd + kvm_pgd_index(addr);
840	if (WARN_ON(pgd_none(*pgd))) {
841		if (!cache)
842			return NULL;
843		pud = mmu_memory_cache_alloc(cache);
844		pgd_populate(NULL, pgd, pud);
845		get_page(virt_to_page(pgd));
846	}
847
848	return pud_offset(pgd, addr);
849}
850
851static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
852			     phys_addr_t addr)
853{
854	pud_t *pud;
855	pmd_t *pmd;
856
857	pud = stage2_get_pud(kvm, cache, addr);
858	if (pud_none(*pud)) {
859		if (!cache)
860			return NULL;
861		pmd = mmu_memory_cache_alloc(cache);
862		pud_populate(NULL, pud, pmd);
863		get_page(virt_to_page(pud));
864	}
865
866	return pmd_offset(pud, addr);
867}
868
869static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
870			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
871{
872	pmd_t *pmd, old_pmd;
873
874	pmd = stage2_get_pmd(kvm, cache, addr);
875	VM_BUG_ON(!pmd);
876
877	/*
878	 * Mapping in huge pages should only happen through a fault.  If a
879	 * page is merged into a transparent huge page, the individual
880	 * subpages of that huge page should be unmapped through MMU
881	 * notifiers before we get here.
882	 *
883	 * Merging of CompoundPages is not supported; they should become
884	 * splitting first, unmapped, merged, and mapped back in on-demand.
885	 */
886	VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
887
888	old_pmd = *pmd;
889	if (pmd_present(old_pmd)) {
890		pmd_clear(pmd);
891		kvm_tlb_flush_vmid_ipa(kvm, addr);
892	} else {
893		get_page(virt_to_page(pmd));
894	}
895
896	kvm_set_pmd(pmd, *new_pmd);
897	return 0;
898}
899
900static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
901			  phys_addr_t addr, const pte_t *new_pte,
902			  unsigned long flags)
903{
904	pmd_t *pmd;
905	pte_t *pte, old_pte;
906	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
907	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
908
909	VM_BUG_ON(logging_active && !cache);
910
911	/* Create stage-2 page table mapping - Levels 0 and 1 */
912	pmd = stage2_get_pmd(kvm, cache, addr);
913	if (!pmd) {
914		/*
915		 * Ignore calls from kvm_set_spte_hva for unallocated
916		 * address ranges.
917		 */
918		return 0;
919	}
920
921	/*
922	 * While dirty page logging - dissolve huge PMD, then continue on to
923	 * allocate page.
924	 */
925	if (logging_active)
926		stage2_dissolve_pmd(kvm, addr, pmd);
927
928	/* Create stage-2 page mappings - Level 2 */
929	if (pmd_none(*pmd)) {
930		if (!cache)
931			return 0; /* ignore calls from kvm_set_spte_hva */
932		pte = mmu_memory_cache_alloc(cache);
933		kvm_clean_pte(pte);
934		pmd_populate_kernel(NULL, pmd, pte);
935		get_page(virt_to_page(pmd));
936	}
937
938	pte = pte_offset_kernel(pmd, addr);
939
940	if (iomap && pte_present(*pte))
941		return -EFAULT;
942
943	/* Create 2nd stage page table mapping - Level 3 */
944	old_pte = *pte;
945	if (pte_present(old_pte)) {
946		kvm_set_pte(pte, __pte(0));
947		kvm_tlb_flush_vmid_ipa(kvm, addr);
948	} else {
949		get_page(virt_to_page(pte));
950	}
951
952	kvm_set_pte(pte, *new_pte);
953	return 0;
954}
955
956/**
957 * kvm_phys_addr_ioremap - map a device range to guest IPA
958 *
959 * @kvm:	The KVM pointer
960 * @guest_ipa:	The IPA at which to insert the mapping
961 * @pa:		The physical address of the device
962 * @size:	The size of the mapping
963 */
964int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
965			  phys_addr_t pa, unsigned long size, bool writable)
966{
967	phys_addr_t addr, end;
968	int ret = 0;
969	unsigned long pfn;
970	struct kvm_mmu_memory_cache cache = { 0, };
971
972	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
973	pfn = __phys_to_pfn(pa);
974
975	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
976		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
977
978		if (writable)
979			kvm_set_s2pte_writable(&pte);
980
981		ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
982						KVM_NR_MEM_OBJS);
983		if (ret)
984			goto out;
985		spin_lock(&kvm->mmu_lock);
986		ret = stage2_set_pte(kvm, &cache, addr, &pte,
987						KVM_S2PTE_FLAG_IS_IOMAP);
988		spin_unlock(&kvm->mmu_lock);
989		if (ret)
990			goto out;
991
992		pfn++;
993	}
994
995out:
996	mmu_free_memory_cache(&cache);
997	return ret;
998}
999
1000static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
1001{
1002	pfn_t pfn = *pfnp;
1003	gfn_t gfn = *ipap >> PAGE_SHIFT;
1004
1005	if (PageTransCompound(pfn_to_page(pfn))) {
1006		unsigned long mask;
1007		/*
1008		 * The address we faulted on is backed by a transparent huge
1009		 * page.  However, because we map the compound huge page and
1010		 * not the individual tail page, we need to transfer the
1011		 * refcount to the head page.  We have to be careful that the
1012		 * THP doesn't start to split while we are adjusting the
1013		 * refcounts.
