1/* 2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 3 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License, version 2, as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 17 */ 18 19#include <linux/cpu.h> 20#include <linux/cpu_pm.h> 21#include <linux/errno.h> 22#include <linux/err.h> 23#include <linux/kvm_host.h> 24#include <linux/module.h> 25#include <linux/vmalloc.h> 26#include <linux/fs.h> 27#include <linux/mman.h> 28#include <linux/sched.h> 29#include <linux/kvm.h> 30#include <trace/events/kvm.h> 31 32#define CREATE_TRACE_POINTS 33#include "trace.h" 34 35#include <asm/uaccess.h> 36#include <asm/ptrace.h> 37#include <asm/mman.h> 38#include <asm/tlbflush.h> 39#include <asm/cacheflush.h> 40#include <asm/virt.h> 41#include <asm/kvm_arm.h> 42#include <asm/kvm_asm.h> 43#include <asm/kvm_mmu.h> 44#include <asm/kvm_emulate.h> 45#include <asm/kvm_coproc.h> 46#include <asm/kvm_psci.h> 47 48#ifdef REQUIRES_VIRT 49__asm__(".arch_extension virt"); 50#endif 51 52static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); 53static kvm_cpu_context_t __percpu *kvm_host_cpu_state; 54static unsigned long hyp_default_vectors; 55 56/* Per-CPU variable containing the currently running vcpu. */ 57static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu); 58 59/* The VMID used in the VTTBR */ 60static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1); 61static u8 kvm_next_vmid; 62static DEFINE_SPINLOCK(kvm_vmid_lock); 63 64static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu) 65{ 66 BUG_ON(preemptible()); 67 __this_cpu_write(kvm_arm_running_vcpu, vcpu); 68} 69 70/** 71 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU. 72 * Must be called from non-preemptible context 73 */ 74struct kvm_vcpu *kvm_arm_get_running_vcpu(void) 75{ 76 BUG_ON(preemptible()); 77 return __this_cpu_read(kvm_arm_running_vcpu); 78} 79 80/** 81 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus. 82 */ 83struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 84{ 85 return &kvm_arm_running_vcpu; 86} 87 88int kvm_arch_hardware_enable(void) 89{ 90 return 0; 91} 92 93int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 94{ 95 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 96} 97 98int kvm_arch_hardware_setup(void) 99{ 100 return 0; 101} 102 103void kvm_arch_check_processor_compat(void *rtn) 104{ 105 *(int *)rtn = 0; 106} 107 108 109/** 110 * kvm_arch_init_vm - initializes a VM data structure 111 * @kvm: pointer to the KVM struct 112 */ 113int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 114{ 115 int ret = 0; 116 117 if (type) 118 return -EINVAL; 119 120 ret = kvm_alloc_stage2_pgd(kvm); 121 if (ret) 122 goto out_fail_alloc; 123 124 ret = create_hyp_mappings(kvm, kvm + 1); 125 if (ret) 126 goto out_free_stage2_pgd; 127 128 kvm_vgic_early_init(kvm); 129 kvm_timer_init(kvm); 130 131 /* Mark the initial VMID generation invalid */ 132 kvm->arch.vmid_gen = 0; 133 134 /* The maximum number of VCPUs is limited by the host's GIC model */ 135 kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus(); 136 137 return ret; 138out_free_stage2_pgd: 139 kvm_free_stage2_pgd(kvm); 140out_fail_alloc: 141 return ret; 142} 143 144int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 145{ 146 return VM_FAULT_SIGBUS; 147} 148 149 150/** 151 * kvm_arch_destroy_vm - destroy the VM data structure 152 * @kvm: pointer to the KVM struct 153 */ 154void kvm_arch_destroy_vm(struct kvm *kvm) 155{ 156 int i; 157 158 kvm_free_stage2_pgd(kvm); 159 160 for (i = 0; i < KVM_MAX_VCPUS; ++i) { 161 if (kvm->vcpus[i]) { 162 kvm_arch_vcpu_free(kvm->vcpus[i]); 163 kvm->vcpus[i] = NULL; 164 } 165 } 166 167 kvm_vgic_destroy(kvm); 168} 169 170int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 171{ 172 int r; 173 switch (ext) { 174 case