1		ftrace - Function Tracer
2		========================
3
4Copyright 2008 Red Hat Inc.
5   Author:   Steven Rostedt <srostedt@redhat.com>
6  License:   The GNU Free Documentation License, Version 1.2
7               (dual licensed under the GPL v2)
8Reviewers:   Elias Oltmanns, Randy Dunlap, Andrew Morton,
9	     John Kacur, and David Teigland.
10Written for: 2.6.28-rc2
11Updated for: 3.10
12
13Introduction
14------------
15
16Ftrace is an internal tracer designed to help out developers and
17designers of systems to find what is going on inside the kernel.
18It can be used for debugging or analyzing latencies and
19performance issues that take place outside of user-space.
20
21Although ftrace is typically considered the function tracer, it
22is really a frame work of several assorted tracing utilities.
23There's latency tracing to examine what occurs between interrupts
24disabled and enabled, as well as for preemption and from a time
25a task is woken to the task is actually scheduled in.
26
27One of the most common uses of ftrace is the event tracing.
28Through out the kernel is hundreds of static event points that
29can be enabled via the debugfs file system to see what is
30going on in certain parts of the kernel.
31
32
33Implementation Details
34----------------------
35
36See ftrace-design.txt for details for arch porters and such.
37
38
39The File System
40---------------
41
42Ftrace uses the debugfs file system to hold the control files as
43well as the files to display output.
44
45When debugfs is configured into the kernel (which selecting any ftrace
46option will do) the directory /sys/kernel/debug will be created. To mount
47this directory, you can add to your /etc/fstab file:
48
49 debugfs       /sys/kernel/debug          debugfs defaults        0       0
50
51Or you can mount it at run time with:
52
53 mount -t debugfs nodev /sys/kernel/debug
54
55For quicker access to that directory you may want to make a soft link to
56it:
57
58 ln -s /sys/kernel/debug /debug
59
60Any selected ftrace option will also create a directory called tracing
61within the debugfs. The rest of the document will assume that you are in
62the ftrace directory (cd /sys/kernel/debug/tracing) and will only concentrate
63on the files within that directory and not distract from the content with
64the extended "/sys/kernel/debug/tracing" path name.
65
66That's it! (assuming that you have ftrace configured into your kernel)
67
68After mounting debugfs, you can see a directory called
69"tracing".  This directory contains the control and output files
70of ftrace. Here is a list of some of the key files:
71
72
73 Note: all time values are in microseconds.
74
75  current_tracer:
76
77	This is used to set or display the current tracer
78	that is configured.
79
80  available_tracers:
81
82	This holds the different types of tracers that
83	have been compiled into the kernel. The
84	tracers listed here can be configured by
85	echoing their name into current_tracer.
86
87  tracing_on:
88
89	This sets or displays whether writing to the trace
90	ring buffer is enabled. Echo 0 into this file to disable
91	the tracer or 1 to enable it. Note, this only disables
92	writing to the ring buffer, the tracing overhead may
93	still be occurring.
94
95  trace:
96
97	This file holds the output of the trace in a human
98	readable format (described below).
99
100  trace_pipe:
101
102	The output is the same as the "trace" file but this
103	file is meant to be streamed with live tracing.
104	Reads from this file will block until new data is
105	retrieved.  Unlike the "trace" file, this file is a
106	consumer. This means reading from this file causes
107	sequential reads to display more current data. Once
108	data is read from this file, it is consumed, and
109	will not be read again with a sequential read. The
110	"trace" file is static, and if the tracer is not
111	adding more data, it will display the same
112	information every time it is read.
113
114  trace_options:
115
116	This file lets the user control the amount of data
117	that is displayed in one of the above output
118	files. Options also exist to modify how a tracer
119	or events work (stack traces, timestamps, etc).
120
121  options:
122
123	This is a directory that has a file for every available
124	trace option (also in trace_options). Options may also be set
125	or cleared by writing a "1" or "0" respectively into the
126	corresponding file with the option name.
127
128  tracing_max_latency:
129
130	Some of the tracers record the max latency.
131	For example, the time interrupts are disabled.
132	This time is saved in this file. The max trace
133	will also be stored, and displayed by "trace".
134	A new max trace will only be recorded if the
135	latency is greater than the value in this
136	file. (in microseconds)
137
138  tracing_thresh:
139
140	Some latency tracers will record a trace whenever the
141	latency is greater than the number in this file.
142	Only active when the file contains a number greater than 0.
143	(in microseconds)
144
145  buffer_size_kb:
146
147	This sets or displays the number of kilobytes each CPU
148	buffer holds. By default, the trace buffers are the same size
149	for each CPU. The displayed number is the size of the
150	CPU buffer and not total size of all buffers. The
151	trace buffers are allocated in pages (blocks of memory
152	that the kernel uses for allocation, usually 4 KB in size).
153	If the last page allocated has room for more bytes
154	than requested, the rest of the page will be used,
155	making the actual allocation bigger than requested.
156	( Note, the size may not be a multiple of the page size
157	  due to buffer management meta-data. )
158
159  buffer_total_size_kb:
160
161	This displays the total combined size of all the trace buffers.
162
163  free_buffer:
164
165	If a process is performing the tracing, and the ring buffer
166	should be shrunk "freed" when the process is finished, even
167	if it were to be killed by a signal, this file can be used
168	for that purpose. On close of this file, the ring buffer will
169	be resized to its minimum size. Having a process that is tracing
170	also open this file, when the process exits its file descriptor
171	for this file will be closed, and in doing so, the ring buffer
172	will be "freed".
173
174	It may also stop tracing if disable_on_free option is set.
175
176  tracing_cpumask:
177
178	This is a mask that lets the user only trace
179	on specified CPUs. The format is a hex string
180	representing the CPUs.
181
182  set_ftrace_filter:
183
184	When dynamic ftrace is configured in (see the
185	section below "dynamic ftrace"), the code is dynamically
186	modified (code text rewrite) to disable calling of the
187	function profiler (mcount). This lets tracing be configured
188	in with practically no overhead in performance.  This also
189	has a side effect of enabling or disabling specific functions
190	to be traced. Echoing names of functions into this file
191	will limit the trace to only those functions.
192
193	This interface also allows for commands to be used. See the
194	"Filter commands" section for more details.
195
196  set_ftrace_notrace:
197
198	This has an effect opposite to that of
199	set_ftrace_filter. Any function that is added here will not
200	be traced. If a function exists in both set_ftrace_filter
201	and set_ftrace_notrace,	the function will _not_ be traced.
202
203  set_ftrace_pid:
204
205	Have the function tracer only trace a single thread.
206
207  set_event_pid:
208
209	Have the events only trace a task with a PID listed in this file.
210	Note, sched_switch and sched_wake_up will also trace events
211	listed in this file.
212
213  set_graph_function:
214
215	Set a "trigger" function where tracing should start
216	with the function graph tracer (See the section
217	"dynamic ftrace" for more details).
218
219  available_filter_functions:
220
221	This lists the functions that ftrace
222	has processed and can trace. These are the function
223	names that you can pass to "set_ftrace_filter" or
224	"set_ftrace_notrace". (See the section "dynamic ftrace"
225	below for more details.)
226
227  enabled_functions:
228
229	This file is more for debugging ftrace, but can also be useful
230	in seeing if any function has a callback attached to it.
231	Not only does the trace infrastructure use ftrace function
232	trace utility, but other subsystems might too. This file
233	displays all functions that have a callback attached to them
234	as well as the number of callbacks that have been attached.
235	Note, a callback may also call multiple functions which will
236	not be listed in this count.
237
238	If the callback registered to be traced by a function with
239	the "save regs" attribute (thus even more overhead), a 'R'
240	will be displayed on the same line as the function that
241	is returning registers.
242
243	If the callback registered to be traced by a function with
244	the "ip modify" attribute (thus the regs->ip can be changed),
245	an 'I' will be displayed on the same line as the function that
246	can be overridden.
247
248  function_profile_enabled:
249
250	When set it will enable all functions with either the function
251	tracer, or if enabled, the function graph tracer. It will
252	keep a histogram of the number of functions that were called
253	and if run with the function graph tracer, it will also keep
254	track of the time spent in those functions. The histogram
255	content can be displayed in the files:
256
257	trace_stats/function<cpu> ( function0, function1, etc).
258
259  trace_stats:
260
261	A directory that holds different tracing stats.
262
263  kprobe_events:
264 
265	Enable dynamic trace points. See kprobetrace.txt.
266
267  kprobe_profile:
268
269	Dynamic trace points stats. See kprobetrace.txt.
270
271  max_graph_depth:
272
273	Used with the function graph tracer. This is the max depth
274	it will trace into a function. Setting this to a value of
275	one will show only the first kernel function that is called
276	from user space.
277
278  printk_formats:
279
280	This is for tools that read the raw format files. If an event in
281	the ring buffer references a string (currently only trace_printk()
282	does this), only a pointer to the string is recorded into the buffer
283	and not the string itself. This prevents tools from knowing what
284	that string was. This file displays the string and address for
285	the string allowing tools to map the pointers to what the
286	strings were.
287
288  saved_cmdlines:
289
290	Only the pid of the task is recorded in a trace event unless
291	the event specifically saves the task comm as well. Ftrace
292	makes a cache of pid mappings to comms to try to display
293	comms for events. If a pid for a comm is not listed, then
294	"<...>" is displayed in the output.
295
296  snapshot:
297
298	This displays the "snapshot" buffer and also lets the user
299	take a snapshot of the current running trace.
300	See the "Snapshot" section below for more details.
301
302  stack_max_size:
303
304	When the stack tracer is activated, this will display the
305	maximum stack size it has encountered.
306	See the "Stack Trace" section below.
307
308  stack_trace:
309
310	This displays the stack back trace of the largest stack
311	that was encountered when the stack tracer is activated.
312	See the "Stack Trace" section below.
313
314  stack_trace_filter:
315
316	This is similar to "set_ftrace_filter" but it limits what
317	functions the stack tracer will check.
318
319  trace_clock:
320
321	Whenever an event is recorded into the ring buffer, a
322	"timestamp" is added. This stamp comes from a specified
323	clock. By default, ftrace uses the "local" clock. This
324	clock is very fast and strictly per cpu, but on some
325	systems it may not be monotonic with respect to other
326	CPUs. In other words, the local clocks may not be in sync
327	with local clocks on other CPUs.
328
329	Usual clocks for tracing:
330
331	  # cat trace_clock
332	  [local] global counter x86-tsc
333
334	  local: Default clock, but may not be in sync across CPUs
335
336	  global: This clock is in sync with all CPUs but may
337	  	  be a bit slower than the local clock.
338
339	  counter: This is not a clock at all, but literally an atomic
340	  	   counter. It counts up one by one, but is in sync
341		   with all CPUs. This is useful when you need to
342		   know exactly the order events occurred with respect to
343		   each other on different CPUs.
344
345	  uptime: This uses the jiffies counter and the time stamp
346	  	  is relative to the time since boot up.
347
348	  perf: This makes ftrace use the same clock that perf uses.
349	  	Eventually perf will be able to read ftrace buffers
350		and this will help out in interleaving the data.
351
352	  x86-tsc: Architectures may define their own clocks. For
353	  	   example, x86 uses its own TSC cycle clock here.
354
355	  ppc-tb: This uses the powerpc timebase register value.
356		  This is in sync across CPUs and can also be used
357		  to correlate events across hypervisor/guest if
358		  tb_offset is known.
359
360	To set a clock, simply echo the clock name into this file.
361
362	  echo global > trace_clock
363
364  trace_marker:
365
366	This is a very useful file for synchronizing user space
367	with events happening in the kernel. Writing strings into
368	this file will be written into the ftrace buffer.
369
370	It is useful in applications to open this file at the start
371	of the application and just reference the file descriptor
372	for the file.
373
374	void trace_write(const char *fmt, ...)
375	{
376		va_list ap;
377		char buf[256];
378		int n;
379
380		if (trace_fd < 0)
381			return;
382
383		va_start(ap, fmt);
384		n = vsnprintf(buf, 256, fmt, ap);
385		va_end(ap);
386
387		write(trace_fd, buf, n);
388	}
389
390	start:
391
392		trace_fd = open("trace_marker", WR_ONLY);
393
394  uprobe_events:
395 
396	Add dynamic tracepoints in programs.
397	See uprobetracer.txt
398
399  uprobe_profile:
400
401	Uprobe statistics. See uprobetrace.txt
402
403  instances:
404
405	This is a way to make multiple trace buffers where different
406	events can be recorded in different buffers.
407	See "Instances" section below.
408
409  events:
410
411	This is the trace event directory. It holds event tracepoints
412	(also known as static tracepoints) that have been compiled
413	into the kernel. It shows what event tracepoints exist
414	and how they are grouped by system. There are "enable"
415	files at various levels that can enable the tracepoints
416	when a "1" is written to them.
417
418	See events.txt for more information.
419
420  per_cpu:
421
422	This is a directory that contains the trace per_cpu information.
423
424  per_cpu/cpu0/buffer_size_kb:
425
426	The ftrace buffer is defined per_cpu. That is, there's a separate
427	buffer for each CPU to allow writes to be done atomically,
428	and free from cache bouncing. These buffers may have different
429	size buffers. This file is similar to the buffer_size_kb
430	file, but it only displays or sets the buffer size for the
431	specific CPU. (here cpu0).
432
433  per_cpu/cpu0/trace:
434
435	This is similar to the "trace" file, but it will only display
436	the data specific for the CPU. If written to, it only clears
437	the specific CPU buffer.
438
439  per_cpu/cpu0/trace_pipe
440
441	This is similar to the "trace_pipe" file, and is a consuming
442	read, but it will only display (and consume) the data specific
443	for the CPU.
444
445  per_cpu/cpu0/trace_pipe_raw
446
447	For tools that can parse the ftrace ring buffer binary format,
448	the trace_pipe_raw file can be used to extract the data
449	from the ring buffer directly. With the use of the splice()
450	system call, the buffer data can be quickly transferred to
451	a file or to the network where a server is collecting the
452	data.
453
454	Like trace_pipe, this is a consuming reader, where multiple
455	reads will always produce different data.
456
457  per_cpu/cpu0/snapshot:
458
459	This is similar to the main "snapshot" file, but will only
460	snapshot the current CPU (if supported). It only displays
461	the content of the snapshot for a given CPU, and if
462	written to, only clears this CPU buffer.