1014		 *
1015		 * We are sure this doesn't happen, because mmu_notifier_retry
1016		 * was successful and we are holding the mmu_lock, so if this
1017		 * THP is trying to split, it will be blocked in the mmu
1018		 * notifier before touching any of the pages, specifically
1019		 * before being able to call __split_huge_page_refcount().
1020		 *
1021		 * We can therefore safely transfer the refcount from PG_tail
1022		 * to PG_head and switch the pfn from a tail page to the head
1023		 * page accordingly.
1024		 */
1025		mask = PTRS_PER_PMD - 1;
1026		VM_BUG_ON((gfn & mask) != (pfn & mask));
1027		if (pfn & mask) {
1028			*ipap &= PMD_MASK;
1029			kvm_release_pfn_clean(pfn);
1030			pfn &= ~mask;
1031			kvm_get_pfn(pfn);
1032			*pfnp = pfn;
1033		}
1034
1035		return true;
1036	}
1037
1038	return false;
1039}
1040
1041static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1042{
1043	if (kvm_vcpu_trap_is_iabt(vcpu))
1044		return false;
1045
1046	return kvm_vcpu_dabt_iswrite(vcpu);
1047}
1048
1049/**
1050 * stage2_wp_ptes - write protect PMD range
1051 * @pmd:	pointer to pmd entry
1052 * @addr:	range start address
1053 * @end:	range end address
1054 */
1055static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1056{
1057	pte_t *pte;
1058
1059	pte = pte_offset_kernel(pmd, addr);
1060	do {
1061		if (!pte_none(*pte)) {
1062			if (!kvm_s2pte_readonly(pte))
1063				kvm_set_s2pte_readonly(pte);
1064		}
1065	} while (pte++, addr += PAGE_SIZE, addr != end);
1066}
1067
1068/**
1069 * stage2_wp_pmds - write protect PUD range
1070 * @pud:	pointer to pud entry
1071 * @addr:	range start address
1072 * @end:	range end address
1073 */
1074static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1075{
1076	pmd_t *pmd;
1077	phys_addr_t next;
1078
1079	pmd = pmd_offset(pud, addr);
1080
1081	do {
1082		next = kvm_pmd_addr_end(addr, end);
1083		if (!pmd_none(*pmd)) {
1084			if (kvm_pmd_huge(*pmd)) {
1085				if (!kvm_s2pmd_readonly(pmd))
1086					kvm_set_s2pmd_readonly(pmd);
1087			} else {
1088				stage2_wp_ptes(pmd, addr, next);
1089			}
1090		}
1091	} while (pmd++, addr = next, addr != end);
1092}
1093
1094/**
1095  * stage2_wp_puds - write protect PGD range
1096  * @pgd:	pointer to pgd entry
1097  * @addr:	range start address
1098  * @end:	range end address
1099  *
1100  * Process PUD entries, for a huge PUD we cause a panic.
