1/*
2 * arch/alpha/kernel/traps.c
3 *
4 * (C) Copyright 1994 Linus Torvalds
5 */
6
7/*
8 * This file initializes the trap entry points
9 */
10
11#include <linux/jiffies.h>
12#include <linux/mm.h>
13#include <linux/sched.h>
14#include <linux/tty.h>
15#include <linux/delay.h>
16#include <linux/module.h>
17#include <linux/kallsyms.h>
18#include <linux/ratelimit.h>
19
20#include <asm/gentrap.h>
21#include <asm/uaccess.h>
22#include <asm/unaligned.h>
23#include <asm/sysinfo.h>
24#include <asm/hwrpb.h>
25#include <asm/mmu_context.h>
26#include <asm/special_insns.h>
27
28#include "proto.h"
29
30/* Work-around for some SRMs which mishandle opDEC faults.  */
31
32static int opDEC_fix;
33
34static void
35opDEC_check(void)
36{
37	__asm__ __volatile__ (
38	/* Load the address of... */
39	"	br	$16, 1f\n"
40	/* A stub instruction fault handler.  Just add 4 to the
41	   pc and continue.  */
42	"	ldq	$16, 8($sp)\n"
43	"	addq	$16, 4, $16\n"
44	"	stq	$16, 8($sp)\n"
45	"	call_pal %[rti]\n"
46	/* Install the instruction fault handler.  */
47	"1:	lda	$17, 3\n"
48	"	call_pal %[wrent]\n"
49	/* With that in place, the fault from the round-to-minf fp
50	   insn will arrive either at the "lda 4" insn (bad) or one
51	   past that (good).  This places the correct fixup in %0.  */
52	"	lda %[fix], 0\n"
53	"	cvttq/svm $f31,$f31\n"
54	"	lda %[fix], 4"
55	: [fix] "=r" (opDEC_fix)
56	: [rti] "n" (PAL_rti), [wrent] "n" (PAL_wrent)
57	: "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25");
58
59	if (opDEC_fix)
60		printk("opDEC fixup enabled.\n");
61}
62
63void
64dik_show_regs(struct pt_regs *regs, unsigned long *r9_15)
65{
66	printk("pc = [<%016lx>]  ra = [<%016lx>]  ps = %04lx    %s\n",
67	       regs->pc, regs->r26, regs->ps, print_tainted());
68	printk("pc is at %pSR\n", (void *)regs->pc);
69	printk("ra is at %pSR\n", (void *)regs->r26);
70	printk("v0 = %016lx  t0 = %016lx  t1 = %016lx\n",
71	       regs->r0, regs->r1, regs->r2);
72	printk("t2 = %016lx  t3 = %016lx  t4 = %016lx\n",
73 	       regs->r3, regs->r4, regs->r5);
74	printk("t5 = %016lx  t6 = %016lx  t7 = %016lx\n",
75	       regs->r6, regs->r7, regs->r8);
76
77	if (r9_15) {
78		printk("s0 = %016lx  s1 = %016lx  s2 = %016lx\n",
79		       r9_15[9], r9_15[10], r9_15[11]);
80		printk("s3 = %016lx  s4 = %016lx  s5 = %016lx\n",
81		       r9_15[12], r9_15[13], r9_15[14]);
82		printk("s6 = %016lx\n", r9_15[15]);
83	}
84
85	printk("a0 = %016lx  a1 = %016lx  a2 = %016lx\n",
86	       regs->r16, regs->r17, regs->r18);
87	printk("a3 = %016lx  a4 = %016lx  a5 = %016lx\n",
88 	       regs->r19, regs->r20, regs->r21);
89 	printk("t8 = %016lx  t9 = %016lx  t10= %016lx\n",
90	       regs->r22, regs->r23, regs->r24);
91	printk("t11= %016lx  pv = %016lx  at = %016lx\n",
92	       regs->r25, regs->r27, regs->r28);
93	printk("gp = %016lx  sp = %p\n", regs->gp, regs+1);
94#if 0
95__halt();
96#endif
97}
98
99#if 0
100static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
101			   "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6",
102			   "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
103			   "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"};
104#endif
105
106static void
107dik_show_code(unsigned int *pc)
108{
109	long i;
110
111	printk("Code:");
112	for (i = -6; i < 2; i++) {
113		unsigned int insn;
114		if (__get_user(insn, (unsigned int __user *)pc + i))
115			break;
116		printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>');
117	}
118	printk("\n");
119}
120
121static void
122dik_show_trace(unsigned long *sp)
123{
124	long i = 0;
125	printk("Trace:\n");
126	while (0x1ff8 & (unsigned long) sp) {
127		extern char _stext[], _etext[];
128		unsigned long tmp = *sp;
129		sp++;
130		if (tmp < (unsigned long) &_stext)
131			continue;
132		if (tmp >= (unsigned long) &_etext)
133			continue;
134		printk("[<%lx>] %pSR\n", tmp, (void *)tmp);
135		if (i > 40) {
136			printk(" ...");
137			break;
138		}
139	}
140	printk("\n");
141}
142
143static int kstack_depth_to_print = 24;
144
145void show_stack(struct task_struct *task, unsigned long *sp)
146{
147	unsigned long *stack;
148	int i;
149
150	/*
151	 * debugging aid: "show_stack(NULL);" prints the
152	 * back trace for this cpu.