463
464  per_cpu/cpu0/snapshot_raw:
465
466	Similar to the trace_pipe_raw, but will read the binary format
467	from the snapshot buffer for the given CPU.
468
469  per_cpu/cpu0/stats:
470
471	This displays certain stats about the ring buffer:
472
473	 entries: The number of events that are still in the buffer.
474
475	 overrun: The number of lost events due to overwriting when
476	 	  the buffer was full.
477
478	 commit overrun: Should always be zero.
479	 	This gets set if so many events happened within a nested
480		event (ring buffer is re-entrant), that it fills the
481		buffer and starts dropping events.
482
483	 bytes: Bytes actually read (not overwritten).
484
485	 oldest event ts: The oldest timestamp in the buffer
486
487	 now ts: The current timestamp
488
489	 dropped events: Events lost due to overwrite option being off.
490
491	 read events: The number of events read.
492
493The Tracers
494-----------
495
496Here is the list of current tracers that may be configured.
497
498  "function"
499
500	Function call tracer to trace all kernel functions.
501
502  "function_graph"
503
504	Similar to the function tracer except that the
505	function tracer probes the functions on their entry
506	whereas the function graph tracer traces on both entry
507	and exit of the functions. It then provides the ability
508	to draw a graph of function calls similar to C code
509	source.
510
511  "irqsoff"
512
513	Traces the areas that disable interrupts and saves
514	the trace with the longest max latency.
515	See tracing_max_latency. When a new max is recorded,
516	it replaces the old trace. It is best to view this
517	trace with the latency-format option enabled.
518
519  "preemptoff"
520
521	Similar to irqsoff but traces and records the amount of
522	time for which preemption is disabled.
523
524  "preemptirqsoff"
525
526	Similar to irqsoff and preemptoff, but traces and
527	records the largest time for which irqs and/or preemption
528	is disabled.
529
530  "wakeup"
531
532	Traces and records the max latency that it takes for
533	the highest priority task to get scheduled after
534	it has been woken up.
535        Traces all tasks as an average developer would expect.
536
537  "wakeup_rt"
538
539        Traces and records the max latency that it takes for just
540        RT tasks (as the current "wakeup" does). This is useful
541        for those interested in wake up timings of RT tasks.
542
543  "nop"
544
545	This is the "trace nothing" tracer. To remove all
546	tracers from tracing simply echo "nop" into
547	current_tracer.
548
549
550Examples of using the tracer
551----------------------------
552
553Here are typical examples of using the tracers when controlling
554them only with the debugfs interface (without using any
555user-land utilities).
556
557Output format:
558--------------
559
560Here is an example of the output format of the file "trace"
561
562                             --------
563# tracer: function
564#
565# entries-in-buffer/entries-written: 140080/250280   #P:4
566#
567#                              _-----=> irqs-off
568#                             / _----=> need-resched
569#                            | / _---=> hardirq/softirq
570#                            || / _--=> preempt-depth
571#                            ||| /     delay
572#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
573#              | |       |   ||||       |         |
574            bash-1977  [000] .... 17284.993652: sys_close <-system_call_fastpath
575            bash-1977  [000] .... 17284.993653: __close_fd <-sys_close
576            bash-1977  [000] .... 17284.993653: _raw_spin_lock <-__close_fd
577            sshd-1974  [003] .... 17284.993653: __srcu_read_unlock <-fsnotify
578            bash-1977  [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock
579            bash-1977  [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd
580            bash-1977  [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock
581            bash-1977  [000] .... 17284.993657: filp_close <-__close_fd
582            bash-1977  [000] .... 17284.993657: dnotify_flush <-filp_close
583            sshd-1974  [003] .... 17284.993658: sys_select <-system_call_fastpath
584                             --------
585
586A header is printed with the tracer name that is represented by
587the trace. In this case the tracer is "function". Then it shows the
588number of events in the buffer as well as the total number of entries
589that were written. The difference is the number of entries that were
590lost due to the buffer filling up (250280 - 140080 = 110200 events
591lost).
592
593The header explains the content of the events. Task name "bash", the task
594PID "1977", the CPU that it was running on "000", the latency format
595(explained below), the timestamp in <secs>.<usecs> format, the
596function name that was traced "sys_close" and the parent function that
597called this function "system_call_fastpath". The timestamp is the time
598at which the function was entered.
599
600Latency trace format
601--------------------
602
603When the latency-format option is enabled or when one of the latency
604tracers is set, the trace file gives somewhat more information to see
605why a latency happened. Here is a typical trace.
606
607# tracer: irqsoff
608#
609# irqsoff latency trace v1.1.5 on 3.8.0-test+
610# --------------------------------------------------------------------
611# latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
612#    -----------------
613#    | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
614#    -----------------
615#  => started at: __lock_task_sighand
616#  => ended at:   _raw_spin_unlock_irqrestore
617#
618#
619#                  _------=> CPU#            
620#                 / _-----=> irqs-off        
621#                | / _----=> need-resched    
622#                || / _---=> hardirq/softirq 
623#                ||| / _--=> preempt-depth   
624#                |||| /     delay             
625#  cmd     pid   ||||| time  |   caller      
626#     \   /      |||||  \    |   /           
627      ps-6143    2d...    0us!: trace_hardirqs_off <-__lock_task_sighand
628      ps-6143    2d..1  259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore
629      ps-6143    2d..1  263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore
630      ps-6143    2d..1  306us : <stack trace>
631 => trace_hardirqs_on_caller
632 => trace_hardirqs_on
633 => _raw_spin_unlock_irqrestore
634 => do_task_stat
635 => proc_tgid_stat
636 => proc_single_show
637 => seq_read
638 => vfs_read
639 => sys_read
640 => system_call_fastpath
641
642
643This shows that the current tracer is "irqsoff" tracing the time
644for which interrupts were disabled. It gives the trace version (which
645never changes) and the version of the kernel upon which this was executed on
646(3.10). Then it displays the max latency in microseconds (259 us). The number
647of trace entries displayed and the total number (both are four: #4/4).
648VP, KP, SP, and HP are always zero and are reserved for later use.
649#P is the number of online CPUs (#P:4).
650
651The task is the process that was running when the latency
652occurred. (ps pid: 6143).
653
654The start and stop (the functions in which the interrupts were
655disabled and enabled respectively) that caused the latencies:
656
657 __lock_task_sighand is where the interrupts were disabled.
658 _raw_spin_unlock_irqrestore is where they were enabled again.
659
660The next lines after the header are the trace itself. The header
661explains which is which.
662
663  cmd: The name of the process in the trace.
664
665  pid: The PID of that process.
666
667  CPU#: The CPU which the process was running on.
668
669  irqs-off: 'd' interrupts are disabled. '.' otherwise.
670	    Note: If the architecture does not support a way to
671		  read the irq flags variable, an 'X' will always
672		  be printed here.
673
674  need-resched:
675	'N' both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set,
676	'n' only TIF_NEED_RESCHED is set,
677	'p' only PREEMPT_NEED_RESCHED is set,
678	'.' otherwise.
679
680  hardirq/softirq:
681	'H' - hard irq occurred inside a softirq.
682	'h' - hard irq is running
683	's' - soft irq is running
684	'.' - normal context.
685
686  preempt-depth: The level of preempt_disabled
687
688The above is mostly meaningful for kernel developers.
689
690  time: When the latency-format option is enabled, the trace file
691	output includes a timestamp relative to the start of the
692	trace. This differs from the output when latency-format
693	is disabled, which includes an absolute timestamp.
694
695  delay: This is just to help catch your eye a bit better. And
696	 needs to be fixed to be only relative to the same CPU.
697	 The marks are determined by the difference between this
698	 current trace and the next trace.
699	  '$' - greater than 1 second
700	  '@' - greater than 100 milisecond
701	  '*' - greater than 10 milisecond
702	  '#' - greater than 1000 microsecond
703	  '!' - greater than 100 microsecond
704	  '+' - greater than 10 microsecond
705	  ' ' - less than or equal to 10 microsecond.
706
707  The rest is the same as the 'trace' file.
708
709  Note, the latency tracers will usually end with a back trace
710  to easily find where the latency occurred.
711
712trace_options
713-------------
714
715The trace_options file (or the options directory) is used to control
716what gets printed in the trace output, or manipulate the tracers.
717To see what is available, simply cat the file:
718
719  cat trace_options
720print-parent
721nosym-offset
722nosym-addr
723noverbose
724noraw
725nohex
726nobin
727noblock
728nostacktrace
729trace_printk
730noftrace_preempt
731nobranch
732annotate
733nouserstacktrace
734nosym-userobj
735noprintk-msg-only
736context-info
737latency-format
738sleep-time
739graph-time
740record-cmd
741overwrite
742nodisable_on_free
743irq-info
744markers
745function-trace
746
747To disable one of the options, echo in the option prepended with
748"no".
749
750  echo noprint-parent > trace_options
751
752To enable an option, leave off the "no".
753
754  echo sym-offset > trace_options
755
756Here are the available options:
757
758  print-parent - On function traces, display the calling (parent)
759		 function as well as the function being traced.
760
761  print-parent:
762   bash-4000  [01]  1477.606694: simple_strtoul <-kstrtoul
763
764  noprint-parent:
765   bash-4000  [01]  1477.606694: simple_strtoul
766
767
768  sym-offset - Display not only the function name, but also the
769	       offset in the function. For example, instead of
770	       seeing just "ktime_get", you will see
771	       "ktime_get+0xb/0x20".
772
773  sym-offset:
774   bash-4000  [01]  1477.606694: simple_strtoul+0x6/0xa0
775
776  sym-addr - this will also display the function address as well
777	     as the function name.
778
779  sym-addr:
780   bash-4000  [01]  1477.606694: simple_strtoul <c0339346>
781
782  verbose - This deals with the trace file when the
783            latency-format option is enabled.
784
785    bash  4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
786    (+0.000ms): simple_strtoul (kstrtoul)
787
788  raw - This will display raw numbers. This option is best for
789	use with user applications that can translate the raw
790	numbers better than having it done in the kernel.
791
792  hex - Similar to raw, but the numbers will be in a hexadecimal
793	format.
794
795  bin - This will print out the formats in raw binary.
796
797  block - When set, reading trace_pipe will not block when polled.
798
799  stacktrace - This is one of the options that changes the trace
800	       itself. When a trace is recorded, so is the stack
801	       of functions. This allows for back traces of
802	       trace sites.
803
804  trace_printk - Can disable trace_printk() from writing into the buffer.
805
806  branch - Enable branch tracing with the tracer.
807
808  annotate - It is sometimes confusing when the CPU buffers are full
809  	     and one CPU buffer had a lot of events recently, thus
810	     a shorter time frame, were another CPU may have only had
811	     a few events, which lets it have older events. When
812	     the trace is reported, it shows the oldest events first,
813	     and it may look like only one CPU ran (the one with the
814	     oldest events). When the annotate option is set, it will
815	     display when a new CPU buffer started:
816
817          <idle>-0     [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on
818          <idle>-0     [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on
819          <idle>-0     [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore
820##### CPU 2 buffer started ####
821          <idle>-0     [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle
822          <idle>-0     [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog
823          <idle>-0     [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock
824
825  userstacktrace - This option changes the trace. It records a
826		   stacktrace of the current userspace thread.
827
828  sym-userobj - when user stacktrace are enabled, look up which
829		object the address belongs to, and print a
830		relative address. This is especially useful when
831		ASLR is on, otherwise you don't get a chance to
832		resolve the address to object/file/line after
833		the app is no longer running
834
835		The lookup is performed when you read
836		trace,trace_pipe. Example:
837
838		a.out-1623  [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
839x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
840
841
842  printk-msg-only - When set, trace_printk()s will only show the format
843  		    and not their parameters (if trace_bprintk() or
844		    trace_bputs() was used to save the trace_printk()).
845
846  context-info - Show only the event data. Hides the comm, PID,
847  	         timestamp, CPU, and other useful data.
848
849  latency-format - This option changes the trace. When
850                   it is enabled, the trace displays
851                   additional information about the
852                   latencies, as described in "Latency
853                   trace format".
854
855  sleep-time - When running function graph tracer, to include
856  	       the time a task schedules out in its function.
857	       When enabled, it will account time the task has been
858	       scheduled out as part of the function call.
859
860  graph-time - When running function graph tracer, to include the
861  	       time to call nested functions. When this is not set,
862	       the time reported for the function will only include
863	       the time the function itself executed for, not the time
864	       for functions that it called.
865
866  record-cmd - When any event or tracer is enabled, a hook is enabled
867  	       in the sched_switch trace point to fill comm cache
868	       with mapped pids and comms. But this may cause some
869	       overhead, and if you only care about pids, and not the
870	       name of the task, disabling this option can lower the
871	       impact of tracing.
872
873  overwrite - This controls what happens when the trace buffer is
874              full. If "1" (default), the oldest events are
875              discarded and overwritten. If "0", then the newest
876              events are discarded.
877	        (see per_cpu/cpu0/stats for overrun and dropped)
878
879  disable_on_free - When the free_buffer is closed, tracing will
880  		    stop (tracing_on set to 0).
881
882  irq-info - Shows the interrupt, preempt count, need resched data.
883  	     When disabled, the trace looks like:
884
885# tracer: function
886#
887# entries-in-buffer/entries-written: 144405/9452052   #P:4
888#
889#           TASK-PID   CPU#      TIMESTAMP  FUNCTION
890#              | |       |          |         |
891          <idle>-0     [002]  23636.756054: ttwu_do_activate.constprop.89 <-try_to_wake_up
892          <idle>-0     [002]  23636.756054: activate_task <-ttwu_do_activate.constprop.89
893          <idle>-0     [002]  23636.756055: enqueue_task <-activate_task
894
895
896  markers - When set, the trace_marker is writable (only by root).
897  	    When disabled, the trace_marker will error with EINVAL
898	    on write.
899
900
901  function-trace - The latency tracers will enable function tracing
902  	    if this option is enabled (default it is). When
903	    it is disabled, the latency tracers do not trace
904	    functions. This keeps the overhead of the tracer down
905	    when performing latency tests.
906
907 Note: Some tracers have their own options. They only appear
908       when the tracer is active.
