1/*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 *	This program is free software; you can redistribute it and/or modify
9 *	it under the terms of the GNU General Public License as published by
10 *	the Free Software Foundation; either version 2 of the License, or
11 *	(at your option) any later version.
12 */
13
14#include <linux/capability.h>
15#include <linux/dcache.h>
16#include <linux/module.h>
17#include <linux/init.h>
18#include <linux/kernel.h>
19#include <linux/security.h>
20#include <linux/integrity.h>
21#include <linux/ima.h>
22#include <linux/evm.h>
23#include <linux/fsnotify.h>
24#include <linux/mman.h>
25#include <linux/mount.h>
26#include <linux/personality.h>
27#include <linux/backing-dev.h>
28#include <net/flow.h>
29
30#define MAX_LSM_EVM_XATTR	2
31
32/* Boot-time LSM user choice */
33static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
34	CONFIG_DEFAULT_SECURITY;
35
36static struct security_operations *security_ops;
37static struct security_operations default_security_ops = {
38	.name	= "default",
39};
40
41static inline int __init verify(struct security_operations *ops)
42{
43	/* verify the security_operations structure exists */
44	if (!ops)
45		return -EINVAL;
46	security_fixup_ops(ops);
47	return 0;
48}
49
50static void __init do_security_initcalls(void)
51{
52	initcall_t *call;
53	call = __security_initcall_start;
54	while (call < __security_initcall_end) {
55		(*call) ();
56		call++;
57	}
58}
59
60/**
61 * security_init - initializes the security framework
62 *
63 * This should be called early in the kernel initialization sequence.
64 */
65int __init security_init(void)
66{
67	printk(KERN_INFO "Security Framework initialized\n");
68
69	security_fixup_ops(&default_security_ops);
70	security_ops = &default_security_ops;
71	do_security_initcalls();
72
73	return 0;
74}
75
76void reset_security_ops(void)
77{
78	security_ops = &default_security_ops;
79}
80
81/* Save user chosen LSM */
82static int __init choose_lsm(char *str)
83{
84	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
85	return 1;
86}
87__setup("security=", choose_lsm);
88
89/**
90 * security_module_enable - Load given security module on boot ?
91 * @ops: a pointer to the struct security_operations that is to be checked.
92 *
93 * Each LSM must pass this method before registering its own operations
94 * to avoid security registration races. This method may also be used
95 * to check if your LSM is currently loaded during kernel initialization.
96 *
97 * Return true if:
98 *	-The passed LSM is the one chosen by user at boot time,
99 *	-or the passed LSM is configured as the default and the user did not
100 *	 choose an alternate LSM at boot time.
101 * Otherwise, return false.
102 */
103int __init security_module_enable(struct security_operations *ops)
104{
105	return !strcmp(ops->name, chosen_lsm);
106}
107
108/**
109 * register_security - registers a security framework with the kernel
110 * @ops: a pointer to the struct security_options that is to be registered
111 *
112 * This function allows a security module to register itself with the
113 * kernel security subsystem.  Some rudimentary checking is done on the @ops
114 * value passed to this function. You'll need to check first if your LSM
115 * is allowed to register its @ops by calling security_module_enable(@ops).
116 *
117 * If there is already a security module registered with the kernel,
118 * an error will be returned.  Otherwise %0 is returned on success.
119 */
120int __init register_security(struct security_operations *ops)
121{
122	if (verify(ops)) {
123		printk(KERN_DEBUG "%s could not verify "
124		       "security_operations structure.\n", __func__);
125		return -EINVAL;
126	}
127
128	if (security_ops != &default_security_ops)
129		return -EAGAIN;
130
131	security_ops = ops;
132
133	return 0;
134}
135
136/* Security operations */
137
138int security_binder_set_context_mgr(struct task_struct *mgr)
139{
140	return security_ops->binder_set_context_mgr(mgr);
141}
142
143int security_binder_transaction(struct task_struct *from,
144				struct task_struct *to)
145{
146	return security_ops->binder_transaction(from, to);
147}
148
149int security_binder_transfer_binder(struct task_struct *from,
150				    struct task_struct *to)
151{
152	return security_ops->binder_transfer_binder(from, to);
153}
154
155int security_binder_transfer_file(struct task_struct *from,
156				  struct task_struct *to, struct file *file)
157{
158	return security_ops->binder_transfer_file(from, to, file);
159}
160
161int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
162{
163#ifdef CONFIG_SECURITY_YAMA_STACKED
164	int rc;
165	rc = yama_ptrace_access_check(child, mode);
166	if (rc)
167		return rc;
168#endif
169	return security_ops->ptrace_access_check(child, mode);
170}
171
172int security_ptrace_traceme(struct task_struct *parent)
173{
174#ifdef CONFIG_SECURITY_YAMA_STACKED
175	int rc;
176	rc = yama_ptrace_traceme(parent);
177	if (rc)
178		return rc;
179#endif
180	return security_ops->ptrace_traceme(parent);
181}
182
183int security_capget(struct task_struct *target,
184		     kernel_cap_t *effective,
185		     kernel_cap_t *inheritable,
186		     kernel_cap_t *permitted)
187{
