1-*-Mode: outline-*-
2
3		Light-weight System Calls for IA-64
4		-----------------------------------
5
6		        Started: 13-Jan-2003
7		    Last update: 27-Sep-2003
8
9	              David Mosberger-Tang
10		      <davidm@hpl.hp.com>
11
12Using the "epc" instruction effectively introduces a new mode of
13execution to the ia64 linux kernel.  We call this mode the
14"fsys-mode".  To recap, the normal states of execution are:
15
16  - kernel mode:
17	Both the register stack and the memory stack have been
18	switched over to kernel memory.  The user-level state is saved
19	in a pt-regs structure at the top of the kernel memory stack.
20
21  - user mode:
22	Both the register stack and the kernel stack are in
23	user memory.  The user-level state is contained in the
24	CPU registers.
25
26  - bank 0 interruption-handling mode:
27	This is the non-interruptible state which all
28	interruption-handlers start execution in.  The user-level
29	state remains in the CPU registers and some kernel state may
30	be stored in bank 0 of registers r16-r31.
31
32In contrast, fsys-mode has the following special properties:
33
34  - execution is at privilege level 0 (most-privileged)
35
36  - CPU registers may contain a mixture of user-level and kernel-level
37    state (it is the responsibility of the kernel to ensure that no
38    security-sensitive kernel-level state is leaked back to
39    user-level)
40
41  - execution is interruptible and preemptible (an fsys-mode handler
42    can disable interrupts and avoid all other interruption-sources
43    to avoid preemption)
44
45  - neither the memory-stack nor the register-stack can be trusted while
46    in fsys-mode (they point to the user-level stacks, which may
47    be invalid, or completely bogus addresses)
48
49In summary, fsys-mode is much more similar to running in user-mode
50than it is to running in kernel-mode.  Of course, given that the
51privilege level is at level 0, this means that fsys-mode requires some
52care (see below).
53
54
55* How to tell fsys-mode
56
57Linux operates in fsys-mode when (a) the privilege level is 0 (most
58privileged) and (b) the stacks have NOT been switched to kernel memory
59yet.  For convenience, the header file <asm-ia64/ptrace.h> provides
60three macros:
61
62	user_mode(regs)
63	user_stack(task,regs)
64	fsys_mode(task,regs)
65
66The "regs" argument is a pointer to a pt_regs structure.  The "task"
67argument is a pointer to the task structure to which the "regs"
68pointer belongs to.  user_mode() returns TRUE if the CPU state pointed
69to by "regs" was executing in user mode (privilege level 3).
70user_stack() returns TRUE if the state pointed to by "regs" was
71executing on the user-level stack(s).  Finally, fsys_mode() returns
72TRUE if the CPU state pointed to by "regs" was executing in fsys-mode.
73The fsys_mode() macro is equivalent to the expression:
74
75	!user_mode(regs) && user_stack(task,regs)
76
77* How to write an fsyscall handler
78
79The file arch/ia64/kernel/fsys.S contains a table of fsyscall-handlers
80(fsyscall_table).  This table contains one entry for each system call.
81By default, a system call is handled by fsys_fallback_syscall().  This
82routine takes care of entering (full) kernel mode and calling the
83normal Linux system call handler.  For performance-critical system
84calls, it is possible to write a hand-tuned fsyscall_handler.  For
85example, fsys.S contains fsys_getpid(), which is a hand-tuned version
86of the getpid() system call.
87
88The entry and exit-state of an fsyscall handler is as follows:
89
90** Machine state on entry to fsyscall handler:
91
92 - r10	  = 0
93 - r11	  = saved ar.pfs (a user-level value)
94 - r15	  = system call number
95 - r16	  = "current" task pointer (in normal kernel-mode, this is in r13)
96 - r32-r39 = system call arguments
97 - b6	  = return address (a user-level value)
98 - ar.pfs = previous frame-state (a user-level value)
99 - PSR.be = cleared to zero (i.e., little-endian byte order is in effect)
100 - all other registers may contain values passed in from user-mode
101
102** Required machine state on exit to fsyscall handler:
103
104 - r11	  = saved ar.pfs (as passed into the fsyscall handler)
105 - r15	  = system call number (as passed into the fsyscall handler)
106 - r32-r39 = system call arguments (as passed into the fsyscall handler)
107 - b6	  = return address (as passed into the fsyscall handler)
108 - ar.pfs = previous frame-state (as passed into the fsyscall handler)
109
110Fsyscall handlers can execute with very little overhead, but with that
111speed comes a set of restrictions:
112
113 o Fsyscall-handlers MUST check for any pending work in the flags
114   member of the thread-info structure and if any of the
115   TIF_ALLWORK_MASK flags are set, the handler needs to fall back on
116   doing a full system call (by calling fsys_fallback_syscall).
