1  <title>Image Formats</title>
2
3  <para>The V4L2 API was primarily designed for devices exchanging
4image data with applications. The
5<structname>v4l2_pix_format</structname> and <structname>v4l2_pix_format_mplane
6</structname> structures define the format and layout of an image in memory.
7The former is used with the single-planar API, while the latter is used with the
8multi-planar version (see <xref linkend="planar-apis"/>). Image formats are
9negotiated with the &VIDIOC-S-FMT; ioctl. (The explanations here focus on video
10capturing and output, for overlay frame buffer formats see also
11&VIDIOC-G-FBUF;.)</para>
12
13<section>
14  <title>Single-planar format structure</title>
15  <table pgwide="1" frame="none" id="v4l2-pix-format">
16    <title>struct <structname>v4l2_pix_format</structname></title>
17    <tgroup cols="3">
18      &cs-str;
19      <tbody valign="top">
20	<row>
21	  <entry>__u32</entry>
22	  <entry><structfield>width</structfield></entry>
23	  <entry>Image width in pixels.</entry>
24	</row>
25	<row>
26	  <entry>__u32</entry>
27	  <entry><structfield>height</structfield></entry>
28	  <entry>Image height in pixels. If <structfield>field</structfield> is
29	  one of <constant>V4L2_FIELD_TOP</constant>, <constant>V4L2_FIELD_BOTTOM</constant>
30	  or <constant>V4L2_FIELD_ALTERNATE</constant> then height refers to the
31	  number of lines in the field, otherwise it refers to the number of
32	  lines in the frame (which is twice the field height for interlaced
33	  formats).</entry>
34	</row>
35	<row>
36	  <entry spanname="hspan">Applications set these fields to
37request an image size, drivers return the closest possible values. In
38case of planar formats the <structfield>width</structfield> and
39<structfield>height</structfield> applies to the largest plane. To
40avoid ambiguities drivers must return values rounded up to a multiple
41of the scale factor of any smaller planes. For example when the image
42format is YUV 4:2:0, <structfield>width</structfield> and
43<structfield>height</structfield> must be multiples of two.</entry>
44	</row>
45	<row>
46	  <entry>__u32</entry>
47	  <entry><structfield>pixelformat</structfield></entry>
48	  <entry>The pixel format or type of compression, set by the
49application. This is a little endian <link
50linkend="v4l2-fourcc">four character code</link>. V4L2 defines
51standard RGB formats in <xref linkend="rgb-formats" />, YUV formats in <xref
52linkend="yuv-formats" />, and reserved codes in <xref
53linkend="reserved-formats" /></entry>
54	</row>
55	<row>
56	  <entry>&v4l2-field;</entry>
57	  <entry><structfield>field</structfield></entry>
58	  <entry>Video images are typically interlaced. Applications
59can request to capture or output only the top or bottom field, or both
60fields interlaced or sequentially stored in one buffer or alternating
61in separate buffers. Drivers return the actual field order selected.
62For more details on fields see <xref linkend="field-order" />.</entry>
63	</row>
64	<row>
65	  <entry>__u32</entry>
66	  <entry><structfield>bytesperline</structfield></entry>
67	  <entry>Distance in bytes between the leftmost pixels in two
68adjacent lines.</entry>
69	</row>
70	<row>
71	  <entry spanname="hspan"><para>Both applications and drivers
72can set this field to request padding bytes at the end of each line.
73Drivers however may ignore the value requested by the application,
74returning <structfield>width</structfield> times bytes per pixel or a
75larger value required by the hardware. That implies applications can
76just set this field to zero to get a reasonable
77default.</para><para>Video hardware may access padding bytes,
78therefore they must reside in accessible memory. Consider cases where
79padding bytes after the last line of an image cross a system page
80boundary. Input devices may write padding bytes, the value is
81undefined. Output devices ignore the contents of padding
82bytes.</para><para>When the image format is planar the
83<structfield>bytesperline</structfield> value applies to the first
84plane and is divided by the same factor as the
85<structfield>width</structfield> field for the other planes. For
86example the Cb and Cr planes of a YUV 4:2:0 image have half as many
87padding bytes following each line as the Y plane. To avoid ambiguities
88drivers must return a <structfield>bytesperline</structfield> value
89rounded up to a multiple of the scale factor.</para>
90<para>For compressed formats the <structfield>bytesperline</structfield>
91value makes no sense. Applications and drivers must set this to 0 in
92that case.</para></entry>
93	</row>
94	<row>
95	  <entry>__u32</entry>
96	  <entry><structfield>sizeimage</structfield></entry>
97	  <entry>Size in bytes of the buffer to hold a complete image,
98set by the driver. Usually this is
99<structfield>bytesperline</structfield> times
100<structfield>height</structfield>. When the image consists of variable
101length compressed data this is the maximum number of bytes required to
102hold an image.</entry>
103	</row>
104	<row>
105	  <entry>&v4l2-colorspace;</entry>
106	  <entry><structfield>colorspace</structfield></entry>
107	  <entry>This information supplements the
108<structfield>pixelformat</structfield> and must be set by the driver for
109capture streams and by the application for output streams,
110see <xref linkend="colorspaces" />.</entry>
111	</row>
112	<row>
113	  <entry>__u32</entry>
114	  <entry><structfield>priv</structfield></entry>
115	  <entry><para>This field indicates whether the remaining fields of the
116<structname>v4l2_pix_format</structname> structure, also called the extended
117fields, are valid. When set to <constant>V4L2_PIX_FMT_PRIV_MAGIC</constant>, it
118indicates that the extended fields have been correctly initialized. When set to
119any other value it indicates that the extended fields contain undefined values.
120</para>
121<para>Applications that wish to use the pixel format extended fields must first
122ensure that the feature is supported by querying the device for the
123<link linkend="querycap"><constant>V4L2_CAP_EXT_PIX_FORMAT</constant></link>
124capability. If the capability isn't set the pixel format extended fields are not
125supported and using the extended fields will lead to undefined results.</para>
126<para>To use the extended fields, applications must set the
127<structfield>priv</structfield> field to
128<constant>V4L2_PIX_FMT_PRIV_MAGIC</constant>, initialize all the extended fields
129and zero the unused bytes of the <structname>v4l2_format</structname>
130<structfield>raw_data</structfield> field.</para>
131<para>When the <structfield>priv</structfield> field isn't set to
132<constant>V4L2_PIX_FMT_PRIV_MAGIC</constant> drivers must act as if all the
133extended fields were set to zero. On return drivers must set the
134<structfield>priv</structfield> field to
135<constant>V4L2_PIX_FMT_PRIV_MAGIC</constant> and all the extended fields to
136applicable values.</para></entry>
137	</row>
138	<row>
139	  <entry>__u32</entry>
140	  <entry><structfield>flags</structfield></entry>
141	  <entry>Flags set by the application or driver, see <xref
142linkend="format-flags" />.</entry>
143	</row>
144	<row>
145	  <entry>&v4l2-ycbcr-encoding;</entry>
146	  <entry><structfield>ycbcr_enc</structfield></entry>
147	  <entry>This information supplements the
148<structfield>colorspace</structfield> and must be set by the driver for
149capture streams and by the application for output streams,
150see <xref linkend="colorspaces" />.</entry>
151	</row>
152	<row>
153	  <entry>&v4l2-quantization;</entry>
154	  <entry><structfield>quantization</structfield></entry>
155	  <entry>This information supplements the
156<structfield>colorspace</structfield> and must be set by the driver for
157capture streams and by the application for output streams,
158see <xref linkend="colorspaces" />.</entry>
159	</row>
160	<row>
161	  <entry>&v4l2-xfer-func;</entry>
162	  <entry><structfield>xfer_func</structfield></entry>
163	  <entry>This information supplements the
164<structfield>colorspace</structfield> and must be set by the driver for
165capture streams and by the application for output streams,
166see <xref linkend="colorspaces" />.</entry>
167	</row>
168      </tbody>
169    </tgroup>
170  </table>
171</section>
172
173<section>
174  <title>Multi-planar format structures</title>
175  <para>The <structname>v4l2_plane_pix_format</structname> structures define
176    size and layout for each of the planes in a multi-planar format.
177    The <structname>v4l2_pix_format_mplane</structname> structure contains
178    information common to all planes (such as image width and height) and
179    an array of <structname>v4l2_plane_pix_format</structname> structures,
180    describing all planes of that format.</para>
181  <table pgwide="1" frame="none" id="v4l2-plane-pix-format">
182    <title>struct <structname>v4l2_plane_pix_format</structname></title>
183    <tgroup cols="3">
184      &cs-str;
185      <tbody valign="top">
186        <row>
187          <entry>__u32</entry>
188          <entry><structfield>sizeimage</structfield></entry>
189          <entry>Maximum size in bytes required for image data in this plane.
190          </entry>
191        </row>
192        <row>
193          <entry>__u32</entry>
194          <entry><structfield>bytesperline</structfield></entry>
195          <entry>Distance in bytes between the leftmost pixels in two adjacent
196            lines. See &v4l2-pix-format;.</entry>
197        </row>
198        <row>
199          <entry>__u16</entry>
200          <entry><structfield>reserved[6]</structfield></entry>
201          <entry>Reserved for future extensions. Should be zeroed by drivers and
202           applications.</entry>
203        </row>
204      </tbody>
205    </tgroup>
206  </table>
207  <table pgwide="1" frame="none" id="v4l2-pix-format-mplane">
208    <title>struct <structname>v4l2_pix_format_mplane</structname></title>
209    <tgroup cols="3">
210      &cs-str;
211      <tbody valign="top">
212        <row>
213          <entry>__u32</entry>
214          <entry><structfield>width</structfield></entry>
215          <entry>Image width in pixels. See &v4l2-pix-format;.</entry>
216        </row>
217        <row>
218          <entry>__u32</entry>
219          <entry><structfield>height</structfield></entry>
220          <entry>Image height in pixels. See &v4l2-pix-format;.</entry>
221        </row>
222        <row>
223          <entry>__u32</entry>
224          <entry><structfield>pixelformat</structfield></entry>
225          <entry>The pixel format. Both single- and multi-planar four character
226codes can be used.</entry>
227        </row>
228        <row>
229          <entry>&v4l2-field;</entry>
230          <entry><structfield>field</structfield></entry>
231          <entry>See &v4l2-pix-format;.</entry>
232        </row>
233        <row>
234          <entry>&v4l2-colorspace;</entry>
235          <entry><structfield>colorspace</structfield></entry>
236          <entry>See &v4l2-pix-format;.</entry>
237        </row>
238        <row>
239          <entry>&v4l2-plane-pix-format;</entry>
240          <entry><structfield>plane_fmt[VIDEO_MAX_PLANES]</structfield></entry>
241          <entry>An array of structures describing format of each plane this
242          pixel format consists of. The number of valid entries in this array
243          has to be put in the <structfield>num_planes</structfield>
244          field.</entry>
245        </row>
246        <row>
247          <entry>__u8</entry>
248          <entry><structfield>num_planes</structfield></entry>
249          <entry>Number of planes (i.e. separate memory buffers) for this format
250          and the number of valid entries in the
251          <structfield>plane_fmt</structfield> array.</entry>
252        </row>
253	<row>
254	  <entry>__u8</entry>
255	  <entry><structfield>flags</structfield></entry>
256	  <entry>Flags set by the application or driver, see <xref
257linkend="format-flags" />.</entry>
258	</row>
259	<row>
260	  <entry>&v4l2-ycbcr-encoding;</entry>
261	  <entry><structfield>ycbcr_enc</structfield></entry>
262	  <entry>This information supplements the
263<structfield>colorspace</structfield> and must be set by the driver for
264capture streams and by the application for output streams,
265see <xref linkend="colorspaces" />.</entry>
266	</row>
267	<row>
268	  <entry>&v4l2-quantization;</entry>
269	  <entry><structfield>quantization</structfield></entry>
270	  <entry>This information supplements the
271<structfield>colorspace</structfield> and must be set by the driver for
272capture streams and by the application for output streams,
273see <xref linkend="colorspaces" />.</entry>
274	</row>
275	<row>
276	  <entry>&v4l2-xfer-func;</entry>
277	  <entry><structfield>xfer_func</structfield></entry>
278	  <entry>This information supplements the
279<structfield>colorspace</structfield> and must be set by the driver for
280capture streams and by the application for output streams,
281see <xref linkend="colorspaces" />.</entry>
282	</row>
283        <row>
284          <entry>__u8</entry>
285          <entry><structfield>reserved[7]</structfield></entry>
286          <entry>Reserved for future extensions. Should be zeroed by drivers
287           and applications.</entry>
288        </row>
289      </tbody>
290    </tgroup>
291  </table>
292</section>
293
294  <section>
295    <title>Standard Image Formats</title>
296
297    <para>In order to exchange images between drivers and
298applications, it is necessary to have standard image data formats
299which both sides will interpret the same way. V4L2 includes several
300such formats, and this section is intended to be an unambiguous
301specification of the standard image data formats in V4L2.</para>
302
303    <para>V4L2 drivers are not limited to these formats, however.