909
910
911
912irqsoff
913-------
914
915When interrupts are disabled, the CPU can not react to any other
916external event (besides NMIs and SMIs). This prevents the timer
917interrupt from triggering or the mouse interrupt from letting
918the kernel know of a new mouse event. The result is a latency
919with the reaction time.
920
921The irqsoff tracer tracks the time for which interrupts are
922disabled. When a new maximum latency is hit, the tracer saves
923the trace leading up to that latency point so that every time a
924new maximum is reached, the old saved trace is discarded and the
925new trace is saved.
926
927To reset the maximum, echo 0 into tracing_max_latency. Here is
928an example:
929
930 # echo 0 > options/function-trace
931 # echo irqsoff > current_tracer
932 # echo 1 > tracing_on
933 # echo 0 > tracing_max_latency
934 # ls -ltr
935 [...]
936 # echo 0 > tracing_on
937 # cat trace
938# tracer: irqsoff
939#
940# irqsoff latency trace v1.1.5 on 3.8.0-test+
941# --------------------------------------------------------------------
942# latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
943#    -----------------
944#    | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0)
945#    -----------------
946#  => started at: run_timer_softirq
947#  => ended at:   run_timer_softirq
948#
949#
950#                  _------=> CPU#            
951#                 / _-----=> irqs-off        
952#                | / _----=> need-resched    
953#                || / _---=> hardirq/softirq 
954#                ||| / _--=> preempt-depth   
955#                |||| /     delay             
956#  cmd     pid   ||||| time  |   caller      
957#     \   /      |||||  \    |   /           
958  <idle>-0       0d.s2    0us+: _raw_spin_lock_irq <-run_timer_softirq
959  <idle>-0       0dNs3   17us : _raw_spin_unlock_irq <-run_timer_softirq
960  <idle>-0       0dNs3   17us+: trace_hardirqs_on <-run_timer_softirq
961  <idle>-0       0dNs3   25us : <stack trace>
962 => _raw_spin_unlock_irq
963 => run_timer_softirq
964 => __do_softirq
965 => call_softirq
966 => do_softirq
967 => irq_exit
968 => smp_apic_timer_interrupt
969 => apic_timer_interrupt
970 => rcu_idle_exit
971 => cpu_idle
972 => rest_init
973 => start_kernel
974 => x86_64_start_reservations
975 => x86_64_start_kernel
976
977Here we see that that we had a latency of 16 microseconds (which is
978very good). The _raw_spin_lock_irq in run_timer_softirq disabled
979interrupts. The difference between the 16 and the displayed
980timestamp 25us occurred because the clock was incremented
981between the time of recording the max latency and the time of
982recording the function that had that latency.
983
984Note the above example had function-trace not set. If we set
985function-trace, we get a much larger output:
986
987 with echo 1 > options/function-trace
988
989# tracer: irqsoff
990#
991# irqsoff latency trace v1.1.5 on 3.8.0-test+
992# --------------------------------------------------------------------
993# latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
994#    -----------------
995#    | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0)
996#    -----------------
997#  => started at: ata_scsi_queuecmd
998#  => ended at:   ata_scsi_queuecmd
999#
1000#
1001#                  _------=> CPU#            
1002#                 / _-----=> irqs-off        
1003#                | / _----=> need-resched    
1004#                || / _---=> hardirq/softirq 
1005#                ||| / _--=> preempt-depth   
1006#                |||| /     delay             
1007#  cmd     pid   ||||| time  |   caller      
1008#     \   /      |||||  \    |   /           
1009    bash-2042    3d...    0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1010    bash-2042    3d...    0us : add_preempt_count <-_raw_spin_lock_irqsave
1011    bash-2042    3d..1    1us : ata_scsi_find_dev <-ata_scsi_queuecmd
1012    bash-2042    3d..1    1us : __ata_scsi_find_dev <-ata_scsi_find_dev
1013    bash-2042    3d..1    2us : ata_find_dev.part.14 <-__ata_scsi_find_dev
1014    bash-2042    3d..1    2us : ata_qc_new_init <-__ata_scsi_queuecmd
1015    bash-2042    3d..1    3us : ata_sg_init <-__ata_scsi_queuecmd
1016    bash-2042    3d..1    4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd
1017    bash-2042    3d..1    4us : ata_build_rw_tf <-ata_scsi_rw_xlat
1018[...]
1019    bash-2042    3d..1   67us : delay_tsc <-__delay
1020    bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
1021    bash-2042    3d..2   67us : sub_preempt_count <-delay_tsc
1022    bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
1023    bash-2042    3d..2   68us : sub_preempt_count <-delay_tsc
1024    bash-2042    3d..1   68us+: ata_bmdma_start <-ata_bmdma_qc_issue
1025    bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1026    bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1027    bash-2042    3d..1   72us+: trace_hardirqs_on <-ata_scsi_queuecmd
1028    bash-2042    3d..1  120us : <stack trace>
1029 => _raw_spin_unlock_irqrestore
1030 => ata_scsi_queuecmd
1031 => scsi_dispatch_cmd
1032 => scsi_request_fn
1033 => __blk_run_queue_uncond
1034 => __blk_run_queue
1035 => blk_queue_bio
1036 => generic_make_request
1037 => submit_bio
1038 => submit_bh
1039 => __ext3_get_inode_loc
1040 => ext3_iget
1041 => ext3_lookup
1042 => lookup_real
1043 => __lookup_hash
1044 => walk_component
1045 => lookup_last
1046 => path_lookupat
1047 => filename_lookup
1048 => user_path_at_empty
1049 => user_path_at
1050 => vfs_fstatat
1051 => vfs_stat
1052 => sys_newstat
1053 => system_call_fastpath
1054
1055
1056Here we traced a 71 microsecond latency. But we also see all the
1057functions that were called during that time. Note that by
1058enabling function tracing, we incur an added overhead. This
1059overhead may extend the latency times. But nevertheless, this
1060trace has provided some very helpful debugging information.
1061
1062
1063preemptoff
1064----------
1065
1066When preemption is disabled, we may be able to receive
1067interrupts but the task cannot be preempted and a higher
1068priority task must wait for preemption to be enabled again
1069before it can preempt a lower priority task.
1070
1071The preemptoff tracer traces the places that disable preemption.
1072Like the irqsoff tracer, it records the maximum latency for
1073which preemption was disabled. The control of preemptoff tracer
1074is much like the irqsoff tracer.
1075
1076 # echo 0 > options/function-trace
1077 # echo preemptoff > current_tracer
1078 # echo 1 > tracing_on
1079 # echo 0 > tracing_max_latency
1080 # ls -ltr
1081 [...]
1082 # echo 0 > tracing_on
1083 # cat trace
1084# tracer: preemptoff
1085#
1086# preemptoff latency trace v1.1.5 on 3.8.0-test+
1087# --------------------------------------------------------------------
1088# latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1089#    -----------------
1090#    | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)
1091#    -----------------
1092#  => started at: do_IRQ
1093#  => ended at:   do_IRQ
1094#
1095#
1096#                  _------=> CPU#            
1097#                 / _-----=> irqs-off        
1098#                | / _----=> need-resched    
1099#                || / _---=> hardirq/softirq 
1100#                ||| / _--=> preempt-depth   
1101#                |||| /     delay             
1102#  cmd     pid   ||||| time  |   caller      
1103#     \   /      |||||  \    |   /           
1104    sshd-1991    1d.h.    0us+: irq_enter <-do_IRQ
1105    sshd-1991    1d..1   46us : irq_exit <-do_IRQ
1106    sshd-1991    1d..1   47us+: trace_preempt_on <-do_IRQ
1107    sshd-1991    1d..1   52us : <stack trace>
1108 => sub_preempt_count
1109 => irq_exit
1110 => do_IRQ
1111 => ret_from_intr
1112
1113
1114This has some more changes. Preemption was disabled when an
1115interrupt came in (notice the 'h'), and was enabled on exit.
1116But we also see that interrupts have been disabled when entering
1117the preempt off section and leaving it (the 'd'). We do not know if
1118interrupts were enabled in the mean time or shortly after this
1119was over.
1120
1121# tracer: preemptoff
1122#
1123# preemptoff latency trace v1.1.5 on 3.8.0-test+
1124# --------------------------------------------------------------------
1125# latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1126#    -----------------
1127#    | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0)
1128#    -----------------
1129#  => started at: wake_up_new_task
1130#  => ended at:   task_rq_unlock
1131#
1132#
1133#                  _------=> CPU#            
1134#                 / _-----=> irqs-off        
1135#                | / _----=> need-resched    
1136#                || / _---=> hardirq/softirq 
1137#                ||| / _--=> preempt-depth   
1138#                |||| /     delay             
1139#  cmd     pid   ||||| time  |   caller      
1140#     \   /      |||||  \    |   /           
1141    bash-1994    1d..1    0us : _raw_spin_lock_irqsave <-wake_up_new_task
1142    bash-1994    1d..1    0us : select_task_rq_fair <-select_task_rq
1143    bash-1994    1d..1    1us : __rcu_read_lock <-select_task_rq_fair
1144    bash-1994    1d..1    1us : source_load <-select_task_rq_fair
1145    bash-1994    1d..1    1us : source_load <-select_task_rq_fair
1146[...]
1147    bash-1994    1d..1   12us : irq_enter <-smp_apic_timer_interrupt
1148    bash-1994    1d..1   12us : rcu_irq_enter <-irq_enter
1149    bash-1994    1d..1   13us : add_preempt_count <-irq_enter
1150    bash-1994    1d.h1   13us : exit_idle <-smp_apic_timer_interrupt
1151    bash-1994    1d.h1   13us : hrtimer_interrupt <-smp_apic_timer_interrupt
1152    bash-1994    1d.h1   13us : _raw_spin_lock <-hrtimer_interrupt
1153    bash-1994    1d.h1   14us : add_preempt_count <-_raw_spin_lock
1154    bash-1994    1d.h2   14us : ktime_get_update_offsets <-hrtimer_interrupt
1155[...]
1156    bash-1994    1d.h1   35us : lapic_next_event <-clockevents_program_event
1157    bash-1994    1d.h1   35us : irq_exit <-smp_apic_timer_interrupt
1158    bash-1994    1d.h1   36us : sub_preempt_count <-irq_exit
1159    bash-1994    1d..2   36us : do_softirq <-irq_exit
1160    bash-1994    1d..2   36us : __do_softirq <-call_softirq
1161    bash-1994    1d..2   36us : __local_bh_disable <-__do_softirq
1162    bash-1994    1d.s2   37us : add_preempt_count <-_raw_spin_lock_irq
1163    bash-1994    1d.s3   38us : _raw_spin_unlock <-run_timer_softirq
1164    bash-1994    1d.s3   39us : sub_preempt_count <-_raw_spin_unlock
1165    bash-1994    1d.s2   39us : call_timer_fn <-run_timer_softirq
1166[...]
1167    bash-1994    1dNs2   81us : cpu_needs_another_gp <-rcu_process_callbacks
1168    bash-1994    1dNs2   82us : __local_bh_enable <-__do_softirq
1169    bash-1994    1dNs2   82us : sub_preempt_count <-__local_bh_enable
1170    bash-1994    1dN.2   82us : idle_cpu <-irq_exit
1171    bash-1994    1dN.2   83us : rcu_irq_exit <-irq_exit
1172    bash-1994    1dN.2   83us : sub_preempt_count <-irq_exit
1173    bash-1994    1.N.1   84us : _raw_spin_unlock_irqrestore <-task_rq_unlock
1174    bash-1994    1.N.1   84us+: trace_preempt_on <-task_rq_unlock
1175    bash-1994    1.N.1  104us : <stack trace>
1176 => sub_preempt_count
1177 => _raw_spin_unlock_irqrestore
1178 => task_rq_unlock
1179 => wake_up_new_task
1180 => do_fork
1181 => sys_clone
1182 => stub_clone
1183
1184
1185The above is an example of the preemptoff trace with
1186function-trace set. Here we see that interrupts were not disabled
1187the entire time. The irq_enter code lets us know that we entered
1188an interrupt 'h'. Before that, the functions being traced still
1189show that it is not in an interrupt, but we can see from the
1190functions themselves that this is not the case.
1191
1192preemptirqsoff
1193--------------
1194
1195Knowing the locations that have interrupts disabled or
1196preemption disabled for the longest times is helpful. But
1197sometimes we would like to know when either preemption and/or
1198interrupts are disabled.
1199
1200Consider the following code:
1201
1202    local_irq_disable();
1203    call_function_with_irqs_off();
1204    preempt_disable();
1205    call_function_with_irqs_and_preemption_off();
1206    local_irq_enable();
1207    call_function_with_preemption_off();
1208    preempt_enable();
1209
1210The irqsoff tracer will record the total length of
1211call_function_with_irqs_off() and
1212call_function_with_irqs_and_preemption_off().
1213
1214The preemptoff tracer will record the total length of
1215call_function_with_irqs_and_preemption_off() and
1216call_function_with_preemption_off().
1217
1218But neither will trace the time that interrupts and/or
1219preemption is disabled. This total time is the time that we can
1220not schedule. To record this time, use the preemptirqsoff
1221tracer.
1222
1223Again, using this trace is much like the irqsoff and preemptoff
1224tracers.
1225
1226 # echo 0 > options/function-trace
1227 # echo preemptirqsoff > current_tracer
1228 # echo 1 > tracing_on
1229 # echo 0 > tracing_max_latency
1230 # ls -ltr
1231 [...]
