1/*
2 * Copyright (C) 2010 IBM Corporation
3 * Copyright (C) 2010 Politecnico di Torino, Italy
4 *                    TORSEC group -- http://security.polito.it
5 *
6 * Authors:
7 * Mimi Zohar <zohar@us.ibm.com>
8 * Roberto Sassu <roberto.sassu@polito.it>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, version 2 of the License.
13 *
14 * See Documentation/security/keys-trusted-encrypted.txt
15 */
16
17#include <linux/uaccess.h>
18#include <linux/module.h>
19#include <linux/init.h>
20#include <linux/slab.h>
21#include <linux/parser.h>
22#include <linux/string.h>
23#include <linux/err.h>
24#include <keys/user-type.h>
25#include <keys/trusted-type.h>
26#include <keys/encrypted-type.h>
27#include <linux/key-type.h>
28#include <linux/random.h>
29#include <linux/rcupdate.h>
30#include <linux/scatterlist.h>
31#include <linux/crypto.h>
32#include <linux/ctype.h>
33#include <crypto/hash.h>
34#include <crypto/sha.h>
35#include <crypto/aes.h>
36
37#include "encrypted.h"
38#include "ecryptfs_format.h"
39
40static const char KEY_TRUSTED_PREFIX[] = "trusted:";
41static const char KEY_USER_PREFIX[] = "user:";
42static const char hash_alg[] = "sha256";
43static const char hmac_alg[] = "hmac(sha256)";
44static const char blkcipher_alg[] = "cbc(aes)";
45static const char key_format_default[] = "default";
46static const char key_format_ecryptfs[] = "ecryptfs";
47static unsigned int ivsize;
48static int blksize;
49
50#define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
51#define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
52#define KEY_ECRYPTFS_DESC_LEN 16
53#define HASH_SIZE SHA256_DIGEST_SIZE
54#define MAX_DATA_SIZE 4096
55#define MIN_DATA_SIZE  20
56
57struct sdesc {
58	struct shash_desc shash;
59	char ctx[];
60};
61
62static struct crypto_shash *hashalg;
63static struct crypto_shash *hmacalg;
64
65enum {
66	Opt_err = -1, Opt_new, Opt_load, Opt_update
67};
68
69enum {
70	Opt_error = -1, Opt_default, Opt_ecryptfs
71};
72
73static const match_table_t key_format_tokens = {
74	{Opt_default, "default"},
75	{Opt_ecryptfs, "ecryptfs"},
76	{Opt_error, NULL}
77};
78
79static const match_table_t key_tokens = {
80	{Opt_new, "new"},
81	{Opt_load, "load"},
82	{Opt_update, "update"},
83	{Opt_err, NULL}
84};
85
86static int aes_get_sizes(void)
87{
88	struct crypto_blkcipher *tfm;
89
90	tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
91	if (IS_ERR(tfm)) {
92		pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
93		       PTR_ERR(tfm));
94		return PTR_ERR(tfm);
95	}
96	ivsize = crypto_blkcipher_ivsize(tfm);
97	blksize = crypto_blkcipher_blocksize(tfm);
98	crypto_free_blkcipher(tfm);
99	return 0;
100}
101
102/*
103 * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
104 *
105 * The description of a encrypted key with format 'ecryptfs' must contain
106 * exactly 16 hexadecimal characters.
107 *
108 */
109static int valid_ecryptfs_desc(const char *ecryptfs_desc)
110{
111	int i;
112
113	if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
114		pr_err("encrypted_key: key description must be %d hexadecimal "
115		       "characters long\n", KEY_ECRYPTFS_DESC_LEN);
116		return -EINVAL;
117	}
118
119	for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
120		if (!isxdigit(ecryptfs_desc[i])) {
121			pr_err("encrypted_key: key description must contain "
122			       "only hexadecimal characters\n");
123			return -EINVAL;
124		}
125	}
126
127	return 0;
128}
129
130/*
131 * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
132 *
133 * key-type:= "trusted:" | "user:"
134 * desc:= master-key description
135 *
136 * Verify that 'key-type' is valid and that 'desc' exists. On key update,
137 * only the master key description is permitted to change, not the key-type.
