1/*
2 * pid.c PID controller for testing cooling devices
3 *
4 *
5 *
6 * Copyright (C) 2012 Intel Corporation. All rights reserved.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version
10 * 2 or later as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * Author Name Jacob Pan <jacob.jun.pan@linux.intel.com>
18 *
19 */
20
21#include <unistd.h>
22#include <stdio.h>
23#include <stdlib.h>
24#include <string.h>
25#include <stdint.h>
26#include <sys/types.h>
27#include <dirent.h>
28#include <libintl.h>
29#include <ctype.h>
30#include <assert.h>
31#include <time.h>
32#include <limits.h>
33#include <math.h>
34#include <sys/stat.h>
35#include <syslog.h>
36
37#include "tmon.h"
38
39/**************************************************************************
40 * PID (Proportional-Integral-Derivative) controller is commonly used in
41 * linear control system, consider the the process.
42 * G(s) = U(s)/E(s)
43 * kp = proportional gain
44 * ki = integral gain
45 * kd = derivative gain
46 * Ts
47 * We use type C Alan Bradley equation which takes set point off the
48 * output dependency in P and D term.
49 *
50 *   y[k] = y[k-1] - kp*(x[k] - x[k-1]) + Ki*Ts*e[k] - Kd*(x[k]
51 *          - 2*x[k-1]+x[k-2])/Ts
52 *
53 *
54 ***********************************************************************/
55struct pid_params p_param;
56/* cached data from previous loop */
57static double xk_1, xk_2; /* input temperature x[k-#] */
58
59/*
60 * TODO: make PID parameters tuned automatically,
61 * 1. use CPU burn to produce open loop unit step response
62 * 2. calculate PID based on Ziegler-Nichols rule
63 *
64 * add a flag for tuning PID
65 */
66int init_thermal_controller(void)
67{
68	int ret = 0;
69
70	/* init pid params */
71	p_param.ts = ticktime;
72	/* TODO: get it from TUI tuning tab */
73	p_param.kp = .36;
74	p_param.ki = 5.0;
75	p_param.kd = 0.19;
76
77	p_param.t_target = target_temp_user;
78
79	return ret;
80}
81
82void controller_reset(void)
83{
84	/* TODO: relax control data when not over thermal limit */
85	syslog(LOG_DEBUG, "TC inactive, relax p-state\n");
86	p_param.y_k = 0.0;
87	xk_1 = 0.0;
88	xk_2 = 0.0;
89	set_ctrl_state(0);
90}
91
92/* To be called at time interval Ts. Type C PID controller.
93 *    y[k] = y[k-1] - kp*(x[k] - x[k-1]) + Ki*Ts*e[k] - Kd*(x[k]
94 *          - 2*x[k-1]+x[k-2])/Ts
95 * TODO: add low pass filter for D term
96 */
97#define GUARD_BAND (2)
98void controller_handler(const double xk, double *yk)
99{
100	double ek;
101	double p_term, i_term, d_term;
102
103	ek = p_param.t_target - xk; /* error */
104	if (ek >= 3.0) {
105		syslog(LOG_DEBUG, "PID: %3.1f Below set point %3.1f, stop\n",
106			xk, p_param.t_target);
107		controller_reset();
108		*yk = 0.0;
109		return;
110	}
111	/* compute intermediate PID terms */
112	p_term = -p_param.kp * (xk - xk_1);
113	i_term = p_param.kp * p_param.ki * p_param.ts * ek;
114	d_term = -p_param.kp * p_param.kd * (xk - 2 * xk_1 + xk_2) / p_param.ts;
115	/* compute output */
116	*yk += p_term + i_term + d_term;
117	/* update sample data */
118	xk_1 = xk;
119	xk_2 = xk_1;
120
121	/* clamp output adjustment range */
122	if (*yk < -LIMIT_HIGH)
123		*yk = -LIMIT_HIGH;
124	else if (*yk > -LIMIT_LOW)
125		*yk = -LIMIT_LOW;
126
127	p_param.y_k = *yk;
128
129	set_ctrl_state(lround(fabs(p_param.y_k)));
130
131}
132