1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014  Intel Mobile Communications GmbH
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21
22/**
23 * DOC: Wireless regulatory infrastructure
24 *
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
29 *
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
33 *
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
39 *
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
43 *
44 */
45
46#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48#include <linux/kernel.h>
49#include <linux/export.h>
50#include <linux/slab.h>
51#include <linux/list.h>
52#include <linux/ctype.h>
53#include <linux/nl80211.h>
54#include <linux/platform_device.h>
55#include <linux/moduleparam.h>
56#include <net/cfg80211.h>
57#include "core.h"
58#include "reg.h"
59#include "rdev-ops.h"
60#include "regdb.h"
61#include "nl80211.h"
62
63#ifdef CONFIG_CFG80211_REG_DEBUG
64#define REG_DBG_PRINT(format, args...)			\
65	printk(KERN_DEBUG pr_fmt(format), ##args)
66#else
67#define REG_DBG_PRINT(args...)
68#endif
69
70/*
71 * Grace period we give before making sure all current interfaces reside on
72 * channels allowed by the current regulatory domain.
73 */
74#define REG_ENFORCE_GRACE_MS 60000
75
76/**
77 * enum reg_request_treatment - regulatory request treatment
78 *
79 * @REG_REQ_OK: continue processing the regulatory request
80 * @REG_REQ_IGNORE: ignore the regulatory request
81 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82 *	be intersected with the current one.
83 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84 *	regulatory settings, and no further processing is required.
85 */
86enum reg_request_treatment {
87	REG_REQ_OK,
88	REG_REQ_IGNORE,
89	REG_REQ_INTERSECT,
90	REG_REQ_ALREADY_SET,
91};
92
93static struct regulatory_request core_request_world = {
94	.initiator = NL80211_REGDOM_SET_BY_CORE,
95	.alpha2[0] = '0',
96	.alpha2[1] = '0',
97	.intersect = false,
98	.processed = true,
99	.country_ie_env = ENVIRON_ANY,
100};
101
102/*
103 * Receipt of information from last regulatory request,
104 * protected by RTNL (and can be accessed with RCU protection)
105 */
106static struct regulatory_request __rcu *last_request =
107	(void __force __rcu *)&core_request_world;
108
109/* To trigger userspace events */
110static struct platform_device *reg_pdev;
111
112/*
113 * Central wireless core regulatory domains, we only need two,
114 * the current one and a world regulatory domain in case we have no
115 * information to give us an alpha2.
116 * (protected by RTNL, can be read under RCU)
117 */
118const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
119
120/*
121 * Number of devices that registered to the core
122 * that support cellular base station regulatory hints
123 * (protected by RTNL)
124 */
125static int reg_num_devs_support_basehint;
126
127/*
128 * State variable indicating if the platform on which the devices
129 * are attached is operating in an indoor environment. The state variable
130 * is relevant for all registered devices.
131 */
132static bool reg_is_indoor;
133static spinlock_t reg_indoor_lock;
134
135/* Used to track the userspace process controlling the indoor setting */
136static u32 reg_is_indoor_portid;
137
138/* Max number of consecutive attempts to communicate with CRDA  */
139#define REG_MAX_CRDA_TIMEOUTS 10
140
141static u32 reg_crda_timeouts;
142
143static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
144{
145	return rtnl_dereference(cfg80211_regdomain);
146}
147
148const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149{
150	return rtnl_dereference(wiphy->regd);
151}
152
153static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
154{
155	switch (dfs_region) {
156	case NL80211_DFS_UNSET:
157		return "unset";
158	case NL80211_DFS_FCC:
159		return "FCC";
160	case NL80211_DFS_ETSI:
161		return "ETSI";
162	case NL80211_DFS_JP:
163		return "JP";
164	}
165	return "Unknown";
166}
167
168enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
169{
170	const struct ieee80211_regdomain *regd = NULL;
171	const struct ieee80211_regdomain *wiphy_regd = NULL;
172
173	regd = get_cfg80211_regdom();
174	if (!wiphy)
175		goto out;
176
177	wiphy_regd = get_wiphy_regdom(wiphy);
178	if (!wiphy_regd)
179		goto out;
180
181	if (wiphy_regd->dfs_region == regd->dfs_region)
182		goto out;
183
184	REG_DBG_PRINT("%s: device specific dfs_region "
185		      "(%s) disagrees with cfg80211's "
186		      "central dfs_region (%s)\n",
187		      dev_name(&wiphy->dev),
188		      reg_dfs_region_str(wiphy_regd->dfs_region),
