1/* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Eric Paris <eparis@redhat.com> 14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 15 * <dgoeddel@trustedcs.com> 16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 17 * Paul Moore <paul@paul-moore.com> 18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 19 * Yuichi Nakamura <ynakam@hitachisoft.jp> 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the GNU General Public License version 2, 23 * as published by the Free Software Foundation. 24 */ 25 26#include <linux/init.h> 27#include <linux/kd.h> 28#include <linux/kernel.h> 29#include <linux/tracehook.h> 30#include <linux/errno.h> 31#include <linux/sched.h> 32#include <linux/security.h> 33#include <linux/xattr.h> 34#include <linux/capability.h> 35#include <linux/unistd.h> 36#include <linux/mm.h> 37#include <linux/mman.h> 38#include <linux/slab.h> 39#include <linux/pagemap.h> 40#include <linux/proc_fs.h> 41#include <linux/swap.h> 42#include <linux/spinlock.h> 43#include <linux/syscalls.h> 44#include <linux/dcache.h> 45#include <linux/file.h> 46#include <linux/fdtable.h> 47#include <linux/namei.h> 48#include <linux/mount.h> 49#include <linux/netfilter_ipv4.h> 50#include <linux/netfilter_ipv6.h> 51#include <linux/tty.h> 52#include <net/icmp.h> 53#include <net/ip.h> /* for local_port_range[] */ 54#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 55#include <net/inet_connection_sock.h> 56#include <net/net_namespace.h> 57#include <net/netlabel.h> 58#include <linux/uaccess.h> 59#include <asm/ioctls.h> 60#include <linux/atomic.h> 61#include <linux/bitops.h> 62#include <linux/interrupt.h> 63#include <linux/netdevice.h> /* for network interface checks */ 64#include <net/netlink.h> 65#include <linux/tcp.h> 66#include <linux/udp.h> 67#include <linux/dccp.h> 68#include <linux/quota.h> 69#include <linux/un.h> /* for Unix socket types */ 70#include <net/af_unix.h> /* for Unix socket types */ 71#include <linux/parser.h> 72#include <linux/nfs_mount.h> 73#include <net/ipv6.h> 74#include <linux/hugetlb.h> 75#include <linux/personality.h> 76#include <linux/audit.h> 77#include <linux/string.h> 78#include <linux/selinux.h> 79#include <linux/mutex.h> 80#include <linux/posix-timers.h> 81#include <linux/syslog.h> 82#include <linux/user_namespace.h> 83#include <linux/export.h> 84#include <linux/msg.h> 85#include <linux/shm.h> 86 87#include "avc.h" 88#include "objsec.h" 89#include "netif.h" 90#include "netnode.h" 91#include "netport.h" 92#include "xfrm.h" 93#include "netlabel.h" 94#include "audit.h" 95#include "avc_ss.h" 96 97/* SECMARK reference count */ 98static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 99 100#ifdef CONFIG_SECURITY_SELINUX_DEVELOP 101int selinux_enforcing; 102 103static int __init enforcing_setup(char *str) 104{ 105 unsigned long enforcing; 106 if (!kstrtoul(str, 0, &enforcing)) 107 selinux_enforcing = enforcing ? 1 : 0; 108 return 1; 109} 110__setup("enforcing=", enforcing_setup); 111#endif 112 113#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 114int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 115 116static int __init selinux_enabled_setup(char *str) 117{ 118 unsigned long enabled; 119 if (!kstrtoul(str, 0, &enabled)) 120 selinux_enabled = enabled ? 1 : 0; 121 return 1; 122} 123__setup("selinux=", selinux_enabled_setup); 124#else 125int selinux_enabled = 1; 126#endif 127 128static struct kmem_cache *sel_inode_cache; 129 130/** 131 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 132 * 133 * Description: 134 * This function checks the SECMARK reference counter to see if any SECMARK 135 * targets are currently configured, if the reference counter is greater than 136 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 137 * enabled, false (0) if SECMARK is disabled. If the always_check_network 138 * policy capability is enabled, SECMARK is always considered enabled. 139 * 140 */ 141static int selinux_secmark_enabled(void) 142{ 143 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount)); 144} 145 146/** 147 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled 148 * 149 * Description: 150 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true 151 * (1) if any are enabled or false (0) if neither are enabled. If the 152 * always_check_network policy capability is enabled, peer labeling 153 * is always considered enabled. 154 * 155 */ 156static int selinux_peerlbl_enabled(void) 157{ 158 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled()); 159} 160 161static int selinux_netcache_avc_callback(u32 event) 162{ 163 if (event == AVC_CALLBACK_RESET) { 164 sel_netif_flush(); 165 sel_netnode_flush(); 166 sel_netport_flush(); 167 synchronize_net(); 168 } 169 return 0; 170} 171 172/* 173 * initialise the security for the init task 174 */ 175static void cred_init_security(void) 176{ 177 struct cred *cred = (struct cred *) current->real_cred; 178 struct task_security_struct *tsec; 179 180 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 181 if (!tsec) 182 panic("SELinux: Failed to initialize initial task.\n"); 183 184 tsec->osid = tsec->sid = SECINITSID_KERNEL; 185 cred->security = tsec; 186} 187 188/* 189 * get the security ID of a set of credentials 190 */ 191static inline u32 cred_sid(const struct cred *cred) 192{ 193 const struct task_security_struct *tsec; 194 195 tsec = cred->security; 196 return tsec->sid; 197} 198 199/* 200 * get the objective security ID of a task 201 */ 202static inline u32 task_sid(const struct task_struct *task) 203{ 204 u32 sid; 205 206 rcu_read_lock(); 207 sid = cred_sid(__task_cred(task)); 208 rcu_read_unlock(); 209 return sid; 210} 211 212/* 213 * get the subjective security ID of the current task 214 */ 215static inline u32 current_sid(void) 216{ 217 const struct task_security_struct *tsec = current_security(); 218 219 return tsec->sid; 220} 221 222/* Allocate and free functions for each kind of security blob. */ 223 224static int inode_alloc_security(struct inode *inode) 225{ 226 struct inode_security_struct *isec; 227 u32 sid = current_sid(); 228 229 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 230 if (!isec) 231 return -ENOMEM; 232 233 mutex_init(&isec->lock); 234 INIT_LIST_HEAD(&isec->list); 235 isec->inode = inode; 236 isec->sid = SECINITSID_UNLABELED; 237 isec->sclass = SECCLASS_FILE; 238 isec->task_sid = sid; 239 inode->i_security = isec; 240 241 return 0; 242} 243 244static void inode_free_rcu(struct rcu_head *head) 245{ 246 struct inode_security_struct *isec; 247 248 isec = container_of(head, struct inode_security_struct, rcu); 249 kmem_cache_free(sel_inode_cache, isec); 250} 251 252static void inode_free_security(struct inode *inode) 253{ 254 struct inode_security_struct *isec = inode->i_security; 255 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 256 257 spin_lock(&sbsec->isec_lock); 258 if (!list_empty(&isec->list)) 259 list_del_init(&isec->list); 260 spin_unlock(&sbsec->isec_lock); 261 262 /* 263 * The inode may still be referenced in a path walk and 264 * a call to selinux_inode_permission() can be made 265 * after inode_free_security() is called. Ideally, the VFS 266 * wouldn't do this, but fixing that is a much harder 267 * job. For now, simply free the i_security via RCU, and 268 * leave the current inode->i_security pointer intact. 269 * The inode will be freed after the RCU grace period too. 270 */ 271 call_rcu(&isec->rcu, inode_free_rcu); 272} 273 274static int file_alloc_security(struct file *file) 275{ 276 struct file_security_struct *fsec; 277 u32 sid = current_sid(); 278 279 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 280 if (!fsec) 281 return -ENOMEM; 282 283 fsec->sid = sid; 284 fsec->fown_sid = sid; 285 file->f_security = fsec; 286 287 return 0; 288} 289 290static void file_free_security(struct file *file) 291{ 292 struct file_security_struct *fsec = file->f_security; 293 file->f_security = NULL; 294 kfree(fsec); 295} 296 297static int superblock_alloc_security(struct super_block *sb) 298{ 299 struct superblock_security_struct *sbsec; 300 301 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 302 if (!sbsec) 303 return -ENOMEM; 304 305 mutex_init(&sbsec->lock); 306 INIT_LIST_HEAD(&sbsec->isec_head); 307 spin_lock_init(&sbsec->isec_lock); 308 sbsec->sb = sb; 309 sbsec->sid = SECINITSID_UNLABELED; 310 sbsec->def_sid = SECINITSID_FILE; 311 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 312 sb->s_security = sbsec; 313 314 return 0; 315} 316 317static void superblock_free_security(struct super_block *sb) 318{ 319 struct superblock_security_struct *sbsec = sb->s_security; 320 sb->s_security = NULL; 321 kfree(sbsec); 322} 323 324/* The file system's label must be initialized prior to use. */ 325 326static const char *labeling_behaviors[7] = { 327 "uses xattr", 328 "uses transition SIDs", 329 "uses task SIDs", 330 "uses genfs_contexts", 331 "not configured for labeling", 332 "uses mountpoint labeling", 333 "uses native labeling", 334}; 335 336static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 337 338static inline int inode_doinit(struct inode *inode) 339{ 340 return inode_doinit_with_dentry(inode, NULL); 341} 342 343enum { 344 Opt_error = -1, 345 Opt_context = 1, 346 Opt_fscontext = 2, 347 Opt_defcontext = 3, 348 Opt_rootcontext = 4, 349 Opt_labelsupport = 5, 350 Opt_nextmntopt = 6, 351}; 352 353#define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1) 354 355static const match_table_t tokens = { 356 {Opt_context, CONTEXT_STR "%s"}, 357 {Opt_fscontext, FSCONTEXT_STR "%s"}, 358 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 359 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 360 {Opt_labelsupport, LABELSUPP_STR}, 361 {Opt_error, NULL}, 362}; 363 364#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 365 366static int may_context_mount_sb_relabel(u32 sid, 367 struct superblock_security_struct *sbsec, 368 const struct cred *cred) 369{ 370 const struct task_security_struct *tsec = cred->security; 371 int rc; 372 373 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 374 FILESYSTEM__RELABELFROM, NULL); 375 if (rc) 376 return rc; 377 378 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 379 FILESYSTEM__RELABELTO, NULL); 380 return rc; 381} 382 383static int may_context_mount_inode_relabel(u32 sid, 384 struct superblock_security_struct *sbsec, 385 const struct cred *cred) 386{ 387 const struct task_security_struct *tsec = cred->security; 388 int rc; 389 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 390 FILESYSTEM__RELABELFROM, NULL); 391 if (rc) 392 return rc; 393 394 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 395 FILESYSTEM__ASSOCIATE, NULL); 396 return rc; 397} 398 399static int selinux_is_sblabel_mnt(struct super_block *sb) 400{ 401 struct superblock_security_struct *sbsec = sb->s_security; 402 403 return sbsec->behavior == SECURITY_FS_USE_XATTR || 404 sbsec->behavior == SECURITY_FS_USE_TRANS || 405 sbsec->behavior == SECURITY_FS_USE_TASK || 406 sbsec->behavior == SECURITY_FS_USE_NATIVE || 407 /* Special handling. Genfs but also in-core setxattr handler */ 408 !strcmp(sb->s_type->name, "sysfs") || 409 !strcmp(sb->s_type->name, "pstore") || 410 !strcmp(sb->s_type->name, "debugfs") || 411 !strcmp(sb->s_type->name, "rootfs"); 412} 413 414static int sb_finish_set_opts(struct super_block *sb) 415{ 416 struct superblock_security_struct *sbsec = sb->s_security; 417 struct dentry *root = sb->s_root; 418 struct inode *root_inode = d_backing_inode(root); 419 int rc = 0; 420 421 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 422 /* Make sure that the xattr handler exists and that no 423 error other than -ENODATA is returned by getxattr on 424 the root directory. -ENODATA is ok, as this may be 425 the first boot of the SELinux kernel before we have 426 assigned xattr values to the filesystem. */ 427 if (!root_inode->i_op->getxattr) { 428 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 429 "xattr support\n", sb->s_id, sb->s_type->name); 430 rc = -EOPNOTSUPP; 431 goto out; 432 } 433 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 434 if (rc < 0 && rc != -ENODATA) { 435 if (rc == -EOPNOTSUPP) 436 printk(KERN_WARNING "SELinux: (dev %s, type " 437 "%s) has no security xattr handler\n", 438 sb->s_id, sb->s_type->name); 439 else 440 printk(KERN_WARNING "SELinux: (dev %s, type " 441 "%s) getxattr errno %d\n", sb->s_id, 442 sb->s_type->name, -rc); 443 goto out; 444 } 445 } 446 447 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 448 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 449 sb->s_id, sb->s_type->name); 450 451 sbsec->flags |= SE_SBINITIALIZED; 452 if (selinux_is_sblabel_mnt(sb)) 453 sbsec->flags |= SBLABEL_MNT; 454 455 /* Initialize the root inode. */ 456 rc = inode_doinit_with_dentry(root_inode, root); 457 458 /* Initialize any other inodes associated with the superblock, e.g. 459 inodes created prior to initial policy load or inodes created 460 during get_sb by a pseudo filesystem that directly 461 populates itself. */ 462 spin_lock(&sbsec->isec_lock); 463next_inode: 464 if (!list_empty(&sbsec->isec_head)) { 465 struct inode_security_struct *isec = 466 list_entry(sbsec->isec_head.next, 467 struct inode_security_struct, list); 468 struct inode *inode = isec->inode; 469 list_del_init(&isec->list); 470 spin_unlock(&sbsec->isec_lock); 471 inode = igrab(inode); 472 if (inode) { 473 if (!IS_PRIVATE(inode)) 474 inode_doinit(inode); 475 iput(inode); 476 } 477 spin_lock(&sbsec->isec_lock); 478 goto next_inode; 479 } 480 spin_unlock(&sbsec->isec_lock); 481out: 482 return rc; 483} 484 485/* 486 * This function should allow an FS to ask what it's mount security 487 * options were so it can use those later for submounts, displaying 488 * mount options, or whatever. 489 */ 490static int selinux_get_mnt_opts(const struct super_block *sb, 491 struct security_mnt_opts *opts) 492{ 493 int rc = 0, i; 494 struct superblock_security_struct *sbsec = sb->s_security; 495 char *context = NULL; 496 u32 len; 497 char tmp; 498 499 security_init_mnt_opts(opts); 500 501 if (!(sbsec->flags & SE_SBINITIALIZED)) 502 return -EINVAL; 503 504 if (!ss_initialized) 505 return -EINVAL; 506 507 /* make sure we always check enough bits to cover the mask */ 508 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS)); 509 510 tmp = sbsec->flags & SE_MNTMASK; 511 /* count the number of mount options for this sb */ 512 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) { 513 if (tmp & 0x01) 514 opts->num_mnt_opts++; 515 tmp >>= 1; 516 } 517 /* Check if the Label support flag is set */ 518 if (sbsec->flags & SBLABEL_MNT) 519 opts->num_mnt_opts++; 520 521 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 522 if (!opts->mnt_opts) { 523 rc = -ENOMEM; 524 goto out_free; 525 } 526 527 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 528 if (!opts->mnt_opts_flags) { 529 rc = -ENOMEM; 530 goto out_free; 531 } 532 533 i = 0; 534 if (sbsec->flags & FSCONTEXT_MNT) { 535 rc = security_sid_to_context(sbsec->sid, &context, &len); 536 if (rc) 537 goto out_free; 538 opts->mnt_opts[i] = context; 539 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 540 } 541 if (sbsec->flags & CONTEXT_MNT) { 542 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 543 if (rc) 544 goto out_free; 545 opts->mnt_opts[i] = context; 546 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 547 } 548 if (sbsec->flags & DEFCONTEXT_MNT) { 549 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 550 if (rc) 551 goto out_free; 552 opts->mnt_opts[i] = context; 553 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 554 } 555 if (sbsec->flags & ROOTCONTEXT_MNT) { 556 struct inode *root = d_backing_inode(sbsec->sb->s_root); 557 struct inode_security_struct *isec = root->i_security; 558 559 rc = security_sid_to_context(isec->sid, &context, &len); 560 if (rc) 561 goto out_free; 562 opts->mnt_opts[i] = context; 563 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 564 } 565 if (sbsec->flags & SBLABEL_MNT) { 566 opts->mnt_opts[i] = NULL; 567 opts->mnt_opts_flags[i++] = SBLABEL_MNT; 568 } 569 570 BUG_ON(i != opts->num_mnt_opts); 571 572 return 0; 573 574out_free: 575 security_free_mnt_opts(opts); 576 return rc; 577} 578 579static int bad_option(struct superblock_security_struct *sbsec, char flag, 580 u32 old_sid, u32 new_sid) 581{ 582 char mnt_flags = sbsec->flags & SE_MNTMASK; 583 584 /* check if the old mount command had the same options */ 585 if (sbsec->flags & SE_SBINITIALIZED) 586 if (!(sbsec->flags & flag) || 587 (old_sid != new_sid)) 588 return 1; 589 590 /* check if we were passed the same options twice, 591 * aka someone passed context=a,context=b 592 */ 593 if (!(sbsec->flags & SE_SBINITIALIZED)) 594 if (mnt_flags & flag) 595 return 1; 596 return 0; 597} 598 599/* 600 * Allow filesystems with binary mount data to explicitly set mount point 601 * labeling information. 602 */ 603static int selinux_set_mnt_opts(struct super_block *sb, 604 struct security_mnt_opts *opts, 605 unsigned long kern_flags, 606 unsigned long *set_kern_flags) 607{ 608 const struct cred *cred = current_cred(); 609 int rc = 0, i; 610 struct superblock_security_struct *sbsec = sb->s_security; 611 const char *name = sb->s_type->name; 612 struct inode *inode = d_backing_inode(sbsec->sb->s_root); 613 struct inode_security_struct *root_isec = inode->i_security; 614 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 615 u32 defcontext_sid = 0; 616 char **mount_options = opts->mnt_opts; 617 int *flags = opts->mnt_opts_flags; 618 int num_opts = opts->num_mnt_opts; 619 620 mutex_lock(&sbsec->lock); 621 622 if (!ss_initialized) { 623 if (!num_opts) { 624 /* Defer initialization until selinux_complete_init, 625 after the initial policy is loaded and the security 626 server is ready to handle calls. */ 627 goto out; 628 } 629 rc = -EINVAL; 630 printk(KERN_WARNING "SELinux: Unable to set superblock options " 631 "before the security server is initialized\n"); 632 goto out; 633 } 634 if (kern_flags && !set_kern_flags) { 635 /* Specifying internal flags without providing a place to 636 * place the results is not allowed */ 637 rc = -EINVAL; 638 goto out; 639 } 640 641 /* 642 * Binary mount data FS will come through this function twice. Once 643 * from an explicit call and once from the generic calls from the vfs. 644 * Since the generic VFS calls will not contain any security mount data 645 * we need to skip the double mount verification. 646 * 647 * This does open a hole in which we will not notice if the first 648 * mount using this sb set explict options and a second mount using 649 * this sb does not set any security options. (The first options 650 * will be used for both mounts) 651 */ 652 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 653 && (num_opts == 0)) 654 goto out; 655 656 /* 657 * parse the mount options, check if they are valid sids. 658 * also check if someone is trying to mount the same sb more 659 * than once with different security options. 660 */ 661 for (i = 0; i < num_opts; i++) { 662 u32 sid; 663 664 if (flags[i] == SBLABEL_MNT) 665 continue; 666 rc = security_context_to_sid(mount_options[i], 667 strlen(mount_options[i]), &sid, GFP_KERNEL); 668 if (rc) { 669 printk(KERN_WARNING "SELinux: security_context_to_sid" 670 "(%s) failed for (dev %s, type %s) errno=%d\n", 671 mount_options[i], sb->s_id, name, rc); 672 goto out; 673 } 674 switch (flags[i]) { 675 case FSCONTEXT_MNT: 676 fscontext_sid = sid; 677 678 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 679 fscontext_sid)) 680 goto out_double_mount; 681 682 sbsec->flags |= FSCONTEXT_MNT; 683 break; 684 case CONTEXT_MNT: 685 context_sid = sid; 686 687 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 688 context_sid)) 689 goto out_double_mount; 690 691 sbsec->flags |= CONTEXT_MNT; 692 break; 693 case ROOTCONTEXT_MNT: 694 rootcontext_sid = sid; 695 696 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 697 rootcontext_sid)) 698 goto out_double_mount; 699 700 sbsec->flags |= ROOTCONTEXT_MNT; 701 702 break; 703 case DEFCONTEXT_MNT: 704 defcontext_sid = sid; 705 706 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 707 defcontext_sid)) 708 goto out_double_mount; 709 710 sbsec->flags |= DEFCONTEXT_MNT; 711 712 break; 713 default: 714 rc = -EINVAL; 715 goto out; 716 } 717 } 718 719 if (sbsec->flags & SE_SBINITIALIZED) { 720 /* previously mounted with options, but not on this attempt? */ 721 if ((sbsec->flags & SE_MNTMASK) && !num_opts) 722 goto out_double_mount; 723 rc = 0; 724 goto out; 725 } 726 727 if (strcmp(sb->s_type->name, "proc") == 0) 728 sbsec->flags |= SE_SBPROC; 729 730 if (!sbsec->behavior) { 731 /* 732 * Determine the labeling behavior to use for this 733 * filesystem type. 734 */ 735 rc = security_fs_use(sb); 736 if (rc) { 737 printk(KERN_WARNING 738 "%s: security_fs_use(%s) returned %d\n", 739 __func__, sb->s_type->name, rc); 740 goto out; 741 } 742 } 743 /* sets the context of the superblock for the fs being mounted. */ 744 if (fscontext_sid) { 745 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 746 if (rc) 747 goto out; 748 749 sbsec->sid = fscontext_sid; 750 } 751 752 /* 753 * Switch to using mount point labeling behavior. 