1/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 *          Christoffer Dall <c.dall@virtualopensystems.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
18 */
19#include <linux/mm.h>
20#include <linux/kvm_host.h>
21#include <linux/uaccess.h>
22#include <asm/kvm_arm.h>
23#include <asm/kvm_host.h>
24#include <asm/kvm_emulate.h>
25#include <asm/kvm_coproc.h>
26#include <asm/kvm_mmu.h>
27#include <asm/cacheflush.h>
28#include <asm/cputype.h>
29#include <trace/events/kvm.h>
30#include <asm/vfp.h>
31#include "../vfp/vfpinstr.h"
32
33#include "trace.h"
34#include "coproc.h"
35
36
37/******************************************************************************
38 * Co-processor emulation
39 *****************************************************************************/
40
41/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
42static u32 cache_levels;
43
44/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
45#define CSSELR_MAX 12
46
47/*
48 * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
49 * of cp15 registers can be viewed either as couple of two u32 registers
50 * or one u64 register. Current u64 register encoding is that least
51 * significant u32 word is followed by most significant u32 word.
52 */
53static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
54				       const struct coproc_reg *r,
55				       u64 val)
56{
57	vcpu->arch.cp15[r->reg] = val & 0xffffffff;
58	vcpu->arch.cp15[r->reg + 1] = val >> 32;
59}
60
61static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
62				      const struct coproc_reg *r)
63{
64	u64 val;
65
66	val = vcpu->arch.cp15[r->reg + 1];
67	val = val << 32;
68	val = val | vcpu->arch.cp15[r->reg];
69	return val;
70}
71
72int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
73{
74	kvm_inject_undefined(vcpu);
75	return 1;
76}
77
78int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
79{
80	/*
81	 * We can get here, if the host has been built without VFPv3 support,
82	 * but the guest attempted a floating point operation.
83	 */
84	kvm_inject_undefined(vcpu);
85	return 1;
86}
87
88int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
89{
90	kvm_inject_undefined(vcpu);
91	return 1;
92}
93
94int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
95{
96	kvm_inject_undefined(vcpu);
97	return 1;
98}
99
100static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
101{
102	/*
103	 * Compute guest MPIDR. We build a virtual cluster out of the
104	 * vcpu_id, but we read the 'U' bit from the underlying
105	 * hardware directly.
106	 */
107	vcpu->arch.cp15[c0_MPIDR] = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
108				     ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
109				     (vcpu->vcpu_id & 3));
110}
111
112/* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
113static bool access_actlr(struct kvm_vcpu *vcpu,
114			 const struct coproc_params *p,
115			 const struct coproc_reg *r)
116{
117	if (p->is_write)
118		return ignore_write(vcpu, p);
119
120	*vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c1_ACTLR];
121	return true;
122}
123
124/* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
125static bool access_cbar(struct kvm_vcpu *vcpu,
126			const struct coproc_params *p,
127			const struct coproc_reg *r)
128{
129	if (p->is_write)
130		return write_to_read_only(vcpu, p);
131	return read_zero(vcpu, p);
132}
133
134/* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
135static bool access_l2ctlr(struct kvm_vcpu *vcpu,
136			  const struct coproc_params *p,
137			  const struct coproc_reg *r)
138{
139	if (p->is_write)
140		return ignore_write(vcpu, p);
141
142	*vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c9_L2CTLR];
143	return true;
144}
145
146static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
147{
148	u32 l2ctlr, ncores;
149
150	asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
151	l2ctlr &= ~(3 << 24);
152	ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
153	/* How many cores in the current cluster and the next ones */
154	ncores -= (vcpu->vcpu_id & ~3);
155	/* Cap it to the maximum number of cores in a single cluster */
156	ncores = min(ncores, 3U);
157	l2ctlr |= (ncores & 3) << 24;
158
159	vcpu->arch.cp15[c9_L2CTLR] = l2ctlr;
160}
161
162static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
163{
164	u32 actlr;
165
166	/* ACTLR contains SMP bit: make sure you create all cpus first! */
167	asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
168	/* Make the SMP bit consistent with the guest configuration */
169	if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
170		actlr |= 1U << 6;
171	else
172		actlr &= ~(1U << 6);
173
174	vcpu->arch.cp15[c1_ACTLR] = actlr;
175}
176
177/*
178 * TRM entries: A7:4.3.50, A15:4.3.49
179 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
180 */
181static bool access_l2ectlr(struct kvm_vcpu *vcpu,
182			   const struct coproc_params *p,
183			   const struct coproc_reg *r)
184{
185	if (p->is_write)
186		return ignore_write(vcpu, p);
187
188	*vcpu_reg(vcpu, p->Rt1) = 0;
189	return true;
190}
191
192/*
193 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
194 */
195static bool access_dcsw(struct kvm_vcpu *vcpu,
196			const struct coproc_params *p,
197			const struct coproc_reg *r)
198{
199	if (!p->is_write)
200		return read_from_write_only(vcpu, p);
201
202	kvm_set_way_flush(vcpu);
203	return true;
204}
205
206/*
207 * Generic accessor for VM registers. Only called as long as HCR_TVM
208 * is set.  If the guest enables the MMU, we stop trapping the VM
209 * sys_regs and leave it in complete control of the caches.