138 * The key-type remains constant.
139 *
140 * On success returns 0, otherwise -EINVAL.
141 */
142static int valid_master_desc(const char *new_desc, const char *orig_desc)
143{
144	if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) {
145		if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN)
146			goto out;
147		if (orig_desc)
148			if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN))
149				goto out;
150	} else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) {
151		if (strlen(new_desc) == KEY_USER_PREFIX_LEN)
152			goto out;
153		if (orig_desc)
154			if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN))
155				goto out;
156	} else
157		goto out;
158	return 0;
159out:
160	return -EINVAL;
161}
162
163/*
164 * datablob_parse - parse the keyctl data
165 *
166 * datablob format:
167 * new [<format>] <master-key name> <decrypted data length>
168 * load [<format>] <master-key name> <decrypted data length>
169 *     <encrypted iv + data>
170 * update <new-master-key name>
171 *
172 * Tokenizes a copy of the keyctl data, returning a pointer to each token,
173 * which is null terminated.
174 *
175 * On success returns 0, otherwise -EINVAL.
176 */
177static int datablob_parse(char *datablob, const char **format,
178			  char **master_desc, char **decrypted_datalen,
179			  char **hex_encoded_iv)
180{
181	substring_t args[MAX_OPT_ARGS];
182	int ret = -EINVAL;
183	int key_cmd;
184	int key_format;
185	char *p, *keyword;
186
187	keyword = strsep(&datablob, " \t");
188	if (!keyword) {
189		pr_info("encrypted_key: insufficient parameters specified\n");
190		return ret;
191	}
192	key_cmd = match_token(keyword, key_tokens, args);
193
194	/* Get optional format: default | ecryptfs */
195	p = strsep(&datablob, " \t");
196	if (!p) {
197		pr_err("encrypted_key: insufficient parameters specified\n");
198		return ret;
199	}
200
201	key_format = match_token(p, key_format_tokens, args);
202	switch (key_format) {
203	case Opt_ecryptfs:
204	case Opt_default:
205		*format = p;
206		*master_desc = strsep(&datablob, " \t");
207		break;
208	case Opt_error:
209		*master_desc = p;
210		break;
211	}
212
213	if (!*master_desc) {
214		pr_info("encrypted_key: master key parameter is missing\n");
215		goto out;
216	}
217
218	if (valid_master_desc(*master_desc, NULL) < 0) {
219		pr_info("encrypted_key: master key parameter \'%s\' "
220			"is invalid\n", *master_desc);
221		goto out;
222	}
223
224	if (decrypted_datalen) {
225		*decrypted_datalen = strsep(&datablob, " \t");
226		if (!*decrypted_datalen) {
227			pr_info("encrypted_key: keylen parameter is missing\n");
228			goto out;
229		}
230	}
231
232	switch (key_cmd) {
233	case Opt_new:
234		if (!decrypted_datalen) {
235			pr_info("encrypted_key: keyword \'%s\' not allowed "
236				"when called from .update method\n", keyword);
237			break;
238		}
239		ret = 0;
240		break;
241	case Opt_load:
242		if (!decrypted_datalen) {
243			pr_info("encrypted_key: keyword \'%s\' not allowed "
244				"when called from .update method\n", keyword);
245			break;
246		}
247		*hex_encoded_iv = strsep(&datablob, " \t");
248		if (!*hex_encoded_iv) {
249			pr_info("encrypted_key: hex blob is missing\n");
250			break;
251		}
252		ret = 0;
253		break;
254	case Opt_update:
255		if (decrypted_datalen) {
256			pr_info("encrypted_key: keyword \'%s\' not allowed "
257				"when called from .instantiate method\n",
258				keyword);
259			break;
260		}
261		ret = 0;
262		break;
263	case Opt_err:
264		pr_info("encrypted_key: keyword \'%s\' not recognized\n",
265			keyword);
266		break;
267	}
268out:
269	return ret;
270}
271
272/*
273 * datablob_format - format as an ascii string, before copying to userspace
274 */
275static char *datablob_format(struct encrypted_key_payload *epayload,
276			     size_t asciiblob_len)
277{
278	char *ascii_buf, *bufp;
279	u8 *iv = epayload->iv;
280	int len;
281	int i;
282
283	ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
284	if (!ascii_buf)
285		goto out;
286
287	ascii_buf[asciiblob_len] = '\0';
288
289	/* copy datablob master_desc and datalen strings */
290	len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
291		      epayload->master_desc, epayload->datalen);
292
293	/* convert the hex encoded iv, encrypted-data and HMAC to ascii */
294	bufp = &ascii_buf[len];
295	for (i = 0; i < (asciiblob_len - len) / 2; i++)
296		bufp = hex_byte_pack(bufp, iv[i]);
297out:
298	return ascii_buf;
299}
300
301/*
302 * request_user_key - request the user key
303 *
304 * Use a user provided key to encrypt/decrypt an encrypted-key.