304Driver-specific formats are possible. In that case the application may
305depend on a codec to convert images to one of the standard formats
306when needed. But the data can still be stored and retrieved in the
307proprietary format. For example, a device may support a proprietary
308compressed format. Applications can still capture and save the data in
309the compressed format, saving much disk space, and later use a codec
310to convert the images to the X Windows screen format when the video is
311to be displayed.</para>
312
313    <para>Even so, ultimately, some standard formats are needed, so
314the V4L2 specification would not be complete without well-defined
315standard formats.</para>
316
317    <para>The V4L2 standard formats are mainly uncompressed formats. The
318pixels are always arranged in memory from left to right, and from top
319to bottom. The first byte of data in the image buffer is always for
320the leftmost pixel of the topmost row. Following that is the pixel
321immediately to its right, and so on until the end of the top row of
322pixels. Following the rightmost pixel of the row there may be zero or
323more bytes of padding to guarantee that each row of pixel data has a
324certain alignment. Following the pad bytes, if any, is data for the
325leftmost pixel of the second row from the top, and so on. The last row
326has just as many pad bytes after it as the other rows.</para>
327
328    <para>In V4L2 each format has an identifier which looks like
329<constant>PIX_FMT_XXX</constant>, defined in the <link
330linkend="videodev">videodev2.h</link> header file. These identifiers
331represent <link linkend="v4l2-fourcc">four character (FourCC) codes</link>
332which are also listed below, however they are not the same as those
333used in the Windows world.</para>
334
335    <para>For some formats, data is stored in separate, discontiguous
336memory buffers. Those formats are identified by a separate set of FourCC codes
337and are referred to as "multi-planar formats". For example, a YUV422 frame is
338normally stored in one memory buffer, but it can also be placed in two or three
339separate buffers, with Y component in one buffer and CbCr components in another
340in the 2-planar version or with each component in its own buffer in the
3413-planar case. Those sub-buffers are referred to as "planes".</para>
342  </section>
343
344  <section id="colorspaces">
345    <title>Colorspaces</title>
346
347    <para>'Color' is a very complex concept and depends on physics, chemistry and
348biology. Just because you have three numbers that describe the 'red', 'green'
349and 'blue' components of the color of a pixel does not mean that you can accurately
350display that color. A colorspace defines what it actually <emphasis>means</emphasis>
351to have an RGB value of e.g. (255,&nbsp;0,&nbsp;0). That is, which color should be
352reproduced on the screen in a perfectly calibrated environment.</para>
353
354    <para>In order to do that we first need to have a good definition of
355color, i.e. some way to uniquely and unambiguously define a color so that someone
356else can reproduce it. Human color vision is trichromatic since the human eye has
357color receptors that are sensitive to three different wavelengths of light. Hence
358the need to use three numbers to describe color. Be glad you are not a mantis shrimp
359as those are sensitive to 12 different wavelengths, so instead of RGB we would be
360using the ABCDEFGHIJKL colorspace...</para>
361
362    <para>Color exists only in the eye and brain and is the result of how strongly
363color receptors are stimulated. This is based on the Spectral
364Power Distribution (SPD) which is a graph showing the intensity (radiant power)
365of the light at wavelengths covering the visible spectrum as it enters the eye.
366The science of colorimetry is about the relationship between the SPD and color as
367perceived by the human brain.</para>
368
369    <para>Since the human eye has only three color receptors it is perfectly
370possible that different SPDs will result in the same stimulation of those receptors
371and are perceived as the same color, even though the SPD of the light is
372different.</para>
373
374   <para>In the 1920s experiments were devised to determine the relationship
375between SPDs and the perceived color and that resulted in the CIE 1931 standard
376that defines spectral weighting functions that model the perception of color.
377Specifically that standard defines functions that can take an SPD and calculate
378the stimulus for each color receptor. After some further mathematical transforms
379these stimuli are known as the <emphasis>CIE XYZ tristimulus</emphasis> values
380and these X, Y and Z values describe a color as perceived by a human unambiguously.
381These X, Y and Z values are all in the range [0&hellip;1].</para>
382
383   <para>The Y value in the CIE XYZ colorspace corresponds to luminance. Often
384the CIE XYZ colorspace is transformed to the normalized CIE xyY colorspace:</para>
385
386   <para>x = X / (X + Y + Z)</para>
387   <para>y = Y / (X + Y + Z)</para>
388
389   <para>The x and y values are the chromaticity coordinates and can be used to
390define a color without the luminance component Y. It is very confusing to
391have such similar names for these colorspaces. Just be aware that if colors
392are specified with lower case 'x' and 'y', then the CIE xyY colorspace is
393used. Upper case 'X' and 'Y' refer to the CIE XYZ colorspace. Also, y has nothing
394to do with luminance. Together x and y specify a color, and Y the luminance.
395That is really all you need to remember from a practical point of view. At
396the end of this section you will find reading resources that go into much more
397detail if you are interested.
398</para>
399
400   <para>A monitor or TV will reproduce colors by emitting light at three
401different wavelengths, the combination of which will stimulate the color receptors
402in the eye and thus cause the perception of color. Historically these wavelengths
403were defined by the red, green and blue phosphors used in the displays. These
404<emphasis>color primaries</emphasis> are part of what defines a colorspace.</para>
405
406    <para>Different display devices will have different primaries and some
407primaries are more suitable for some display technologies than others. This has
408resulted in a variety of colorspaces that are used for different display
409technologies or uses. To define a colorspace you need to define the three
410color primaries (these are typically defined as x,&nbsp;y chromaticity coordinates
411from the CIE xyY colorspace) but also the white reference: that is the color obtained
412when all three primaries are at maximum power. This determines the relative power
413or energy of the primaries. This is usually chosen to be close to daylight which has
414been defined as the CIE D65 Illuminant.</para>
415
416    <para>To recapitulate: the CIE XYZ colorspace uniquely identifies colors.
417Other colorspaces are defined by three chromaticity coordinates defined in the
418CIE xyY colorspace. Based on those a 3x3 matrix can be constructed that
419transforms CIE XYZ colors to colors in the new colorspace.
420</para>
421
422    <para>Both the CIE XYZ and the RGB colorspace that are derived from the
423specific chromaticity primaries are linear colorspaces. But neither the eye,
424nor display technology is linear. Doubling the values of all components in
425the linear colorspace will not be perceived as twice the intensity of the color.
426So each colorspace also defines a transfer function that takes a linear color
427component value and transforms it to the non-linear component value, which is a
428closer match to the non-linear performance of both the eye and displays. Linear
429component values are denoted RGB, non-linear are denoted as R'G'B'. In general
430colors used in graphics are all R'G'B', except in openGL which uses linear RGB.
431Special care should be taken when dealing with openGL to provide linear RGB colors
432or to use the built-in openGL support to apply the inverse transfer function.</para>
433
434    <para>The final piece that defines a colorspace is a function that
435transforms non-linear R'G'B' to non-linear Y'CbCr. This function is determined
436by the so-called luma coefficients. There may be multiple possible Y'CbCr
437encodings allowed for the same colorspace. Many encodings of color
438prefer to use luma (Y') and chroma (CbCr) instead of R'G'B'. Since the human
439eye is more sensitive to differences in luminance than in color this encoding
440allows one to reduce the amount of color information compared to the luma
441data. Note that the luma (Y') is unrelated to the Y in the CIE XYZ colorspace.
442Also note that Y'CbCr is often called YCbCr or YUV even though these are
443strictly speaking wrong.</para>
444
445    <para>Sometimes people confuse Y'CbCr as being a colorspace. This is not
446correct, it is just an encoding of an R'G'B' color into luma and chroma
447values. The underlying colorspace that is associated with the R'G'B' color
448is also associated with the Y'CbCr color.</para>
449
450    <para>The final step is how the RGB, R'G'B' or Y'CbCr values are
451quantized. The CIE XYZ colorspace where X, Y and Z are in the range
452[0&hellip;1] describes all colors that humans can perceive, but the transform to
453another colorspace will produce colors that are outside the [0&hellip;1] range.
454Once clamped to the [0&hellip;1] range those colors can no longer be reproduced
455in that colorspace. This clamping is what reduces the extent or gamut of the
456colorspace. How the range of [0&hellip;1] is translated to integer values in the
457range of [0&hellip;255] (or higher, depending on the color depth) is called the
458quantization. This is <emphasis>not</emphasis> part of the colorspace
459definition. In practice RGB or R'G'B' values are full range, i.e. they
460use the full [0&hellip;255] range. Y'CbCr values on the other hand are limited
461range with Y' using [16&hellip;235] and Cb and Cr using [16&hellip;240].</para>
462
463    <para>Unfortunately, in some cases limited range RGB is also used
464where the components use the range [16&hellip;235]. And full range Y'CbCr also exists
465using the [0&hellip;255] range.</para>
466
467    <para>In order to correctly interpret a color you need to know the
468quantization range, whether it is R'G'B' or Y'CbCr, the used Y'CbCr encoding
469and the colorspace.
470From that information you can calculate the corresponding CIE XYZ color
471and map that again to whatever colorspace your display device uses.</para>
472
473    <para>The colorspace definition itself consists of the three
474chromaticity primaries, the white reference chromaticity, a transfer
475function and the luma coefficients needed to transform R'G'B' to Y'CbCr. While
476some colorspace standards correctly define all four, quite often the colorspace
477standard only defines some, and you have to rely on other standards for
478the missing pieces. The fact that colorspaces are often a mix of different
479standards also led to very confusing naming conventions where the name of
480a standard was used to name a colorspace when in fact that standard was
481part of various other colorspaces as well.</para>
482
483    <para>If you want to read more about colors and colorspaces, then the
484following resources are useful: <xref linkend="poynton" /> is a good practical
485book for video engineers, <xref linkend="colimg" /> has a much broader scope and
486describes many more aspects of color (physics, chemistry, biology, etc.).
