1/*
2 * Codec driver for ST STA350 2.1-channel high-efficiency digital audio system
3 *
4 * Copyright: 2014 Raumfeld GmbH
5 * Author: Sven Brandau <info@brandau.biz>
6 *
7 * based on code from:
8 *	Raumfeld GmbH
9 *	  Johannes Stezenbach <js@sig21.net>
10 *	Wolfson Microelectronics PLC.
11 *	  Mark Brown <broonie@opensource.wolfsonmicro.com>
12 *	Freescale Semiconductor, Inc.
13 *	  Timur Tabi <timur@freescale.com>
14 *
15 * This program is free software; you can redistribute  it and/or modify it
16 * under  the terms of  the GNU General  Public License as published by the
17 * Free Software Foundation;  either version 2 of the  License, or (at your
18 * option) any later version.
19 */
20
21#define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
22
23#include <linux/module.h>
24#include <linux/moduleparam.h>
25#include <linux/init.h>
26#include <linux/delay.h>
27#include <linux/pm.h>
28#include <linux/i2c.h>
29#include <linux/of_device.h>
30#include <linux/of_gpio.h>
31#include <linux/regmap.h>
32#include <linux/regulator/consumer.h>
33#include <linux/gpio/consumer.h>
34#include <linux/slab.h>
35#include <sound/core.h>
36#include <sound/pcm.h>
37#include <sound/pcm_params.h>
38#include <sound/soc.h>
39#include <sound/soc-dapm.h>
40#include <sound/initval.h>
41#include <sound/tlv.h>
42
43#include <sound/sta350.h>
44#include "sta350.h"
45
46#define STA350_RATES (SNDRV_PCM_RATE_32000 | \
47		      SNDRV_PCM_RATE_44100 | \
48		      SNDRV_PCM_RATE_48000 | \
49		      SNDRV_PCM_RATE_88200 | \
50		      SNDRV_PCM_RATE_96000 | \
51		      SNDRV_PCM_RATE_176400 | \
52		      SNDRV_PCM_RATE_192000)
53
54#define STA350_FORMATS \
55	(SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_S16_BE  | \
56	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \
57	 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \
58	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \
59	 SNDRV_PCM_FMTBIT_S24_LE  | SNDRV_PCM_FMTBIT_S24_BE  | \
60	 SNDRV_PCM_FMTBIT_S32_LE  | SNDRV_PCM_FMTBIT_S32_BE)
61
62/* Power-up register defaults */
63static const struct reg_default sta350_regs[] = {
64	{  0x0, 0x63 },
65	{  0x1, 0x80 },
66	{  0x2, 0xdf },
67	{  0x3, 0x40 },
68	{  0x4, 0xc2 },
69	{  0x5, 0x5c },
70	{  0x6, 0x00 },
71	{  0x7, 0xff },
72	{  0x8, 0x60 },
73	{  0x9, 0x60 },
74	{  0xa, 0x60 },
75	{  0xb, 0x00 },
76	{  0xc, 0x00 },
77	{  0xd, 0x00 },
78	{  0xe, 0x00 },
79	{  0xf, 0x40 },
80	{ 0x10, 0x80 },
81	{ 0x11, 0x77 },
82	{ 0x12, 0x6a },
83	{ 0x13, 0x69 },
84	{ 0x14, 0x6a },
85	{ 0x15, 0x69 },
86	{ 0x16, 0x00 },
87	{ 0x17, 0x00 },
88	{ 0x18, 0x00 },
89	{ 0x19, 0x00 },
90	{ 0x1a, 0x00 },
91	{ 0x1b, 0x00 },
92	{ 0x1c, 0x00 },
93	{ 0x1d, 0x00 },
94	{ 0x1e, 0x00 },
95	{ 0x1f, 0x00 },
96	{ 0x20, 0x00 },
97	{ 0x21, 0x00 },
98	{ 0x22, 0x00 },
99	{ 0x23, 0x00 },
100	{ 0x24, 0x00 },
101	{ 0x25, 0x00 },
102	{ 0x26, 0x00 },
103	{ 0x27, 0x2a },
104	{ 0x28, 0xc0 },
105	{ 0x29, 0xf3 },
106	{ 0x2a, 0x33 },
107	{ 0x2b, 0x00 },
108	{ 0x2c, 0x0c },
109	{ 0x31, 0x00 },
110	{ 0x36, 0x00 },
111	{ 0x37, 0x00 },
112	{ 0x38, 0x00 },
113	{ 0x39, 0x01 },
114	{ 0x3a, 0xee },
115	{ 0x3b, 0xff },
116	{ 0x3c, 0x7e },
117	{ 0x3d, 0xc0 },
118	{ 0x3e, 0x26 },
119	{ 0x3f, 0x00 },
120	{ 0x48, 0x00 },
121	{ 0x49, 0x00 },
122	{ 0x4a, 0x00 },
123	{ 0x4b, 0x04 },
124	{ 0x4c, 0x00 },
125};
126
127static const struct regmap_range sta350_write_regs_range[] = {
128	regmap_reg_range(STA350_CONFA,  STA350_AUTO2),
129	regmap_reg_range(STA350_C1CFG,  STA350_FDRC2),
130	regmap_reg_range(STA350_EQCFG,  STA350_EVOLRES),
131	regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
132};
133
134static const struct regmap_range sta350_read_regs_range[] = {
135	regmap_reg_range(STA350_CONFA,  STA350_AUTO2),
136	regmap_reg_range(STA350_C1CFG,  STA350_STATUS),
137	regmap_reg_range(STA350_EQCFG,  STA350_EVOLRES),
138	regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
139};
140
141static const struct regmap_range sta350_volatile_regs_range[] = {
142	regmap_reg_range(STA350_CFADDR2, STA350_CFUD),
143	regmap_reg_range(STA350_STATUS,  STA350_STATUS),
144};
145
146static const struct regmap_access_table sta350_write_regs = {
147	.yes_ranges =	sta350_write_regs_range,
148	.n_yes_ranges =	ARRAY_SIZE(sta350_write_regs_range),
149};
150
151static const struct regmap_access_table sta350_read_regs = {
152	.yes_ranges =	sta350_read_regs_range,
153	.n_yes_ranges =	ARRAY_SIZE(sta350_read_regs_range),
154};
155
156static const struct regmap_access_table sta350_volatile_regs = {
157	.yes_ranges =	sta350_volatile_regs_range,
158	.n_yes_ranges =	ARRAY_SIZE(sta350_volatile_regs_range),
159};
160
161/* regulator power supply names */
162static const char * const sta350_supply_names[] = {
163	"vdd-dig",	/* digital supply, 3.3V */
164	"vdd-pll",	/* pll supply, 3.3V */
165	"vcc"		/* power amp supply, 5V - 26V */
166};
167
168/* codec private data */
169struct sta350_priv {
170	struct regmap *regmap;
171	struct regulator_bulk_data supplies[ARRAY_SIZE(sta350_supply_names)];
172	struct sta350_platform_data *pdata;
173
174	unsigned int mclk;
175	unsigned int format;
176
177	u32 coef_shadow[STA350_COEF_COUNT];
178	int shutdown;
179
180	struct gpio_desc *gpiod_nreset;
181	struct gpio_desc *gpiod_power_down;
182
183	struct mutex coeff_lock;
184};
185
186static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12750, 50, 1);
187static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
188static const DECLARE_TLV_DB_SCALE(tone_tlv, -1200, 200, 0);
189
190static const char * const sta350_drc_ac[] = {
191	"Anti-Clipping", "Dynamic Range Compression"