754 * sets the label used on all file below the mountpoint, and will set 755 * the superblock context if not already set. 756 */ 757 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { 758 sbsec->behavior = SECURITY_FS_USE_NATIVE; 759 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 760 } 761 762 if (context_sid) { 763 if (!fscontext_sid) { 764 rc = may_context_mount_sb_relabel(context_sid, sbsec, 765 cred); 766 if (rc) 767 goto out; 768 sbsec->sid = context_sid; 769 } else { 770 rc = may_context_mount_inode_relabel(context_sid, sbsec, 771 cred); 772 if (rc) 773 goto out; 774 } 775 if (!rootcontext_sid) 776 rootcontext_sid = context_sid; 777 778 sbsec->mntpoint_sid = context_sid; 779 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 780 } 781 782 if (rootcontext_sid) { 783 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 784 cred); 785 if (rc) 786 goto out; 787 788 root_isec->sid = rootcontext_sid; 789 root_isec->initialized = 1; 790 } 791 792 if (defcontext_sid) { 793 if (sbsec->behavior != SECURITY_FS_USE_XATTR && 794 sbsec->behavior != SECURITY_FS_USE_NATIVE) { 795 rc = -EINVAL; 796 printk(KERN_WARNING "SELinux: defcontext option is " 797 "invalid for this filesystem type\n"); 798 goto out; 799 } 800 801 if (defcontext_sid != sbsec->def_sid) { 802 rc = may_context_mount_inode_relabel(defcontext_sid, 803 sbsec, cred); 804 if (rc) 805 goto out; 806 } 807 808 sbsec->def_sid = defcontext_sid; 809 } 810 811 rc = sb_finish_set_opts(sb); 812out: 813 mutex_unlock(&sbsec->lock); 814 return rc; 815out_double_mount: 816 rc = -EINVAL; 817 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 818 "security settings for (dev %s, type %s)\n", sb->s_id, name); 819 goto out; 820} 821 822static int selinux_cmp_sb_context(const struct super_block *oldsb, 823 const struct super_block *newsb) 824{ 825 struct superblock_security_struct *old = oldsb->s_security; 826 struct superblock_security_struct *new = newsb->s_security; 827 char oldflags = old->flags & SE_MNTMASK; 828 char newflags = new->flags & SE_MNTMASK; 829 830 if (oldflags != newflags) 831 goto mismatch; 832 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) 833 goto mismatch; 834 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) 835 goto mismatch; 836 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) 837 goto mismatch; 838 if (oldflags & ROOTCONTEXT_MNT) { 839 struct inode_security_struct *oldroot = d_backing_inode(oldsb->s_root)->i_security; 840 struct inode_security_struct *newroot = d_backing_inode(newsb->s_root)->i_security; 841 if (oldroot->sid != newroot->sid) 842 goto mismatch; 843 } 844 return 0; 845mismatch: 846 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, " 847 "different security settings for (dev %s, " 848 "type %s)\n", newsb->s_id, newsb->s_type->name); 849 return -EBUSY; 850} 851 852static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 853 struct super_block *newsb) 854{ 855 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 856 struct superblock_security_struct *newsbsec = newsb->s_security; 857 858 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 859 int set_context = (oldsbsec->flags & CONTEXT_MNT); 860 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 861 862 /* 863 * if the parent was able to be mounted it clearly had no special lsm 864 * mount options. thus we can safely deal with this superblock later 865 */ 866 if (!ss_initialized) 867 return 0; 868 869 /* how can we clone if the old one wasn't set up?? */ 870 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 871 872 /* if fs is reusing a sb, make sure that the contexts match */ 873 if (newsbsec->flags & SE_SBINITIALIZED) 874 return selinux_cmp_sb_context(oldsb, newsb); 875 876 mutex_lock(&newsbsec->lock); 877 878 newsbsec->flags = oldsbsec->flags; 879 880 newsbsec->sid = oldsbsec->sid; 881 newsbsec->def_sid = oldsbsec->def_sid; 882 newsbsec->behavior = oldsbsec->behavior; 883 884 if (set_context) { 885 u32 sid = oldsbsec->mntpoint_sid; 886 887 if (!set_fscontext) 888 newsbsec->sid = sid; 889 if (!set_rootcontext) { 890 struct inode *newinode = d_backing_inode(newsb->s_root); 891 struct inode_security_struct *newisec = newinode->i_security; 892 newisec->sid = sid; 893 } 894 newsbsec->mntpoint_sid = sid; 895 } 896 if (set_rootcontext) { 897 const struct inode *oldinode = d_backing_inode(oldsb->s_root); 898 const struct inode_security_struct *oldisec = oldinode->i_security; 899 struct inode *newinode = d_backing_inode(newsb->s_root); 900 struct inode_security_struct *newisec = newinode->i_security; 901 902 newisec->sid = oldisec->sid; 903 } 904 905 sb_finish_set_opts(newsb); 906 mutex_unlock(&newsbsec->lock); 907 return 0; 908} 909 910static int selinux_parse_opts_str(char *options, 911 struct security_mnt_opts *opts) 912{ 913 char *p; 914 char *context = NULL, *defcontext = NULL; 915 char *fscontext = NULL, *rootcontext = NULL; 916 int rc, num_mnt_opts = 0; 917 918 opts->num_mnt_opts = 0; 919 920 /* Standard string-based options. */ 921 while ((p = strsep(&options, "|")) != NULL) { 922 int token; 923 substring_t args[MAX_OPT_ARGS]; 924 925 if (!*p) 926 continue; 927 928 token = match_token(p, tokens, args); 929 930 switch (token) { 931 case Opt_context: 932 if (context || defcontext) { 933 rc = -EINVAL; 934 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 935 goto out_err; 936 } 937 context = match_strdup(&args[0]); 938 if (!context) { 939 rc = -ENOMEM; 940 goto out_err; 941 } 942 break; 943 944 case Opt_fscontext: 945 if (fscontext) { 946 rc = -EINVAL; 947 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 948 goto out_err; 949 } 950 fscontext = match_strdup(&args[0]); 951 if (!fscontext) { 952 rc = -ENOMEM; 953 goto out_err; 954 } 955 break; 956 957 case Opt_rootcontext: 958 if (rootcontext) { 959 rc = -EINVAL; 960 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 961 goto out_err; 962 } 963 rootcontext = match_strdup(&args[0]); 964 if (!rootcontext) { 965 rc = -ENOMEM; 966 goto out_err; 967 } 968 break; 969 970 case Opt_defcontext: 971 if (context || defcontext) { 972 rc = -EINVAL; 973 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 974 goto out_err; 975 } 976 defcontext = match_strdup(&args[0]); 977 if (!defcontext) { 978 rc = -ENOMEM; 979 goto out_err; 980 } 981 break; 982 case Opt_labelsupport: 983 break; 984 default: 985 rc = -EINVAL; 986 printk(KERN_WARNING "SELinux: unknown mount option\n"); 987 goto out_err; 988 989 } 990 } 991 992 rc = -ENOMEM; 993 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC); 994 if (!opts->mnt_opts) 995 goto out_err; 996 997 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC); 998 if (!opts->mnt_opts_flags) { 999 kfree(opts->mnt_opts); 1000 goto out_err; 1001 } 1002 1003 if (fscontext) { 1004 opts->mnt_opts[num_mnt_opts] = fscontext; 1005 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 1006 } 1007 if (context) { 1008 opts->mnt_opts[num_mnt_opts] = context; 1009 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 1010 } 1011 if (rootcontext) { 1012 opts->mnt_opts[num_mnt_opts] = rootcontext; 1013 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 1014 } 1015 if (defcontext) { 1016 opts->mnt_opts[num_mnt_opts] = defcontext; 1017 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 1018 } 1019 1020 opts->num_mnt_opts = num_mnt_opts; 1021 return 0; 1022 1023out_err: 1024 kfree(context); 1025 kfree(defcontext); 1026 kfree(fscontext); 1027 kfree(rootcontext); 1028 return rc; 1029} 1030/* 1031 * string mount options parsing and call set the sbsec 1032 */ 1033static int superblock_doinit(struct super_block *sb, void *data) 1034{ 1035 int rc = 0; 1036 char *options = data; 1037 struct security_mnt_opts opts; 1038 1039 security_init_mnt_opts(&opts); 1040 1041 if (!data) 1042 goto out; 1043 1044 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 1045 1046 rc = selinux_parse_opts_str(options, &opts); 1047 if (rc) 1048 goto out_err; 1049 1050out: 1051 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL); 1052 1053out_err: 1054 security_free_mnt_opts(&opts); 1055 return rc; 1056} 1057 1058static void selinux_write_opts(struct seq_file *m, 1059 struct security_mnt_opts *opts) 1060{ 1061 int i; 1062 char *prefix; 1063 1064 for (i = 0; i < opts->num_mnt_opts; i++) { 1065 char *has_comma; 1066 1067 if (opts->mnt_opts[i]) 1068 has_comma = strchr(opts->mnt_opts[i], ','); 1069 else 1070 has_comma = NULL; 1071 1072 switch (opts->mnt_opts_flags[i]) { 1073 case CONTEXT_MNT: 1074 prefix = CONTEXT_STR; 1075 break; 1076 case FSCONTEXT_MNT: 1077 prefix = FSCONTEXT_STR; 1078 break; 1079 case ROOTCONTEXT_MNT: 1080 prefix = ROOTCONTEXT_STR; 1081 break; 1082 case DEFCONTEXT_MNT: 1083 prefix = DEFCONTEXT_STR; 1084 break; 1085 case SBLABEL_MNT: 1086 seq_putc(m, ','); 1087 seq_puts(m, LABELSUPP_STR); 1088 continue; 1089 default: 1090 BUG(); 1091 return; 1092 }; 1093 /* we need a comma before each option */ 1094 seq_putc(m, ','); 1095 seq_puts(m, prefix); 1096 if (has_comma) 1097 seq_putc(m, '\"'); 1098 seq_escape(m, opts->mnt_opts[i], "\"\n\\"); 1099 if (has_comma) 1100 seq_putc(m, '\"'); 1101 } 1102} 1103 1104static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1105{ 1106 struct security_mnt_opts opts; 1107 int rc; 1108 1109 rc = selinux_get_mnt_opts(sb, &opts); 1110 if (rc) { 1111 /* before policy load we may get EINVAL, don't show anything */ 1112 if (rc == -EINVAL) 1113 rc = 0; 1114 return rc; 1115 } 1116 1117 selinux_write_opts(m, &opts); 1118 1119 security_free_mnt_opts(&opts); 1120 1121 return rc; 1122} 1123 1124static inline u16 inode_mode_to_security_class(umode_t mode) 1125{ 1126 switch (mode & S_IFMT) { 1127 case S_IFSOCK: 1128 return SECCLASS_SOCK_FILE; 1129 case S_IFLNK: 1130 return SECCLASS_LNK_FILE; 1131 case S_IFREG: 1132 return SECCLASS_FILE; 1133 case S_IFBLK: 1134 return SECCLASS_BLK_FILE; 1135 case S_IFDIR: 1136 return SECCLASS_DIR; 1137 case S_IFCHR: 1138 return SECCLASS_CHR_FILE; 1139 case S_IFIFO: 1140 return SECCLASS_FIFO_FILE; 1141 1142 } 1143 1144 return SECCLASS_FILE; 1145} 1146 1147static inline int default_protocol_stream(int protocol) 1148{ 1149 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1150} 1151 1152static inline int default_protocol_dgram(int protocol) 1153{ 1154 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1155} 1156 1157static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1158{ 1159 switch (family) { 1160 case PF_UNIX: 1161 switch (type) { 1162 case SOCK_STREAM: 1163 case SOCK_SEQPACKET: 1164 return SECCLASS_UNIX_STREAM_SOCKET; 1165 case SOCK_DGRAM: 1166 return SECCLASS_UNIX_DGRAM_SOCKET; 1167 } 1168 break; 1169 case PF_INET: 1170 case PF_INET6: 1171 switch (type) { 1172 case SOCK_STREAM: 1173 if (default_protocol_stream(protocol)) 1174 return SECCLASS_TCP_SOCKET; 1175 else 1176 return SECCLASS_RAWIP_SOCKET; 1177 case SOCK_DGRAM: 1178 if (default_protocol_dgram(protocol)) 1179 return SECCLASS_UDP_SOCKET; 1180 else 1181 return SECCLASS_RAWIP_SOCKET; 1182 case SOCK_DCCP: 1183 return SECCLASS_DCCP_SOCKET; 1184 default: 1185 return SECCLASS_RAWIP_SOCKET; 1186 } 1187 break; 1188 case PF_NETLINK: 1189 switch (protocol) { 1190 case NETLINK_ROUTE: 1191 return SECCLASS_NETLINK_ROUTE_SOCKET; 1192 case NETLINK_FIREWALL: 1193 return SECCLASS_NETLINK_FIREWALL_SOCKET; 1194 case NETLINK_SOCK_DIAG: 1195 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1196 case NETLINK_NFLOG: 1197 return SECCLASS_NETLINK_NFLOG_SOCKET; 1198 case NETLINK_XFRM: 1199 return SECCLASS_NETLINK_XFRM_SOCKET; 1200 case NETLINK_SELINUX: 1201 return SECCLASS_NETLINK_SELINUX_SOCKET; 1202 case NETLINK_AUDIT: 1203 return SECCLASS_NETLINK_AUDIT_SOCKET; 1204 case NETLINK_IP6_FW: 1205 return SECCLASS_NETLINK_IP6FW_SOCKET; 1206 case NETLINK_DNRTMSG: 1207 return SECCLASS_NETLINK_DNRT_SOCKET; 1208 case NETLINK_KOBJECT_UEVENT: 1209 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1210 default: 1211 return SECCLASS_NETLINK_SOCKET; 1212 } 1213 case PF_PACKET: 1214 return SECCLASS_PACKET_SOCKET; 1215 case PF_KEY: 1216 return SECCLASS_KEY_SOCKET; 1217 case PF_APPLETALK: 1218 return SECCLASS_APPLETALK_SOCKET; 1219 } 1220 1221 return SECCLASS_SOCKET; 1222} 1223 1224#ifdef CONFIG_PROC_FS 1225static int selinux_proc_get_sid(struct dentry *dentry, 1226 u16 tclass, 1227 u32 *sid) 1228{ 1229 int rc; 1230 char *buffer, *path; 1231 1232 buffer = (char *)__get_free_page(GFP_KERNEL); 1233 if (!buffer) 1234 return -ENOMEM; 1235 1236 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1237 if (IS_ERR(path)) 1238 rc = PTR_ERR(path); 1239 else { 1240 /* each process gets a /proc/PID/ entry. Strip off the 1241 * PID part to get a valid selinux labeling. 1242 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1243 while (path[1] >= '0' && path[1] <= '9') { 1244 path[1] = '/'; 1245 path++; 1246 } 1247 rc = security_genfs_sid("proc", path, tclass, sid); 1248 } 1249 free_page((unsigned long)buffer); 1250 return rc; 1251} 1252#else 1253static int selinux_proc_get_sid(struct dentry *dentry, 1254 u16 tclass, 1255 u32 *sid) 1256{ 1257 return -EINVAL; 1258} 1259#endif 1260 1261/* The inode's security attributes must be initialized before first use. */ 1262static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1263{ 1264 struct superblock_security_struct *sbsec = NULL; 1265 struct inode_security_struct *isec = inode->i_security; 1266 u32 sid; 1267 struct dentry *dentry; 1268#define INITCONTEXTLEN 255 1269 char *context = NULL; 1270 unsigned len = 0; 1271 int rc = 0; 1272 1273 if (isec->initialized) 1274 goto out; 1275 1276 mutex_lock(&isec->lock); 1277 if (isec->initialized) 1278 goto out_unlock; 1279 1280 sbsec = inode->i_sb->s_security; 1281 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1282 /* Defer initialization until selinux_complete_init, 1283 after the initial policy is loaded and the security 1284 server is ready to handle calls. */ 1285 spin_lock(&sbsec->isec_lock); 1286 if (list_empty(&isec->list)) 1287 list_add(&isec->list, &sbsec->isec_head); 1288 spin_unlock(&sbsec->isec_lock); 1289 goto out_unlock; 1290 } 1291 1292 switch (sbsec->behavior) { 1293 case SECURITY_FS_USE_NATIVE: 1294 break; 1295 case SECURITY_FS_USE_XATTR: 1296 if (!inode->i_op->getxattr) { 1297 isec->sid = sbsec->def_sid; 1298 break; 1299 } 1300 1301 /* Need a dentry, since the xattr API requires one. 1302 Life would be simpler if we could just pass the inode. */ 1303 if (opt_dentry) { 1304 /* Called from d_instantiate or d_splice_alias. */ 1305 dentry = dget(opt_dentry); 1306 } else { 1307 /* Called from selinux_complete_init, try to find a dentry. */ 1308 dentry = d_find_alias(inode); 1309 } 1310 if (!dentry) { 1311 /* 1312 * this is can be hit on boot when a file is accessed 1313 * before the policy is loaded. When we load policy we 1314 * may find inodes that have no dentry on the 1315 * sbsec->isec_head list. No reason to complain as these 1316 * will get fixed up the next time we go through 1317 * inode_doinit with a dentry, before these inodes could 1318 * be used again by userspace. 1319 */ 1320 goto out_unlock; 1321 } 1322 1323 len = INITCONTEXTLEN; 1324 context = kmalloc(len+1, GFP_NOFS); 1325 if (!context) { 1326 rc = -ENOMEM; 1327 dput(dentry); 1328 goto out_unlock; 1329 } 1330 context[len] = '\0'; 1331 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1332 context, len); 1333 if (rc == -ERANGE) { 1334 kfree(context); 1335 1336 /* Need a larger buffer. Query for the right size. */ 1337 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1338 NULL, 0); 1339 if (rc < 0) { 1340 dput(dentry); 1341 goto out_unlock; 1342 } 1343 len = rc; 1344 context = kmalloc(len+1, GFP_NOFS); 1345 if (!context) { 1346 rc = -ENOMEM; 1347 dput(dentry); 1348 goto out_unlock; 1349 } 1350 context[len] = '\0'; 1351 rc = inode->i_op->getxattr(dentry, 1352 XATTR_NAME_SELINUX, 1353 context, len); 1354 } 1355 dput(dentry); 1356 if (rc < 0) { 1357 if (rc != -ENODATA) { 1358 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1359 "%d for dev=%s ino=%ld\n", __func__, 1360 -rc, inode->i_sb->s_id, inode->i_ino); 1361 kfree(context); 1362 goto out_unlock; 1363 } 1364 /* Map ENODATA to the default file SID */ 1365 sid = sbsec->def_sid; 1366 rc = 0; 1367 } else { 1368 rc = security_context_to_sid_default(context, rc, &sid, 1369 sbsec->def_sid, 1370 GFP_NOFS); 1371 if (rc) { 1372 char *dev = inode->i_sb->s_id; 1373 unsigned long ino = inode->i_ino; 1374 1375 if (rc == -EINVAL) { 1376 if (printk_ratelimit()) 1377 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid " 1378 "context=%s. This indicates you may need to relabel the inode or the " 1379 "filesystem in question.\n", ino, dev, context); 1380 } else { 1381 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1382 "returned %d for dev=%s ino=%ld\n", 1383 __func__, context, -rc, dev, ino); 1384 } 1385 kfree(context); 1386 /* Leave with the unlabeled SID */ 1387 rc = 0; 1388 break; 1389 } 1390 } 1391 kfree(context); 1392 isec->sid = sid; 1393 break; 1394 case SECURITY_FS_USE_TASK: 1395 isec->sid = isec->task_sid; 1396 break; 1397 case SECURITY_FS_USE_TRANS: 1398 /* Default to the fs SID. */ 1399 isec->sid = sbsec->sid; 1400 1401 /* Try to obtain a transition SID. */ 1402 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1403 rc = security_transition_sid(isec->task_sid, sbsec->sid, 1404 isec->sclass, NULL, &sid); 1405 if (rc) 1406 goto out_unlock; 1407 isec->sid = sid; 1408 break; 1409 case SECURITY_FS_USE_MNTPOINT: 1410 isec->sid = sbsec->mntpoint_sid; 1411 break; 1412 default: 1413 /* Default to the fs superblock SID. */ 1414 isec->sid = sbsec->sid; 1415 1416 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) { 1417 /* We must have a dentry to determine the label on 1418 * procfs inodes */ 1419 if (opt_dentry) 1420 /* Called from d_instantiate or 1421 * d_splice_alias. */ 1422 dentry = dget(opt_dentry); 1423 else 1424 /* Called from selinux_complete_init, try to 1425 * find a dentry. */ 1426 dentry = d_find_alias(inode); 1427 /* 1428 * This can be hit on boot when a file is accessed 1429 * before the policy is loaded. When we load policy we 1430 * may find inodes that have no dentry on the 1431 * sbsec->isec_head list. No reason to complain as 1432 * these will get fixed up the next time we go through 1433 * inode_doinit() with a dentry, before these inodes 1434 * could be used again by userspace. 1435 */ 1436 if (!dentry) 1437 goto out_unlock; 1438 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1439 rc = selinux_proc_get_sid(dentry, isec->sclass, &sid); 1440 dput(dentry); 1441 if (rc) 1442 goto out_unlock; 1443 isec->sid = sid; 1444 } 1445 break; 1446 } 1447 1448 isec->initialized = 1; 1449 1450out_unlock: 1451 mutex_unlock(&isec->lock); 1452out: 1453 if (isec->sclass == SECCLASS_FILE) 1454 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1455 return rc; 1456} 1457 1458/* Convert a Linux signal to an access vector. */ 1459static inline u32 signal_to_av(int sig) 1460{ 1461 u32 perm = 0; 1462 1463 switch (sig) { 1464 case SIGCHLD: 1465 /* Commonly granted from child to parent. */ 1466 perm = PROCESS__SIGCHLD; 1467 break; 1468 case SIGKILL: 1469 /* Cannot be caught or ignored */ 1470 perm = PROCESS__SIGKILL; 1471 break; 1472 case SIGSTOP: 1473 /* Cannot be caught or ignored */ 1474 perm = PROCESS__SIGSTOP; 1475 break; 1476 default: 1477 /* All other signals. */ 1478 perm = PROCESS__SIGNAL; 1479 break; 1480 } 1481 1482 return perm; 1483} 1484 1485/* 1486 * Check permission between a pair of credentials 1487 * fork check, ptrace check, etc. 1488 */ 1489static int cred_has_perm(const struct cred *actor, 1490 const struct cred *target, 1491 u32 perms) 1492{ 1493 u32 asid = cred_sid(actor), tsid = cred_sid(target); 1494 1495 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL); 1496} 1497 1498/* 1499 * Check permission between a pair of tasks, e.g. signal checks, 1500 * fork check, ptrace check, etc. 1501 * tsk1 is the actor and tsk2 is the target 1502 * - this uses the default subjective creds of tsk1 1503 */ 1504static int task_has_perm(const struct task_struct *tsk1, 1505 const struct task_struct *tsk2, 1506 u32 perms) 1507{ 1508 const struct task_security_struct *__tsec1, *__tsec2; 1509 u32 sid1, sid2; 1510 1511 rcu_read_lock(); 1512 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid; 1513 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid; 1514 rcu_read_unlock(); 1515 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL); 1516} 1517 1518/* 1519 * Check permission between current and another task, e.g. signal checks, 1520 * fork check, ptrace check, etc. 1521 * current is the actor and tsk2 is the target 1522 * - this uses current's subjective creds 1523 */ 1524static int current_has_perm(const struct task_struct *tsk, 1525 u32 perms) 1526{ 1527 u32 sid, tsid; 1528 1529 sid = current_sid(); 1530 tsid = task_sid(tsk); 1531 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL); 1532} 1533 1534#if CAP_LAST_CAP > 63 1535#error Fix SELinux to handle capabilities > 63. 1536#endif 1537 1538/* Check whether a task is allowed to use a capability. */ 1539static int cred_has_capability(const struct cred *cred, 1540 int cap, int audit) 1541{ 1542 struct common_audit_data ad; 1543 struct av_decision avd; 1544 u16 sclass; 1545 u32 sid = cred_sid(cred); 1546 u32 av = CAP_TO_MASK(cap); 1547 int rc; 1548 1549 ad.type = LSM_AUDIT_DATA_CAP; 1550 ad.u.cap = cap; 1551 1552 switch (CAP_TO_INDEX(cap)) { 1553 case 0: 1554 sclass = SECCLASS_CAPABILITY; 1555 break; 1556 case 1: 1557 sclass = SECCLASS_CAPABILITY2; 1558 break; 1559 default: 1560 printk(KERN_ERR 1561 "SELinux: out of range capability %d\n", cap); 1562 BUG(); 1563 return -EINVAL; 1564 } 1565 1566 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1567 if (audit == SECURITY_CAP_AUDIT) { 1568 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad); 1569 if (rc2) 1570 return rc2; 1571 } 1572 return rc; 1573} 1574 1575/* Check whether a task is allowed to use a system operation. */ 1576static int task_has_system(struct task_struct *tsk, 1577 u32 perms) 1578{ 1579 u32 sid = task_sid(tsk); 1580 1581 return avc_has_perm(sid, SECINITSID_KERNEL, 1582 SECCLASS_SYSTEM, perms, NULL); 1583} 1584 1585/* Check whether a task has a particular permission to an inode. 