487The <ulink url="http://www.brucelindbloom.com">http://www.brucelindbloom.com</ulink>
488website is an excellent resource, especially with respect to the mathematics behind
489colorspace conversions. The wikipedia <ulink url="http://en.wikipedia.org/wiki/CIE_1931_color_space#CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space">CIE 1931 colorspace</ulink> article
490is also very useful.</para>
491  </section>
492
493  <section>
494    <title>Defining Colorspaces in V4L2</title>
495    <para>In V4L2 colorspaces are defined by four values. The first is the colorspace
496identifier (&v4l2-colorspace;) which defines the chromaticities, the default transfer
497function, the default Y'CbCr encoding and the default quantization method. The second
498is the transfer function identifier (&v4l2-xfer-func;) to specify non-standard
499transfer functions. The third is the Y'CbCr encoding identifier (&v4l2-ycbcr-encoding;)
500to specify non-standard Y'CbCr encodings and the fourth is the quantization identifier
501(&v4l2-quantization;) to specify non-standard quantization methods. Most of the time
502only the colorspace field of &v4l2-pix-format; or &v4l2-pix-format-mplane; needs to
503be filled in. Note that the default R'G'B' quantization is full range for all
504colorspaces except for BT.2020 which uses limited range R'G'B' quantization.</para>
505
506    <table pgwide="1" frame="none" id="v4l2-colorspace">
507      <title>V4L2 Colorspaces</title>
508      <tgroup cols="2" align="left">
509	&cs-def;
510	<thead>
511	  <row>
512	    <entry>Identifier</entry>
513	    <entry>Details</entry>
514	  </row>
515	</thead>
516	<tbody valign="top">
517	  <row>
518	    <entry><constant>V4L2_COLORSPACE_DEFAULT</constant></entry>
519	    <entry>The default colorspace. This can be used by applications to let the
520	    driver fill in the colorspace.</entry>
521	  </row>
522	  <row>
523	    <entry><constant>V4L2_COLORSPACE_SMPTE170M</constant></entry>
524	    <entry>See <xref linkend="col-smpte-170m" />.</entry>
525	  </row>
526	  <row>
527	    <entry><constant>V4L2_COLORSPACE_REC709</constant></entry>
528	    <entry>See <xref linkend="col-rec709" />.</entry>
529	  </row>
530	  <row>
531	    <entry><constant>V4L2_COLORSPACE_SRGB</constant></entry>
532	    <entry>See <xref linkend="col-srgb" />.</entry>
533	  </row>
534	  <row>
535	    <entry><constant>V4L2_COLORSPACE_ADOBERGB</constant></entry>
536	    <entry>See <xref linkend="col-adobergb" />.</entry>
537	  </row>
538	  <row>
539	    <entry><constant>V4L2_COLORSPACE_BT2020</constant></entry>
540	    <entry>See <xref linkend="col-bt2020" />.</entry>
541	  </row>
542	  <row>
543	    <entry><constant>V4L2_COLORSPACE_DCI_P3</constant></entry>
544	    <entry>See <xref linkend="col-dcip3" />.</entry>
545	  </row>
546	  <row>
547	    <entry><constant>V4L2_COLORSPACE_SMPTE240M</constant></entry>
548	    <entry>See <xref linkend="col-smpte-240m" />.</entry>
549	  </row>
550	  <row>
551	    <entry><constant>V4L2_COLORSPACE_470_SYSTEM_M</constant></entry>
552	    <entry>See <xref linkend="col-sysm" />.</entry>
553	  </row>
554	  <row>
555	    <entry><constant>V4L2_COLORSPACE_470_SYSTEM_BG</constant></entry>
556	    <entry>See <xref linkend="col-sysbg" />.</entry>
557	  </row>
558	  <row>
559	    <entry><constant>V4L2_COLORSPACE_JPEG</constant></entry>
560	    <entry>See <xref linkend="col-jpeg" />.</entry>
561	  </row>
562	  <row>
563	    <entry><constant>V4L2_COLORSPACE_RAW</constant></entry>
564	    <entry>The raw colorspace. This is used for raw image capture where
565	    the image is minimally processed and is using the internal colorspace
566	    of the device. The software that processes an image using this
567	    'colorspace' will have to know the internals of the capture device.</entry>
568	  </row>
569	</tbody>
570      </tgroup>
571    </table>
572
573    <table pgwide="1" frame="none" id="v4l2-xfer-func">
574      <title>V4L2 Transfer Function</title>
575      <tgroup cols="2" align="left">
576	&cs-def;
577	<thead>
578	  <row>
579	    <entry>Identifier</entry>
580	    <entry>Details</entry>
581	  </row>
582	</thead>
583	<tbody valign="top">
584	  <row>
585	    <entry><constant>V4L2_XFER_FUNC_DEFAULT</constant></entry>
586	    <entry>Use the default transfer function as defined by the colorspace.</entry>
587	  </row>
588	  <row>
589	    <entry><constant>V4L2_XFER_FUNC_709</constant></entry>
590	    <entry>Use the Rec. 709 transfer function.</entry>
591	  </row>
592	  <row>
593	    <entry><constant>V4L2_XFER_FUNC_SRGB</constant></entry>
594	    <entry>Use the sRGB transfer function.</entry>
595	  </row>
596	  <row>
597	    <entry><constant>V4L2_XFER_FUNC_ADOBERGB</constant></entry>
598	    <entry>Use the AdobeRGB transfer function.</entry>
599	  </row>
600	  <row>
601	    <entry><constant>V4L2_XFER_FUNC_SMPTE240M</constant></entry>
602	    <entry>Use the SMPTE 240M transfer function.</entry>
603	  </row>
604	  <row>
605	    <entry><constant>V4L2_XFER_FUNC_NONE</constant></entry>
606	    <entry>Do not use a transfer function (i.e. use linear RGB values).</entry>
607	  </row>
608	  <row>
609	    <entry><constant>V4L2_XFER_FUNC_DCI_P3</constant></entry>
610	    <entry>Use the DCI-P3 transfer function.</entry>
611	  </row>
612	  <row>
613	    <entry><constant>V4L2_XFER_FUNC_SMPTE2084</constant></entry>
614	    <entry>Use the SMPTE 2084 transfer function.</entry>
615	  </row>
616	</tbody>
617      </tgroup>
618    </table>
619
620    <table pgwide="1" frame="none" id="v4l2-ycbcr-encoding">
621      <title>V4L2 Y'CbCr Encodings</title>
622      <tgroup cols="2" align="left">
623	&cs-def;
624	<thead>
625	  <row>
626	    <entry>Identifier</entry>
627	    <entry>Details</entry>
628	  </row>
629	</thead>
630	<tbody valign="top">
631	  <row>
632	    <entry><constant>V4L2_YCBCR_ENC_DEFAULT</constant></entry>
633	    <entry>Use the default Y'CbCr encoding as defined by the colorspace.</entry>
634	  </row>
635	  <row>
636	    <entry><constant>V4L2_YCBCR_ENC_601</constant></entry>
637	    <entry>Use the BT.601 Y'CbCr encoding.</entry>
638	  </row>
639	  <row>
640	    <entry><constant>V4L2_YCBCR_ENC_709</constant></entry>
641	    <entry>Use the Rec. 709 Y'CbCr encoding.</entry>
642	  </row>
643	  <row>
644	    <entry><constant>V4L2_YCBCR_ENC_XV601</constant></entry>
645	    <entry>Use the extended gamut xvYCC BT.601 encoding.</entry>
646	  </row>
647	  <row>
648	    <entry><constant>V4L2_YCBCR_ENC_XV709</constant></entry>
649	    <entry>Use the extended gamut xvYCC Rec. 709 encoding.</entry>
650	  </row>
651	  <row>
652	    <entry><constant>V4L2_YCBCR_ENC_SYCC</constant></entry>
653	    <entry>Use the extended gamut sYCC encoding.</entry>
654	  </row>
655	  <row>
656	    <entry><constant>V4L2_YCBCR_ENC_BT2020</constant></entry>
657	    <entry>Use the default non-constant luminance BT.2020 Y'CbCr encoding.</entry>
658	  </row>
659	  <row>
660	    <entry><constant>V4L2_YCBCR_ENC_BT2020_CONST_LUM</constant></entry>
661	    <entry>Use the constant luminance BT.2020 Yc'CbcCrc encoding.</entry>
662	  </row>
663	</tbody>
664      </tgroup>
665    </table>
666
667    <table pgwide="1" frame="none" id="v4l2-quantization">
668      <title>V4L2 Quantization Methods</title>
669      <tgroup cols="2" align="left">
670	&cs-def;
671	<thead>
672	  <row>
673	    <entry>Identifier</entry>
674	    <entry>Details</entry>
675	  </row>
676	</thead>
677	<tbody valign="top">
678	  <row>
679	    <entry><constant>V4L2_QUANTIZATION_DEFAULT</constant></entry>
680	    <entry>Use the default quantization encoding as defined by the colorspace.
681This is always full range for R'G'B' (except for the BT.2020 colorspace) and usually
682limited range for Y'CbCr.</entry>
683	  </row>
684	  <row>
685	    <entry><constant>V4L2_QUANTIZATION_FULL_RANGE</constant></entry>
686	    <entry>Use the full range quantization encoding. I.e. the range [0&hellip;1]
687is mapped to [0&hellip;255] (with possible clipping to [1&hellip;254] to avoid the
6880x00 and 0xff values). Cb and Cr are mapped from [-0.5&hellip;0.5] to [0&hellip;255]
689(with possible clipping to [1&hellip;254] to avoid the 0x00 and 0xff values).</entry>
690	  </row>
691	  <row>
692	    <entry><constant>V4L2_QUANTIZATION_LIM_RANGE</constant></entry>
693	    <entry>Use the limited range quantization encoding. I.e. the range [0&hellip;1]
694is mapped to [16&hellip;235]. Cb and Cr are mapped from [-0.5&hellip;0.5] to [16&hellip;240].
695</entry>
696	  </row>
697	</tbody>
698      </tgroup>
699    </table>
700  </section>
701
702  <section>
703    <title>Detailed Colorspace Descriptions</title>
704    <section id="col-smpte-170m">
705      <title>Colorspace SMPTE 170M (<constant>V4L2_COLORSPACE_SMPTE170M</constant>)</title>
706      <para>The <xref linkend="smpte170m" /> standard defines the colorspace used by NTSC and PAL and by SDTV
707in general. The default transfer function is <constant>V4L2_XFER_FUNC_709</constant>.
708The default Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_601</constant>.
709The default Y'CbCr quantization is limited range. The chromaticities of the primary colors and
710the white reference are:</para>
711      <table frame="none">
712        <title>SMPTE 170M Chromaticities</title>
713        <tgroup cols="3" align="left">
714          &cs-str;
715    	<thead>
716    	  <row>
717    	    <entry>Color</entry>
718    	    <entry>x</entry>
719    	    <entry>y</entry>
720    	  </row>
721    	</thead>
722          <tbody valign="top">
723            <row>
724              <entry>Red</entry>
725              <entry>0.630</entry>
726              <entry>0.340</entry>
727            </row>
728            <row>
729              <entry>Green</entry>
730              <entry>0.310</entry>
731              <entry>0.595</entry>
732            </row>
733            <row>
734              <entry>Blue</entry>
735              <entry>0.155</entry>
736              <entry>0.070</entry>
737            </row>
738            <row>
739              <entry>White Reference (D65)</entry>
740              <entry>0.3127</entry>
741              <entry>0.3290</entry>
742            </row>
743          </tbody>
744        </tgroup>
745      </table>
746      <para>The red, green and blue chromaticities are also often referred to
747as the SMPTE C set, so this colorspace is sometimes called SMPTE C as well.</para>
748      <variablelist>
749	<varlistentry>
750          <term>The transfer function defined for SMPTE 170M is the same as the
751one defined in Rec. 709.</term>
752	  <listitem>
753            <para>L' = -1.099(-L)<superscript>0.45</superscript>&nbsp;+&nbsp;0.099&nbsp;for&nbsp;L&nbsp;&le;&nbsp;-0.018</para>
754            <para>L' = 4.5L&nbsp;for&nbsp;-0.018&nbsp;&lt;&nbsp;L&nbsp;&lt;&nbsp;0.018</para>
755            <para>L' = 1.099L<superscript>0.45</superscript>&nbsp;-&nbsp;0.099&nbsp;for&nbsp;L&nbsp;&ge;&nbsp;0.018</para>
756	  </listitem>
757	</varlistentry>
758      </variablelist>
759      <variablelist>
760	<varlistentry>
761          <term>Inverse Transfer function:</term>
762	  <listitem>
763            <para>L = -((L'&nbsp;-&nbsp;0.099)&nbsp;/&nbsp;-1.099)<superscript>1/0.45</superscript>&nbsp;for&nbsp;L'&nbsp;&le;&nbsp;-0.081</para>
764            <para>L = L'&nbsp;/&nbsp;4.5&nbsp;for&nbsp;-0.081&nbsp;&lt;&nbsp;L'&nbsp;&lt;&nbsp;0.081</para>
765            <para>L = ((L'&nbsp;+&nbsp;0.099)&nbsp;/&nbsp;1.099)<superscript>1/0.45</superscript>&nbsp;for&nbsp;L'&nbsp;&ge;&nbsp;0.081</para>
766	  </listitem>
767	</varlistentry>
768      </variablelist>
769      <variablelist>
770	<varlistentry>
771      	  <term>The luminance (Y') and color difference (Cb and Cr) are obtained with
772the following <constant>V4L2_YCBCR_ENC_601</constant> encoding:</term>
773	  <listitem>
774            <para>Y'&nbsp;=&nbsp;0.299R'&nbsp;+&nbsp;0.587G'&nbsp;+&nbsp;0.114B'</para>
775            <para>Cb&nbsp;=&nbsp;-0.169R'&nbsp;-&nbsp;0.331G'&nbsp;+&nbsp;0.5B'</para>
776            <para>Cr&nbsp;=&nbsp;0.5R'&nbsp;-&nbsp;0.419G'&nbsp;-&nbsp;0.081B'</para>
777	  </listitem>
778	</varlistentry>
779      </variablelist>
780      <para>Y' is clamped to the range [0&hellip;1] and Cb and Cr are
781clamped to the range [-0.5&hellip;0.5]. This conversion to Y'CbCr is identical to the one
782defined in the <xref linkend="itu601" /> standard and this colorspace is sometimes called BT.601 as well, even
783though BT.601 does not mention any color primaries.</para>
784      <para>The default quantization is limited range, but full range is possible although
785rarely seen.</para>
786    </section>
787
788    <section id="col-rec709">
789      <title>Colorspace Rec. 709 (<constant>V4L2_COLORSPACE_REC709</constant>)</title>
790      <para>The <xref linkend="itu709" /> standard defines the colorspace used by HDTV in general.