188	return security_ops->capget(target, effective, inheritable, permitted);
189}
190
191int security_capset(struct cred *new, const struct cred *old,
192		    const kernel_cap_t *effective,
193		    const kernel_cap_t *inheritable,
194		    const kernel_cap_t *permitted)
195{
196	return security_ops->capset(new, old,
197				    effective, inheritable, permitted);
198}
199
200int security_capable(const struct cred *cred, struct user_namespace *ns,
201		     int cap)
202{
203	return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
204}
205
206int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
207			     int cap)
208{
209	return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
210}
211
212int security_quotactl(int cmds, int type, int id, struct super_block *sb)
213{
214	return security_ops->quotactl(cmds, type, id, sb);
215}
216
217int security_quota_on(struct dentry *dentry)
218{
219	return security_ops->quota_on(dentry);
220}
221
222int security_syslog(int type)
223{
224	return security_ops->syslog(type);
225}
226
227int security_settime(const struct timespec *ts, const struct timezone *tz)
228{
229	return security_ops->settime(ts, tz);
230}
231
232int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
233{
234	return security_ops->vm_enough_memory(mm, pages);
235}
236
237int security_bprm_set_creds(struct linux_binprm *bprm)
238{
239	return security_ops->bprm_set_creds(bprm);
240}
241
242int security_bprm_check(struct linux_binprm *bprm)
243{
244	int ret;
245
246	ret = security_ops->bprm_check_security(bprm);
247	if (ret)
248		return ret;
249	return ima_bprm_check(bprm);
250}
251
252void security_bprm_committing_creds(struct linux_binprm *bprm)
253{
254	security_ops->bprm_committing_creds(bprm);
255}
256
257void security_bprm_committed_creds(struct linux_binprm *bprm)
258{
259	security_ops->bprm_committed_creds(bprm);
260}
261
262int security_bprm_secureexec(struct linux_binprm *bprm)
263{
264	return security_ops->bprm_secureexec(bprm);
265}
266
267int security_sb_alloc(struct super_block *sb)
268{
269	return security_ops->sb_alloc_security(sb);
270}
271
272void security_sb_free(struct super_block *sb)
273{
274	security_ops->sb_free_security(sb);
275}
276
277int security_sb_copy_data(char *orig, char *copy)
278{
279	return security_ops->sb_copy_data(orig, copy);
280}
281EXPORT_SYMBOL(security_sb_copy_data);
282
283int security_sb_remount(struct super_block *sb, void *data)
284{
285	return security_ops->sb_remount(sb, data);
286}
287
288int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
289{
290	return security_ops->sb_kern_mount(sb, flags, data);
291}
292
293int security_sb_show_options(struct seq_file *m, struct super_block *sb)
294{
295	return security_ops->sb_show_options(m, sb);
296}
297
298int security_sb_statfs(struct dentry *dentry)
299{
300	return security_ops->sb_statfs(dentry);
301}
302
303int security_sb_mount(const char *dev_name, struct path *path,
304                       const char *type, unsigned long flags, void *data)
305{
306	return security_ops->sb_mount(dev_name, path, type, flags, data);
307}
308
309int security_sb_umount(struct vfsmount *mnt, int flags)
310{
311	return security_ops->sb_umount(mnt, flags);
312}
313
314int security_sb_pivotroot(struct path *old_path, struct path *new_path)
315{
316	return security_ops->sb_pivotroot(old_path, new_path);
317}
318
319int security_sb_set_mnt_opts(struct super_block *sb,
320				struct security_mnt_opts *opts,
321				unsigned long kern_flags,
322				unsigned long *set_kern_flags)
323{
324	return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
325						set_kern_flags);
326}
327EXPORT_SYMBOL(security_sb_set_mnt_opts);
328
329int security_sb_clone_mnt_opts(const struct super_block *oldsb,
330				struct super_block *newsb)
331{
332	return security_ops->sb_clone_mnt_opts(oldsb, newsb);
333}
334EXPORT_SYMBOL(security_sb_clone_mnt_opts);
335
336int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
337{
338	return security_ops->sb_parse_opts_str(options, opts);
339}
340EXPORT_SYMBOL(security_sb_parse_opts_str);
341
342int security_inode_alloc(struct inode *inode)
343{
344	inode->i_security = NULL;
345	return security_ops->inode_alloc_security(inode);
346}
347
348void security_inode_free(struct inode *inode)
349{
350	integrity_inode_free(inode);
351	security_ops->inode_free_security(inode);
352}
353
354int security_dentry_init_security(struct dentry *dentry, int mode,
355					struct qstr *name, void **ctx,
356					u32 *ctxlen)
357{
358	return security_ops->dentry_init_security(dentry, mode, name,
359							ctx, ctxlen);
360}
361EXPORT_SYMBOL(security_dentry_init_security);
362
363int security_inode_init_security(struct inode *inode, struct inode *dir,
364				 const struct qstr *qstr,
365				 const initxattrs initxattrs, void *fs_data)
366{
367	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
368	struct xattr *lsm_xattr, *evm_xattr, *xattr;
369	int ret;
370
371	if (unlikely(IS_PRIVATE(inode)))
372		return 0;
373
374	if (!initxattrs)
375		return security_ops->inode_init_security(inode, dir, qstr,
376							 NULL, NULL, NULL);
377	memset(new_xattrs, 0, sizeof(new_xattrs));
378	lsm_xattr = new_xattrs;
379	ret = security_ops->inode_init_security(inode, dir, qstr,