1586 The 'adp' parameter is optional and allows other audit 1587 data to be passed (e.g. the dentry). */ 1588static int inode_has_perm(const struct cred *cred, 1589 struct inode *inode, 1590 u32 perms, 1591 struct common_audit_data *adp) 1592{ 1593 struct inode_security_struct *isec; 1594 u32 sid; 1595 1596 validate_creds(cred); 1597 1598 if (unlikely(IS_PRIVATE(inode))) 1599 return 0; 1600 1601 sid = cred_sid(cred); 1602 isec = inode->i_security; 1603 1604 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp); 1605} 1606 1607/* Same as inode_has_perm, but pass explicit audit data containing 1608 the dentry to help the auditing code to more easily generate the 1609 pathname if needed. */ 1610static inline int dentry_has_perm(const struct cred *cred, 1611 struct dentry *dentry, 1612 u32 av) 1613{ 1614 struct inode *inode = d_backing_inode(dentry); 1615 struct common_audit_data ad; 1616 1617 ad.type = LSM_AUDIT_DATA_DENTRY; 1618 ad.u.dentry = dentry; 1619 return inode_has_perm(cred, inode, av, &ad); 1620} 1621 1622/* Same as inode_has_perm, but pass explicit audit data containing 1623 the path to help the auditing code to more easily generate the 1624 pathname if needed. */ 1625static inline int path_has_perm(const struct cred *cred, 1626 const struct path *path, 1627 u32 av) 1628{ 1629 struct inode *inode = d_backing_inode(path->dentry); 1630 struct common_audit_data ad; 1631 1632 ad.type = LSM_AUDIT_DATA_PATH; 1633 ad.u.path = *path; 1634 return inode_has_perm(cred, inode, av, &ad); 1635} 1636 1637/* Same as path_has_perm, but uses the inode from the file struct. */ 1638static inline int file_path_has_perm(const struct cred *cred, 1639 struct file *file, 1640 u32 av) 1641{ 1642 struct common_audit_data ad; 1643 1644 ad.type = LSM_AUDIT_DATA_PATH; 1645 ad.u.path = file->f_path; 1646 return inode_has_perm(cred, file_inode(file), av, &ad); 1647} 1648 1649/* Check whether a task can use an open file descriptor to 1650 access an inode in a given way. Check access to the 1651 descriptor itself, and then use dentry_has_perm to 1652 check a particular permission to the file. 1653 Access to the descriptor is implicitly granted if it 1654 has the same SID as the process. If av is zero, then 1655 access to the file is not checked, e.g. for cases 1656 where only the descriptor is affected like seek. */ 1657static int file_has_perm(const struct cred *cred, 1658 struct file *file, 1659 u32 av) 1660{ 1661 struct file_security_struct *fsec = file->f_security; 1662 struct inode *inode = file_inode(file); 1663 struct common_audit_data ad; 1664 u32 sid = cred_sid(cred); 1665 int rc; 1666 1667 ad.type = LSM_AUDIT_DATA_PATH; 1668 ad.u.path = file->f_path; 1669 1670 if (sid != fsec->sid) { 1671 rc = avc_has_perm(sid, fsec->sid, 1672 SECCLASS_FD, 1673 FD__USE, 1674 &ad); 1675 if (rc) 1676 goto out; 1677 } 1678 1679 /* av is zero if only checking access to the descriptor. */ 1680 rc = 0; 1681 if (av) 1682 rc = inode_has_perm(cred, inode, av, &ad); 1683 1684out: 1685 return rc; 1686} 1687 1688/* Check whether a task can create a file. */ 1689static int may_create(struct inode *dir, 1690 struct dentry *dentry, 1691 u16 tclass) 1692{ 1693 const struct task_security_struct *tsec = current_security(); 1694 struct inode_security_struct *dsec; 1695 struct superblock_security_struct *sbsec; 1696 u32 sid, newsid; 1697 struct common_audit_data ad; 1698 int rc; 1699 1700 dsec = dir->i_security; 1701 sbsec = dir->i_sb->s_security; 1702 1703 sid = tsec->sid; 1704 newsid = tsec->create_sid; 1705 1706 ad.type = LSM_AUDIT_DATA_DENTRY; 1707 ad.u.dentry = dentry; 1708 1709 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1710 DIR__ADD_NAME | DIR__SEARCH, 1711 &ad); 1712 if (rc) 1713 return rc; 1714 1715 if (!newsid || !(sbsec->flags & SBLABEL_MNT)) { 1716 rc = security_transition_sid(sid, dsec->sid, tclass, 1717 &dentry->d_name, &newsid); 1718 if (rc) 1719 return rc; 1720 } 1721 1722 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1723 if (rc) 1724 return rc; 1725 1726 return avc_has_perm(newsid, sbsec->sid, 1727 SECCLASS_FILESYSTEM, 1728 FILESYSTEM__ASSOCIATE, &ad); 1729} 1730 1731/* Check whether a task can create a key. */ 1732static int may_create_key(u32 ksid, 1733 struct task_struct *ctx) 1734{ 1735 u32 sid = task_sid(ctx); 1736 1737 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1738} 1739 1740#define MAY_LINK 0 1741#define MAY_UNLINK 1 1742#define MAY_RMDIR 2 1743 1744/* Check whether a task can link, unlink, or rmdir a file/directory. */ 1745static int may_link(struct inode *dir, 1746 struct dentry *dentry, 1747 int kind) 1748 1749{ 1750 struct inode_security_struct *dsec, *isec; 1751 struct common_audit_data ad; 1752 u32 sid = current_sid(); 1753 u32 av; 1754 int rc; 1755 1756 dsec = dir->i_security; 1757 isec = d_backing_inode(dentry)->i_security; 1758 1759 ad.type = LSM_AUDIT_DATA_DENTRY; 1760 ad.u.dentry = dentry; 1761 1762 av = DIR__SEARCH; 1763 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1764 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1765 if (rc) 1766 return rc; 1767 1768 switch (kind) { 1769 case MAY_LINK: 1770 av = FILE__LINK; 1771 break; 1772 case MAY_UNLINK: 1773 av = FILE__UNLINK; 1774 break; 1775 case MAY_RMDIR: 1776 av = DIR__RMDIR; 1777 break; 1778 default: 1779 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 1780 __func__, kind); 1781 return 0; 1782 } 1783 1784 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1785 return rc; 1786} 1787 1788static inline int may_rename(struct inode *old_dir, 1789 struct dentry *old_dentry, 1790 struct inode *new_dir, 1791 struct dentry *new_dentry) 1792{ 1793 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1794 struct common_audit_data ad; 1795 u32 sid = current_sid(); 1796 u32 av; 1797 int old_is_dir, new_is_dir; 1798 int rc; 1799 1800 old_dsec = old_dir->i_security; 1801 old_isec = d_backing_inode(old_dentry)->i_security; 1802 old_is_dir = d_is_dir(old_dentry); 1803 new_dsec = new_dir->i_security; 1804 1805 ad.type = LSM_AUDIT_DATA_DENTRY; 1806 1807 ad.u.dentry = old_dentry; 1808 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1809 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1810 if (rc) 1811 return rc; 1812 rc = avc_has_perm(sid, old_isec->sid, 1813 old_isec->sclass, FILE__RENAME, &ad); 1814 if (rc) 1815 return rc; 1816 if (old_is_dir && new_dir != old_dir) { 1817 rc = avc_has_perm(sid, old_isec->sid, 1818 old_isec->sclass, DIR__REPARENT, &ad); 1819 if (rc) 1820 return rc; 1821 } 1822 1823 ad.u.dentry = new_dentry; 1824 av = DIR__ADD_NAME | DIR__SEARCH; 1825 if (d_is_positive(new_dentry)) 1826 av |= DIR__REMOVE_NAME; 1827 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1828 if (rc) 1829 return rc; 1830 if (d_is_positive(new_dentry)) { 1831 new_isec = d_backing_inode(new_dentry)->i_security; 1832 new_is_dir = d_is_dir(new_dentry); 1833 rc = avc_has_perm(sid, new_isec->sid, 1834 new_isec->sclass, 1835 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1836 if (rc) 1837 return rc; 1838 } 1839 1840 return 0; 1841} 1842 1843/* Check whether a task can perform a filesystem operation. */ 1844static int superblock_has_perm(const struct cred *cred, 1845 struct super_block *sb, 1846 u32 perms, 1847 struct common_audit_data *ad) 1848{ 1849 struct superblock_security_struct *sbsec; 1850 u32 sid = cred_sid(cred); 1851 1852 sbsec = sb->s_security; 1853 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1854} 1855 1856/* Convert a Linux mode and permission mask to an access vector. */ 1857static inline u32 file_mask_to_av(int mode, int mask) 1858{ 1859 u32 av = 0; 1860 1861 if (!S_ISDIR(mode)) { 1862 if (mask & MAY_EXEC) 1863 av |= FILE__EXECUTE; 1864 if (mask & MAY_READ) 1865 av |= FILE__READ; 1866 1867 if (mask & MAY_APPEND) 1868 av |= FILE__APPEND; 1869 else if (mask & MAY_WRITE) 1870 av |= FILE__WRITE; 1871 1872 } else { 1873 if (mask & MAY_EXEC) 1874 av |= DIR__SEARCH; 1875 if (mask & MAY_WRITE) 1876 av |= DIR__WRITE; 1877 if (mask & MAY_READ) 1878 av |= DIR__READ; 1879 } 1880 1881 return av; 1882} 1883 1884/* Convert a Linux file to an access vector. */ 1885static inline u32 file_to_av(struct file *file) 1886{ 1887 u32 av = 0; 1888 1889 if (file->f_mode & FMODE_READ) 1890 av |= FILE__READ; 1891 if (file->f_mode & FMODE_WRITE) { 1892 if (file->f_flags & O_APPEND) 1893 av |= FILE__APPEND; 1894 else 1895 av |= FILE__WRITE; 1896 } 1897 if (!av) { 1898 /* 1899 * Special file opened with flags 3 for ioctl-only use. 1900 */ 1901 av = FILE__IOCTL; 1902 } 1903 1904 return av; 1905} 1906 1907/* 1908 * Convert a file to an access vector and include the correct open 1909 * open permission. 1910 */ 1911static inline u32 open_file_to_av(struct file *file) 1912{ 1913 u32 av = file_to_av(file); 1914 1915 if (selinux_policycap_openperm) 1916 av |= FILE__OPEN; 1917 1918 return av; 1919} 1920 1921/* Hook functions begin here. */ 1922 1923static int selinux_binder_set_context_mgr(struct task_struct *mgr) 1924{ 1925 u32 mysid = current_sid(); 1926 u32 mgrsid = task_sid(mgr); 1927 1928 return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER, 1929 BINDER__SET_CONTEXT_MGR, NULL); 1930} 1931 1932static int selinux_binder_transaction(struct task_struct *from, 1933 struct task_struct *to) 1934{ 1935 u32 mysid = current_sid(); 1936 u32 fromsid = task_sid(from); 1937 u32 tosid = task_sid(to); 1938 int rc; 1939 1940 if (mysid != fromsid) { 1941 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER, 1942 BINDER__IMPERSONATE, NULL); 1943 if (rc) 1944 return rc; 1945 } 1946 1947 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL, 1948 NULL); 1949} 1950 1951static int selinux_binder_transfer_binder(struct task_struct *from, 1952 struct task_struct *to) 1953{ 1954 u32 fromsid = task_sid(from); 1955 u32 tosid = task_sid(to); 1956 1957 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER, 1958 NULL); 1959} 1960 1961static int selinux_binder_transfer_file(struct task_struct *from, 1962 struct task_struct *to, 1963 struct file *file) 1964{ 1965 u32 sid = task_sid(to); 1966 struct file_security_struct *fsec = file->f_security; 1967 struct inode *inode = d_backing_inode(file->f_path.dentry); 1968 struct inode_security_struct *isec = inode->i_security; 1969 struct common_audit_data ad; 1970 int rc; 1971 1972 ad.type = LSM_AUDIT_DATA_PATH; 1973 ad.u.path = file->f_path; 1974 1975 if (sid != fsec->sid) { 1976 rc = avc_has_perm(sid, fsec->sid, 1977 SECCLASS_FD, 1978 FD__USE, 1979 &ad); 1980 if (rc) 1981 return rc; 1982 } 1983 1984 if (unlikely(IS_PRIVATE(inode))) 1985 return 0; 1986 1987 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file), 1988 &ad); 1989} 1990 1991static int selinux_ptrace_access_check(struct task_struct *child, 1992 unsigned int mode) 1993{ 1994 int rc; 1995 1996 rc = cap_ptrace_access_check(child, mode); 1997 if (rc) 1998 return rc; 1999 2000 if (mode & PTRACE_MODE_READ) { 2001 u32 sid = current_sid(); 2002 u32 csid = task_sid(child); 2003 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL); 2004 } 2005 2006 return current_has_perm(child, PROCESS__PTRACE); 2007} 2008 2009static int selinux_ptrace_traceme(struct task_struct *parent) 2010{ 2011 int rc; 2012 2013 rc = cap_ptrace_traceme(parent); 2014 if (rc) 2015 return rc; 2016 2017 return task_has_perm(parent, current, PROCESS__PTRACE); 2018} 2019 2020static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 2021 kernel_cap_t *inheritable, kernel_cap_t *permitted) 2022{ 2023 int error; 2024 2025 error = current_has_perm(target, PROCESS__GETCAP); 2026 if (error) 2027 return error; 2028 2029 return cap_capget(target, effective, inheritable, permitted); 2030} 2031 2032static int selinux_capset(struct cred *new, const struct cred *old, 2033 const kernel_cap_t *effective, 2034 const kernel_cap_t *inheritable, 2035 const kernel_cap_t *permitted) 2036{ 2037 int error; 2038 2039 error = cap_capset(new, old, 2040 effective, inheritable, permitted); 2041 if (error) 2042 return error; 2043 2044 return cred_has_perm(old, new, PROCESS__SETCAP); 2045} 2046 2047/* 2048 * (This comment used to live with the selinux_task_setuid hook, 2049 * which was removed). 2050 * 2051 * Since setuid only affects the current process, and since the SELinux 2052 * controls are not based on the Linux identity attributes, SELinux does not 2053 * need to control this operation. However, SELinux does control the use of 2054 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 2055 */ 2056 2057static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 2058 int cap, int audit) 2059{ 2060 int rc; 2061 2062 rc = cap_capable(cred, ns, cap, audit); 2063 if (rc) 2064 return rc; 2065 2066 return cred_has_capability(cred, cap, audit); 2067} 2068 2069static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 2070{ 2071 const struct cred *cred = current_cred(); 2072 int rc = 0; 2073 2074 if (!sb) 2075 return 0; 2076 2077 switch (cmds) { 2078 case Q_SYNC: 2079 case Q_QUOTAON: 2080 case Q_QUOTAOFF: 2081 case Q_SETINFO: 2082 case Q_SETQUOTA: 2083 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2084 break; 2085 case Q_GETFMT: 2086 case Q_GETINFO: 2087 case Q_GETQUOTA: 2088 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2089 break; 2090 default: 2091 rc = 0; /* let the kernel handle invalid cmds */ 2092 break; 2093 } 2094 return rc; 2095} 2096 2097static int selinux_quota_on(struct dentry *dentry) 2098{ 2099 const struct cred *cred = current_cred(); 2100 2101 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 2102} 2103 2104static int selinux_syslog(int type) 2105{ 2106 int rc; 2107 2108 switch (type) { 2109 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 2110 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 2111 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 2112 break; 2113 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 2114 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 2115 /* Set level of messages printed to console */ 2116 case SYSLOG_ACTION_CONSOLE_LEVEL: 2117 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 2118 break; 2119 case SYSLOG_ACTION_CLOSE: /* Close log */ 2120 case SYSLOG_ACTION_OPEN: /* Open log */ 2121 case SYSLOG_ACTION_READ: /* Read from log */ 2122 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */ 2123 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 2124 default: 2125 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 2126 break; 2127 } 2128 return rc; 2129} 2130 2131/* 2132 * Check that a process has enough memory to allocate a new virtual 2133 * mapping. 0 means there is enough memory for the allocation to 2134 * succeed and -ENOMEM implies there is not. 2135 * 2136 * Do not audit the selinux permission check, as this is applied to all 2137 * processes that allocate mappings. 2138 */ 2139static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2140{ 2141 int rc, cap_sys_admin = 0; 2142 2143 rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN, 2144 SECURITY_CAP_NOAUDIT); 2145 if (rc == 0) 2146 cap_sys_admin = 1; 2147 2148 return __vm_enough_memory(mm, pages, cap_sys_admin); 2149} 2150 2151/* binprm security operations */ 2152 2153static int check_nnp_nosuid(const struct linux_binprm *bprm, 2154 const struct task_security_struct *old_tsec, 2155 const struct task_security_struct *new_tsec) 2156{ 2157 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); 2158 int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID); 2159 int rc; 2160 2161 if (!nnp && !nosuid) 2162 return 0; /* neither NNP nor nosuid */ 2163 2164 if (new_tsec->sid == old_tsec->sid) 2165 return 0; /* No change in credentials */ 2166 2167 /* 2168 * The only transitions we permit under NNP or nosuid 2169 * are transitions to bounded SIDs, i.e. SIDs that are 2170 * guaranteed to only be allowed a subset of the permissions 2171 * of the current SID. 2172 */ 2173 rc = security_bounded_transition(old_tsec->sid, new_tsec->sid); 2174 if (rc) { 2175 /* 2176 * On failure, preserve the errno values for NNP vs nosuid. 2177 * NNP: Operation not permitted for caller. 2178 * nosuid: Permission denied to file. 2179 */ 2180 if (nnp) 2181 return -EPERM; 2182 else 2183 return -EACCES; 2184 } 2185 return 0; 2186} 2187 2188static int selinux_bprm_set_creds(struct linux_binprm *bprm) 2189{ 2190 const struct task_security_struct *old_tsec; 2191 struct task_security_struct *new_tsec; 2192 struct inode_security_struct *isec; 2193 struct common_audit_data ad; 2194 struct inode *inode = file_inode(bprm->file); 2195 int rc; 2196 2197 rc = cap_bprm_set_creds(bprm); 2198 if (rc) 2199 return rc; 2200 2201 /* SELinux context only depends on initial program or script and not 2202 * the script interpreter */ 2203 if (bprm->cred_prepared) 2204 return 0; 2205 2206 old_tsec = current_security(); 2207 new_tsec = bprm->cred->security; 2208 isec = inode->i_security; 2209 2210 /* Default to the current task SID. */ 2211 new_tsec->sid = old_tsec->sid; 2212 new_tsec->osid = old_tsec->sid; 2213 2214 /* Reset fs, key, and sock SIDs on execve. */ 2215 new_tsec->create_sid = 0; 2216 new_tsec->keycreate_sid = 0; 2217 new_tsec->sockcreate_sid = 0; 2218 2219 if (old_tsec->exec_sid) { 2220 new_tsec->sid = old_tsec->exec_sid; 2221 /* Reset exec SID on execve. */ 2222 new_tsec->exec_sid = 0; 2223 2224 /* Fail on NNP or nosuid if not an allowed transition. */ 2225 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2226 if (rc) 2227 return rc; 2228 } else { 2229 /* Check for a default transition on this program. */ 2230 rc = security_transition_sid(old_tsec->sid, isec->sid, 2231 SECCLASS_PROCESS, NULL, 2232 &new_tsec->sid); 2233 if (rc) 2234 return rc; 2235 2236 /* 2237 * Fallback to old SID on NNP or nosuid if not an allowed 2238 * transition. 2239 */ 2240 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2241 if (rc) 2242 new_tsec->sid = old_tsec->sid; 2243 } 2244 2245 ad.type = LSM_AUDIT_DATA_PATH; 2246 ad.u.path = bprm->file->f_path; 2247 2248 if (new_tsec->sid == old_tsec->sid) { 2249 rc = avc_has_perm(old_tsec->sid, isec->sid, 2250 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2251 if (rc) 2252 return rc; 2253 } else { 2254 /* Check permissions for the transition. */ 2255 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2256 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2257 if (rc) 2258 return rc; 2259 2260 rc = avc_has_perm(new_tsec->sid, isec->sid, 2261 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2262 if (rc) 2263 return rc; 2264 2265 /* Check for shared state */ 2266 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2267 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2268 SECCLASS_PROCESS, PROCESS__SHARE, 2269 NULL); 2270 if (rc) 2271 return -EPERM; 2272 } 2273 2274 /* Make sure that anyone attempting to ptrace over a task that 2275 * changes its SID has the appropriate permit */ 2276 if (bprm->unsafe & 2277 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2278 struct task_struct *tracer; 2279 struct task_security_struct *sec; 2280 u32 ptsid = 0; 2281 2282 rcu_read_lock(); 2283 tracer = ptrace_parent(current); 2284 if (likely(tracer != NULL)) { 2285 sec = __task_cred(tracer)->security; 2286 ptsid = sec->sid; 2287 } 2288 rcu_read_unlock(); 2289 2290 if (ptsid != 0) { 2291 rc = avc_has_perm(ptsid, new_tsec->sid, 2292 SECCLASS_PROCESS, 2293 PROCESS__PTRACE, NULL); 2294 if (rc) 2295 return -EPERM; 2296 } 2297 } 2298 2299 /* Clear any possibly unsafe personality bits on exec: */ 2300 bprm->per_clear |= PER_CLEAR_ON_SETID; 2301 } 2302 2303 return 0; 2304} 2305 2306static int selinux_bprm_secureexec(struct linux_binprm *bprm) 2307{ 2308 const struct task_security_struct *tsec = current_security(); 2309 u32 sid, osid; 2310 int atsecure = 0; 2311 2312 sid = tsec->sid; 2313 osid = tsec->osid; 2314 2315 if (osid != sid) { 2316 /* Enable secure mode for SIDs transitions unless 2317 the noatsecure permission is granted between 2318 the two SIDs, i.e. ahp returns 0. */ 2319 atsecure = avc_has_perm(osid, sid, 2320 SECCLASS_PROCESS, 2321 PROCESS__NOATSECURE, NULL); 2322 } 2323 2324 return (atsecure || cap_bprm_secureexec(bprm)); 2325} 2326 2327static int match_file(const void *p, struct file *file, unsigned fd) 2328{ 2329 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; 2330} 2331 2332/* Derived from fs/exec.c:flush_old_files. */ 2333static inline void flush_unauthorized_files(const struct cred *cred, 2334 struct files_struct *files) 2335{ 2336 struct file *file, *devnull = NULL; 2337 struct tty_struct *tty; 2338 int drop_tty = 0; 2339 unsigned n; 2340 2341 tty = get_current_tty(); 2342 if (tty) { 2343 spin_lock(&tty_files_lock); 2344 if (!list_empty(&tty->tty_files)) { 2345 struct tty_file_private *file_priv; 2346 2347 /* Revalidate access to controlling tty. 2348 Use file_path_has_perm on the tty path directly 2349 rather than using file_has_perm, as this particular 2350 open file may belong to another process and we are 2351 only interested in the inode-based check here. */ 2352 file_priv = list_first_entry(&tty->tty_files, 2353 struct tty_file_private, list); 2354 file = file_priv->file; 2355 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) 2356 drop_tty = 1; 2357 } 2358 spin_unlock(&tty_files_lock); 2359 tty_kref_put(tty); 2360 } 2361 /* Reset controlling tty. */ 2362 if (drop_tty) 2363 no_tty(); 2364 2365 /* Revalidate access to inherited open files. */ 2366 n = iterate_fd(files, 0, match_file, cred); 2367 if (!n) /* none found? */ 2368 return; 2369 2370 devnull = dentry_open(&selinux_null, O_RDWR, cred); 2371 if (IS_ERR(devnull)) 2372 devnull = NULL; 2373 /* replace all the matching ones with this */ 2374 do { 2375 replace_fd(n - 1, devnull, 0); 2376 } while ((n = iterate_fd(files, n, match_file, cred)) != 0); 2377 if (devnull) 2378 fput(devnull); 2379} 2380 2381/* 2382 * Prepare a process for imminent new credential changes due to exec 2383 */ 2384static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2385{ 2386 struct task_security_struct *new_tsec; 2387 struct rlimit *rlim, *initrlim; 2388 int rc, i; 2389 2390 new_tsec = bprm->cred->security; 2391 if (new_tsec->sid == new_tsec->osid) 2392 return; 2393 2394 /* Close files for which the new task SID is not authorized. */ 2395 flush_unauthorized_files(bprm->cred, current->files); 2396 2397 /* Always clear parent death signal on SID transitions. */ 2398 current->pdeath_signal = 0; 2399 2400 /* Check whether the new SID can inherit resource limits from the old 2401 * SID. If not, reset all soft limits to the lower of the current 2402 * task's hard limit and the init task's soft limit. 