1101  */
1102static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1103{
1104	pud_t *pud;
1105	phys_addr_t next;
1106
1107	pud = pud_offset(pgd, addr);
1108	do {
1109		next = kvm_pud_addr_end(addr, end);
1110		if (!pud_none(*pud)) {
1111			/* TODO:PUD not supported, revisit later if supported */
1112			BUG_ON(kvm_pud_huge(*pud));
1113			stage2_wp_pmds(pud, addr, next);
1114		}
1115	} while (pud++, addr = next, addr != end);
1116}
1117
1118/**
1119 * stage2_wp_range() - write protect stage2 memory region range
1120 * @kvm:	The KVM pointer
1121 * @addr:	Start address of range
1122 * @end:	End address of range
1123 */
1124static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1125{
1126	pgd_t *pgd;
1127	phys_addr_t next;
1128
1129	pgd = kvm->arch.pgd + kvm_pgd_index(addr);
1130	do {
1131		/*
1132		 * Release kvm_mmu_lock periodically if the memory region is
1133		 * large. Otherwise, we may see kernel panics with
1134		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1135		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1136		 * will also starve other vCPUs.
1137		 */
1138		if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1139			cond_resched_lock(&kvm->mmu_lock);
1140
1141		next = kvm_pgd_addr_end(addr, end);
1142		if (pgd_present(*pgd))
1143			stage2_wp_puds(pgd, addr, next);
1144	} while (pgd++, addr = next, addr != end);
1145}
1146
1147/**
1148 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1149 * @kvm:	The KVM pointer
1150 * @slot:	The memory slot to write protect
1151 *
1152 * Called to start logging dirty pages after memory region
1153 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1154 * all present PMD and PTEs are write protected in the memory region.
1155 * Afterwards read of dirty page log can be called.
1156 *
1157 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1158 * serializing operations for VM memory regions.
1159 */
1160void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1161{
1162	struct kvm_memslots *slots = kvm_memslots(kvm);
1163	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1164	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1165	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1166
1167	spin_lock(&kvm->mmu_lock);
1168	stage2_wp_range(kvm, start, end);
1169	spin_unlock(&kvm->mmu_lock);
1170	kvm_flush_remote_tlbs(kvm);
1171}
1172
1173/**
1174 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1175 * @kvm:	The KVM pointer
1176 * @slot:	The memory slot associated with mask
1177 * @gfn_offset:	The gfn offset in memory slot
1178 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
1179 *		slot to be write protected
1180 *
1181 * Walks bits set in mask write protects the associated pte's. Caller must
1182 * acquire kvm_mmu_lock.
1183 */
1184static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1185		struct kvm_memory_slot *slot,
1186		gfn_t gfn_offset, unsigned long mask)
1187{
1188	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1189	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1190	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1191
1192	stage2_wp_range(kvm, start, end);
1193}
1194
1195/*
1196 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1197 * dirty pages.
1198 *
1199 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1200 * enable dirty logging for them.
1201 */
1202void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1203		struct kvm_memory_slot *slot,
1204		gfn_t gfn_offset, unsigned long mask)
1205{
1206	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1207}
1208
1209static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, pfn_t pfn,
1210				      unsigned long size, bool uncached)
1211{
1212	__coherent_cache_guest_page(vcpu, pfn, size, uncached);
1213}
1214
1215static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1216			  struct kvm_memory_slot *memslot, unsigned long hva,
1217			  unsigned long fault_status)
1218{
1219	int ret;
1220	bool write_fault, writable, hugetlb = false, force_pte = false;
1221	unsigned long mmu_seq;
1222	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1223	struct kvm *kvm = vcpu->kvm;
1224	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1225	struct vm_area_struct *vma;
1226	pfn_t pfn;
1227	pgprot_t mem_type = PAGE_S2;
1228	bool fault_ipa_uncached;
1229	bool logging_active = memslot_is_logging(memslot);
1230	unsigned long flags = 0;
1231
1232	write_fault = kvm_is_write_fault(vcpu);
1233	if (fault_status == FSC_PERM && !write_fault) {
1234		kvm_err("Unexpected L2 read permission error\n");
1235		return -EFAULT;
1236	}
1237
1238	/* Let's check if we will get back a huge page backed by hugetlbfs */
1239	down_read(&current->mm->mmap_sem);
1240	vma = find_vma_intersection(current->mm, hva, hva + 1);
1241	if (unlikely(!vma)) {
1242		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1243		up_read(&current->mm->mmap_sem);
1244		return -EFAULT;
1245	}
1246
1247	if (is_vm_hugetlb_page(vma) && !logging_active) {
1248		hugetlb = true;
1249		gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1250	} else {
1251		/*
1252		 * Pages belonging to memslots that don't have the same
1253		 * alignment for userspace and IPA cannot be mapped using
1254		 * block descriptors even if the pages belong to a THP for
1255		 * the process, because the stage-2 block descriptor will
1256		 * cover more than a single THP and we loose atomicity for
1257		 * unmapping, updates, and splits of the THP or other pages
1258		 * in the stage-2 block range.