189		      reg_dfs_region_str(regd->dfs_region));
190
191out:
192	return regd->dfs_region;
193}
194
195static void rcu_free_regdom(const struct ieee80211_regdomain *r)
196{
197	if (!r)
198		return;
199	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
200}
201
202static struct regulatory_request *get_last_request(void)
203{
204	return rcu_dereference_rtnl(last_request);
205}
206
207/* Used to queue up regulatory hints */
208static LIST_HEAD(reg_requests_list);
209static spinlock_t reg_requests_lock;
210
211/* Used to queue up beacon hints for review */
212static LIST_HEAD(reg_pending_beacons);
213static spinlock_t reg_pending_beacons_lock;
214
215/* Used to keep track of processed beacon hints */
216static LIST_HEAD(reg_beacon_list);
217
218struct reg_beacon {
219	struct list_head list;
220	struct ieee80211_channel chan;
221};
222
223static void reg_check_chans_work(struct work_struct *work);
224static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
225
226static void reg_todo(struct work_struct *work);
227static DECLARE_WORK(reg_work, reg_todo);
228
229static void reg_timeout_work(struct work_struct *work);
230static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
231
232/* We keep a static world regulatory domain in case of the absence of CRDA */
233static const struct ieee80211_regdomain world_regdom = {
234	.n_reg_rules = 8,
235	.alpha2 =  "00",
236	.reg_rules = {
237		/* IEEE 802.11b/g, channels 1..11 */
238		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
239		/* IEEE 802.11b/g, channels 12..13. */
240		REG_RULE(2467-10, 2472+10, 40, 6, 20,
241			NL80211_RRF_NO_IR),
242		/* IEEE 802.11 channel 14 - Only JP enables
243		 * this and for 802.11b only */
244		REG_RULE(2484-10, 2484+10, 20, 6, 20,
245			NL80211_RRF_NO_IR |
246			NL80211_RRF_NO_OFDM),
247		/* IEEE 802.11a, channel 36..48 */
248		REG_RULE(5180-10, 5240+10, 160, 6, 20,
249                        NL80211_RRF_NO_IR),
250
251		/* IEEE 802.11a, channel 52..64 - DFS required */
252		REG_RULE(5260-10, 5320+10, 160, 6, 20,
253			NL80211_RRF_NO_IR |
254			NL80211_RRF_DFS),
255
256		/* IEEE 802.11a, channel 100..144 - DFS required */
257		REG_RULE(5500-10, 5720+10, 160, 6, 20,
258			NL80211_RRF_NO_IR |
259			NL80211_RRF_DFS),
260
261		/* IEEE 802.11a, channel 149..165 */
262		REG_RULE(5745-10, 5825+10, 80, 6, 20,
263			NL80211_RRF_NO_IR),
264
265		/* IEEE 802.11ad (60gHz), channels 1..3 */
266		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
267	}
268};
269
270/* protected by RTNL */
271static const struct ieee80211_regdomain *cfg80211_world_regdom =
272	&world_regdom;
273
274static char *ieee80211_regdom = "00";
275static char user_alpha2[2];
276
277module_param(ieee80211_regdom, charp, 0444);
278MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
279
280static void reg_free_request(struct regulatory_request *request)
281{
282	if (request != get_last_request())
283		kfree(request);
284}
285
286static void reg_free_last_request(void)
287{
288	struct regulatory_request *lr = get_last_request();
289
290	if (lr != &core_request_world && lr)
291		kfree_rcu(lr, rcu_head);
292}
293
294static void reg_update_last_request(struct regulatory_request *request)
295{
296	struct regulatory_request *lr;
297
298	lr = get_last_request();
299	if (lr == request)
300		return;
301
302	reg_free_last_request();
303	rcu_assign_pointer(last_request, request);
304}
305
306static void reset_regdomains(bool full_reset,
307			     const struct ieee80211_regdomain *new_regdom)
308{
309	const struct ieee80211_regdomain *r;
310
311	ASSERT_RTNL();
312
313	r = get_cfg80211_regdom();
314
315	/* avoid freeing static information or freeing something twice */
316	if (r == cfg80211_world_regdom)
317		r = NULL;
318	if (cfg80211_world_regdom == &world_regdom)
319		cfg80211_world_regdom = NULL;
320	if (r == &world_regdom)
321		r = NULL;
322
323	rcu_free_regdom(r);
324	rcu_free_regdom(cfg80211_world_regdom);
325
326	cfg80211_world_regdom = &world_regdom;
327	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
328
329	if (!full_reset)
330		return;
331
332	reg_update_last_request(&core_request_world);
333}
334
335/*
336 * Dynamic world regulatory domain requested by the wireless
337 * core upon initialization
338 */
339static void update_world_regdomain(const struct ieee80211_regdomain *rd)
340{
341	struct regulatory_request *lr;
342
343	lr = get_last_request();
344
345	WARN_ON(!lr);
346
347	reset_regdomains(false, rd);
348
349	cfg80211_world_regdom = rd;
350}
351
352bool is_world_regdom(const char *alpha2)
353{
354	if (!alpha2)
355		return false;
356	return alpha2[0] == '0' && alpha2[1] == '0';