305 */
306static struct key *request_user_key(const char *master_desc, u8 **master_key,
307				    size_t *master_keylen)
308{
309	struct user_key_payload *upayload;
310	struct key *ukey;
311
312	ukey = request_key(&key_type_user, master_desc, NULL);
313	if (IS_ERR(ukey))
314		goto error;
315
316	down_read(&ukey->sem);
317	upayload = ukey->payload.data;
318	*master_key = upayload->data;
319	*master_keylen = upayload->datalen;
320error:
321	return ukey;
322}
323
324static struct sdesc *alloc_sdesc(struct crypto_shash *alg)
325{
326	struct sdesc *sdesc;
327	int size;
328
329	size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
330	sdesc = kmalloc(size, GFP_KERNEL);
331	if (!sdesc)
332		return ERR_PTR(-ENOMEM);
333	sdesc->shash.tfm = alg;
334	sdesc->shash.flags = 0x0;
335	return sdesc;
336}
337
338static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
339		     const u8 *buf, unsigned int buflen)
340{
341	struct sdesc *sdesc;
342	int ret;
343
344	sdesc = alloc_sdesc(hmacalg);
345	if (IS_ERR(sdesc)) {
346		pr_info("encrypted_key: can't alloc %s\n", hmac_alg);
347		return PTR_ERR(sdesc);
348	}
349
350	ret = crypto_shash_setkey(hmacalg, key, keylen);
351	if (!ret)
352		ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
353	kfree(sdesc);
354	return ret;
355}
356
357static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen)
358{
359	struct sdesc *sdesc;
360	int ret;
361
362	sdesc = alloc_sdesc(hashalg);
363	if (IS_ERR(sdesc)) {
364		pr_info("encrypted_key: can't alloc %s\n", hash_alg);
365		return PTR_ERR(sdesc);
366	}
367
368	ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
369	kfree(sdesc);
370	return ret;
371}
372
373enum derived_key_type { ENC_KEY, AUTH_KEY };
374
375/* Derive authentication/encryption key from trusted key */
376static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
377			   const u8 *master_key, size_t master_keylen)
378{
379	u8 *derived_buf;
380	unsigned int derived_buf_len;
381	int ret;
382
383	derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
384	if (derived_buf_len < HASH_SIZE)
385		derived_buf_len = HASH_SIZE;
386
387	derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
388	if (!derived_buf) {
389		pr_err("encrypted_key: out of memory\n");
390		return -ENOMEM;
391	}
392	if (key_type)
393		strcpy(derived_buf, "AUTH_KEY");
394	else
395		strcpy(derived_buf, "ENC_KEY");
396
397	memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
398	       master_keylen);
399	ret = calc_hash(derived_key, derived_buf, derived_buf_len);
400	kfree(derived_buf);
401	return ret;
402}
403
404static int init_blkcipher_desc(struct blkcipher_desc *desc, const u8 *key,
405			       unsigned int key_len, const u8 *iv,
406			       unsigned int ivsize)
407{
408	int ret;
409
410	desc->tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
411	if (IS_ERR(desc->tfm)) {
412		pr_err("encrypted_key: failed to load %s transform (%ld)\n",
413		       blkcipher_alg, PTR_ERR(desc->tfm));
414		return PTR_ERR(desc->tfm);
415	}
416	desc->flags = 0;
417
418	ret = crypto_blkcipher_setkey(desc->tfm, key, key_len);
419	if (ret < 0) {
420		pr_err("encrypted_key: failed to setkey (%d)\n", ret);
421		crypto_free_blkcipher(desc->tfm);
422		return ret;
423	}
424	crypto_blkcipher_set_iv(desc->tfm, iv, ivsize);
425	return 0;
426}
427
428static struct key *request_master_key(struct encrypted_key_payload *epayload,
429				      u8 **master_key, size_t *master_keylen)
430{
431	struct key *mkey = NULL;
432