1259		 */
1260		if ((memslot->userspace_addr & ~PMD_MASK) !=
1261		    ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1262			force_pte = true;
1263	}
1264	up_read(&current->mm->mmap_sem);
1265
1266	/* We need minimum second+third level pages */
1267	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1268				     KVM_NR_MEM_OBJS);
1269	if (ret)
1270		return ret;
1271
1272	mmu_seq = vcpu->kvm->mmu_notifier_seq;
1273	/*
1274	 * Ensure the read of mmu_notifier_seq happens before we call
1275	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1276	 * the page we just got a reference to gets unmapped before we have a
1277	 * chance to grab the mmu_lock, which ensure that if the page gets
1278	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1279	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1280	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1281	 */
1282	smp_rmb();
1283
1284	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1285	if (is_error_pfn(pfn))
1286		return -EFAULT;
1287
1288	if (kvm_is_device_pfn(pfn)) {
1289		mem_type = PAGE_S2_DEVICE;
1290		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1291	} else if (logging_active) {
1292		/*
1293		 * Faults on pages in a memslot with logging enabled
1294		 * should not be mapped with huge pages (it introduces churn
1295		 * and performance degradation), so force a pte mapping.
1296		 */
1297		force_pte = true;
1298		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1299
1300		/*
1301		 * Only actually map the page as writable if this was a write
1302		 * fault.
1303		 */
1304		if (!write_fault)
1305			writable = false;
1306	}
1307
1308	spin_lock(&kvm->mmu_lock);
1309	if (mmu_notifier_retry(kvm, mmu_seq))
1310		goto out_unlock;
1311
1312	if (!hugetlb && !force_pte)
1313		hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1314
1315	fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
1316
1317	if (hugetlb) {
1318		pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1319		new_pmd = pmd_mkhuge(new_pmd);
1320		if (writable) {
1321			kvm_set_s2pmd_writable(&new_pmd);
1322			kvm_set_pfn_dirty(pfn);
1323		}
1324		coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
1325		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1326	} else {
1327		pte_t new_pte = pfn_pte(pfn, mem_type);
1328
1329		if (writable) {
1330			kvm_set_s2pte_writable(&new_pte);
1331			kvm_set_pfn_dirty(pfn);
1332			mark_page_dirty(kvm, gfn);
1333		}
1334		coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
1335		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1336	}
1337
1338out_unlock:
1339	spin_unlock(&kvm->mmu_lock);
1340	kvm_set_pfn_accessed(pfn);
1341	kvm_release_pfn_clean(pfn);
1342	return ret;
1343}
1344
1345/*
1346 * Resolve the access fault by making the page young again.
1347 * Note that because the faulting entry is guaranteed not to be
1348 * cached in the TLB, we don't need to invalidate anything.