357}
358
359static bool is_alpha2_set(const char *alpha2)
360{
361	if (!alpha2)
362		return false;
363	return alpha2[0] && alpha2[1];
364}
365
366static bool is_unknown_alpha2(const char *alpha2)
367{
368	if (!alpha2)
369		return false;
370	/*
371	 * Special case where regulatory domain was built by driver
372	 * but a specific alpha2 cannot be determined
373	 */
374	return alpha2[0] == '9' && alpha2[1] == '9';
375}
376
377static bool is_intersected_alpha2(const char *alpha2)
378{
379	if (!alpha2)
380		return false;
381	/*
382	 * Special case where regulatory domain is the
383	 * result of an intersection between two regulatory domain
384	 * structures
385	 */
386	return alpha2[0] == '9' && alpha2[1] == '8';
387}
388
389static bool is_an_alpha2(const char *alpha2)
390{
391	if (!alpha2)
392		return false;
393	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
394}
395
396static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
397{
398	if (!alpha2_x || !alpha2_y)
399		return false;
400	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
401}
402
403static bool regdom_changes(const char *alpha2)
404{
405	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
406
407	if (!r)
408		return true;
409	return !alpha2_equal(r->alpha2, alpha2);
410}
411
412/*
413 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
414 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
415 * has ever been issued.
416 */
417static bool is_user_regdom_saved(void)
418{
419	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
420		return false;
421
422	/* This would indicate a mistake on the design */
423	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
424		 "Unexpected user alpha2: %c%c\n",
425		 user_alpha2[0], user_alpha2[1]))
426		return false;
427
428	return true;
429}
430
431static const struct ieee80211_regdomain *
432reg_copy_regd(const struct ieee80211_regdomain *src_regd)
433{
434	struct ieee80211_regdomain *regd;
435	int size_of_regd;
436	unsigned int i;
437
438	size_of_regd =
439		sizeof(struct ieee80211_regdomain) +
440		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
441
442	regd = kzalloc(size_of_regd, GFP_KERNEL);
443	if (!regd)
444		return ERR_PTR(-ENOMEM);
445
446	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
447
448	for (i = 0; i < src_regd->n_reg_rules; i++)
449		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
450		       sizeof(struct ieee80211_reg_rule));
451
452	return regd;
453}
454
455#ifdef CONFIG_CFG80211_INTERNAL_REGDB
456struct reg_regdb_search_request {
457	char alpha2[2];
458	struct list_head list;
459};
460
461static LIST_HEAD(reg_regdb_search_list);
462static DEFINE_MUTEX(reg_regdb_search_mutex);
463
464static void reg_regdb_search(struct work_struct *work)
465{
466	struct reg_regdb_search_request *request;
467	const struct ieee80211_regdomain *curdom, *regdom = NULL;
468	int i;
469
470	rtnl_lock();
471
472	mutex_lock(&reg_regdb_search_mutex);
473	while (!list_empty(&reg_regdb_search_list)) {
474		request = list_first_entry(&reg_regdb_search_list,
475					   struct reg_regdb_search_request,
476					   list);
477		list_del(&request->list);
478
479		for (i = 0; i < reg_regdb_size; i++) {
480			curdom = reg_regdb[i];
481
482			if (alpha2_equal(request->alpha2, curdom->alpha2)) {
483				regdom = reg_copy_regd(curdom);
484				break;
485			}
486		}
487
488		kfree(request);
489	}
490	mutex_unlock(&reg_regdb_search_mutex);
491
492	if (!IS_ERR_OR_NULL(regdom))
493		set_regdom(regdom, REGD_SOURCE_INTERNAL_DB);
494
495	rtnl_unlock();
496}
497
498static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
499
500static void reg_regdb_query(const char *alpha2)
501{
502	struct reg_regdb_search_request *request;
503
504	if (!alpha2)
505		return;
506
507	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
508	if (!request)
509		return;
510
511	memcpy(request->alpha2, alpha2, 2);
512
513	mutex_lock(&reg_regdb_search_mutex);
514	list_add_tail(&request->list, &reg_regdb_search_list);
515	mutex_unlock(&reg_regdb_search_mutex);
516
517	schedule_work(&reg_regdb_work);
518}
519
520/* Feel free to add any other sanity checks here */
521static void reg_regdb_size_check(void)
522{
523	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
524	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
525}
526#else
527static inline void reg_regdb_size_check(void) {}
528static inline void reg_regdb_query(const char *alpha2) {}
529#endif /* CONFIG_CFG80211_INTERNAL_REGDB */
530
531/*
532 * This lets us keep regulatory code which is updated on a regulatory
533 * basis in userspace.