210 *
211 * Used by the cpu-specific code.
212 */
213bool access_vm_reg(struct kvm_vcpu *vcpu,
214		   const struct coproc_params *p,
215		   const struct coproc_reg *r)
216{
217	bool was_enabled = vcpu_has_cache_enabled(vcpu);
218
219	BUG_ON(!p->is_write);
220
221	vcpu->arch.cp15[r->reg] = *vcpu_reg(vcpu, p->Rt1);
222	if (p->is_64bit)
223		vcpu->arch.cp15[r->reg + 1] = *vcpu_reg(vcpu, p->Rt2);
224
225	kvm_toggle_cache(vcpu, was_enabled);
226	return true;
227}
228
229/*
230 * We could trap ID_DFR0 and tell the guest we don't support performance
231 * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
232 * NAKed, so it will read the PMCR anyway.
233 *
234 * Therefore we tell the guest we have 0 counters.  Unfortunately, we
235 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
236 * all PM registers, which doesn't crash the guest kernel at least.
237 */
238static bool pm_fake(struct kvm_vcpu *vcpu,
239		    const struct coproc_params *p,
240		    const struct coproc_reg *r)
241{
242	if (p->is_write)
243		return ignore_write(vcpu, p);
244	else
245		return read_zero(vcpu, p);
246}
247
248#define access_pmcr pm_fake
249#define access_pmcntenset pm_fake
250#define access_pmcntenclr pm_fake
251#define access_pmovsr pm_fake
252#define access_pmselr pm_fake
253#define access_pmceid0 pm_fake
254#define access_pmceid1 pm_fake
255#define access_pmccntr pm_fake
256#define access_pmxevtyper pm_fake
257#define access_pmxevcntr pm_fake
258#define access_pmuserenr pm_fake
259#define access_pmintenset pm_fake
260#define access_pmintenclr pm_fake
261
262/* Architected CP15 registers.
263 * CRn denotes the primary register number, but is copied to the CRm in the
264 * user space API for 64-bit register access in line with the terminology used
265 * in the ARM ARM.
266 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
267 *            registers preceding 32-bit ones.
268 */
269static const struct coproc_reg cp15_regs[] = {
270	/* MPIDR: we use VMPIDR for guest access. */
271	{ CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
272			NULL, reset_mpidr, c0_MPIDR },
273
274	/* CSSELR: swapped by interrupt.S. */
275	{ CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
276			NULL, reset_unknown, c0_CSSELR },
277
278	/* ACTLR: trapped by HCR.TAC bit. */
279	{ CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
280			access_actlr, reset_actlr, c1_ACTLR },
281
282	/* CPACR: swapped by interrupt.S. */
283	{ CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
284			NULL, reset_val, c1_CPACR, 0x00000000 },
285
286	/* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
287	{ CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
288	{ CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
289			access_vm_reg, reset_unknown, c2_TTBR0 },
290	{ CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
291			access_vm_reg, reset_unknown, c2_TTBR1 },
292	{ CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
293			access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
294	{ CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
295
296
297	/* DACR: swapped by interrupt.S. */
298	{ CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
299			access_vm_reg, reset_unknown, c3_DACR },
300
301	/* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
302	{ CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
303			access_vm_reg, reset_unknown, c5_DFSR },
304	{ CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
305			access_vm_reg, reset_unknown, c5_IFSR },
306	{ CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
307			access_vm_reg, reset_unknown, c5_ADFSR },
308	{ CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
309			access_vm_reg, reset_unknown, c5_AIFSR },
310
311	/* DFAR/IFAR: swapped by interrupt.S. */
312	{ CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
313			access_vm_reg, reset_unknown, c6_DFAR },
314	{ CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
315			access_vm_reg, reset_unknown, c6_IFAR },
316
317	/* PAR swapped by interrupt.S */
318	{ CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
319
320	/*
321	 * DC{C,I,CI}SW operations:
322	 */
323	{ CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
324	{ CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
325	{ CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
326	/*
327	 * L2CTLR access (guest wants to know #CPUs).