KVM_CAP_IRQCHIP: 175 case KVM_CAP_IOEVENTFD: 176 case KVM_CAP_DEVICE_CTRL: 177 case KVM_CAP_USER_MEMORY: 178 case KVM_CAP_SYNC_MMU: 179 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 180 case KVM_CAP_ONE_REG: 181 case KVM_CAP_ARM_PSCI: 182 case KVM_CAP_ARM_PSCI_0_2: 183 case KVM_CAP_READONLY_MEM: 184 case KVM_CAP_MP_STATE: 185 r = 1; 186 break; 187 case KVM_CAP_COALESCED_MMIO: 188 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 189 break; 190 case KVM_CAP_ARM_SET_DEVICE_ADDR: 191 r = 1; 192 break; 193 case KVM_CAP_NR_VCPUS: 194 r = num_online_cpus(); 195 break; 196 case KVM_CAP_MAX_VCPUS: 197 r = KVM_MAX_VCPUS; 198 break; 199 default: 200 r = kvm_arch_dev_ioctl_check_extension(ext); 201 break; 202 } 203 return r; 204} 205 206long kvm_arch_dev_ioctl(struct file *filp, 207 unsigned int ioctl, unsigned long arg) 208{ 209 return -EINVAL; 210} 211 212 213struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) 214{ 215 int err; 216 struct kvm_vcpu *vcpu; 217 218 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) { 219 err = -EBUSY; 220 goto out; 221 } 222 223 if (id >= kvm->arch.max_vcpus) { 224 err = -EINVAL; 225 goto out; 226 } 227 228 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 229 if (!vcpu) { 230 err = -ENOMEM; 231 goto out; 232 } 233 234 err = kvm_vcpu_init(vcpu, kvm, id); 235 if (err) 236 goto free_vcpu; 237 238 err = create_hyp_mappings(vcpu, vcpu + 1); 239 if (err) 240 goto vcpu_uninit; 241 242 return vcpu; 243vcpu_uninit: 244 kvm_vcpu_uninit(vcpu); 245free_vcpu: 246 kmem_cache_free(kvm_vcpu_cache, vcpu); 247out: 248 return ERR_PTR(err); 249} 250 251void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 252{ 253 kvm_vgic_vcpu_early_init(vcpu); 254} 255 256void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 257{ 258 kvm_mmu_free_memory_caches(vcpu); 259 kvm_timer_vcpu_terminate(vcpu); 260 kvm_vgic_vcpu_destroy(vcpu); 261 kmem_cache_free(kvm_vcpu_cache, vcpu); 262} 263 264void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 265{ 266 kvm_arch_vcpu_free(vcpu); 267} 268 269int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 270{ 271 return kvm_timer_should_fire(vcpu); 272} 273 274void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 275{ 276 kvm_timer_schedule(vcpu); 277} 278 279void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 280{ 281 kvm_timer_unschedule(vcpu); 282} 283 284int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 285{ 286 /* Force users to call KVM_ARM_VCPU_INIT */ 287 vcpu->arch.target = -1; 288 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); 289 290 /* Set up the timer */ 291 kvm_timer_vcpu_init(vcpu); 292 293 kvm_arm_reset_debug_ptr(vcpu); 294 295 return 0; 296} 297 298void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 299{ 300 vcpu->cpu = cpu; 301 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state); 302 303 kvm_arm_set_running_vcpu(vcpu); 304} 305 306void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 307{ 308 /* 309 * The arch-generic KVM code expects the cpu field of a vcpu to be -1 310 * if the vcpu is no longer assigned to a cpu. This is used for the 311 * optimized make_all_cpus_request path. 312 */ 313 vcpu->cpu = -1; 314 315 kvm_arm_set_running_vcpu(NULL); 316} 317 318int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 319 struct kvm_mp_state *mp_state) 320{ 321 if (vcpu->arch.power_off) 322 mp_state->mp_state = KVM_MP_STATE_STOPPED; 323 else 324 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 325 326 return 0; 327} 328 329int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 330 struct kvm_mp_state *mp_state) 331{ 332 switch (mp_state->mp_state) { 333 case KVM_MP_STATE_RUNNABLE: 334 vcpu->arch.power_off = false; 335 break; 336 case KVM_MP_STATE_STOPPED: 337 vcpu->arch.power_off = true; 338 break; 339 default: 340 return -EINVAL; 341 } 342 343 return 0; 344} 345 346/** 347 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 348 * @v: The VCPU pointer 349 * 350 * If the guest CPU is not waiting for interrupts or an interrupt line is 351 * asserted, the CPU is by definition runnable. 