1/*
2 * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM
3 *
4 * Created by:  Nicolas Pitre, March 2012
5 * Copyright:   (C) 2012-2013  Linaro Limited
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#include <linux/kernel.h>
13#include <linux/init.h>
14#include <linux/irqflags.h>
15#include <linux/cpu_pm.h>
16
17#include <asm/mcpm.h>
18#include <asm/cacheflush.h>
19#include <asm/idmap.h>
20#include <asm/cputype.h>
21#include <asm/suspend.h>
22
23/*
24 * The public API for this code is documented in arch/arm/include/asm/mcpm.h.
25 * For a comprehensive description of the main algorithm used here, please
26 * see Documentation/arm/cluster-pm-race-avoidance.txt.
27 */
28
29struct sync_struct mcpm_sync;
30
31/*
32 * __mcpm_cpu_going_down: Indicates that the cpu is being torn down.
33 *    This must be called at the point of committing to teardown of a CPU.
34 *    The CPU cache (SCTRL.C bit) is expected to still be active.
35 */
36static void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster)
37{
38	mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN;
39	sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
40}
41
42/*
43 * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the
44 *    cluster can be torn down without disrupting this CPU.
45 *    To avoid deadlocks, this must be called before a CPU is powered down.
46 *    The CPU cache (SCTRL.C bit) is expected to be off.
47 *    However L2 cache might or might not be active.
48 */
49static void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster)
50{
51	dmb();
52	mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN;
53	sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
54	sev();
55}
56
57/*
58 * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section.
59 * @state: the final state of the cluster:
60 *     CLUSTER_UP: no destructive teardown was done and the cluster has been
61 *         restored to the previous state (CPU cache still active); or
62 *     CLUSTER_DOWN: the cluster has been torn-down, ready for power-off
63 *         (CPU cache disabled, L2 cache either enabled or disabled).
64 */
65static void __mcpm_outbound_leave_critical(unsigned int cluster, int state)
66{
67	dmb();
68	mcpm_sync.clusters[cluster].cluster = state;
69	sync_cache_w(&mcpm_sync.clusters[cluster].cluster);
70	sev();
71}
72
73/*
74 * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section.
75 * This function should be called by the last man, after local CPU teardown
76 * is complete.  CPU cache expected to be active.
77 *
78 * Returns:
79 *     false: the critical section was not entered because an inbound CPU was
80 *         observed, or the cluster is already being set up;
81 *     true: the critical section was entered: it is now safe to tear down the
82 *         cluster.
83 */
84static bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster)
85{
86	unsigned int i;
87	struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster];
88
89	/* Warn inbound CPUs that the cluster is being torn down: */
90	c->cluster = CLUSTER_GOING_DOWN;
91	sync_cache_w(&c->cluster);
92
93	/* Back out if the inbound cluster is already in the critical region: */
94	sync_cache_r(&c->inbound);
95	if (c->inbound == INBOUND_COMING_UP)
96		goto abort;
97
98	/*
99	 * Wait for all CPUs to get out of the GOING_DOWN state, so that local
100	 * teardown is complete on each CPU before tearing down the cluster.
101	 *
102	 * If any CPU has been woken up again from the DOWN state, then we
103	 * shouldn't be taking the cluster down at all: abort in that case.
104	 */
105	sync_cache_r(&c->cpus);
106	for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) {
107		int cpustate;
108
109		if (i == cpu)
110			continue;
111
112		while (1) {
113			cpustate = c->cpus[i].cpu;
114			if (cpustate != CPU_GOING_DOWN)
115				break;
116
117			wfe();
118			sync_cache_r(&c->cpus[i].cpu);
119		}
120
121		switch (cpustate) {
122		case CPU_DOWN:
123			continue;
124
125		default:
126			goto abort;
127		}
128	}
129
130	return true;
131
132abort:
133	__mcpm_outbound_leave_critical(cluster, CLUSTER_UP);
134	return false;
135}
136
137static int __mcpm_cluster_state(unsigned int cluster)
138{
139	sync_cache_r(&mcpm_sync.clusters[cluster].cluster);
140	return mcpm_sync.clusters[cluster].cluster;
141}
142
143extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
144
145void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr)
146{
147	unsigned long val = ptr ? virt_to_phys(ptr) : 0;
148	mcpm_entry_vectors[cluster][cpu] = val;
149	sync_cache_w(&mcpm_entry_vectors[cluster][cpu]);
150}
151
152extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2];
153
154void mcpm_set_early_poke(unsigned cpu, unsigned cluster,
155			 unsigned long poke_phys_addr, unsigned long poke_val)
156{
157	unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0];
158	poke[0] = poke_phys_addr;
159	poke[1] = poke_val;
160	__sync_cache_range_w(poke, 2 * sizeof(*poke));
161}
162
163static const struct mcpm_platform_ops *platform_ops;
164
165int __init mcpm_platform_register(const struct mcpm_platform_ops *ops)
166{
167	if (platform_ops)
168		return -EBUSY;
169	platform_ops = ops;
170	return 0;
171}
172
173bool mcpm_is_available(void)
174{
175	return (platform_ops) ? true : false;
176}
177
178/*
179 * We can't use regular spinlocks. In the switcher case, it is possible
180 * for an outbound CPU to call power_down() after its inbound counterpart
181 * is already live using the same logical CPU number which trips lockdep
182 * debugging.