1349 */
1350static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1351{
1352	pmd_t *pmd;
1353	pte_t *pte;
1354	pfn_t pfn;
1355	bool pfn_valid = false;
1356
1357	trace_kvm_access_fault(fault_ipa);
1358
1359	spin_lock(&vcpu->kvm->mmu_lock);
1360
1361	pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1362	if (!pmd || pmd_none(*pmd))	/* Nothing there */
1363		goto out;
1364
1365	if (kvm_pmd_huge(*pmd)) {	/* THP, HugeTLB */
1366		*pmd = pmd_mkyoung(*pmd);
1367		pfn = pmd_pfn(*pmd);
1368		pfn_valid = true;
1369		goto out;
1370	}
1371
1372	pte = pte_offset_kernel(pmd, fault_ipa);
1373	if (pte_none(*pte))		/* Nothing there either */
1374		goto out;
1375
1376	*pte = pte_mkyoung(*pte);	/* Just a page... */
1377	pfn = pte_pfn(*pte);
1378	pfn_valid = true;
1379out:
1380	spin_unlock(&vcpu->kvm->mmu_lock);
1381	if (pfn_valid)
1382		kvm_set_pfn_accessed(pfn);
1383}
1384
1385/**
1386 * kvm_handle_guest_abort - handles all 2nd stage aborts
1387 * @vcpu:	the VCPU pointer
1388 * @run:	the kvm_run structure
1389 *
1390 * Any abort that gets to the host is almost guaranteed to be caused by a
1391 * missing second stage translation table entry, which can mean that either the
1392 * guest simply needs more memory and we must allocate an appropriate page or it
1393 * can mean that the guest tried to access I/O memory, which is emulated by user
1394 * space. The distinction is based on the IPA causing the fault and whether this
1395 * memory region has been registered as standard RAM by user space.
1396 */
1397int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1398{
1399	unsigned long fault_status;
1400	phys_addr_t fault_ipa;
1401	struct kvm_memory_slot *memslot;
1402	unsigned long hva;
1403	bool is_iabt, write_fault, writable;
1404	gfn_t gfn;
1405	int ret, idx;
1406
1407	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1408	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1409
1410	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1411			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1412
1413	/* Check the stage-2 fault is trans. fault or write fault */
1414	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1415	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1416	    fault_status != FSC_ACCESS) {
1417		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1418			kvm_vcpu_trap_get_class(vcpu),
1419			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1420			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1421		return -EFAULT;
1422	}
1423
1424	idx = srcu_read_lock(&vcpu->kvm->srcu);
1425
1426	gfn = fault_ipa >> PAGE_SHIFT;
1427	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1428	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1429	write_fault = kvm_is_write_fault(vcpu);
1430	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1431		if (is_iabt) {
1432			/* Prefetch Abort on I/O address */
1433			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1434			ret = 1;
1435			goto out_unlock;
1436		}
1437
1438		/*
1439		 * The IPA is reported as [MAX:12], so we need to
1440		 * complement it with the bottom 12 bits from the
1441		 * faulting VA. This is always 12 bits, irrespective
1442		 * of the page size.
1443		 */
1444		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1445		ret = io_mem_abort(vcpu, run, fault_ipa);
1446		goto out_unlock;
1447	}
1448
1449	/* Userspace should not be able to register out-of-bounds IPAs */
1450	VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1451
1452	if (fault_status == FSC_ACCESS) {
1453		handle_access_fault(vcpu, fault_ipa);
1454		ret = 1;
1455		goto out_unlock;
1456	}
1457
1458	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1459	if (ret == 0)
1460		ret = 1;
1461out_unlock:
1462	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1463	return ret;
1464}
1465
1466static int handle_hva_to_gpa(struct kvm *kvm,
1467			     unsigned long start,
1468			     unsigned long end,
1469			     int (*handler)(struct kvm *kvm,
1470					    gpa_t gpa, void *data),
1471			     void *data)
1472{
1473	struct kvm_memslots *slots;
1474	struct kvm_memory_slot *memslot;
1475	int ret = 0;
1476
1477	slots = kvm_memslots(kvm);
1478
1479	/* we only care about the pages that the guest sees */
1480	kvm_for_each_memslot(memslot, slots) {
1481		unsigned long hva_start, hva_end;
1482		gfn_t gfn, gfn_end;
1483
1484		hva_start = max(start, memslot->userspace_addr);
1485		hva_end = min(end, memslot->userspace_addr +
1486					(memslot->npages << PAGE_SHIFT));
1487		if (hva_start >= hva_end)
1488			continue;
1489
1490		/*
1491		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1492		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1493		 */
1494		gfn = hva_to_gfn_memslot(hva_start, memslot);
1495		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1496
1497		for (; gfn < gfn_end; ++gfn) {
1498			gpa_t gpa = gfn << PAGE_SHIFT;
1499			ret |= handler(kvm, gpa, data);
1500		}
1501	}
1502
1503	return ret;
1504}
1505
1506static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1507{
1508	unmap_stage2_range(kvm, gpa, PAGE_SIZE);
1509	return 0;
1510}
1511
1512int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1513{
1514	unsigned long end = hva + PAGE_SIZE;
1515
1516	if (!kvm->arch.pgd)
1517		return 0;
1518
1519	trace_kvm_unmap_hva(hva);
1520	handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1521	return 0;
1522}
1523
1524int kvm_unmap_hva_range(struct kvm *kvm,
1525			unsigned long start, unsigned long end)
1526{
1527	if (!kvm->arch.pgd)
1528		return 0;
1529
1530	trace_kvm_unmap_hva_range(start, end);
1531	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1532	return 0;
1533}
1534
1535static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
1536{
1537	pte_t *pte = (pte_t *)data;
1538
1539	/*
1540	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1541	 * flag clear because MMU notifiers will have unmapped a huge PMD before
1542	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1543	 * therefore stage2_set_pte() never needs to clear out a huge PMD
1544	 * through this calling path.