791The default transfer function is <constant>V4L2_XFER_FUNC_709</constant>. The default
792Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_709</constant>. The default Y'CbCr quantization is
793limited range. The chromaticities of the primary colors and the white reference are:</para>
794      <table frame="none">
795        <title>Rec. 709 Chromaticities</title>
796        <tgroup cols="3" align="left">
797          &cs-str;
798    	<thead>
799    	  <row>
800    	    <entry>Color</entry>
801    	    <entry>x</entry>
802    	    <entry>y</entry>
803    	  </row>
804    	</thead>
805          <tbody valign="top">
806            <row>
807              <entry>Red</entry>
808              <entry>0.640</entry>
809              <entry>0.330</entry>
810            </row>
811            <row>
812              <entry>Green</entry>
813              <entry>0.300</entry>
814              <entry>0.600</entry>
815            </row>
816            <row>
817              <entry>Blue</entry>
818              <entry>0.150</entry>
819              <entry>0.060</entry>
820            </row>
821            <row>
822              <entry>White Reference (D65)</entry>
823              <entry>0.3127</entry>
824              <entry>0.3290</entry>
825            </row>
826          </tbody>
827        </tgroup>
828      </table>
829      <para>The full name of this standard is Rec. ITU-R BT.709-5.</para>
830      <variablelist>
831	<varlistentry>
832          <term>Transfer function. Normally L is in the range [0&hellip;1], but for the extended
833gamut xvYCC encoding values outside that range are allowed.</term>
834	  <listitem>
835            <para>L' = -1.099(-L)<superscript>0.45</superscript>&nbsp;+&nbsp;0.099&nbsp;for&nbsp;L&nbsp;&le;&nbsp;-0.018</para>
836            <para>L' = 4.5L&nbsp;for&nbsp;-0.018&nbsp;&lt;&nbsp;L&nbsp;&lt;&nbsp;0.018</para>
837            <para>L' = 1.099L<superscript>0.45</superscript>&nbsp;-&nbsp;0.099&nbsp;for&nbsp;L&nbsp;&ge;&nbsp;0.018</para>
838	  </listitem>
839	</varlistentry>
840      </variablelist>
841      <variablelist>
842	<varlistentry>
843          <term>Inverse Transfer function:</term>
844	  <listitem>
845            <para>L = -((L'&nbsp;-&nbsp;0.099)&nbsp;/&nbsp;-1.099)<superscript>1/0.45</superscript>&nbsp;for&nbsp;L'&nbsp;&le;&nbsp;-0.081</para>
846            <para>L = L'&nbsp;/&nbsp;4.5&nbsp;for&nbsp;-0.081&nbsp;&lt;&nbsp;L'&nbsp;&lt;&nbsp;0.081</para>
847            <para>L = ((L'&nbsp;+&nbsp;0.099)&nbsp;/&nbsp;1.099)<superscript>1/0.45</superscript>&nbsp;for&nbsp;L'&nbsp;&ge;&nbsp;0.081</para>
848	  </listitem>
849	</varlistentry>
850      </variablelist>
851      <variablelist>
852	<varlistentry>
853      	  <term>The luminance (Y') and color difference (Cb and Cr) are obtained with the following
854<constant>V4L2_YCBCR_ENC_709</constant> encoding:</term>
855	  <listitem>
856            <para>Y'&nbsp;=&nbsp;0.2126R'&nbsp;+&nbsp;0.7152G'&nbsp;+&nbsp;0.0722B'</para>
857            <para>Cb&nbsp;=&nbsp;-0.1146R'&nbsp;-&nbsp;0.3854G'&nbsp;+&nbsp;0.5B'</para>
858            <para>Cr&nbsp;=&nbsp;0.5R'&nbsp;-&nbsp;0.4542G'&nbsp;-&nbsp;0.0458B'</para>
859	  </listitem>
860	</varlistentry>
861      </variablelist>
862      <para>Y' is clamped to the range [0&hellip;1] and Cb and Cr are
863clamped to the range [-0.5&hellip;0.5].</para>
864      <para>The default quantization is limited range, but full range is possible although
865rarely seen.</para>
866      <para>The <constant>V4L2_YCBCR_ENC_709</constant> encoding described above is the default
867for this colorspace, but it can be overridden with <constant>V4L2_YCBCR_ENC_601</constant>, in which
868case the BT.601 Y'CbCr encoding is used.</para>
869      <para>Two additional extended gamut Y'CbCr encodings are also possible with this colorspace:</para>
870      <variablelist>
871	<varlistentry>
872      	  <term>The xvYCC 709 encoding (<constant>V4L2_YCBCR_ENC_XV709</constant>, <xref linkend="xvycc" />)
873is similar to the Rec. 709 encoding, but it allows for R', G' and B' values that are outside the range
874[0&hellip;1]. The resulting Y', Cb and Cr values are scaled and offset:</term>
875	  <listitem>
876            <para>Y'&nbsp;=&nbsp;(219&nbsp;/&nbsp;256)&nbsp;*&nbsp;(0.2126R'&nbsp;+&nbsp;0.7152G'&nbsp;+&nbsp;0.0722B')&nbsp;+&nbsp;(16&nbsp;/&nbsp;256)</para>
877            <para>Cb&nbsp;=&nbsp;(224&nbsp;/&nbsp;256)&nbsp;*&nbsp;(-0.1146R'&nbsp;-&nbsp;0.3854G'&nbsp;+&nbsp;0.5B')</para>
878            <para>Cr&nbsp;=&nbsp;(224&nbsp;/&nbsp;256)&nbsp;*&nbsp;(0.5R'&nbsp;-&nbsp;0.4542G'&nbsp;-&nbsp;0.0458B')</para>
879	  </listitem>
880	</varlistentry>
881      </variablelist>
882      <variablelist>
883	<varlistentry>
884         <term>The xvYCC 601 encoding (<constant>V4L2_YCBCR_ENC_XV601</constant>, <xref linkend="xvycc" />) is similar
885to the BT.601 encoding, but it allows for R', G' and B' values that are outside the range
886[0&hellip;1]. The resulting Y', Cb and Cr values are scaled and offset:</term>
887	  <listitem>
888            <para>Y'&nbsp;=&nbsp;(219&nbsp;/&nbsp;256)&nbsp;*&nbsp;(0.299R'&nbsp;+&nbsp;0.587G'&nbsp;+&nbsp;0.114B')&nbsp;+&nbsp;(16&nbsp;/&nbsp;256)</para>
889            <para>Cb&nbsp;=&nbsp;(224&nbsp;/&nbsp;256)&nbsp;*&nbsp;(-0.169R'&nbsp;-&nbsp;0.331G'&nbsp;+&nbsp;0.5B')</para>
890            <para>Cr&nbsp;=&nbsp;(224&nbsp;/&nbsp;256)&nbsp;*&nbsp;(0.5R'&nbsp;-&nbsp;0.419G'&nbsp;-&nbsp;0.081B')</para>
891	  </listitem>
892	</varlistentry>
893      </variablelist>
894      <para>Y' is clamped to the range [0&hellip;1] and Cb and Cr are clamped
895to the range [-0.5&hellip;0.5]. The non-standard xvYCC 709 or xvYCC 601 encodings can be used by
896selecting <constant>V4L2_YCBCR_ENC_XV709</constant> or <constant>V4L2_YCBCR_ENC_XV601</constant>.
897The xvYCC encodings always use full range quantization.</para>
898    </section>
899
900    <section id="col-srgb">
901      <title>Colorspace sRGB (<constant>V4L2_COLORSPACE_SRGB</constant>)</title>
902      <para>The <xref linkend="srgb" /> standard defines the colorspace used by most webcams
903and computer graphics. The default transfer function is <constant>V4L2_XFER_FUNC_SRGB</constant>.
904The default Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_SYCC</constant>. The default Y'CbCr
905quantization is full range. The chromaticities of the primary colors and the white
906reference are:</para>
907      <table frame="none">
908        <title>sRGB Chromaticities</title>
909        <tgroup cols="3" align="left">
910          &cs-str;
911    	<thead>
912    	  <row>
913    	    <entry>Color</entry>
914    	    <entry>x</entry>
915    	    <entry>y</entry>
916    	  </row>
917    	</thead>
918          <tbody valign="top">
919            <row>
920              <entry>Red</entry>
921              <entry>0.640</entry>
922              <entry>0.330</entry>
923            </row>
924            <row>
925              <entry>Green</entry>
926              <entry>0.300</entry>
927              <entry>0.600</entry>
928            </row>
929            <row>
930              <entry>Blue</entry>
931              <entry>0.150</entry>
932              <entry>0.060</entry>
933            </row>
934            <row>
935              <entry>White Reference (D65)</entry>
936              <entry>0.3127</entry>
937              <entry>0.3290</entry>
938            </row>
939          </tbody>
940        </tgroup>
941      </table>
942      <para>These chromaticities are identical to the Rec. 709 colorspace.</para>
943      <variablelist>
944	<varlistentry>
945          <term>Transfer function. Note that negative values for L are only used by the Y'CbCr conversion.</term>
946	  <listitem>
947            <para>L' = -1.055(-L)<superscript>1/2.4</superscript>&nbsp;+&nbsp;0.055&nbsp;for&nbsp;L&nbsp;&lt;&nbsp;-0.0031308</para>
948            <para>L' = 12.92L&nbsp;for&nbsp;-0.0031308&nbsp;&le;&nbsp;L&nbsp;&le;&nbsp;0.0031308</para>
949            <para>L' = 1.055L<superscript>1/2.4</superscript>&nbsp;-&nbsp;0.055&nbsp;for&nbsp;0.0031308&nbsp;&lt;&nbsp;L&nbsp;&le;&nbsp;1</para>
950	  </listitem>
951	</varlistentry>
952	<varlistentry>
953          <term>Inverse Transfer function:</term>
954	  <listitem>
955            <para>L = -((-L'&nbsp;+&nbsp;0.055)&nbsp;/&nbsp;1.055)<superscript>2.4</superscript>&nbsp;for&nbsp;L'&nbsp;&lt;&nbsp;-0.04045</para>
956            <para>L = L'&nbsp;/&nbsp;12.92&nbsp;for&nbsp;-0.04045&nbsp;&le;&nbsp;L'&nbsp;&le;&nbsp;0.04045</para>
957            <para>L = ((L'&nbsp;+&nbsp;0.055)&nbsp;/&nbsp;1.055)<superscript>2.4</superscript>&nbsp;for&nbsp;L'&nbsp;&gt;&nbsp;0.04045</para>
958	  </listitem>
959	</varlistentry>
960      </variablelist>
961      <variablelist>
962	<varlistentry>
963      	  <term>The luminance (Y') and color difference (Cb and Cr) are obtained with the following
964<constant>V4L2_YCBCR_ENC_SYCC</constant> encoding as defined by <xref linkend="sycc" />:</term>
965	  <listitem>
966            <para>Y'&nbsp;=&nbsp;0.2990R'&nbsp;+&nbsp;0.5870G'&nbsp;+&nbsp;0.1140B'</para>
967            <para>Cb&nbsp;=&nbsp;-0.1687R'&nbsp;-&nbsp;0.3313G'&nbsp;+&nbsp;0.5B'</para>
968            <para>Cr&nbsp;=&nbsp;0.5R'&nbsp;-&nbsp;0.4187G'&nbsp;-&nbsp;0.0813B'</para>
969	  </listitem>
970	</varlistentry>
971      </variablelist>
972      <para>Y' is clamped to the range [0&hellip;1] and Cb and Cr are clamped
973to the range [-0.5&hellip;0.5]. The <constant>V4L2_YCBCR_ENC_SYCC</constant> quantization is always
974full range. Although this Y'CbCr encoding looks very similar to the <constant>V4L2_YCBCR_ENC_XV601</constant>
975encoding, it is not. The <constant>V4L2_YCBCR_ENC_XV601</constant> scales and offsets the Y'CbCr
976values before quantization, but this encoding does not do that.</para>
977    </section>
978
979    <section id="col-adobergb">
980      <title>Colorspace Adobe RGB (<constant>V4L2_COLORSPACE_ADOBERGB</constant>)</title>
981      <para>The <xref linkend="adobergb" /> standard defines the colorspace used by computer graphics
982that use the AdobeRGB colorspace. This is also known as the <xref linkend="oprgb" /> standard.
983The default transfer function is <constant>V4L2_XFER_FUNC_ADOBERGB</constant>.