534 */
535static int call_crda(const char *alpha2)
536{
537	char country[12];
538	char *env[] = { country, NULL };
539
540	snprintf(country, sizeof(country), "COUNTRY=%c%c",
541		 alpha2[0], alpha2[1]);
542
543	/* query internal regulatory database (if it exists) */
544	reg_regdb_query(alpha2);
545
546	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
547		pr_info("Exceeded CRDA call max attempts. Not calling CRDA\n");
548		return -EINVAL;
549	}
550
551	if (!is_world_regdom((char *) alpha2))
552		pr_info("Calling CRDA for country: %c%c\n",
553			alpha2[0], alpha2[1]);
554	else
555		pr_info("Calling CRDA to update world regulatory domain\n");
556
557	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
558}
559
560static enum reg_request_treatment
561reg_call_crda(struct regulatory_request *request)
562{
563	if (call_crda(request->alpha2))
564		return REG_REQ_IGNORE;
565
566	queue_delayed_work(system_power_efficient_wq,
567			   &reg_timeout, msecs_to_jiffies(3142));
568	return REG_REQ_OK;
569}
570
571bool reg_is_valid_request(const char *alpha2)
572{
573	struct regulatory_request *lr = get_last_request();
574
575	if (!lr || lr->processed)
576		return false;
577
578	return alpha2_equal(lr->alpha2, alpha2);
579}
580
581static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
582{
583	struct regulatory_request *lr = get_last_request();
584
585	/*
586	 * Follow the driver's regulatory domain, if present, unless a country
587	 * IE has been processed or a user wants to help complaince further
588	 */
589	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
590	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
591	    wiphy->regd)
592		return get_wiphy_regdom(wiphy);
593
594	return get_cfg80211_regdom();
595}
596
597static unsigned int
598reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
599				 const struct ieee80211_reg_rule *rule)
600{
601	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
602	const struct ieee80211_freq_range *freq_range_tmp;
603	const struct ieee80211_reg_rule *tmp;
604	u32 start_freq, end_freq, idx, no;
605
606	for (idx = 0; idx < rd->n_reg_rules; idx++)
607		if (rule == &rd->reg_rules[idx])
608			break;
609
610	if (idx == rd->n_reg_rules)
611		return 0;
612
613	/* get start_freq */
614	no = idx;
615
616	while (no) {
617		tmp = &rd->reg_rules[--no];
618		freq_range_tmp = &tmp->freq_range;
619
620		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
621			break;
622
623		freq_range = freq_range_tmp;
624	}
625
626	start_freq = freq_range->start_freq_khz;
627
628	/* get end_freq */
629	freq_range = &rule->freq_range;
630	no = idx;
631
632	while (no < rd->n_reg_rules - 1) {
633		tmp = &rd->reg_rules[++no];
634		freq_range_tmp = &tmp->freq_range;
635
636		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
637			break;
638
639		freq_range = freq_range_tmp;
640	}
641
642	end_freq = freq_range->end_freq_khz;
643
644	return end_freq - start_freq;
645}
646
647unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
648				   const struct ieee80211_reg_rule *rule)
649{
650	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
651
652	if (rule->flags & NL80211_RRF_NO_160MHZ)
653		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
654	if (rule->flags & NL80211_RRF_NO_80MHZ)
655		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
656
657	/*
658	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
659	 * are not allowed.