192};
193static const char * const sta350_auto_gc_mode[] = {
194	"User", "AC no clipping", "AC limited clipping (10%)",
195	"DRC nighttime listening mode"
196};
197static const char * const sta350_auto_xo_mode[] = {
198	"User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz",
199	"200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz",
200	"340Hz", "360Hz"
201};
202static const char * const sta350_binary_output[] = {
203	"FFX 3-state output - normal operation", "Binary output"
204};
205static const char * const sta350_limiter_select[] = {
206	"Limiter Disabled", "Limiter #1", "Limiter #2"
207};
208static const char * const sta350_limiter_attack_rate[] = {
209	"3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
210	"0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
211	"0.0645", "0.0564", "0.0501", "0.0451"
212};
213static const char * const sta350_limiter_release_rate[] = {
214	"0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
215	"0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
216	"0.0134", "0.0117", "0.0110", "0.0104"
217};
218static const char * const sta350_noise_shaper_type[] = {
219	"Third order", "Fourth order"
220};
221
222static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_attack_tlv,
223	0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
224	8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
225);
226
227static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_release_tlv,
228	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
229	1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
230	2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
231	3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
232	8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
233);
234
235static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_attack_tlv,
236	0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
237	8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
238	14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
239);
240
241static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_release_tlv,
242	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
243	1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
244	3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
245	5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
246	13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
247);
248
249static SOC_ENUM_SINGLE_DECL(sta350_drc_ac_enum,
250			    STA350_CONFD, STA350_CONFD_DRC_SHIFT,
251			    sta350_drc_ac);
252static SOC_ENUM_SINGLE_DECL(sta350_noise_shaper_enum,
253			    STA350_CONFE, STA350_CONFE_NSBW_SHIFT,
254			    sta350_noise_shaper_type);
255static SOC_ENUM_SINGLE_DECL(sta350_auto_gc_enum,
256			    STA350_AUTO1, STA350_AUTO1_AMGC_SHIFT,
257			    sta350_auto_gc_mode);
258static SOC_ENUM_SINGLE_DECL(sta350_auto_xo_enum,
259			    STA350_AUTO2, STA350_AUTO2_XO_SHIFT,
260			    sta350_auto_xo_mode);
261static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch1_enum,
262			    STA350_C1CFG, STA350_CxCFG_BO_SHIFT,
263			    sta350_binary_output);
264static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch2_enum,
265			    STA350_C2CFG, STA350_CxCFG_BO_SHIFT,
266			    sta350_binary_output);
267static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch3_enum,
268			    STA350_C3CFG, STA350_CxCFG_BO_SHIFT,
269			    sta350_binary_output);
270static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch1_enum,
271			    STA350_C1CFG, STA350_CxCFG_LS_SHIFT,
272			    sta350_limiter_select);
273static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch2_enum,
274			    STA350_C2CFG, STA350_CxCFG_LS_SHIFT,
275			    sta350_limiter_select);
276static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch3_enum,
277			    STA350_C3CFG, STA350_CxCFG_LS_SHIFT,
278			    sta350_limiter_select);
279static SOC_ENUM_SINGLE_DECL(sta350_limiter1_attack_rate_enum,
280			    STA350_L1AR, STA350_LxA_SHIFT,
281			    sta350_limiter_attack_rate);
282static SOC_ENUM_SINGLE_DECL(sta350_limiter2_attack_rate_enum,
283			    STA350_L2AR, STA350_LxA_SHIFT,
284			    sta350_limiter_attack_rate);
285static SOC_ENUM_SINGLE_DECL(sta350_limiter1_release_rate_enum,
286			    STA350_L1AR, STA350_LxR_SHIFT,
287			    sta350_limiter_release_rate);
288static SOC_ENUM_SINGLE_DECL(sta350_limiter2_release_rate_enum,
289			    STA350_L2AR, STA350_LxR_SHIFT,
290			    sta350_limiter_release_rate);
291
292/*
293 * byte array controls for setting biquad, mixer, scaling coefficients;
294 * for biquads all five coefficients need to be set in one go,
295 * mixer and pre/postscale coefs can be set individually;
296 * each coef is 24bit, the bytes are ordered in the same way
297 * as given in the STA350 data sheet (big endian; b1, b2, a1, a2, b0)
298 */
299
300static int sta350_coefficient_info(struct snd_kcontrol *kcontrol,
301				   struct snd_ctl_elem_info *uinfo)
302{
303	int numcoef = kcontrol->private_value >> 16;
304	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
305	uinfo->count = 3 * numcoef;
306	return 0;
307}
308
309static int sta350_coefficient_get(struct snd_kcontrol *kcontrol,
310				  struct snd_ctl_elem_value *ucontrol)
311{
312	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
313	struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
314	int numcoef = kcontrol->private_value >> 16;
315	int index = kcontrol->private_value & 0xffff;
316	unsigned int cfud, val;
317	int i, ret = 0;
318
319	mutex_lock(&sta350->coeff_lock);
320
321	/* preserve reserved bits in STA350_CFUD */