433	if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
434		     KEY_TRUSTED_PREFIX_LEN)) {
435		mkey = request_trusted_key(epayload->master_desc +
436					   KEY_TRUSTED_PREFIX_LEN,
437					   master_key, master_keylen);
438	} else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
439			    KEY_USER_PREFIX_LEN)) {
440		mkey = request_user_key(epayload->master_desc +
441					KEY_USER_PREFIX_LEN,
442					master_key, master_keylen);
443	} else
444		goto out;
445
446	if (IS_ERR(mkey)) {
447		int ret = PTR_ERR(mkey);
448
449		if (ret == -ENOTSUPP)
450			pr_info("encrypted_key: key %s not supported",
451				epayload->master_desc);
452		else
453			pr_info("encrypted_key: key %s not found",
454				epayload->master_desc);
455		goto out;
456	}
457
458	dump_master_key(*master_key, *master_keylen);
459out:
460	return mkey;
461}
462
463/* Before returning data to userspace, encrypt decrypted data. */
464static int derived_key_encrypt(struct encrypted_key_payload *epayload,
465			       const u8 *derived_key,
466			       unsigned int derived_keylen)
467{
468	struct scatterlist sg_in[2];
469	struct scatterlist sg_out[1];
470	struct blkcipher_desc desc;
471	unsigned int encrypted_datalen;
472	unsigned int padlen;
473	char pad[16];
474	int ret;
475
476	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
477	padlen = encrypted_datalen - epayload->decrypted_datalen;
478
479	ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
480				  epayload->iv, ivsize);
481	if (ret < 0)
482		goto out;
483	dump_decrypted_data(epayload);
484
485	memset(pad, 0, sizeof pad);
486	sg_init_table(sg_in, 2);
487	sg_set_buf(&sg_in[0], epayload->decrypted_data,
488		   epayload->decrypted_datalen);
489	sg_set_buf(&sg_in[1], pad, padlen);
490
491	sg_init_table(sg_out, 1);
492	sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
493
494	ret = crypto_blkcipher_encrypt(&desc, sg_out, sg_in, encrypted_datalen);
495	crypto_free_blkcipher(desc.tfm);
496	if (ret < 0)
497		pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
498	else
499		dump_encrypted_data(epayload, encrypted_datalen);
500out:
501	return ret;
502}
503
504static int datablob_hmac_append(struct encrypted_key_payload *epayload,
505				const u8 *master_key, size_t master_keylen)
506{
507	u8 derived_key[HASH_SIZE];
508	u8 *digest;
509	int ret;
510
511	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
512	if (ret < 0)
513		goto out;
514
515	digest = epayload->format + epayload->datablob_len;
516	ret = calc_hmac(digest, derived_key, sizeof derived_key,
517			epayload->format, epayload->datablob_len);
518	if (!ret)
519		dump_hmac(NULL, digest, HASH_SIZE);
520out:
521	return ret;
522}
523
524/* verify HMAC before decrypting encrypted key */
525static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
526				const u8 *format, const u8 *master_key,
527				size_t master_keylen)
528{
529	u8 derived_key[HASH_SIZE];
530	u8 digest[HASH_SIZE];
531	int ret;
532	char *p;
533	unsigned short len;
534
535	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
536	if (ret < 0)
537		goto out;
538
539	len = epayload->datablob_len;
540	if (!format) {
541		p = epayload->master_desc;
542		len -= strlen(epayload->format) + 1;
543	} else
544		p = epayload->format;
545
546	ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
547	if (ret < 0)
548		goto out;
549	ret = memcmp(digest, epayload->format + epayload->datablob_len,
550		     sizeof digest);
551	if (ret) {
552		ret = -EINVAL;
553		dump_hmac("datablob",