660	 */
661	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
662	    rule->flags & NL80211_RRF_NO_HT40PLUS)
663		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
664
665	return bw;
666}
667
668/* Sanity check on a regulatory rule */
669static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
670{
671	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
672	u32 freq_diff;
673
674	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
675		return false;
676
677	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
678		return false;
679
680	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
681
682	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
683	    freq_range->max_bandwidth_khz > freq_diff)
684		return false;
685
686	return true;
687}
688
689static bool is_valid_rd(const struct ieee80211_regdomain *rd)
690{
691	const struct ieee80211_reg_rule *reg_rule = NULL;
692	unsigned int i;
693
694	if (!rd->n_reg_rules)
695		return false;
696
697	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
698		return false;
699
700	for (i = 0; i < rd->n_reg_rules; i++) {
701		reg_rule = &rd->reg_rules[i];
702		if (!is_valid_reg_rule(reg_rule))
703			return false;
704	}
705
706	return true;
707}
708
709static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
710			    u32 center_freq_khz, u32 bw_khz)
711{
712	u32 start_freq_khz, end_freq_khz;
713
714	start_freq_khz = center_freq_khz - (bw_khz/2);
715	end_freq_khz = center_freq_khz + (bw_khz/2);
716
717	if (start_freq_khz >= freq_range->start_freq_khz &&
718	    end_freq_khz <= freq_range->end_freq_khz)
719		return true;
720
721	return false;
722}
723
724/**
725 * freq_in_rule_band - tells us if a frequency is in a frequency band
726 * @freq_range: frequency rule we want to query
727 * @freq_khz: frequency we are inquiring about
728 *
729 * This lets us know if a specific frequency rule is or is not relevant to
730 * a specific frequency's band. Bands are device specific and artificial
731 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
732 * however it is safe for now to assume that a frequency rule should not be
733 * part of a frequency's band if the start freq or end freq are off by more
734 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
735 * 60 GHz band.
736 * This resolution can be lowered and should be considered as we add
737 * regulatory rule support for other "bands".
738 **/
739static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
740			      u32 freq_khz)
741{
742#define ONE_GHZ_IN_KHZ	1000000
743	/*
744	 * From 802.11ad: directional multi-gigabit (DMG):
745	 * Pertaining to operation in a frequency band containing a channel
746	 * with the Channel starting frequency above 45 GHz.
747	 */
748	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
749			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
750	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
751		return true;
752	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
753		return true;
754	return false;
755#undef ONE_GHZ_IN_KHZ
756}
757
758/*
759 * Later on we can perhaps use the more restrictive DFS
760 * region but we don't have information for that yet so
761 * for now simply disallow conflicts.
762 */
763static enum nl80211_dfs_regions
764reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
765			 const enum nl80211_dfs_regions dfs_region2)
766{
767	if (dfs_region1 != dfs_region2)
768		return NL80211_DFS_UNSET;
769	return dfs_region1;
770}
771
772/*
773 * Helper for regdom_intersect(), this does the real
774 * mathematical intersection fun
775 */
776static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
777			       const struct ieee80211_regdomain *rd2,
778			       const struct ieee80211_reg_rule *rule1,
779			       const struct ieee80211_reg_rule *rule2,
780			       struct ieee80211_reg_rule *intersected_rule)
781{
782	const struct ieee80211_freq_range *freq_range1, *freq_range2;
783	struct ieee80211_freq_range *freq_range;
784	const struct ieee80211_power_rule *power_rule1, *power_rule2;
785	struct ieee80211_power_rule *power_rule;
786	u32 freq_diff, max_bandwidth1, max_bandwidth2;
787
788	freq_range1 = &rule1->freq_range;
789	freq_range2 = &rule2->freq_range;
790	freq_range = &intersected_rule->freq_range;
791
792	power_rule1 = &rule1->power_rule;
793	power_rule2 = &rule2->power_rule;
794	power_rule = &intersected_rule->power_rule;
795
796	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
797					 freq_range2->start_freq_khz);
798	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
799				       freq_range2->end_freq_khz);
800
801	max_bandwidth1 = freq_range1->max_bandwidth_khz;
802	max_bandwidth2 = freq_range2->max_bandwidth_khz;
803
804	if (rule1->flags & NL80211_RRF_AUTO_BW)
805		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
806	if (rule2->flags & NL80211_RRF_AUTO_BW)
807		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
808
809	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
810
811	intersected_rule->flags = rule1->flags | rule2->flags;
812
813	/*
814	 * In case NL80211_RRF_AUTO_BW requested for both rules
815	 * set AUTO_BW in intersected rule also. Next we will
816	 * calculate BW correctly in handle_channel function.
817	 * In other case remove AUTO_BW flag while we calculate
818	 * maximum bandwidth correctly and auto calculation is
819	 * not required.