153	 */
154	if(sp==NULL)
155		sp=(unsigned long*)&sp;
156
157	stack = sp;
158	for(i=0; i < kstack_depth_to_print; i++) {
159		if (((long) stack & (THREAD_SIZE-1)) == 0)
160			break;
161		if (i && ((i % 4) == 0))
162			printk("\n       ");
163		printk("%016lx ", *stack++);
164	}
165	printk("\n");
166	dik_show_trace(sp);
167}
168
169void
170die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15)
171{
172	if (regs->ps & 8)
173		return;
174#ifdef CONFIG_SMP
175	printk("CPU %d ", hard_smp_processor_id());
176#endif
177	printk("%s(%d): %s %ld\n", current->comm, task_pid_nr(current), str, err);
178	dik_show_regs(regs, r9_15);
179	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
180	dik_show_trace((unsigned long *)(regs+1));
181	dik_show_code((unsigned int *)regs->pc);
182
183	if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
184		printk("die_if_kernel recursion detected.\n");
185		local_irq_enable();
186		while (1);
187	}
188	do_exit(SIGSEGV);
189}
190
191#ifndef CONFIG_MATHEMU
192static long dummy_emul(void) { return 0; }
193long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask)
194  = (void *)dummy_emul;
195long (*alpha_fp_emul) (unsigned long pc)
196  = (void *)dummy_emul;
197#else
198long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask);
199long alpha_fp_emul (unsigned long pc);
200#endif
201
202asmlinkage void
203do_entArith(unsigned long summary, unsigned long write_mask,
204	    struct pt_regs *regs)
205{
206	long si_code = FPE_FLTINV;
207	siginfo_t info;
208
209	if (summary & 1) {
210		/* Software-completion summary bit is set, so try to
211		   emulate the instruction.  If the processor supports
212		   precise exceptions, we don't have to search.  */
213		if (!amask(AMASK_PRECISE_TRAP))
214			si_code = alpha_fp_emul(regs->pc - 4);
215		else
216			si_code = alpha_fp_emul_imprecise(regs, write_mask);
217		if (si_code == 0)
218			return;
219	}
220	die_if_kernel("Arithmetic fault", regs, 0, NULL);
221
222	info.si_signo = SIGFPE;
223	info.si_errno = 0;
224	info.si_code = si_code;
225	info.si_addr = (void __user *) regs->pc;
226	send_sig_info(SIGFPE, &info, current);
227}
228
229asmlinkage void
230do_entIF(unsigned long type, struct pt_regs *regs)
231{
232	siginfo_t info;
233	int signo, code;
234
235	if ((regs->ps & ~IPL_MAX) == 0) {
236		if (type == 1) {
237			const unsigned int *data
238			  = (const unsigned int *) regs->pc;
239			printk("Kernel bug at %s:%d\n",
240			       (const char *)(data[1] | (long)data[2] << 32),
241			       data[0]);
242		}
243#ifdef CONFIG_ALPHA_WTINT
244		if (type == 4) {
245			/* If CALL_PAL WTINT is totally unsupported by the
246			   PALcode, e.g. MILO, "emulate" it by overwriting
247			   the insn.  */
248			unsigned int *pinsn
249			  = (unsigned int *) regs->pc - 1;
250			if (*pinsn == PAL_wtint) {
251				*pinsn = 0x47e01400; /* mov 0,$0 */
252				imb();
253				regs->r0 = 0;
254				return;
255			}
256		}
257#endif /* ALPHA_WTINT */
258		die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"),
259			      regs, type, NULL);
260	}
261
262	switch (type) {
263	      case 0: /* breakpoint */
264		info.si_signo = SIGTRAP;
265		info.si_errno = 0;
266		info.si_code = TRAP_BRKPT;
267		info.si_trapno = 0;
268		info.si_addr = (void __user *) regs->pc;
269
270		if (ptrace_cancel_bpt(current)) {
271			regs->pc -= 4;	/* make pc point to former bpt */
272		}
273
274		send_sig_info(SIGTRAP, &info, current);
275		return;
276
277	      case 1: /* bugcheck */
278		info.si_signo = SIGTRAP;
279		info.si_errno = 0;
280		info.si_code = __SI_FAULT;
281		info.si_addr = (void __user *) regs->pc;
282		info.si_trapno = 0;
283		send_sig_info(SIGTRAP, &info, current);
284		return;
285
286	      case 2: /* gentrap */
287		info.si_addr = (void __user *) regs->pc;
288		info.si_trapno = regs->r16;
289		switch ((long) regs->r16) {
290		case GEN_INTOVF:
291			signo = SIGFPE;
292			code = FPE_INTOVF;
293			break;
294		case GEN_INTDIV:
295			signo = SIGFPE;
296			code = FPE_INTDIV;
297			break;
298		case GEN_FLTOVF:
299			signo = SIGFPE;
300			code = FPE_FLTOVF;
301			break;
302		case GEN_FLTDIV:
303			signo = SIGFPE;
304			code = FPE_FLTDIV;
305			break;
306		case GEN_FLTUND:
307			signo = SIGFPE;
308			code = FPE_FLTUND;
309			break;
310		case GEN_FLTINV:
311			signo = SIGFPE;
312			code = FPE_FLTINV;
313			break;
314		case GEN_FLTINE:
315			signo = SIGFPE;
316			code = FPE_FLTRES;
317			break;
318		case GEN_ROPRAND:
319			signo = SIGFPE;
320			code = __SI_FAULT;
321			break;
322
323		case GEN_DECOVF:
324		case GEN_DECDIV:
325		case GEN_DECINV:
326		case GEN_ASSERTERR:
327		case GEN_NULPTRERR:
328		case GEN_STKOVF:
329		case GEN_STRLENERR:
330		case GEN_SUBSTRERR:
331		case GEN_RANGERR:
332		case GEN_SUBRNG:
333		case GEN_SUBRNG1:
334		case GEN_SUBRNG2:
335		case GEN_SUBRNG3:
336		case GEN_SUBRNG4:
337		case GEN_SUBRNG5:
338		case GEN_SUBRNG6:
339		case GEN_SUBRNG7:
340		default:
341			signo = SIGTRAP;
342			code = __SI_FAULT;
343			break;
344		}
345
346		info.si_signo = signo;
347		info.si_errno = 0;
348		info.si_code = code;
349		info.si_addr = (void __user *) regs->pc;
350		send_sig_info(signo, &info, current);
351		return;
352
353	      case 4: /* opDEC */
354		if (implver() == IMPLVER_EV4) {
355			long si_code;
356
357			/* The some versions of SRM do not handle
358			   the opDEC properly - they return the PC of the
359			   opDEC fault, not the instruction after as the
360			   Alpha architecture requires.  Here we fix it up.
361			   We do this by intentionally causing an opDEC
362			   fault during the boot sequence and testing if
363			   we get the correct PC.  If not, we set a flag
364			   to correct it every time through.  */
365			regs->pc += opDEC_fix;
366
367			/* EV4 does not implement anything except normal
368			   rounding.  Everything else will come here as
369			   an illegal instruction.  Emulate them.  */
370			si_code = alpha_fp_emul(regs->pc - 4);
371			if (si_code == 0)
372				return;
373			if (si_code > 0) {
374				info.si_signo = SIGFPE;
375				info.si_errno = 0;
376				info.si_code = si_code;
377				info.si_addr = (void __user *) regs->pc;
378				send_sig_info(SIGFPE, &info, current);
379				return;
380			}
381		}
382		break;
383
384	      case 3: /* FEN fault */
385		/* Irritating users can call PAL_clrfen to disable the
386		   FPU for the process.  The kernel will then trap in
387		   do_switch_stack and undo_switch_stack when we try
388		   to save and restore the FP registers.
389
390		   Given that GCC by default generates code that uses the
391		   FP registers, PAL_clrfen is not useful except for DoS
392		   attacks.  So turn the bleeding FPU back on and be done
393		   with it.  */
394		current_thread_info()->pcb.flags |= 1;
395		__reload_thread(&current_thread_info()->pcb);
396		return;
397
398	      case 5: /* illoc */
399	      default: /* unexpected instruction-fault type */
400		      ;
401	}
402
403	info.si_signo = SIGILL;
404	info.si_errno = 0;
405	info.si_code = ILL_ILLOPC;
406	info.si_addr = (void __user *) regs->pc;
407	send_sig_info(SIGILL, &info, current);
408}
409
410/* There is an ifdef in the PALcode in MILO that enables a
411   "kernel debugging entry point" as an unprivileged call_pal.
412
413   We don't want to have anything to do with it, but unfortunately
414   several versions of MILO included in distributions have it enabled,
415   and if we don't put something on the entry point we'll oops.  */
416
417asmlinkage void
418do_entDbg(struct pt_regs *regs)
419{
420	siginfo_t info;
421
422	die_if_kernel("Instruction fault", regs, 0, NULL);
423
424	info.si_signo = SIGILL;
425	info.si_errno = 0;
426	info.si_code = ILL_ILLOPC;
427	info.si_addr = (void __user *) regs->pc;
428	force_sig_info(SIGILL, &info, current);
429}
430
431
432/*
433 * entUna has a different register layout to be reasonably simple. It
434 * needs access to all the integer registers (the kernel doesn't use
435 * fp-regs), and it needs to have them in order for simpler access.
436 *
437 * Due to the non-standard register layout (and because we don't want
438 * to handle floating-point regs), user-mode unaligned accesses are
439 * handled separately by do_entUnaUser below.
440 *
441 * Oh, btw, we don't handle the "gp" register correctly, but if we fault
442 * on a gp-register unaligned load/store, something is _very_ wrong
443 * in the kernel anyway..