328	 */
329	{ CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
330			access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
331	{ CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
332
333	/*
334	 * Dummy performance monitor implementation.
335	 */
336	{ CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
337	{ CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
338	{ CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
339	{ CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
340	{ CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
341	{ CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
342	{ CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
343	{ CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
344	{ CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
345	{ CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
346	{ CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
347	{ CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
348	{ CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
349
350	/* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
351	{ CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
352			access_vm_reg, reset_unknown, c10_PRRR},
353	{ CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
354			access_vm_reg, reset_unknown, c10_NMRR},
355
356	/* AMAIR0/AMAIR1: swapped by interrupt.S. */
357	{ CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
358			access_vm_reg, reset_unknown, c10_AMAIR0},
359	{ CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
360			access_vm_reg, reset_unknown, c10_AMAIR1},
361
362	/* VBAR: swapped by interrupt.S. */
363	{ CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
364			NULL, reset_val, c12_VBAR, 0x00000000 },
365
366	/* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
367	{ CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
368			access_vm_reg, reset_val, c13_CID, 0x00000000 },
369	{ CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
370			NULL, reset_unknown, c13_TID_URW },
371	{ CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
372			NULL, reset_unknown, c13_TID_URO },
373	{ CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
374			NULL, reset_unknown, c13_TID_PRIV },
375
376	/* CNTKCTL: swapped by interrupt.S. */
377	{ CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
378			NULL, reset_val, c14_CNTKCTL, 0x00000000 },
379
380	/* The Configuration Base Address Register. */
381	{ CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
382};
383
384/* Target specific emulation tables */
385static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
386
387void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
388{
389	unsigned int i;
390
391	for (i = 1; i < table->num; i++)
392		BUG_ON(cmp_reg(&table->table[i-1],
393			       &table->table[i]) >= 0);
394
395	target_tables[table->target] = table;
396}
397
398/* Get specific register table for this target. */
399static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
400{
401	struct kvm_coproc_target_table *table;
402
403	table = target_tables[target];
404	*num = table->num;
405	return table->table;
406}
407
408static const struct coproc_reg *find_reg(const struct coproc_params *params,
409					 const struct coproc_reg table[],
410					 unsigned int num)
411{
412	unsigned int i;
413
414	for (i = 0; i < num; i++) {
415		const struct coproc_reg *r = &table[i];
416
417		if (params->is_64bit != r->is_64)
418			continue;
419		if (params->CRn != r->CRn)
420			continue;
421		if (params->CRm != r->CRm)
422			continue;
423		if (params->Op1 != r->Op1)
424			continue;
425		if (params->Op2 != r->Op2)
426			continue;
427
428		return r;
429	}
430	return NULL;
431}
432
433static int emulate_cp15(struct kvm_vcpu *vcpu,
434			const struct coproc_params *params)
435{
436	size_t num;
437	const struct coproc_reg *table, *r;
438
439	trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
440				   params->CRm, params->Op2, params->is_write);
441
442	table = get_target_table(vcpu->arch.target, &num);
443
444	/* Search target-specific then generic table. */
445	r = find_reg(params, table, num);
446	if (!r)
447		r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
448
449	if (likely(r)) {
450		/* If we don't have an accessor, we should never get here! */
451		BUG_ON(!r->access);
452
453		if (likely(r->access(vcpu, params, r))) {
454			/* Skip instruction, since it was emulated */
455			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
456			return 1;
457		}
458		/* If access function fails, it should complain. */
459	} else {
460		kvm_err("Unsupported guest CP15 access at: %08lx\n",
461			*vcpu_pc(vcpu));
462		print_cp_instr(params);
463	}
464	kvm_inject_undefined(vcpu);
465	return 1;
466}
467
468/**
469 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
470 * @vcpu: The VCPU pointer
471 * @run:  The kvm_run struct
472 */
473int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
474{
475	struct coproc_params params;
476
477	params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
478	params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
479	params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
480	params.is_64bit = true;
481
482	params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
483	params.Op2 = 0;
484	params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
485	params.CRm = 0;
486
487	return emulate_cp15(vcpu, &params);
488}
489
490static void reset_coproc_regs(struct kvm_vcpu *vcpu,
491			      const struct coproc_reg *table, size_t num)
492{
493	unsigned long i;
494
495	for (i = 0; i < num; i++)
496		if (table[i].reset)
497			table[i].reset(vcpu, &table[i]);
498}
499
500/**
501 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
502 * @vcpu: The VCPU pointer
503 * @run:  The kvm_run struct
504 */
505int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
506{
507	struct coproc_params params;
508
509	params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
510	params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
511	params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
512	params.is_64bit = false;
513
514	params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