554			  epayload->format + epayload->datablob_len,
555			  HASH_SIZE);
556		dump_hmac("calc", digest, HASH_SIZE);
557	}
558out:
559	return ret;
560}
561
562static int derived_key_decrypt(struct encrypted_key_payload *epayload,
563			       const u8 *derived_key,
564			       unsigned int derived_keylen)
565{
566	struct scatterlist sg_in[1];
567	struct scatterlist sg_out[2];
568	struct blkcipher_desc desc;
569	unsigned int encrypted_datalen;
570	char pad[16];
571	int ret;
572
573	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
574	ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
575				  epayload->iv, ivsize);
576	if (ret < 0)
577		goto out;
578	dump_encrypted_data(epayload, encrypted_datalen);
579
580	memset(pad, 0, sizeof pad);
581	sg_init_table(sg_in, 1);
582	sg_init_table(sg_out, 2);
583	sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
584	sg_set_buf(&sg_out[0], epayload->decrypted_data,
585		   epayload->decrypted_datalen);
586	sg_set_buf(&sg_out[1], pad, sizeof pad);
587
588	ret = crypto_blkcipher_decrypt(&desc, sg_out, sg_in, encrypted_datalen);
589	crypto_free_blkcipher(desc.tfm);
590	if (ret < 0)
591		goto out;
592	dump_decrypted_data(epayload);
593out:
594	return ret;
595}
596
597/* Allocate memory for decrypted key and datablob. */
598static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
599							 const char *format,
600							 const char *master_desc,
601							 const char *datalen)
602{
603	struct encrypted_key_payload *epayload = NULL;
604	unsigned short datablob_len;
605	unsigned short decrypted_datalen;
606	unsigned short payload_datalen;
607	unsigned int encrypted_datalen;
608	unsigned int format_len;
609	long dlen;
610	int ret;
611
612	ret = kstrtol(datalen, 10, &dlen);
613	if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
614		return ERR_PTR(-EINVAL);
615
616	format_len = (!format) ? strlen(key_format_default) : strlen(format);
617	decrypted_datalen = dlen;
618	payload_datalen = decrypted_datalen;
619	if (format && !strcmp(format, key_format_ecryptfs)) {
620		if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
621			pr_err("encrypted_key: keylen for the ecryptfs format "
622			       "must be equal to %d bytes\n",
623			       ECRYPTFS_MAX_KEY_BYTES);
624			return ERR_PTR(-EINVAL);
625		}
626		decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
627		payload_datalen = sizeof(struct ecryptfs_auth_tok);
628	}
629
630	encrypted_datalen = roundup(decrypted_datalen, blksize);
631
632	datablob_len = format_len + 1 + strlen(master_desc) + 1
633	    + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
634
635	ret = key_payload_reserve(key, payload_datalen + datablob_len
636				  + HASH_SIZE + 1);
637	if (ret < 0)
638		return ERR_PTR(ret);
639
640	epayload = kzalloc(sizeof(*epayload) + payload_datalen +
641			   datablob_len + HASH_SIZE + 1, GFP_KERNEL);
642	if (!epayload)
643		return ERR_PTR(-ENOMEM);
644
645	epayload->payload_datalen = payload_datalen;
646	epayload->decrypted_datalen = decrypted_datalen;
647	epayload->datablob_len = datablob_len;
648	return epayload;
649}
650
651static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
652				 const char *format, const char *hex_encoded_iv)
653{
654	struct key *mkey;
655	u8 derived_key[HASH_SIZE];
656	u8 *master_key;
657	u8 *hmac;
658	const char *hex_encoded_data;
659	unsigned int encrypted_datalen;
660	size_t master_keylen;
661	size_t asciilen;
662	int ret;
663
664	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