117
118 o Fsyscall-handlers MUST preserve incoming arguments (r32-r39, r11,
119   r15, b6, and ar.pfs) because they will be needed in case of a
120   system call restart.  Of course, all "preserved" registers also
121   must be preserved, in accordance to the normal calling conventions.
122
123 o Fsyscall-handlers MUST check argument registers for containing a
124   NaT value before using them in any way that could trigger a
125   NaT-consumption fault.  If a system call argument is found to
126   contain a NaT value, an fsyscall-handler may return immediately
127   with r8=EINVAL, r10=-1.
128
129 o Fsyscall-handlers MUST NOT use the "alloc" instruction or perform
130   any other operation that would trigger mandatory RSE
131   (register-stack engine) traffic.
132
133 o Fsyscall-handlers MUST NOT write to any stacked registers because
134   it is not safe to assume that user-level called a handler with the
135   proper number of arguments.
136
137 o Fsyscall-handlers need to be careful when accessing per-CPU variables:
138   unless proper safe-guards are taken (e.g., interruptions are avoided),
139   execution may be pre-empted and resumed on another CPU at any given
140   time.
141
142 o Fsyscall-handlers must be careful not to leak sensitive kernel'
143   information back to user-level.  In particular, before returning to
144   user-level, care needs to be taken to clear any scratch registers
145   that could contain sensitive information (note that the current
146   task pointer is not considered sensitive: it's already exposed
147   through ar.k6).
148
149 o Fsyscall-handlers MUST NOT access user-memory without first
150   validating access-permission (this can be done typically via
151   probe.r.fault and/or probe.w.fault) and without guarding against
152   memory access exceptions (this can be done with the EX() macros
153   defined by asmmacro.h).
154
155The above restrictions may seem draconian, but remember that it's
156possible to trade off some of the restrictions by paying a slightly
157higher overhead.  For example, if an fsyscall-handler could benefit
158from the shadow register bank, it could temporarily disable PSR.i and
159PSR.ic, switch to bank 0 (bsw.0) and then use the shadow registers as
160needed.  In other words, following the above rules yields extremely
161fast system call execution (while fully preserving system call
162semantics), but there is also a lot of flexibility in handling more
163complicated cases.
164
165* Signal handling
166
167The delivery of (asynchronous) signals must be delayed until fsys-mode
168is exited.  This is accomplished with the help of the lower-privilege
169transfer trap: arch/ia64/kernel/process.c:do_notify_resume_user()
170checks whether the interrupted task was in fsys-mode and, if so, sets
171PSR.lp and returns immediately.  When fsys-mode is exited via the
172"br.ret" instruction that lowers the privilege level, a trap will
173occur.  The trap handler clears PSR.lp again and returns immediately.
174The kernel exit path then checks for and delivers any pending signals.
175
176* PSR Handling
177
178The "epc" instruction doesn't change the contents of PSR at all.  This
179is in contrast to a regular interruption, which clears almost all
180bits.  Because of that, some care needs to be taken to ensure things
181work as expected.  The following discussion describes how each PSR bit
182is handled.
183
184PSR.be	Cleared when entering fsys-mode.  A srlz.d instruction is used
185	to ensure the CPU is in little-endian mode before the first
186	load/store instruction is executed.  PSR.be is normally NOT
187	restored upon return from an fsys-mode handler.  In other
188	words, user-level code must not rely on PSR.be being preserved
189	across a system call.
190PSR.up	Unchanged.
191PSR.ac	Unchanged.
192PSR.mfl Unchanged.  Note: fsys-mode handlers must not write-registers!
193PSR.mfh	Unchanged.  Note: fsys-mode handlers must not write-registers!
194PSR.ic	Unchanged.  Note: fsys-mode handlers can clear the bit, if needed.