515	params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
516	params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
517	params.Rt2 = 0;
518
519	return emulate_cp15(vcpu, &params);
520}
521
522/******************************************************************************
523 * Userspace API
524 *****************************************************************************/
525
526static bool index_to_params(u64 id, struct coproc_params *params)
527{
528	switch (id & KVM_REG_SIZE_MASK) {
529	case KVM_REG_SIZE_U32:
530		/* Any unused index bits means it's not valid. */
531		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
532			   | KVM_REG_ARM_COPROC_MASK
533			   | KVM_REG_ARM_32_CRN_MASK
534			   | KVM_REG_ARM_CRM_MASK
535			   | KVM_REG_ARM_OPC1_MASK
536			   | KVM_REG_ARM_32_OPC2_MASK))
537			return false;
538
539		params->is_64bit = false;
540		params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
541			       >> KVM_REG_ARM_32_CRN_SHIFT);
542		params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
543			       >> KVM_REG_ARM_CRM_SHIFT);
544		params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
545			       >> KVM_REG_ARM_OPC1_SHIFT);
546		params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
547			       >> KVM_REG_ARM_32_OPC2_SHIFT);
548		return true;
549	case KVM_REG_SIZE_U64:
550		/* Any unused index bits means it's not valid. */
551		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
552			      | KVM_REG_ARM_COPROC_MASK
553			      | KVM_REG_ARM_CRM_MASK
554			      | KVM_REG_ARM_OPC1_MASK))
555			return false;
556		params->is_64bit = true;
557		/* CRm to CRn: see cp15_to_index for details */
558		params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
559			       >> KVM_REG_ARM_CRM_SHIFT);
560		params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
561			       >> KVM_REG_ARM_OPC1_SHIFT);
562		params->Op2 = 0;
563		params->CRm = 0;
564		return true;
565	default:
566		return false;
567	}
568}
569
570/* Decode an index value, and find the cp15 coproc_reg entry. */
571static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
572						    u64 id)
573{
574	size_t num;
575	const struct coproc_reg *table, *r;
576	struct coproc_params params;
577
578	/* We only do cp15 for now. */
579	if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
580		return NULL;
581
582	if (!index_to_params(id, &params))
583		return NULL;
584
585	table = get_target_table(vcpu->arch.target, &num);
586	r = find_reg(&params, table, num);
587	if (!r)
588		r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
589
590	/* Not saved in the cp15 array? */
591	if (r && !r->reg)
592		r = NULL;
593
594	return r;
595}
596
597/*
598 * These are the invariant cp15 registers: we let the guest see the host
599 * versions of these, so they're part of the guest state.
600 *
601 * A future CPU may provide a mechanism to present different values to
602 * the guest, or a future kvm may trap them.
603 */
604/* Unfortunately, there's no register-argument for mrc, so generate. */
605#define FUNCTION_FOR32(crn, crm, op1, op2, name)			\
606	static void get_##name(struct kvm_vcpu *v,			\
607			       const struct coproc_reg *r)		\
608	{								\
609		u32 val;						\
610									\
611		asm volatile("mrc p15, " __stringify(op1)		\
612			     ", %0, c" __stringify(crn)			\
613			     ", c" __stringify(crm)			\
614			     ", " __stringify(op2) "\n" : "=r" (val));	\
615		((struct coproc_reg *)r)->val = val;			\
616	}
617
618FUNCTION_FOR32(0, 0, 0, 0, MIDR)
619FUNCTION_FOR32(0, 0, 0, 1, CTR)
620FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
621FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
622FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
623FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
624FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
625FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
626FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
627FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
628FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
629FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
630FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
631FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
632FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
633FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
634FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
635FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
636FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
637FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
638FUNCTION_FOR32(0, 0, 1, 7, AIDR)
639
640/* ->val is filled in by kvm_invariant_coproc_table_init() */
641static struct coproc_reg invariant_cp15[] = {
642	{ CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
643	{ CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
644	{ CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
645	{ CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
646	{ CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
647
648	{ CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
649	{ CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
650	{ CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
651	{ CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
652	{ CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
653	{ CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
654	{ CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
655	{ CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
656
657	{ CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
658	{ CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
659	{ CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
660	{ CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
661	{ CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
662	{ CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
663
664	{ CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
665	{ CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
666};
667
668/*
669 * Reads a register value from a userspace address to a kernel
670 * variable. Make sure that register size matches sizeof(*__val).