1545	 */
1546	stage2_set_pte(kvm, NULL, gpa, pte, 0);
1547	return 0;
1548}
1549
1550
1551void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1552{
1553	unsigned long end = hva + PAGE_SIZE;
1554	pte_t stage2_pte;
1555
1556	if (!kvm->arch.pgd)
1557		return;
1558
1559	trace_kvm_set_spte_hva(hva);
1560	stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1561	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1562}
1563
1564static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1565{
1566	pmd_t *pmd;
1567	pte_t *pte;
1568
1569	pmd = stage2_get_pmd(kvm, NULL, gpa);
1570	if (!pmd || pmd_none(*pmd))	/* Nothing there */
1571		return 0;
1572
1573	if (kvm_pmd_huge(*pmd)) {	/* THP, HugeTLB */
1574		if (pmd_young(*pmd)) {
1575			*pmd = pmd_mkold(*pmd);
1576			return 1;
1577		}
1578
1579		return 0;
1580	}
1581
1582	pte = pte_offset_kernel(pmd, gpa);
1583	if (pte_none(*pte))
1584		return 0;
1585
1586	if (pte_young(*pte)) {
1587		*pte = pte_mkold(*pte);	/* Just a page... */
1588		return 1;
1589	}
1590
1591	return 0;
1592}
1593
1594static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1595{
1596	pmd_t *pmd;
1597	pte_t *pte;
1598
1599	pmd = stage2_get_pmd(kvm, NULL, gpa);
1600	if (!pmd || pmd_none(*pmd))	/* Nothing there */
1601		return 0;
1602
1603	if (kvm_pmd_huge(*pmd))		/* THP, HugeTLB */
1604		return pmd_young(*pmd);
1605
1606	pte = pte_offset_kernel(pmd, gpa);
1607	if (!pte_none(*pte))		/* Just a page... */
1608		return pte_young(*pte);
1609
1610	return 0;
1611}
1612
1613int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1614{
1615	trace_kvm_age_hva(start, end);
1616	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1617}
1618
1619int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1620{
1621	trace_kvm_test_age_hva(hva);
1622	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1623}
1624
1625void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1626{
1627	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1628}
1629
1630phys_addr_t kvm_mmu_get_httbr(void)
1631{
1632	if (__kvm_cpu_uses_extended_idmap())
1633		return virt_to_phys(merged_hyp_pgd);
1634	else
1635		return virt_to_phys(hyp_pgd);
1636}
1637
1638phys_addr_t kvm_mmu_get_boot_httbr(void)
1639{
1640	if (__kvm_cpu_uses_extended_idmap())
1641		return virt_to_phys(merged_hyp_pgd);
1642	else
1643		return virt_to_phys(boot_hyp_pgd);
1644}
1645
1646phys_addr_t kvm_get_idmap_vector(void)
1647{
1648	return hyp_idmap_vector;
1649}
1650
1651int kvm_mmu_init(void)
1652{
1653	int err;
1654
1655	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1656	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1657	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1658
1659	/*
1660	 * We rely on the linker script to ensure at build time that the HYP
1661	 * init code does not cross a page boundary.