195PSR.i	Unchanged.  Note: fsys-mode handlers can clear the bit, if needed.
196PSR.pk	Unchanged.
197PSR.dt	Unchanged.
198PSR.dfl	Unchanged.  Note: fsys-mode handlers must not write-registers!
199PSR.dfh	Unchanged.  Note: fsys-mode handlers must not write-registers!
200PSR.sp	Unchanged.
201PSR.pp	Unchanged.
202PSR.di	Unchanged.
203PSR.si	Unchanged.
204PSR.db	Unchanged.  The kernel prevents user-level from setting a hardware
205	breakpoint that triggers at any privilege level other than 3 (user-mode).
206PSR.lp	Unchanged.
207PSR.tb	Lazy redirect.  If a taken-branch trap occurs while in
208	fsys-mode, the trap-handler modifies the saved machine state
209	such that execution resumes in the gate page at
210	syscall_via_break(), with privilege level 3.  Note: the
211	taken branch would occur on the branch invoking the
212	fsyscall-handler, at which point, by definition, a syscall
213	restart is still safe.  If the system call number is invalid,
214	the fsys-mode handler will return directly to user-level.  This
215	return will trigger a taken-branch trap, but since the trap is
216	taken _after_ restoring the privilege level, the CPU has already
217	left fsys-mode, so no special treatment is needed.
218PSR.rt	Unchanged.
219PSR.cpl	Cleared to 0.
220PSR.is	Unchanged (guaranteed to be 0 on entry to the gate page).
221PSR.mc	Unchanged.
222PSR.it	Unchanged (guaranteed to be 1).
223PSR.id	Unchanged.  Note: the ia64 linux kernel never sets this bit.
224PSR.da	Unchanged.  Note: the ia64 linux kernel never sets this bit.
225PSR.dd	Unchanged.  Note: the ia64 linux kernel never sets this bit.
226PSR.ss	Lazy redirect.  If set, "epc" will cause a Single Step Trap to
227	be taken.  The trap handler then modifies the saved machine
228	state such that execution resumes in the gate page at
229	syscall_via_break(), with privilege level 3.
230PSR.ri	Unchanged.
231PSR.ed	Unchanged.  Note: This bit could only have an effect if an fsys-mode
232	handler performed a speculative load that gets NaTted.  If so, this
233	would be the normal & expected behavior, so no special treatment is
234	needed.
235PSR.bn	Unchanged.  Note: fsys-mode handlers may clear the bit, if needed.
236	Doing so requires clearing PSR.i and PSR.ic as well.
237PSR.ia	Unchanged.  Note: the ia64 linux kernel never sets this bit.
238
239* Using fast system calls
240
241To use fast system calls, userspace applications need simply call
242__kernel_syscall_via_epc().  For example
243
244-- example fgettimeofday() call --
245-- fgettimeofday.S --
246
247#include <asm/asmmacro.h>
248
249GLOBAL_ENTRY(fgettimeofday)
250.prologue
251.save ar.pfs, r11
252mov r11 = ar.pfs
253.body 
254
255mov r2 = 0xa000000000020660;;  // gate address 
256			       // found by inspection of System.map for the 
257			       // __kernel_syscall_via_epc() function.  See
258			       // below for how to do this for real.
259
260mov b7 = r2
261mov r15 = 1087		       // gettimeofday syscall
262;;
263br.call.sptk.many b6 = b7
264;;
265
266.restore sp
267
268mov ar.pfs = r11
269br.ret.sptk.many rp;;	      // return to caller
270END(fgettimeofday)
271
272-- end fgettimeofday.S --
273
274In reality, getting the gate address is accomplished by two extra
275values passed via the ELF auxiliary vector (include/asm-ia64/elf.h)
276
277 o AT_SYSINFO : is the address of __kernel_syscall_via_epc()
278 o AT_SYSINFO_EHDR : is the address of the kernel gate ELF DSO
279
280The ELF DSO is a pre-linked library that is mapped in by the kernel at
281the gate page.  It is a proper ELF shared object so, with a dynamic
282loader that recognises the library, you should be able to make calls to
283the exported functions within it as with any other shared library.
284AT_SYSINFO points into the kernel DSO at the
285__kernel_syscall_via_epc() function for historical reasons (it was
286used before the kernel DSO) and as a convenience.
287