352 */ 353int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 354{ 355 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v)) 356 && !v->arch.power_off && !v->arch.pause); 357} 358 359/* Just ensure a guest exit from a particular CPU */ 360static void exit_vm_noop(void *info) 361{ 362} 363 364void force_vm_exit(const cpumask_t *mask) 365{ 366 smp_call_function_many(mask, exit_vm_noop, NULL, true); 367} 368 369/** 370 * need_new_vmid_gen - check that the VMID is still valid 371 * @kvm: The VM's VMID to checkt 372 * 373 * return true if there is a new generation of VMIDs being used 374 * 375 * The hardware supports only 256 values with the value zero reserved for the 376 * host, so we check if an assigned value belongs to a previous generation, 377 * which which requires us to assign a new value. If we're the first to use a 378 * VMID for the new generation, we must flush necessary caches and TLBs on all 379 * CPUs. 380 */ 381static bool need_new_vmid_gen(struct kvm *kvm) 382{ 383 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen)); 384} 385 386/** 387 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs 388 * @kvm The guest that we are about to run 389 * 390 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the 391 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding 392 * caches and TLBs. 393 */ 394static void update_vttbr(struct kvm *kvm) 395{ 396 phys_addr_t pgd_phys; 397 u64 vmid; 398 399 if (!need_new_vmid_gen(kvm)) 400 return; 401 402 spin_lock(&kvm_vmid_lock); 403 404 /* 405 * We need to re-check the vmid_gen here to ensure that if another vcpu 406 * already allocated a valid vmid for this vm, then this vcpu should 407 * use the same vmid. 408 */ 409 if (!need_new_vmid_gen(kvm)) { 410 spin_unlock(&kvm_vmid_lock); 411 return; 412 } 413 414 /* First user of a new VMID generation? */ 415 if (unlikely(kvm_next_vmid == 0)) { 416 atomic64_inc(&kvm_vmid_gen); 417 kvm_next_vmid = 1; 418 419 /* 420 * On SMP we know no other CPUs can use this CPU's or each 421 * other's VMID after force_vm_exit returns since the 422 * kvm_vmid_lock blocks them from reentry to the guest. 423 */ 424 force_vm_exit(cpu_all_mask); 425 /* 426 * Now broadcast TLB + ICACHE invalidation over the inner 427 * shareable domain to make sure all data structures are 428 * clean. 429 */ 430 kvm_call_hyp(__kvm_flush_vm_context); 431 } 432 433 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen); 434 kvm->arch.vmid = kvm_next_vmid; 435 kvm_next_vmid++; 436 437 /* update vttbr to be used with the new vmid */ 438 pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm)); 439 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK); 440 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK; 441 kvm->arch.vttbr = pgd_phys | vmid; 442 443 spin_unlock(&kvm_vmid_lock); 444} 445 446static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu) 447{ 448 struct kvm *kvm = vcpu->kvm; 449 int ret; 450 451 if (likely(vcpu->arch.has_run_once)) 452 return 0; 453 454 vcpu->arch.has_run_once = true; 455 456 /* 457 * Map the VGIC hardware resources before running a vcpu the first 458 * time on this VM. 459 */ 460 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) { 461 ret = kvm_vgic_map_resources(kvm); 462 if (ret) 463 return ret; 464 } 465 466 /* 467 * Enable the arch timers only if we have an in-kernel VGIC 468 * and it has been properly initialized, since we cannot handle 469 * interrupts from the virtual timer with a userspace gic. 470 */ 471 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) 472 kvm_timer_enable(kvm); 473 474 return 0; 475} 476 477bool kvm_arch_intc_initialized(struct kvm *kvm) 478{ 479 return vgic_initialized(kvm); 480} 481 482static void kvm_arm_halt_guest(struct kvm *kvm) __maybe_unused; 483static void kvm_arm_resume_guest(struct kvm *kvm) __maybe_unused; 484 485static void kvm_arm_halt_guest(struct kvm *kvm) 486{ 487 int i; 488 struct kvm_vcpu *vcpu; 489 490 kvm_for_each_vcpu(i, vcpu, kvm) 491 vcpu->arch.pause = true; 492 force_vm_exit(cpu_all_mask); 493} 494 495static void kvm_arm_resume_guest(struct kvm *kvm) 496{ 497 int i; 498 struct kvm_vcpu *vcpu; 499 500 kvm_for_each_vcpu(i, vcpu, kvm) { 501 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu); 502 503 vcpu->arch.pause = false; 504 wake_up_interruptible(wq); 505 } 506} 507 508static void vcpu_sleep(struct kvm_vcpu *vcpu) 509{ 510 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu); 511 512 wait_event_interruptible(*wq, ((!vcpu->arch.power_off) && 513 (!vcpu->arch.pause))); 514} 515 516static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu) 517{ 518 return vcpu->arch.target >= 0; 519} 520 521/** 522 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 523 * @vcpu: The VCPU pointer 524 * @run: The kvm_run structure pointer used for userspace state exchange 525 * 526 * This function is called through the VCPU_RUN ioctl called from user space. It 527 * will execute VM code in a loop until the time slice for the process is used 528 * or some emulation is needed from user space in which case the function will 529 * return with return value 0 and with the kvm_run structure filled in with the 530 * required data for the requested emulation. 531 */ 532int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) 533{ 534 int ret; 535 sigset_t sigsaved; 536 537 if (unlikely(!kvm_vcpu_initialized(vcpu))) 538 return -ENOEXEC; 539 540 ret = kvm_vcpu_first_run_init(vcpu); 541 if (ret) 542 return ret; 543 544 if (run->exit_reason == KVM_EXIT_MMIO) { 545 ret = kvm_handle_mmio_return(vcpu, vcpu->run); 546 if (ret) 547 return ret; 548 } 549 550 if (vcpu->sigset_active) 551 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 552 553 ret = 1; 554 run->exit_reason = KVM_EXIT_UNKNOWN; 555 while (ret > 0) { 556 /* 557 * Check conditions before entering the guest 558 */ 559 cond_resched(); 560 561 update_vttbr(vcpu->kvm); 562 563 if (vcpu->arch.power_off || vcpu->arch.pause) 564 vcpu_sleep(vcpu); 565 566 /* 567 * Preparing the interrupts to be injected also 568 * involves poking the GIC, which must be done in a 569 * non-preemptible context. 570 */ 571 preempt_disable(); 572 kvm_timer_flush_hwstate(vcpu); 573 kvm_vgic_flush_hwstate(vcpu); 574 575 local_irq_disable(); 576 577 /* 578 * Re-check atomic conditions 579 */ 580 if (signal_pending(current)) { 581 ret = -EINTR; 582 run->exit_reason = KVM_EXIT_INTR; 583 } 584 585 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) || 586 vcpu->arch.power_off || vcpu->arch.pause) { 587 local_irq_enable(); 588 kvm_timer_sync_hwstate(vcpu); 589 kvm_vgic_sync_hwstate(vcpu); 590 preempt_enable(); 591 continue; 592 } 593 594 kvm_arm_setup_debug(vcpu); 595 596 /************************************************************** 597 * Enter the guest 598 */ 599 trace_kvm_entry(*vcpu_pc(vcpu)); 600 __kvm_guest_enter(); 601 vcpu->mode = IN_GUEST_MODE; 602 603 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu); 604 605 vcpu->mode = OUTSIDE_GUEST_MODE; 606 /* 607 * Back from guest 608 *************************************************************/ 609 610 kvm_arm_clear_debug(vcpu); 611 612 /* 613 * We may have taken a host interrupt in HYP mode (ie 614 * while executing the guest). This interrupt is still 615 * pending, as we haven't serviced it