984The default Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_601</constant>. The default Y'CbCr
985quantization is limited range. The chromaticities of the primary colors and the white reference
986are:</para>
987      <table frame="none">
988        <title>Adobe RGB Chromaticities</title>
989        <tgroup cols="3" align="left">
990          &cs-str;
991    	<thead>
992    	  <row>
993    	    <entry>Color</entry>
994    	    <entry>x</entry>
995    	    <entry>y</entry>
996    	  </row>
997    	</thead>
998          <tbody valign="top">
999            <row>
1000              <entry>Red</entry>
1001              <entry>0.6400</entry>
1002              <entry>0.3300</entry>
1003            </row>
1004            <row>
1005              <entry>Green</entry>
1006              <entry>0.2100</entry>
1007              <entry>0.7100</entry>
1008            </row>
1009            <row>
1010              <entry>Blue</entry>
1011              <entry>0.1500</entry>
1012              <entry>0.0600</entry>
1013            </row>
1014            <row>
1015              <entry>White Reference (D65)</entry>
1016              <entry>0.3127</entry>
1017              <entry>0.3290</entry>
1018            </row>
1019          </tbody>
1020        </tgroup>
1021      </table>
1022      <variablelist>
1023	<varlistentry>
1024          <term>Transfer function:</term>
1025	  <listitem>
1026            <para>L' = L<superscript>1/2.19921875</superscript></para>
1027	  </listitem>
1028	</varlistentry>
1029	<varlistentry>
1030          <term>Inverse Transfer function:</term>
1031	  <listitem>
1032            <para>L = L'<superscript>2.19921875</superscript></para>
1033	  </listitem>
1034	</varlistentry>
1035      </variablelist>
1036      <variablelist>
1037	<varlistentry>
1038      	  <term>The luminance (Y') and color difference (Cb and Cr) are obtained with the
1039following <constant>V4L2_YCBCR_ENC_601</constant> encoding:</term>
1040	  <listitem>
1041            <para>Y'&nbsp;=&nbsp;0.299R'&nbsp;+&nbsp;0.587G'&nbsp;+&nbsp;0.114B'</para>
1042            <para>Cb&nbsp;=&nbsp;-0.169R'&nbsp;-&nbsp;0.331G'&nbsp;+&nbsp;0.5B'</para>
1043            <para>Cr&nbsp;=&nbsp;0.5R'&nbsp;-&nbsp;0.419G'&nbsp;-&nbsp;0.081B'</para>
1044	  </listitem>
1045	</varlistentry>
1046      </variablelist>
1047      <para>Y' is clamped to the range [0&hellip;1] and Cb and Cr are
1048clamped to the range [-0.5&hellip;0.5]. This transform is identical to one defined in
1049SMPTE 170M/BT.601. The Y'CbCr quantization is limited range.</para>
1050    </section>
1051
1052    <section id="col-bt2020">
1053      <title>Colorspace BT.2020 (<constant>V4L2_COLORSPACE_BT2020</constant>)</title>
1054      <para>The <xref linkend="itu2020" /> standard defines the colorspace used by Ultra-high definition
1055television (UHDTV). The default transfer function is <constant>V4L2_XFER_FUNC_709</constant>.
1056The default Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_BT2020</constant>.
1057The default R'G'B' quantization is limited range (!), and so is the default Y'CbCr quantization.
1058The chromaticities of the primary colors and the white reference are:</para>
1059      <table frame="none">
1060        <title>BT.2020 Chromaticities</title>
1061        <tgroup cols="3" align="left">
1062          &cs-str;
1063    	<thead>
1064    	  <row>
1065    	    <entry>Color</entry>
1066    	    <entry>x</entry>
1067    	    <entry>y</entry>
1068    	  </row>
1069    	</thead>
1070          <tbody valign="top">
1071            <row>
1072              <entry>Red</entry>
1073              <entry>0.708</entry>
1074              <entry>0.292</entry>
1075            </row>
1076            <row>
1077              <entry>Green</entry>
1078              <entry>0.170</entry>
1079              <entry>0.797</entry>
1080            </row>
1081            <row>
1082              <entry>Blue</entry>
1083              <entry>0.131</entry>
1084              <entry>0.046</entry>
1085            </row>
1086            <row>
1087              <entry>White Reference (D65)</entry>
1088              <entry>0.3127</entry>
1089              <entry>0.3290</entry>
1090            </row>
1091          </tbody>
1092        </tgroup>
1093      </table>
1094      <variablelist>
1095	<varlistentry>
1096          <term>Transfer function (same as Rec. 709):</term>
1097	  <listitem>
1098            <para>L' = 4.5L&nbsp;for&nbsp;0&nbsp;&le;&nbsp;L&nbsp;&lt;&nbsp;0.018</para>
1099            <para>L' = 1.099L<superscript>0.45</superscript>&nbsp;-&nbsp;0.099&nbsp;for&nbsp;0.018&nbsp;&le;&nbsp;L&nbsp;&le;&nbsp;1</para>
1100	  </listitem>
1101	</varlistentry>
1102	<varlistentry>
1103          <term>Inverse Transfer function:</term>
1104	  <listitem>
1105            <para>L = L'&nbsp;/&nbsp;4.5&nbsp;for&nbsp;L'&nbsp;&lt;&nbsp;0.081</para>
1106            <para>L = ((L'&nbsp;+&nbsp;0.099)&nbsp;/&nbsp;1.099)<superscript>1/0.45</superscript>&nbsp;for&nbsp;L'&nbsp;&ge;&nbsp;0.081</para>
1107	  </listitem>
1108	</varlistentry>
1109      </variablelist>
1110      <variablelist>
1111	<varlistentry>
1112      	  <term>The luminance (Y') and color difference (Cb and Cr) are obtained with the
1113following <constant>V4L2_YCBCR_ENC_BT2020</constant> encoding:</term>
1114	  <listitem>
1115            <para>Y'&nbsp;=&nbsp;0.2627R'&nbsp;+&nbsp;0.6780G'&nbsp;+&nbsp;0.0593B'</para>
1116            <para>Cb&nbsp;=&nbsp;-0.1396R'&nbsp;-&nbsp;0.3604G'&nbsp;+&nbsp;0.5B'</para>
1117            <para>Cr&nbsp;=&nbsp;0.5R'&nbsp;-&nbsp;0.4598G'&nbsp;-&nbsp;0.0402B'</para>
1118	  </listitem>
1119	</varlistentry>
1120      </variablelist>
1121      <para>Y' is clamped to the range [0&hellip;1] and Cb and Cr are
1122clamped to the range [-0.5&hellip;0.5]. The Y'CbCr quantization is limited range.</para>
1123      <para>There is also an alternate constant luminance R'G'B' to Yc'CbcCrc
1124(<constant>V4L2_YCBCR_ENC_BT2020_CONST_LUM</constant>) encoding:</para>
1125      <variablelist>
1126	<varlistentry>
1127      	  <term>Luma:</term>
1128	  <listitem>
1129            <para>Yc'&nbsp;=&nbsp;(0.2627R&nbsp;+&nbsp;0.6780G&nbsp;+&nbsp;0.0593B)'</para>
1130	  </listitem>
1131	</varlistentry>
1132      </variablelist>
1133      <variablelist>
1134	<varlistentry>
1135      	  <term>B'&nbsp;-&nbsp;Yc'&nbsp;&le;&nbsp;0:</term>
1136	  <listitem>
1137            <para>Cbc&nbsp;=&nbsp;(B'&nbsp;-&nbsp;Yc')&nbsp;/&nbsp;1.9404</para>
1138	  </listitem>
1139	</varlistentry>
1140      </variablelist>
1141      <variablelist>
1142	<varlistentry>
1143      	  <term>B'&nbsp;-&nbsp;Yc'&nbsp;&gt;&nbsp;0:</term>
1144	  <listitem>
1145            <para>Cbc&nbsp;=&nbsp;(B'&nbsp;-&nbsp;Yc')&nbsp;/&nbsp;1.5816</para>
1146	  </listitem>
1147	</varlistentry>
1148      </variablelist>
1149      <variablelist>
1150	<varlistentry>
1151      	  <term>R'&nbsp;-&nbsp;Yc'&nbsp;&le;&nbsp;0:</term>
1152	  <listitem>
1153            <para>Crc&nbsp;=&nbsp;(R'&nbsp;-&nbsp;Y')&nbsp;/&nbsp;1.7184</para>
1154	  </listitem>
1155	</varlistentry>
1156      </variablelist>
1157      <variablelist>
1158	<varlistentry>
1159      	  <term>R'&nbsp;-&nbsp;Yc'&nbsp;&gt;&nbsp;0:</term>
1160	  <listitem>
1161            <para>Crc&nbsp;=&nbsp;(R'&nbsp;-&nbsp;Y')&nbsp;/&nbsp;0.9936</para>
1162	  </listitem>
1163	</varlistentry>
1164      </variablelist>
1165      <para>Yc' is clamped to the range [0&hellip;1] and Cbc and Crc are
1166clamped to the range [-0.5&hellip;0.5]. The Yc'CbcCrc quantization is limited range.</para>
1167    </section>
1168
1169    <section id="col-dcip3">
1170      <title>Colorspace DCI-P3 (<constant>V4L2_COLORSPACE_DCI_P3</constant>)</title>
1171      <para>The <xref linkend="smpte431" /> standard defines the colorspace used by cinema
1172projectors that use the DCI-P3 colorspace.
1173The default transfer function is <constant>V4L2_XFER_FUNC_DCI_P3</constant>.
1174The default Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_709</constant>. Note that this
1175colorspace does not specify a Y'CbCr encoding since it is not meant to be encoded
1176to Y'CbCr. So this default Y'CbCr encoding was picked because it is the HDTV
1177encoding. The default Y'CbCr quantization is limited range. The chromaticities of
1178the primary colors and the white reference are:</para>
1179      <table frame="none">
1180        <title>DCI-P3 Chromaticities</title>
1181        <tgroup cols="3" align="left">
1182          &cs-str;
1183    	<thead>
1184    	  <row>
1185    	    <entry>Color</entry>
1186    	    <entry>x</entry>
1187    	    <entry>y</entry>
1188    	  </row>
1189    	</thead>
1190          <tbody valign="top">
1191            <row>
1192              <entry>Red</entry>
1193              <entry>0.6800</entry>
1194              <entry>0.3200</entry>
1195            </row>
1196            <row>
1197              <entry>Green</entry>
1198              <entry>0.2650</entry>
1199              <entry>0.6900</entry>
1200            </row>
1201            <row>
1202              <entry>Blue</entry>
1203              <entry>0.1500</entry>
1204              <entry>0.0600</entry>
1205            </row>
1206            <row>
1207              <entry>White Reference</entry>
1208              <entry>0.3140</entry>
1209              <entry>0.3510</entry>
1210            </row>
1211          </tbody>
1212        </tgroup>
1213      </table>
1214      <variablelist>
1215	<varlistentry>
1216          <term>Transfer function:</term>
1217	  <listitem>
1218            <para>L' = L<superscript>1/2.6</superscript></para>
1219	  </listitem>
1220	</varlistentry>
1221	<varlistentry>
1222          <term>Inverse Transfer function:</term>
1223	  <listitem>
1224            <para>L = L'<superscript>2.6</superscript></para>
1225	  </listitem>
1226	</varlistentry>
1227      </variablelist>
1228      <para>Y'CbCr encoding is not specified. V4L2 defaults to Rec. 709.</para>
1229    </section>
1230
1231    <section id="col-smpte-240m">
1232      <title>Colorspace SMPTE 240M (<constant>V4L2_COLORSPACE_SMPTE240M</constant>)</title>
1233      <para>The <xref linkend="smpte240m" /> standard was an interim standard used during
1234the early days of HDTV (1988-1998).  It has been superseded by Rec. 709.
1235The default transfer function is <constant>V4L2_XFER_FUNC_SMPTE240M</constant>.
1236The default Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_SMPTE240M</constant>.