2403 * 2404 * Note that the setting of hard limits (even to lower them) can be 2405 * controlled by the setrlimit check. The inclusion of the init task's 2406 * soft limit into the computation is to avoid resetting soft limits 2407 * higher than the default soft limit for cases where the default is 2408 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2409 */ 2410 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2411 PROCESS__RLIMITINH, NULL); 2412 if (rc) { 2413 /* protect against do_prlimit() */ 2414 task_lock(current); 2415 for (i = 0; i < RLIM_NLIMITS; i++) { 2416 rlim = current->signal->rlim + i; 2417 initrlim = init_task.signal->rlim + i; 2418 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2419 } 2420 task_unlock(current); 2421 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2422 } 2423} 2424 2425/* 2426 * Clean up the process immediately after the installation of new credentials 2427 * due to exec 2428 */ 2429static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2430{ 2431 const struct task_security_struct *tsec = current_security(); 2432 struct itimerval itimer; 2433 u32 osid, sid; 2434 int rc, i; 2435 2436 osid = tsec->osid; 2437 sid = tsec->sid; 2438 2439 if (sid == osid) 2440 return; 2441 2442 /* Check whether the new SID can inherit signal state from the old SID. 2443 * If not, clear itimers to avoid subsequent signal generation and 2444 * flush and unblock signals. 2445 * 2446 * This must occur _after_ the task SID has been updated so that any 2447 * kill done after the flush will be checked against the new SID. 2448 */ 2449 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2450 if (rc) { 2451 memset(&itimer, 0, sizeof itimer); 2452 for (i = 0; i < 3; i++) 2453 do_setitimer(i, &itimer, NULL); 2454 spin_lock_irq(¤t->sighand->siglock); 2455 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) { 2456 __flush_signals(current); 2457 flush_signal_handlers(current, 1); 2458 sigemptyset(¤t->blocked); 2459 } 2460 spin_unlock_irq(¤t->sighand->siglock); 2461 } 2462 2463 /* Wake up the parent if it is waiting so that it can recheck 2464 * wait permission to the new task SID. */ 2465 read_lock(&tasklist_lock); 2466 __wake_up_parent(current, current->real_parent); 2467 read_unlock(&tasklist_lock); 2468} 2469 2470/* superblock security operations */ 2471 2472static int selinux_sb_alloc_security(struct super_block *sb) 2473{ 2474 return superblock_alloc_security(sb); 2475} 2476 2477static void selinux_sb_free_security(struct super_block *sb) 2478{ 2479 superblock_free_security(sb); 2480} 2481 2482static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2483{ 2484 if (plen > olen) 2485 return 0; 2486 2487 return !memcmp(prefix, option, plen); 2488} 2489 2490static inline int selinux_option(char *option, int len) 2491{ 2492 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2493 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2494 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2495 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) || 2496 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len)); 2497} 2498 2499static inline void take_option(char **to, char *from, int *first, int len) 2500{ 2501 if (!*first) { 2502 **to = ','; 2503 *to += 1; 2504 } else 2505 *first = 0; 2506 memcpy(*to, from, len); 2507 *to += len; 2508} 2509 2510static inline void take_selinux_option(char **to, char *from, int *first, 2511 int len) 2512{ 2513 int current_size = 0; 2514 2515 if (!*first) { 2516 **to = '|'; 2517 *to += 1; 2518 } else 2519 *first = 0; 2520 2521 while (current_size < len) { 2522 if (*from != '"') { 2523 **to = *from; 2524 *to += 1; 2525 } 2526 from += 1; 2527 current_size += 1; 2528 } 2529} 2530 2531static int selinux_sb_copy_data(char *orig, char *copy) 2532{ 2533 int fnosec, fsec, rc = 0; 2534 char *in_save, *in_curr, *in_end; 2535 char *sec_curr, *nosec_save, *nosec; 2536 int open_quote = 0; 2537 2538 in_curr = orig; 2539 sec_curr = copy; 2540 2541 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2542 if (!nosec) { 2543 rc = -ENOMEM; 2544 goto out; 2545 } 2546 2547 nosec_save = nosec; 2548 fnosec = fsec = 1; 2549 in_save = in_end = orig; 2550 2551 do { 2552 if (*in_end == '"') 2553 open_quote = !open_quote; 2554 if ((*in_end == ',' && open_quote == 0) || 2555 *in_end == '\0') { 2556 int len = in_end - in_curr; 2557 2558 if (selinux_option(in_curr, len)) 2559 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2560 else 2561 take_option(&nosec, in_curr, &fnosec, len); 2562 2563 in_curr = in_end + 1; 2564 } 2565 } while (*in_end++); 2566 2567 strcpy(in_save, nosec_save); 2568 free_page((unsigned long)nosec_save); 2569out: 2570 return rc; 2571} 2572 2573static int selinux_sb_remount(struct super_block *sb, void *data) 2574{ 2575 int rc, i, *flags; 2576 struct security_mnt_opts opts; 2577 char *secdata, **mount_options; 2578 struct superblock_security_struct *sbsec = sb->s_security; 2579 2580 if (!(sbsec->flags & SE_SBINITIALIZED)) 2581 return 0; 2582 2583 if (!data) 2584 return 0; 2585 2586 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 2587 return 0; 2588 2589 security_init_mnt_opts(&opts); 2590 secdata = alloc_secdata(); 2591 if (!secdata) 2592 return -ENOMEM; 2593 rc = selinux_sb_copy_data(data, secdata); 2594 if (rc) 2595 goto out_free_secdata; 2596 2597 rc = selinux_parse_opts_str(secdata, &opts); 2598 if (rc) 2599 goto out_free_secdata; 2600 2601 mount_options = opts.mnt_opts; 2602 flags = opts.mnt_opts_flags; 2603 2604 for (i = 0; i < opts.num_mnt_opts; i++) { 2605 u32 sid; 2606 size_t len; 2607 2608 if (flags[i] == SBLABEL_MNT) 2609 continue; 2610 len = strlen(mount_options[i]); 2611 rc = security_context_to_sid(mount_options[i], len, &sid, 2612 GFP_KERNEL); 2613 if (rc) { 2614 printk(KERN_WARNING "SELinux: security_context_to_sid" 2615 "(%s) failed for (dev %s, type %s) errno=%d\n", 2616 mount_options[i], sb->s_id, sb->s_type->name, rc); 2617 goto out_free_opts; 2618 } 2619 rc = -EINVAL; 2620 switch (flags[i]) { 2621 case FSCONTEXT_MNT: 2622 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid)) 2623 goto out_bad_option; 2624 break; 2625 case CONTEXT_MNT: 2626 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid)) 2627 goto out_bad_option; 2628 break; 2629 case ROOTCONTEXT_MNT: { 2630 struct inode_security_struct *root_isec; 2631 root_isec = d_backing_inode(sb->s_root)->i_security; 2632 2633 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid)) 2634 goto out_bad_option; 2635 break; 2636 } 2637 case DEFCONTEXT_MNT: 2638 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid)) 2639 goto out_bad_option; 2640 break; 2641 default: 2642 goto out_free_opts; 2643 } 2644 } 2645 2646 rc = 0; 2647out_free_opts: 2648 security_free_mnt_opts(&opts); 2649out_free_secdata: 2650 free_secdata(secdata); 2651 return rc; 2652out_bad_option: 2653 printk(KERN_WARNING "SELinux: unable to change security options " 2654 "during remount (dev %s, type=%s)\n", sb->s_id, 2655 sb->s_type->name); 2656 goto out_free_opts; 2657} 2658 2659static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data) 2660{ 2661 const struct cred *cred = current_cred(); 2662 struct common_audit_data ad; 2663 int rc; 2664 2665 rc = superblock_doinit(sb, data); 2666 if (rc) 2667 return rc; 2668 2669 /* Allow all mounts performed by the kernel */ 2670 if (flags & MS_KERNMOUNT) 2671 return 0; 2672 2673 ad.type = LSM_AUDIT_DATA_DENTRY; 2674 ad.u.dentry = sb->s_root; 2675 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2676} 2677 2678static int selinux_sb_statfs(struct dentry *dentry) 2679{ 2680 const struct cred *cred = current_cred(); 2681 struct common_audit_data ad; 2682 2683 ad.type = LSM_AUDIT_DATA_DENTRY; 2684 ad.u.dentry = dentry->d_sb->s_root; 2685 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2686} 2687 2688static int selinux_mount(const char *dev_name, 2689 struct path *path, 2690 const char *type, 2691 unsigned long flags, 2692 void *data) 2693{ 2694 const struct cred *cred = current_cred(); 2695 2696 if (flags & MS_REMOUNT) 2697 return superblock_has_perm(cred, path->dentry->d_sb, 2698 FILESYSTEM__REMOUNT, NULL); 2699 else 2700 return path_has_perm(cred, path, FILE__MOUNTON); 2701} 2702 2703static int selinux_umount(struct vfsmount *mnt, int flags) 2704{ 2705 const struct cred *cred = current_cred(); 2706 2707 return superblock_has_perm(cred, mnt->mnt_sb, 2708 FILESYSTEM__UNMOUNT, NULL); 2709} 2710 2711/* inode security operations */ 2712 2713static int selinux_inode_alloc_security(struct inode *inode) 2714{ 2715 return inode_alloc_security(inode); 2716} 2717 2718static void selinux_inode_free_security(struct inode *inode) 2719{ 2720 inode_free_security(inode); 2721} 2722 2723static int selinux_dentry_init_security(struct dentry *dentry, int mode, 2724 struct qstr *name, void **ctx, 2725 u32 *ctxlen) 2726{ 2727 const struct cred *cred = current_cred(); 2728 struct task_security_struct *tsec; 2729 struct inode_security_struct *dsec; 2730 struct superblock_security_struct *sbsec; 2731 struct inode *dir = d_backing_inode(dentry->d_parent); 2732 u32 newsid; 2733 int rc; 2734 2735 tsec = cred->security; 2736 dsec = dir->i_security; 2737 sbsec = dir->i_sb->s_security; 2738 2739 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 2740 newsid = tsec->create_sid; 2741 } else { 2742 rc = security_transition_sid(tsec->sid, dsec->sid, 2743 inode_mode_to_security_class(mode), 2744 name, 2745 &newsid); 2746 if (rc) { 2747 printk(KERN_WARNING 2748 "%s: security_transition_sid failed, rc=%d\n", 2749 __func__, -rc); 2750 return rc; 2751 } 2752 } 2753 2754 return security_sid_to_context(newsid, (char **)ctx, ctxlen); 2755} 2756 2757static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2758 const struct qstr *qstr, 2759 const char **name, 2760 void **value, size_t *len) 2761{ 2762 const struct task_security_struct *tsec = current_security(); 2763 struct inode_security_struct *dsec; 2764 struct superblock_security_struct *sbsec; 2765 u32 sid, newsid, clen; 2766 int rc; 2767 char *context; 2768 2769 dsec = dir->i_security; 2770 sbsec = dir->i_sb->s_security; 2771 2772 sid = tsec->sid; 2773 newsid = tsec->create_sid; 2774 2775 if ((sbsec->flags & SE_SBINITIALIZED) && 2776 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) 2777 newsid = sbsec->mntpoint_sid; 2778 else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) { 2779 rc = security_transition_sid(sid, dsec->sid, 2780 inode_mode_to_security_class(inode->i_mode), 2781 qstr, &newsid); 2782 if (rc) { 2783 printk(KERN_WARNING "%s: " 2784 "security_transition_sid failed, rc=%d (dev=%s " 2785 "ino=%ld)\n", 2786 __func__, 2787 -rc, inode->i_sb->s_id, inode->i_ino); 2788 return rc; 2789 } 2790 } 2791 2792 /* Possibly defer initialization to selinux_complete_init. */ 2793 if (sbsec->flags & SE_SBINITIALIZED) { 2794 struct inode_security_struct *isec = inode->i_security; 2795 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2796 isec->sid = newsid; 2797 isec->initialized = 1; 2798 } 2799 2800 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT)) 2801 return -EOPNOTSUPP; 2802 2803 if (name) 2804 *name = XATTR_SELINUX_SUFFIX; 2805 2806 if (value && len) { 2807 rc = security_sid_to_context_force(newsid, &context, &clen); 2808 if (rc) 2809 return rc; 2810 *value = context; 2811 *len = clen; 2812 } 2813 2814 return 0; 2815} 2816 2817static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 2818{ 2819 return may_create(dir, dentry, SECCLASS_FILE); 2820} 2821 2822static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2823{ 2824 return may_link(dir, old_dentry, MAY_LINK); 2825} 2826 2827static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2828{ 2829 return may_link(dir, dentry, MAY_UNLINK); 2830} 2831 2832static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2833{ 2834 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2835} 2836 2837static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 2838{ 2839 return may_create(dir, dentry, SECCLASS_DIR); 2840} 2841 2842static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2843{ 2844 return may_link(dir, dentry, MAY_RMDIR); 2845} 2846 2847static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2848{ 2849 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2850} 2851 2852static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2853 struct inode *new_inode, struct dentry *new_dentry) 2854{ 2855 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2856} 2857 2858static int selinux_inode_readlink(struct dentry *dentry) 2859{ 2860 const struct cred *cred = current_cred(); 2861 2862 return dentry_has_perm(cred, dentry, FILE__READ); 2863} 2864 2865static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2866{ 2867 const struct cred *cred = current_cred(); 2868 2869 return dentry_has_perm(cred, dentry, FILE__READ); 2870} 2871 2872static noinline int audit_inode_permission(struct inode *inode, 2873 u32 perms, u32 audited, u32 denied, 2874 int result, 2875 unsigned flags) 2876{ 2877 struct common_audit_data ad; 2878 struct inode_security_struct *isec = inode->i_security; 2879 int rc; 2880 2881 ad.type = LSM_AUDIT_DATA_INODE; 2882 ad.u.inode = inode; 2883 2884 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms, 2885 audited, denied, result, &ad, flags); 2886 if (rc) 2887 return rc; 2888 return 0; 2889} 2890 2891static int selinux_inode_permission(struct inode *inode, int mask) 2892{ 2893 const struct cred *cred = current_cred(); 2894 u32 perms; 2895 bool from_access; 2896 unsigned flags = mask & MAY_NOT_BLOCK; 2897 struct inode_security_struct *isec; 2898 u32 sid; 2899 struct av_decision avd; 2900 int rc, rc2; 2901 u32 audited, denied; 2902 2903 from_access = mask & MAY_ACCESS; 2904 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 2905 2906 /* No permission to check. Existence test. */ 2907 if (!mask) 2908 return 0; 2909 2910 validate_creds(cred); 2911 2912 if (unlikely(IS_PRIVATE(inode))) 2913 return 0; 2914 2915 perms = file_mask_to_av(inode->i_mode, mask); 2916 2917 sid = cred_sid(cred); 2918 isec = inode->i_security; 2919 2920 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd); 2921 audited = avc_audit_required(perms, &avd, rc, 2922 from_access ? FILE__AUDIT_ACCESS : 0, 2923 &denied); 2924 if (likely(!audited)) 2925 return rc; 2926 2927 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags); 2928 if (rc2) 2929 return rc2; 2930 return rc; 2931} 2932 2933static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2934{ 2935 const struct cred *cred = current_cred(); 2936 unsigned int ia_valid = iattr->ia_valid; 2937 __u32 av = FILE__WRITE; 2938 2939 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 2940 if (ia_valid & ATTR_FORCE) { 2941 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 2942 ATTR_FORCE); 2943 if (!ia_valid) 2944 return 0; 2945 } 2946 2947 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2948 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 2949 return dentry_has_perm(cred, dentry, FILE__SETATTR); 2950 2951 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)) 2952 av |= FILE__OPEN; 2953 2954 return dentry_has_perm(cred, dentry, av); 2955} 2956 2957static int selinux_inode_getattr(const struct path *path) 2958{ 2959 return path_has_perm(current_cred(), path, FILE__GETATTR); 2960} 2961 2962static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name) 2963{ 2964 const struct cred *cred = current_cred(); 2965 2966 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2967 sizeof XATTR_SECURITY_PREFIX - 1)) { 2968 if (!strcmp(name, XATTR_NAME_CAPS)) { 2969 if (!capable(CAP_SETFCAP)) 2970 return -EPERM; 2971 } else if (!capable(CAP_SYS_ADMIN)) { 2972 /* A different attribute in the security namespace. 2973 Restrict to administrator. */ 2974 return -EPERM; 2975 } 2976 } 2977 2978 /* Not an attribute we recognize, so just check the 2979 ordinary setattr permission. */ 2980 return dentry_has_perm(cred, dentry, FILE__SETATTR); 2981} 2982 2983static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 2984 const void *value, size_t size, int flags) 2985{ 2986 struct inode *inode = d_backing_inode(dentry); 2987 struct inode_security_struct *isec = inode->i_security; 2988 struct superblock_security_struct *sbsec; 2989 struct common_audit_data ad; 2990 u32 newsid, sid = current_sid(); 2991 int rc = 0; 2992 2993 if (strcmp(name, XATTR_NAME_SELINUX)) 2994 return selinux_inode_setotherxattr(dentry, name); 2995 2996 sbsec = inode->i_sb->s_security; 2997 if (!(sbsec->flags & SBLABEL_MNT)) 2998 return -EOPNOTSUPP; 2999 3000 if (!inode_owner_or_capable(inode)) 3001 return -EPERM; 3002 3003 ad.type = LSM_AUDIT_DATA_DENTRY; 3004 ad.u.dentry = dentry; 3005 3006 rc = avc_has_perm(sid, isec->sid, isec->sclass, 3007 FILE__RELABELFROM, &ad); 3008 if (rc) 3009 return rc; 3010 3011 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL); 3012 if (rc == -EINVAL) { 3013 if (!capable(CAP_MAC_ADMIN)) { 3014 struct audit_buffer *ab; 3015 size_t audit_size; 3016 const char *str; 3017 3018 /* We strip a nul only if it is at the end, otherwise the 3019 * context contains a nul and we should audit that */ 3020 if (value) { 3021 str = value; 3022 if (str[size - 1] == '\0') 3023 audit_size = size - 1; 3024 else 3025 audit_size = size; 3026 } else { 3027 str = ""; 3028 audit_size = 0; 3029 } 3030 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR); 3031 audit_log_format(ab, "op=setxattr invalid_context="); 3032 audit_log_n_untrustedstring(ab, value, audit_size); 3033 audit_log_end(ab); 3034 3035 return rc; 3036 } 3037 rc = security_context_to_sid_force(value, size, &newsid); 3038 } 3039 if (rc) 3040 return rc; 3041 3042 rc = avc_has_perm(sid, newsid, isec->sclass, 3043 FILE__RELABELTO, &ad); 3044 if (rc) 3045 return rc; 3046 3047 rc = security_validate_transition(isec->sid, newsid, sid, 3048 isec->sclass); 3049 if (rc) 3050 return rc; 3051 3052 return avc_has_perm(newsid, 3053 sbsec->sid, 3054 SECCLASS_FILESYSTEM, 3055 FILESYSTEM__ASSOCIATE, 3056 &ad); 3057} 3058 3059static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 3060 const void *value, size_t size, 3061 int flags) 3062{ 3063 struct inode *inode = d_backing_inode(dentry); 3064 struct inode_security_struct *isec = inode->i_security; 3065 u32 newsid; 3066 int rc; 3067 3068 if (strcmp(name, XATTR_NAME_SELINUX)) { 3069 /* Not an attribute we recognize, so nothing to do. */ 3070 return; 3071 } 3072 3073 rc = security_context_to_sid_force(value, size, &newsid); 3074 if (rc) { 3075 printk(KERN_ERR "SELinux: unable to map context to SID" 3076 "for (%s, %lu), rc=%d\n", 3077 inode->i_sb->s_id, inode->i_ino, -rc); 3078 return; 3079 } 3080 3081 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3082 isec->sid = newsid; 3083 isec->initialized = 1; 3084 3085 return; 3086} 3087 3088static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 3089{ 3090 const struct cred *cred = current_cred(); 3091 3092 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3093} 3094 3095static int selinux_inode_listxattr(struct dentry *dentry) 3096{ 3097 const struct cred *cred = current_cred(); 3098 3099 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3100} 3101 3102static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 3103{ 3104 if (strcmp(name, XATTR_NAME_SELINUX)) 3105 return selinux_inode_setotherxattr(dentry, name); 3106 3107 /* No one is allowed to remove a SELinux security label. 3108 You can change the label, but all data must be labeled. */ 3109 return -EACCES; 3110} 3111 3112/* 3113 * Copy the inode security context value to the user. 3114 * 3115 * Permission check is handled by selinux_inode_getxattr hook. 3116 */ 3117static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 3118{ 3119 u32 size; 3120 int error; 3121 char *context = NULL; 3122 struct inode_security_struct *isec = inode->i_security; 3123 3124 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3125 return -EOPNOTSUPP; 3126 3127 /* 3128 * If the caller has CAP_MAC_ADMIN, then get the raw context 3129 * value even if it is not defined by current policy; otherwise, 3130 * use the in-core value under current policy. 3131 * Use the non-auditing forms of the permission checks since 3132 * getxattr may be called by unprivileged processes commonly 3133 * and lack of permission just means that we fall back to the 3134 * in-core context value, not a denial. 