444 */
445struct allregs {
446	unsigned long regs[32];
447	unsigned long ps, pc, gp, a0, a1, a2;
448};
449
450struct unaligned_stat {
451	unsigned long count, va, pc;
452} unaligned[2];
453
454
455/* Macro for exception fixup code to access integer registers.  */
456#define una_reg(r)  (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)])
457
458
459asmlinkage void
460do_entUna(void * va, unsigned long opcode, unsigned long reg,
461	  struct allregs *regs)
462{
463	long error, tmp1, tmp2, tmp3, tmp4;
464	unsigned long pc = regs->pc - 4;
465	unsigned long *_regs = regs->regs;
466	const struct exception_table_entry *fixup;
467
468	unaligned[0].count++;
469	unaligned[0].va = (unsigned long) va;
470	unaligned[0].pc = pc;
471
472	/* We don't want to use the generic get/put unaligned macros as
473	   we want to trap exceptions.  Only if we actually get an
474	   exception will we decide whether we should have caught it.  */
475
476	switch (opcode) {
477	case 0x0c: /* ldwu */
478		__asm__ __volatile__(
479		"1:	ldq_u %1,0(%3)\n"
480		"2:	ldq_u %2,1(%3)\n"
481		"	extwl %1,%3,%1\n"
482		"	extwh %2,%3,%2\n"
483		"3:\n"
484		".section __ex_table,\"a\"\n"
485		"	.long 1b - .\n"
486		"	lda %1,3b-1b(%0)\n"
487		"	.long 2b - .\n"
488		"	lda %2,3b-2b(%0)\n"
489		".previous"
490			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
491			: "r"(va), "0"(0));
492		if (error)
493			goto got_exception;
494		una_reg(reg) = tmp1|tmp2;
495		return;
496
497	case 0x28: /* ldl */
498		__asm__ __volatile__(
499		"1:	ldq_u %1,0(%3)\n"
500		"2:	ldq_u %2,3(%3)\n"
501		"	extll %1,%3,%1\n"
502		"	extlh %2,%3,%2\n"
503		"3:\n"
504		".section __ex_table,\"a\"\n"
505		"	.long 1b - .\n"
506		"	lda %1,3b-1b(%0)\n"
507		"	.long 2b - .\n"
508		"	lda %2,3b-2b(%0)\n"
509		".previous"
510			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
511			: "r"(va), "0"(0));
512		if (error)
513			goto got_exception;
514		una_reg(reg) = (int)(tmp1|tmp2);
515		return;
516
517	case 0x29: /* ldq */
518		__asm__ __volatile__(
519		"1:	ldq_u %1,0(%3)\n"
520		"2:	ldq_u %2,7(%3)\n"
521		"	extql %1,%3,%1\n"
522		"	extqh %2,%3,%2\n"
523		"3:\n"
524		".section __ex_table,\"a\"\n"
525		"	.long 1b - .\n"
526		"	lda %1,3b-1b(%0)\n"
527		"	.long 2b - .\n"
528		"	lda %2,3b-2b(%0)\n"
529		".previous"
530			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
531			: "r"(va), "0"(0));
532		if (error)
533			goto got_exception;
534		una_reg(reg) = tmp1|tmp2;
535		return;
536
537	/* Note that the store sequences do not indicate that they change
538	   memory because it _should_ be affecting nothing in this context.
539	   (Otherwise we have other, much larger, problems.)  */
540	case 0x0d: /* stw */
541		__asm__ __volatile__(
542		"1:	ldq_u %2,1(%5)\n"
543		"2:	ldq_u %1,0(%5)\n"
544		"	inswh %6,%5,%4\n"
545		"	inswl %6,%5,%3\n"
546		"	mskwh %2,%5,%2\n"
547		"	mskwl %1,%5,%1\n"
548		"	or %2,%4,%2\n"
549		"	or %1,%3,%1\n"
550		"3:	stq_u %2,1(%5)\n"
551		"4:	stq_u %1,0(%5)\n"
552		"5:\n"
553		".section __ex_table,\"a\"\n"
554		"	.long 1b - .\n"
555		"	lda %2,5b-1b(%0)\n"
556		"	.long 2b - .\n"
557		"	lda %1,5b-2b(%0)\n"
558		"	.long 3b - .\n"
559		"	lda $31,5b-3b(%0)\n"
560		"	.long 4b - .\n"
561		"	lda $31,5b-4b(%0)\n"
562		".previous"
563			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
564			  "=&r"(tmp3), "=&r"(tmp4)
565			: "r"(va), "r"(una_reg(reg)), "0"(0));
566		if (error)
567			goto got_exception;
568		return;
569
570	case 0x2c: /* stl */
571		__asm__ __volatile__(
572		"1:	ldq_u %2,3(%5)\n"
573		"2:	ldq_u %1,0(%5)\n"
574		"	inslh %6,%5,%4\n"
575		"	insll %6,%5,%3\n"
576		"	msklh %2,%5,%2\n"
577		"	mskll %1,%5,%1\n"
578		"	or %2,%4,%2\n"
579		"	or %1,%3,%1\n"
580		"3:	stq_u %2,3(%5)\n"