1237The default Y'CbCr quantization is limited range. The chromaticities of the primary colors and the
1238white reference are:</para>
1239      <table frame="none">
1240        <title>SMPTE 240M Chromaticities</title>
1241        <tgroup cols="3" align="left">
1242          &cs-str;
1243    	<thead>
1244    	  <row>
1245    	    <entry>Color</entry>
1246    	    <entry>x</entry>
1247    	    <entry>y</entry>
1248    	  </row>
1249    	</thead>
1250          <tbody valign="top">
1251            <row>
1252              <entry>Red</entry>
1253              <entry>0.630</entry>
1254              <entry>0.340</entry>
1255            </row>
1256            <row>
1257              <entry>Green</entry>
1258              <entry>0.310</entry>
1259              <entry>0.595</entry>
1260            </row>
1261            <row>
1262              <entry>Blue</entry>
1263              <entry>0.155</entry>
1264              <entry>0.070</entry>
1265            </row>
1266            <row>
1267              <entry>White Reference (D65)</entry>
1268              <entry>0.3127</entry>
1269              <entry>0.3290</entry>
1270            </row>
1271          </tbody>
1272        </tgroup>
1273      </table>
1274      <para>These chromaticities are identical to the SMPTE 170M colorspace.</para>
1275      <variablelist>
1276	<varlistentry>
1277          <term>Transfer function:</term>
1278	  <listitem>
1279            <para>L' = 4L&nbsp;for&nbsp;0&nbsp;&le;&nbsp;L&nbsp;&lt;&nbsp;0.0228</para>
1280            <para>L' = 1.1115L<superscript>0.45</superscript>&nbsp;-&nbsp;0.1115&nbsp;for&nbsp;0.0228&nbsp;&le;&nbsp;L&nbsp;&le;&nbsp;1</para>
1281	  </listitem>
1282	</varlistentry>
1283	<varlistentry>
1284          <term>Inverse Transfer function:</term>
1285	  <listitem>
1286            <para>L = L'&nbsp;/&nbsp;4&nbsp;for&nbsp;0&nbsp;&le;&nbsp;L'&nbsp;&lt;&nbsp;0.0913</para>
1287            <para>L = ((L'&nbsp;+&nbsp;0.1115)&nbsp;/&nbsp;1.1115)<superscript>1/0.45</superscript>&nbsp;for&nbsp;L'&nbsp;&ge;&nbsp;0.0913</para>
1288	  </listitem>
1289	</varlistentry>
1290      </variablelist>
1291      <variablelist>
1292	<varlistentry>
1293      	  <term>The luminance (Y') and color difference (Cb and Cr) are obtained with the
1294following <constant>V4L2_YCBCR_ENC_SMPTE240M</constant> encoding:</term>
1295	  <listitem>
1296            <para>Y'&nbsp;=&nbsp;0.2122R'&nbsp;+&nbsp;0.7013G'&nbsp;+&nbsp;0.0865B'</para>
1297            <para>Cb&nbsp;=&nbsp;-0.1161R'&nbsp;-&nbsp;0.3839G'&nbsp;+&nbsp;0.5B'</para>
1298            <para>Cr&nbsp;=&nbsp;0.5R'&nbsp;-&nbsp;0.4451G'&nbsp;-&nbsp;0.0549B'</para>
1299	  </listitem>
1300	</varlistentry>
1301      </variablelist>
1302      <para>Yc' is clamped to the range [0&hellip;1] and Cbc and Crc are
1303clamped to the range [-0.5&hellip;0.5]. The Y'CbCr quantization is limited range.</para>
1304    </section>
1305
1306    <section id="col-sysm">
1307      <title>Colorspace NTSC 1953 (<constant>V4L2_COLORSPACE_470_SYSTEM_M</constant>)</title>
1308      <para>This standard defines the colorspace used by NTSC in 1953. In practice this
1309colorspace is obsolete and SMPTE 170M should be used instead.
1310The default transfer function is <constant>V4L2_XFER_FUNC_709</constant>.
1311The default Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_601</constant>.
1312The default Y'CbCr quantization is limited range.
1313The chromaticities of the primary colors and the white reference are:</para>
1314      <table frame="none">
1315        <title>NTSC 1953 Chromaticities</title>
1316        <tgroup cols="3" align="left">
1317          &cs-str;
1318    	<thead>
1319    	  <row>
1320    	    <entry>Color</entry>
1321    	    <entry>x</entry>
1322    	    <entry>y</entry>
1323    	  </row>
1324    	</thead>
1325          <tbody valign="top">
1326            <row>
1327              <entry>Red</entry>
1328              <entry>0.67</entry>
1329              <entry>0.33</entry>
1330            </row>
1331            <row>
1332              <entry>Green</entry>
1333              <entry>0.21</entry>
1334              <entry>0.71</entry>
1335            </row>
1336            <row>
1337              <entry>Blue</entry>
1338              <entry>0.14</entry>
1339              <entry>0.08</entry>
1340            </row>
1341            <row>
1342              <entry>White Reference (C)</entry>
1343              <entry>0.310</entry>
1344              <entry>0.316</entry>
1345            </row>
1346          </tbody>
1347        </tgroup>
1348      </table>
1349      <para>Note that this colorspace uses Illuminant C instead of D65 as the
1350white reference. To correctly convert an image in this colorspace to another
1351that uses D65 you need to apply a chromatic adaptation algorithm such as the
1352Bradford method.</para>
1353      <variablelist>
1354	<varlistentry>
1355          <term>The transfer function was never properly defined for NTSC 1953. The
1356Rec. 709 transfer function is recommended in the literature:</term>
1357	  <listitem>
1358            <para>L' = 4.5L&nbsp;for&nbsp;0&nbsp;&le;&nbsp;L&nbsp;&lt;&nbsp;0.018</para>
1359            <para>L' = 1.099L<superscript>0.45</superscript>&nbsp;-&nbsp;0.099&nbsp;for&nbsp;0.018&nbsp;&le;&nbsp;L&nbsp;&le;&nbsp;1</para>
1360	  </listitem>
1361	</varlistentry>
1362	<varlistentry>
1363          <term>Inverse Transfer function:</term>
1364	  <listitem>
1365            <para>L = L'&nbsp;/&nbsp;4.5&nbsp;for&nbsp;L'&nbsp;&lt;&nbsp;0.081</para>
1366            <para>L = ((L'&nbsp;+&nbsp;0.099)&nbsp;/&nbsp;1.099)<superscript>1/0.45</superscript>&nbsp;for&nbsp;L'&nbsp;&ge;&nbsp;0.081</para>
1367	  </listitem>
1368	</varlistentry>
1369      </variablelist>
1370      <variablelist>
1371	<varlistentry>
1372      	  <term>The luminance (Y') and color difference (Cb and Cr) are obtained with the
1373following <constant>V4L2_YCBCR_ENC_601</constant> encoding:</term>
1374	  <listitem>
1375            <para>Y'&nbsp;=&nbsp;0.299R'&nbsp;+&nbsp;0.587G'&nbsp;+&nbsp;0.114B'</para>
1376            <para>Cb&nbsp;=&nbsp;-0.169R'&nbsp;-&nbsp;0.331G'&nbsp;+&nbsp;0.5B'</para>
1377            <para>Cr&nbsp;=&nbsp;0.5R'&nbsp;-&nbsp;0.419G'&nbsp;-&nbsp;0.081B'</para>
1378	  </listitem>
1379	</varlistentry>
1380      </variablelist>
1381      <para>Y' is clamped to the range [0&hellip;1] and Cb and Cr are
1382clamped to the range [-0.5&hellip;0.5]. The Y'CbCr quantization is limited range.
1383This transform is identical to one defined in SMPTE 170M/BT.601.</para>
1384    </section>
1385
1386    <section id="col-sysbg">
1387      <title>Colorspace EBU Tech. 3213 (<constant>V4L2_COLORSPACE_470_SYSTEM_BG</constant>)</title>
1388      <para>The <xref linkend="tech3213" /> standard defines the colorspace used by PAL/SECAM in 1975. In practice this
1389colorspace is obsolete and SMPTE 170M should be used instead.
1390The default transfer function is <constant>V4L2_XFER_FUNC_709</constant>.
1391The default Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_601</constant>.
1392The default Y'CbCr quantization is limited range.
1393The chromaticities of the primary colors and the white reference are:</para>
1394      <table frame="none">
1395        <title>EBU Tech. 3213 Chromaticities</title>
1396        <tgroup cols="3" align="left">
1397          &cs-str;
1398    	<thead>
1399    	  <row>
1400    	    <entry>Color</entry>
1401    	    <entry>x</entry>
1402    	    <entry>y</entry>
1403    	  </row>
1404    	</thead>
1405          <tbody valign="top">
1406            <row>
1407              <entry>Red</entry>
1408              <entry>0.64</entry>
1409              <entry>0.33</entry>
1410            </row>
1411            <row>
1412              <entry>Green</entry>
1413              <entry>0.29</entry>
1414              <entry>0.60</entry>
1415            </row>
1416            <row>
1417              <entry>Blue</entry>
1418              <entry>0.15</entry>
1419              <entry>0.06</entry>
1420            </row>
1421            <row>
1422              <entry>White Reference (D65)</entry>
1423              <entry>0.3127</entry>
1424              <entry>0.3290</entry>
1425            </row>
1426          </tbody>
1427        </tgroup>
1428      </table>
1429      <variablelist>
1430	<varlistentry>
1431          <term>The transfer function was never properly defined for this colorspace.
1432The Rec. 709 transfer function is recommended in the literature:</term>
1433	  <listitem>
1434            <para>L' = 4.5L&nbsp;for&nbsp;0&nbsp;&le;&nbsp;L&nbsp;&lt;&nbsp;0.018</para>
1435            <para>L' = 1.099L<superscript>0.45</superscript>&nbsp;-&nbsp;0.099&nbsp;for&nbsp;0.018&nbsp;&le;&nbsp;L&nbsp;&le;&nbsp;1</para>
1436	  </listitem>
1437	</varlistentry>
1438	<varlistentry>
1439          <term>Inverse Transfer function:</term>
1440	  <listitem>
1441            <para>L = L'&nbsp;/&nbsp;4.5&nbsp;for&nbsp;L'&nbsp;&lt;&nbsp;0.081</para>
1442            <para>L = ((L'&nbsp;+&nbsp;0.099)&nbsp;/&nbsp;1.099)<superscript>1/0.45</superscript>&nbsp;for&nbsp;L'&nbsp;&ge;&nbsp;0.081</para>
1443	  </listitem>
1444	</varlistentry>
1445      </variablelist>
1446      <variablelist>
1447	<varlistentry>
1448      	  <term>The luminance (Y') and color difference (Cb and Cr) are obtained with the
1449following <constant>V4L2_YCBCR_ENC_601</constant> encoding:</term>
1450	  <listitem>
1451            <para>Y'&nbsp;=&nbsp;0.299R'&nbsp;+&nbsp;0.587G'&nbsp;+&nbsp;0.114B'</para>
1452            <para>Cb&nbsp;=&nbsp;-0.169R'&nbsp;-&nbsp;0.331G'&nbsp;+&nbsp;0.5B'</para>
1453            <para>Cr&nbsp;=&nbsp;0.5R'&nbsp;-&nbsp;0.419G'&nbsp;-&nbsp;0.081B'</para>
1454	  </listitem>
1455	</varlistentry>
1456      </variablelist>
1457      <para>Y' is clamped to the range [0&hellip;1] and Cb and Cr are
1458clamped to the range [-0.5&hellip;0.5]. The Y'CbCr quantization is limited range.
1459This transform is identical to one defined in SMPTE 170M/BT.601.</para>
1460    </section>
1461
1462    <section id="col-jpeg">
1463      <title>Colorspace JPEG (<constant>V4L2_COLORSPACE_JPEG</constant>)</title>
1464      <para>This colorspace defines the colorspace used by most (Motion-)JPEG formats. The chromaticities
1465of the primary colors and the white reference are identical to sRGB. The transfer
1466function use is <constant>V4L2_XFER_FUNC_SRGB</constant>. The Y'CbCr encoding is
1467<constant>V4L2_YCBCR_ENC_601</constant> with full range quantization where
1468Y' is scaled to [0&hellip;255] and Cb/Cr are scaled to [-128&hellip;128] and
1469then clipped to [-128&hellip;127].</para>
1470      <para>Note that the JPEG standard does not actually store colorspace information.