1232 # echo 0 > tracing_on
1233 # cat trace
1234# tracer: preemptirqsoff
1235#
1236# preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1237# --------------------------------------------------------------------
1238# latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1239#    -----------------
1240#    | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0)
1241#    -----------------
1242#  => started at: ata_scsi_queuecmd
1243#  => ended at:   ata_scsi_queuecmd
1244#
1245#
1246#                  _------=> CPU#            
1247#                 / _-----=> irqs-off        
1248#                | / _----=> need-resched    
1249#                || / _---=> hardirq/softirq 
1250#                ||| / _--=> preempt-depth   
1251#                |||| /     delay             
1252#  cmd     pid   ||||| time  |   caller      
1253#     \   /      |||||  \    |   /           
1254      ls-2230    3d...    0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1255      ls-2230    3...1  100us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1256      ls-2230    3...1  101us+: trace_preempt_on <-ata_scsi_queuecmd
1257      ls-2230    3...1  111us : <stack trace>
1258 => sub_preempt_count
1259 => _raw_spin_unlock_irqrestore
1260 => ata_scsi_queuecmd
1261 => scsi_dispatch_cmd
1262 => scsi_request_fn
1263 => __blk_run_queue_uncond
1264 => __blk_run_queue
1265 => blk_queue_bio
1266 => generic_make_request
1267 => submit_bio
1268 => submit_bh
1269 => ext3_bread
1270 => ext3_dir_bread
1271 => htree_dirblock_to_tree
1272 => ext3_htree_fill_tree
1273 => ext3_readdir
1274 => vfs_readdir
1275 => sys_getdents
1276 => system_call_fastpath
1277
1278
1279The trace_hardirqs_off_thunk is called from assembly on x86 when
1280interrupts are disabled in the assembly code. Without the
1281function tracing, we do not know if interrupts were enabled
1282within the preemption points. We do see that it started with
1283preemption enabled.
1284
1285Here is a trace with function-trace set:
1286
1287# tracer: preemptirqsoff
1288#
1289# preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1290# --------------------------------------------------------------------
1291# latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1292#    -----------------
1293#    | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0)
1294#    -----------------
1295#  => started at: schedule
1296#  => ended at:   mutex_unlock
1297#
1298#
1299#                  _------=> CPU#            
1300#                 / _-----=> irqs-off        
1301#                | / _----=> need-resched    
1302#                || / _---=> hardirq/softirq 
1303#                ||| / _--=> preempt-depth   
1304#                |||| /     delay             
1305#  cmd     pid   ||||| time  |   caller      
1306#     \   /      |||||  \    |   /           
1307kworker/-59      3...1    0us : __schedule <-schedule
1308kworker/-59      3d..1    0us : rcu_preempt_qs <-rcu_note_context_switch
1309kworker/-59      3d..1    1us : add_preempt_count <-_raw_spin_lock_irq
1310kworker/-59      3d..2    1us : deactivate_task <-__schedule
1311kworker/-59      3d..2    1us : dequeue_task <-deactivate_task
1312kworker/-59      3d..2    2us : update_rq_clock <-dequeue_task
1313kworker/-59      3d..2    2us : dequeue_task_fair <-dequeue_task
1314kworker/-59      3d..2    2us : update_curr <-dequeue_task_fair
1315kworker/-59      3d..2    2us : update_min_vruntime <-update_curr
1316kworker/-59      3d..2    3us : cpuacct_charge <-update_curr
1317kworker/-59      3d..2    3us : __rcu_read_lock <-cpuacct_charge
1318kworker/-59      3d..2    3us : __rcu_read_unlock <-cpuacct_charge
1319kworker/-59      3d..2    3us : update_cfs_rq_blocked_load <-dequeue_task_fair
1320kworker/-59      3d..2    4us : clear_buddies <-dequeue_task_fair
1321kworker/-59      3d..2    4us : account_entity_dequeue <-dequeue_task_fair
1322kworker/-59      3d..2    4us : update_min_vruntime <-dequeue_task_fair
1323kworker/-59      3d..2    4us : update_cfs_shares <-dequeue_task_fair
1324kworker/-59      3d..2    5us : hrtick_update <-dequeue_task_fair
1325kworker/-59      3d..2    5us : wq_worker_sleeping <-__schedule
1326kworker/-59      3d..2    5us : kthread_data <-wq_worker_sleeping
1327kworker/-59      3d..2    5us : put_prev_task_fair <-__schedule
1328kworker/-59      3d..2    6us : pick_next_task_fair <-pick_next_task
1329kworker/-59      3d..2    6us : clear_buddies <-pick_next_task_fair
1330kworker/-59      3d..2    6us : set_next_entity <-pick_next_task_fair
1331kworker/-59      3d..2    6us : update_stats_wait_end <-set_next_entity
1332      ls-2269    3d..2    7us : finish_task_switch <-__schedule
1333      ls-2269    3d..2    7us : _raw_spin_unlock_irq <-finish_task_switch
1334      ls-2269    3d..2    8us : do_IRQ <-ret_from_intr
1335      ls-2269    3d..2    8us : irq_enter <-do_IRQ
1336      ls-2269    3d..2    8us : rcu_irq_enter <-irq_enter
1337      ls-2269    3d..2    9us : add_preempt_count <-irq_enter
1338      ls-2269    3d.h2    9us : exit_idle <-do_IRQ
1339[...]
1340      ls-2269    3d.h3   20us : sub_preempt_count <-_raw_spin_unlock
1341      ls-2269    3d.h2   20us : irq_exit <-do_IRQ
1342      ls-2269    3d.h2   21us : sub_preempt_count <-irq_exit
1343      ls-2269    3d..3   21us : do_softirq <-irq_exit
1344      ls-2269    3d..3   21us : __do_softirq <-call_softirq
1345      ls-2269    3d..3   21us+: __local_bh_disable <-__do_softirq
1346      ls-2269    3d.s4   29us : sub_preempt_count <-_local_bh_enable_ip
1347      ls-2269    3d.s5   29us : sub_preempt_count <-_local_bh_enable_ip
1348      ls-2269    3d.s5   31us : do_IRQ <-ret_from_intr
1349      ls-2269    3d.s5   31us : irq_enter <-do_IRQ
1350      ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
1351[...]
1352      ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
1353      ls-2269    3d.s5   32us : add_preempt_count <-irq_enter
1354      ls-2269    3d.H5   32us : exit_idle <-do_IRQ
1355      ls-2269    3d.H5   32us : handle_irq <-do_IRQ
1356      ls-2269    3d.H5   32us : irq_to_desc <-handle_irq
1357      ls-2269    3d.H5   33us : handle_fasteoi_irq <-handle_irq
1358[...]
1359      ls-2269    3d.s5  158us : _raw_spin_unlock_irqrestore <-rtl8139_poll
1360      ls-2269    3d.s3  158us : net_rps_action_and_irq_enable.isra.65 <-net_rx_action
1361      ls-2269    3d.s3  159us : __local_bh_enable <-__do_softirq
1362      ls-2269    3d.s3  159us : sub_preempt_count <-__local_bh_enable
1363      ls-2269    3d..3  159us : idle_cpu <-irq_exit
1364      ls-2269    3d..3  159us : rcu_irq_exit <-irq_exit
1365      ls-2269    3d..3  160us : sub_preempt_count <-irq_exit
1366      ls-2269    3d...  161us : __mutex_unlock_slowpath <-mutex_unlock
1367      ls-2269    3d...  162us+: trace_hardirqs_on <-mutex_unlock
1368      ls-2269    3d...  186us : <stack trace>
1369 => __mutex_unlock_slowpath
1370 => mutex_unlock
1371 => process_output
1372 => n_tty_write
1373 => tty_write
1374 => vfs_write
1375 => sys_write
1376 => system_call_fastpath
1377
1378This is an interesting trace. It started with kworker running and
1379scheduling out and ls taking over. But as soon as ls released the
1380rq lock and enabled interrupts (but not preemption) an interrupt
1381triggered. When the interrupt finished, it started running softirqs.
1382But while the softirq was running, another interrupt triggered.
1383When an interrupt is running inside a softirq, the annotation is 'H'.
1384
1385
1386wakeup
1387------
1388
1389One common case that people are interested in tracing is the
1390time it takes for a task that is woken to actually wake up.
1391Now for non Real-Time tasks, this can be arbitrary. But tracing
1392it none the less can be interesting. 
1393
1394Without function tracing:
1395
1396 # echo 0 > options/function-trace
1397 # echo wakeup > current_tracer
1398 # echo 1 > tracing_on
1399 # echo 0 > tracing_max_latency
1400 # chrt -f 5 sleep 1
1401 # echo 0 > tracing_on
1402 # cat trace
1403# tracer: wakeup
1404#
1405# wakeup latency trace v1.1.5 on 3.8.0-test+
1406# --------------------------------------------------------------------
1407# latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1408#    -----------------
1409#    | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0)
1410#    -----------------
1411#
1412#                  _------=> CPU#            
1413#                 / _-----=> irqs-off        
1414#                | / _----=> need-resched    
1415#                || / _---=> hardirq/softirq 
1416#                ||| / _--=> preempt-depth   
1417#                |||| /     delay             
1418#  cmd     pid   ||||| time  |   caller      
1419#     \   /      |||||  \    |   /           
1420  <idle>-0       3dNs7    0us :      0:120:R   + [003]   312:100:R kworker/3:1H
1421  <idle>-0       3dNs7    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1422  <idle>-0       3d..3   15us : __schedule <-schedule
1423  <idle>-0       3d..3   15us :      0:120:R ==> [003]   312:100:R kworker/3:1H
1424
1425The tracer only traces the highest priority task in the system
1426to avoid tracing the normal circumstances. Here we see that
1427the kworker with a nice priority of -20 (not very nice), took
1428just 15 microseconds from the time it woke up, to the time it
1429ran.
1430
1431Non Real-Time tasks are not that interesting. A more interesting
1432trace is to concentrate only on Real-Time tasks.
1433
1434wakeup_rt
1435---------
1436
1437In a Real-Time environment it is very important to know the
1438wakeup time it takes for the highest priority task that is woken
1439up to the time that it executes. This is also known as "schedule
1440latency". I stress the point that this is about RT tasks. It is
1441also important to know the scheduling latency of non-RT tasks,
1442but the average schedule latency is better for non-RT tasks.
1443Tools like LatencyTop are more appropriate for such
1444measurements.
1445
1446Real-Time environments are interested in the worst case latency.
1447That is the longest latency it takes for something to happen,
1448and not the average. We can have a very fast scheduler that may
1449only have a large latency once in a while, but that would not
1450work well with Real-Time tasks.  The wakeup_rt tracer was designed
1451to record the worst case wakeups of RT tasks. Non-RT tasks are
1452not recorded because the tracer only records one worst case and
1453tracing non-RT tasks that are unpredictable will overwrite the
1454worst case latency of RT tasks (just run the normal wakeup
1455tracer for a while to see that effect).
1456
1457Since this tracer only deals with RT tasks, we will run this
1458slightly differently than we did with the previous tracers.
1459Instead of performing an 'ls', we will run 'sleep 1' under
1460'chrt' which changes the priority of the task.
1461
1462 # echo 0 > options/function-trace
1463 # echo wakeup_rt > current_tracer
1464 # echo 1 > tracing_on
1465 # echo 0 > tracing_max_latency
1466 # chrt -f 5 sleep 1
1467 # echo 0 > tracing_on
1468 # cat trace
1469# tracer: wakeup
1470#
1471# tracer: wakeup_rt
1472#
1473# wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1474# --------------------------------------------------------------------
1475# latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1476#    -----------------
1477#    | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5)
1478#    -----------------
1479#
1480#                  _------=> CPU#            
1481#                 / _-----=> irqs-off        
1482#                | / _----=> need-resched    
1483#                || / _---=> hardirq/softirq 
1484#                ||| / _--=> preempt-depth   
1485#                |||| /     delay             
1486#  cmd     pid   ||||| time  |   caller      
1487#     \   /      |||||  \    |   /           
1488  <idle>-0       3d.h4    0us :      0:120:R   + [003]  2389: 94:R sleep
1489  <idle>-0       3d.h4    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1490  <idle>-0       3d..3    5us : __schedule <-schedule
1491  <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
1492
1493
1494Running this on an idle system, we see that it only took 5 microseconds
1495to perform the task switch.  Note, since the trace point in the schedule
1496is before the actual "switch", we stop the tracing when the recorded task
1497is about to schedule in. This may change if we add a new marker at the
1498end of the scheduler.
1499
1500Notice that the recorded task is 'sleep' with the PID of 2389
1501and it has an rt_prio of 5. This priority is user-space priority
1502and not the internal kernel priority. The policy is 1 for
1503SCHED_FIFO and 2 for SCHED_RR.
1504
1505Note, that the trace data shows the internal priority (99 - rtprio).
1506
1507  <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
1508
1509The 0:120:R means idle was running with a nice priority of 0 (120 - 20)
1510and in the running state 'R'. The sleep task was scheduled in with
15112389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94)
1512and it too is in the running state.
1513
1514Doing the same with chrt -r 5 and function-trace set.