380						&lsm_xattr->name,
381						&lsm_xattr->value,
382						&lsm_xattr->value_len);
383	if (ret)
384		goto out;
385
386	evm_xattr = lsm_xattr + 1;
387	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
388	if (ret)
389		goto out;
390	ret = initxattrs(inode, new_xattrs, fs_data);
391out:
392	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
393		kfree(xattr->value);
394	return (ret == -EOPNOTSUPP) ? 0 : ret;
395}
396EXPORT_SYMBOL(security_inode_init_security);
397
398int security_old_inode_init_security(struct inode *inode, struct inode *dir,
399				     const struct qstr *qstr, const char **name,
400				     void **value, size_t *len)
401{
402	if (unlikely(IS_PRIVATE(inode)))
403		return -EOPNOTSUPP;
404	return security_ops->inode_init_security(inode, dir, qstr, name, value,
405						 len);
406}
407EXPORT_SYMBOL(security_old_inode_init_security);
408
409#ifdef CONFIG_SECURITY_PATH
410int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
411			unsigned int dev)
412{
413	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
414		return 0;
415	return security_ops->path_mknod(dir, dentry, mode, dev);
416}
417EXPORT_SYMBOL(security_path_mknod);
418
419int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
420{
421	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
422		return 0;
423	return security_ops->path_mkdir(dir, dentry, mode);
424}
425EXPORT_SYMBOL(security_path_mkdir);
426
427int security_path_rmdir(struct path *dir, struct dentry *dentry)
428{
429	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
430		return 0;
431	return security_ops->path_rmdir(dir, dentry);
432}
433
434int security_path_unlink(struct path *dir, struct dentry *dentry)
435{
436	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
437		return 0;
438	return security_ops->path_unlink(dir, dentry);
439}
440EXPORT_SYMBOL(security_path_unlink);
441
442int security_path_symlink(struct path *dir, struct dentry *dentry,
443			  const char *old_name)
444{
445	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
446		return 0;
447	return security_ops->path_symlink(dir, dentry, old_name);
448}
449
450int security_path_link(struct dentry *old_dentry, struct path *new_dir,
451		       struct dentry *new_dentry)
452{
453	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
454		return 0;
455	return security_ops->path_link(old_dentry, new_dir, new_dentry);
456}
457
458int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
459			 struct path *new_dir, struct dentry *new_dentry,
460			 unsigned int flags)
461{
462	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
463		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
464		return 0;
465
466	if (flags & RENAME_EXCHANGE) {
467		int err = security_ops->path_rename(new_dir, new_dentry,
468						    old_dir, old_dentry);
469		if (err)
470			return err;
471	}
472
473	return security_ops->path_rename(old_dir, old_dentry, new_dir,
474					 new_dentry);
475}
476EXPORT_SYMBOL(security_path_rename);
477
478int security_path_truncate(struct path *path)
479{
480	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
481		return 0;
482	return security_ops->path_truncate(path);
483}
484
485int security_path_chmod(struct path *path, umode_t mode)
486{
487	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
488		return 0;
489	return security_ops->path_chmod(path, mode);
490}
491
492int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
493{
494	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
495		return 0;
496	return security_ops->path_chown(path, uid, gid);
497}
498
499int security_path_chroot(struct path *path)
500{
501	return security_ops->path_chroot(path);
502}
503#endif
504
505int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
506{
507	if (unlikely(IS_PRIVATE(dir)))
508		return 0;
509	return security_ops->inode_create(dir, dentry, mode);
510}
511EXPORT_SYMBOL_GPL(security_inode_create);
512
513int security_inode_link(struct dentry *old_dentry, struct inode *dir,
514			 struct dentry *new_dentry)
515{
516	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
517		return 0;
518	return security_ops->inode_link(old_dentry, dir, new_dentry);
519}
520
521int security_inode_unlink(struct inode *dir, struct dentry *dentry)
522{
523	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
524		return 0;
525	return security_ops->inode_unlink(dir, dentry);
526}
527
528int security_inode_symlink(struct inode *dir, struct dentry *dentry,
529			    const char *old_name)
530{
531	if (unlikely(IS_PRIVATE(dir)))
532		return 0;
533	return security_ops->inode_symlink(dir, dentry, old_name);
534}
535
536int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
537{
538	if (unlikely(IS_PRIVATE(dir)))
539		return 0;
540	return security_ops->inode_mkdir(dir, dentry, mode);
541}
542EXPORT_SYMBOL_GPL(security_inode_mkdir);
543
544int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
545{
546	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
547		return 0;
548	return security_ops->inode_rmdir(dir, dentry);
549}
550
551int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
552{
553	if (unlikely(IS_PRIVATE(dir)))
554		return 0;
555	return security_ops->inode_mknod(dir, dentry, mode, dev);
556}
557