581		"4:	stq_u %1,0(%5)\n"
582		"5:\n"
583		".section __ex_table,\"a\"\n"
584		"	.long 1b - .\n"
585		"	lda %2,5b-1b(%0)\n"
586		"	.long 2b - .\n"
587		"	lda %1,5b-2b(%0)\n"
588		"	.long 3b - .\n"
589		"	lda $31,5b-3b(%0)\n"
590		"	.long 4b - .\n"
591		"	lda $31,5b-4b(%0)\n"
592		".previous"
593			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
594			  "=&r"(tmp3), "=&r"(tmp4)
595			: "r"(va), "r"(una_reg(reg)), "0"(0));
596		if (error)
597			goto got_exception;
598		return;
599
600	case 0x2d: /* stq */
601		__asm__ __volatile__(
602		"1:	ldq_u %2,7(%5)\n"
603		"2:	ldq_u %1,0(%5)\n"
604		"	insqh %6,%5,%4\n"
605		"	insql %6,%5,%3\n"
606		"	mskqh %2,%5,%2\n"
607		"	mskql %1,%5,%1\n"
608		"	or %2,%4,%2\n"
609		"	or %1,%3,%1\n"
610		"3:	stq_u %2,7(%5)\n"
611		"4:	stq_u %1,0(%5)\n"
612		"5:\n"
613		".section __ex_table,\"a\"\n\t"
614		"	.long 1b - .\n"
615		"	lda %2,5b-1b(%0)\n"
616		"	.long 2b - .\n"
617		"	lda %1,5b-2b(%0)\n"
618		"	.long 3b - .\n"
619		"	lda $31,5b-3b(%0)\n"
620		"	.long 4b - .\n"
621		"	lda $31,5b-4b(%0)\n"
622		".previous"
623			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
624			  "=&r"(tmp3), "=&r"(tmp4)
625			: "r"(va), "r"(una_reg(reg)), "0"(0));
626		if (error)
627			goto got_exception;
628		return;
629	}
630
631	printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n",
632		pc, va, opcode, reg);
633	do_exit(SIGSEGV);
634
635got_exception:
636	/* Ok, we caught the exception, but we don't want it.  Is there
637	   someone to pass it along to?  */
638	if ((fixup = search_exception_tables(pc)) != 0) {
639		unsigned long newpc;
640		newpc = fixup_exception(una_reg, fixup, pc);
641
642		printk("Forwarding unaligned exception at %lx (%lx)\n",
643		       pc, newpc);
644
645		regs->pc = newpc;
646		return;
647	}
648
649	/*
650	 * Yikes!  No one to forward the exception to.
651	 * Since the registers are in a weird format, dump them ourselves.
652 	 */
653
654	printk("%s(%d): unhandled unaligned exception\n",
655	       current->comm, task_pid_nr(current));
656
657	printk("pc = [<%016lx>]  ra = [<%016lx>]  ps = %04lx\n",
658	       pc, una_reg(26), regs->ps);
659	printk("r0 = %016lx  r1 = %016lx  r2 = %016lx\n",
660	       una_reg(0), una_reg(1), una_reg(2));
661	printk("r3 = %016lx  r4 = %016lx  r5 = %016lx\n",
662 	       una_reg(3), una_reg(4), una_reg(5));
663	printk("r6 = %016lx  r7 = %016lx  r8 = %016lx\n",
664	       una_reg(6), una_reg(7), una_reg(8));
665	printk("r9 = %016lx  r10= %016lx  r11= %016lx\n",
666	       una_reg(9), una_reg(10), una_reg(11));
667	printk("r12= %016lx  r13= %016lx  r14= %016lx\n",
668	       una_reg(12), una_reg(13), una_reg(14));
669	printk("r15= %016lx\n", una_reg(15));
670	printk("r16= %016lx  r17= %016lx  r18= %016lx\n",
671	       una_reg(16), una_reg(17), una_reg(18));
672	printk("r19= %016lx  r20= %016lx  r21= %016lx\n",
673 	       una_reg(19), una_reg(20), una_reg(21));
674 	printk("r22= %016lx  r23= %016lx  r24= %016lx\n",
675	       una_reg(22), una_reg(23), una_reg(24));
676	printk("r25= %016lx  r27= %016lx  r28= %016lx\n",
677	       una_reg(25), una_reg(27), una_reg(28));
678	printk("gp = %016lx  sp = %p\n", regs->gp, regs+1);
679
680	dik_show_code((unsigned int *)pc);
681	dik_show_trace((unsigned long *)(regs+1));
682
683	if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
684		printk("die_if_kernel recursion detected.\n");
685		local_irq_enable();
686		while (1);
687	}
688	do_exit(SIGSEGV);
689}
690
691/*
692 * Convert an s-floating point value in memory format to the
693 * corresponding value in register format.  The exponent
694 * needs to be remapped to preserve non-finite values
695 * (infinities, not-a-numbers, denormals).