1515
1516  echo 1 > options/function-trace
1517
1518# tracer: wakeup_rt
1519#
1520# wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1521# --------------------------------------------------------------------
1522# latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1523#    -----------------
1524#    | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5)
1525#    -----------------
1526#
1527#                  _------=> CPU#            
1528#                 / _-----=> irqs-off        
1529#                | / _----=> need-resched    
1530#                || / _---=> hardirq/softirq 
1531#                ||| / _--=> preempt-depth   
1532#                |||| /     delay             
1533#  cmd     pid   ||||| time  |   caller      
1534#     \   /      |||||  \    |   /           
1535  <idle>-0       3d.h4    1us+:      0:120:R   + [003]  2448: 94:R sleep
1536  <idle>-0       3d.h4    2us : ttwu_do_activate.constprop.87 <-try_to_wake_up
1537  <idle>-0       3d.h3    3us : check_preempt_curr <-ttwu_do_wakeup
1538  <idle>-0       3d.h3    3us : resched_curr <-check_preempt_curr
1539  <idle>-0       3dNh3    4us : task_woken_rt <-ttwu_do_wakeup
1540  <idle>-0       3dNh3    4us : _raw_spin_unlock <-try_to_wake_up
1541  <idle>-0       3dNh3    4us : sub_preempt_count <-_raw_spin_unlock
1542  <idle>-0       3dNh2    5us : ttwu_stat <-try_to_wake_up
1543  <idle>-0       3dNh2    5us : _raw_spin_unlock_irqrestore <-try_to_wake_up
1544  <idle>-0       3dNh2    6us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1545  <idle>-0       3dNh1    6us : _raw_spin_lock <-__run_hrtimer
1546  <idle>-0       3dNh1    6us : add_preempt_count <-_raw_spin_lock
1547  <idle>-0       3dNh2    7us : _raw_spin_unlock <-hrtimer_interrupt
1548  <idle>-0       3dNh2    7us : sub_preempt_count <-_raw_spin_unlock
1549  <idle>-0       3dNh1    7us : tick_program_event <-hrtimer_interrupt
1550  <idle>-0       3dNh1    7us : clockevents_program_event <-tick_program_event
1551  <idle>-0       3dNh1    8us : ktime_get <-clockevents_program_event
1552  <idle>-0       3dNh1    8us : lapic_next_event <-clockevents_program_event
1553  <idle>-0       3dNh1    8us : irq_exit <-smp_apic_timer_interrupt
1554  <idle>-0       3dNh1    9us : sub_preempt_count <-irq_exit
1555  <idle>-0       3dN.2    9us : idle_cpu <-irq_exit
1556  <idle>-0       3dN.2    9us : rcu_irq_exit <-irq_exit
1557  <idle>-0       3dN.2   10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit
1558  <idle>-0       3dN.2   10us : sub_preempt_count <-irq_exit
1559  <idle>-0       3.N.1   11us : rcu_idle_exit <-cpu_idle
1560  <idle>-0       3dN.1   11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit
1561  <idle>-0       3.N.1   11us : tick_nohz_idle_exit <-cpu_idle
1562  <idle>-0       3dN.1   12us : menu_hrtimer_cancel <-tick_nohz_idle_exit
1563  <idle>-0       3dN.1   12us : ktime_get <-tick_nohz_idle_exit
1564  <idle>-0       3dN.1   12us : tick_do_update_jiffies64 <-tick_nohz_idle_exit
1565  <idle>-0       3dN.1   13us : update_cpu_load_nohz <-tick_nohz_idle_exit
1566  <idle>-0       3dN.1   13us : _raw_spin_lock <-update_cpu_load_nohz
1567  <idle>-0       3dN.1   13us : add_preempt_count <-_raw_spin_lock
1568  <idle>-0       3dN.2   13us : __update_cpu_load <-update_cpu_load_nohz
1569  <idle>-0       3dN.2   14us : sched_avg_update <-__update_cpu_load
1570  <idle>-0       3dN.2   14us : _raw_spin_unlock <-update_cpu_load_nohz
1571  <idle>-0       3dN.2   14us : sub_preempt_count <-_raw_spin_unlock
1572  <idle>-0       3dN.1   15us : calc_load_exit_idle <-tick_nohz_idle_exit
1573  <idle>-0       3dN.1   15us : touch_softlockup_watchdog <-tick_nohz_idle_exit
1574  <idle>-0       3dN.1   15us : hrtimer_cancel <-tick_nohz_idle_exit
1575  <idle>-0       3dN.1   15us : hrtimer_try_to_cancel <-hrtimer_cancel
1576  <idle>-0       3dN.1   16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_cancel
1577  <idle>-0       3dN.1   16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1578  <idle>-0       3dN.1   16us : add_preempt_count <-_raw_spin_lock_irqsave
1579  <idle>-0       3dN.2   17us : __remove_hrtimer <-remove_hrtimer.part.16
1580  <idle>-0       3dN.2   17us : hrtimer_force_reprogram <-__remove_hrtimer
1581  <idle>-0       3dN.2   17us : tick_program_event <-hrtimer_force_reprogram
1582  <idle>-0       3dN.2   18us : clockevents_program_event <-tick_program_event
1583  <idle>-0       3dN.2   18us : ktime_get <-clockevents_program_event
1584  <idle>-0       3dN.2   18us : lapic_next_event <-clockevents_program_event
1585  <idle>-0       3dN.2   19us : _raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
1586  <idle>-0       3dN.2   19us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1587  <idle>-0       3dN.1   19us : hrtimer_forward <-tick_nohz_idle_exit
1588  <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
1589  <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
1590  <idle>-0       3dN.1   20us : hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
1591  <idle>-0       3dN.1   20us : __hrtimer_start_range_ns <-hrtimer_start_range_ns
1592  <idle>-0       3dN.1   21us : lock_hrtimer_base.isra.18 <-__hrtimer_start_range_ns
1593  <idle>-0       3dN.1   21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1594  <idle>-0       3dN.1   21us : add_preempt_count <-_raw_spin_lock_irqsave
1595  <idle>-0       3dN.2   22us : ktime_add_safe <-__hrtimer_start_range_ns
1596  <idle>-0       3dN.2   22us : enqueue_hrtimer <-__hrtimer_start_range_ns
1597  <idle>-0       3dN.2   22us : tick_program_event <-__hrtimer_start_range_ns
1598  <idle>-0       3dN.2   23us : clockevents_program_event <-tick_program_event
1599  <idle>-0       3dN.2   23us : ktime_get <-clockevents_program_event
1600  <idle>-0       3dN.2   23us : lapic_next_event <-clockevents_program_event
1601  <idle>-0       3dN.2   24us : _raw_spin_unlock_irqrestore <-__hrtimer_start_range_ns
1602  <idle>-0       3dN.2   24us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1603  <idle>-0       3dN.1   24us : account_idle_ticks <-tick_nohz_idle_exit
1604  <idle>-0       3dN.1   24us : account_idle_time <-account_idle_ticks
1605  <idle>-0       3.N.1   25us : sub_preempt_count <-cpu_idle
1606  <idle>-0       3.N..   25us : schedule <-cpu_idle
1607  <idle>-0       3.N..   25us : __schedule <-preempt_schedule
1608  <idle>-0       3.N..   26us : add_preempt_count <-__schedule
1609  <idle>-0       3.N.1   26us : rcu_note_context_switch <-__schedule
1610  <idle>-0       3.N.1   26us : rcu_sched_qs <-rcu_note_context_switch
1611  <idle>-0       3dN.1   27us : rcu_preempt_qs <-rcu_note_context_switch
1612  <idle>-0       3.N.1   27us : _raw_spin_lock_irq <-__schedule
1613  <idle>-0       3dN.1   27us : add_preempt_count <-_raw_spin_lock_irq
1614  <idle>-0       3dN.2   28us : put_prev_task_idle <-__schedule
1615  <idle>-0       3dN.2   28us : pick_next_task_stop <-pick_next_task
1616  <idle>-0       3dN.2   28us : pick_next_task_rt <-pick_next_task
1617  <idle>-0       3dN.2   29us : dequeue_pushable_task <-pick_next_task_rt
1618  <idle>-0       3d..3   29us : __schedule <-preempt_schedule
1619  <idle>-0       3d..3   30us :      0:120:R ==> [003]  2448: 94:R sleep
1620
1621This isn't that big of a trace, even with function tracing enabled,
1622so I included the entire trace.
1623
1624The interrupt went off while when the system was idle. Somewhere
1625before task_woken_rt() was called, the NEED_RESCHED flag was set,
1626this is indicated by the first occurrence of the 'N' flag.
1627
1628Latency tracing and events
1629--------------------------
1630As function tracing can induce a much larger latency, but without
1631seeing what happens within the latency it is hard to know what
1632caused it. There is a middle ground, and that is with enabling
1633events.
1634
1635 # echo 0 > options/function-trace
1636 # echo wakeup_rt > current_tracer
1637 # echo 1 > events/enable
1638 # echo 1 > tracing_on
1639 # echo 0 > tracing_max_latency
1640 # chrt -f 5 sleep 1
1641 # echo 0 > tracing_on
1642 # cat trace
1643# tracer: wakeup_rt
1644#
1645# wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1646# --------------------------------------------------------------------
1647# latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1648#    -----------------
1649#    | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5)
1650#    -----------------
1651#
1652#                  _------=> CPU#            
1653#                 / _-----=> irqs-off        
1654#                | / _----=> need-resched    
1655#                || / _---=> hardirq/softirq 
1656#                ||| / _--=> preempt-depth   
1657#                |||| /     delay             
1658#  cmd     pid   ||||| time  |   caller      
1659#     \   /      |||||  \    |   /           
1660  <idle>-0       2d.h4    0us :      0:120:R   + [002]  5882: 94:R sleep
1661  <idle>-0       2d.h4    0us : ttwu_do_activate.constprop.87 <-try_to_wake_up
1662  <idle>-0       2d.h4    1us : sched_wakeup: comm=sleep pid=5882 prio=94 success=1 target_cpu=002
1663  <idle>-0       2dNh2    1us : hrtimer_expire_exit: hrtimer=ffff88007796feb8
1664  <idle>-0       2.N.2    2us : power_end: cpu_id=2
1665  <idle>-0       2.N.2    3us : cpu_idle: state=4294967295 cpu_id=2
1666  <idle>-0       2dN.3    4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0
1667  <idle>-0       2dN.3    4us : hrtimer_start: hrtimer=ffff88007d50d5e0 function=tick_sched_timer expires=34311211000000 softexpires=34311211000000
1668  <idle>-0       2.N.2    5us : rcu_utilization: Start context switch
1669  <idle>-0       2.N.2    5us : rcu_utilization: End context switch
1670  <idle>-0       2d..3    6us : __schedule <-schedule
1671  <idle>-0       2d..3    6us :      0:120:R ==> [002]  5882: 94:R sleep
1672
1673
1674function
1675--------
1676
1677This tracer is the function tracer. Enabling the function tracer
1678can be done from the debug file system. Make sure the
1679ftrace_enabled is set; otherwise this tracer is a nop.
1680See the "ftrace_enabled" section below.
1681
1682 # sysctl kernel.ftrace_enabled=1
1683 # echo function > current_tracer
1684 # echo 1 > tracing_on
1685 # usleep 1
1686 # echo 0 > tracing_on
1687 # cat trace
1688# tracer: function
1689#
1690# entries-in-buffer/entries-written: 24799/24799   #P:4
1691#
1692#                              _-----=> irqs-off
1693#                             / _----=> need-resched
1694#                            | / _---=> hardirq/softirq
1695#                            || / _--=> preempt-depth
1696#                            ||| /     delay
1697#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
1698#              | |       |   ||||       |         |
1699            bash-1994  [002] ....  3082.063030: mutex_unlock <-rb_simple_write
1700            bash-1994  [002] ....  3082.063031: __mutex_unlock_slowpath <-mutex_unlock
1701            bash-1994  [002] ....  3082.063031: __fsnotify_parent <-fsnotify_modify
1702            bash-1994  [002] ....  3082.063032: fsnotify <-fsnotify_modify
1703            bash-1994  [002] ....  3082.063032: __srcu_read_lock <-fsnotify
1704            bash-1994  [002] ....  3082.063032: add_preempt_count <-__srcu_read_lock
1705            bash-1994  [002] ...1  3082.063032: sub_preempt_count <-__srcu_read_lock
1706            bash-1994  [002] ....  3082.063033: __srcu_read_unlock <-fsnotify
1707[...]
1708
1709
1710Note: function tracer uses ring buffers to store the above
1711entries. The newest data may overwrite the oldest data.
1712Sometimes using echo to stop the trace is not sufficient because
1713the tracing could have overwritten the data that you wanted to
1714record. For this reason, it is sometimes better to disable
1715tracing directly from a program. This allows you to stop the
1716tracing at the point that you hit the part that you are
1717interested in. To disable the tracing directly from a C program,
1718something like following code snippet can be used:
1719
1720int trace_fd;
1721[...]
1722int main(int argc, char *argv[]) {
1723	[...]
1724	trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
1725	[...]
1726	if (condition_hit()) {
1727		write(trace_fd, "0", 1);
1728	}
1729	[...]
1730}
1731
1732
1733Single thread tracing
1734---------------------
1735
1736By writing into set_ftrace_pid you can trace a
1737single thread. For example:
1738
1739# cat set_ftrace_pid
1740no pid
1741# echo 3111 > set_ftrace_pid
1742# cat set_ftrace_pid
17433111
1744# echo function > current_tracer
1745# cat trace | head
1746 # tracer: function
1747 #
1748 #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
1749 #              | |       |          |         |
1750     yum-updatesd-3111  [003]  1637.254676: finish_task_switch <-thread_return
1751     yum-updatesd-3111  [003]  1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
1752     yum-updatesd-3111  [003]  1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
1753     yum-updatesd-3111  [003]  1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
1754     yum-updatesd-3111  [003]  1637.254685: fget_light <-do_sys_poll
1755     yum-updatesd-3111  [003]  1637.254686: pipe_poll <-do_sys_poll
1756# echo > set_ftrace_pid
1757# cat trace |head
1758 # tracer: function
1759 #
1760 #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
1761 #              | |       |          |         |
1762 ##### CPU 3 buffer started ####
1763     yum-updatesd-3111  [003]  1701.957688: free_poll_entry <-poll_freewait
1764     yum-updatesd-3111  [003]  1701.957689: remove_wait_queue <-free_poll_entry
1765     yum-updatesd-3111  [003]  1701.957691: fput <-free_poll_entry
1766     yum-updatesd-3111  [003]  1701.957692: audit_syscall_exit <-sysret_audit
1767     yum-updatesd-3111  [003]  1701.957693: path_put <-audit_syscall_exit
1768
1769If you want to trace a function when executing, you could use
1770something like this simple program:
1771
1772#include <stdio.h>
1773#include <stdlib.h>
1774#include <sys/types.h>
1775#include <sys/stat.h>
1776#include <fcntl.h>
1777#include <unistd.h>
1778#include <string.h>
1779
1780#define _STR(x) #x
1781#define STR(x) _STR(x)
1782#define MAX_PATH 256
1783
1784const char *find_debugfs(void)
1785{
1786       static char debugfs[MAX_PATH+1];
1787       static int debugfs_found;
1788       char type[100];
1789       FILE *fp;
1790
1791       if (debugfs_found)
1792               return debugfs;
1793
1794       if ((fp = fopen("/proc/mounts","r")) == NULL) {
1795               perror("/proc/mounts");
1796               return NULL;
1797       }
1798
1799       while (fscanf(fp, "%*s %"
1800                     STR(MAX_PATH)
1801                     "s %99s %*s %*d %*d\n",
1802                     debugfs, type) == 2) {
1803               if (strcmp(type, "debugfs") == 0)
1804                       break;
1805       }
1806       fclose(fp);
1807
1808       if (strcmp(type, "debugfs") != 0) {
1809               fprintf(stderr, "debugfs not mounted");
1810               return NULL;
1811       }
1812
1813       strcat(debugfs, "/tracing/");
1814       debugfs_found = 1;
1815
1816       return debugfs;
1817}
1818
1819const char *tracing_file(const char *file_name)
1820{
1821       static char trace_file[MAX_PATH+1];
1822       snprintf(trace_file, MAX_PATH, "%s/%s", find_debugfs(), file_name);
1823       return trace_file;
1824}
1825
1826int main (int argc, char **argv)
1827{
1828        if (argc < 1)
1829                exit(-1);
1830
1831        if (fork() > 0) {
1832                int fd, ffd;
1833                char line[64];
1834                int s;
1835
1836                ffd = open(tracing_file("current_tracer"), O_WRONLY);
1837                if (ffd < 0)
1838                        exit(-1);
1839                write(ffd, "nop", 3);
1840
1841                fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
1842                s = sprintf(line, "%d\n", getpid());
1843                write(fd, line, s);
1844
1845                write(ffd, "function", 8);
1846
1847                close(fd);
1848                close(ffd);
1849
1850                execvp(argv[1], argv+1);
1851        }
1852
1853        return 0;
1854}
1855
1856Or this simple script!