820	 */
821	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
822	    (rule2->flags & NL80211_RRF_AUTO_BW))
823		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
824	else
825		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
826
827	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
828	if (freq_range->max_bandwidth_khz > freq_diff)
829		freq_range->max_bandwidth_khz = freq_diff;
830
831	power_rule->max_eirp = min(power_rule1->max_eirp,
832		power_rule2->max_eirp);
833	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
834		power_rule2->max_antenna_gain);
835
836	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
837					   rule2->dfs_cac_ms);
838
839	if (!is_valid_reg_rule(intersected_rule))
840		return -EINVAL;
841
842	return 0;
843}
844
845/* check whether old rule contains new rule */
846static bool rule_contains(struct ieee80211_reg_rule *r1,
847			  struct ieee80211_reg_rule *r2)
848{
849	/* for simplicity, currently consider only same flags */
850	if (r1->flags != r2->flags)
851		return false;
852
853	/* verify r1 is more restrictive */
854	if ((r1->power_rule.max_antenna_gain >
855	     r2->power_rule.max_antenna_gain) ||
856	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
857		return false;
858
859	/* make sure r2's range is contained within r1 */
860	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
861	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
862		return false;
863
864	/* and finally verify that r1.max_bw >= r2.max_bw */
865	if (r1->freq_range.max_bandwidth_khz <
866	    r2->freq_range.max_bandwidth_khz)
867		return false;
868
869	return true;
870}
871
872/* add or extend current rules. do nothing if rule is already contained */
873static void add_rule(struct ieee80211_reg_rule *rule,
874		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
875{
876	struct ieee80211_reg_rule *tmp_rule;
877	int i;
878
879	for (i = 0; i < *n_rules; i++) {
880		tmp_rule = &reg_rules[i];
881		/* rule is already contained - do nothing */
882		if (rule_contains(tmp_rule, rule))
883			return;
884
885		/* extend rule if possible */
886		if (rule_contains(rule, tmp_rule)) {
887			memcpy(tmp_rule, rule, sizeof(*rule));
888			return;
889		}
890	}
891
892	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
893	(*n_rules)++;
894}
895
896/**
897 * regdom_intersect - do the intersection between two regulatory domains
898 * @rd1: first regulatory domain
899 * @rd2: second regulatory domain
900 *
901 * Use this function to get the intersection between two regulatory domains.
902 * Once completed we will mark the alpha2 for the rd as intersected, "98",
903 * as no one single alpha2 can represent this regulatory domain.
904 *
905 * Returns a pointer to the regulatory domain structure which will hold the
906 * resulting intersection of rules between rd1 and rd2. We will
907 * kzalloc() this structure for you.
908 */
909static struct ieee80211_regdomain *
910regdom_intersect(const struct ieee80211_regdomain *rd1,
911		 const struct ieee80211_regdomain *rd2)
912{
913	int r, size_of_regd;
914	unsigned int x, y;
915	unsigned int num_rules = 0;
916	const struct ieee80211_reg_rule *rule1, *rule2;
917	struct ieee80211_reg_rule intersected_rule;
918	struct ieee80211_regdomain *rd;
919
920	if (!rd1 || !rd2)
921		return NULL;
922
923	/*
924	 * First we get a count of the rules we'll need, then we actually
925	 * build them. This is to so we can malloc() and free() a
926	 * regdomain once. The reason we use reg_rules_intersect() here
927	 * is it will return -EINVAL if the rule computed makes no sense.
928	 * All rules that do check out OK are valid.
929	 */
930
931	for (x = 0; x < rd1->n_reg_rules; x++) {
932		rule1 = &rd1->reg_rules[x];
933		for (y = 0; y < rd2->n_reg_rules; y++) {
934			rule2 = &rd2->reg_rules[y];
935			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
936						 &intersected_rule))
937				num_rules++;
938		}
939	}
940
941	if (!num_rules)
942		return NULL;
943
944	size_of_regd = sizeof(struct ieee80211_regdomain) +
945		       num_rules * sizeof(struct ieee80211_reg_rule);
946
947	rd = kzalloc(size_of_regd, GFP_KERNEL);
948	if (!rd)
949		return NULL;
950
951	for (x = 0; x < rd1->n_reg_rules; x++) {
952		rule1 = &rd1->reg_rules[x];
953		for (y = 0; y < rd2->n_reg_rules; y++) {
954			rule2 = &rd2->reg_rules[y];
955			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
956						&intersected_rule);
957			/*
958			 * No need to memset here the intersected rule here as
959			 * we're not using the stack anymore
960			 */
961			if (r)
962				continue;
963
964			add_rule(&intersected_rule, rd->reg_rules,
965				 &rd->n_reg_rules);
966		}
967	}
968
969	rd->alpha2[0] = '9';
970	rd->alpha2[1] = '8';