322	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
323	cfud &= 0xf0;
324	/*
325	 * chip documentation does not say if the bits are self clearing,
326	 * so do it explicitly
327	 */
328	regmap_write(sta350->regmap, STA350_CFUD, cfud);
329
330	regmap_write(sta350->regmap, STA350_CFADDR2, index);
331	if (numcoef == 1) {
332		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x04);
333	} else if (numcoef == 5) {
334		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x08);
335	} else {
336		ret = -EINVAL;
337		goto exit_unlock;
338	}
339
340	for (i = 0; i < 3 * numcoef; i++) {
341		regmap_read(sta350->regmap, STA350_B1CF1 + i, &val);
342		ucontrol->value.bytes.data[i] = val;
343	}
344
345exit_unlock:
346	mutex_unlock(&sta350->coeff_lock);
347
348	return ret;
349}
350
351static int sta350_coefficient_put(struct snd_kcontrol *kcontrol,
352				  struct snd_ctl_elem_value *ucontrol)
353{
354	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
355	struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
356	int numcoef = kcontrol->private_value >> 16;
357	int index = kcontrol->private_value & 0xffff;
358	unsigned int cfud;
359	int i;
360
361	/* preserve reserved bits in STA350_CFUD */
362	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
363	cfud &= 0xf0;
364	/*
365	 * chip documentation does not say if the bits are self clearing,
366	 * so do it explicitly
367	 */
368	regmap_write(sta350->regmap, STA350_CFUD, cfud);
369
370	regmap_write(sta350->regmap, STA350_CFADDR2, index);
371	for (i = 0; i < numcoef && (index + i < STA350_COEF_COUNT); i++)
372		sta350->coef_shadow[index + i] =
373			  (ucontrol->value.bytes.data[3 * i] << 16)
374			| (ucontrol->value.bytes.data[3 * i + 1] << 8)
375			| (ucontrol->value.bytes.data[3 * i + 2]);
376	for (i = 0; i < 3 * numcoef; i++)
377		regmap_write(sta350->regmap, STA350_B1CF1 + i,
378			     ucontrol->value.bytes.data[i]);
379	if (numcoef == 1)
380		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
381	else if (numcoef == 5)
382		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x02);
383	else
384		return -EINVAL;
385
386	return 0;
387}
388
389static int sta350_sync_coef_shadow(struct snd_soc_codec *codec)
390{
391	struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
392	unsigned int cfud;
393	int i;
394
395	/* preserve reserved bits in STA350_CFUD */
396	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
397	cfud &= 0xf0;
398
399	for (i = 0; i < STA350_COEF_COUNT; i++) {
400		regmap_write(sta350->regmap, STA350_CFADDR2, i);
401		regmap_write(sta350->regmap, STA350_B1CF1,
402			     (sta350->coef_shadow[i] >> 16) & 0xff);
403		regmap_write(sta350->regmap, STA350_B1CF2,
404			     (sta350->coef_shadow[i] >> 8) & 0xff);
405		regmap_write(sta350->regmap, STA350_B1CF3,
406			     (sta350->coef_shadow[i]) & 0xff);
407		/*
408		 * chip documentation does not say if the bits are
409		 * self-clearing, so do it explicitly
410		 */
411		regmap_write(sta350->regmap, STA350_CFUD, cfud);
412		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
413	}
414	return 0;
415}
416
417static int sta350_cache_sync(struct snd_soc_codec *codec)
418{
419	struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
420	unsigned int mute;
421	int rc;
422
423	/* mute during register sync */
424	regmap_read(sta350->regmap, STA350_CFUD, &mute);
425	regmap_write(sta350->regmap, STA350_MMUTE, mute | STA350_MMUTE_MMUTE);
426	sta350_sync_coef_shadow(codec);
427	rc = regcache_sync(sta350->regmap);
428	regmap_write(sta350->regmap, STA350_MMUTE, mute);
429	return rc;
430}
431
432#define SINGLE_COEF(xname, index) \
433{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
434	.info = sta350_coefficient_info, \
435	.get = sta350_coefficient_get,\
436	.put = sta350_coefficient_put, \
437	.private_value = index | (1 << 16) }
438
439#define BIQUAD_COEFS(xname, index) \
440{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
441	.info = sta350_coefficient_info, \
442	.get = sta350_coefficient_get,\
443	.put = sta350_coefficient_put, \
444	.private_value = index | (5 << 16) }
445
446static const struct snd_kcontrol_new sta350_snd_controls[] = {
447SOC_SINGLE_TLV("Master Volume", STA350_MVOL, 0, 0xff, 1, mvol_tlv),
448/* VOL */
449SOC_SINGLE_TLV("Ch1 Volume", STA350_C1VOL, 0, 0xff, 1, chvol_tlv),
450SOC_SINGLE_TLV("Ch2 Volume", STA350_C2VOL, 0, 0xff, 1, chvol_tlv),
451SOC_SINGLE_TLV("Ch3 Volume", STA350_C3VOL, 0, 0xff, 1, chvol_tlv),
452/* CONFD */
453SOC_SINGLE("High Pass Filter Bypass Switch",
454	   STA350_CONFD, STA350_CONFD_HPB_SHIFT, 1, 1),
455SOC_SINGLE("De-emphasis Filter Switch",
456	   STA350_CONFD, STA350_CONFD_DEMP_SHIFT, 1, 0),
457SOC_SINGLE("DSP Bypass Switch",
458	   STA350_CONFD, STA350_CONFD_DSPB_SHIFT, 1, 0),
459SOC_SINGLE("Post-scale Link Switch",
460	   STA350_CONFD, STA350_CONFD_PSL_SHIFT, 1, 0),
461SOC_SINGLE("Biquad Coefficient Link Switch",
462	   STA350_CONFD, STA350_CONFD_BQL_SHIFT, 1, 0),
463SOC_ENUM("Compressor/Limiter Switch", sta350_drc_ac_enum),
464SOC_ENUM("Noise Shaper Bandwidth", sta350_noise_shaper_enum),
465SOC_SINGLE("Zero-detect Mute Enable Switch",
466	   STA350_CONFD, STA350_CONFD_ZDE_SHIFT, 1, 0),
467SOC_SINGLE("Submix Mode Switch",
468	   STA350_CONFD, STA350_CONFD_SME_SHIFT, 1, 0),
469/* CONFE */
470SOC_SINGLE("Zero Cross Switch", STA350_CONFE, STA350_CONFE_ZCE_SHIFT, 1, 0),
471SOC_SINGLE("Soft Ramp Switch", STA350_CONFE, STA350_CONFE_SVE_SHIFT, 1, 0),
472/* MUTE */
473SOC_SINGLE("Master Switch", STA350_MMUTE, STA350_MMUTE_MMUTE_SHIFT, 1, 1),