1857
1858------
1859#!/bin/bash
1860
1861debugfs=`sed -ne 's/^debugfs \(.*\) debugfs.*/\1/p' /proc/mounts`
1862echo nop > $debugfs/tracing/current_tracer
1863echo 0 > $debugfs/tracing/tracing_on
1864echo $$ > $debugfs/tracing/set_ftrace_pid
1865echo function > $debugfs/tracing/current_tracer
1866echo 1 > $debugfs/tracing/tracing_on
1867exec "$@"
1868------
1869
1870
1871function graph tracer
1872---------------------------
1873
1874This tracer is similar to the function tracer except that it
1875probes a function on its entry and its exit. This is done by
1876using a dynamically allocated stack of return addresses in each
1877task_struct. On function entry the tracer overwrites the return
1878address of each function traced to set a custom probe. Thus the
1879original return address is stored on the stack of return address
1880in the task_struct.
1881
1882Probing on both ends of a function leads to special features
1883such as:
1884
1885- measure of a function's time execution
1886- having a reliable call stack to draw function calls graph
1887
1888This tracer is useful in several situations:
1889
1890- you want to find the reason of a strange kernel behavior and
1891  need to see what happens in detail on any areas (or specific
1892  ones).
1893
1894- you are experiencing weird latencies but it's difficult to
1895  find its origin.
1896
1897- you want to find quickly which path is taken by a specific
1898  function
1899
1900- you just want to peek inside a working kernel and want to see
1901  what happens there.
1902
1903# tracer: function_graph
1904#
1905# CPU  DURATION                  FUNCTION CALLS
1906# |     |   |                     |   |   |   |
1907
1908 0)               |  sys_open() {
1909 0)               |    do_sys_open() {
1910 0)               |      getname() {
1911 0)               |        kmem_cache_alloc() {
1912 0)   1.382 us    |          __might_sleep();
1913 0)   2.478 us    |        }
1914 0)               |        strncpy_from_user() {
1915 0)               |          might_fault() {
1916 0)   1.389 us    |            __might_sleep();
1917 0)   2.553 us    |          }
1918 0)   3.807 us    |        }
1919 0)   7.876 us    |      }
1920 0)               |      alloc_fd() {
1921 0)   0.668 us    |        _spin_lock();
1922 0)   0.570 us    |        expand_files();
1923 0)   0.586 us    |        _spin_unlock();
1924
1925
1926There are several columns that can be dynamically
1927enabled/disabled. You can use every combination of options you
1928want, depending on your needs.
1929
1930- The cpu number on which the function executed is default
1931  enabled.  It is sometimes better to only trace one cpu (see
1932  tracing_cpu_mask file) or you might sometimes see unordered
1933  function calls while cpu tracing switch.
1934
1935	hide: echo nofuncgraph-cpu > trace_options
1936	show: echo funcgraph-cpu > trace_options
1937
1938- The duration (function's time of execution) is displayed on
1939  the closing bracket line of a function or on the same line
1940  than the current function in case of a leaf one. It is default
1941  enabled.
1942
1943	hide: echo nofuncgraph-duration > trace_options
1944	show: echo funcgraph-duration > trace_options
1945
1946- The overhead field precedes the duration field in case of
1947  reached duration thresholds.
1948
1949	hide: echo nofuncgraph-overhead > trace_options
1950	show: echo funcgraph-overhead > trace_options
1951	depends on: funcgraph-duration
1952
1953  ie:
1954
1955  3) # 1837.709 us |          } /* __switch_to */
1956  3)               |          finish_task_switch() {
1957  3)   0.313 us    |            _raw_spin_unlock_irq();
1958  3)   3.177 us    |          }
1959  3) # 1889.063 us |        } /* __schedule */
1960  3) ! 140.417 us  |      } /* __schedule */
1961  3) # 2034.948 us |    } /* schedule */
1962  3) * 33998.59 us |  } /* schedule_preempt_disabled */
1963
1964  [...]
1965
1966  1)   0.260 us    |              msecs_to_jiffies();
1967  1)   0.313 us    |              __rcu_read_unlock();
1968  1) + 61.770 us   |            }
1969  1) + 64.479 us   |          }
1970  1)   0.313 us    |          rcu_bh_qs();
1971  1)   0.313 us    |          __local_bh_enable();
1972  1) ! 217.240 us  |        }
1973  1)   0.365 us    |        idle_cpu();
1974  1)               |        rcu_irq_exit() {
1975  1)   0.417 us    |          rcu_eqs_enter_common.isra.47();
1976  1)   3.125 us    |        }
1977  1) ! 227.812 us  |      }
1978  1) ! 457.395 us  |    }
1979  1) @ 119760.2 us |  }
1980
1981  [...]
1982
1983  2)               |    handle_IPI() {
1984  1)   6.979 us    |                  }
1985  2)   0.417 us    |      scheduler_ipi();
1986  1)   9.791 us    |                }
1987  1) + 12.917 us   |              }
1988  2)   3.490 us    |    }
1989  1) + 15.729 us   |            }
1990  1) + 18.542 us   |          }
1991  2) $ 3594274 us  |  }
1992
1993  + means that the function exceeded 10 usecs.
1994  ! means that the function exceeded 100 usecs.
1995  # means that the function exceeded 1000 usecs.
1996  * means that the function exceeded 10 msecs.
1997  @ means that the function exceeded 100 msecs.
1998  $ means that the function exceeded 1 sec.
1999
2000
2001- The task/pid field displays the thread cmdline and pid which
2002  executed the function. It is default disabled.
2003
2004	hide: echo nofuncgraph-proc > trace_options
2005	show: echo funcgraph-proc > trace_options
2006
2007  ie:
2008
2009  # tracer: function_graph
2010  #
2011  # CPU  TASK/PID        DURATION                  FUNCTION CALLS
2012  # |    |    |           |   |                     |   |   |   |
2013  0)    sh-4802     |               |                  d_free() {
2014  0)    sh-4802     |               |                    call_rcu() {
2015  0)    sh-4802     |               |                      __call_rcu() {
2016  0)    sh-4802     |   0.616 us    |                        rcu_process_gp_end();
2017  0)    sh-4802     |   0.586 us    |                        check_for_new_grace_period();
2018  0)    sh-4802     |   2.899 us    |                      }
2019  0)    sh-4802     |   4.040 us    |                    }
2020  0)    sh-4802     |   5.151 us    |                  }
2021  0)    sh-4802     | + 49.370 us   |                }
2022
2023
2024- The absolute time field is an absolute timestamp given by the
2025  system clock since it started. A snapshot of this time is
2026  given on each entry/exit of functions
2027
2028	hide: echo nofuncgraph-abstime > trace_options
2029	show: echo funcgraph-abstime > trace_options
2030
2031  ie:
2032
2033  #
2034  #      TIME       CPU  DURATION                  FUNCTION CALLS
2035  #       |         |     |   |                     |   |   |   |
2036  360.774522 |   1)   0.541 us    |                                          }
2037  360.774522 |   1)   4.663 us    |                                        }
2038  360.774523 |   1)   0.541 us    |                                        __wake_up_bit();
2039  360.774524 |   1)   6.796 us    |                                      }
2040  360.774524 |   1)   7.952 us    |                                    }
2041  360.774525 |   1)   9.063 us    |                                  }
2042  360.774525 |   1)   0.615 us    |                                  journal_mark_dirty();
2043  360.774527 |   1)   0.578 us    |                                  __brelse();
2044  360.774528 |   1)               |                                  reiserfs_prepare_for_journal() {
2045  360.774528 |   1)               |                                    unlock_buffer() {
2046  360.774529 |   1)               |                                      wake_up_bit() {
2047  360.774529 |   1)               |                                        bit_waitqueue() {
2048  360.774530 |   1)   0.594 us    |                                          __phys_addr();
2049
2050
2051The function name is always displayed after the closing bracket
2052for a function if the start of that function is not in the
2053trace buffer.
2054
2055Display of the function name after the closing bracket may be
2056enabled for functions whose start is in the trace buffer,
2057allowing easier searching with grep for function durations.
2058It is default disabled.
2059
2060	hide: echo nofuncgraph-tail > trace_options
2061	show: echo funcgraph-tail > trace_options
2062
2063  Example with nofuncgraph-tail (default):
2064  0)               |      putname() {
2065  0)               |        kmem_cache_free() {
2066  0)   0.518 us    |          __phys_addr();
2067  0)   1.757 us    |        }
2068  0)   2.861 us    |      }
2069
2070  Example with funcgraph-tail:
2071  0)               |      putname() {
2072  0)               |        kmem_cache_free() {
2073  0)   0.518 us    |          __phys_addr();
2074  0)   1.757 us    |        } /* kmem_cache_free() */
2075  0)   2.861 us    |      } /* putname() */
2076
2077You can put some comments on specific functions by using
2078trace_printk() For example, if you want to put a comment inside
2079the __might_sleep() function, you just have to include
2080<linux/ftrace.h> and call trace_printk() inside __might_sleep()
2081
2082trace_printk("I'm a comment!\n")
2083
2084will produce:
2085
2086 1)               |             __might_sleep() {
2087 1)               |                /* I'm a comment! */
2088 1)   1.449 us    |             }
2089
2090
2091You might find other useful features for this tracer in the
2092following "dynamic ftrace" section such as tracing only specific
2093functions or tasks.
2094
2095dynamic ftrace
2096--------------
2097
2098If CONFIG_DYNAMIC_FTRACE is set, the system will run with
2099virtually no overhead when function tracing is disabled. The way
2100this works is the mcount function call (placed at the start of
2101every kernel function, produced by the -pg switch in gcc),
2102starts of pointing to a simple return. (Enabling FTRACE will
2103include the -pg switch in the compiling of the kernel.)
2104
2105At compile time every C file object is run through the
2106recordmcount program (located in the scripts directory). This
2107program will parse the ELF headers in the C object to find all
2108the locations in the .text section that call mcount. (Note, only
2109white listed .text sections are processed, since processing other
2110sections like .init.text may cause races due to those sections
2111being freed unexpectedly).
2112
2113A new section called "__mcount_loc" is created that holds
2114references to all the mcount call sites in the .text section.
2115The recordmcount program re-links this section back into the
2116original object. The final linking stage of the kernel will add all these
2117references into a single table.
2118
2119On boot up, before SMP is initialized, the dynamic ftrace code
2120scans this table and updates all the locations into nops. It
2121also records the locations, which are added to the
2122available_filter_functions list.  Modules are processed as they
2123are loaded and before they are executed.  When a module is
2124unloaded, it also removes its functions from the ftrace function
2125list. This is automatic in the module unload code, and the
2126module author does not need to worry about it.
2127
2128When tracing is enabled, the process of modifying the function
2129tracepoints is dependent on architecture. The old method is to use
2130kstop_machine to prevent races with the CPUs executing code being
2131modified (which can cause the CPU to do undesirable things, especially
2132if the modified code crosses cache (or page) boundaries), and the nops are
2133patched back to calls. But this time, they do not call mcount
2134(which is just a function stub). They now call into the ftrace
2135infrastructure.
2136
2137The new method of modifying the function tracepoints is to place
2138a breakpoint at the location to be modified, sync all CPUs, modify
2139the rest of the instruction not covered by the breakpoint. Sync
2140all CPUs again, and then remove the breakpoint with the finished
2141version to the ftrace call site.
2142
2143Some archs do not even need to monkey around with the synchronization,
2144and can just slap the new code on top of the old without any
2145problems with other CPUs executing it at the same time.
2146
2147One special side-effect to the recording of the functions being
2148traced is that we can now selectively choose which functions we
2149wish to trace and which ones we want the mcount calls to remain
2150as nops.
2151
2152Two files are used, one for enabling and one for disabling the
2153tracing of specified functions. They are:
2154
2155  set_ftrace_filter
2156
2157and
2158
2159  set_ftrace_notrace
2160
2161A list of available functions that you can add to these files is
2162listed in:
2163
2164   available_filter_functions
2165
2166 # cat available_filter_functions
2167put_prev_task_idle
2168kmem_cache_create
2169pick_next_task_rt
2170get_online_cpus
2171pick_next_task_fair
2172mutex_lock
2173[...]
2174
2175If I am only interested in sys_nanosleep and hrtimer_interrupt:
2176
2177 # echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter
2178 # echo function > current_tracer
2179 # echo 1 > tracing_on
2180 # usleep 1
2181 # echo 0 > tracing_on
2182 # cat trace
2183# tracer: function
2184#
2185# entries-in-buffer/entries-written: 5/5   #P:4
2186#
2187#                              _-----=> irqs-off
2188#                             / _----=> need-resched
2189#                            | / _---=> hardirq/softirq
2190#                            || / _--=> preempt-depth
2191#                            ||| /     delay
2192#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2193#              | |       |   ||||       |         |
2194          usleep-2665  [001] ....  4186.475355: sys_nanosleep <-system_call_fastpath
2195          <idle>-0     [001] d.h1  4186.475409: hrtimer_interrupt <-smp_apic_timer_interrupt
2196          usleep-2665  [001] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2197          <idle>-0     [003] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2198          <idle>-0     [002] d.h1  4186.475427: hrtimer_interrupt <-smp_apic_timer_interrupt
2199
2200To see which functions are being traced, you can cat the file:
2201
2202 # cat set_ftrace_filter
2203hrtimer_interrupt
2204sys_nanosleep
2205
2206
2207Perhaps this is not enough. The filters also allow simple wild
2208cards. Only the following are currently available
2209
2210  <match>*  - will match functions that begin with <match>
2211  *<match>  - will match functions that end with <match>
2212  *<match>* - will match functions that have <match> in it
2213
2214These are the only wild cards which are supported.