1662	 */
1663	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1664
1665	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1666	boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1667
1668	if (!hyp_pgd || !boot_hyp_pgd) {
1669		kvm_err("Hyp mode PGD not allocated\n");
1670		err = -ENOMEM;
1671		goto out;
1672	}
1673
1674	/* Create the idmap in the boot page tables */
1675	err = 	__create_hyp_mappings(boot_hyp_pgd,
1676				      hyp_idmap_start, hyp_idmap_end,
1677				      __phys_to_pfn(hyp_idmap_start),
1678				      PAGE_HYP);
1679
1680	if (err) {
1681		kvm_err("Failed to idmap %lx-%lx\n",
1682			hyp_idmap_start, hyp_idmap_end);
1683		goto out;
1684	}
1685
1686	if (__kvm_cpu_uses_extended_idmap()) {
1687		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1688		if (!merged_hyp_pgd) {
1689			kvm_err("Failed to allocate extra HYP pgd\n");
1690			goto out;
1691		}
1692		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1693				    hyp_idmap_start);
1694		return 0;
1695	}
1696
1697	/* Map the very same page at the trampoline VA */
1698	err = 	__create_hyp_mappings(boot_hyp_pgd,
1699				      TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1700				      __phys_to_pfn(hyp_idmap_start),
1701				      PAGE_HYP);
1702	if (err) {
1703		kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1704			TRAMPOLINE_VA);
1705		goto out;
1706	}
1707
1708	/* Map the same page again into the runtime page tables */
1709	err = 	__create_hyp_mappings(hyp_pgd,
1710				      TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1711				      __phys_to_pfn(hyp_idmap_start),
1712				      PAGE_HYP);
1713	if (err) {
1714		kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1715			TRAMPOLINE_VA);
1716		goto out;
1717	}
1718
1719	return 0;
1720out:
1721	free_hyp_pgds();
1722	return err;
1723}
1724
1725void kvm_arch_commit_memory_region(struct kvm *kvm,
1726				   const struct kvm_userspace_memory_region *mem,
1727				   const struct kvm_memory_slot *old,
1728				   const struct kvm_memory_slot *new,
1729				   enum kvm_mr_change change)
1730{
1731	/*
1732	 * At this point memslot has been committed and there is an
1733	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1734	 * memory slot is write protected.
1735	 */
1736	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1737		kvm_mmu_wp_memory_region(kvm, mem->slot);
1738}
1739
1740int kvm_arch_prepare_memory_region(struct kvm *kvm,
1741				   struct kvm_memory_slot *memslot,
1742				   const struct kvm_userspace_memory_region *mem,
1743				   enum kvm_mr_change change)
1744{
1745	hva_t hva = mem->userspace_addr;
1746	hva_t reg_end = hva + mem->memory_size;
1747	bool writable = !(mem->flags & KVM_MEM_READONLY);
1748	int ret = 0;
1749
1750	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1751			change != KVM_MR_FLAGS_ONLY)
1752		return 0;
1753
1754	/*
1755	 * Prevent userspace from creating a memory region outside of the IPA
1756	 * space addressable by the KVM guest IPA space.
1757	 */
1758	if (memslot->base_gfn + memslot->npages >=
1759	    (KVM_PHYS_SIZE >> PAGE_SHIFT))
1760		return -EFAULT;
1761
1762	/*
1763	 * A memory region could potentially cover multiple VMAs, and any holes
1764	 * between them, so iterate over all of them to find out if we can map
1765	 * any of them right now.
1766	 *
1767	 *     +--------------------------------------------+
1768	 * +---------------+----------------+   +----------------+
1769	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1770	 * +---------------+----------------+   +----------------+
1771	 *     |               memory region                |
1772	 *     +--------------------------------------------+
1773	 */
1774	do {
1775		struct vm_area_struct *vma = find_vma(current->mm, hva);
1776		hva_t vm_start, vm_end;
1777
1778		if (!vma || vma->vm_start >= reg_end)
1779			break;
1780
1781		/*
1782		 * Mapping a read-only VMA is only allowed if the
1783		 * memory region is configured as read-only.