665	asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
666	if (strlen(hex_encoded_iv) != asciilen)
667		return -EINVAL;
668
669	hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
670	ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
671	if (ret < 0)
672		return -EINVAL;
673	ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
674		      encrypted_datalen);
675	if (ret < 0)
676		return -EINVAL;
677
678	hmac = epayload->format + epayload->datablob_len;
679	ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
680		      HASH_SIZE);
681	if (ret < 0)
682		return -EINVAL;
683
684	mkey = request_master_key(epayload, &master_key, &master_keylen);
685	if (IS_ERR(mkey))
686		return PTR_ERR(mkey);
687
688	ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
689	if (ret < 0) {
690		pr_err("encrypted_key: bad hmac (%d)\n", ret);
691		goto out;
692	}
693
694	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
695	if (ret < 0)
696		goto out;
697
698	ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
699	if (ret < 0)
700		pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
701out:
702	up_read(&mkey->sem);
703	key_put(mkey);
704	return ret;
705}
706
707static void __ekey_init(struct encrypted_key_payload *epayload,
708			const char *format, const char *master_desc,
709			const char *datalen)
710{
711	unsigned int format_len;
712
713	format_len = (!format) ? strlen(key_format_default) : strlen(format);
714	epayload->format = epayload->payload_data + epayload->payload_datalen;
715	epayload->master_desc = epayload->format + format_len + 1;
716	epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
717	epayload->iv = epayload->datalen + strlen(datalen) + 1;
718	epayload->encrypted_data = epayload->iv + ivsize + 1;
719	epayload->decrypted_data = epayload->payload_data;
720
721	if (!format)
722		memcpy(epayload->format, key_format_default, format_len);
723	else {
724		if (!strcmp(format, key_format_ecryptfs))
725			epayload->decrypted_data =
726				ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
727
728		memcpy(epayload->format, format, format_len);
729	}
730
731	memcpy(epayload->master_desc, master_desc, strlen(master_desc));
732	memcpy(epayload->datalen, datalen, strlen(datalen));
733}
734
735/*
736 * encrypted_init - initialize an encrypted key
737 *
738 * For a new key, use a random number for both the iv and data
739 * itself.  For an old key, decrypt the hex encoded data.
740 */
741static int encrypted_init(struct encrypted_key_payload *epayload,
742			  const char *key_desc, const char *format,
743			  const char *master_desc, const char *datalen,
744			  const char *hex_encoded_iv)
745{
746	int ret = 0;
747
748	if (format && !strcmp(format, key_format_ecryptfs)) {
749		ret = valid_ecryptfs_desc(key_desc);
750		if (ret < 0)
751			return ret;
752
753		ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
754				       key_desc);
755	}
756
757	__ekey_init(epayload, format, master_desc, datalen);
758	if (!hex_encoded_iv) {
759		get_random_bytes(epayload->iv, ivsize);
760
761		get_random_bytes(epayload->decrypted_data,
762				 epayload->decrypted_datalen);
763	} else
764		ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
765	return ret;
766}
767
768/*
769 * encrypted_instantiate - instantiate an encrypted key
770 *
771 * Decrypt an existing encrypted datablob or create a new encrypted key
772 * based on a kernel random number.
773 *
774 * On success, return 0. Otherwise return errno.