474SOC_SINGLE("Ch1 Switch", STA350_MMUTE, STA350_MMUTE_C1M_SHIFT, 1, 1),
475SOC_SINGLE("Ch2 Switch", STA350_MMUTE, STA350_MMUTE_C2M_SHIFT, 1, 1),
476SOC_SINGLE("Ch3 Switch", STA350_MMUTE, STA350_MMUTE_C3M_SHIFT, 1, 1),
477/* AUTOx */
478SOC_ENUM("Automode GC", sta350_auto_gc_enum),
479SOC_ENUM("Automode XO", sta350_auto_xo_enum),
480/* CxCFG */
481SOC_SINGLE("Ch1 Tone Control Bypass Switch",
482	   STA350_C1CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
483SOC_SINGLE("Ch2 Tone Control Bypass Switch",
484	   STA350_C2CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
485SOC_SINGLE("Ch1 EQ Bypass Switch",
486	   STA350_C1CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
487SOC_SINGLE("Ch2 EQ Bypass Switch",
488	   STA350_C2CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
489SOC_SINGLE("Ch1 Master Volume Bypass Switch",
490	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
491SOC_SINGLE("Ch2 Master Volume Bypass Switch",
492	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
493SOC_SINGLE("Ch3 Master Volume Bypass Switch",
494	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
495SOC_ENUM("Ch1 Binary Output Select", sta350_binary_output_ch1_enum),
496SOC_ENUM("Ch2 Binary Output Select", sta350_binary_output_ch2_enum),
497SOC_ENUM("Ch3 Binary Output Select", sta350_binary_output_ch3_enum),
498SOC_ENUM("Ch1 Limiter Select", sta350_limiter_ch1_enum),
499SOC_ENUM("Ch2 Limiter Select", sta350_limiter_ch2_enum),
500SOC_ENUM("Ch3 Limiter Select", sta350_limiter_ch3_enum),
501/* TONE */
502SOC_SINGLE_RANGE_TLV("Bass Tone Control Volume",
503		     STA350_TONE, STA350_TONE_BTC_SHIFT, 1, 13, 0, tone_tlv),
504SOC_SINGLE_RANGE_TLV("Treble Tone Control Volume",
505		     STA350_TONE, STA350_TONE_TTC_SHIFT, 1, 13, 0, tone_tlv),
506SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta350_limiter1_attack_rate_enum),
507SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta350_limiter2_attack_rate_enum),
508SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta350_limiter1_release_rate_enum),
509SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta350_limiter2_release_rate_enum),
510
511/*
512 * depending on mode, the attack/release thresholds have
513 * two different enum definitions; provide both
514 */
515SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)",
516	       STA350_L1ATRT, STA350_LxA_SHIFT,
517	       16, 0, sta350_limiter_ac_attack_tlv),
518SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)",
519	       STA350_L2ATRT, STA350_LxA_SHIFT,
520	       16, 0, sta350_limiter_ac_attack_tlv),
521SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)",
522	       STA350_L1ATRT, STA350_LxR_SHIFT,
523	       16, 0, sta350_limiter_ac_release_tlv),
524SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)",
525	       STA350_L2ATRT, STA350_LxR_SHIFT,
526	       16, 0, sta350_limiter_ac_release_tlv),
527SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)",
528	       STA350_L1ATRT, STA350_LxA_SHIFT,
529	       16, 0, sta350_limiter_drc_attack_tlv),
530SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)",
531	       STA350_L2ATRT, STA350_LxA_SHIFT,
532	       16, 0, sta350_limiter_drc_attack_tlv),
533SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)",
534	       STA350_L1ATRT, STA350_LxR_SHIFT,
535	       16, 0, sta350_limiter_drc_release_tlv),
536SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)",
537	       STA350_L2ATRT, STA350_LxR_SHIFT,
538	       16, 0, sta350_limiter_drc_release_tlv),
539
540BIQUAD_COEFS("Ch1 - Biquad 1", 0),
541BIQUAD_COEFS("Ch1 - Biquad 2", 5),
542BIQUAD_COEFS("Ch1 - Biquad 3", 10),
543BIQUAD_COEFS("Ch1 - Biquad 4", 15),
544BIQUAD_COEFS("Ch2 - Biquad 1", 20),
545BIQUAD_COEFS("Ch2 - Biquad 2", 25),
546BIQUAD_COEFS("Ch2 - Biquad 3", 30),
547BIQUAD_COEFS("Ch2 - Biquad 4", 35),
548BIQUAD_COEFS("High-pass", 40),
549BIQUAD_COEFS("Low-pass", 45),
550SINGLE_COEF("Ch1 - Prescale", 50),
551SINGLE_COEF("Ch2 - Prescale", 51),
552SINGLE_COEF("Ch1 - Postscale", 52),
553SINGLE_COEF("Ch2 - Postscale", 53),
554SINGLE_COEF("Ch3 - Postscale", 54),
555SINGLE_COEF("Thermal warning - Postscale", 55),
556SINGLE_COEF("Ch1 - Mix 1", 56),
557SINGLE_COEF("Ch1 - Mix 2", 57),
558SINGLE_COEF("Ch2 - Mix 1", 58),
559SINGLE_COEF("Ch2 - Mix 2", 59),
560SINGLE_COEF("Ch3 - Mix 1", 60),
561SINGLE_COEF("Ch3 - Mix 2", 61),
562};
563
564static const struct snd_soc_dapm_widget sta350_dapm_widgets[] = {
565SND_SOC_DAPM_DAC("DAC", NULL, SND_SOC_NOPM, 0, 0),
566SND_SOC_DAPM_OUTPUT("LEFT"),
567SND_SOC_DAPM_OUTPUT("RIGHT"),
568SND_SOC_DAPM_OUTPUT("SUB"),
569};
570
571static const struct snd_soc_dapm_route sta350_dapm_routes[] = {
572	{ "LEFT", NULL, "DAC" },
573	{ "RIGHT", NULL, "DAC" },
574	{ "SUB", NULL, "DAC" },
575	{ "DAC", NULL, "Playback" },
576};
577
578/* MCLK interpolation ratio per fs */
579static struct {
580	int fs;
581	int ir;
582} interpolation_ratios[] = {
583	{ 32000, 0 },
584	{ 44100, 0 },
585	{ 48000, 0 },
586	{ 88200, 1 },
587	{ 96000, 1 },
588	{ 176400, 2 },
589	{ 192000, 2 },
590};
591
592/* MCLK to fs clock ratios */
593static int mcs_ratio_table[3][6] = {
594	{ 768, 512, 384, 256, 128, 576 },
595	{ 384, 256, 192, 128,  64,   0 },
596	{ 192, 128,  96,  64,  32,   0 },
597};
598
599/**
600 * sta350_set_dai_sysclk - configure MCLK
601 * @codec_dai: the codec DAI
602 * @clk_id: the clock ID (ignored)
603 * @freq: the MCLK input frequency
604 * @dir: the clock direction (ignored)
605 *
606 * The value of MCLK is used to determine which sample rates are supported
607 * by the STA350, based on the mcs_ratio_table.