1471So if something other than sRGB is used, then the driver will have to set that information
1472explicitly. Effectively <constant>V4L2_COLORSPACE_JPEG</constant> can be considered to be
1473an abbreviation for <constant>V4L2_COLORSPACE_SRGB</constant>, <constant>V4L2_YCBCR_ENC_601</constant>
1474and <constant>V4L2_QUANTIZATION_FULL_RANGE</constant>.</para>
1475    </section>
1476
1477  </section>
1478
1479  <section>
1480    <title>Detailed Transfer Function Descriptions</title>
1481    <section id="xf-smpte-2084">
1482      <title>Transfer Function SMPTE 2084 (<constant>V4L2_XFER_FUNC_SMPTE2084</constant>)</title>
1483      <para>The <xref linkend="smpte2084" /> standard defines the transfer function used by
1484High Dynamic Range content.</para>
1485      <variablelist>
1486	<varlistentry>
1487          <term>Constants:</term>
1488	  <listitem>
1489            <para>m1 = (2610 / 4096) / 4</para>
1490            <para>m2 = (2523 / 4096) * 128</para>
1491            <para>c1 = 3424 / 4096</para>
1492            <para>c2 = (2413 / 4096) * 32</para>
1493            <para>c3 = (2392 / 4096) * 32</para>
1494	  </listitem>
1495	</varlistentry>
1496	<varlistentry>
1497          <term>Transfer function:</term>
1498	  <listitem>
1499            <para>L' = ((c1 + c2 * L<superscript>m1</superscript>) / (1 + c3 * L<superscript>m1</superscript>))<superscript>m2</superscript></para>
1500	  </listitem>
1501	</varlistentry>
1502      </variablelist>
1503      <variablelist>
1504	<varlistentry>
1505          <term>Inverse Transfer function:</term>
1506	  <listitem>
1507            <para>L = (max(L'<superscript>1/m2</superscript> - c1, 0) / (c2 - c3 * L'<superscript>1/m2</superscript>))<superscript>1/m1</superscript></para>
1508	  </listitem>
1509	</varlistentry>
1510      </variablelist>
1511    </section>
1512  </section>
1513
1514  <section id="pixfmt-indexed">
1515    <title>Indexed Format</title>
1516
1517    <para>In this format each pixel is represented by an 8 bit index
1518into a 256 entry ARGB palette. It is intended for <link
1519linkend="osd">Video Output Overlays</link> only. There are no ioctls to
1520access the palette, this must be done with ioctls of the Linux framebuffer API.</para>
1521
1522    <table pgwide="0" frame="none">
1523      <title>Indexed Image Format</title>
1524      <tgroup cols="37" align="center">
1525	<colspec colname="id" align="left" />
1526	<colspec colname="fourcc" />
1527	<colspec colname="bit" />
1528
1529	<colspec colnum="4" colname="b07" align="center" />
1530	<colspec colnum="5" colname="b06" align="center" />
1531	<colspec colnum="6" colname="b05" align="center" />
1532	<colspec colnum="7" colname="b04" align="center" />
1533	<colspec colnum="8" colname="b03" align="center" />
1534	<colspec colnum="9" colname="b02" align="center" />
1535	<colspec colnum="10" colname="b01" align="center" />
1536	<colspec colnum="11" colname="b00" align="center" />
1537
1538	<spanspec namest="b07" nameend="b00" spanname="b0" />
1539	<spanspec namest="b17" nameend="b10" spanname="b1" />
1540	<spanspec namest="b27" nameend="b20" spanname="b2" />
1541	<spanspec namest="b37" nameend="b30" spanname="b3" />
1542	<thead>
1543	  <row>
1544	    <entry>Identifier</entry>
1545	    <entry>Code</entry>
1546	    <entry>&nbsp;</entry>
1547	    <entry spanname="b0">Byte&nbsp;0</entry>
1548	  </row>
1549	  <row>
1550	    <entry>&nbsp;</entry>
1551	    <entry>&nbsp;</entry>
1552	    <entry>Bit</entry>
1553	    <entry>7</entry>
1554	    <entry>6</entry>
1555	    <entry>5</entry>
1556	    <entry>4</entry>
1557	    <entry>3</entry>
1558	    <entry>2</entry>
1559	    <entry>1</entry>
1560	    <entry>0</entry>
1561	  </row>
1562	</thead>
1563	<tbody valign="top">
1564	  <row id="V4L2-PIX-FMT-PAL8">
1565	    <entry><constant>V4L2_PIX_FMT_PAL8</constant></entry>
1566	    <entry>'PAL8'</entry>
1567	    <entry></entry>
1568	    <entry>i<subscript>7</subscript></entry>
1569	    <entry>i<subscript>6</subscript></entry>
1570	    <entry>i<subscript>5</subscript></entry>
1571	    <entry>i<subscript>4</subscript></entry>
1572	    <entry>i<subscript>3</subscript></entry>
1573	    <entry>i<subscript>2</subscript></entry>
1574	    <entry>i<subscript>1</subscript></entry>
1575	    <entry>i<subscript>0</subscript></entry>
1576	  </row>
1577	</tbody>
1578      </tgroup>
1579    </table>
1580  </section>
1581
1582  <section id="pixfmt-rgb">
1583    <title>RGB Formats</title>
1584
1585    &sub-packed-rgb;
1586    &sub-sbggr8;
1587    &sub-sgbrg8;
1588    &sub-sgrbg8;
1589    &sub-srggb8;
1590    &sub-sbggr16;
1591    &sub-srggb10;
1592    &sub-srggb10p;
1593    &sub-srggb10alaw8;
1594    &sub-srggb10dpcm8;
1595    &sub-srggb12;
1596  </section>
1597
1598  <section id="yuv-formats">
1599    <title>YUV Formats</title>
1600
1601    <para>YUV is the format native to TV broadcast and composite video
1602signals. It separates the brightness information (Y) from the color
1603information (U and V or Cb and Cr). The color information consists of
1604red and blue <emphasis>color difference</emphasis> signals, this way
1605the green component can be reconstructed by subtracting from the
1606brightness component. See <xref linkend="colorspaces" /> for conversion
1607examples. YUV was chosen because early television would only transmit
1608brightness information. To add color in a way compatible with existing
1609receivers a new signal carrier was added to transmit the color
1610difference signals. Secondary in the YUV format the U and V components
1611usually have lower resolution than the Y component. This is an analog
1612video compression technique taking advantage of a property of the
1613human visual system, being more sensitive to brightness
1614information.</para>
1615
1616    &sub-packed-yuv;
1617    &sub-grey;
1618    &sub-y10;
1619    &sub-y12;
1620    &sub-y10b;
1621    &sub-y16;
1622    &sub-y16-be;
1623    &sub-uv8;
1624    &sub-yuyv;
1625    &sub-uyvy;
1626    &sub-yvyu;
1627    &sub-vyuy;
1628    &sub-y41p;
1629    &sub-yuv420;
1630    &sub-yuv420m;
1631    &sub-yvu420m;
1632    &sub-yuv410;
1633    &sub-yuv422p;
1634    &sub-yuv411p;
1635    &sub-nv12;
1636    &sub-nv12m;
1637    &sub-nv12mt;
1638    &sub-nv16;
1639    &sub-nv16m;
1640    &sub-nv24;
1641    &sub-m420;
1642  </section>
1643
1644  <section>
1645    <title>Compressed Formats</title>
1646
1647    <table pgwide="1" frame="none" id="compressed-formats">
1648      <title>Compressed Image Formats</title>
1649      <tgroup cols="3" align="left">
1650	&cs-def;
1651	<thead>
1652	  <row>
1653	    <entry>Identifier</entry>
1654	    <entry>Code</entry>
1655	    <entry>Details</entry>
1656	  </row>
1657	</thead>
1658	<tbody valign="top">
1659	 <row id="V4L2-PIX-FMT-JPEG">
1660	    <entry><constant>V4L2_PIX_FMT_JPEG</constant></entry>
1661	    <entry>'JPEG'</entry>
1662	    <entry>TBD. See also &VIDIOC-G-JPEGCOMP;,
1663	    &VIDIOC-S-JPEGCOMP;.</entry>
1664	  </row>
1665	  <row id="V4L2-PIX-FMT-MPEG">
1666	    <entry><constant>V4L2_PIX_FMT_MPEG</constant></entry>
1667	    <entry>'MPEG'</entry>
1668	    <entry>MPEG multiplexed stream. The actual format is determined by
1669extended control <constant>V4L2_CID_MPEG_STREAM_TYPE</constant>, see
1670<xref linkend="mpeg-control-id" />.</entry>
1671	  </row>
1672	  <row id="V4L2-PIX-FMT-H264">
1673		<entry><constant>V4L2_PIX_FMT_H264</constant></entry>
1674		<entry>'H264'</entry>
1675		<entry>H264 video elementary stream with start codes.</entry>
1676	  </row>
1677	  <row id="V4L2-PIX-FMT-H264-NO-SC">
1678		<entry><constant>V4L2_PIX_FMT_H264_NO_SC</constant></entry>
1679		<entry>'AVC1'</entry>
1680		<entry>H264 video elementary stream without start codes.</entry>
1681	  </row>
1682	  <row id="V4L2-PIX-FMT-H264-MVC">
1683		<entry><constant>V4L2_PIX_FMT_H264_MVC</constant></entry>
1684		<entry>'M264'</entry>
1685		<entry>H264 MVC video elementary stream.</entry>
1686	  </row>
1687	  <row id="V4L2-PIX-FMT-H263">
1688		<entry><constant>V4L2_PIX_FMT_H263</constant></entry>
1689		<entry>'H263'</entry>
1690		<entry>H263 video elementary stream.</entry>
1691	  </row>
1692	  <row id="V4L2-PIX-FMT-MPEG1">
1693		<entry><constant>V4L2_PIX_FMT_MPEG1</constant></entry>
1694		<entry>'MPG1'</entry>
1695		<entry>MPEG1 video elementary stream.</entry>
1696	  </row>
1697	  <row id="V4L2-PIX-FMT-MPEG2">
1698		<entry><constant>V4L2_PIX_FMT_MPEG2</constant></entry>
1699		<entry>'MPG2'</entry>
1700		<entry>MPEG2 video elementary stream.</entry>
1701	  </row>
1702	  <row id="V4L2-PIX-FMT-MPEG4">
1703		<entry><constant>V4L2_PIX_FMT_MPEG4</constant></entry>
1704		<entry>'MPG4'</entry>
1705		<entry>MPEG4 video elementary stream.</entry>
1706	  </row>
1707	  <row id="V4L2-PIX-FMT-XVID">
1708		<entry><constant>V4L2_PIX_FMT_XVID</constant></entry>
1709		<entry>'XVID'</entry>
1710		<entry>Xvid video elementary stream.</entry>
1711	  </row>
1712	  <row id="V4L2-PIX-FMT-VC1-ANNEX-G">
1713		<entry><constant>V4L2_PIX_FMT_VC1_ANNEX_G</constant></entry>
1714		<entry>'VC1G'</entry>
1715		<entry>VC1, SMPTE 421M Annex G compliant stream.</entry>
1716	  </row>
1717	  <row id="V4L2-PIX-FMT-VC1-ANNEX-L">
1718		<entry><constant>V4L2_PIX_FMT_VC1_ANNEX_L</constant></entry>
1719		<entry>'VC1L'</entry>
1720		<entry>VC1, SMPTE 421M Annex L compliant stream.</entry>
1721	  </row>
1722	  <row id="V4L2-PIX-FMT-VP8">
1723		<entry><constant>V4L2_PIX_FMT_VP8</constant></entry>
1724		<entry>'VP80'</entry>
1725		<entry>VP8 video elementary stream.</entry>
1726	  </row>
1727	</tbody>
1728      </tgroup>
1729    </table>
1730  </section>
1731
1732  <section id="sdr-formats">
1733    <title>SDR Formats</title>
1734
1735    <para>These formats are used for <link linkend="sdr">SDR</link>
1736interface only.</para>
1737
1738    &sub-sdr-cu08;
1739    &sub-sdr-cu16le;
1740    &sub-sdr-cs08;
1741    &sub-sdr-cs14le;
1742    &sub-sdr-ru12le;
1743
1744  </section>
1745
1746  <section id="pixfmt-reserved">
1747    <title>Reserved Format Identifiers</title>
1748
1749    <para>These formats are not defined by this specification, they
1750are just listed for reference and to avoid naming conflicts. If you
1751want to register your own format, send an e-mail to the linux-media mailing
1752list &v4l-ml; for inclusion in the <filename>videodev2.h</filename>
1753file. If you want to share your format with other developers add a
1754link to your documentation and send a copy to the linux-media mailing list
1755for inclusion in this section. If you think your format should be listed
1756in a standard format section please make a proposal on the linux-media mailing
1757list.</para>
1758