671 */
672static int reg_from_user(void *val, const void __user *uaddr, u64 id)
673{
674	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
675		return -EFAULT;
676	return 0;
677}
678
679/*
680 * Writes a register value to a userspace address from a kernel variable.
681 * Make sure that register size matches sizeof(*__val).
682 */
683static int reg_to_user(void __user *uaddr, const void *val, u64 id)
684{
685	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
686		return -EFAULT;
687	return 0;
688}
689
690static int get_invariant_cp15(u64 id, void __user *uaddr)
691{
692	struct coproc_params params;
693	const struct coproc_reg *r;
694	int ret;
695
696	if (!index_to_params(id, &params))
697		return -ENOENT;
698
699	r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
700	if (!r)
701		return -ENOENT;
702
703	ret = -ENOENT;
704	if (KVM_REG_SIZE(id) == 4) {
705		u32 val = r->val;
706
707		ret = reg_to_user(uaddr, &val, id);
708	} else if (KVM_REG_SIZE(id) == 8) {
709		ret = reg_to_user(uaddr, &r->val, id);
710	}
711	return ret;
712}
713
714static int set_invariant_cp15(u64 id, void __user *uaddr)
715{
716	struct coproc_params params;
717	const struct coproc_reg *r;
718	int err;
719	u64 val;
720
721	if (!index_to_params(id, &params))
722		return -ENOENT;
723	r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
724	if (!r)
725		return -ENOENT;
726
727	err = -ENOENT;
728	if (KVM_REG_SIZE(id) == 4) {
729		u32 val32;
730
731		err = reg_from_user(&val32, uaddr, id);
732		if (!err)
733			val = val32;
734	} else if (KVM_REG_SIZE(id) == 8) {
735		err = reg_from_user(&val, uaddr, id);
736	}
737	if (err)
738		return err;
739
740	/* This is what we mean by invariant: you can't change it. */
741	if (r->val != val)
742		return -EINVAL;
743
744	return 0;
745}
746
747static bool is_valid_cache(u32 val)
748{
749	u32 level, ctype;
750
751	if (val >= CSSELR_MAX)
752		return false;
753
754	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
755        level = (val >> 1);
756        ctype = (cache_levels >> (level * 3)) & 7;
757
758	switch (ctype) {
759	case 0: /* No cache */
760		return false;
761	case 1: /* Instruction cache only */
762		return (val & 1);
763	case 2: /* Data cache only */
764	case 4: /* Unified cache */
765		return !(val & 1);
766	case 3: /* Separate instruction and data caches */
767		return true;
768	default: /* Reserved: we can't know instruction or data. */
769		return false;
770	}
771}
772
773/* Which cache CCSIDR represents depends on CSSELR value. */
774static u32 get_ccsidr(u32 csselr)
775{
776	u32 ccsidr;
777
778	/* Make sure noone else changes CSSELR during this! */
779	local_irq_disable();
780	/* Put value into CSSELR */
781	asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
782	isb();
783	/* Read result out of CCSIDR */
784	asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
785	local_irq_enable();
786
787	return ccsidr;
788}
789
790static int demux_c15_get(u64 id, void __user *uaddr)
791{
792	u32 val;
793	u32 __user *uval = uaddr;
794
795	/* Fail if we have unknown bits set. */
796	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
797		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
798		return -ENOENT;
799
800	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
801	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
802		if (KVM_REG_SIZE(id) != 4)
803			return -ENOENT;
804		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
805			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
806		if (!is_valid_cache(val))
807			return -ENOENT;
808
809		return put_user(get_ccsidr(val), uval);
810	default:
811		return -ENOENT;
812	}
813}
814
815static int demux_c15_set(u64 id, void __user *uaddr)
816{
817	u32 val, newval;
818	u32 __user *uval = uaddr;
819
820	/* Fail if we have unknown bits set. */
821	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
822		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
823		return -ENOENT;
824
825	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
826	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
827		if (KVM_REG_SIZE(id) != 4)
828			return -ENOENT;
829		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