608 *
609 * This function must be called by the machine driver's 'startup' function,
610 * otherwise the list of supported sample rates will not be available in
611 * time for ALSA.
612 */
613static int sta350_set_dai_sysclk(struct snd_soc_dai *codec_dai,
614				 int clk_id, unsigned int freq, int dir)
615{
616	struct snd_soc_codec *codec = codec_dai->codec;
617	struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
618
619	dev_dbg(codec->dev, "mclk=%u\n", freq);
620	sta350->mclk = freq;
621
622	return 0;
623}
624
625/**
626 * sta350_set_dai_fmt - configure the codec for the selected audio format
627 * @codec_dai: the codec DAI
628 * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
629 *
630 * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
631 * codec accordingly.
632 */
633static int sta350_set_dai_fmt(struct snd_soc_dai *codec_dai,
634			      unsigned int fmt)
635{
636	struct snd_soc_codec *codec = codec_dai->codec;
637	struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
638	unsigned int confb = 0;
639
640	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
641	case SND_SOC_DAIFMT_CBS_CFS:
642		break;
643	default:
644		return -EINVAL;
645	}
646
647	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
648	case SND_SOC_DAIFMT_I2S:
649	case SND_SOC_DAIFMT_RIGHT_J:
650	case SND_SOC_DAIFMT_LEFT_J:
651		sta350->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
652		break;
653	default:
654		return -EINVAL;
655	}
656
657	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
658	case SND_SOC_DAIFMT_NB_NF:
659		confb |= STA350_CONFB_C2IM;
660		break;
661	case SND_SOC_DAIFMT_NB_IF:
662		confb |= STA350_CONFB_C1IM;
663		break;
664	default:
665		return -EINVAL;
666	}
667
668	return regmap_update_bits(sta350->regmap, STA350_CONFB,
669				  STA350_CONFB_C1IM | STA350_CONFB_C2IM, confb);
670}
671
672/**
673 * sta350_hw_params - program the STA350 with the given hardware parameters.
674 * @substream: the audio stream
675 * @params: the hardware parameters to set
676 * @dai: the SOC DAI (ignored)
677 *
678 * This function programs the hardware with the values provided.
679 * Specifically, the sample rate and the data format.
680 */
681static int sta350_hw_params(struct snd_pcm_substream *substream,
682			    struct snd_pcm_hw_params *params,
683			    struct snd_soc_dai *dai)
684{
685	struct snd_soc_codec *codec = dai->codec;
686	struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
687	int i, mcs = -EINVAL, ir = -EINVAL;
688	unsigned int confa, confb;
689	unsigned int rate, ratio;
690	int ret;
691
692	if (!sta350->mclk) {
693		dev_err(codec->dev,
694			"sta350->mclk is unset. Unable to determine ratio\n");
695		return -EIO;
696	}
697
698	rate = params_rate(params);
699	ratio = sta350->mclk / rate;
700	dev_dbg(codec->dev, "rate: %u, ratio: %u\n", rate, ratio);
701
702	for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
703		if (interpolation_ratios[i].fs == rate) {
704			ir = interpolation_ratios[i].ir;
705			break;
706		}
707	}
708
709	if (ir < 0) {
710		dev_err(codec->dev, "Unsupported samplerate: %u\n", rate);
711		return -EINVAL;
712	}
713
714	for (i = 0; i < 6; i++) {
715		if (mcs_ratio_table[ir][i] == ratio) {
716			mcs = i;
717			break;
718		}
719	}
720
721	if (mcs < 0) {
722		dev_err(codec->dev, "Unresolvable ratio: %u\n", ratio);
723		return -EINVAL;
724	}
725
726	confa = (ir << STA350_CONFA_IR_SHIFT) |
727		(mcs << STA350_CONFA_MCS_SHIFT);
728	confb = 0;
729
730	switch (params_width(params)) {
731	case 24:
732		dev_dbg(codec->dev, "24bit\n");
733		/* fall through */
734	case 32:
735		dev_dbg(codec->dev, "24bit or 32bit\n");
736		switch (sta350->format) {
737		case SND_SOC_DAIFMT_I2S:
738			confb |= 0x0;
739			break;
740		case SND_SOC_DAIFMT_LEFT_J:
741			confb |= 0x1;
742			break;
743		case SND_SOC_DAIFMT_RIGHT_J:
744			confb |= 0x2;
745			break;
746		}
747
748		break;
749	case 20:
750		dev_dbg(codec->dev, "20bit\n");
751		switch (sta350->format) {
752		case SND_SOC_DAIFMT_I2S:
753			confb |= 0x4;
754			break;
755		case SND_SOC_DAIFMT_LEFT_J:
756			confb |= 0x5;
757			break;
758		case SND_SOC_DAIFMT_RIGHT_J:
759			confb |= 0x6;
760			break;
761		}
762
763		break;
764	case 18:
765		dev_dbg(codec->dev, "18bit\n");
766		switch (sta350->format) {
767		case SND_SOC_DAIFMT_I2S:
768			confb |= 0x8;
769			break;
770		case SND_SOC_DAIFMT_LEFT_J:
771			confb |= 0x9;
772			break;
773		case SND_SOC_DAIFMT_RIGHT_J:
774			confb |= 0xa;
775			break;
776		}
777
778		break;
779	case 16:
780		dev_dbg(codec->dev, "16bit\n");
781		switch (sta350->format) {
782		case SND_SOC_DAIFMT_I2S:
783			confb |= 0x0;
784			break;
785		case SND_SOC_DAIFMT_LEFT_J:
786			confb |= 0xd;
787			break;
788		case SND_SOC_DAIFMT_RIGHT_J:
789			confb |= 0xe;
790			break;
791		}
792
793		break;
794	default:
795		return -EINVAL;
796	}
797
798	ret = regmap_update_bits(sta350->regmap, STA350_CONFA,
799				 STA350_CONFA_MCS_MASK | STA350_CONFA_IR_MASK,
800				 confa);
801	if (ret < 0)
802		return ret;
803
804	ret = regmap_update_bits(sta350->regmap, STA350_CONFB,
805				 STA350_CONFB_SAI_MASK | STA350_CONFB_SAIFB,
806				 confb);
807	if (ret < 0)
808		return ret;
809
810	return 0;
811}
812
813static int sta350_startup_sequence(struct sta350_priv *sta350)
814{
815	if (sta350->gpiod_power_down)
816		gpiod_set_value(sta350->gpiod_power_down, 1);
817
818	if (sta350->gpiod_nreset) {
819		gpiod_set_value(sta350->gpiod_nreset, 0);
820		mdelay(1);
821		gpiod_set_value(sta350->gpiod_nreset, 1);
822		mdelay(1);
823	}
824
825	return 0;
826}
827
828/**
829 * sta350_set_bias_level - DAPM callback
830 * @codec: the codec device
831 * @level: DAPM power level
832 *
833 * This is called by ALSA to put the codec into low power mode
834 * or to wake it up.  If the codec is powered off completely
835 * all registers must be restored after power on.