775 */
776static int encrypted_instantiate(struct key *key,
777				 struct key_preparsed_payload *prep)
778{
779	struct encrypted_key_payload *epayload = NULL;
780	char *datablob = NULL;
781	const char *format = NULL;
782	char *master_desc = NULL;
783	char *decrypted_datalen = NULL;
784	char *hex_encoded_iv = NULL;
785	size_t datalen = prep->datalen;
786	int ret;
787
788	if (datalen <= 0 || datalen > 32767 || !prep->data)
789		return -EINVAL;
790
791	datablob = kmalloc(datalen + 1, GFP_KERNEL);
792	if (!datablob)
793		return -ENOMEM;
794	datablob[datalen] = 0;
795	memcpy(datablob, prep->data, datalen);
796	ret = datablob_parse(datablob, &format, &master_desc,
797			     &decrypted_datalen, &hex_encoded_iv);
798	if (ret < 0)
799		goto out;
800
801	epayload = encrypted_key_alloc(key, format, master_desc,
802				       decrypted_datalen);
803	if (IS_ERR(epayload)) {
804		ret = PTR_ERR(epayload);
805		goto out;
806	}
807	ret = encrypted_init(epayload, key->description, format, master_desc,
808			     decrypted_datalen, hex_encoded_iv);
809	if (ret < 0) {
810		kfree(epayload);
811		goto out;
812	}
813
814	rcu_assign_keypointer(key, epayload);
815out:
816	kfree(datablob);
817	return ret;
818}
819
820static void encrypted_rcu_free(struct rcu_head *rcu)
821{
822	struct encrypted_key_payload *epayload;
823
824	epayload = container_of(rcu, struct encrypted_key_payload, rcu);
825	memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
826	kfree(epayload);
827}
828
829/*
830 * encrypted_update - update the master key description
831 *
832 * Change the master key description for an existing encrypted key.
833 * The next read will return an encrypted datablob using the new
834 * master key description.
835 *
836 * On success, return 0. Otherwise return errno.
837 */
838static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
839{
840	struct encrypted_key_payload *epayload = key->payload.data;
841	struct encrypted_key_payload *new_epayload;
842	char *buf;
843	char *new_master_desc = NULL;
844	const char *format = NULL;
845	size_t datalen = prep->datalen;
846	int ret = 0;
847
848	if (test_bit(KEY_FLAG_NEGATIVE, &key->flags))
849		return -ENOKEY;
850	if (datalen <= 0 || datalen > 32767 || !prep->data)
851		return -EINVAL;
852
853	buf = kmalloc(datalen + 1, GFP_KERNEL);
854	if (!buf)
855		return -ENOMEM;
856
857	buf[datalen] = 0;
858	memcpy(buf, prep->data, datalen);
859	ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
860	if (ret < 0)
861		goto out;
862
863	ret = valid_master_desc(new_master_desc, epayload->master_desc);
864	if (ret < 0)
865		goto out;
866
867	new_epayload = encrypted_key_alloc(key, epayload->format,
868					   new_master_desc, epayload->datalen);
869	if (IS_ERR(new_epayload)) {
870		ret = PTR_ERR(new_epayload);
871		goto out;
872	}
873
874	__ekey_init(new_epayload, epayload->format, new_master_desc,
875		    epayload->datalen);
876
877	memcpy(new_epayload->iv, epayload->iv, ivsize);
878	memcpy(new_epayload->payload_data, epayload->payload_data,
879	       epayload->payload_datalen);
880
881	rcu_assign_keypointer(key, new_epayload);
882	call_rcu(&epayload->rcu, encrypted_rcu_free);
883out:
884	kfree(buf);
885	return ret;
886}
887
888/*
889 * encrypted_read - format and copy the encrypted data to userspace
890 *
891 * The resulting datablob format is:
892 * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
893 *
894 * On success, return to userspace the encrypted key datablob size.