558int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
559			   struct inode *new_dir, struct dentry *new_dentry,
560			   unsigned int flags)
561{
562        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
563            (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
564		return 0;
565
566	if (flags & RENAME_EXCHANGE) {
567		int err = security_ops->inode_rename(new_dir, new_dentry,
568						     old_dir, old_dentry);
569		if (err)
570			return err;
571	}
572
573	return security_ops->inode_rename(old_dir, old_dentry,
574					   new_dir, new_dentry);
575}
576
577int security_inode_readlink(struct dentry *dentry)
578{
579	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
580		return 0;
581	return security_ops->inode_readlink(dentry);
582}
583
584int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
585{
586	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
587		return 0;
588	return security_ops->inode_follow_link(dentry, nd);
589}
590
591int security_inode_permission(struct inode *inode, int mask)
592{
593	if (unlikely(IS_PRIVATE(inode)))
594		return 0;
595	return security_ops->inode_permission(inode, mask);
596}
597
598int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
599{
600	int ret;
601
602	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
603		return 0;
604	ret = security_ops->inode_setattr(dentry, attr);
605	if (ret)
606		return ret;
607	return evm_inode_setattr(dentry, attr);
608}
609EXPORT_SYMBOL_GPL(security_inode_setattr);
610
611int security_inode_getattr(const struct path *path)
612{
613	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
614		return 0;
615	return security_ops->inode_getattr(path);
616}
617
618int security_inode_setxattr(struct dentry *dentry, const char *name,
619			    const void *value, size_t size, int flags)
620{
621	int ret;
622
623	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
624		return 0;
625	ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
626	if (ret)
627		return ret;
628	ret = ima_inode_setxattr(dentry, name, value, size);
629	if (ret)
630		return ret;
631	return evm_inode_setxattr(dentry, name, value, size);
632}
633
634void security_inode_post_setxattr(struct dentry *dentry, const char *name,
635				  const void *value, size_t size, int flags)
636{
637	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
638		return;
639	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
640	evm_inode_post_setxattr(dentry, name, value, size);
641}
642
643int security_inode_getxattr(struct dentry *dentry, const char *name)
644{
645	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
646		return 0;
647	return security_ops->inode_getxattr(dentry, name);
648}
649
650int security_inode_listxattr(struct dentry *dentry)
651{
652	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
653		return 0;
654	return security_ops->inode_listxattr(dentry);
655}
656
657int security_inode_removexattr(struct dentry *dentry, const char *name)
658{
659	int ret;
660
661	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
662		return 0;
663	ret = security_ops->inode_removexattr(dentry, name);
664	if (ret)
665		return ret;
666	ret = ima_inode_removexattr(dentry, name);
667	if (ret)
668		return ret;
669	return evm_inode_removexattr(dentry, name);
670}
671
672int security_inode_need_killpriv(struct dentry *dentry)
673{
674	return security_ops->inode_need_killpriv(dentry);
675}
676
677int security_inode_killpriv(struct dentry *dentry)
678{
679	return security_ops->inode_killpriv(dentry);
680}
681
682int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
683{
684	if (unlikely(IS_PRIVATE(inode)))
685		return -EOPNOTSUPP;
686	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
687}
688
689int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
690{
691	if (unlikely(IS_PRIVATE(inode)))
692		return -EOPNOTSUPP;
693	return security_ops->inode_setsecurity(inode, name, value, size, flags);
694}
695
696int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
697{
698	if (unlikely(IS_PRIVATE(inode)))
699		return 0;
700	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
701}
702EXPORT_SYMBOL(security_inode_listsecurity);
703
704void security_inode_getsecid(const struct inode *inode, u32 *secid)
705{
706	security_ops->inode_getsecid(inode, secid);
707}
708
709int security_file_permission(struct file *file, int mask)
710{
711	int ret;
712
713	ret = security_ops->file_permission(file, mask);
714	if (ret)
715		return ret;
716
717	return fsnotify_perm(file, mask);
718}
719
720int security_file_alloc(struct file *file)
721{
722	return security_ops->file_alloc_security(file);
723}
724
725void security_file_free(struct file *file)
726{
727	security_ops->file_free_security(file);
728}
729
730int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
731{
732	return security_ops->file_ioctl(file, cmd, arg);
733}
734
735static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
736{
737	/*
738	 * Does we have PROT_READ and does the application expect
739	 * it to imply PROT_EXEC?  If not, nothing to talk about...
740	 */
741	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
742		return prot;
743	if (!(current->personality & READ_IMPLIES_EXEC))
744		return prot;
745	/*
746	 * if that's an anonymous mapping, let it.