836 */
837static int sta350_set_bias_level(struct snd_soc_codec *codec,
838				 enum snd_soc_bias_level level)
839{
840	struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
841	int ret;
842
843	dev_dbg(codec->dev, "level = %d\n", level);
844	switch (level) {
845	case SND_SOC_BIAS_ON:
846		break;
847
848	case SND_SOC_BIAS_PREPARE:
849		/* Full power on */
850		regmap_update_bits(sta350->regmap, STA350_CONFF,
851				   STA350_CONFF_PWDN | STA350_CONFF_EAPD,
852				   STA350_CONFF_PWDN | STA350_CONFF_EAPD);
853		break;
854
855	case SND_SOC_BIAS_STANDBY:
856		if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) {
857			ret = regulator_bulk_enable(
858				ARRAY_SIZE(sta350->supplies),
859				sta350->supplies);
860			if (ret < 0) {
861				dev_err(codec->dev,
862					"Failed to enable supplies: %d\n",
863					ret);
864				return ret;
865			}
866			sta350_startup_sequence(sta350);
867			sta350_cache_sync(codec);
868		}
869
870		/* Power down */
871		regmap_update_bits(sta350->regmap, STA350_CONFF,
872				   STA350_CONFF_PWDN | STA350_CONFF_EAPD,
873				   0);
874
875		break;
876
877	case SND_SOC_BIAS_OFF:
878		/* The chip runs through the power down sequence for us */
879		regmap_update_bits(sta350->regmap, STA350_CONFF,
880				   STA350_CONFF_PWDN | STA350_CONFF_EAPD, 0);
881
882		/* power down: low */
883		if (sta350->gpiod_power_down)
884			gpiod_set_value(sta350->gpiod_power_down, 0);
885
886		if (sta350->gpiod_nreset)
887			gpiod_set_value(sta350->gpiod_nreset, 0);
888
889		regulator_bulk_disable(ARRAY_SIZE(sta350->supplies),
890				       sta350->supplies);
891		break;
892	}
893	codec->dapm.bias_level = level;
894	return 0;
895}
896
897static const struct snd_soc_dai_ops sta350_dai_ops = {
898	.hw_params	= sta350_hw_params,
899	.set_sysclk	= sta350_set_dai_sysclk,
900	.set_fmt	= sta350_set_dai_fmt,
901};
902
903static struct snd_soc_dai_driver sta350_dai = {
904	.name = "sta350-hifi",
905	.playback = {
906		.stream_name = "Playback",
907		.channels_min = 2,
908		.channels_max = 2,
909		.rates = STA350_RATES,
910		.formats = STA350_FORMATS,
911	},
912	.ops = &sta350_dai_ops,
913};
914
915static int sta350_probe(struct snd_soc_codec *codec)
916{
917	struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
918	struct sta350_platform_data *pdata = sta350->pdata;
919	int i, ret = 0, thermal = 0;
920
921	ret = regulator_bulk_enable(ARRAY_SIZE(sta350->supplies),
922				    sta350->supplies);
923	if (ret < 0) {
924		dev_err(codec->dev, "Failed to enable supplies: %d\n", ret);
925		return ret;
926	}
927
928	ret = sta350_startup_sequence(sta350);
929	if (ret < 0) {
930		dev_err(codec->dev, "Failed to startup device\n");
931		return ret;
932	}
933
934	/* CONFA */
935	if (!pdata->thermal_warning_recovery)
936		thermal |= STA350_CONFA_TWAB;
937	if (!pdata->thermal_warning_adjustment)
938		thermal |= STA350_CONFA_TWRB;
939	if (!pdata->fault_detect_recovery)
940		thermal |= STA350_CONFA_FDRB;
941	regmap_update_bits(sta350->regmap, STA350_CONFA,
942			   STA350_CONFA_TWAB | STA350_CONFA_TWRB |
943			   STA350_CONFA_FDRB,
944			   thermal);
945
946	/* CONFC */
947	regmap_update_bits(sta350->regmap, STA350_CONFC,
948			   STA350_CONFC_OM_MASK,
949			   pdata->ffx_power_output_mode
950				<< STA350_CONFC_OM_SHIFT);
951	regmap_update_bits(sta350->regmap, STA350_CONFC,
952			   STA350_CONFC_CSZ_MASK,
953			   pdata->drop_compensation_ns
954				<< STA350_CONFC_CSZ_SHIFT);
955	regmap_update_bits(sta350->regmap,
956			   STA350_CONFC,
957			   STA350_CONFC_OCRB,
958			   pdata->oc_warning_adjustment ?
959				STA350_CONFC_OCRB : 0);
960
961	/* CONFE */
962	regmap_update_bits(sta350->regmap, STA350_CONFE,
963			   STA350_CONFE_MPCV,
964			   pdata->max_power_use_mpcc ?
965				STA350_CONFE_MPCV : 0);
966	regmap_update_bits(sta350->regmap, STA350_CONFE,
967			   STA350_CONFE_MPC,
968			   pdata->max_power_correction ?
969				STA350_CONFE_MPC : 0);
970	regmap_update_bits(sta350->regmap, STA350_CONFE,
971			   STA350_CONFE_AME,
972			   pdata->am_reduction_mode ?
973				STA350_CONFE_AME : 0);
974	regmap_update_bits(sta350->regmap, STA350_CONFE,
975			   STA350_CONFE_PWMS,
976			   pdata->odd_pwm_speed_mode ?
977				STA350_CONFE_PWMS : 0);
978	regmap_update_bits(sta350->regmap, STA350_CONFE,
979			   STA350_CONFE_DCCV,
980			   pdata->distortion_compensation ?