3135 */ 3136 error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN, 3137 SECURITY_CAP_NOAUDIT); 3138 if (!error) 3139 error = security_sid_to_context_force(isec->sid, &context, 3140 &size); 3141 else 3142 error = security_sid_to_context(isec->sid, &context, &size); 3143 if (error) 3144 return error; 3145 error = size; 3146 if (alloc) { 3147 *buffer = context; 3148 goto out_nofree; 3149 } 3150 kfree(context); 3151out_nofree: 3152 return error; 3153} 3154 3155static int selinux_inode_setsecurity(struct inode *inode, const char *name, 3156 const void *value, size_t size, int flags) 3157{ 3158 struct inode_security_struct *isec = inode->i_security; 3159 u32 newsid; 3160 int rc; 3161 3162 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3163 return -EOPNOTSUPP; 3164 3165 if (!value || !size) 3166 return -EACCES; 3167 3168 rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL); 3169 if (rc) 3170 return rc; 3171 3172 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3173 isec->sid = newsid; 3174 isec->initialized = 1; 3175 return 0; 3176} 3177 3178static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 3179{ 3180 const int len = sizeof(XATTR_NAME_SELINUX); 3181 if (buffer && len <= buffer_size) 3182 memcpy(buffer, XATTR_NAME_SELINUX, len); 3183 return len; 3184} 3185 3186static void selinux_inode_getsecid(const struct inode *inode, u32 *secid) 3187{ 3188 struct inode_security_struct *isec = inode->i_security; 3189 *secid = isec->sid; 3190} 3191 3192/* file security operations */ 3193 3194static int selinux_revalidate_file_permission(struct file *file, int mask) 3195{ 3196 const struct cred *cred = current_cred(); 3197 struct inode *inode = file_inode(file); 3198 3199 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 3200 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 3201 mask |= MAY_APPEND; 3202 3203 return file_has_perm(cred, file, 3204 file_mask_to_av(inode->i_mode, mask)); 3205} 3206 3207static int selinux_file_permission(struct file *file, int mask) 3208{ 3209 struct inode *inode = file_inode(file); 3210 struct file_security_struct *fsec = file->f_security; 3211 struct inode_security_struct *isec = inode->i_security; 3212 u32 sid = current_sid(); 3213 3214 if (!mask) 3215 /* No permission to check. Existence test. */ 3216 return 0; 3217 3218 if (sid == fsec->sid && fsec->isid == isec->sid && 3219 fsec->pseqno == avc_policy_seqno()) 3220 /* No change since file_open check. */ 3221 return 0; 3222 3223 return selinux_revalidate_file_permission(file, mask); 3224} 3225 3226static int selinux_file_alloc_security(struct file *file) 3227{ 3228 return file_alloc_security(file); 3229} 3230 3231static void selinux_file_free_security(struct file *file) 3232{ 3233 file_free_security(file); 3234} 3235 3236static int selinux_file_ioctl(struct file *file, unsigned int cmd, 3237 unsigned long arg) 3238{ 3239 const struct cred *cred = current_cred(); 3240 int error = 0; 3241 3242 switch (cmd) { 3243 case FIONREAD: 3244 /* fall through */ 3245 case FIBMAP: 3246 /* fall through */ 3247 case FIGETBSZ: 3248 /* fall through */ 3249 case FS_IOC_GETFLAGS: 3250 /* fall through */ 3251 case FS_IOC_GETVERSION: 3252 error = file_has_perm(cred, file, FILE__GETATTR); 3253 break; 3254 3255 case FS_IOC_SETFLAGS: 3256 /* fall through */ 3257 case FS_IOC_SETVERSION: 3258 error = file_has_perm(cred, file, FILE__SETATTR); 3259 break; 3260 3261 /* sys_ioctl() checks */ 3262 case FIONBIO: 3263 /* fall through */ 3264 case FIOASYNC: 3265 error = file_has_perm(cred, file, 0); 3266 break; 3267 3268 case KDSKBENT: 3269 case KDSKBSENT: 3270 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3271 SECURITY_CAP_AUDIT); 3272 break; 3273 3274 /* default case assumes that the command will go 3275 * to the file's ioctl() function. 3276 */ 3277 default: 3278 error = file_has_perm(cred, file, FILE__IOCTL); 3279 } 3280 return error; 3281} 3282 3283static int default_noexec; 3284 3285static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3286{ 3287 const struct cred *cred = current_cred(); 3288 int rc = 0; 3289 3290 if (default_noexec && 3291 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) || 3292 (!shared && (prot & PROT_WRITE)))) { 3293 /* 3294 * We are making executable an anonymous mapping or a 3295 * private file mapping that will also be writable. 3296 * This has an additional check. 3297 */ 3298 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM); 3299 if (rc) 3300 goto error; 3301 } 3302 3303 if (file) { 3304 /* read access is always possible with a mapping */ 3305 u32 av = FILE__READ; 3306 3307 /* write access only matters if the mapping is shared */ 3308 if (shared && (prot & PROT_WRITE)) 3309 av |= FILE__WRITE; 3310 3311 if (prot & PROT_EXEC) 3312 av |= FILE__EXECUTE; 3313 3314 return file_has_perm(cred, file, av); 3315 } 3316 3317error: 3318 return rc; 3319} 3320 3321static int selinux_mmap_addr(unsigned long addr) 3322{ 3323 int rc; 3324 3325 /* do DAC check on address space usage */ 3326 rc = cap_mmap_addr(addr); 3327 if (rc) 3328 return rc; 3329 3330 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3331 u32 sid = current_sid(); 3332 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3333 MEMPROTECT__MMAP_ZERO, NULL); 3334 } 3335 3336 return rc; 3337} 3338 3339static int selinux_mmap_file(struct file *file, unsigned long reqprot, 3340 unsigned long prot, unsigned long flags) 3341{ 3342 if (selinux_checkreqprot) 3343 prot = reqprot; 3344 3345 return file_map_prot_check(file, prot, 3346 (flags & MAP_TYPE) == MAP_SHARED); 3347} 3348 3349static int selinux_file_mprotect(struct vm_area_struct *vma, 3350 unsigned long reqprot, 3351 unsigned long prot) 3352{ 3353 const struct cred *cred = current_cred(); 3354 3355 if (selinux_checkreqprot) 3356 prot = reqprot; 3357 3358 if (default_noexec && 3359 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3360 int rc = 0; 3361 if (vma->vm_start >= vma->vm_mm->start_brk && 3362 vma->vm_end <= vma->vm_mm->brk) { 3363 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP); 3364 } else if (!vma->vm_file && 3365 vma->vm_start <= vma->vm_mm->start_stack && 3366 vma->vm_end >= vma->vm_mm->start_stack) { 3367 rc = current_has_perm(current, PROCESS__EXECSTACK); 3368 } else if (vma->vm_file && vma->anon_vma) { 3369 /* 3370 * We are making executable a file mapping that has 3371 * had some COW done. Since pages might have been 3372 * written, check ability to execute the possibly 3373 * modified content. This typically should only 3374 * occur for text relocations. 3375 */ 3376 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3377 } 3378 if (rc) 3379 return rc; 3380 } 3381 3382 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3383} 3384 3385static int selinux_file_lock(struct file *file, unsigned int cmd) 3386{ 3387 const struct cred *cred = current_cred(); 3388 3389 return file_has_perm(cred, file, FILE__LOCK); 3390} 3391 3392static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3393 unsigned long arg) 3394{ 3395 const struct cred *cred = current_cred(); 3396 int err = 0; 3397 3398 switch (cmd) { 3399 case F_SETFL: 3400 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3401 err = file_has_perm(cred, file, FILE__WRITE); 3402 break; 3403 } 3404 /* fall through */ 3405 case F_SETOWN: 3406 case F_SETSIG: 3407 case F_GETFL: 3408 case F_GETOWN: 3409 case F_GETSIG: 3410 case F_GETOWNER_UIDS: 3411 /* Just check FD__USE permission */ 3412 err = file_has_perm(cred, file, 0); 3413 break; 3414 case F_GETLK: 3415 case F_SETLK: 3416 case F_SETLKW: 3417 case F_OFD_GETLK: 3418 case F_OFD_SETLK: 3419 case F_OFD_SETLKW: 3420#if BITS_PER_LONG == 32 3421 case F_GETLK64: 3422 case F_SETLK64: 3423 case F_SETLKW64: 3424#endif 3425 err = file_has_perm(cred, file, FILE__LOCK); 3426 break; 3427 } 3428 3429 return err; 3430} 3431 3432static void selinux_file_set_fowner(struct file *file) 3433{ 3434 struct file_security_struct *fsec; 3435 3436 fsec = file->f_security; 3437 fsec->fown_sid = current_sid(); 3438} 3439 3440static int selinux_file_send_sigiotask(struct task_struct *tsk, 3441 struct fown_struct *fown, int signum) 3442{ 3443 struct file *file; 3444 u32 sid = task_sid(tsk); 3445 u32 perm; 3446 struct file_security_struct *fsec; 3447 3448 /* struct fown_struct is never outside the context of a struct file */ 3449 file = container_of(fown, struct file, f_owner); 3450 3451 fsec = file->f_security; 3452 3453 if (!signum) 3454 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3455 else 3456 perm = signal_to_av(signum); 3457 3458 return avc_has_perm(fsec->fown_sid, sid, 3459 SECCLASS_PROCESS, perm, NULL); 3460} 3461 3462static int selinux_file_receive(struct file *file) 3463{ 3464 const struct cred *cred = current_cred(); 3465 3466 return file_has_perm(cred, file, file_to_av(file)); 3467} 3468 3469static int selinux_file_open(struct file *file, const struct cred *cred) 3470{ 3471 struct file_security_struct *fsec; 3472 struct inode_security_struct *isec; 3473 3474 fsec = file->f_security; 3475 isec = file_inode(file)->i_security; 3476 /* 3477 * Save inode label and policy sequence number 3478 * at open-time so that selinux_file_permission 3479 * can determine whether revalidation is necessary. 3480 * Task label is already saved in the file security 3481 * struct as its SID. 3482 */ 3483 fsec->isid = isec->sid; 3484 fsec->pseqno = avc_policy_seqno(); 3485 /* 3486 * Since the inode label or policy seqno may have changed 3487 * between the selinux_inode_permission check and the saving 3488 * of state above, recheck that access is still permitted. 3489 * Otherwise, access might never be revalidated against the 3490 * new inode label or new policy. 3491 * This check is not redundant - do not remove. 3492 */ 3493 return file_path_has_perm(cred, file, open_file_to_av(file)); 3494} 3495 3496/* task security operations */ 3497 3498static int selinux_task_create(unsigned long clone_flags) 3499{ 3500 return current_has_perm(current, PROCESS__FORK); 3501} 3502 3503/* 3504 * allocate the SELinux part of blank credentials 3505 */ 3506static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3507{ 3508 struct task_security_struct *tsec; 3509 3510 tsec = kzalloc(sizeof(struct task_security_struct), gfp); 3511 if (!tsec) 3512 return -ENOMEM; 3513 3514 cred->security = tsec; 3515 return 0; 3516} 3517 3518/* 3519 * detach and free the LSM part of a set of credentials 3520 */ 3521static void selinux_cred_free(struct cred *cred) 3522{ 3523 struct task_security_struct *tsec = cred->security; 3524 3525 /* 3526 * cred->security == NULL if security_cred_alloc_blank() or 3527 * security_prepare_creds() returned an error. 3528 */ 3529 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE); 3530 cred->security = (void *) 0x7UL; 3531 kfree(tsec); 3532} 3533 3534/* 3535 * prepare a new set of credentials for modification 3536 */ 3537static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3538 gfp_t gfp) 3539{ 3540 const struct task_security_struct *old_tsec; 3541 struct task_security_struct *tsec; 3542 3543 old_tsec = old->security; 3544 3545 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp); 3546 if (!tsec) 3547 return -ENOMEM; 3548 3549 new->security = tsec; 3550 return 0; 3551} 3552 3553/* 3554 * transfer the SELinux data to a blank set of creds 3555 */ 3556static void selinux_cred_transfer(struct cred *new, const struct cred *old) 3557{ 3558 const struct task_security_struct *old_tsec = old->security; 3559 struct task_security_struct *tsec = new->security; 3560 3561 *tsec = *old_tsec; 3562} 3563 3564/* 3565 * set the security data for a kernel service 3566 * - all the creation contexts are set to unlabelled 3567 */ 3568static int selinux_kernel_act_as(struct cred *new, u32 secid) 3569{ 3570 struct task_security_struct *tsec = new->security; 3571 u32 sid = current_sid(); 3572 int ret; 3573 3574 ret = avc_has_perm(sid, secid, 3575 SECCLASS_KERNEL_SERVICE, 3576 KERNEL_SERVICE__USE_AS_OVERRIDE, 3577 NULL); 3578 if (ret == 0) { 3579 tsec->sid = secid; 3580 tsec->create_sid = 0; 3581 tsec->keycreate_sid = 0; 3582 tsec->sockcreate_sid = 0; 3583 } 3584 return ret; 3585} 3586 3587/* 3588 * set the file creation context in a security record to the same as the 3589 * objective context of the specified inode 3590 */ 3591static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3592{ 3593 struct inode_security_struct *isec = inode->i_security; 3594 struct task_security_struct *tsec = new->security; 3595 u32 sid = current_sid(); 3596 int ret; 3597 3598 ret = avc_has_perm(sid, isec->sid, 3599 SECCLASS_KERNEL_SERVICE, 3600 KERNEL_SERVICE__CREATE_FILES_AS, 3601 NULL); 3602 3603 if (ret == 0) 3604 tsec->create_sid = isec->sid; 3605 return ret; 3606} 3607 3608static int selinux_kernel_module_request(char *kmod_name) 3609{ 3610 u32 sid; 3611 struct common_audit_data ad; 3612 3613 sid = task_sid(current); 3614 3615 ad.type = LSM_AUDIT_DATA_KMOD; 3616 ad.u.kmod_name = kmod_name; 3617 3618 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM, 3619 SYSTEM__MODULE_REQUEST, &ad); 3620} 3621 3622static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3623{ 3624 return current_has_perm(p, PROCESS__SETPGID); 3625} 3626 3627static int selinux_task_getpgid(struct task_struct *p) 3628{ 3629 return current_has_perm(p, PROCESS__GETPGID); 3630} 3631 3632static int selinux_task_getsid(struct task_struct *p) 3633{ 3634 return current_has_perm(p, PROCESS__GETSESSION); 3635} 3636 3637static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3638{ 3639 *secid = task_sid(p); 3640} 3641 3642static int selinux_task_setnice(struct task_struct *p, int nice) 3643{ 3644 int rc; 3645 3646 rc = cap_task_setnice(p, nice); 3647 if (rc) 3648 return rc; 3649 3650 return current_has_perm(p, PROCESS__SETSCHED); 3651} 3652 3653static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3654{ 3655 int rc; 3656 3657 rc = cap_task_setioprio(p, ioprio); 3658 if (rc) 3659 return rc; 3660 3661 return current_has_perm(p, PROCESS__SETSCHED); 3662} 3663 3664static int selinux_task_getioprio(struct task_struct *p) 3665{ 3666 return current_has_perm(p, PROCESS__GETSCHED); 3667} 3668 3669static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 3670 struct rlimit *new_rlim) 3671{ 3672 struct rlimit *old_rlim = p->signal->rlim + resource; 3673 3674 /* Control the ability to change the hard limit (whether 3675 lowering or raising it), so that the hard limit can 3676 later be used as a safe reset point for the soft limit 3677 upon context transitions. See selinux_bprm_committing_creds. */ 3678 if (old_rlim->rlim_max != new_rlim->rlim_max) 3679 return current_has_perm(p, PROCESS__SETRLIMIT); 3680 3681 return 0; 3682} 3683 3684static int selinux_task_setscheduler(struct task_struct *p) 3685{ 3686 int rc; 3687 3688 rc = cap_task_setscheduler(p); 3689 if (rc) 3690 return rc; 3691 3692 return current_has_perm(p, PROCESS__SETSCHED); 3693} 3694 3695static int selinux_task_getscheduler(struct task_struct *p) 3696{ 3697 return current_has_perm(p, PROCESS__GETSCHED); 3698} 3699 3700static int selinux_task_movememory(struct task_struct *p) 3701{ 3702 return current_has_perm(p, PROCESS__SETSCHED); 3703} 3704 3705static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3706 int sig, u32 secid) 3707{ 3708 u32 perm; 3709 int rc; 3710 3711 if (!sig) 3712 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3713 else 3714 perm = signal_to_av(sig); 3715 if (secid) 3716 rc = avc_has_perm(secid, task_sid(p), 3717 SECCLASS_PROCESS, perm, NULL); 3718 else 3719 rc = current_has_perm(p, perm); 3720 return rc; 3721} 3722 3723static int selinux_task_wait(struct task_struct *p) 3724{ 3725 return task_has_perm(p, current, PROCESS__SIGCHLD); 3726} 3727 3728static void selinux_task_to_inode(struct task_struct *p, 3729 struct inode *inode) 3730{ 3731 struct inode_security_struct *isec = inode->i_security; 3732 u32 sid = task_sid(p); 3733 3734 isec->sid = sid; 3735 isec->initialized = 1; 3736} 3737 3738/* Returns error only if unable to parse addresses */ 3739static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3740 struct common_audit_data *ad, u8 *proto) 3741{ 3742 int offset, ihlen, ret = -EINVAL; 3743 struct iphdr _iph, *ih; 3744 3745 offset = skb_network_offset(skb); 3746 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3747 if (ih == NULL) 3748 goto out; 3749 3750 ihlen = ih->ihl * 4; 3751 if (ihlen < sizeof(_iph)) 3752 goto out; 3753 3754 ad->u.net->v4info.saddr = ih->saddr; 3755 ad->u.net->v4info.daddr = ih->daddr; 3756 ret = 0; 3757 3758 if (proto) 3759 *proto = ih->protocol; 3760 3761 switch (ih->protocol) { 3762 case IPPROTO_TCP: { 3763 struct tcphdr _tcph, *th; 3764 3765 if (ntohs(ih->frag_off) & IP_OFFSET) 3766 break; 3767 3768 offset += ihlen; 3769 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3770 if (th == NULL) 3771 break; 3772 3773 ad->u.net->sport = th->source; 3774 ad->u.net->dport = th->dest; 3775 break; 3776 } 3777 3778 case IPPROTO_UDP: { 3779 struct udphdr _udph, *uh; 3780 3781 if (ntohs(ih->frag_off) & IP_OFFSET) 3782 break; 3783 3784 offset += ihlen; 3785 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3786 if (uh == NULL) 3787 break; 3788 3789 ad->u.net->sport = uh->source; 3790 ad->u.net->dport = uh->dest; 3791 break; 3792 } 3793 3794 case IPPROTO_DCCP: { 3795 struct dccp_hdr _dccph, *dh; 3796 3797 if (ntohs(ih->frag_off) & IP_OFFSET) 3798 break; 3799 3800 offset += ihlen; 3801 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3802 if (dh == NULL) 3803 break; 3804 3805 ad->u.net->sport = dh->dccph_sport; 3806 ad->u.net->dport = dh->dccph_dport; 3807 break; 3808 } 3809 3810 default: 3811 break; 3812 } 3813out: 3814 return ret; 3815} 3816 3817#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3818 3819/* Returns error only if unable to parse addresses */ 3820static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3821 struct common_audit_data *ad, u8 *proto) 3822{ 3823 u8 nexthdr; 3824 int ret = -EINVAL, offset; 3825 struct ipv6hdr _ipv6h, *ip6; 3826 __be16 frag_off; 3827 3828 offset = skb_network_offset(skb); 3829 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3830 if (ip6 == NULL) 3831 goto out; 3832 3833 ad->u.net->v6info.saddr = ip6->saddr; 3834 ad->u.net->v6info.daddr = ip6->daddr; 3835 ret = 0; 3836 3837 nexthdr = ip6->nexthdr; 3838 offset += sizeof(_ipv6h); 3839 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 3840 if (offset < 0) 3841 goto out; 3842 3843 if (proto) 3844 *proto = nexthdr; 3845 3846 switch (nexthdr) { 3847 case IPPROTO_TCP: { 3848 struct tcphdr _tcph, *th; 3849 3850 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3851 if (th == NULL) 3852 break; 3853 3854 ad->u.net->sport = th->source; 3855 ad->u.net->dport = th->dest; 3856 break; 3857 } 3858 3859 case IPPROTO_UDP: { 3860 struct udphdr _udph, *uh; 3861 3862 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3863 if (uh == NULL) 3864 break; 3865 3866 ad->u.net->sport = uh->source; 3867 ad->u.net->dport = uh->dest; 3868 break; 3869 } 3870 3871 case IPPROTO_DCCP: { 3872 struct dccp_hdr _dccph, *dh; 3873 3874 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3875 if (dh == NULL) 3876 break; 3877 3878 ad->u.net->sport = dh->dccph_sport; 3879 ad->u.net->dport = dh->dccph_dport; 3880 break; 3881 } 3882 3883 /* includes fragments */ 3884 default: 3885 break; 3886 } 3887out: 3888 return ret; 3889} 3890 3891#endif /* IPV6 */ 3892 3893static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 3894 char **_addrp, int src, u8 *proto) 3895{ 3896 char *addrp; 3897 int ret; 3898 3899 switch (ad->u.net->family) { 3900 case PF_INET: 3901 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3902 if (ret) 3903 goto parse_error; 3904 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 3905 &ad->u.net->v4info.daddr); 3906 goto okay; 3907 3908#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3909 case PF_INET6: 3910 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3911 if (ret) 3912 goto parse_error; 3913 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 3914 &ad->u.net->v6info.daddr); 3915 goto okay; 3916#endif /* IPV6 */ 3917 default: 3918 addrp = NULL; 3919 goto okay; 3920 } 3921 3922parse_error: 3923 printk(KERN_WARNING 3924 "SELinux: failure in selinux_parse_skb()," 3925 " unable to parse packet\n"); 3926 return ret; 3927 3928okay: 3929 if (_addrp) 3930 *_addrp = addrp; 3931 return 0; 3932} 3933 3934/** 3935 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 3936 * @skb: the packet 3937 * @family: protocol family 3938 * @sid: the packet's peer label SID 3939 * 3940 * Description: 3941 * Check the various different forms of network peer labeling and determine 3942 * the peer label/SID for the packet; most of the magic actually occurs in 3943 * the security server function security_net_peersid_cmp(). The function 3944 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 3945 * or -EACCES if @sid is invalid due to inconsistencies with the different 3946 * peer labels. 3947 * 3948 */ 3949static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 3950{ 3951 int err; 3952 u32 xfrm_sid; 3953 u32 nlbl_sid; 3954 u32 nlbl_type; 3955 3956 err = selinux_xfrm_skb_sid(skb, &xfrm_sid); 3957 if (unlikely(err)) 3958 return -EACCES; 3959 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 3960 if (unlikely(err)) 3961 return -EACCES; 3962 3963 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid); 3964 if (unlikely(err)) { 3965 printk(KERN_WARNING 3966 "SELinux: failure in selinux_skb_peerlbl_sid()," 3967 " unable to determine packet's peer label\n"); 3968 return -EACCES; 3969 } 3970 3971 return 0; 3972} 3973 3974/** 3975 * selinux_conn_sid - Determine the child socket label for a connection 3976 * @sk_sid: the parent socket's SID 3977 * @skb_sid: the packet's SID 3978 * @conn_sid: the resulting connection SID 3979 * 3980 * If @skb_sid is valid then the user:role:type information from @sk_sid is 3981 * combined with the MLS information from @skb_sid in order to create 3982 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy 3983 * of @sk_sid. Returns zero on success, negative values on failure. 