696 */
697static inline unsigned long
698s_mem_to_reg (unsigned long s_mem)
699{
700	unsigned long frac    = (s_mem >>  0) & 0x7fffff;
701	unsigned long sign    = (s_mem >> 31) & 0x1;
702	unsigned long exp_msb = (s_mem >> 30) & 0x1;
703	unsigned long exp_low = (s_mem >> 23) & 0x7f;
704	unsigned long exp;
705
706	exp = (exp_msb << 10) | exp_low;	/* common case */
707	if (exp_msb) {
708		if (exp_low == 0x7f) {
709			exp = 0x7ff;
710		}
711	} else {
712		if (exp_low == 0x00) {
713			exp = 0x000;
714		} else {
715			exp |= (0x7 << 7);
716		}
717	}
718	return (sign << 63) | (exp << 52) | (frac << 29);
719}
720
721/*
722 * Convert an s-floating point value in register format to the
723 * corresponding value in memory format.
724 */
725static inline unsigned long
726s_reg_to_mem (unsigned long s_reg)
727{
728	return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34);
729}
730
731/*
732 * Handle user-level unaligned fault.  Handling user-level unaligned
733 * faults is *extremely* slow and produces nasty messages.  A user
734 * program *should* fix unaligned faults ASAP.
735 *
736 * Notice that we have (almost) the regular kernel stack layout here,
737 * so finding the appropriate registers is a little more difficult
738 * than in the kernel case.
739 *
740 * Finally, we handle regular integer load/stores only.  In
741 * particular, load-linked/store-conditionally and floating point
742 * load/stores are not supported.  The former make no sense with
743 * unaligned faults (they are guaranteed to fail) and I don't think
744 * the latter will occur in any decent program.
745 *
746 * Sigh. We *do* have to handle some FP operations, because GCC will
747 * uses them as temporary storage for integer memory to memory copies.
748 * However, we need to deal with stt/ldt and sts/lds only.
749 */
750
751#define OP_INT_MASK	( 1L << 0x28 | 1L << 0x2c   /* ldl stl */	\
752			| 1L << 0x29 | 1L << 0x2d   /* ldq stq */	\
753			| 1L << 0x0c | 1L << 0x0d   /* ldwu stw */	\
754			| 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */
755
756#define OP_WRITE_MASK	( 1L << 0x26 | 1L << 0x27   /* sts stt */	\
757			| 1L << 0x2c | 1L << 0x2d   /* stl stq */	\
758			| 1L << 0x0d | 1L << 0x0e ) /* stw stb */
759
760#define R(x)	((size_t) &((struct pt_regs *)0)->x)
761
762static int unauser_reg_offsets[32] = {
763	R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8),
764	/* r9 ... r15 are stored in front of regs.  */
765	-56, -48, -40, -32, -24, -16, -8,
766	R(r16), R(r17), R(r18),
767	R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26),
768	R(r27), R(r28), R(gp),
769	0, 0
770};
771
772#undef R
773
774asmlinkage void
775do_entUnaUser(void __user * va, unsigned long opcode,
776	      unsigned long reg, struct pt_regs *regs)
777{
778	static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
779
780	unsigned long tmp1, tmp2, tmp3, tmp4;
781	unsigned long fake_reg, *reg_addr = &fake_reg;
782	siginfo_t info;
783	long error;
784
785	/* Check the UAC bits to decide what the user wants us to do
786	   with the unaliged access.  */
787
788	if (!(current_thread_info()->status & TS_UAC_NOPRINT)) {
789		if (__ratelimit(&ratelimit)) {
790			printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n",
791			       current->comm, task_pid_nr(current),
792			       regs->pc - 4, va, opcode, reg);
793		}
794	}
795	if ((current_thread_info()->status & TS_UAC_SIGBUS))
796		goto give_sigbus;
797	/* Not sure why you'd want to use this, but... */
798	if ((current_thread_info()->status & TS_UAC_NOFIX))
799		return;
800
801	/* Don't bother reading ds in the access check since we already