747	 */
748	if (!file)
749		return prot | PROT_EXEC;
750	/*
751	 * ditto if it's not on noexec mount, except that on !MMU we need
752	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
753	 */
754	if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
755#ifndef CONFIG_MMU
756		if (file->f_op->mmap_capabilities) {
757			unsigned caps = file->f_op->mmap_capabilities(file);
758			if (!(caps & NOMMU_MAP_EXEC))
759				return prot;
760		}
761#endif
762		return prot | PROT_EXEC;
763	}
764	/* anything on noexec mount won't get PROT_EXEC */
765	return prot;
766}
767
768int security_mmap_file(struct file *file, unsigned long prot,
769			unsigned long flags)
770{
771	int ret;
772	ret = security_ops->mmap_file(file, prot,
773					mmap_prot(file, prot), flags);
774	if (ret)
775		return ret;
776	return ima_file_mmap(file, prot);
777}
778
779int security_mmap_addr(unsigned long addr)
780{
781	return security_ops->mmap_addr(addr);
782}
783
784int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
785			    unsigned long prot)
786{
787	return security_ops->file_mprotect(vma, reqprot, prot);
788}
789
790int security_file_lock(struct file *file, unsigned int cmd)
791{
792	return security_ops->file_lock(file, cmd);
793}
794
795int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
796{
797	return security_ops->file_fcntl(file, cmd, arg);
798}
799
800void security_file_set_fowner(struct file *file)
801{
802	security_ops->file_set_fowner(file);
803}
804
805int security_file_send_sigiotask(struct task_struct *tsk,
806				  struct fown_struct *fown, int sig)
807{
808	return security_ops->file_send_sigiotask(tsk, fown, sig);
809}
810
811int security_file_receive(struct file *file)
812{
813	return security_ops->file_receive(file);
814}
815
816int security_file_open(struct file *file, const struct cred *cred)
817{
818	int ret;
819
820	ret = security_ops->file_open(file, cred);
821	if (ret)
822		return ret;
823
824	return fsnotify_perm(file, MAY_OPEN);
825}
826
827int security_task_create(unsigned long clone_flags)
828{
829	return security_ops->task_create(clone_flags);
830}
831
832void security_task_free(struct task_struct *task)
833{
834#ifdef CONFIG_SECURITY_YAMA_STACKED
835	yama_task_free(task);
836#endif
837	security_ops->task_free(task);
838}
839
840int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
841{
842	return security_ops->cred_alloc_blank(cred, gfp);
843}
844
845void security_cred_free(struct cred *cred)
846{
847	security_ops->cred_free(cred);
848}
849
850int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
851{
852	return security_ops->cred_prepare(new, old, gfp);
853}
854
855void security_transfer_creds(struct cred *new, const struct cred *old)
856{
857	security_ops->cred_transfer(new, old);
858}
859
860int security_kernel_act_as(struct cred *new, u32 secid)
861{
862	return security_ops->kernel_act_as(new, secid);
863}
864
865int security_kernel_create_files_as(struct cred *new, struct inode *inode)
866{
867	return security_ops->kernel_create_files_as(new, inode);
868}
869
870int security_kernel_fw_from_file(struct file *file, char *buf, size_t size)
871{
872	int ret;
873
874	ret = security_ops->kernel_fw_from_file(file, buf, size);
875	if (ret)
876		return ret;
877	return ima_fw_from_file(file, buf, size);
878}
879EXPORT_SYMBOL_GPL(security_kernel_fw_from_file);
880
881int security_kernel_module_request(char *kmod_name)
882{
883	return security_ops->kernel_module_request(kmod_name);
884}
885
886int security_kernel_module_from_file(struct file *file)
887{
888	int ret;
889
890	ret = security_ops->kernel_module_from_file(file);
891	if (ret)
892		return ret;
893	return ima_module_check(file);
894}
895
896int security_task_fix_setuid(struct cred *new, const struct cred *old,
897			     int flags)
898{
899	return security_ops->task_fix_setuid(new, old, flags);
900}
901
902int security_task_setpgid(struct task_struct *p, pid_t pgid)
903{
904	return security_ops->task_setpgid(p, pgid);
905}
906
907int security_task_getpgid(struct task_struct *p)
908{
909	return security_ops->task_getpgid(p);
910}
911
912int security_task_getsid(struct task_struct *p)
913{
914	return security_ops->task_getsid(p);
915}
916
917void security_task_getsecid(struct task_struct *p, u32 *secid)
918{
919	security_ops->task_getsecid(p, secid);
920}
921EXPORT_SYMBOL(security_task_getsecid);
922
923int security_task_setnice(struct task_struct *p, int nice)
924{
925	return security_ops->task_setnice(p, nice);
926}
927
928int security_task_setioprio(struct task_struct *p, int ioprio)
929{
930	return security_ops->task_setioprio(p, ioprio);
931}
932
933int security_task_getioprio(struct task_struct *p)
934{
935	return security_ops->task_getioprio(p);
936}
937
938int security_task_setrlimit(struct task_struct *p, unsigned int resource,
939		struct rlimit *new_rlim)
940{
941	return security_ops->task_setrlimit(p, resource, new_rlim);
942}
943
944int security_task_setscheduler(struct task_struct *p)
945{
946	return security_ops->task_setscheduler(p);
947}
948