183 */
184static arch_spinlock_t mcpm_lock = __ARCH_SPIN_LOCK_UNLOCKED;
185
186static int mcpm_cpu_use_count[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
187
188static inline bool mcpm_cluster_unused(unsigned int cluster)
189{
190	int i, cnt;
191	for (i = 0, cnt = 0; i < MAX_CPUS_PER_CLUSTER; i++)
192		cnt |= mcpm_cpu_use_count[cluster][i];
193	return !cnt;
194}
195
196int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster)
197{
198	bool cpu_is_down, cluster_is_down;
199	int ret = 0;
200
201	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
202	if (!platform_ops)
203		return -EUNATCH; /* try not to shadow power_up errors */
204	might_sleep();
205
206	/*
207	 * Since this is called with IRQs enabled, and no arch_spin_lock_irq
208	 * variant exists, we need to disable IRQs manually here.
209	 */
210	local_irq_disable();
211	arch_spin_lock(&mcpm_lock);
212
213	cpu_is_down = !mcpm_cpu_use_count[cluster][cpu];
214	cluster_is_down = mcpm_cluster_unused(cluster);
215
216	mcpm_cpu_use_count[cluster][cpu]++;
217	/*
218	 * The only possible values are:
219	 * 0 = CPU down
220	 * 1 = CPU (still) up
221	 * 2 = CPU requested to be up before it had a chance
222	 *     to actually make itself down.
223	 * Any other value is a bug.
224	 */
225	BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 1 &&
226	       mcpm_cpu_use_count[cluster][cpu] != 2);
227
228	if (cluster_is_down)
229		ret = platform_ops->cluster_powerup(cluster);
230	if (cpu_is_down && !ret)
231		ret = platform_ops->cpu_powerup(cpu, cluster);
232
233	arch_spin_unlock(&mcpm_lock);
234	local_irq_enable();
235	return ret;
236}
237
238typedef void (*phys_reset_t)(unsigned long);
239
240void mcpm_cpu_power_down(void)
241{
242	unsigned int mpidr, cpu, cluster;
243	bool cpu_going_down, last_man;
244	phys_reset_t phys_reset;
245
246	mpidr = read_cpuid_mpidr();
247	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
248	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
249	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
250	if (WARN_ON_ONCE(!platform_ops))
251	       return;
252	BUG_ON(!irqs_disabled());
253
254	setup_mm_for_reboot();
255
256	__mcpm_cpu_going_down(cpu, cluster);
257	arch_spin_lock(&mcpm_lock);
258	BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP);
259
260	mcpm_cpu_use_count[cluster][cpu]--;
261	BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 0 &&
262	       mcpm_cpu_use_count[cluster][cpu] != 1);
263	cpu_going_down = !mcpm_cpu_use_count[cluster][cpu];
264	last_man = mcpm_cluster_unused(cluster);
265
266	if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) {
267		platform_ops->cpu_powerdown_prepare(cpu, cluster);
268		platform_ops->cluster_powerdown_prepare(cluster);
269		arch_spin_unlock(&mcpm_lock);
270		platform_ops->cluster_cache_disable();
271		__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
272	} else {
273		if (cpu_going_down)
274			platform_ops->cpu_powerdown_prepare(cpu, cluster);
275		arch_spin_unlock(&mcpm_lock);
276		/*
277		 * If cpu_going_down is false here, that means a power_up
278		 * request raced ahead of us.  Even if we do not want to
279		 * shut this CPU down, the caller still expects execution
280		 * to return through the system resume entry path, like
281		 * when the WFI is aborted due to a new IRQ or the like..
282		 * So let's continue with cache cleaning in all cases.
283		 */
284		platform_ops->cpu_cache_disable();
285	}
286
287	__mcpm_cpu_down(cpu, cluster);
288
289	/* Now we are prepared for power-down, do it: */
290	if (cpu_going_down)
291		wfi();
292
293	/*
294	 * It is possible for a power_up request to happen concurrently
295	 * with a power_down request for the same CPU. In this case the
296	 * CPU might not be able to actually enter a powered down state
297	 * with the WFI instruction if the power_up request has removed
298	 * the required reset condition.  We must perform a re-entry in
299	 * the kernel as if the power_up method just had deasserted reset
300	 * on the CPU.