830			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
831		if (!is_valid_cache(val))
832			return -ENOENT;
833
834		if (get_user(newval, uval))
835			return -EFAULT;
836
837		/* This is also invariant: you can't change it. */
838		if (newval != get_ccsidr(val))
839			return -EINVAL;
840		return 0;
841	default:
842		return -ENOENT;
843	}
844}
845
846#ifdef CONFIG_VFPv3
847static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
848				   KVM_REG_ARM_VFP_FPSCR,
849				   KVM_REG_ARM_VFP_FPINST,
850				   KVM_REG_ARM_VFP_FPINST2,
851				   KVM_REG_ARM_VFP_MVFR0,
852				   KVM_REG_ARM_VFP_MVFR1,
853				   KVM_REG_ARM_VFP_FPSID };
854
855static unsigned int num_fp_regs(void)
856{
857	if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
858		return 32;
859	else
860		return 16;
861}
862
863static unsigned int num_vfp_regs(void)
864{
865	/* Normal FP regs + control regs. */
866	return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
867}
868
869static int copy_vfp_regids(u64 __user *uindices)
870{
871	unsigned int i;
872	const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
873	const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
874
875	for (i = 0; i < num_fp_regs(); i++) {
876		if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
877			     uindices))
878			return -EFAULT;
879		uindices++;
880	}
881
882	for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
883		if (put_user(u32reg | vfp_sysregs[i], uindices))
884			return -EFAULT;
885		uindices++;
886	}
887
888	return num_vfp_regs();
889}
890
891static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
892{
893	u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
894	u32 val;
895
896	/* Fail if we have unknown bits set. */
897	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
898		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
899		return -ENOENT;
900
901	if (vfpid < num_fp_regs()) {
902		if (KVM_REG_SIZE(id) != 8)
903			return -ENOENT;
904		return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpregs[vfpid],
905				   id);
906	}
907
908	/* FP control registers are all 32 bit. */
909	if (KVM_REG_SIZE(id) != 4)
910		return -ENOENT;
911
912	switch (vfpid) {
913	case KVM_REG_ARM_VFP_FPEXC:
914		return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpexc, id);
915	case KVM_REG_ARM_VFP_FPSCR:
916		return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpscr, id);
917	case KVM_REG_ARM_VFP_FPINST:
918		return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst, id);
919	case KVM_REG_ARM_VFP_FPINST2:
920		return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst2, id);
921	case KVM_REG_ARM_VFP_MVFR0:
922		val = fmrx(MVFR0);
923		return reg_to_user(uaddr, &val, id);
924	case KVM_REG_ARM_VFP_MVFR1:
925		val = fmrx(MVFR1);
926		return reg_to_user(uaddr, &val, id);
927	case KVM_REG_ARM_VFP_FPSID:
928		val = fmrx(FPSID);
929		return reg_to_user(uaddr, &val, id);
930	default:
931		return -ENOENT;
932	}
933}
934
935static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
936{
937	u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
938	u32 val;
939
940	/* Fail if we have unknown bits set. */
941	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
942		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
943		return -ENOENT;
944
945	if (vfpid < num_fp_regs()) {
946		if (KVM_REG_SIZE(id) != 8)
947			return -ENOENT;
948		return reg_from_user(&vcpu->arch.vfp_guest.fpregs[vfpid],
949				     uaddr, id);
950	}
951
952	/* FP control registers are all 32 bit. */
953	if (KVM_REG_SIZE(id) != 4)
954		return -ENOENT;
955
956	switch (vfpid) {
957	case KVM_REG_ARM_VFP_FPEXC:
958		return reg_from_user(&vcpu->arch.vfp_guest.fpexc, uaddr, id);
959	case KVM_REG_ARM_VFP_FPSCR:
960		return reg_from_user(&vcpu->arch.vfp_guest.fpscr, uaddr, id);
961	case KVM_REG_ARM_VFP_FPINST:
962		return reg_from_user(&vcpu->arch.vfp_guest.fpinst, uaddr, id);
963	case KVM_REG_ARM_VFP_FPINST2:
964		return reg_from_user(&vcpu->arch.vfp_guest.fpinst2, uaddr, id);
965	/* These are invariant. */
966	case KVM_REG_ARM_VFP_MVFR0:
967		if (reg_from_user(&val, uaddr, id))
968			return -EFAULT;