yet! 616 * 617 * We're now back in SVC mode, with interrupts 618 * disabled. Enabling the interrupts now will have 619 * the effect of taking the interrupt again, in SVC 620 * mode this time. 621 */ 622 local_irq_enable(); 623 624 /* 625 * We do local_irq_enable() before calling kvm_guest_exit() so 626 * that if a timer interrupt hits while running the guest we 627 * account that tick as being spent in the guest. We enable 628 * preemption after calling kvm_guest_exit() so that if we get 629 * preempted we make sure ticks after that is not counted as 630 * guest time. 631 */ 632 kvm_guest_exit(); 633 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 634 635 /* 636 * We must sync the timer state before the vgic state so that 637 * the vgic can properly sample the updated state of the 638 * interrupt line. 639 */ 640 kvm_timer_sync_hwstate(vcpu); 641 642 kvm_vgic_sync_hwstate(vcpu); 643 644 preempt_enable(); 645 646 ret = handle_exit(vcpu, run, ret); 647 } 648 649 if (vcpu->sigset_active) 650 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 651 return ret; 652} 653 654static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 655{ 656 int bit_index; 657 bool set; 658 unsigned long *ptr; 659 660 if (number == KVM_ARM_IRQ_CPU_IRQ) 661 bit_index = __ffs(HCR_VI); 662 else /* KVM_ARM_IRQ_CPU_FIQ */ 663 bit_index = __ffs(HCR_VF); 664 665 ptr = (unsigned long *)&vcpu->arch.irq_lines; 666 if (level) 667 set = test_and_set_bit(bit_index, ptr); 668 else 669 set = test_and_clear_bit(bit_index, ptr); 670 671 /* 672 * If we didn't change anything, no need to wake up or kick other CPUs 673 */ 674 if (set == level) 675 return 0; 676 677 /* 678 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 679 * trigger a world-switch round on the running physical CPU to set the 680 * virtual IRQ/FIQ fields in the HCR appropriately. 681 */ 682 kvm_vcpu_kick(vcpu); 683 684 return 0; 685} 686 687int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 688 bool line_status) 689{ 690 u32 irq = irq_level->irq; 691 unsigned int irq_type, vcpu_idx, irq_num; 692 int nrcpus = atomic_read(&kvm->online_vcpus); 693 struct kvm_vcpu *vcpu = NULL; 694 bool level = irq_level->level; 695 696 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 697 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 698 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 699 700 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level); 701 702 switch (irq_type) { 703 case KVM_ARM_IRQ_TYPE_CPU: 704 if (irqchip_in_kernel(kvm)) 705 return -ENXIO; 706 707 if (vcpu_idx >= nrcpus) 708 return -EINVAL; 709 710 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 711 if (!vcpu) 712 return -EINVAL; 713 714 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 715 return -EINVAL; 716 717 return vcpu_interrupt_line(vcpu, irq_num, level); 718 case KVM_ARM_IRQ_TYPE_PPI: 719 if (!irqchip_in_kernel(kvm)) 720 return -ENXIO; 721 722 if (vcpu_idx >= nrcpus) 723 return -EINVAL; 724 725 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 726 if (!vcpu) 727 return -EINVAL; 728 729 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 730 return -EINVAL; 731 732 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level); 733 case KVM_ARM_IRQ_TYPE_SPI: 734 if (!irqchip_in_kernel(kvm)) 735 return -ENXIO; 736 737 if (irq_num < VGIC_NR_PRIVATE_IRQS) 738 return -EINVAL; 739 740 return kvm_vgic_inject_irq(kvm, 0, irq_num, level); 741 } 742 743 return -EINVAL; 744} 745 746static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 747 const struct kvm_vcpu_init *init) 748{ 749 unsigned int i; 750 int phys_target = kvm_target_cpu(); 751 752 if (init->target != phys_target) 753 return -EINVAL; 754 755 /* 756 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must 757 * use the same target. 