301	 */
302	phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
303	phys_reset(virt_to_phys(mcpm_entry_point));
304
305	/* should never get here */
306	BUG();
307}
308
309int mcpm_wait_for_cpu_powerdown(unsigned int cpu, unsigned int cluster)
310{
311	int ret;
312
313	if (WARN_ON_ONCE(!platform_ops || !platform_ops->wait_for_powerdown))
314		return -EUNATCH;
315
316	ret = platform_ops->wait_for_powerdown(cpu, cluster);
317	if (ret)
318		pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n",
319			__func__, cpu, cluster, ret);
320
321	return ret;
322}
323
324void mcpm_cpu_suspend(void)
325{
326	if (WARN_ON_ONCE(!platform_ops))
327		return;
328
329	/* Some platforms might have to enable special resume modes, etc. */
330	if (platform_ops->cpu_suspend_prepare) {
331		unsigned int mpidr = read_cpuid_mpidr();
332		unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
333		unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
334		arch_spin_lock(&mcpm_lock);
335		platform_ops->cpu_suspend_prepare(cpu, cluster);
336		arch_spin_unlock(&mcpm_lock);
337	}
338	mcpm_cpu_power_down();
339}
340
341int mcpm_cpu_powered_up(void)
342{
343	unsigned int mpidr, cpu, cluster;
344	bool cpu_was_down, first_man;
345	unsigned long flags;
346
347	if (!platform_ops)
348		return -EUNATCH;
349
350	mpidr = read_cpuid_mpidr();
351	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
352	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
353	local_irq_save(flags);
354	arch_spin_lock(&mcpm_lock);
355
356	cpu_was_down = !mcpm_cpu_use_count[cluster][cpu];
357	first_man = mcpm_cluster_unused(cluster);
358
359	if (first_man && platform_ops->cluster_is_up)
360		platform_ops->cluster_is_up(cluster);
361	if (cpu_was_down)
362		mcpm_cpu_use_count[cluster][cpu] = 1;
363	if (platform_ops->cpu_is_up)
364		platform_ops->cpu_is_up(cpu, cluster);
365
366	arch_spin_unlock(&mcpm_lock);
367	local_irq_restore(flags);
368
369	return 0;
370}
371
372#ifdef CONFIG_ARM_CPU_SUSPEND
373
374static int __init nocache_trampoline(unsigned long _arg)
375{
376	void (*cache_disable)(void) = (void *)_arg;
377	unsigned int mpidr = read_cpuid_mpidr();
378	unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
379	unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
380	phys_reset_t phys_reset;
381
382	mcpm_set_entry_vector(cpu, cluster, cpu_resume);
383	setup_mm_for_reboot();
384
385	__mcpm_cpu_going_down(cpu, cluster);
386	BUG_ON(!__mcpm_outbound_enter_critical(cpu, cluster));
387	cache_disable();
388	__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
389	__mcpm_cpu_down(cpu, cluster);
390
391	phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
392	phys_reset(virt_to_phys(mcpm_entry_point));
393	BUG();
394}
395
396int __init mcpm_loopback(void (*cache_disable)(void))
397{
398	int ret;
399
400	/*
401	 * We're going to soft-restart the current CPU through the
402	 * low-level MCPM code by leveraging the suspend/resume
403	 * infrastructure. Let's play it safe by using cpu_pm_enter()
404	 * in case the CPU init code path resets the VFP or similar.
405	 */
406	local_irq_disable();
407	local_fiq_disable();
408	ret = cpu_pm_enter();
409	if (!ret) {
410		ret = cpu_suspend((unsigned long)cache_disable, nocache_trampoline);
411		cpu_pm_exit();
412	}
413	local_fiq_enable();
414	local_irq_enable();
415	if (ret)
416		pr_err("%s returned %d\n", __func__, ret);
417	return ret;
418}
419
420#endif
421
422extern unsigned long mcpm_power_up_setup_phys;
423
424int __init mcpm_sync_init(
425	void (*power_up_setup)(unsigned int affinity_level))
426{
427	unsigned int i, j, mpidr, this_cluster;
428
429	BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync);
430	BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1));
431
432	/*
433	 * Set initial CPU and cluster states.
434	 * Only one cluster is assumed to be active at this point.
435	 */
436	for (i = 0; i < MAX_NR_CLUSTERS; i++) {
437		mcpm_sync.clusters[i].cluster = CLUSTER_DOWN;
438		mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP;
439		for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++)
440			mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN;
441	}
442	mpidr = read_cpuid_mpidr();
443	this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
444	for_each_online_cpu(i) {
445		mcpm_cpu_use_count[this_cluster][i] = 1;
446		mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP;
447	}
448	mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP;
449	sync_cache_w(&mcpm_sync);
450
451	if (power_up_setup) {
452		mcpm_power_up_setup_phys = virt_to_phys(power_up_setup);
453		sync_cache_w(&mcpm_power_up_setup_phys);
454	}
455
456	return 0;
457}
458