3984 * 3985 */ 3986static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) 3987{ 3988 int err = 0; 3989 3990 if (skb_sid != SECSID_NULL) 3991 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid); 3992 else 3993 *conn_sid = sk_sid; 3994 3995 return err; 3996} 3997 3998/* socket security operations */ 3999 4000static int socket_sockcreate_sid(const struct task_security_struct *tsec, 4001 u16 secclass, u32 *socksid) 4002{ 4003 if (tsec->sockcreate_sid > SECSID_NULL) { 4004 *socksid = tsec->sockcreate_sid; 4005 return 0; 4006 } 4007 4008 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL, 4009 socksid); 4010} 4011 4012static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms) 4013{ 4014 struct sk_security_struct *sksec = sk->sk_security; 4015 struct common_audit_data ad; 4016 struct lsm_network_audit net = {0,}; 4017 u32 tsid = task_sid(task); 4018 4019 if (sksec->sid == SECINITSID_KERNEL) 4020 return 0; 4021 4022 ad.type = LSM_AUDIT_DATA_NET; 4023 ad.u.net = &net; 4024 ad.u.net->sk = sk; 4025 4026 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad); 4027} 4028 4029static int selinux_socket_create(int family, int type, 4030 int protocol, int kern) 4031{ 4032 const struct task_security_struct *tsec = current_security(); 4033 u32 newsid; 4034 u16 secclass; 4035 int rc; 4036 4037 if (kern) 4038 return 0; 4039 4040 secclass = socket_type_to_security_class(family, type, protocol); 4041 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 4042 if (rc) 4043 return rc; 4044 4045 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 4046} 4047 4048static int selinux_socket_post_create(struct socket *sock, int family, 4049 int type, int protocol, int kern) 4050{ 4051 const struct task_security_struct *tsec = current_security(); 4052 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 4053 struct sk_security_struct *sksec; 4054 int err = 0; 4055 4056 isec->sclass = socket_type_to_security_class(family, type, protocol); 4057 4058 if (kern) 4059 isec->sid = SECINITSID_KERNEL; 4060 else { 4061 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid)); 4062 if (err) 4063 return err; 4064 } 4065 4066 isec->initialized = 1; 4067 4068 if (sock->sk) { 4069 sksec = sock->sk->sk_security; 4070 sksec->sid = isec->sid; 4071 sksec->sclass = isec->sclass; 4072 err = selinux_netlbl_socket_post_create(sock->sk, family); 4073 } 4074 4075 return err; 4076} 4077 4078/* Range of port numbers used to automatically bind. 4079 Need to determine whether we should perform a name_bind 4080 permission check between the socket and the port number. */ 4081 4082static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 4083{ 4084 struct sock *sk = sock->sk; 4085 u16 family; 4086 int err; 4087 4088 err = sock_has_perm(current, sk, SOCKET__BIND); 4089 if (err) 4090 goto out; 4091 4092 /* 4093 * If PF_INET or PF_INET6, check name_bind permission for the port. 4094 * Multiple address binding for SCTP is not supported yet: we just 4095 * check the first address now. 4096 */ 4097 family = sk->sk_family; 4098 if (family == PF_INET || family == PF_INET6) { 4099 char *addrp; 4100 struct sk_security_struct *sksec = sk->sk_security; 4101 struct common_audit_data ad; 4102 struct lsm_network_audit net = {0,}; 4103 struct sockaddr_in *addr4 = NULL; 4104 struct sockaddr_in6 *addr6 = NULL; 4105 unsigned short snum; 4106 u32 sid, node_perm; 4107 4108 if (family == PF_INET) { 4109 addr4 = (struct sockaddr_in *)address; 4110 snum = ntohs(addr4->sin_port); 4111 addrp = (char *)&addr4->sin_addr.s_addr; 4112 } else { 4113 addr6 = (struct sockaddr_in6 *)address; 4114 snum = ntohs(addr6->sin6_port); 4115 addrp = (char *)&addr6->sin6_addr.s6_addr; 4116 } 4117 4118 if (snum) { 4119 int low, high; 4120 4121 inet_get_local_port_range(sock_net(sk), &low, &high); 4122 4123 if (snum < max(PROT_SOCK, low) || snum > high) { 4124 err = sel_netport_sid(sk->sk_protocol, 4125 snum, &sid); 4126 if (err) 4127 goto out; 4128 ad.type = LSM_AUDIT_DATA_NET; 4129 ad.u.net = &net; 4130 ad.u.net->sport = htons(snum); 4131 ad.u.net->family = family; 4132 err = avc_has_perm(sksec->sid, sid, 4133 sksec->sclass, 4134 SOCKET__NAME_BIND, &ad); 4135 if (err) 4136 goto out; 4137 } 4138 } 4139 4140 switch (sksec->sclass) { 4141 case SECCLASS_TCP_SOCKET: 4142 node_perm = TCP_SOCKET__NODE_BIND; 4143 break; 4144 4145 case SECCLASS_UDP_SOCKET: 4146 node_perm = UDP_SOCKET__NODE_BIND; 4147 break; 4148 4149 case SECCLASS_DCCP_SOCKET: 4150 node_perm = DCCP_SOCKET__NODE_BIND; 4151 break; 4152 4153 default: 4154 node_perm = RAWIP_SOCKET__NODE_BIND; 4155 break; 4156 } 4157 4158 err = sel_netnode_sid(addrp, family, &sid); 4159 if (err) 4160 goto out; 4161 4162 ad.type = LSM_AUDIT_DATA_NET; 4163 ad.u.net = &net; 4164 ad.u.net->sport = htons(snum); 4165 ad.u.net->family = family; 4166 4167 if (family == PF_INET) 4168 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 4169 else 4170 ad.u.net->v6info.saddr = addr6->sin6_addr; 4171 4172 err = avc_has_perm(sksec->sid, sid, 4173 sksec->sclass, node_perm, &ad); 4174 if (err) 4175 goto out; 4176 } 4177out: 4178 return err; 4179} 4180 4181static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 4182{ 4183 struct sock *sk = sock->sk; 4184 struct sk_security_struct *sksec = sk->sk_security; 4185 int err; 4186 4187 err = sock_has_perm(current, sk, SOCKET__CONNECT); 4188 if (err) 4189 return err; 4190 4191 /* 4192 * If a TCP or DCCP socket, check name_connect permission for the port. 4193 */ 4194 if (sksec->sclass == SECCLASS_TCP_SOCKET || 4195 sksec->sclass == SECCLASS_DCCP_SOCKET) { 4196 struct common_audit_data ad; 4197 struct lsm_network_audit net = {0,}; 4198 struct sockaddr_in *addr4 = NULL; 4199 struct sockaddr_in6 *addr6 = NULL; 4200 unsigned short snum; 4201 u32 sid, perm; 4202 4203 if (sk->sk_family == PF_INET) { 4204 addr4 = (struct sockaddr_in *)address; 4205 if (addrlen < sizeof(struct sockaddr_in)) 4206 return -EINVAL; 4207 snum = ntohs(addr4->sin_port); 4208 } else { 4209 addr6 = (struct sockaddr_in6 *)address; 4210 if (addrlen < SIN6_LEN_RFC2133) 4211 return -EINVAL; 4212 snum = ntohs(addr6->sin6_port); 4213 } 4214 4215 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 4216 if (err) 4217 goto out; 4218 4219 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ? 4220 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 4221 4222 ad.type = LSM_AUDIT_DATA_NET; 4223 ad.u.net = &net; 4224 ad.u.net->dport = htons(snum); 4225 ad.u.net->family = sk->sk_family; 4226 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad); 4227 if (err) 4228 goto out; 4229 } 4230 4231 err = selinux_netlbl_socket_connect(sk, address); 4232 4233out: 4234 return err; 4235} 4236 4237static int selinux_socket_listen(struct socket *sock, int backlog) 4238{ 4239 return sock_has_perm(current, sock->sk, SOCKET__LISTEN); 4240} 4241 4242static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 4243{ 4244 int err; 4245 struct inode_security_struct *isec; 4246 struct inode_security_struct *newisec; 4247 4248 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT); 4249 if (err) 4250 return err; 4251 4252 newisec = SOCK_INODE(newsock)->i_security; 4253 4254 isec = SOCK_INODE(sock)->i_security; 4255 newisec->sclass = isec->sclass; 4256 newisec->sid = isec->sid; 4257 newisec->initialized = 1; 4258 4259 return 0; 4260} 4261 4262static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 4263 int size) 4264{ 4265 return sock_has_perm(current, sock->sk, SOCKET__WRITE); 4266} 4267 4268static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4269 int size, int flags) 4270{ 4271 return sock_has_perm(current, sock->sk, SOCKET__READ); 4272} 4273 4274static int selinux_socket_getsockname(struct socket *sock) 4275{ 4276 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 4277} 4278 4279static int selinux_socket_getpeername(struct socket *sock) 4280{ 4281 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 4282} 4283 4284static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 4285{ 4286 int err; 4287 4288 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT); 4289 if (err) 4290 return err; 4291 4292 return selinux_netlbl_socket_setsockopt(sock, level, optname); 4293} 4294 4295static int selinux_socket_getsockopt(struct socket *sock, int level, 4296 int optname) 4297{ 4298 return sock_has_perm(current, sock->sk, SOCKET__GETOPT); 4299} 4300 4301static int selinux_socket_shutdown(struct socket *sock, int how) 4302{ 4303 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN); 4304} 4305 4306static int selinux_socket_unix_stream_connect(struct sock *sock, 4307 struct sock *other, 4308 struct sock *newsk) 4309{ 4310 struct sk_security_struct *sksec_sock = sock->sk_security; 4311 struct sk_security_struct *sksec_other = other->sk_security; 4312 struct sk_security_struct *sksec_new = newsk->sk_security; 4313 struct common_audit_data ad; 4314 struct lsm_network_audit net = {0,}; 4315 int err; 4316 4317 ad.type = LSM_AUDIT_DATA_NET; 4318 ad.u.net = &net; 4319 ad.u.net->sk = other; 4320 4321 err = avc_has_perm(sksec_sock->sid, sksec_other->sid, 4322 sksec_other->sclass, 4323 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 4324 if (err) 4325 return err; 4326 4327 /* server child socket */ 4328 sksec_new->peer_sid = sksec_sock->sid; 4329 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid, 4330 &sksec_new->sid); 4331 if (err) 4332 return err; 4333 4334 /* connecting socket */ 4335 sksec_sock->peer_sid = sksec_new->sid; 4336 4337 return 0; 4338} 4339 4340static int selinux_socket_unix_may_send(struct socket *sock, 4341 struct socket *other) 4342{ 4343 struct sk_security_struct *ssec = sock->sk->sk_security; 4344 struct sk_security_struct *osec = other->sk->sk_security; 4345 struct common_audit_data ad; 4346 struct lsm_network_audit net = {0,}; 4347 4348 ad.type = LSM_AUDIT_DATA_NET; 4349 ad.u.net = &net; 4350 ad.u.net->sk = other->sk; 4351 4352 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 4353 &ad); 4354} 4355 4356static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, 4357 char *addrp, u16 family, u32 peer_sid, 4358 struct common_audit_data *ad) 4359{ 4360 int err; 4361 u32 if_sid; 4362 u32 node_sid; 4363 4364 err = sel_netif_sid(ns, ifindex, &if_sid); 4365 if (err) 4366 return err; 4367 err = avc_has_perm(peer_sid, if_sid, 4368 SECCLASS_NETIF, NETIF__INGRESS, ad); 4369 if (err) 4370 return err; 4371 4372 err = sel_netnode_sid(addrp, family, &node_sid); 4373 if (err) 4374 return err; 4375 return avc_has_perm(peer_sid, node_sid, 4376 SECCLASS_NODE, NODE__RECVFROM, ad); 4377} 4378 4379static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4380 u16 family) 4381{ 4382 int err = 0; 4383 struct sk_security_struct *sksec = sk->sk_security; 4384 u32 sk_sid = sksec->sid; 4385 struct common_audit_data ad; 4386 struct lsm_network_audit net = {0,}; 4387 char *addrp; 4388 4389 ad.type = LSM_AUDIT_DATA_NET; 4390 ad.u.net = &net; 4391 ad.u.net->netif = skb->skb_iif; 4392 ad.u.net->family = family; 4393 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4394 if (err) 4395 return err; 4396 4397 if (selinux_secmark_enabled()) { 4398 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4399 PACKET__RECV, &ad); 4400 if (err) 4401 return err; 4402 } 4403 4404 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4405 if (err) 4406 return err; 4407 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4408 4409 return err; 4410} 4411 4412static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4413{ 4414 int err; 4415 struct sk_security_struct *sksec = sk->sk_security; 4416 u16 family = sk->sk_family; 4417 u32 sk_sid = sksec->sid; 4418 struct common_audit_data ad; 4419 struct lsm_network_audit net = {0,}; 4420 char *addrp; 4421 u8 secmark_active; 4422 u8 peerlbl_active; 4423 4424 if (family != PF_INET && family != PF_INET6) 4425 return 0; 4426 4427 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4428 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4429 family = PF_INET; 4430 4431 /* If any sort of compatibility mode is enabled then handoff processing 4432 * to the selinux_sock_rcv_skb_compat() function to deal with the 4433 * special handling. We do this in an attempt to keep this function 4434 * as fast and as clean as possible. */ 4435 if (!selinux_policycap_netpeer) 4436 return selinux_sock_rcv_skb_compat(sk, skb, family); 4437 4438 secmark_active = selinux_secmark_enabled(); 4439 peerlbl_active = selinux_peerlbl_enabled(); 4440 if (!secmark_active && !peerlbl_active) 4441 return 0; 4442 4443 ad.type = LSM_AUDIT_DATA_NET; 4444 ad.u.net = &net; 4445 ad.u.net->netif = skb->skb_iif; 4446 ad.u.net->family = family; 4447 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4448 if (err) 4449 return err; 4450 4451 if (peerlbl_active) { 4452 u32 peer_sid; 4453 4454 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4455 if (err) 4456 return err; 4457 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, 4458 addrp, family, peer_sid, &ad); 4459 if (err) { 4460 selinux_netlbl_err(skb, err, 0); 4461 return err; 4462 } 4463 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 4464 PEER__RECV, &ad); 4465 if (err) { 4466 selinux_netlbl_err(skb, err, 0); 4467 return err; 4468 } 4469 } 4470 4471 if (secmark_active) { 4472 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4473 PACKET__RECV, &ad); 4474 if (err) 4475 return err; 4476 } 4477 4478 return err; 4479} 4480 4481static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 4482 int __user *optlen, unsigned len) 4483{ 4484 int err = 0; 4485 char *scontext; 4486 u32 scontext_len; 4487 struct sk_security_struct *sksec = sock->sk->sk_security; 4488 u32 peer_sid = SECSID_NULL; 4489 4490 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 4491 sksec->sclass == SECCLASS_TCP_SOCKET) 4492 peer_sid = sksec->peer_sid; 4493 if (peer_sid == SECSID_NULL) 4494 return -ENOPROTOOPT; 4495 4496 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 4497 if (err) 4498 return err; 4499 4500 if (scontext_len > len) { 4501 err = -ERANGE; 4502 goto out_len; 4503 } 4504 4505 if (copy_to_user(optval, scontext, scontext_len)) 4506 err = -EFAULT; 4507 4508out_len: 4509 if (put_user(scontext_len, optlen)) 4510 err = -EFAULT; 4511 kfree(scontext); 4512 return err; 4513} 4514 4515static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4516{ 4517 u32 peer_secid = SECSID_NULL; 4518 u16 family; 4519 4520 if (skb && skb->protocol == htons(ETH_P_IP)) 4521 family = PF_INET; 4522 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 4523 family = PF_INET6; 4524 else if (sock) 4525 family = sock->sk->sk_family; 4526 else 4527 goto out; 4528 4529 if (sock && family == PF_UNIX) 4530 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid); 4531 else if (skb) 4532 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 4533 4534out: 4535 *secid = peer_secid; 4536 if (peer_secid == SECSID_NULL) 4537 return -EINVAL; 4538 return 0; 4539} 4540 4541static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4542{ 4543 struct sk_security_struct *sksec; 4544 4545 sksec = kzalloc(sizeof(*sksec), priority); 4546 if (!sksec) 4547 return -ENOMEM; 4548 4549 sksec->peer_sid = SECINITSID_UNLABELED; 4550 sksec->sid = SECINITSID_UNLABELED; 4551 selinux_netlbl_sk_security_reset(sksec); 4552 sk->sk_security = sksec; 4553 4554 return 0; 4555} 4556 4557static void selinux_sk_free_security(struct sock *sk) 4558{ 4559 struct sk_security_struct *sksec = sk->sk_security; 4560 4561 sk->sk_security = NULL; 4562 selinux_netlbl_sk_security_free(sksec); 4563 kfree(sksec); 4564} 4565 4566static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4567{ 4568 struct sk_security_struct *sksec = sk->sk_security; 4569 struct sk_security_struct *newsksec = newsk->sk_security; 4570 4571 newsksec->sid = sksec->sid; 4572 newsksec->peer_sid = sksec->peer_sid; 4573 newsksec->sclass = sksec->sclass; 4574 4575 selinux_netlbl_sk_security_reset(newsksec); 4576} 4577 4578static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4579{ 4580 if (!sk) 4581 *secid = SECINITSID_ANY_SOCKET; 4582 else { 4583 struct sk_security_struct *sksec = sk->sk_security; 4584 4585 *secid = sksec->sid; 4586 } 4587} 4588 4589static void selinux_sock_graft(struct sock *sk, struct socket *parent) 4590{ 4591 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 4592 struct sk_security_struct *sksec = sk->sk_security; 4593 4594 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4595 sk->sk_family == PF_UNIX) 4596 isec->sid = sksec->sid; 4597 sksec->sclass = isec->sclass; 4598} 4599 4600static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4601 struct request_sock *req) 4602{ 4603 struct sk_security_struct *sksec = sk->sk_security; 4604 int err; 4605 u16 family = req->rsk_ops->family; 4606 u32 connsid; 4607 u32 peersid; 4608 4609 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 4610 if (err) 4611 return err; 4612 err = selinux_conn_sid(sksec->sid, peersid, &connsid); 4613 if (err) 4614 return err; 4615 req->secid = connsid; 4616 req->peer_secid = peersid; 4617 4618 return selinux_netlbl_inet_conn_request(req, family); 4619} 4620 4621static void selinux_inet_csk_clone(struct sock *newsk, 4622 const struct request_sock *req) 4623{ 4624 struct sk_security_struct *newsksec = newsk->sk_security; 4625 4626 newsksec->sid = req->secid; 4627 newsksec->peer_sid = req->peer_secid; 4628 /* NOTE: Ideally, we should also get the isec->sid for the 4629 new socket in sync, but we don't have the isec available yet. 4630 So we will wait until sock_graft to do it, by which 4631 time it will have been created and available. */ 4632 4633 /* We don't need to take any sort of lock here as we are the only 4634 * thread with access to newsksec */ 4635 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 4636} 4637 4638static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 4639{ 4640 u16 family = sk->sk_family; 4641 struct sk_security_struct *sksec = sk->sk_security; 4642 4643 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4644 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4645 family = PF_INET; 4646 4647 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 4648} 4649 4650static int selinux_secmark_relabel_packet(u32 sid) 4651{ 4652 const struct task_security_struct *__tsec; 4653 u32 tsid; 4654 4655 __tsec = current_security(); 4656 tsid = __tsec->sid; 4657 4658 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL); 4659} 4660 4661static void selinux_secmark_refcount_inc(void) 4662{ 4663 atomic_inc(&selinux_secmark_refcount); 4664} 4665 4666static void selinux_secmark_refcount_dec(void) 4667{ 4668 atomic_dec(&selinux_secmark_refcount); 4669} 4670 4671static void selinux_req_classify_flow(const struct request_sock *req, 4672 struct flowi *fl) 4673{ 4674 fl->flowi_secid = req->secid; 4675} 4676 4677static int selinux_tun_dev_alloc_security(void **security) 4678{ 4679 struct tun_security_struct *tunsec; 4680 4681 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL); 4682 if (!tunsec) 4683 return -ENOMEM; 4684 tunsec->sid = current_sid(); 4685 4686 *security = tunsec; 4687 return 0; 4688} 4689 4690static void selinux_tun_dev_free_security(void *security) 4691{ 4692 kfree(security); 4693} 4694 4695static int selinux_tun_dev_create(void) 4696{ 4697 u32 sid = current_sid(); 4698 4699 /* we aren't taking into account the "sockcreate" SID since the socket 4700 * that is being created here is not a socket in the traditional sense, 4701 * instead it is a private sock, accessible only to the kernel, and 4702 * representing a wide range of network traffic spanning multiple 4703 * connections unlike traditional sockets - check the TUN driver to 4704 * get a better understanding of why this socket is special */ 4705 4706 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 4707 NULL); 4708} 4709 4710static int selinux_tun_dev_attach_queue(void *security) 4711{ 4712 struct tun_security_struct *tunsec = security; 4713 4714 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, 4715 TUN_SOCKET__ATTACH_QUEUE, NULL); 4716} 4717 4718static int selinux_tun_dev_attach(struct sock *sk, void *security) 4719{ 4720 struct tun_security_struct *tunsec = security; 4721 struct sk_security_struct *sksec = sk->sk_security; 4722 4723 /* we don't currently perform any NetLabel based labeling here and it 4724 * isn't clear that we would want to do so anyway; while we could apply 4725 * labeling without the support of the TUN user the resulting labeled 4726 * traffic from the other end of the connection would almost certainly 4727 * cause confusion to the TUN user that had no idea network labeling 4728 * protocols were being used */ 4729 4730 sksec->sid = tunsec->sid; 4731 sksec->sclass = SECCLASS_TUN_SOCKET; 4732 4733 return 0; 4734} 4735 4736static int selinux_tun_dev_open(void *security) 4737{ 4738 struct tun_security_struct *tunsec = security; 4739 u32 sid = current_sid(); 4740 int err; 4741 4742 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET, 4743 TUN_SOCKET__RELABELFROM, NULL); 4744 if (err) 