758 */ 759 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target) 760 return -EINVAL; 761 762 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */ 763 for (i = 0; i < sizeof(init->features) * 8; i++) { 764 bool set = (init->features[i / 32] & (1 << (i % 32))); 765 766 if (set && i >= KVM_VCPU_MAX_FEATURES) 767 return -ENOENT; 768 769 /* 770 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must 771 * use the same feature set. 772 */ 773 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES && 774 test_bit(i, vcpu->arch.features) != set) 775 return -EINVAL; 776 777 if (set) 778 set_bit(i, vcpu->arch.features); 779 } 780 781 vcpu->arch.target = phys_target; 782 783 /* Now we know what it is, we can reset it. */ 784 return kvm_reset_vcpu(vcpu); 785} 786 787 788static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 789 struct kvm_vcpu_init *init) 790{ 791 int ret; 792 793 ret = kvm_vcpu_set_target(vcpu, init); 794 if (ret) 795 return ret; 796 797 /* 798 * Ensure a rebooted VM will fault in RAM pages and detect if the 799 * guest MMU is turned off and flush the caches as needed. 800 */ 801 if (vcpu->arch.has_run_once) 802 stage2_unmap_vm(vcpu->kvm); 803 804 vcpu_reset_hcr(vcpu); 805 806 /* 807 * Handle the "start in power-off" case. 808 */ 809 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) 810 vcpu->arch.power_off = true; 811 else 812 vcpu->arch.power_off = false; 813 814 return 0; 815} 816 817long kvm_arch_vcpu_ioctl(struct file *filp, 818 unsigned int ioctl, unsigned long arg) 819{ 820 struct kvm_vcpu *vcpu = filp->private_data; 821 void __user *argp = (void __user *)arg; 822 823 switch (ioctl) { 824 case KVM_ARM_VCPU_INIT: { 825 struct kvm_vcpu_init init; 826 827 if (copy_from_user(&init, argp, sizeof(init))) 828 return -EFAULT; 829 830 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 831 } 832 case KVM_SET_ONE_REG: 833 case KVM_GET_ONE_REG: { 834 struct kvm_one_reg reg; 835 836 if (unlikely(!kvm_vcpu_initialized(vcpu))) 837 return -ENOEXEC; 838 839 if (copy_from_user(®, argp, sizeof(reg))) 840 return -EFAULT; 841 if (ioctl == KVM_SET_ONE_REG) 842 return kvm_arm_set_reg(vcpu, ®); 843 else 844 return kvm_arm_get_reg(vcpu, ®); 845 } 846 case KVM_GET_REG_LIST: { 847 struct kvm_reg_list __user *user_list = argp; 848 struct kvm_reg_list reg_list; 849 unsigned n; 850 851 if (unlikely(!kvm_vcpu_initialized(vcpu))) 852 return -ENOEXEC; 853 854 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 855 return -EFAULT; 856 n = reg_list.n; 857 reg_list.n = kvm_arm_num_regs(vcpu); 858 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 859 return -EFAULT; 860 if (n < reg_list.n) 861 return -E2BIG; 862 return kvm_arm_copy_reg_indices(vcpu, user_list->reg); 863 } 864 default: 865 return -EINVAL; 866 } 867} 868 869/** 870 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 871 * @kvm: kvm instance 872 * @log: slot id and address to which we copy the log 873 * 874 * Steps 1-4 below provide general overview of dirty page logging. See 875 * kvm_get_dirty_log_protect() function description for additional details. 876 * 877 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 878 * always flush the TLB (step 4) even if previous step failed and the dirty 879 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 880 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 881 * writes will be marked dirty for next log read. 882 * 883 * 1. Take a snapshot of the bit and clear it if needed. 884 * 2. Write protect the corresponding page. 885 * 3. Copy the snapshot to the userspace. 886 * 4. Flush TLB's if needed. 