969		if (val != fmrx(MVFR0))
970			return -EINVAL;
971		return 0;
972	case KVM_REG_ARM_VFP_MVFR1:
973		if (reg_from_user(&val, uaddr, id))
974			return -EFAULT;
975		if (val != fmrx(MVFR1))
976			return -EINVAL;
977		return 0;
978	case KVM_REG_ARM_VFP_FPSID:
979		if (reg_from_user(&val, uaddr, id))
980			return -EFAULT;
981		if (val != fmrx(FPSID))
982			return -EINVAL;
983		return 0;
984	default:
985		return -ENOENT;
986	}
987}
988#else /* !CONFIG_VFPv3 */
989static unsigned int num_vfp_regs(void)
990{
991	return 0;
992}
993
994static int copy_vfp_regids(u64 __user *uindices)
995{
996	return 0;
997}
998
999static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1000{
1001	return -ENOENT;
1002}
1003
1004static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1005{
1006	return -ENOENT;
1007}
1008#endif /* !CONFIG_VFPv3 */
1009
1010int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1011{
1012	const struct coproc_reg *r;
1013	void __user *uaddr = (void __user *)(long)reg->addr;
1014	int ret;
1015
1016	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1017		return demux_c15_get(reg->id, uaddr);
1018
1019	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1020		return vfp_get_reg(vcpu, reg->id, uaddr);
1021
1022	r = index_to_coproc_reg(vcpu, reg->id);
1023	if (!r)
1024		return get_invariant_cp15(reg->id, uaddr);
1025
1026	ret = -ENOENT;
1027	if (KVM_REG_SIZE(reg->id) == 8) {
1028		u64 val;
1029
1030		val = vcpu_cp15_reg64_get(vcpu, r);
1031		ret = reg_to_user(uaddr, &val, reg->id);
1032	} else if (KVM_REG_SIZE(reg->id) == 4) {
1033		ret = reg_to_user(uaddr, &vcpu->arch.cp15[r->reg], reg->id);
1034	}
1035
1036	return ret;
1037}
1038
1039int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1040{
1041	const struct coproc_reg *r;
1042	void __user *uaddr = (void __user *)(long)reg->addr;
1043	int ret;
1044
1045	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1046		return demux_c15_set(reg->id, uaddr);
1047
1048	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1049		return vfp_set_reg(vcpu, reg->id, uaddr);
1050
1051	r = index_to_coproc_reg(vcpu, reg->id);
1052	if (!r)
1053		return set_invariant_cp15(reg->id, uaddr);
1054
1055	ret = -ENOENT;
1056	if (KVM_REG_SIZE(reg->id) == 8) {
1057		u64 val;
1058
1059		ret = reg_from_user(&val, uaddr, reg->id);
1060		if (!ret)
1061			vcpu_cp15_reg64_set(vcpu, r, val);
1062	} else if (KVM_REG_SIZE(reg->id) == 4) {
1063		ret = reg_from_user(&vcpu->arch.cp15[r->reg], uaddr, reg->id);
1064	}
1065
1066	return ret;
1067}
1068
1069static unsigned int num_demux_regs(void)
1070{
1071	unsigned int i, count = 0;
1072
1073	for (i = 0; i < CSSELR_MAX; i++)
1074		if (is_valid_cache(i))
1075			count++;
1076
1077	return count;
1078}
1079
1080static int write_demux_regids(u64 __user *uindices)
1081{
1082	u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1083	unsigned int i;
1084
1085	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1086	for (i = 0; i < CSSELR_MAX; i++) {
1087		if (!is_valid_cache(i))
1088			continue;
1089		if (put_user(val | i, uindices))
1090			return -EFAULT;
1091		uindices++;
1092	}
1093	return 0;
1094}
1095
1096static u64 cp15_to_index(const struct coproc_reg *reg)
1097{
1098	u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1099	if (reg->is_64) {
1100		val |= KVM_REG_SIZE_U64;
1101		val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1102		/*
1103		 * CRn always denotes the primary coproc. reg. nr. for the
1104		 * in-kernel representation, but the user space API uses the
1105		 * CRm for the encoding, because it is modelled after the
1106		 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1107		 * B3-1445
1108		 */
1109		val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1110	} else {
1111		val |= KVM_REG_SIZE_U32;
1112		val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1113		val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1114		val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1115		val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1116	}
1117	return val;
1118}
1119
1120static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1121{
1122	if (!*uind)
1123		return true;
1124