981				STA350_CONFE_DCCV : 0);
982	/*  CONFF */
983	regmap_update_bits(sta350->regmap, STA350_CONFF,
984			   STA350_CONFF_IDE,
985			   pdata->invalid_input_detect_mute ?
986				STA350_CONFF_IDE : 0);
987	regmap_update_bits(sta350->regmap, STA350_CONFF,
988			   STA350_CONFF_OCFG_MASK,
989			   pdata->output_conf
990				<< STA350_CONFF_OCFG_SHIFT);
991
992	/* channel to output mapping */
993	regmap_update_bits(sta350->regmap, STA350_C1CFG,
994			   STA350_CxCFG_OM_MASK,
995			   pdata->ch1_output_mapping
996				<< STA350_CxCFG_OM_SHIFT);
997	regmap_update_bits(sta350->regmap, STA350_C2CFG,
998			   STA350_CxCFG_OM_MASK,
999			   pdata->ch2_output_mapping
1000				<< STA350_CxCFG_OM_SHIFT);
1001	regmap_update_bits(sta350->regmap, STA350_C3CFG,
1002			   STA350_CxCFG_OM_MASK,
1003			   pdata->ch3_output_mapping
1004				<< STA350_CxCFG_OM_SHIFT);
1005
1006	/* miscellaneous registers */
1007	regmap_update_bits(sta350->regmap, STA350_MISC1,
1008			   STA350_MISC1_CPWMEN,
1009			   pdata->activate_mute_output ?
1010				STA350_MISC1_CPWMEN : 0);
1011	regmap_update_bits(sta350->regmap, STA350_MISC1,
1012			   STA350_MISC1_BRIDGOFF,
1013			   pdata->bridge_immediate_off ?
1014				STA350_MISC1_BRIDGOFF : 0);
1015	regmap_update_bits(sta350->regmap, STA350_MISC1,
1016			   STA350_MISC1_NSHHPEN,
1017			   pdata->noise_shape_dc_cut ?
1018				STA350_MISC1_NSHHPEN : 0);
1019	regmap_update_bits(sta350->regmap, STA350_MISC1,
1020			   STA350_MISC1_RPDNEN,
1021			   pdata->powerdown_master_vol ?
1022				STA350_MISC1_RPDNEN: 0);
1023
1024	regmap_update_bits(sta350->regmap, STA350_MISC2,
1025			   STA350_MISC2_PNDLSL_MASK,
1026			   pdata->powerdown_delay_divider
1027				<< STA350_MISC2_PNDLSL_SHIFT);
1028
1029	/* initialize coefficient shadow RAM with reset values */
1030	for (i = 4; i <= 49; i += 5)
1031		sta350->coef_shadow[i] = 0x400000;
1032	for (i = 50; i <= 54; i++)
1033		sta350->coef_shadow[i] = 0x7fffff;
1034	sta350->coef_shadow[55] = 0x5a9df7;
1035	sta350->coef_shadow[56] = 0x7fffff;
1036	sta350->coef_shadow[59] = 0x7fffff;
1037	sta350->coef_shadow[60] = 0x400000;
1038	sta350->coef_shadow[61] = 0x400000;
1039
1040	sta350_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
1041	/* Bias level configuration will have done an extra enable */
1042	regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1043
1044	return 0;
1045}
1046
1047static int sta350_remove(struct snd_soc_codec *codec)
1048{
1049	struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
1050
1051	regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1052
1053	return 0;
1054}
1055
1056static const struct snd_soc_codec_driver sta350_codec = {
1057	.probe =		sta350_probe,
1058	.remove =		sta350_remove,
1059	.set_bias_level =	sta350_set_bias_level,
1060	.suspend_bias_off =	true,
1061	.controls =		sta350_snd_controls,
1062	.num_controls =		ARRAY_SIZE(sta350_snd_controls),
1063	.dapm_widgets =		sta350_dapm_widgets,
1064	.num_dapm_widgets =	ARRAY_SIZE(sta350_dapm_widgets),
1065	.dapm_routes =		sta350_dapm_routes,
1066	.num_dapm_routes =	ARRAY_SIZE(sta350_dapm_routes),
1067};
1068
1069static const struct regmap_config sta350_regmap = {
1070	.reg_bits =		8,
1071	.val_bits =		8,
1072	.max_register =		STA350_MISC2,
1073	.reg_defaults =		sta350_regs,
1074	.num_reg_defaults =	ARRAY_SIZE(sta350_regs),
1075	.cache_type =		REGCACHE_RBTREE,
1076	.wr_table =		&sta350_write_regs,
1077	.rd_table =		&sta350_read_regs,
1078	.volatile_table =	&sta350_volatile_regs,
1079};
1080
1081#ifdef CONFIG_OF
1082static const struct of_device_id st350_dt_ids[] = {
1083	{ .compatible = "st,sta350", },
1084	{ }
1085};
1086MODULE_DEVICE_TABLE(of, st350_dt_ids);
1087
1088static const char * const sta350_ffx_modes[] = {
1089	[STA350_FFX_PM_DROP_COMP]		= "drop-compensation",
1090	[STA350_FFX_PM_TAPERED_COMP]		= "tapered-compensation",
1091	[STA350_FFX_PM_FULL_POWER]		= "full-power-mode",
1092	[STA350_FFX_PM_VARIABLE_DROP_COMP]	= "variable-drop-compensation",
1093};
1094
1095static int sta350_probe_dt(struct device *dev, struct sta350_priv *sta350)
1096{
1097	struct device_node *np = dev->of_node;
1098	struct sta350_platform_data *pdata;
1099	const char *ffx_power_mode;
1100	u16 tmp;
1101	u8 tmp8;
1102
1103	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1104	if (!pdata)
1105		return -ENOMEM;
1106
1107	of_property_read_u8(np, "st,output-conf",
1108			    &pdata->output_conf);
1109	of_property_read_u8(np, "st,ch1-output-mapping",
1110			    &pdata->ch1_output_mapping);
1111	of_property_read_u8(np, "st,ch2-output-mapping",
1112			    &pdata->ch2_output_mapping);
1113	of_property_read_u8(np, "st,ch3-output-mapping",
1114			    &pdata->ch3_output_mapping);
1115
1116	if (of_get_property(np, "st,thermal-warning-recovery", NULL))
1117		pdata->thermal_warning_recovery = 1;
1118	if (of_get_property(np, "st,thermal-warning-adjustment", NULL))
1119		pdata->thermal_warning_adjustment = 1;