887 */ 888int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 889{ 890 bool is_dirty = false; 891 int r; 892 893 mutex_lock(&kvm->slots_lock); 894 895 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); 896 897 if (is_dirty) 898 kvm_flush_remote_tlbs(kvm); 899 900 mutex_unlock(&kvm->slots_lock); 901 return r; 902} 903 904static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 905 struct kvm_arm_device_addr *dev_addr) 906{ 907 unsigned long dev_id, type; 908 909 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >> 910 KVM_ARM_DEVICE_ID_SHIFT; 911 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >> 912 KVM_ARM_DEVICE_TYPE_SHIFT; 913 914 switch (dev_id) { 915 case KVM_ARM_DEVICE_VGIC_V2: 916 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true); 917 default: 918 return -ENODEV; 919 } 920} 921 922long kvm_arch_vm_ioctl(struct file *filp, 923 unsigned int ioctl, unsigned long arg) 924{ 925 struct kvm *kvm = filp->private_data; 926 void __user *argp = (void __user *)arg; 927 928 switch (ioctl) { 929 case KVM_CREATE_IRQCHIP: { 930 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 931 } 932 case KVM_ARM_SET_DEVICE_ADDR: { 933 struct kvm_arm_device_addr dev_addr; 934 935 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 936 return -EFAULT; 937 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 938 } 939 case KVM_ARM_PREFERRED_TARGET: { 940 int err; 941 struct kvm_vcpu_init init; 942 943 err = kvm_vcpu_preferred_target(&init); 944 if (err) 945 return err; 946 947 if (copy_to_user(argp, &init, sizeof(init))) 948 return -EFAULT; 949 950 return 0; 951 } 952 default: 953 return -EINVAL; 954 } 955} 956 957static void cpu_init_hyp_mode(void *dummy) 958{ 959 phys_addr_t boot_pgd_ptr; 960 phys_addr_t pgd_ptr; 961 unsigned long hyp_stack_ptr; 962 unsigned long stack_page; 963 unsigned long vector_ptr; 964 965 /* Switch from the HYP stub to our own HYP init vector */ 966 __hyp_set_vectors(kvm_get_idmap_vector()); 967 968 boot_pgd_ptr = kvm_mmu_get_boot_httbr(); 969 pgd_ptr = kvm_mmu_get_httbr(); 970 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page); 971 hyp_stack_ptr = stack_page + PAGE_SIZE; 972 vector_ptr = (unsigned long)__kvm_hyp_vector; 973 974 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr); 975 976 kvm_arm_init_debug(); 977} 978 979static int hyp_init_cpu_notify(struct notifier_block *self, 980 unsigned long action, void *cpu) 981{ 982 switch (action) { 983 case CPU_STARTING: 984 case CPU_STARTING_FROZEN: 985 if (__hyp_get_vectors() == hyp_default_vectors) 986 cpu_init_hyp_mode(NULL); 987 break; 988 } 989 990 return NOTIFY_OK; 991} 992 993static struct notifier_block hyp_init_cpu_nb = { 994 .notifier_call = hyp_init_cpu_notify, 995}; 996 997#ifdef CONFIG_CPU_PM 998static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 999 unsigned long cmd, 1000 void *v) 1001{ 1002 if (cmd == CPU_PM_EXIT && 1003 __hyp_get_vectors() == hyp_default_vectors) { 1004 cpu_init_hyp_mode(NULL); 1005 return NOTIFY_OK; 1006 } 1007 1008 return NOTIFY_DONE; 1009} 1010 1011static struct notifier_block hyp_init_cpu_pm_nb = { 1012 .notifier_call = hyp_init_cpu_pm_notifier, 1013}; 1014 1015static void __init hyp_cpu_pm_init(void) 1016{ 1017 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 1018} 1019#else 1020static inline void hyp_cpu_pm_init(void) 1021{ 1022} 1023#endif 1024 1025/** 1026 * Inits Hyp-mode on all online CPUs 1027 */ 1028static int init_hyp_mode(void) 1029{ 1030 int cpu; 1031 int err = 0; 1032 1033 /* 1034 * Allocate Hyp PGD and setup Hyp identity mapping 1035 */ 1036 err = kvm_mmu_init(); 1037 if (err) 1038 goto out_err; 1039 1040 /* 1041 * It is probably enough to obtain the default on one 1042 * CPU. It's unlikely to be different on the others. 