2215
2216  <match>*<match> will not work.
2217
2218Note: It is better to use quotes to enclose the wild cards,
2219      otherwise the shell may expand the parameters into names
2220      of files in the local directory.
2221
2222 # echo 'hrtimer_*' > set_ftrace_filter
2223
2224Produces:
2225
2226# tracer: function
2227#
2228# entries-in-buffer/entries-written: 897/897   #P:4
2229#
2230#                              _-----=> irqs-off
2231#                             / _----=> need-resched
2232#                            | / _---=> hardirq/softirq
2233#                            || / _--=> preempt-depth
2234#                            ||| /     delay
2235#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2236#              | |       |   ||||       |         |
2237          <idle>-0     [003] dN.1  4228.547803: hrtimer_cancel <-tick_nohz_idle_exit
2238          <idle>-0     [003] dN.1  4228.547804: hrtimer_try_to_cancel <-hrtimer_cancel
2239          <idle>-0     [003] dN.2  4228.547805: hrtimer_force_reprogram <-__remove_hrtimer
2240          <idle>-0     [003] dN.1  4228.547805: hrtimer_forward <-tick_nohz_idle_exit
2241          <idle>-0     [003] dN.1  4228.547805: hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
2242          <idle>-0     [003] d..1  4228.547858: hrtimer_get_next_event <-get_next_timer_interrupt
2243          <idle>-0     [003] d..1  4228.547859: hrtimer_start <-__tick_nohz_idle_enter
2244          <idle>-0     [003] d..2  4228.547860: hrtimer_force_reprogram <-__rem
2245
2246Notice that we lost the sys_nanosleep.
2247
2248 # cat set_ftrace_filter
2249hrtimer_run_queues
2250hrtimer_run_pending
2251hrtimer_init
2252hrtimer_cancel
2253hrtimer_try_to_cancel
2254hrtimer_forward
2255hrtimer_start
2256hrtimer_reprogram
2257hrtimer_force_reprogram
2258hrtimer_get_next_event
2259hrtimer_interrupt
2260hrtimer_nanosleep
2261hrtimer_wakeup
2262hrtimer_get_remaining
2263hrtimer_get_res
2264hrtimer_init_sleeper
2265
2266
2267This is because the '>' and '>>' act just like they do in bash.
2268To rewrite the filters, use '>'
2269To append to the filters, use '>>'
2270
2271To clear out a filter so that all functions will be recorded
2272again:
2273
2274 # echo > set_ftrace_filter
2275 # cat set_ftrace_filter
2276 #
2277
2278Again, now we want to append.
2279
2280 # echo sys_nanosleep > set_ftrace_filter
2281 # cat set_ftrace_filter
2282sys_nanosleep
2283 # echo 'hrtimer_*' >> set_ftrace_filter
2284 # cat set_ftrace_filter
2285hrtimer_run_queues
2286hrtimer_run_pending
2287hrtimer_init
2288hrtimer_cancel
2289hrtimer_try_to_cancel
2290hrtimer_forward
2291hrtimer_start
2292hrtimer_reprogram
2293hrtimer_force_reprogram
2294hrtimer_get_next_event
2295hrtimer_interrupt
2296sys_nanosleep
2297hrtimer_nanosleep
2298hrtimer_wakeup
2299hrtimer_get_remaining
2300hrtimer_get_res
2301hrtimer_init_sleeper
2302
2303
2304The set_ftrace_notrace prevents those functions from being
2305traced.
2306
2307 # echo '*preempt*' '*lock*' > set_ftrace_notrace
2308
2309Produces:
2310
2311# tracer: function
2312#
2313# entries-in-buffer/entries-written: 39608/39608   #P:4
2314#
2315#                              _-----=> irqs-off
2316#                             / _----=> need-resched
2317#                            | / _---=> hardirq/softirq
2318#                            || / _--=> preempt-depth
2319#                            ||| /     delay
2320#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2321#              | |       |   ||||       |         |
2322            bash-1994  [000] ....  4342.324896: file_ra_state_init <-do_dentry_open
2323            bash-1994  [000] ....  4342.324897: open_check_o_direct <-do_last
2324            bash-1994  [000] ....  4342.324897: ima_file_check <-do_last
2325            bash-1994  [000] ....  4342.324898: process_measurement <-ima_file_check
2326            bash-1994  [000] ....  4342.324898: ima_get_action <-process_measurement
2327            bash-1994  [000] ....  4342.324898: ima_match_policy <-ima_get_action
2328            bash-1994  [000] ....  4342.324899: do_truncate <-do_last
2329            bash-1994  [000] ....  4342.324899: should_remove_suid <-do_truncate
2330            bash-1994  [000] ....  4342.324899: notify_change <-do_truncate
2331            bash-1994  [000] ....  4342.324900: current_fs_time <-notify_change
2332            bash-1994  [000] ....  4342.324900: current_kernel_time <-current_fs_time
2333            bash-1994  [000] ....  4342.324900: timespec_trunc <-current_fs_time
2334
2335We can see that there's no more lock or preempt tracing.
2336
2337
2338Dynamic ftrace with the function graph tracer
2339---------------------------------------------
2340
2341Although what has been explained above concerns both the
2342function tracer and the function-graph-tracer, there are some
2343special features only available in the function-graph tracer.
2344
2345If you want to trace only one function and all of its children,
2346you just have to echo its name into set_graph_function:
2347
2348 echo __do_fault > set_graph_function
2349
2350will produce the following "expanded" trace of the __do_fault()
2351function:
2352
2353 0)               |  __do_fault() {
2354 0)               |    filemap_fault() {
2355 0)               |      find_lock_page() {
2356 0)   0.804 us    |        find_get_page();
2357 0)               |        __might_sleep() {
2358 0)   1.329 us    |        }
2359 0)   3.904 us    |      }
2360 0)   4.979 us    |    }
2361 0)   0.653 us    |    _spin_lock();
2362 0)   0.578 us    |    page_add_file_rmap();
2363 0)   0.525 us    |    native_set_pte_at();
2364 0)   0.585 us    |    _spin_unlock();
2365 0)               |    unlock_page() {
2366 0)   0.541 us    |      page_waitqueue();
2367 0)   0.639 us    |      __wake_up_bit();
2368 0)   2.786 us    |    }
2369 0) + 14.237 us   |  }
2370 0)               |  __do_fault() {
2371 0)               |    filemap_fault() {
2372 0)               |      find_lock_page() {
2373 0)   0.698 us    |        find_get_page();
2374 0)               |        __might_sleep() {
2375 0)   1.412 us    |        }
2376 0)   3.950 us    |      }
2377 0)   5.098 us    |    }
2378 0)   0.631 us    |    _spin_lock();
2379 0)   0.571 us    |    page_add_file_rmap();
2380 0)   0.526 us    |    native_set_pte_at();
2381 0)   0.586 us    |    _spin_unlock();
2382 0)               |    unlock_page() {
2383 0)   0.533 us    |      page_waitqueue();
2384 0)   0.638 us    |      __wake_up_bit();
2385 0)   2.793 us    |    }
2386 0) + 14.012 us   |  }
2387
2388You can also expand several functions at once:
2389
2390 echo sys_open > set_graph_function
2391 echo sys_close >> set_graph_function
2392
2393Now if you want to go back to trace all functions you can clear
2394this special filter via:
2395
2396 echo > set_graph_function
2397
2398
2399ftrace_enabled
2400--------------
2401
2402Note, the proc sysctl ftrace_enable is a big on/off switch for the
2403function tracer. By default it is enabled (when function tracing is
2404enabled in the kernel). If it is disabled, all function tracing is
2405disabled. This includes not only the function tracers for ftrace, but
2406also for any other uses (perf, kprobes, stack tracing, profiling, etc).
2407
2408Please disable this with care.
2409
2410This can be disable (and enabled) with:
2411
2412  sysctl kernel.ftrace_enabled=0
2413  sysctl kernel.ftrace_enabled=1
2414
2415 or
2416
2417  echo 0 > /proc/sys/kernel/ftrace_enabled
2418  echo 1 > /proc/sys/kernel/ftrace_enabled
2419
2420
2421Filter commands
2422---------------
2423
2424A few commands are supported by the set_ftrace_filter interface.
2425Trace commands have the following format:
2426
2427<function>:<command>:<parameter>
2428
2429The following commands are supported:
2430
2431- mod
2432  This command enables function filtering per module. The
2433  parameter defines the module. For example, if only the write*
2434  functions in the ext3 module are desired, run:
2435
2436   echo 'write*:mod:ext3' > set_ftrace_filter
2437
2438  This command interacts with the filter in the same way as
2439  filtering based on function names. Thus, adding more functions
2440  in a different module is accomplished by appending (>>) to the
2441  filter file. Remove specific module functions by prepending
2442  '!':
2443
2444   echo '!writeback*:mod:ext3' >> set_ftrace_filter
2445
2446  Mod command supports module globbing. Disable tracing for all
2447  functions except a specific module:
2448
2449   echo '!*:mod:!ext3' >> set_ftrace_filter
2450
2451  Disable tracing for all modules, but still trace kernel:
2452
2453   echo '!*:mod:*' >> set_ftrace_filter
2454
2455  Enable filter only for kernel:
2456
2457   echo '*write*:mod:!*' >> set_ftrace_filter
2458
2459  Enable filter for module globbing:
2460
2461   echo '*write*:mod:*snd*' >> set_ftrace_filter
2462
2463- traceon/traceoff
2464  These commands turn tracing on and off when the specified
2465  functions are hit. The parameter determines how many times the
2466  tracing system is turned on and off. If unspecified, there is
2467  no limit. For example, to disable tracing when a schedule bug
2468  is hit the first 5 times, run:
2469
2470   echo '__schedule_bug:traceoff:5' > set_ftrace_filter
2471
2472  To always disable tracing when __schedule_bug is hit:
2473
2474   echo '__schedule_bug:traceoff' > set_ftrace_filter
2475
2476  These commands are cumulative whether or not they are appended
2477  to set_ftrace_filter. To remove a command, prepend it by '!'
2478  and drop the parameter:
2479
2480   echo '!__schedule_bug:traceoff:0' > set_ftrace_filter
2481
2482    The above removes the traceoff command for __schedule_bug
2483    that have a counter. To remove commands without counters:
2484
2485   echo '!__schedule_bug:traceoff' > set_ftrace_filter
2486
2487- snapshot
2488  Will cause a snapshot to be triggered when the function is hit.
2489
2490   echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter
2491
2492  To only snapshot once:
2493
2494   echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter
2495
2496  To remove the above commands:
2497
2498   echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter
2499   echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter
2500
2501- enable_event/disable_event
2502  These commands can enable or disable a trace event. Note, because
2503  function tracing callbacks are very sensitive, when these commands
2504  are registered, the trace point is activated, but disabled in
2505  a "soft" mode. That is, the tracepoint will be called, but
2506  just will not be traced. The event tracepoint stays in this mode
2507  as long as there's a command that triggers it.
2508
2509   echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \
2510   	 set_ftrace_filter
2511
2512  The format is:
2513
2514    <function>:enable_event:<system>:<event>[:count]
2515    <function>:disable_event:<system>:<event>[:count]
2516
2517  To remove the events commands:
2518
2519
2520   echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \
2521   	 set_ftrace_filter
2522   echo '!schedule:disable_event:sched:sched_switch' > \
2523   	 set_ftrace_filter
2524
2525- dump
2526  When the function is hit, it will dump the contents of the ftrace
2527  ring buffer to the console. This is useful if you need to debug
2528  something, and want to dump the trace when a certain function
2529  is hit. Perhaps its a function that is called before a tripple
2530  fault happens and does not allow you to get a regular dump.
2531
2532- cpudump
2533  When the function is hit, it will dump the contents of the ftrace
2534  ring buffer for the current CPU to the console. Unlike the "dump"
2535  command, it only prints out the contents of the ring buffer for the
2536  CPU that executed the function that triggered the dump.
2537
2538trace_pipe
2539----------
2540
2541The trace_pipe outputs the same content as the trace file, but
2542the effect on the tracing is different. Every read from
2543trace_pipe is consumed. This means that subsequent reads will be
2544different. The trace is live.
2545
2546 # echo function > current_tracer
2547 # cat trace_pipe > /tmp/trace.out &
2548[1] 4153
2549 # echo 1 > tracing_on
2550 # usleep 1
2551 # echo 0 > tracing_on
2552 # cat trace
2553# tracer: function
2554#
2555# entries-in-buffer/entries-written: 0/0   #P:4
2556#
2557#                              _-----=> irqs-off
2558#                             / _----=> need-resched
2559#                            | / _---=> hardirq/softirq
2560#                            || / _--=> preempt-depth
2561#                            ||| /     delay
2562#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2563#              | |       |   ||||       |         |
2564
2565 #
2566 # cat /tmp/trace.out
2567            bash-1994  [000] ....  5281.568961: mutex_unlock <-rb_simple_write
2568            bash-1994  [000] ....  5281.568963: __mutex_unlock_slowpath <-mutex_unlock
2569            bash-1994  [000] ....  5281.568963: __fsnotify_parent <-fsnotify_modify
2570            bash-1994  [000] ....  5281.568964: fsnotify <-fsnotify_modify
2571            bash-1994  [000] ....  5281.568964: __srcu_read_lock <-fsnotify
2572            bash-1994  [000] ....  5281.568964: add_preempt_count <-__srcu_read_lock
2573            bash-1994  [000] ...1  5281.568965: sub_preempt_count <-__srcu_read_lock
2574            bash-1994  [000] ....  5281.568965: __srcu_read_unlock <-fsnotify
2575            bash-1994  [000] ....  5281.568967: sys_dup2 <-system_call_fastpath
2576
2577
2578Note, reading the trace_pipe file will block until more input is
2579added.
2580
2581trace entries
2582-------------
2583
2584Having too much or not enough data can be troublesome in
2585diagnosing an issue in the kernel. The file buffer_size_kb is
2586used to modify the size of the internal trace buffers. The
2587number listed is the number of entries that can be recorded per
2588CPU. To know the full size, multiply the number of possible CPUs
2589with the number of entries.
2590
2591 # cat buffer_size_kb
25921408 (units kilobytes)
2593
2594Or simply read buffer_total_size_kb
2595
2596 # cat buffer_total_size_kb 
25975632
2598
2599To modify the buffer, simple echo in a number (in 1024 byte segments).