949int security_task_getscheduler(struct task_struct *p)
950{
951	return security_ops->task_getscheduler(p);
952}
953
954int security_task_movememory(struct task_struct *p)
955{
956	return security_ops->task_movememory(p);
957}
958
959int security_task_kill(struct task_struct *p, struct siginfo *info,
960			int sig, u32 secid)
961{
962	return security_ops->task_kill(p, info, sig, secid);
963}
964
965int security_task_wait(struct task_struct *p)
966{
967	return security_ops->task_wait(p);
968}
969
970int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
971			 unsigned long arg4, unsigned long arg5)
972{
973#ifdef CONFIG_SECURITY_YAMA_STACKED
974	int rc;
975	rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
976	if (rc != -ENOSYS)
977		return rc;
978#endif
979	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
980}
981
982void security_task_to_inode(struct task_struct *p, struct inode *inode)
983{
984	security_ops->task_to_inode(p, inode);
985}
986
987int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
988{
989	return security_ops->ipc_permission(ipcp, flag);
990}
991
992void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
993{
994	security_ops->ipc_getsecid(ipcp, secid);
995}
996
997int security_msg_msg_alloc(struct msg_msg *msg)
998{
999	return security_ops->msg_msg_alloc_security(msg);
1000}
1001
1002void security_msg_msg_free(struct msg_msg *msg)
1003{
1004	security_ops->msg_msg_free_security(msg);
1005}
1006
1007int security_msg_queue_alloc(struct msg_queue *msq)
1008{
1009	return security_ops->msg_queue_alloc_security(msq);
1010}
1011
1012void security_msg_queue_free(struct msg_queue *msq)
1013{
1014	security_ops->msg_queue_free_security(msq);
1015}
1016
1017int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
1018{
1019	return security_ops->msg_queue_associate(msq, msqflg);
1020}
1021
1022int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
1023{
1024	return security_ops->msg_queue_msgctl(msq, cmd);
1025}
1026
1027int security_msg_queue_msgsnd(struct msg_queue *msq,
1028			       struct msg_msg *msg, int msqflg)
1029{
1030	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
1031}
1032
1033int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
1034			       struct task_struct *target, long type, int mode)
1035{
1036	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
1037}
1038
1039int security_shm_alloc(struct shmid_kernel *shp)
1040{
1041	return security_ops->shm_alloc_security(shp);
1042}
1043
1044void security_shm_free(struct shmid_kernel *shp)
1045{
1046	security_ops->shm_free_security(shp);
1047}
1048
1049int security_shm_associate(struct shmid_kernel *shp, int shmflg)
1050{
1051	return security_ops->shm_associate(shp, shmflg);
1052}
1053
1054int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1055{
1056	return security_ops->shm_shmctl(shp, cmd);
1057}
1058
1059int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1060{
1061	return security_ops->shm_shmat(shp, shmaddr, shmflg);
1062}
1063
1064int security_sem_alloc(struct sem_array *sma)
1065{
1066	return security_ops->sem_alloc_security(sma);
1067}
1068
1069void security_sem_free(struct sem_array *sma)
1070{
1071	security_ops->sem_free_security(sma);
1072}
1073
1074int security_sem_associate(struct sem_array *sma, int semflg)
1075{
1076	return security_ops->sem_associate(sma, semflg);
1077}
1078
1079int security_sem_semctl(struct sem_array *sma, int cmd)
1080{
1081	return security_ops->sem_semctl(sma, cmd);
1082}
1083
1084int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1085			unsigned nsops, int alter)
1086{
1087	return security_ops->sem_semop(sma, sops, nsops, alter);
1088}
1089
1090void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1091{
1092	if (unlikely(inode && IS_PRIVATE(inode)))
1093		return;
1094	security_ops->d_instantiate(dentry, inode);
1095}
1096EXPORT_SYMBOL(security_d_instantiate);
1097
1098int security_getprocattr(struct task_struct *p, char *name, char **value)
1099{
1100	return security_ops->getprocattr(p, name, value);
1101}
1102
1103int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1104{
1105	return security_ops->setprocattr(p, name, value, size);
1106}
1107
1108int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1109{
1110	return security_ops->netlink_send(sk, skb);
1111}
1112
1113int security_ismaclabel(const char *name)
1114{
1115	return security_ops->ismaclabel(name);
1116}
1117EXPORT_SYMBOL(security_ismaclabel);
1118
1119int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1120{
1121	return security_ops->secid_to_secctx(secid, secdata, seclen);
1122}
1123EXPORT_SYMBOL(security_secid_to_secctx);
1124
1125int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1126{
1127	return security_ops->secctx_to_secid(secdata, seclen, secid);
1128}
1129EXPORT_SYMBOL(security_secctx_to_secid);
1130
1131void security_release_secctx(char *secdata, u32 seclen)
1132{
1133	security_ops->release_secctx(secdata, seclen);
1134}
1135EXPORT_SYMBOL(security_release_secctx);
1136