1043 */ 1044 hyp_default_vectors = __hyp_get_vectors(); 1045 1046 /* 1047 * Allocate stack pages for Hypervisor-mode 1048 */ 1049 for_each_possible_cpu(cpu) { 1050 unsigned long stack_page; 1051 1052 stack_page = __get_free_page(GFP_KERNEL); 1053 if (!stack_page) { 1054 err = -ENOMEM; 1055 goto out_free_stack_pages; 1056 } 1057 1058 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; 1059 } 1060 1061 /* 1062 * Map the Hyp-code called directly from the host 1063 */ 1064 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end); 1065 if (err) { 1066 kvm_err("Cannot map world-switch code\n"); 1067 goto out_free_mappings; 1068 } 1069 1070 /* 1071 * Map the Hyp stack pages 1072 */ 1073 for_each_possible_cpu(cpu) { 1074 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); 1075 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE); 1076 1077 if (err) { 1078 kvm_err("Cannot map hyp stack\n"); 1079 goto out_free_mappings; 1080 } 1081 } 1082 1083 /* 1084 * Map the host CPU structures 1085 */ 1086 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t); 1087 if (!kvm_host_cpu_state) { 1088 err = -ENOMEM; 1089 kvm_err("Cannot allocate host CPU state\n"); 1090 goto out_free_mappings; 1091 } 1092 1093 for_each_possible_cpu(cpu) { 1094 kvm_cpu_context_t *cpu_ctxt; 1095 1096 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu); 1097 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1); 1098 1099 if (err) { 1100 kvm_err("Cannot map host CPU state: %d\n", err); 1101 goto out_free_context; 1102 } 1103 } 1104 1105 /* 1106 * Execute the init code on each CPU. 1107 */ 1108 on_each_cpu(cpu_init_hyp_mode, NULL, 1); 1109 1110 /* 1111 * Init HYP view of VGIC 1112 */ 1113 err = kvm_vgic_hyp_init(); 1114 if (err) 1115 goto out_free_context; 1116 1117 /* 1118 * Init HYP architected timer support 1119 */ 1120 err = kvm_timer_hyp_init(); 1121 if (err) 1122 goto out_free_context; 1123 1124#ifndef CONFIG_HOTPLUG_CPU 1125 free_boot_hyp_pgd(); 1126#endif 1127 1128 kvm_perf_init(); 1129 1130 kvm_info("Hyp mode initialized successfully\n"); 1131 1132 return 0; 1133out_free_context: 1134 free_percpu(kvm_host_cpu_state); 1135out_free_mappings: 1136 free_hyp_pgds(); 1137out_free_stack_pages: 1138 for_each_possible_cpu(cpu) 1139 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); 1140out_err: 1141 kvm_err("error initializing Hyp mode: %d\n", err); 1142 return err; 1143} 1144 1145static void check_kvm_target_cpu(void *ret) 1146{ 1147 *(int *)ret = kvm_target_cpu(); 1148} 1149 1150struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 1151{ 1152 struct kvm_vcpu *vcpu; 1153 int i; 1154 1155 mpidr &= MPIDR_HWID_BITMASK; 1156 kvm_for_each_vcpu(i, vcpu, kvm) { 1157 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 1158 return vcpu; 1159 } 1160 return NULL; 1161} 1162 1163/** 1164 * Initialize Hyp-mode and memory mappings on all CPUs. 1165 */ 1166int kvm_arch_init(void *opaque) 1167{ 1168 int err; 1169 int ret, cpu; 1170 1171 if (!is_hyp_mode_available()) { 1172 kvm_err("HYP mode not available\n"); 1173 return -ENODEV; 1174 } 1175 1176 for_each_online_cpu(cpu) { 1177 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1); 1178 if (ret < 0) { 1179 kvm_err("Error, CPU %d not supported!\n", cpu); 1180 return -ENODEV; 1181 } 1182 } 1183 1184 cpu_notifier_register_begin(); 1185 1186 err = init_hyp_mode(); 1187 if (err) 1188 goto out_err; 1189 1190 err = __register_cpu_notifier(&hyp_init_cpu_nb); 1191 if (err) { 1192 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err); 1193 goto out_err; 1194 } 1195 1196 cpu_notifier_register_done(); 1197 1198 hyp_cpu_pm_init(); 1199 1200 kvm_coproc_table_init(); 1201 return 0; 1202out_err: 1203 cpu_notifier_register_done(); 1204 return err; 1205} 1206 1207/* NOP: Compiling as a module not supported */ 1208void kvm_arch_exit(void) 1209{ 1210 kvm_perf_teardown(); 1211} 1212 1213static int arm_init(void) 1214{ 1215 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 1216 return rc; 1217} 1218 1219module_init(arm_init); 1220