2600
2601 # echo 10000 > buffer_size_kb
2602 # cat buffer_size_kb
260310000 (units kilobytes)
2604
2605It will try to allocate as much as possible. If you allocate too
2606much, it can cause Out-Of-Memory to trigger.
2607
2608 # echo 1000000000000 > buffer_size_kb
2609-bash: echo: write error: Cannot allocate memory
2610 # cat buffer_size_kb
261185
2612
2613The per_cpu buffers can be changed individually as well:
2614
2615 # echo 10000 > per_cpu/cpu0/buffer_size_kb
2616 # echo 100 > per_cpu/cpu1/buffer_size_kb
2617
2618When the per_cpu buffers are not the same, the buffer_size_kb
2619at the top level will just show an X
2620
2621 # cat buffer_size_kb
2622X
2623
2624This is where the buffer_total_size_kb is useful:
2625
2626 # cat buffer_total_size_kb 
262712916
2628
2629Writing to the top level buffer_size_kb will reset all the buffers
2630to be the same again.
2631
2632Snapshot
2633--------
2634CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature
2635available to all non latency tracers. (Latency tracers which
2636record max latency, such as "irqsoff" or "wakeup", can't use
2637this feature, since those are already using the snapshot
2638mechanism internally.)
2639
2640Snapshot preserves a current trace buffer at a particular point
2641in time without stopping tracing. Ftrace swaps the current
2642buffer with a spare buffer, and tracing continues in the new
2643current (=previous spare) buffer.
2644
2645The following debugfs files in "tracing" are related to this
2646feature:
2647
2648  snapshot:
2649
2650	This is used to take a snapshot and to read the output
2651	of the snapshot. Echo 1 into this file to allocate a
2652	spare buffer and to take a snapshot (swap), then read
2653	the snapshot from this file in the same format as
2654	"trace" (described above in the section "The File
2655	System"). Both reads snapshot and tracing are executable
2656	in parallel. When the spare buffer is allocated, echoing
2657	0 frees it, and echoing else (positive) values clear the
2658	snapshot contents.
2659	More details are shown in the table below.
2660
2661	status\input  |     0      |     1      |    else    |
2662	--------------+------------+------------+------------+
2663	not allocated |(do nothing)| alloc+swap |(do nothing)|
2664	--------------+------------+------------+------------+
2665	allocated     |    free    |    swap    |   clear    |
2666	--------------+------------+------------+------------+
2667
2668Here is an example of using the snapshot feature.
2669
2670 # echo 1 > events/sched/enable
2671 # echo 1 > snapshot
2672 # cat snapshot
2673# tracer: nop
2674#
2675# entries-in-buffer/entries-written: 71/71   #P:8
2676#
2677#                              _-----=> irqs-off
2678#                             / _----=> need-resched
2679#                            | / _---=> hardirq/softirq
2680#                            || / _--=> preempt-depth
2681#                            ||| /     delay
2682#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2683#              | |       |   ||||       |         |
2684          <idle>-0     [005] d...  2440.603828: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2242 next_prio=120
2685           sleep-2242  [005] d...  2440.603846: sched_switch: prev_comm=snapshot-test-2 prev_pid=2242 prev_prio=120 prev_state=R ==> next_comm=kworker/5:1 next_pid=60 next_prio=120
2686[...]
2687          <idle>-0     [002] d...  2440.707230: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2229 next_prio=120
2688
2689 # cat trace
2690# tracer: nop
2691#
2692# entries-in-buffer/entries-written: 77/77   #P:8
2693#
2694#                              _-----=> irqs-off
2695#                             / _----=> need-resched
2696#                            | / _---=> hardirq/softirq
2697#                            || / _--=> preempt-depth
2698#                            ||| /     delay
2699#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2700#              | |       |   ||||       |         |
2701          <idle>-0     [007] d...  2440.707395: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2243 next_prio=120
2702 snapshot-test-2-2229  [002] d...  2440.707438: sched_switch: prev_comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120
2703[...]
2704
2705
2706If you try to use this snapshot feature when current tracer is
2707one of the latency tracers, you will get the following results.
2708
2709 # echo wakeup > current_tracer
2710 # echo 1 > snapshot
2711bash: echo: write error: Device or resource busy
2712 # cat snapshot
2713cat: snapshot: Device or resource busy
2714
2715
2716Instances
2717---------
2718In the debugfs tracing directory is a directory called "instances".
2719This directory can have new directories created inside of it using
2720mkdir, and removing directories with rmdir. The directory created
2721with mkdir in this directory will already contain files and other
2722directories after it is created.
2723
2724 # mkdir instances/foo
2725 # ls instances/foo
2726buffer_size_kb  buffer_total_size_kb  events  free_buffer  per_cpu
2727set_event  snapshot  trace  trace_clock  trace_marker  trace_options
2728trace_pipe  tracing_on
2729
2730As you can see, the new directory looks similar to the tracing directory
2731itself. In fact, it is very similar, except that the buffer and
2732events are agnostic from the main director, or from any other
2733instances that are created.
2734
2735The files in the new directory work just like the files with the
2736same name in the tracing directory except the buffer that is used
2737is a separate and new buffer. The files affect that buffer but do not
2738affect the main buffer with the exception of trace_options. Currently,
2739the trace_options affect all instances and the top level buffer
2740the same, but this may change in future releases. That is, options
2741may become specific to the instance they reside in.
2742
2743Notice that none of the function tracer files are there, nor is
2744current_tracer and available_tracers. This is because the buffers
2745can currently only have events enabled for them.
2746
2747 # mkdir instances/foo
2748 # mkdir instances/bar
2749 # mkdir instances/zoot
2750 # echo 100000 > buffer_size_kb
2751 # echo 1000 > instances/foo/buffer_size_kb
2752 # echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb
2753 # echo function > current_trace
2754 # echo 1 > instances/foo/events/sched/sched_wakeup/enable
2755 # echo 1 > instances/foo/events/sched/sched_wakeup_new/enable
2756 # echo 1 > instances/foo/events/sched/sched_switch/enable
2757 # echo 1 > instances/bar/events/irq/enable
2758 # echo 1 > instances/zoot/events/syscalls/enable
2759 # cat trace_pipe
2760CPU:2 [LOST 11745 EVENTS]
2761            bash-2044  [002] .... 10594.481032: _raw_spin_lock_irqsave <-get_page_from_freelist
2762            bash-2044  [002] d... 10594.481032: add_preempt_count <-_raw_spin_lock_irqsave
2763            bash-2044  [002] d..1 10594.481032: __rmqueue <-get_page_from_freelist
2764            bash-2044  [002] d..1 10594.481033: _raw_spin_unlock <-get_page_from_freelist
2765            bash-2044  [002] d..1 10594.481033: sub_preempt_count <-_raw_spin_unlock
2766            bash-2044  [002] d... 10594.481033: get_pageblock_flags_group <-get_pageblock_migratetype
2767            bash-2044  [002] d... 10594.481034: __mod_zone_page_state <-get_page_from_freelist
2768            bash-2044  [002] d... 10594.481034: zone_statistics <-get_page_from_freelist
2769            bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
2770            bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
2771            bash-2044  [002] .... 10594.481035: arch_dup_task_struct <-copy_process
2772[...]
2773
2774 # cat instances/foo/trace_pipe
2775            bash-1998  [000] d..4   136.676759: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
2776            bash-1998  [000] dN.4   136.676760: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
2777          <idle>-0     [003] d.h3   136.676906: sched_wakeup: comm=rcu_preempt pid=9 prio=120 success=1 target_cpu=003
2778          <idle>-0     [003] d..3   136.676909: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=9 next_prio=120
2779     rcu_preempt-9     [003] d..3   136.676916: sched_switch: prev_comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120
2780            bash-1998  [000] d..4   136.677014: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
2781            bash-1998  [000] dN.4   136.677016: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
2782            bash-1998  [000] d..3   136.677018: sched_switch: prev_comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_comm=kworker/0:1 next_pid=59 next_prio=120
2783     kworker/0:1-59    [000] d..4   136.677022: sched_wakeup: comm=sshd pid=1995 prio=120 success=1 target_cpu=001
2784     kworker/0:1-59    [000] d..3   136.677025: sched_switch: prev_comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_comm=bash next_pid=1998 next_prio=120
2785[...]
2786
2787 # cat instances/bar/trace_pipe
2788     migration/1-14    [001] d.h3   138.732674: softirq_raise: vec=3 [action=NET_RX]
2789          <idle>-0     [001] dNh3   138.732725: softirq_raise: vec=3 [action=NET_RX]
2790            bash-1998  [000] d.h1   138.733101: softirq_raise: vec=1 [action=TIMER]
2791            bash-1998  [000] d.h1   138.733102: softirq_raise: vec=9 [action=RCU]
2792            bash-1998  [000] ..s2   138.733105: softirq_entry: vec=1 [action=TIMER]
2793            bash-1998  [000] ..s2   138.733106: softirq_exit: vec=1 [action=TIMER]
2794            bash-1998  [000] ..s2   138.733106: softirq_entry: vec=9 [action=RCU]
2795            bash-1998  [000] ..s2   138.733109: softirq_exit: vec=9 [action=RCU]
2796            sshd-1995  [001] d.h1   138.733278: irq_handler_entry: irq=21 name=uhci_hcd:usb4
2797            sshd-1995  [001] d.h1   138.733280: irq_handler_exit: irq=21 ret=unhandled
2798            sshd-1995  [001] d.h1   138.733281: irq_handler_entry: irq=21 name=eth0
2799            sshd-1995  [001] d.h1   138.733283: irq_handler_exit: irq=21 ret=handled
2800[...]
2801
2802 # cat instances/zoot/trace
2803# tracer: nop
2804#
2805# entries-in-buffer/entries-written: 18996/18996   #P:4
2806#
2807#                              _-----=> irqs-off
2808#                             / _----=> need-resched
2809#                            | / _---=> hardirq/softirq
2810#                            || / _--=> preempt-depth
2811#                            ||| /     delay
2812#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2813#              | |       |   ||||       |         |
2814            bash-1998  [000] d...   140.733501: sys_write -> 0x2
2815            bash-1998  [000] d...   140.733504: sys_dup2(oldfd: a, newfd: 1)
2816            bash-1998  [000] d...   140.733506: sys_dup2 -> 0x1
2817            bash-1998  [000] d...   140.733508: sys_fcntl(fd: a, cmd: 1, arg: 0)
2818            bash-1998  [000] d...   140.733509: sys_fcntl -> 0x1
2819            bash-1998  [000] d...   140.733510: sys_close(fd: a)
2820            bash-1998  [000] d...   140.733510: sys_close -> 0x0
2821            bash-1998  [000] d...   140.733514: sys_rt_sigprocmask(how: 0, nset: 0, oset: 6e2768, sigsetsize: 8)
2822            bash-1998  [000] d...   140.733515: sys_rt_sigprocmask -> 0x0
2823            bash-1998  [000] d...   140.733516: sys_rt_sigaction(sig: 2, act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8)
2824            bash-1998  [000] d...   140.733516: sys_rt_sigaction -> 0x0
2825
2826You can see that the trace of the top most trace buffer shows only
2827the function tracing. The foo instance displays wakeups and task
2828switches.
2829
2830To remove the instances, simply delete their directories:
2831
2832 # rmdir instances/foo
2833 # rmdir instances/bar
2834 # rmdir instances/zoot
2835
2836Note, if a process has a trace file open in one of the instance
2837directories, the rmdir will fail with EBUSY.
2838
2839
2840Stack trace
2841-----------
2842Since the kernel has a fixed sized stack, it is important not to
2843waste it in functions. A kernel developer must be conscience of
2844what they allocate on the stack. If they add too much, the system
2845can be in danger of a stack overflow, and corruption will occur,
2846usually leading to a system panic.
2847
2848There are some tools that check this, usually with interrupts
2849periodically checking usage. But if you can perform a check
2850at every function call that will become very useful. As ftrace provides
2851a function tracer, it makes it convenient to check the stack size
2852at every function call. This is enabled via the stack tracer.
2853
2854CONFIG_STACK_TRACER enables the ftrace stack tracing functionality.
2855To enable it, write a '1' into /proc/sys/kernel/stack_tracer_enabled.
2856
2857 # echo 1 > /proc/sys/kernel/stack_tracer_enabled
2858
2859You can also enable it from the kernel command line to trace
2860the stack size of the kernel during boot up, by adding "stacktrace"
2861to the kernel command line parameter.
2862
2863After running it for a few minutes, the output looks like:
2864
2865 # cat stack_max_size
28662928
2867
2868 # cat stack_trace
2869        Depth    Size   Location    (18 entries)
2870        -----    ----   --------
2871  0)     2928     224   update_sd_lb_stats+0xbc/0x4ac
2872  1)     2704     160   find_busiest_group+0x31/0x1f1
2873  2)     2544     256   load_balance+0xd9/0x662
2874  3)     2288      80   idle_balance+0xbb/0x130
2875  4)     2208     128   __schedule+0x26e/0x5b9
2876  5)     2080      16   schedule+0x64/0x66
2877  6)     2064     128   schedule_timeout+0x34/0xe0
2878  7)     1936     112   wait_for_common+0x97/0xf1
2879  8)     1824      16   wait_for_completion+0x1d/0x1f
2880  9)     1808     128   flush_work+0xfe/0x119
2881 10)     1680      16   tty_flush_to_ldisc+0x1e/0x20
2882 11)     1664      48   input_available_p+0x1d/0x5c
2883 12)     1616      48   n_tty_poll+0x6d/0x134
2884 13)     1568      64   tty_poll+0x64/0x7f
2885 14)     1504     880   do_select+0x31e/0x511
2886 15)      624     400   core_sys_select+0x177/0x216
2887 16)      224      96   sys_select+0x91/0xb9
2888 17)      128     128   system_call_fastpath+0x16/0x1b
2889
2890Note, if -mfentry is being used by gcc, functions get traced before
2891they set up the stack frame. This means that leaf level functions
2892are not tested by the stack tracer when -mfentry is used.
2893
2894Currently, -mfentry is used by gcc 4.6.0 and above on x86 only.
2895
2896---------
2897
2898More details can be found in the source code, in the
2899kernel/trace/*.c files.
2900