971	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
972						  rd2->dfs_region);
973
974	return rd;
975}
976
977/*
978 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
979 * want to just have the channel structure use these
980 */
981static u32 map_regdom_flags(u32 rd_flags)
982{
983	u32 channel_flags = 0;
984	if (rd_flags & NL80211_RRF_NO_IR_ALL)
985		channel_flags |= IEEE80211_CHAN_NO_IR;
986	if (rd_flags & NL80211_RRF_DFS)
987		channel_flags |= IEEE80211_CHAN_RADAR;
988	if (rd_flags & NL80211_RRF_NO_OFDM)
989		channel_flags |= IEEE80211_CHAN_NO_OFDM;
990	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
991		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
992	if (rd_flags & NL80211_RRF_GO_CONCURRENT)
993		channel_flags |= IEEE80211_CHAN_GO_CONCURRENT;
994	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
995		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
996	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
997		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
998	if (rd_flags & NL80211_RRF_NO_80MHZ)
999		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1000	if (rd_flags & NL80211_RRF_NO_160MHZ)
1001		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1002	return channel_flags;
1003}
1004
1005static const struct ieee80211_reg_rule *
1006freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
1007		   const struct ieee80211_regdomain *regd)
1008{
1009	int i;
1010	bool band_rule_found = false;
1011	bool bw_fits = false;
1012
1013	if (!regd)
1014		return ERR_PTR(-EINVAL);
1015
1016	for (i = 0; i < regd->n_reg_rules; i++) {
1017		const struct ieee80211_reg_rule *rr;
1018		const struct ieee80211_freq_range *fr = NULL;
1019
1020		rr = &regd->reg_rules[i];
1021		fr = &rr->freq_range;
1022
1023		/*
1024		 * We only need to know if one frequency rule was
1025		 * was in center_freq's band, that's enough, so lets
1026		 * not overwrite it once found
1027		 */
1028		if (!band_rule_found)
1029			band_rule_found = freq_in_rule_band(fr, center_freq);
1030
1031		bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
1032
1033		if (band_rule_found && bw_fits)
1034			return rr;
1035	}
1036
1037	if (!band_rule_found)
1038		return ERR_PTR(-ERANGE);
1039
1040	return ERR_PTR(-EINVAL);
1041}
1042
1043const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1044					       u32 center_freq)
1045{
1046	const struct ieee80211_regdomain *regd;
1047
1048	regd = reg_get_regdomain(wiphy);
1049
1050	return freq_reg_info_regd(wiphy, center_freq, regd);
1051}
1052EXPORT_SYMBOL(freq_reg_info);
1053
1054const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1055{
1056	switch (initiator) {
1057	case NL80211_REGDOM_SET_BY_CORE:
1058		return "core";
1059	case NL80211_REGDOM_SET_BY_USER:
1060		return "user";
1061	case NL80211_REGDOM_SET_BY_DRIVER:
1062		return "driver";
1063	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1064		return "country IE";
1065	default:
1066		WARN_ON(1);
1067		return "bug";
1068	}
1069}
1070EXPORT_SYMBOL(reg_initiator_name);
1071
1072#ifdef CONFIG_CFG80211_REG_DEBUG
1073static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1074				    struct ieee80211_channel *chan,
1075				    const struct ieee80211_reg_rule *reg_rule)
1076{
1077	const struct ieee80211_power_rule *power_rule;
1078	const struct ieee80211_freq_range *freq_range;
1079	char max_antenna_gain[32], bw[32];
1080
1081	power_rule = &reg_rule->power_rule;
1082	freq_range = &reg_rule->freq_range;
1083
1084	if (!power_rule->max_antenna_gain)
1085		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1086	else
1087		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1088			 power_rule->max_antenna_gain);
1089
1090	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1091		snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1092			 freq_range->max_bandwidth_khz,
1093			 reg_get_max_bandwidth(regd, reg_rule));
1094	else
1095		snprintf(bw, sizeof(bw), "%d KHz",
1096			 freq_range->max_bandwidth_khz);
1097
1098	REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1099		      chan->center_freq);
1100
1101	REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1102		      freq_range->start_freq_khz, freq_range->end_freq_khz,
1103		      bw, max_antenna_gain,
1104		      power_rule->max_eirp);
1105}
1106#else
1107static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1108				    struct ieee80211_channel *chan,
1109				    const struct ieee80211_reg_rule *reg_rule)
1110{
1111	return;
1112}
1113#endif
1114
1115/*
1116 * Note that right now we assume the desired channel bandwidth
1117 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1118 * per channel, the primary and the extension channel).