1137int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1138{
1139	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1140}
1141EXPORT_SYMBOL(security_inode_notifysecctx);
1142
1143int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1144{
1145	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1146}
1147EXPORT_SYMBOL(security_inode_setsecctx);
1148
1149int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1150{
1151	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1152}
1153EXPORT_SYMBOL(security_inode_getsecctx);
1154
1155#ifdef CONFIG_SECURITY_NETWORK
1156
1157int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1158{
1159	return security_ops->unix_stream_connect(sock, other, newsk);
1160}
1161EXPORT_SYMBOL(security_unix_stream_connect);
1162
1163int security_unix_may_send(struct socket *sock,  struct socket *other)
1164{
1165	return security_ops->unix_may_send(sock, other);
1166}
1167EXPORT_SYMBOL(security_unix_may_send);
1168
1169int security_socket_create(int family, int type, int protocol, int kern)
1170{
1171	return security_ops->socket_create(family, type, protocol, kern);
1172}
1173
1174int security_socket_post_create(struct socket *sock, int family,
1175				int type, int protocol, int kern)
1176{
1177	return security_ops->socket_post_create(sock, family, type,
1178						protocol, kern);
1179}
1180
1181int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1182{
1183	return security_ops->socket_bind(sock, address, addrlen);
1184}
1185
1186int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1187{
1188	return security_ops->socket_connect(sock, address, addrlen);
1189}
1190
1191int security_socket_listen(struct socket *sock, int backlog)
1192{
1193	return security_ops->socket_listen(sock, backlog);
1194}
1195
1196int security_socket_accept(struct socket *sock, struct socket *newsock)
1197{
1198	return security_ops->socket_accept(sock, newsock);
1199}
1200
1201int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1202{
1203	return security_ops->socket_sendmsg(sock, msg, size);
1204}
1205
1206int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1207			    int size, int flags)
1208{
1209	return security_ops->socket_recvmsg(sock, msg, size, flags);
1210}
1211
1212int security_socket_getsockname(struct socket *sock)
1213{
1214	return security_ops->socket_getsockname(sock);
1215}
1216
1217int security_socket_getpeername(struct socket *sock)
1218{
1219	return security_ops->socket_getpeername(sock);
1220}
1221
1222int security_socket_getsockopt(struct socket *sock, int level, int optname)
1223{
1224	return security_ops->socket_getsockopt(sock, level, optname);
1225}
1226
1227int security_socket_setsockopt(struct socket *sock, int level, int optname)
1228{
1229	return security_ops->socket_setsockopt(sock, level, optname);
1230}
1231
1232int security_socket_shutdown(struct socket *sock, int how)
1233{
1234	return security_ops->socket_shutdown(sock, how);
1235}
1236
1237int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1238{
1239	return security_ops->socket_sock_rcv_skb(sk, skb);
1240}
1241EXPORT_SYMBOL(security_sock_rcv_skb);
1242
1243int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1244				      int __user *optlen, unsigned len)
1245{
1246	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1247}
1248
1249int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1250{
1251	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1252}
1253EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1254
1255int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1256{
1257	return security_ops->sk_alloc_security(sk, family, priority);
1258}
1259
1260void security_sk_free(struct sock *sk)
1261{
1262	security_ops->sk_free_security(sk);
1263}
1264
1265void security_sk_clone(const struct sock *sk, struct sock *newsk)
1266{
1267	security_ops->sk_clone_security(sk, newsk);
1268}
1269EXPORT_SYMBOL(security_sk_clone);
1270
1271void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1272{
1273	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1274}
1275EXPORT_SYMBOL(security_sk_classify_flow);
1276
1277void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1278{
1279	security_ops->req_classify_flow(req, fl);
1280}
1281EXPORT_SYMBOL(security_req_classify_flow);
1282
1283void security_sock_graft(struct sock *sk, struct socket *parent)
1284{
1285	security_ops->sock_graft(sk, parent);
1286}
1287EXPORT_SYMBOL(security_sock_graft);
1288
1289int security_inet_conn_request(struct sock *sk,
1290			struct sk_buff *skb, struct request_sock *req)
1291{
1292	return security_ops->inet_conn_request(sk, skb, req);
1293}
1294EXPORT_SYMBOL(security_inet_conn_request);
1295
1296void security_inet_csk_clone(struct sock *newsk,
1297			const struct request_sock *req)
1298{
1299	security_ops->inet_csk_clone(newsk, req);
1300}
1301
1302void security_inet_conn_established(struct sock *sk,
1303			struct sk_buff *skb)
1304{
1305	security_ops->inet_conn_established(sk, skb);
1306}
1307
1308int security_secmark_relabel_packet(u32 secid)
1309{