1120	if (of_get_property(np, "st,fault-detect-recovery", NULL))
1121		pdata->fault_detect_recovery = 1;
1122
1123	pdata->ffx_power_output_mode = STA350_FFX_PM_VARIABLE_DROP_COMP;
1124	if (!of_property_read_string(np, "st,ffx-power-output-mode",
1125				     &ffx_power_mode)) {
1126		int i, mode = -EINVAL;
1127
1128		for (i = 0; i < ARRAY_SIZE(sta350_ffx_modes); i++)
1129			if (!strcasecmp(ffx_power_mode, sta350_ffx_modes[i]))
1130				mode = i;
1131
1132		if (mode < 0)
1133			dev_warn(dev, "Unsupported ffx output mode: %s\n",
1134				 ffx_power_mode);
1135		else
1136			pdata->ffx_power_output_mode = mode;
1137	}
1138
1139	tmp = 140;
1140	of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
1141	pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
1142
1143	if (of_get_property(np, "st,overcurrent-warning-adjustment", NULL))
1144		pdata->oc_warning_adjustment = 1;
1145
1146	/* CONFE */
1147	if (of_get_property(np, "st,max-power-use-mpcc", NULL))
1148		pdata->max_power_use_mpcc = 1;
1149
1150	if (of_get_property(np, "st,max-power-correction", NULL))
1151		pdata->max_power_correction = 1;
1152
1153	if (of_get_property(np, "st,am-reduction-mode", NULL))
1154		pdata->am_reduction_mode = 1;
1155
1156	if (of_get_property(np, "st,odd-pwm-speed-mode", NULL))
1157		pdata->odd_pwm_speed_mode = 1;
1158
1159	if (of_get_property(np, "st,distortion-compensation", NULL))
1160		pdata->distortion_compensation = 1;
1161
1162	/* CONFF */
1163	if (of_get_property(np, "st,invalid-input-detect-mute", NULL))
1164		pdata->invalid_input_detect_mute = 1;
1165
1166	/* MISC */
1167	if (of_get_property(np, "st,activate-mute-output", NULL))
1168		pdata->activate_mute_output = 1;
1169
1170	if (of_get_property(np, "st,bridge-immediate-off", NULL))
1171		pdata->bridge_immediate_off = 1;
1172
1173	if (of_get_property(np, "st,noise-shape-dc-cut", NULL))
1174		pdata->noise_shape_dc_cut = 1;
1175
1176	if (of_get_property(np, "st,powerdown-master-volume", NULL))
1177		pdata->powerdown_master_vol = 1;
1178
1179	if (!of_property_read_u8(np, "st,powerdown-delay-divider", &tmp8)) {
1180		if (is_power_of_2(tmp8) && tmp8 >= 1 && tmp8 <= 128)
1181			pdata->powerdown_delay_divider = ilog2(tmp8);
1182		else
1183			dev_warn(dev, "Unsupported powerdown delay divider %d\n",
1184				 tmp8);
1185	}
1186
1187	sta350->pdata = pdata;
1188
1189	return 0;
1190}
1191#endif
1192
1193static int sta350_i2c_probe(struct i2c_client *i2c,
1194			    const struct i2c_device_id *id)
1195{
1196	struct device *dev = &i2c->dev;
1197	struct sta350_priv *sta350;
1198	int ret, i;
1199
1200	sta350 = devm_kzalloc(dev, sizeof(struct sta350_priv), GFP_KERNEL);
1201	if (!sta350)
1202		return -ENOMEM;
1203
1204	mutex_init(&sta350->coeff_lock);
1205	sta350->pdata = dev_get_platdata(dev);
1206
1207#ifdef CONFIG_OF
1208	if (dev->of_node) {
1209		ret = sta350_probe_dt(dev, sta350);
1210		if (ret < 0)
1211			return ret;
1212	}
1213#endif
1214
1215	/* GPIOs */
1216	sta350->gpiod_nreset = devm_gpiod_get_optional(dev, "reset",
1217						       GPIOD_OUT_LOW);
1218	if (IS_ERR(sta350->gpiod_nreset))
1219		return PTR_ERR(sta350->gpiod_nreset);
1220
1221	sta350->gpiod_power_down = devm_gpiod_get(dev, "power-down",
1222						  GPIOD_OUT_LOW);
1223	if (IS_ERR(sta350->gpiod_power_down))
1224		return PTR_ERR(sta350->gpiod_power_down);
1225
1226	/* regulators */
1227	for (i = 0; i < ARRAY_SIZE(sta350->supplies); i++)
1228		sta350->supplies[i].supply = sta350_supply_names[i];
1229
1230	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(sta350->supplies),
1231				      sta350->supplies);
1232	if (ret < 0) {
1233		dev_err(dev, "Failed to request supplies: %d\n", ret);
1234		return ret;
1235	}
1236
1237	sta350->regmap = devm_regmap_init_i2c(i2c, &sta350_regmap);
1238	if (IS_ERR(sta350->regmap)) {
1239		ret = PTR_ERR(sta350->regmap);
1240		dev_err(dev, "Failed to init regmap: %d\n", ret);
1241		return ret;
1242	}
1243
1244	i2c_set_clientdata(i2c, sta350);
1245
1246	ret = snd_soc_register_codec(dev, &sta350_codec, &sta350_dai, 1);
1247	if (ret < 0)
1248		dev_err(dev, "Failed to register codec (%d)\n", ret);
1249
1250	return ret;
1251}
1252
1253static int sta350_i2c_remove(struct i2c_client *client)
1254{
1255	snd_soc_unregister_codec(&client->dev);
1256	return 0;
1257}
1258
1259static const struct i2c_device_id sta350_i2c_id[] = {
1260	{ "sta350", 0 },
1261	{ }
1262};
1263MODULE_DEVICE_TABLE(i2c, sta350_i2c_id);
1264
1265static struct i2c_driver sta350_i2c_driver = {
1266	.driver = {
1267		.name = "sta350",
1268		.owner = THIS_MODULE,
1269		.of_match_table = of_match_ptr(st350_dt_ids),
1270	},
1271	.probe =    sta350_i2c_probe,
1272	.remove =   sta350_i2c_remove,
1273	.id_table = sta350_i2c_id,
1274};
1275
1276module_i2c_driver(sta350_i2c_driver);
1277
1278MODULE_DESCRIPTION("ASoC STA350 driver");
1279MODULE_AUTHOR("Sven Brandau <info@brandau.biz>");
1280MODULE_LICENSE("GPL");
1281