802	   know that this came from the user.  Also rely on the fact that
803	   the page at TASK_SIZE is unmapped and so can't be touched anyway. */
804	if (!__access_ok((unsigned long)va, 0, USER_DS))
805		goto give_sigsegv;
806
807	++unaligned[1].count;
808	unaligned[1].va = (unsigned long)va;
809	unaligned[1].pc = regs->pc - 4;
810
811	if ((1L << opcode) & OP_INT_MASK) {
812		/* it's an integer load/store */
813		if (reg < 30) {
814			reg_addr = (unsigned long *)
815			  ((char *)regs + unauser_reg_offsets[reg]);
816		} else if (reg == 30) {
817			/* usp in PAL regs */
818			fake_reg = rdusp();
819		} else {
820			/* zero "register" */
821			fake_reg = 0;
822		}
823	}
824
825	/* We don't want to use the generic get/put unaligned macros as
826	   we want to trap exceptions.  Only if we actually get an
827	   exception will we decide whether we should have caught it.  */
828
829	switch (opcode) {
830	case 0x0c: /* ldwu */
831		__asm__ __volatile__(
832		"1:	ldq_u %1,0(%3)\n"
833		"2:	ldq_u %2,1(%3)\n"
834		"	extwl %1,%3,%1\n"
835		"	extwh %2,%3,%2\n"
836		"3:\n"
837		".section __ex_table,\"a\"\n"
838		"	.long 1b - .\n"
839		"	lda %1,3b-1b(%0)\n"
840		"	.long 2b - .\n"
841		"	lda %2,3b-2b(%0)\n"
842		".previous"
843			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
844			: "r"(va), "0"(0));
845		if (error)
846			goto give_sigsegv;
847		*reg_addr = tmp1|tmp2;
848		break;
849
850	case 0x22: /* lds */
851		__asm__ __volatile__(
852		"1:	ldq_u %1,0(%3)\n"
853		"2:	ldq_u %2,3(%3)\n"
854		"	extll %1,%3,%1\n"
855		"	extlh %2,%3,%2\n"
856		"3:\n"
857		".section __ex_table,\"a\"\n"
858		"	.long 1b - .\n"
859		"	lda %1,3b-1b(%0)\n"
860		"	.long 2b - .\n"
861		"	lda %2,3b-2b(%0)\n"
862		".previous"
863			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
864			: "r"(va), "0"(0));
865		if (error)
866			goto give_sigsegv;
867		alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2)));
868		return;
869
870	case 0x23: /* ldt */
871		__asm__ __volatile__(
872		"1:	ldq_u %1,0(%3)\n"
873		"2:	ldq_u %2,7(%3)\n"
874		"	extql %1,%3,%1\n"
875		"	extqh %2,%3,%2\n"
876		"3:\n"
877		".section __ex_table,\"a\"\n"
878		"	.long 1b - .\n"
879		"	lda %1,3b-1b(%0)\n"
880		"	.long 2b - .\n"
881		"	lda %2,3b-2b(%0)\n"
882		".previous"
883			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
884			: "r"(va), "0"(0));
885		if (error)
886			goto give_sigsegv;
887		alpha_write_fp_reg(reg, tmp1|tmp2);
888		return;
889
890	case 0x28: /* ldl */
891		__asm__ __volatile__(
892		"1:	ldq_u %1,0(%3)\n"
893		"2:	ldq_u %2,3(%3)\n"
894		"	extll %1,%3,%1\n"
895		"	extlh %2,%3,%2\n"
896		"3:\n"
897		".section __ex_table,\"a\"\n"
898		"	.long 1b - .\n"
899		"	lda %1,3b-1b(%0)\n"
900		"	.long 2b - .\n"
901		"	lda %2,3b-2b(%0)\n"
902		".previous"
903			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
904			: "r"(va), "0"(0));
905		if (error)
906			goto give_sigsegv;
907		*reg_addr = (int)(tmp1|tmp2);
908		break;
909
910	case 0x29: /* ldq */
911		__asm__ __volatile__(
912		"1:	ldq_u %1,0(%3)\n"
913		"2:	ldq_u %2,7(%3)\n"
914		"	extql %1,%3,%1\n"
915		"	extqh %2,%3,%2\n"
916		"3:\n"
917		".section __ex_table,\"a\"\n"
918		"	.long 1b - .\n"
919		"	lda %1,3b-1b(%0)\n"
920		"	.long 2b - .\n"
921		"	lda %2,3b-2b(%0)\n"
922		".previous"
923			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
924			: "r"(va), "0"(0));
925		if (error)
926			goto give_sigsegv;
927		*reg_addr = tmp1|tmp2;
928		break;
929
930	/* Note that the store sequences do not indicate that they change
931	   memory because it _should_ be affecting nothing in this context.