1310	return security_ops->secmark_relabel_packet(secid);
1311}
1312EXPORT_SYMBOL(security_secmark_relabel_packet);
1313
1314void security_secmark_refcount_inc(void)
1315{
1316	security_ops->secmark_refcount_inc();
1317}
1318EXPORT_SYMBOL(security_secmark_refcount_inc);
1319
1320void security_secmark_refcount_dec(void)
1321{
1322	security_ops->secmark_refcount_dec();
1323}
1324EXPORT_SYMBOL(security_secmark_refcount_dec);
1325
1326int security_tun_dev_alloc_security(void **security)
1327{
1328	return security_ops->tun_dev_alloc_security(security);
1329}
1330EXPORT_SYMBOL(security_tun_dev_alloc_security);
1331
1332void security_tun_dev_free_security(void *security)
1333{
1334	security_ops->tun_dev_free_security(security);
1335}
1336EXPORT_SYMBOL(security_tun_dev_free_security);
1337
1338int security_tun_dev_create(void)
1339{
1340	return security_ops->tun_dev_create();
1341}
1342EXPORT_SYMBOL(security_tun_dev_create);
1343
1344int security_tun_dev_attach_queue(void *security)
1345{
1346	return security_ops->tun_dev_attach_queue(security);
1347}
1348EXPORT_SYMBOL(security_tun_dev_attach_queue);
1349
1350int security_tun_dev_attach(struct sock *sk, void *security)
1351{
1352	return security_ops->tun_dev_attach(sk, security);
1353}
1354EXPORT_SYMBOL(security_tun_dev_attach);
1355
1356int security_tun_dev_open(void *security)
1357{
1358	return security_ops->tun_dev_open(security);
1359}
1360EXPORT_SYMBOL(security_tun_dev_open);
1361
1362#endif	/* CONFIG_SECURITY_NETWORK */
1363
1364#ifdef CONFIG_SECURITY_NETWORK_XFRM
1365
1366int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1367			       struct xfrm_user_sec_ctx *sec_ctx,
1368			       gfp_t gfp)
1369{
1370	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx, gfp);
1371}
1372EXPORT_SYMBOL(security_xfrm_policy_alloc);
1373
1374int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1375			      struct xfrm_sec_ctx **new_ctxp)
1376{
1377	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1378}
1379
1380void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1381{
1382	security_ops->xfrm_policy_free_security(ctx);
1383}
1384EXPORT_SYMBOL(security_xfrm_policy_free);
1385
1386int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1387{
1388	return security_ops->xfrm_policy_delete_security(ctx);
1389}
1390
1391int security_xfrm_state_alloc(struct xfrm_state *x,
1392			      struct xfrm_user_sec_ctx *sec_ctx)
1393{
1394	return security_ops->xfrm_state_alloc(x, sec_ctx);
1395}
1396EXPORT_SYMBOL(security_xfrm_state_alloc);
1397
1398int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1399				      struct xfrm_sec_ctx *polsec, u32 secid)
1400{
1401	return security_ops->xfrm_state_alloc_acquire(x, polsec, secid);
1402}
1403
1404int security_xfrm_state_delete(struct xfrm_state *x)
1405{
1406	return security_ops->xfrm_state_delete_security(x);
1407}
1408EXPORT_SYMBOL(security_xfrm_state_delete);
1409
1410void security_xfrm_state_free(struct xfrm_state *x)
1411{
1412	security_ops->xfrm_state_free_security(x);
1413}
1414
1415int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1416{
1417	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1418}
1419
1420int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1421				       struct xfrm_policy *xp,
1422				       const struct flowi *fl)
1423{
1424	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1425}
1426
1427int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1428{
1429	return security_ops->xfrm_decode_session(skb, secid, 1);
1430}
1431
1432void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1433{
1434	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1435
1436	BUG_ON(rc);
1437}
1438EXPORT_SYMBOL(security_skb_classify_flow);
1439
1440#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1441
1442#ifdef CONFIG_KEYS
1443
1444int security_key_alloc(struct key *key, const struct cred *cred,
1445		       unsigned long flags)
1446{
1447	return security_ops->key_alloc(key, cred, flags);
1448}
1449
1450void security_key_free(struct key *key)
1451{
1452	security_ops->key_free(key);
1453}
1454
1455int security_key_permission(key_ref_t key_ref,
1456			    const struct cred *cred, unsigned perm)
1457{
1458	return security_ops->key_permission(key_ref, cred, perm);
1459}
1460
1461int security_key_getsecurity(struct key *key, char **_buffer)
1462{
1463	return security_ops->key_getsecurity(key, _buffer);
1464}
1465
1466#endif	/* CONFIG_KEYS */
1467
1468#ifdef CONFIG_AUDIT
1469
1470int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1471{
1472	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1473}
1474
1475int security_audit_rule_known(struct audit_krule *krule)
1476{
1477	return security_ops->audit_rule_known(krule);
1478}
1479
1480void security_audit_rule_free(void *lsmrule)
1481{
1482	security_ops->audit_rule_free(lsmrule);
1483}
1484
1485int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1486			      struct audit_context *actx)
1487{
1488	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1489}
1490
1491#endif /* CONFIG_AUDIT */
1492