4745 return err; 4746 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, 4747 TUN_SOCKET__RELABELTO, NULL); 4748 if (err) 4749 return err; 4750 tunsec->sid = sid; 4751 4752 return 0; 4753} 4754 4755static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 4756{ 4757 int err = 0; 4758 u32 perm; 4759 struct nlmsghdr *nlh; 4760 struct sk_security_struct *sksec = sk->sk_security; 4761 4762 if (skb->len < NLMSG_HDRLEN) { 4763 err = -EINVAL; 4764 goto out; 4765 } 4766 nlh = nlmsg_hdr(skb); 4767 4768 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm); 4769 if (err) { 4770 if (err == -EINVAL) { 4771 printk(KERN_WARNING 4772 "SELinux: unrecognized netlink message:" 4773 " protocol=%hu nlmsg_type=%hu sclass=%hu\n", 4774 sk->sk_protocol, nlh->nlmsg_type, sksec->sclass); 4775 if (!selinux_enforcing || security_get_allow_unknown()) 4776 err = 0; 4777 } 4778 4779 /* Ignore */ 4780 if (err == -ENOENT) 4781 err = 0; 4782 goto out; 4783 } 4784 4785 err = sock_has_perm(current, sk, perm); 4786out: 4787 return err; 4788} 4789 4790#ifdef CONFIG_NETFILTER 4791 4792static unsigned int selinux_ip_forward(struct sk_buff *skb, 4793 const struct net_device *indev, 4794 u16 family) 4795{ 4796 int err; 4797 char *addrp; 4798 u32 peer_sid; 4799 struct common_audit_data ad; 4800 struct lsm_network_audit net = {0,}; 4801 u8 secmark_active; 4802 u8 netlbl_active; 4803 u8 peerlbl_active; 4804 4805 if (!selinux_policycap_netpeer) 4806 return NF_ACCEPT; 4807 4808 secmark_active = selinux_secmark_enabled(); 4809 netlbl_active = netlbl_enabled(); 4810 peerlbl_active = selinux_peerlbl_enabled(); 4811 if (!secmark_active && !peerlbl_active) 4812 return NF_ACCEPT; 4813 4814 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 4815 return NF_DROP; 4816 4817 ad.type = LSM_AUDIT_DATA_NET; 4818 ad.u.net = &net; 4819 ad.u.net->netif = indev->ifindex; 4820 ad.u.net->family = family; 4821 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 4822 return NF_DROP; 4823 4824 if (peerlbl_active) { 4825 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex, 4826 addrp, family, peer_sid, &ad); 4827 if (err) { 4828 selinux_netlbl_err(skb, err, 1); 4829 return NF_DROP; 4830 } 4831 } 4832 4833 if (secmark_active) 4834 if (avc_has_perm(peer_sid, skb->secmark, 4835 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 4836 return NF_DROP; 4837 4838 if (netlbl_active) 4839 /* we do this in the FORWARD path and not the POST_ROUTING 4840 * path because we want to make sure we apply the necessary 4841 * labeling before IPsec is applied so we can leverage AH 4842 * protection */ 4843 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 4844 return NF_DROP; 4845 4846 return NF_ACCEPT; 4847} 4848 4849static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops, 4850 struct sk_buff *skb, 4851 const struct nf_hook_state *state) 4852{ 4853 return selinux_ip_forward(skb, state->in, PF_INET); 4854} 4855 4856#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4857static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops, 4858 struct sk_buff *skb, 4859 const struct nf_hook_state *state) 4860{ 4861 return selinux_ip_forward(skb, state->in, PF_INET6); 4862} 4863#endif /* IPV6 */ 4864 4865static unsigned int selinux_ip_output(struct sk_buff *skb, 4866 u16 family) 4867{ 4868 struct sock *sk; 4869 u32 sid; 4870 4871 if (!netlbl_enabled()) 4872 return NF_ACCEPT; 4873 4874 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 4875 * because we want to make sure we apply the necessary labeling 4876 * before IPsec is applied so we can leverage AH protection */ 4877 sk = skb->sk; 4878 if (sk) { 4879 struct sk_security_struct *sksec; 4880 4881 if (sk->sk_state == TCP_LISTEN) 4882 /* if the socket is the listening state then this 4883 * packet is a SYN-ACK packet which means it needs to 4884 * be labeled based on the connection/request_sock and 4885 * not the parent socket. unfortunately, we can't 4886 * lookup the request_sock yet as it isn't queued on 4887 * the parent socket until after the SYN-ACK is sent. 4888 * the "solution" is to simply pass the packet as-is 4889 * as any IP option based labeling should be copied 4890 * from the initial connection request (in the IP 4891 * layer). it is far from ideal, but until we get a 4892 * security label in the packet itself this is the 4893 * best we can do. */ 4894 return NF_ACCEPT; 4895 4896 /* standard practice, label using the parent socket */ 4897 sksec = sk->sk_security; 4898 sid = sksec->sid; 4899 } else 4900 sid = SECINITSID_KERNEL; 4901 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 4902 return NF_DROP; 4903 4904 return NF_ACCEPT; 4905} 4906 4907static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops, 4908 struct sk_buff *skb, 4909 const struct nf_hook_state *state) 4910{ 4911 return selinux_ip_output(skb, PF_INET); 4912} 4913 4914static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 4915 int ifindex, 4916 u16 family) 4917{ 4918 struct sock *sk = skb->sk; 4919 struct sk_security_struct *sksec; 4920 struct common_audit_data ad; 4921 struct lsm_network_audit net = {0,}; 4922 char *addrp; 4923 u8 proto; 4924 4925 if (sk == NULL) 4926 return NF_ACCEPT; 4927 sksec = sk->sk_security; 4928 4929 ad.type = LSM_AUDIT_DATA_NET; 4930 ad.u.net = &net; 4931 ad.u.net->netif = ifindex; 4932 ad.u.net->family = family; 4933 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 4934 return NF_DROP; 4935 4936 if (selinux_secmark_enabled()) 4937 if (avc_has_perm(sksec->sid, skb->secmark, 4938 SECCLASS_PACKET, PACKET__SEND, &ad)) 4939 return NF_DROP_ERR(-ECONNREFUSED); 4940 4941 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 4942 return NF_DROP_ERR(-ECONNREFUSED); 4943 4944 return NF_ACCEPT; 4945} 4946 4947static unsigned int selinux_ip_postroute(struct sk_buff *skb, 4948 const struct net_device *outdev, 4949 u16 family) 4950{ 4951 u32 secmark_perm; 4952 u32 peer_sid; 4953 int ifindex = outdev->ifindex; 4954 struct sock *sk; 4955 struct common_audit_data ad; 4956 struct lsm_network_audit net = {0,}; 4957 char *addrp; 4958 u8 secmark_active; 4959 u8 peerlbl_active; 4960 4961 /* If any sort of compatibility mode is enabled then handoff processing 4962 * to the selinux_ip_postroute_compat() function to deal with the 4963 * special handling. We do this in an attempt to keep this function 4964 * as fast and as clean as possible. */ 4965 if (!selinux_policycap_netpeer) 4966 return selinux_ip_postroute_compat(skb, ifindex, family); 4967 4968 secmark_active = selinux_secmark_enabled(); 4969 peerlbl_active = selinux_peerlbl_enabled(); 4970 if (!secmark_active && !peerlbl_active) 4971 return NF_ACCEPT; 4972 4973 sk = skb->sk; 4974 4975#ifdef CONFIG_XFRM 4976 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 4977 * packet transformation so allow the packet to pass without any checks 4978 * since we'll have another chance to perform access control checks 4979 * when the packet is on it's final way out. 4980 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 4981 * is NULL, in this case go ahead and apply access control. 4982 * NOTE: if this is a local socket (skb->sk != NULL) that is in the 4983 * TCP listening state we cannot wait until the XFRM processing 4984 * is done as we will miss out on the SA label if we do; 4985 * unfortunately, this means more work, but it is only once per 4986 * connection. */ 4987 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && 4988 !(sk != NULL && sk->sk_state == TCP_LISTEN)) 4989 return NF_ACCEPT; 4990#endif 4991 4992 if (sk == NULL) { 4993 /* Without an associated socket the packet is either coming 4994 * from the kernel or it is being forwarded; check the packet 4995 * to determine which and if the packet is being forwarded 4996 * query the packet directly to determine the security label. */ 4997 if (skb->skb_iif) { 4998 secmark_perm = PACKET__FORWARD_OUT; 4999 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 5000 return NF_DROP; 5001 } else { 5002 secmark_perm = PACKET__SEND; 5003 peer_sid = SECINITSID_KERNEL; 5004 } 5005 } else if (sk->sk_state == TCP_LISTEN) { 5006 /* Locally generated packet but the associated socket is in the 5007 * listening state which means this is a SYN-ACK packet. In 5008 * this particular case the correct security label is assigned 5009 * to the connection/request_sock but unfortunately we can't 5010 * query the request_sock as it isn't queued on the parent 5011 * socket until after the SYN-ACK packet is sent; the only 5012 * viable choice is to regenerate the label like we do in 5013 * selinux_inet_conn_request(). See also selinux_ip_output() 5014 * for similar problems. */ 5015 u32 skb_sid; 5016 struct sk_security_struct *sksec = sk->sk_security; 5017 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) 5018 return NF_DROP; 5019 /* At this point, if the returned skb peerlbl is SECSID_NULL 5020 * and the packet has been through at least one XFRM 5021 * transformation then we must be dealing with the "final" 5022 * form of labeled IPsec packet; since we've already applied 5023 * all of our access controls on this packet we can safely 5024 * pass the packet. */ 5025 if (skb_sid == SECSID_NULL) { 5026 switch (family) { 5027 case PF_INET: 5028 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 5029 return NF_ACCEPT; 5030 break; 5031 case PF_INET6: 5032 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 5033 return NF_ACCEPT; 5034 break; 5035 default: 5036 return NF_DROP_ERR(-ECONNREFUSED); 5037 } 5038 } 5039 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) 5040 return NF_DROP; 5041 secmark_perm = PACKET__SEND; 5042 } else { 5043 /* Locally generated packet, fetch the security label from the 5044 * associated socket. */ 5045 struct sk_security_struct *sksec = sk->sk_security; 5046 peer_sid = sksec->sid; 5047 secmark_perm = PACKET__SEND; 5048 } 5049 5050 ad.type = LSM_AUDIT_DATA_NET; 5051 ad.u.net = &net; 5052 ad.u.net->netif = ifindex; 5053 ad.u.net->family = family; 5054 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 5055 return NF_DROP; 5056 5057 if (secmark_active) 5058 if (avc_has_perm(peer_sid, skb->secmark, 5059 SECCLASS_PACKET, secmark_perm, &ad)) 5060 return NF_DROP_ERR(-ECONNREFUSED); 5061 5062 if (peerlbl_active) { 5063 u32 if_sid; 5064 u32 node_sid; 5065 5066 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid)) 5067 return NF_DROP; 5068 if (avc_has_perm(peer_sid, if_sid, 5069 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 5070 return NF_DROP_ERR(-ECONNREFUSED); 5071 5072 if (sel_netnode_sid(addrp, family, &node_sid)) 5073 return NF_DROP; 5074 if (avc_has_perm(peer_sid, node_sid, 5075 SECCLASS_NODE, NODE__SENDTO, &ad)) 5076 return NF_DROP_ERR(-ECONNREFUSED); 5077 } 5078 5079 return NF_ACCEPT; 5080} 5081 5082static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops, 5083 struct sk_buff *skb, 5084 const struct nf_hook_state *state) 5085{ 5086 return selinux_ip_postroute(skb, state->out, PF_INET); 5087} 5088 5089#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5090static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops, 5091 struct sk_buff *skb, 5092 const struct nf_hook_state *state) 5093{ 5094 return selinux_ip_postroute(skb, state->out, PF_INET6); 5095} 5096#endif /* IPV6 */ 5097 5098#endif /* CONFIG_NETFILTER */ 5099 5100static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 5101{ 5102 int err; 5103 5104 err = cap_netlink_send(sk, skb); 5105 if (err) 5106 return err; 5107 5108 return selinux_nlmsg_perm(sk, skb); 5109} 5110 5111static int ipc_alloc_security(struct task_struct *task, 5112 struct kern_ipc_perm *perm, 5113 u16 sclass) 5114{ 5115 struct ipc_security_struct *isec; 5116 u32 sid; 5117 5118 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 5119 if (!isec) 5120 return -ENOMEM; 5121 5122 sid = task_sid(task); 5123 isec->sclass = sclass; 5124 isec->sid = sid; 5125 perm->security = isec; 5126 5127 return 0; 5128} 5129 5130static void ipc_free_security(struct kern_ipc_perm *perm) 5131{ 5132 struct ipc_security_struct *isec = perm->security; 5133 perm->security = NULL; 5134 kfree(isec); 5135} 5136 5137static int msg_msg_alloc_security(struct msg_msg *msg) 5138{ 5139 struct msg_security_struct *msec; 5140 5141 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 5142 if (!msec) 5143 return -ENOMEM; 5144 5145 msec->sid = SECINITSID_UNLABELED; 5146 msg->security = msec; 5147 5148 return 0; 5149} 5150 5151static void msg_msg_free_security(struct msg_msg *msg) 5152{ 5153 struct msg_security_struct *msec = msg->security; 5154 5155 msg->security = NULL; 5156 kfree(msec); 5157} 5158 5159static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 5160 u32 perms) 5161{ 5162 struct ipc_security_struct *isec; 5163 struct common_audit_data ad; 5164 u32 sid = current_sid(); 5165 5166 isec = ipc_perms->security; 5167 5168 ad.type = LSM_AUDIT_DATA_IPC; 5169 ad.u.ipc_id = ipc_perms->key; 5170 5171 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 5172} 5173 5174static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 5175{ 5176 return msg_msg_alloc_security(msg); 5177} 5178 5179static void selinux_msg_msg_free_security(struct msg_msg *msg) 5180{ 5181 msg_msg_free_security(msg); 5182} 5183 5184/* message queue security operations */ 5185static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 5186{ 5187 struct ipc_security_struct *isec; 5188 struct common_audit_data ad; 5189 u32 sid = current_sid(); 5190 int rc; 5191 5192 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 5193 if (rc) 5194 return rc; 5195 5196 isec = msq->q_perm.security; 5197 5198 ad.type = LSM_AUDIT_DATA_IPC; 5199 ad.u.ipc_id = msq->q_perm.key; 5200 5201 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5202 MSGQ__CREATE, &ad); 5203 if (rc) { 5204 ipc_free_security(&msq->q_perm); 5205 return rc; 5206 } 5207 return 0; 5208} 5209 5210static void selinux_msg_queue_free_security(struct msg_queue *msq) 5211{ 5212 ipc_free_security(&msq->q_perm); 5213} 5214 5215static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 5216{ 5217 struct ipc_security_struct *isec; 5218 struct common_audit_data ad; 5219 u32 sid = current_sid(); 5220 5221 isec = msq->q_perm.security; 5222 5223 ad.type = LSM_AUDIT_DATA_IPC; 5224 ad.u.ipc_id = msq->q_perm.key; 5225 5226 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5227 MSGQ__ASSOCIATE, &ad); 5228} 5229 5230static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 5231{ 5232 int err; 5233 int perms; 5234 5235 switch (cmd) { 5236 case IPC_INFO: 5237 case MSG_INFO: 5238 /* No specific object, just general system-wide information. */ 5239 return task_has_system(current, SYSTEM__IPC_INFO); 5240 case IPC_STAT: 5241 case MSG_STAT: 5242 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 5243 break; 5244 case IPC_SET: 5245 perms = MSGQ__SETATTR; 5246 break; 5247 case IPC_RMID: 5248 perms = MSGQ__DESTROY; 5249 break; 5250 default: 5251 return 0; 5252 } 5253 5254 err = ipc_has_perm(&msq->q_perm, perms); 5255 return err; 5256} 5257 5258static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 5259{ 5260 struct ipc_security_struct *isec; 5261 struct msg_security_struct *msec; 5262 struct common_audit_data ad; 5263 u32 sid = current_sid(); 5264 int rc; 5265 5266 isec = msq->q_perm.security; 5267 msec = msg->security; 5268 5269 /* 5270 * First time through, need to assign label to the message 5271 */ 5272 if (msec->sid == SECINITSID_UNLABELED) { 5273 /* 5274 * Compute new sid based on current process and 5275 * message queue this message will be stored in 5276 */ 5277 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG, 5278 NULL, &msec->sid); 5279 if (rc) 5280 return rc; 5281 } 5282 5283 ad.type = LSM_AUDIT_DATA_IPC; 5284 ad.u.ipc_id = msq->q_perm.key; 5285 5286 /* Can this process write to the queue? */ 5287 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5288 MSGQ__WRITE, &ad); 5289 if (!rc) 5290 /* Can this process send the message */ 5291 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 5292 MSG__SEND, &ad); 5293 if (!rc) 5294 /* Can the message be put in the queue? */ 5295 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 5296 MSGQ__ENQUEUE, &ad); 5297 5298 return rc; 5299} 5300 5301static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 5302 struct task_struct *target, 5303 long type, int mode) 5304{ 5305 struct ipc_security_struct *isec; 5306 struct msg_security_struct *msec; 5307 struct common_audit_data ad; 5308 u32 sid = task_sid(target); 5309 int rc; 5310 5311 isec = msq->q_perm.security; 5312 msec = msg->security; 5313 5314 ad.type = LSM_AUDIT_DATA_IPC; 5315 ad.u.ipc_id = msq->q_perm.key; 5316 5317 rc = avc_has_perm(sid, isec->sid, 5318 SECCLASS_MSGQ, MSGQ__READ, &ad); 5319 if (!rc) 5320 rc = avc_has_perm(sid, msec->sid, 5321 SECCLASS_MSG, MSG__RECEIVE, &ad); 5322 return rc; 5323} 5324 5325/* Shared Memory security operations */ 5326static int selinux_shm_alloc_security(struct shmid_kernel *shp) 5327{ 5328 struct ipc_security_struct *isec; 5329 struct common_audit_data ad; 5330 u32 sid = current_sid(); 5331 int rc; 5332 5333 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 5334 if (rc) 5335 return rc; 5336 5337 isec = shp->shm_perm.security; 5338 5339 ad.type = LSM_AUDIT_DATA_IPC; 5340 ad.u.ipc_id = shp->shm_perm.key; 5341 5342 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM, 5343 SHM__CREATE, &ad); 5344 if (rc) { 5345 ipc_free_security(&shp->shm_perm); 5346 return rc; 5347 } 5348 return 0; 5349} 5350 5351static void selinux_shm_free_security(struct shmid_kernel *shp) 5352{ 5353 ipc_free_security(&shp->shm_perm); 5354} 5355 5356static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 5357{ 5358 struct ipc_security_struct *isec; 5359 struct common_audit_data ad; 5360 u32 sid = current_sid(); 5361 5362 isec = shp->shm_perm.security; 5363 5364 ad.type = LSM_AUDIT_DATA_IPC; 5365 ad.u.ipc_id = shp->shm_perm.key; 5366 5367 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 5368 SHM__ASSOCIATE, &ad); 5369} 5370 5371/* Note, at this point, shp is locked down */ 5372static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 5373{ 5374 int perms; 5375 int err; 5376 5377 switch (cmd) { 5378 case IPC_INFO: 5379 case SHM_INFO: 5380 /* No specific object, just general system-wide information. */ 5381 return task_has_system(current, SYSTEM__IPC_INFO); 5382 case IPC_STAT: 5383 case SHM_STAT: 5384 perms = SHM__GETATTR | SHM__ASSOCIATE; 5385 break; 5386 case IPC_SET: 5387 perms = SHM__SETATTR; 5388 break; 5389 case SHM_LOCK: 5390 case SHM_UNLOCK: 5391 perms = SHM__LOCK; 5392 break; 5393 case IPC_RMID: 5394 perms = SHM__DESTROY; 5395 break; 5396 default: 5397 return 0; 5398 } 5399 5400 err = ipc_has_perm(&shp->shm_perm, perms); 5401 return err; 5402} 5403 5404static int selinux_shm_shmat(struct shmid_kernel *shp, 5405 char __user *shmaddr, int shmflg) 5406{ 5407 u32 perms; 5408 5409 if (shmflg & SHM_RDONLY) 5410 perms = SHM__READ; 5411 else 5412 perms = SHM__READ | SHM__WRITE; 5413 5414 return ipc_has_perm(&shp->shm_perm, perms); 5415} 5416 5417/* Semaphore security operations */ 5418static int selinux_sem_alloc_security(struct sem_array *sma) 5419{ 5420 struct ipc_security_struct *isec; 5421 struct common_audit_data ad; 5422 u32 sid = current_sid(); 5423 int rc; 5424 5425 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 5426 if (rc) 5427 return rc; 5428 5429 isec = sma->sem_perm.security; 5430 5431 ad.type = LSM_AUDIT_DATA_IPC; 5432 ad.u.ipc_id = sma->sem_perm.key; 5433 5434 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5435 SEM__CREATE, &ad); 5436 if (rc) { 5437 ipc_free_security(&sma->sem_perm); 5438 return rc; 5439 } 5440 return 0; 5441} 5442 5443static void selinux_sem_free_security(struct sem_array *sma) 5444{ 5445 ipc_free_security(&sma->sem_perm); 5446} 5447 5448static int selinux_sem_associate(struct sem_array *sma, int semflg) 5449{ 5450 struct ipc_security_struct *isec; 5451 struct common_audit_data ad; 5452 u32 sid = current_sid(); 5453 5454 isec = sma->sem_perm.security; 5455 5456 ad.type = LSM_AUDIT_DATA_IPC; 5457 ad.u.ipc_id = sma->sem_perm.key; 5458 5459 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5460 SEM__ASSOCIATE, &ad); 5461} 5462 5463/* Note, at this point, sma is locked down */ 5464static int selinux_sem_semctl(struct sem_array *sma, int cmd) 5465{ 5466 int err; 5467 u32 perms; 5468 5469 switch (cmd) { 5470 case IPC_INFO: 5471 case SEM_INFO: 5472 /* No specific object, just general system-wide information. */ 5473 return task_has_system(current, SYSTEM__IPC_INFO); 5474 case GETPID: 5475 case GETNCNT: 5476 case GETZCNT: 5477 perms = SEM__GETATTR; 5478 break; 5479 case GETVAL: 5480 case GETALL: 5481 perms = SEM__READ; 5482 break; 5483 case SETVAL: 5484 case SETALL: 5485 perms = SEM__WRITE; 5486 break; 5487 case IPC_RMID: 5488 perms = SEM__DESTROY; 5489 break; 5490 case IPC_SET: 5491 perms = SEM__SETATTR; 5492 break; 5493 case IPC_STAT: 5494 case SEM_STAT: 5495 perms = SEM__GETATTR | SEM__ASSOCIATE; 5496 break; 5497 default: 5498 return 0; 5499 } 5500 5501 err = ipc_has_perm(&sma->sem_perm, perms); 5502 return err; 5503} 5504 5505static int selinux_sem_semop(struct sem_array *sma, 5506 struct sembuf *sops, unsigned nsops, int alter) 5507{ 5508 u32 perms; 5509 5510 if (alter) 5511 perms = SEM__READ | SEM__WRITE; 5512 else 5513 perms = SEM__READ; 5514 5515 return ipc_has_perm(&sma->sem_perm, perms); 5516} 5517 5518static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 5519{ 5520 u32 av = 0; 5521 5522 av = 0; 5523 if (flag & S_IRUGO) 5524 av |= IPC__UNIX_READ; 5525 if (flag & S_IWUGO) 5526 av |= IPC__UNIX_WRITE; 5527 5528 if (av == 0) 5529 return 0; 5530 5531 return ipc_has_perm(ipcp, av); 5532} 5533 5534static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 5535{ 5536 struct ipc_security_struct *isec = ipcp->security; 5537 *secid = isec->sid; 5538} 5539 5540static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 5541{ 5542 if (inode) 5543 inode_doinit_with_dentry(inode, dentry); 5544} 5545 5546static int selinux_getprocattr(struct task_struct *p, 5547 char *name, char **value) 5548{ 5549 const struct task_security_struct *__tsec; 5550 u32 sid; 5551 int error; 5552 unsigned len; 5553 5554 if (current != p) { 5555 error = current_has_perm(p, PROCESS__GETATTR); 5556 if (error) 5557 return error; 5558 } 5559 5560 rcu_read_lock(); 5561 __tsec = __task_cred(p)->security; 5562 5563 if (!strcmp(name, "current")) 5564 sid = __tsec->sid; 5565 else if (!strcmp(name, "prev")) 5566 sid = __tsec->osid; 5567 else if (!strcmp(name, "exec")) 5568 sid = __tsec->exec_sid; 5569 else if (!strcmp(name, "fscreate")) 5570 sid = __tsec->create_sid; 5571 else if (!strcmp(name, "keycreate")) 5572 sid = __tsec->keycreate_sid; 5573 else if (!strcmp(name, "sockcreate")) 5574 sid = __tsec->sockcreate_sid; 5575 else 5576 goto invalid; 5577 rcu_read_unlock(); 5578 5579 if (!sid) 5580 return 0; 5581 5582 error = security_sid_to_context(sid, value, &len); 5583 if (error) 5584 return error; 5585 return len; 5586 5587invalid: 5588 rcu_read_unlock(); 5589 return -EINVAL; 5590} 5591 5592static int selinux_setprocattr(struct task_struct *p, 5593 char *name, void *value, size_t size) 5594{ 5595 struct task_security_struct *tsec; 5596 struct task_struct *tracer; 5597 struct cred *new; 5598 u32 sid = 0, ptsid; 5599 int error; 5600 char *str = value; 5601 5602 if (current != p) { 5603 /* SELinux only allows a process to change its own 5604 security attributes. */ 5605 return -EACCES; 5606 } 5607 5608 /* 5609 * Basic control over ability to set these attributes at all. 5610 * current == p, but we'll pass them separately in case the 5611 * above restriction is ever removed. 