1759    <table pgwide="1" frame="none" id="reserved-formats">
1760      <title>Reserved Image Formats</title>
1761      <tgroup cols="3" align="left">
1762	&cs-def;
1763	<thead>
1764	  <row>
1765	    <entry>Identifier</entry>
1766	    <entry>Code</entry>
1767	    <entry>Details</entry>
1768	  </row>
1769	</thead>
1770	<tbody valign="top">
1771	  <row id="V4L2-PIX-FMT-DV">
1772	    <entry><constant>V4L2_PIX_FMT_DV</constant></entry>
1773	    <entry>'dvsd'</entry>
1774	    <entry>unknown</entry>
1775	  </row>
1776	  <row id="V4L2-PIX-FMT-ET61X251">
1777	    <entry><constant>V4L2_PIX_FMT_ET61X251</constant></entry>
1778	    <entry>'E625'</entry>
1779	    <entry>Compressed format of the ET61X251 driver.</entry>
1780	  </row>
1781	  <row id="V4L2-PIX-FMT-HI240">
1782	    <entry><constant>V4L2_PIX_FMT_HI240</constant></entry>
1783	    <entry>'HI24'</entry>
1784	    <entry><para>8 bit RGB format used by the BTTV driver.</para></entry>
1785	  </row>
1786	  <row id="V4L2-PIX-FMT-HM12">
1787	    <entry><constant>V4L2_PIX_FMT_HM12</constant></entry>
1788	    <entry>'HM12'</entry>
1789	    <entry><para>YUV 4:2:0 format used by the
1790IVTV driver, <ulink url="http://www.ivtvdriver.org/">
1791http://www.ivtvdriver.org/</ulink></para><para>The format is documented in the
1792kernel sources in the file <filename>Documentation/video4linux/cx2341x/README.hm12</filename>
1793</para></entry>
1794	  </row>
1795	  <row id="V4L2-PIX-FMT-CPIA1">
1796	    <entry><constant>V4L2_PIX_FMT_CPIA1</constant></entry>
1797	    <entry>'CPIA'</entry>
1798	    <entry>YUV format used by the gspca cpia1 driver.</entry>
1799	  </row>
1800	  <row id="V4L2-PIX-FMT-JPGL">
1801	    <entry><constant>V4L2_PIX_FMT_JPGL</constant></entry>
1802	    <entry>'JPGL'</entry>
1803	    <entry>JPEG-Light format (Pegasus Lossless JPEG)
1804			used in Divio webcams NW 80x.</entry>
1805	  </row>
1806	  <row id="V4L2-PIX-FMT-SPCA501">
1807	    <entry><constant>V4L2_PIX_FMT_SPCA501</constant></entry>
1808	    <entry>'S501'</entry>
1809	    <entry>YUYV per line used by the gspca driver.</entry>
1810	  </row>
1811	  <row id="V4L2-PIX-FMT-SPCA505">
1812	    <entry><constant>V4L2_PIX_FMT_SPCA505</constant></entry>
1813	    <entry>'S505'</entry>
1814	    <entry>YYUV per line used by the gspca driver.</entry>
1815	  </row>
1816	  <row id="V4L2-PIX-FMT-SPCA508">
1817	    <entry><constant>V4L2_PIX_FMT_SPCA508</constant></entry>
1818	    <entry>'S508'</entry>
1819	    <entry>YUVY per line used by the gspca driver.</entry>
1820	  </row>
1821	  <row id="V4L2-PIX-FMT-SPCA561">
1822	    <entry><constant>V4L2_PIX_FMT_SPCA561</constant></entry>
1823	    <entry>'S561'</entry>
1824	    <entry>Compressed GBRG Bayer format used by the gspca driver.</entry>
1825	  </row>
1826	  <row id="V4L2-PIX-FMT-PAC207">
1827	    <entry><constant>V4L2_PIX_FMT_PAC207</constant></entry>
1828	    <entry>'P207'</entry>
1829	    <entry>Compressed BGGR Bayer format used by the gspca driver.</entry>
1830	  </row>
1831	  <row id="V4L2-PIX-FMT-MR97310A">
1832	    <entry><constant>V4L2_PIX_FMT_MR97310A</constant></entry>
1833	    <entry>'M310'</entry>
1834	    <entry>Compressed BGGR Bayer format used by the gspca driver.</entry>
1835	  </row>
1836	  <row id="V4L2-PIX-FMT-JL2005BCD">
1837	    <entry><constant>V4L2_PIX_FMT_JL2005BCD</constant></entry>
1838	    <entry>'JL20'</entry>
1839	    <entry>JPEG compressed RGGB Bayer format used by the gspca driver.</entry>
1840	  </row>
1841	  <row id="V4L2-PIX-FMT-OV511">
1842	    <entry><constant>V4L2_PIX_FMT_OV511</constant></entry>
1843	    <entry>'O511'</entry>
1844	    <entry>OV511 JPEG format used by the gspca driver.</entry>
1845	  </row>
1846	  <row id="V4L2-PIX-FMT-OV518">
1847	    <entry><constant>V4L2_PIX_FMT_OV518</constant></entry>
1848	    <entry>'O518'</entry>
1849	    <entry>OV518 JPEG format used by the gspca driver.</entry>
1850	  </row>
1851	  <row id="V4L2-PIX-FMT-PJPG">
1852	    <entry><constant>V4L2_PIX_FMT_PJPG</constant></entry>
1853	    <entry>'PJPG'</entry>
1854	    <entry>Pixart 73xx JPEG format used by the gspca driver.</entry>
1855	  </row>
1856	  <row id="V4L2-PIX-FMT-SE401">
1857	    <entry><constant>V4L2_PIX_FMT_SE401</constant></entry>
1858	    <entry>'S401'</entry>
1859	    <entry>Compressed RGB format used by the gspca se401 driver</entry>
1860	  </row>
1861	  <row id="V4L2-PIX-FMT-SQ905C">
1862	    <entry><constant>V4L2_PIX_FMT_SQ905C</constant></entry>
1863	    <entry>'905C'</entry>
1864	    <entry>Compressed RGGB bayer format used by the gspca driver.</entry>
1865	  </row>
1866	  <row id="V4L2-PIX-FMT-MJPEG">
1867	    <entry><constant>V4L2_PIX_FMT_MJPEG</constant></entry>
1868	    <entry>'MJPG'</entry>
1869	    <entry>Compressed format used by the Zoran driver</entry>
1870	  </row>
1871	  <row id="V4L2-PIX-FMT-PWC1">
1872	    <entry><constant>V4L2_PIX_FMT_PWC1</constant></entry>
1873	    <entry>'PWC1'</entry>
1874	    <entry>Compressed format of the PWC driver.</entry>
1875	  </row>
1876	  <row id="V4L2-PIX-FMT-PWC2">
1877	    <entry><constant>V4L2_PIX_FMT_PWC2</constant></entry>
1878	    <entry>'PWC2'</entry>
1879	    <entry>Compressed format of the PWC driver.</entry>
1880	  </row>
1881	  <row id="V4L2-PIX-FMT-SN9C10X">
1882	    <entry><constant>V4L2_PIX_FMT_SN9C10X</constant></entry>
1883	    <entry>'S910'</entry>
1884	    <entry>Compressed format of the SN9C102 driver.</entry>
1885	  </row>
1886	  <row id="V4L2-PIX-FMT-SN9C20X-I420">
1887	    <entry><constant>V4L2_PIX_FMT_SN9C20X_I420</constant></entry>
1888	    <entry>'S920'</entry>
1889	    <entry>YUV 4:2:0 format of the gspca sn9c20x driver.</entry>
1890	  </row>
1891	  <row id="V4L2-PIX-FMT-SN9C2028">
1892	    <entry><constant>V4L2_PIX_FMT_SN9C2028</constant></entry>
1893	    <entry>'SONX'</entry>
1894	    <entry>Compressed GBRG bayer format of the gspca sn9c2028 driver.</entry>
1895	  </row>
1896	  <row id="V4L2-PIX-FMT-STV0680">
1897	    <entry><constant>V4L2_PIX_FMT_STV0680</constant></entry>
1898	    <entry>'S680'</entry>
1899	    <entry>Bayer format of the gspca stv0680 driver.</entry>
1900	  </row>
1901	  <row id="V4L2-PIX-FMT-WNVA">
1902	    <entry><constant>V4L2_PIX_FMT_WNVA</constant></entry>
1903	    <entry>'WNVA'</entry>
1904	    <entry><para>Used by the Winnov Videum driver, <ulink
1905url="http://www.thedirks.org/winnov/">
1906http://www.thedirks.org/winnov/</ulink></para></entry>
1907	  </row>
1908	  <row id="V4L2-PIX-FMT-TM6000">
1909	    <entry><constant>V4L2_PIX_FMT_TM6000</constant></entry>
1910	    <entry>'TM60'</entry>
1911	    <entry><para>Used by Trident tm6000</para></entry>
1912	  </row>
1913	  <row id="V4L2-PIX-FMT-CIT-YYVYUY">
1914	    <entry><constant>V4L2_PIX_FMT_CIT_YYVYUY</constant></entry>
1915	    <entry>'CITV'</entry>
1916	    <entry><para>Used by xirlink CIT, found at IBM webcams.</para>
1917	           <para>Uses one line of Y then 1 line of VYUY</para>
1918	    </entry>
1919	  </row>
1920	  <row id="V4L2-PIX-FMT-KONICA420">
1921	    <entry><constant>V4L2_PIX_FMT_KONICA420</constant></entry>
1922	    <entry>'KONI'</entry>
1923	    <entry><para>Used by Konica webcams.</para>
1924	           <para>YUV420 planar in blocks of 256 pixels.</para>
1925	    </entry>
1926	  </row>
1927	  <row id="V4L2-PIX-FMT-YYUV">
1928	    <entry><constant>V4L2_PIX_FMT_YYUV</constant></entry>
1929	    <entry>'YYUV'</entry>
1930	    <entry>unknown</entry>
1931	  </row>
1932	  <row id="V4L2-PIX-FMT-Y4">
1933	    <entry><constant>V4L2_PIX_FMT_Y4</constant></entry>
1934	    <entry>'Y04 '</entry>
1935	    <entry>Old 4-bit greyscale format. Only the most significant 4 bits of each byte are used,
1936the other bits are set to 0.</entry>
1937	  </row>
1938	  <row id="V4L2-PIX-FMT-Y6">
1939	    <entry><constant>V4L2_PIX_FMT_Y6</constant></entry>
1940	    <entry>'Y06 '</entry>
1941	    <entry>Old 6-bit greyscale format. Only the most significant 6 bits of each byte are used,
1942the other bits are set to 0.</entry>
1943	  </row>
1944	  <row id="V4L2-PIX-FMT-S5C-UYVY-JPG">
1945	    <entry><constant>V4L2_PIX_FMT_S5C_UYVY_JPG</constant></entry>
1946	    <entry>'S5CI'</entry>
1947	    <entry>Two-planar format used by Samsung S5C73MX cameras. The
1948first plane contains interleaved JPEG and UYVY image data, followed by meta data
1949in form of an array of offsets to the UYVY data blocks. The actual pointer array
1950follows immediately the interleaved JPEG/UYVY data, the number of entries in
1951this array equals the height of the UYVY image. Each entry is a 4-byte unsigned
1952integer in big endian order and it's an offset to a single pixel line of the
1953UYVY image. The first plane can start either with JPEG or UYVY data chunk. The
1954size of a single UYVY block equals the UYVY image's width multiplied by 2. The
1955size of a JPEG chunk depends on the image and can vary with each line.
1956<para>The second plane, at an offset of 4084 bytes, contains a 4-byte offset to
1957the pointer array in the first plane. This offset is followed by a 4-byte value
1958indicating size of the pointer array. All numbers in the second plane are also
1959in big endian order. Remaining data in the second plane is undefined. The
1960information in the second plane allows to easily find location of the pointer
1961array, which can be different for each frame. The size of the pointer array is
1962constant for given UYVY image height.</para>
1963<para>In order to extract UYVY and JPEG frames an application can initially set
1964a data pointer to the start of first plane and then add an offset from the first
1965entry of the pointers table. Such a pointer indicates start of an UYVY image
1966pixel line. Whole UYVY line can be copied to a separate buffer. These steps
1967should be repeated for each line, i.e. the number of entries in the pointer
1968array. Anything what's in between the UYVY lines is JPEG data and should be
1969concatenated to form the JPEG stream. </para>
1970</entry>
1971	  </row>
1972	</tbody>
1973      </tgroup>
1974    </table>
1975
1976    <table frame="none" pgwide="1" id="format-flags">
1977      <title>Format Flags</title>
1978      <tgroup cols="3">
1979	&cs-def;
1980	<tbody valign="top">
1981	  <row>
1982	    <entry><constant>V4L2_PIX_FMT_FLAG_PREMUL_ALPHA</constant></entry>
1983	    <entry>0x00000001</entry>
1984	    <entry>The color values are premultiplied by the alpha channel
1985value. For example, if a light blue pixel with 50% transparency was described by
1986RGBA values (128, 192, 255, 128), the same pixel described with premultiplied
1987colors would be described by RGBA values (64, 96, 128, 128) </entry>
1988	  </row>
1989	</tbody>
1990      </tgroup>
1991    </table>
1992  </section>
1993