1784		 */
1785		if (writable && !(vma->vm_flags & VM_WRITE)) {
1786			ret = -EPERM;
1787			break;
1788		}
1789
1790		/*
1791		 * Take the intersection of this VMA with the memory region
1792		 */
1793		vm_start = max(hva, vma->vm_start);
1794		vm_end = min(reg_end, vma->vm_end);
1795
1796		if (vma->vm_flags & VM_PFNMAP) {
1797			gpa_t gpa = mem->guest_phys_addr +
1798				    (vm_start - mem->userspace_addr);
1799			phys_addr_t pa;
1800
1801			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1802			pa += vm_start - vma->vm_start;
1803
1804			/* IO region dirty page logging not allowed */
1805			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
1806				return -EINVAL;
1807
1808			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1809						    vm_end - vm_start,
1810						    writable);
1811			if (ret)
1812				break;
1813		}
1814		hva = vm_end;
1815	} while (hva < reg_end);
1816
1817	if (change == KVM_MR_FLAGS_ONLY)
1818		return ret;
1819
1820	spin_lock(&kvm->mmu_lock);
1821	if (ret)
1822		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1823	else
1824		stage2_flush_memslot(kvm, memslot);
1825	spin_unlock(&kvm->mmu_lock);
1826	return ret;
1827}
1828
1829void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1830			   struct kvm_memory_slot *dont)
1831{
1832}
1833
1834int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1835			    unsigned long npages)
1836{
1837	/*
1838	 * Readonly memslots are not incoherent with the caches by definition,
1839	 * but in practice, they are used mostly to emulate ROMs or NOR flashes
1840	 * that the guest may consider devices and hence map as uncached.
1841	 * To prevent incoherency issues in these cases, tag all readonly
1842	 * regions as incoherent.
1843	 */
1844	if (slot->flags & KVM_MEM_READONLY)
1845		slot->flags |= KVM_MEMSLOT_INCOHERENT;
1846	return 0;
1847}
1848
1849void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1850{
1851}
1852
1853void kvm_arch_flush_shadow_all(struct kvm *kvm)
1854{
1855}
1856
1857void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1858				   struct kvm_memory_slot *slot)
1859{
1860	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1861	phys_addr_t size = slot->npages << PAGE_SHIFT;
1862
1863	spin_lock(&kvm->mmu_lock);
1864	unmap_stage2_range(kvm, gpa, size);
1865	spin_unlock(&kvm->mmu_lock);
1866}
1867
1868/*
1869 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1870 *
1871 * Main problems:
1872 * - S/W ops are local to a CPU (not broadcast)
1873 * - We have line migration behind our back (speculation)
1874 * - System caches don't support S/W at all (damn!)
1875 *
1876 * In the face of the above, the best we can do is to try and convert
1877 * S/W ops to VA ops. Because the guest is not allowed to infer the
1878 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1879 * which is a rather good thing for us.
1880 *
1881 * Also, it is only used when turning caches on/off ("The expected
1882 * usage of the cache maintenance instructions that operate by set/way
1883 * is associated with the cache maintenance instructions associated
1884 * with the powerdown and powerup of caches, if this is required by
1885 * the implementation.").
1886 *
1887 * We use the following policy:
1888 *
1889 * - If we trap a S/W operation, we enable VM trapping to detect
1890 *   caches being turned on/off, and do a full clean.
1891 *
1892 * - We flush the caches on both caches being turned on and off.
1893 *
1894 * - Once the caches are enabled, we stop trapping VM ops.
1895 */
1896void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1897{
1898	unsigned long hcr = vcpu_get_hcr(vcpu);
1899
1900	/*
1901	 * If this is the first time we do a S/W operation
1902	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1903	 * VM trapping.
1904	 *
1905	 * Otherwise, rely on the VM trapping to wait for the MMU +
1906	 * Caches to be turned off. At that point, we'll be able to
1907	 * clean the caches again.
1908	 */
1909	if (!(hcr & HCR_TVM)) {
1910		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1911					vcpu_has_cache_enabled(vcpu));
1912		stage2_flush_vm(vcpu->kvm);
1913		vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1914	}
1915}
1916
1917void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1918{
1919	bool now_enabled = vcpu_has_cache_enabled(vcpu);
1920
1921	/*
1922	 * If switching the MMU+caches on, need to invalidate the caches.
1923	 * If switching it off, need to clean the caches.
1924	 * Clean + invalidate does the trick always.
1925	 */
1926	if (now_enabled != was_enabled)
1927		stage2_flush_vm(vcpu->kvm);
1928
1929	/* Caches are now on, stop trapping VM ops (until a S/W op) */
1930	if (now_enabled)
1931		vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
1932
1933	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1934}
1935