895 */
896static long encrypted_read(const struct key *key, char __user *buffer,
897			   size_t buflen)
898{
899	struct encrypted_key_payload *epayload;
900	struct key *mkey;
901	u8 *master_key;
902	size_t master_keylen;
903	char derived_key[HASH_SIZE];
904	char *ascii_buf;
905	size_t asciiblob_len;
906	int ret;
907
908	epayload = rcu_dereference_key(key);
909
910	/* returns the hex encoded iv, encrypted-data, and hmac as ascii */
911	asciiblob_len = epayload->datablob_len + ivsize + 1
912	    + roundup(epayload->decrypted_datalen, blksize)
913	    + (HASH_SIZE * 2);
914
915	if (!buffer || buflen < asciiblob_len)
916		return asciiblob_len;
917
918	mkey = request_master_key(epayload, &master_key, &master_keylen);
919	if (IS_ERR(mkey))
920		return PTR_ERR(mkey);
921
922	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
923	if (ret < 0)
924		goto out;
925
926	ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
927	if (ret < 0)
928		goto out;
929
930	ret = datablob_hmac_append(epayload, master_key, master_keylen);
931	if (ret < 0)
932		goto out;
933
934	ascii_buf = datablob_format(epayload, asciiblob_len);
935	if (!ascii_buf) {
936		ret = -ENOMEM;
937		goto out;
938	}
939
940	up_read(&mkey->sem);
941	key_put(mkey);
942
943	if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0)
944		ret = -EFAULT;
945	kfree(ascii_buf);
946
947	return asciiblob_len;
948out:
949	up_read(&mkey->sem);
950	key_put(mkey);
951	return ret;
952}
953
954/*
955 * encrypted_destroy - before freeing the key, clear the decrypted data
956 *
957 * Before freeing the key, clear the memory containing the decrypted
958 * key data.
959 */
960static void encrypted_destroy(struct key *key)
961{
962	struct encrypted_key_payload *epayload = key->payload.data;
963
964	if (!epayload)
965		return;
966
967	memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
968	kfree(key->payload.data);
969}
970
971struct key_type key_type_encrypted = {
972	.name = "encrypted",
973	.instantiate = encrypted_instantiate,
974	.update = encrypted_update,
975	.destroy = encrypted_destroy,
976	.describe = user_describe,
977	.read = encrypted_read,
978};
979EXPORT_SYMBOL_GPL(key_type_encrypted);
980
981static void encrypted_shash_release(void)
982{
983	if (hashalg)
984		crypto_free_shash(hashalg);
985	if (hmacalg)
986		crypto_free_shash(hmacalg);
987}
988
989static int __init encrypted_shash_alloc(void)
990{
991	int ret;
992
993	hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
994	if (IS_ERR(hmacalg)) {
995		pr_info("encrypted_key: could not allocate crypto %s\n",
996			hmac_alg);
997		return PTR_ERR(hmacalg);
998	}
999
1000	hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
1001	if (IS_ERR(hashalg)) {
1002		pr_info("encrypted_key: could not allocate crypto %s\n",
1003			hash_alg);
1004		ret = PTR_ERR(hashalg);
1005		goto hashalg_fail;
1006	}
1007
1008	return 0;
1009
1010hashalg_fail:
1011	crypto_free_shash(hmacalg);
1012	return ret;
1013}
1014
1015static int __init init_encrypted(void)
1016{
1017	int ret;
1018
1019	ret = encrypted_shash_alloc();
1020	if (ret < 0)
1021		return ret;
1022	ret = aes_get_sizes();
1023	if (ret < 0)
1024		goto out;
1025	ret = register_key_type(&key_type_encrypted);
1026	if (ret < 0)
1027		goto out;
1028	return 0;
1029out:
1030	encrypted_shash_release();
1031	return ret;
1032
1033}
1034
1035static void __exit cleanup_encrypted(void)
1036{
1037	encrypted_shash_release();
1038	unregister_key_type(&key_type_encrypted);
1039}
1040
1041late_initcall(init_encrypted);
1042module_exit(cleanup_encrypted);
1043
1044MODULE_LICENSE("GPL");
1045