5612 */ 5613 if (!strcmp(name, "exec")) 5614 error = current_has_perm(p, PROCESS__SETEXEC); 5615 else if (!strcmp(name, "fscreate")) 5616 error = current_has_perm(p, PROCESS__SETFSCREATE); 5617 else if (!strcmp(name, "keycreate")) 5618 error = current_has_perm(p, PROCESS__SETKEYCREATE); 5619 else if (!strcmp(name, "sockcreate")) 5620 error = current_has_perm(p, PROCESS__SETSOCKCREATE); 5621 else if (!strcmp(name, "current")) 5622 error = current_has_perm(p, PROCESS__SETCURRENT); 5623 else 5624 error = -EINVAL; 5625 if (error) 5626 return error; 5627 5628 /* Obtain a SID for the context, if one was specified. */ 5629 if (size && str[1] && str[1] != '\n') { 5630 if (str[size-1] == '\n') { 5631 str[size-1] = 0; 5632 size--; 5633 } 5634 error = security_context_to_sid(value, size, &sid, GFP_KERNEL); 5635 if (error == -EINVAL && !strcmp(name, "fscreate")) { 5636 if (!capable(CAP_MAC_ADMIN)) { 5637 struct audit_buffer *ab; 5638 size_t audit_size; 5639 5640 /* We strip a nul only if it is at the end, otherwise the 5641 * context contains a nul and we should audit that */ 5642 if (str[size - 1] == '\0') 5643 audit_size = size - 1; 5644 else 5645 audit_size = size; 5646 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR); 5647 audit_log_format(ab, "op=fscreate invalid_context="); 5648 audit_log_n_untrustedstring(ab, value, audit_size); 5649 audit_log_end(ab); 5650 5651 return error; 5652 } 5653 error = security_context_to_sid_force(value, size, 5654 &sid); 5655 } 5656 if (error) 5657 return error; 5658 } 5659 5660 new = prepare_creds(); 5661 if (!new) 5662 return -ENOMEM; 5663 5664 /* Permission checking based on the specified context is 5665 performed during the actual operation (execve, 5666 open/mkdir/...), when we know the full context of the 5667 operation. See selinux_bprm_set_creds for the execve 5668 checks and may_create for the file creation checks. The 5669 operation will then fail if the context is not permitted. */ 5670 tsec = new->security; 5671 if (!strcmp(name, "exec")) { 5672 tsec->exec_sid = sid; 5673 } else if (!strcmp(name, "fscreate")) { 5674 tsec->create_sid = sid; 5675 } else if (!strcmp(name, "keycreate")) { 5676 error = may_create_key(sid, p); 5677 if (error) 5678 goto abort_change; 5679 tsec->keycreate_sid = sid; 5680 } else if (!strcmp(name, "sockcreate")) { 5681 tsec->sockcreate_sid = sid; 5682 } else if (!strcmp(name, "current")) { 5683 error = -EINVAL; 5684 if (sid == 0) 5685 goto abort_change; 5686 5687 /* Only allow single threaded processes to change context */ 5688 error = -EPERM; 5689 if (!current_is_single_threaded()) { 5690 error = security_bounded_transition(tsec->sid, sid); 5691 if (error) 5692 goto abort_change; 5693 } 5694 5695 /* Check permissions for the transition. */ 5696 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 5697 PROCESS__DYNTRANSITION, NULL); 5698 if (error) 5699 goto abort_change; 5700 5701 /* Check for ptracing, and update the task SID if ok. 5702 Otherwise, leave SID unchanged and fail. */ 5703 ptsid = 0; 5704 rcu_read_lock(); 5705 tracer = ptrace_parent(p); 5706 if (tracer) 5707 ptsid = task_sid(tracer); 5708 rcu_read_unlock(); 5709 5710 if (tracer) { 5711 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 5712 PROCESS__PTRACE, NULL); 5713 if (error) 5714 goto abort_change; 5715 } 5716 5717 tsec->sid = sid; 5718 } else { 5719 error = -EINVAL; 5720 goto abort_change; 5721 } 5722 5723 commit_creds(new); 5724 return size; 5725 5726abort_change: 5727 abort_creds(new); 5728 return error; 5729} 5730 5731static int selinux_ismaclabel(const char *name) 5732{ 5733 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); 5734} 5735 5736static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 5737{ 5738 return security_sid_to_context(secid, secdata, seclen); 5739} 5740 5741static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 5742{ 5743 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL); 5744} 5745 5746static void selinux_release_secctx(char *secdata, u32 seclen) 5747{ 5748 kfree(secdata); 5749} 5750 5751/* 5752 * called with inode->i_mutex locked 5753 */ 5754static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 5755{ 5756 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0); 5757} 5758 5759/* 5760 * called with inode->i_mutex locked 5761 */ 5762static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 5763{ 5764 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0); 5765} 5766 5767static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 5768{ 5769 int len = 0; 5770 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, 5771 ctx, true); 5772 if (len < 0) 5773 return len; 5774 *ctxlen = len; 5775 return 0; 5776} 5777#ifdef CONFIG_KEYS 5778 5779static int selinux_key_alloc(struct key *k, const struct cred *cred, 5780 unsigned long flags) 5781{ 5782 const struct task_security_struct *tsec; 5783 struct key_security_struct *ksec; 5784 5785 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 5786 if (!ksec) 5787 return -ENOMEM; 5788 5789 tsec = cred->security; 5790 if (tsec->keycreate_sid) 5791 ksec->sid = tsec->keycreate_sid; 5792 else 5793 ksec->sid = tsec->sid; 5794 5795 k->security = ksec; 5796 return 0; 5797} 5798 5799static void selinux_key_free(struct key *k) 5800{ 5801 struct key_security_struct *ksec = k->security; 5802 5803 k->security = NULL; 5804 kfree(ksec); 5805} 5806 5807static int selinux_key_permission(key_ref_t key_ref, 5808 const struct cred *cred, 5809 unsigned perm) 5810{ 5811 struct key *key; 5812 struct key_security_struct *ksec; 5813 u32 sid; 5814 5815 /* if no specific permissions are requested, we skip the 5816 permission check. No serious, additional covert channels 5817 appear to be created. */ 5818 if (perm == 0) 5819 return 0; 5820 5821 sid = cred_sid(cred); 5822 5823 key = key_ref_to_ptr(key_ref); 5824 ksec = key->security; 5825 5826 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 5827} 5828 5829static int selinux_key_getsecurity(struct key *key, char **_buffer) 5830{ 5831 struct key_security_struct *ksec = key->security; 5832 char *context = NULL; 5833 unsigned len; 5834 int rc; 5835 5836 rc = security_sid_to_context(ksec->sid, &context, &len); 5837 if (!rc) 5838 rc = len; 5839 *_buffer = context; 5840 return rc; 5841} 5842 5843#endif 5844 5845static struct security_operations selinux_ops = { 5846 .name = "selinux", 5847 5848 .binder_set_context_mgr = selinux_binder_set_context_mgr, 5849 .binder_transaction = selinux_binder_transaction, 5850 .binder_transfer_binder = selinux_binder_transfer_binder, 5851 .binder_transfer_file = selinux_binder_transfer_file, 5852 5853 .ptrace_access_check = selinux_ptrace_access_check, 5854 .ptrace_traceme = selinux_ptrace_traceme, 5855 .capget = selinux_capget, 5856 .capset = selinux_capset, 5857 .capable = selinux_capable, 5858 .quotactl = selinux_quotactl, 5859 .quota_on = selinux_quota_on, 5860 .syslog = selinux_syslog, 5861 .vm_enough_memory = selinux_vm_enough_memory, 5862 5863 .netlink_send = selinux_netlink_send, 5864 5865 .bprm_set_creds = selinux_bprm_set_creds, 5866 .bprm_committing_creds = selinux_bprm_committing_creds, 5867 .bprm_committed_creds = selinux_bprm_committed_creds, 5868 .bprm_secureexec = selinux_bprm_secureexec, 5869 5870 .sb_alloc_security = selinux_sb_alloc_security, 5871 .sb_free_security = selinux_sb_free_security, 5872 .sb_copy_data = selinux_sb_copy_data, 5873 .sb_remount = selinux_sb_remount, 5874 .sb_kern_mount = selinux_sb_kern_mount, 5875 .sb_show_options = selinux_sb_show_options, 5876 .sb_statfs = selinux_sb_statfs, 5877 .sb_mount = selinux_mount, 5878 .sb_umount = selinux_umount, 5879 .sb_set_mnt_opts = selinux_set_mnt_opts, 5880 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts, 5881 .sb_parse_opts_str = selinux_parse_opts_str, 5882 5883 .dentry_init_security = selinux_dentry_init_security, 5884 5885 .inode_alloc_security = selinux_inode_alloc_security, 5886 .inode_free_security = selinux_inode_free_security, 5887 .inode_init_security = selinux_inode_init_security, 5888 .inode_create = selinux_inode_create, 5889 .inode_link = selinux_inode_link, 5890 .inode_unlink = selinux_inode_unlink, 5891 .inode_symlink = selinux_inode_symlink, 5892 .inode_mkdir = selinux_inode_mkdir, 5893 .inode_rmdir = selinux_inode_rmdir, 5894 .inode_mknod = selinux_inode_mknod, 5895 .inode_rename = selinux_inode_rename, 5896 .inode_readlink = selinux_inode_readlink, 5897 .inode_follow_link = selinux_inode_follow_link, 5898 .inode_permission = selinux_inode_permission, 5899 .inode_setattr = selinux_inode_setattr, 5900 .inode_getattr = selinux_inode_getattr, 5901 .inode_setxattr = selinux_inode_setxattr, 5902 .inode_post_setxattr = selinux_inode_post_setxattr, 5903 .inode_getxattr = selinux_inode_getxattr, 5904 .inode_listxattr = selinux_inode_listxattr, 5905 .inode_removexattr = selinux_inode_removexattr, 5906 .inode_getsecurity = selinux_inode_getsecurity, 5907 .inode_setsecurity = selinux_inode_setsecurity, 5908 .inode_listsecurity = selinux_inode_listsecurity, 5909 .inode_getsecid = selinux_inode_getsecid, 5910 5911 .file_permission = selinux_file_permission, 5912 .file_alloc_security = selinux_file_alloc_security, 5913 .file_free_security = selinux_file_free_security, 5914 .file_ioctl = selinux_file_ioctl, 5915 .mmap_file = selinux_mmap_file, 5916 .mmap_addr = selinux_mmap_addr, 5917 .file_mprotect = selinux_file_mprotect, 5918 .file_lock = selinux_file_lock, 5919 .file_fcntl = selinux_file_fcntl, 5920 .file_set_fowner = selinux_file_set_fowner, 5921 .file_send_sigiotask = selinux_file_send_sigiotask, 5922 .file_receive = selinux_file_receive, 5923 5924 .file_open = selinux_file_open, 5925 5926 .task_create = selinux_task_create, 5927 .cred_alloc_blank = selinux_cred_alloc_blank, 5928 .cred_free = selinux_cred_free, 5929 .cred_prepare = selinux_cred_prepare, 5930 .cred_transfer = selinux_cred_transfer, 5931 .kernel_act_as = selinux_kernel_act_as, 5932 .kernel_create_files_as = selinux_kernel_create_files_as, 5933 .kernel_module_request = selinux_kernel_module_request, 5934 .task_setpgid = selinux_task_setpgid, 5935 .task_getpgid = selinux_task_getpgid, 5936 .task_getsid = selinux_task_getsid, 5937 .task_getsecid = selinux_task_getsecid, 5938 .task_setnice = selinux_task_setnice, 5939 .task_setioprio = selinux_task_setioprio, 5940 .task_getioprio = selinux_task_getioprio, 5941 .task_setrlimit = selinux_task_setrlimit, 5942 .task_setscheduler = selinux_task_setscheduler, 5943 .task_getscheduler = selinux_task_getscheduler, 5944 .task_movememory = selinux_task_movememory, 5945 .task_kill = selinux_task_kill, 5946 .task_wait = selinux_task_wait, 5947 .task_to_inode = selinux_task_to_inode, 5948 5949 .ipc_permission = selinux_ipc_permission, 5950 .ipc_getsecid = selinux_ipc_getsecid, 5951 5952 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 5953 .msg_msg_free_security = selinux_msg_msg_free_security, 5954 5955 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 5956 .msg_queue_free_security = selinux_msg_queue_free_security, 5957 .msg_queue_associate = selinux_msg_queue_associate, 5958 .msg_queue_msgctl = selinux_msg_queue_msgctl, 5959 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 5960 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 5961 5962 .shm_alloc_security = selinux_shm_alloc_security, 5963 .shm_free_security = selinux_shm_free_security, 5964 .shm_associate = selinux_shm_associate, 5965 .shm_shmctl = selinux_shm_shmctl, 5966 .shm_shmat = selinux_shm_shmat, 5967 5968 .sem_alloc_security = selinux_sem_alloc_security, 5969 .sem_free_security = selinux_sem_free_security, 5970 .sem_associate = selinux_sem_associate, 5971 .sem_semctl = selinux_sem_semctl, 5972 .sem_semop = selinux_sem_semop, 5973 5974 .d_instantiate = selinux_d_instantiate, 5975 5976 .getprocattr = selinux_getprocattr, 5977 .setprocattr = selinux_setprocattr, 5978 5979 .ismaclabel = selinux_ismaclabel, 5980 .secid_to_secctx = selinux_secid_to_secctx, 5981 .secctx_to_secid = selinux_secctx_to_secid, 5982 .release_secctx = selinux_release_secctx, 5983 .inode_notifysecctx = selinux_inode_notifysecctx, 5984 .inode_setsecctx = selinux_inode_setsecctx, 5985 .inode_getsecctx = selinux_inode_getsecctx, 5986 5987 .unix_stream_connect = selinux_socket_unix_stream_connect, 5988 .unix_may_send = selinux_socket_unix_may_send, 5989 5990 .socket_create = selinux_socket_create, 5991 .socket_post_create = selinux_socket_post_create, 5992 .socket_bind = selinux_socket_bind, 5993 .socket_connect = selinux_socket_connect, 5994 .socket_listen = selinux_socket_listen, 5995 .socket_accept = selinux_socket_accept, 5996 .socket_sendmsg = selinux_socket_sendmsg, 5997 .socket_recvmsg = selinux_socket_recvmsg, 5998 .socket_getsockname = selinux_socket_getsockname, 5999 .socket_getpeername = selinux_socket_getpeername, 6000 .socket_getsockopt = selinux_socket_getsockopt, 6001 .socket_setsockopt = selinux_socket_setsockopt, 6002 .socket_shutdown = selinux_socket_shutdown, 6003 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 6004 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 6005 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 6006 .sk_alloc_security = selinux_sk_alloc_security, 6007 .sk_free_security = selinux_sk_free_security, 6008 .sk_clone_security = selinux_sk_clone_security, 6009 .sk_getsecid = selinux_sk_getsecid, 6010 .sock_graft = selinux_sock_graft, 6011 .inet_conn_request = selinux_inet_conn_request, 6012 .inet_csk_clone = selinux_inet_csk_clone, 6013 .inet_conn_established = selinux_inet_conn_established, 6014 .secmark_relabel_packet = selinux_secmark_relabel_packet, 6015 .secmark_refcount_inc = selinux_secmark_refcount_inc, 6016 .secmark_refcount_dec = selinux_secmark_refcount_dec, 6017 .req_classify_flow = selinux_req_classify_flow, 6018 .tun_dev_alloc_security = selinux_tun_dev_alloc_security, 6019 .tun_dev_free_security = selinux_tun_dev_free_security, 6020 .tun_dev_create = selinux_tun_dev_create, 6021 .tun_dev_attach_queue = selinux_tun_dev_attach_queue, 6022 .tun_dev_attach = selinux_tun_dev_attach, 6023 .tun_dev_open = selinux_tun_dev_open, 6024 6025#ifdef CONFIG_SECURITY_NETWORK_XFRM 6026 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 6027 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 6028 .xfrm_policy_free_security = selinux_xfrm_policy_free, 6029 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 6030 .xfrm_state_alloc = selinux_xfrm_state_alloc, 6031 .xfrm_state_alloc_acquire = selinux_xfrm_state_alloc_acquire, 6032 .xfrm_state_free_security = selinux_xfrm_state_free, 6033 .xfrm_state_delete_security = selinux_xfrm_state_delete, 6034 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 6035 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 6036 .xfrm_decode_session = selinux_xfrm_decode_session, 6037#endif 6038 6039#ifdef CONFIG_KEYS 6040 .key_alloc = selinux_key_alloc, 6041 .key_free = selinux_key_free, 6042 .key_permission = selinux_key_permission, 6043 .key_getsecurity = selinux_key_getsecurity, 6044#endif 6045 6046#ifdef CONFIG_AUDIT 6047 .audit_rule_init = selinux_audit_rule_init, 6048 .audit_rule_known = selinux_audit_rule_known, 6049 .audit_rule_match = selinux_audit_rule_match, 6050 .audit_rule_free = selinux_audit_rule_free, 6051#endif 6052}; 6053 6054static __init int selinux_init(void) 6055{ 6056 if (!security_module_enable(&selinux_ops)) { 6057 selinux_enabled = 0; 6058 return 0; 6059 } 6060 6061 if (!selinux_enabled) { 6062 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 6063 return 0; 6064 } 6065 6066 printk(KERN_INFO "SELinux: Initializing.\n"); 6067 6068 /* Set the security state for the initial task. */ 6069 cred_init_security(); 6070 6071 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 6072 6073 sel_inode_cache = kmem_cache_create("selinux_inode_security", 6074 sizeof(struct inode_security_struct), 6075 0, SLAB_PANIC, NULL); 6076 avc_init(); 6077 6078 if (register_security(&selinux_ops)) 6079 panic("SELinux: Unable to register with kernel.\n"); 6080 6081 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) 6082 panic("SELinux: Unable to register AVC netcache callback\n"); 6083 6084 if (selinux_enforcing) 6085 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 6086 else 6087 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 6088 6089 return 0; 6090} 6091 6092static void delayed_superblock_init(struct super_block *sb, void *unused) 6093{ 6094 superblock_doinit(sb, NULL); 6095} 6096 6097void selinux_complete_init(void) 6098{ 6099 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 6100 6101 /* Set up any superblocks initialized prior to the policy load. */ 6102 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 6103 iterate_supers(delayed_superblock_init, NULL); 6104} 6105 6106/* SELinux requires early initialization in order to label 6107 all processes and objects when they are created. */ 6108security_initcall(selinux_init); 6109 6110#if defined(CONFIG_NETFILTER) 6111 6112static struct nf_hook_ops selinux_nf_ops[] = { 6113 { 6114 .hook = selinux_ipv4_postroute, 6115 .owner = THIS_MODULE, 6116 .pf = NFPROTO_IPV4, 6117 .hooknum = NF_INET_POST_ROUTING, 6118 .priority = NF_IP_PRI_SELINUX_LAST, 6119 }, 6120 { 6121 .hook = selinux_ipv4_forward, 6122 .owner = THIS_MODULE, 6123 .pf = NFPROTO_IPV4, 6124 .hooknum = NF_INET_FORWARD, 6125 .priority = NF_IP_PRI_SELINUX_FIRST, 6126 }, 6127 { 6128 .hook = selinux_ipv4_output, 6129 .owner = THIS_MODULE, 6130 .pf = NFPROTO_IPV4, 6131 .hooknum = NF_INET_LOCAL_OUT, 6132 .priority = NF_IP_PRI_SELINUX_FIRST, 6133 }, 6134#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6135 { 6136 .hook = selinux_ipv6_postroute, 6137 .owner = THIS_MODULE, 6138 .pf = NFPROTO_IPV6, 6139 .hooknum = NF_INET_POST_ROUTING, 6140 .priority = NF_IP6_PRI_SELINUX_LAST, 6141 }, 6142 { 6143 .hook = selinux_ipv6_forward, 6144 .owner = THIS_MODULE, 6145 .pf = NFPROTO_IPV6, 6146 .hooknum = NF_INET_FORWARD, 6147 .priority = NF_IP6_PRI_SELINUX_FIRST, 6148 }, 6149#endif /* IPV6 */ 6150}; 6151 6152static int __init selinux_nf_ip_init(void) 6153{ 6154 int err; 6155 6156 if (!selinux_enabled) 6157 return 0; 6158 6159 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 6160 6161 err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops)); 6162 if (err) 6163 panic("SELinux: nf_register_hooks: error %d\n", err); 6164 6165 return 0; 6166} 6167 6168__initcall(selinux_nf_ip_init); 6169 6170#ifdef CONFIG_SECURITY_SELINUX_DISABLE 6171static void selinux_nf_ip_exit(void) 6172{ 6173 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 6174 6175 nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops)); 6176} 6177#endif 6178 6179#else /* CONFIG_NETFILTER */ 6180 6181#ifdef CONFIG_SECURITY_SELINUX_DISABLE 6182#define selinux_nf_ip_exit() 6183#endif 6184 6185#endif /* CONFIG_NETFILTER */ 6186 6187#ifdef CONFIG_SECURITY_SELINUX_DISABLE 6188static int selinux_disabled; 6189 6190int selinux_disable(void) 6191{ 6192 if (ss_initialized) { 6193 /* Not permitted after initial policy load. */ 6194 return -EINVAL; 6195 } 6196 6197 if (selinux_disabled) { 6198 /* Only do this once. */ 6199 return -EINVAL; 6200 } 6201 6202 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 6203 6204 selinux_disabled = 1; 6205 selinux_enabled = 0; 6206 6207 reset_security_ops(); 6208 6209 /* Try to destroy the avc node cache */ 6210 avc_disable(); 6211 6212 /* Unregister netfilter hooks. */ 6213 selinux_nf_ip_exit(); 6214 6215 /* Unregister selinuxfs. */ 6216 exit_sel_fs(); 6217 6218 return 0; 6219} 6220#endif 6221