932	   (Otherwise we have other, much larger, problems.)  */
933	case 0x0d: /* stw */
934		__asm__ __volatile__(
935		"1:	ldq_u %2,1(%5)\n"
936		"2:	ldq_u %1,0(%5)\n"
937		"	inswh %6,%5,%4\n"
938		"	inswl %6,%5,%3\n"
939		"	mskwh %2,%5,%2\n"
940		"	mskwl %1,%5,%1\n"
941		"	or %2,%4,%2\n"
942		"	or %1,%3,%1\n"
943		"3:	stq_u %2,1(%5)\n"
944		"4:	stq_u %1,0(%5)\n"
945		"5:\n"
946		".section __ex_table,\"a\"\n"
947		"	.long 1b - .\n"
948		"	lda %2,5b-1b(%0)\n"
949		"	.long 2b - .\n"
950		"	lda %1,5b-2b(%0)\n"
951		"	.long 3b - .\n"
952		"	lda $31,5b-3b(%0)\n"
953		"	.long 4b - .\n"
954		"	lda $31,5b-4b(%0)\n"
955		".previous"
956			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
957			  "=&r"(tmp3), "=&r"(tmp4)
958			: "r"(va), "r"(*reg_addr), "0"(0));
959		if (error)
960			goto give_sigsegv;
961		return;
962
963	case 0x26: /* sts */
964		fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg));
965		/* FALLTHRU */
966
967	case 0x2c: /* stl */
968		__asm__ __volatile__(
969		"1:	ldq_u %2,3(%5)\n"
970		"2:	ldq_u %1,0(%5)\n"
971		"	inslh %6,%5,%4\n"
972		"	insll %6,%5,%3\n"
973		"	msklh %2,%5,%2\n"
974		"	mskll %1,%5,%1\n"
975		"	or %2,%4,%2\n"
976		"	or %1,%3,%1\n"
977		"3:	stq_u %2,3(%5)\n"
978		"4:	stq_u %1,0(%5)\n"
979		"5:\n"
980		".section __ex_table,\"a\"\n"
981		"	.long 1b - .\n"
982		"	lda %2,5b-1b(%0)\n"
983		"	.long 2b - .\n"
984		"	lda %1,5b-2b(%0)\n"
985		"	.long 3b - .\n"
986		"	lda $31,5b-3b(%0)\n"
987		"	.long 4b - .\n"
988		"	lda $31,5b-4b(%0)\n"
989		".previous"
990			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
991			  "=&r"(tmp3), "=&r"(tmp4)
992			: "r"(va), "r"(*reg_addr), "0"(0));
993		if (error)
994			goto give_sigsegv;
995		return;
996
997	case 0x27: /* stt */
998		fake_reg = alpha_read_fp_reg(reg);
999		/* FALLTHRU */
1000
1001	case 0x2d: /* stq */
1002		__asm__ __volatile__(
1003		"1:	ldq_u %2,7(%5)\n"
1004		"2:	ldq_u %1,0(%5)\n"
1005		"	insqh %6,%5,%4\n"
1006		"	insql %6,%5,%3\n"
1007		"	mskqh %2,%5,%2\n"
1008		"	mskql %1,%5,%1\n"
1009		"	or %2,%4,%2\n"
1010		"	or %1,%3,%1\n"
1011		"3:	stq_u %2,7(%5)\n"
1012		"4:	stq_u %1,0(%5)\n"
1013		"5:\n"
1014		".section __ex_table,\"a\"\n\t"
1015		"	.long 1b - .\n"
1016		"	lda %2,5b-1b(%0)\n"
1017		"	.long 2b - .\n"
1018		"	lda %1,5b-2b(%0)\n"
1019		"	.long 3b - .\n"
1020		"	lda $31,5b-3b(%0)\n"
1021		"	.long 4b - .\n"
1022		"	lda $31,5b-4b(%0)\n"
1023		".previous"
1024			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
1025			  "=&r"(tmp3), "=&r"(tmp4)
1026			: "r"(va), "r"(*reg_addr), "0"(0));
1027		if (error)
1028			goto give_sigsegv;
1029		return;
1030
1031	default:
1032		/* What instruction were you trying to use, exactly?  */
1033		goto give_sigbus;
1034	}
1035
1036	/* Only integer loads should get here; everyone else returns early. */
1037	if (reg == 30)
1038		wrusp(fake_reg);
1039	return;
1040
1041give_sigsegv:
1042	regs->pc -= 4;  /* make pc point to faulting insn */
1043	info.si_signo = SIGSEGV;
1044	info.si_errno = 0;
1045
1046	/* We need to replicate some of the logic in mm/fault.c,
1047	   since we don't have access to the fault code in the
1048	   exception handling return path.  */
1049	if (!__access_ok((unsigned long)va, 0, USER_DS))
1050		info.si_code = SEGV_ACCERR;
1051	else {
1052		struct mm_struct *mm = current->mm;
1053		down_read(&mm->mmap_sem);
1054		if (find_vma(mm, (unsigned long)va))
1055			info.si_code = SEGV_ACCERR;
1056		else
1057			info.si_code = SEGV_MAPERR;
1058		up_read(&mm->mmap_sem);
1059	}
1060	info.si_addr = va;
1061	send_sig_info(SIGSEGV, &info, current);
1062	return;
1063
1064give_sigbus:
1065	regs->pc -= 4;
1066	info.si_signo = SIGBUS;
1067	info.si_errno = 0;
1068	info.si_code = BUS_ADRALN;
1069	info.si_addr = va;
1070	send_sig_info(SIGBUS, &info, current);
1071	return;
1072}
1073
1074void
1075trap_init(void)
1076{
1077	/* Tell PAL-code what global pointer we want in the kernel.  */
1078	register unsigned long gptr __asm__("$29");
1079	wrkgp(gptr);
1080
1081	/* Hack for Multia (UDB) and JENSEN: some of their SRMs have
1082	   a bug in the handling of the opDEC fault.  Fix it up if so.  */
1083	if (implver() == IMPLVER_EV4)
1084		opDEC_check();
1085
1086	wrent(entArith, 1);
1087	wrent(entMM, 2);
1088	wrent(entIF, 3);
1089	wrent(entUna, 4);
1090	wrent(entSys, 5);
1091	wrent(entDbg, 6);
1092}
1093