1125	if (put_user(cp15_to_index(reg), *uind))
1126		return false;
1127
1128	(*uind)++;
1129	return true;
1130}
1131
1132/* Assumed ordered tables, see kvm_coproc_table_init. */
1133static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1134{
1135	const struct coproc_reg *i1, *i2, *end1, *end2;
1136	unsigned int total = 0;
1137	size_t num;
1138
1139	/* We check for duplicates here, to allow arch-specific overrides. */
1140	i1 = get_target_table(vcpu->arch.target, &num);
1141	end1 = i1 + num;
1142	i2 = cp15_regs;
1143	end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1144
1145	BUG_ON(i1 == end1 || i2 == end2);
1146
1147	/* Walk carefully, as both tables may refer to the same register. */
1148	while (i1 || i2) {
1149		int cmp = cmp_reg(i1, i2);
1150		/* target-specific overrides generic entry. */
1151		if (cmp <= 0) {
1152			/* Ignore registers we trap but don't save. */
1153			if (i1->reg) {
1154				if (!copy_reg_to_user(i1, &uind))
1155					return -EFAULT;
1156				total++;
1157			}
1158		} else {
1159			/* Ignore registers we trap but don't save. */
1160			if (i2->reg) {
1161				if (!copy_reg_to_user(i2, &uind))
1162					return -EFAULT;
1163				total++;
1164			}
1165		}
1166
1167		if (cmp <= 0 && ++i1 == end1)
1168			i1 = NULL;
1169		if (cmp >= 0 && ++i2 == end2)
1170			i2 = NULL;
1171	}
1172	return total;
1173}
1174
1175unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1176{
1177	return ARRAY_SIZE(invariant_cp15)
1178		+ num_demux_regs()
1179		+ num_vfp_regs()
1180		+ walk_cp15(vcpu, (u64 __user *)NULL);
1181}
1182
1183int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1184{
1185	unsigned int i;
1186	int err;
1187
1188	/* Then give them all the invariant registers' indices. */
1189	for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1190		if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1191			return -EFAULT;
1192		uindices++;
1193	}
1194
1195	err = walk_cp15(vcpu, uindices);
1196	if (err < 0)
1197		return err;
1198	uindices += err;
1199
1200	err = copy_vfp_regids(uindices);
1201	if (err < 0)
1202		return err;
1203	uindices += err;
1204
1205	return write_demux_regids(uindices);
1206}
1207
1208void kvm_coproc_table_init(void)
1209{
1210	unsigned int i;
1211
1212	/* Make sure tables are unique and in order. */
1213	for (i = 1; i < ARRAY_SIZE(cp15_regs); i++)
1214		BUG_ON(cmp_reg(&cp15_regs[i-1], &cp15_regs[i]) >= 0);
1215
1216	/* We abuse the reset function to overwrite the table itself. */
1217	for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1218		invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1219
1220	/*
1221	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1222	 *
1223	 *   If software reads the Cache Type fields from Ctype1
1224	 *   upwards, once it has seen a value of 0b000, no caches
1225	 *   exist at further-out levels of the hierarchy. So, for
1226	 *   example, if Ctype3 is the first Cache Type field with a
1227	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
1228	 *   ignored.
1229	 */
1230	asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1231	for (i = 0; i < 7; i++)
1232		if (((cache_levels >> (i*3)) & 7) == 0)
1233			break;
1234	/* Clear all higher bits. */
1235	cache_levels &= (1 << (i*3))-1;
1236}
1237
1238/**
1239 * kvm_reset_coprocs - sets cp15 registers to reset value
1240 * @vcpu: The VCPU pointer
1241 *
1242 * This function finds the right table above and sets the registers on the
1243 * virtual CPU struct to their architecturally defined reset values.
1244 */
1245void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1246{
1247	size_t num;
1248	const struct coproc_reg *table;
1249
1250	/* Catch someone adding a register without putting in reset entry. */
1251	memset(vcpu->arch.cp15, 0x42, sizeof(vcpu->arch.cp15));
1252
1253	/* Generic chip reset first (so target could override). */
1254	reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1255
1256	table = get_target_table(vcpu->arch.target, &num);
1257	reset_coproc_regs(vcpu, table, num);
1258
1259	for (num = 1; num < NR_CP15_REGS; num++)
1260		if (vcpu->arch.cp15[num] == 0x42424242)
1261			panic("Didn't reset vcpu->arch.cp15[%zi]", num);
1262}
1263