1119 */
1120static void handle_channel(struct wiphy *wiphy,
1121			   enum nl80211_reg_initiator initiator,
1122			   struct ieee80211_channel *chan)
1123{
1124	u32 flags, bw_flags = 0;
1125	const struct ieee80211_reg_rule *reg_rule = NULL;
1126	const struct ieee80211_power_rule *power_rule = NULL;
1127	const struct ieee80211_freq_range *freq_range = NULL;
1128	struct wiphy *request_wiphy = NULL;
1129	struct regulatory_request *lr = get_last_request();
1130	const struct ieee80211_regdomain *regd;
1131	u32 max_bandwidth_khz;
1132
1133	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1134
1135	flags = chan->orig_flags;
1136
1137	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1138	if (IS_ERR(reg_rule)) {
1139		/*
1140		 * We will disable all channels that do not match our
1141		 * received regulatory rule unless the hint is coming
1142		 * from a Country IE and the Country IE had no information
1143		 * about a band. The IEEE 802.11 spec allows for an AP
1144		 * to send only a subset of the regulatory rules allowed,
1145		 * so an AP in the US that only supports 2.4 GHz may only send
1146		 * a country IE with information for the 2.4 GHz band
1147		 * while 5 GHz is still supported.
1148		 */
1149		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1150		    PTR_ERR(reg_rule) == -ERANGE)
1151			return;
1152
1153		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1154		    request_wiphy && request_wiphy == wiphy &&
1155		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1156			REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1157				      chan->center_freq);
1158			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1159			chan->flags = chan->orig_flags;
1160		} else {
1161			REG_DBG_PRINT("Disabling freq %d MHz\n",
1162				      chan->center_freq);
1163			chan->flags |= IEEE80211_CHAN_DISABLED;
1164		}
1165		return;
1166	}
1167
1168	regd = reg_get_regdomain(wiphy);
1169	chan_reg_rule_print_dbg(regd, chan, reg_rule);
1170
1171	power_rule = &reg_rule->power_rule;
1172	freq_range = &reg_rule->freq_range;
1173
1174	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1175	/* Check if auto calculation requested */
1176	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1177		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1178
1179	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1180		bw_flags = IEEE80211_CHAN_NO_HT40;
1181	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1182		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1183	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1184		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1185
1186	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1187	    request_wiphy && request_wiphy == wiphy &&
1188	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1189		/*
1190		 * This guarantees the driver's requested regulatory domain
1191		 * will always be used as a base for further regulatory
1192		 * settings
1193		 */
1194		chan->flags = chan->orig_flags =
1195			map_regdom_flags(reg_rule->flags) | bw_flags;
1196		chan->max_antenna_gain = chan->orig_mag =
1197			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1198		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1199			(int) MBM_TO_DBM(power_rule->max_eirp);
1200
1201		if (chan->flags & IEEE80211_CHAN_RADAR) {
1202			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1203			if (reg_rule->dfs_cac_ms)
1204				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1205		}
1206
1207		return;
1208	}
1209
1210	chan->dfs_state = NL80211_DFS_USABLE;
1211	chan->dfs_state_entered = jiffies;
1212
1213	chan->beacon_found = false;
1214	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1215	chan->max_antenna_gain =
1216		min_t(int, chan->orig_mag,
1217		      MBI_TO_DBI(power_rule->max_antenna_gain));
1218	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1219
1220	if (chan->flags & IEEE80211_CHAN_RADAR) {
1221		if (reg_rule->dfs_cac_ms)
1222			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1223		else
1224			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1225	}
1226
1227	if (chan->orig_mpwr) {
1228		/*
1229		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1230		 * will always follow the passed country IE power settings.
1231		 */
1232		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1233		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1234			chan->max_power = chan->max_reg_power;
1235		else
1236			chan->max_power = min(chan->orig_mpwr,
1237					      chan->max_reg_power);
1238	} else
1239		chan->max_power = chan->max_reg_power;
1240}
1241
1242static void handle_band(struct wiphy *wiphy,
1243			enum nl80211_reg_initiator initiator,
1244			struct ieee80211_supported_band *sband)
1245{
1246	unsigned int i;
1247
1248	if (!sband)
1249		return;
1250
1251	for (i = 0; i < sband->n_channels; i++)
1252		handle_channel(wiphy, initiator, &sband->channels[i]);
1253}
1254
1255static bool reg_request_cell_base(struct regulatory_request *request)
1256{
1257	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1258		return false;
1259	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1260}
1261
1262bool reg_last_request_cell_base(void)
1263{
1264	return reg_request_cell_base(get_last_request());
1265}
1266
1267#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1268/* Core specific check */
1269static enum reg_request_treatment
1270reg_ignore_cell_hint(struct regulatory_request *pending_request)
1271{
1272	struct regulatory_request *lr = get_last_request();
1273
1274	if (!reg_num_devs_support_basehint)
1275		return REG_REQ_IGNORE;
1276
1277	if (reg_request_cell_base(lr) &&
1278	    !regdom_changes(pending_request->alpha2))
1279		return REG_REQ_ALREADY_SET;
1280
1281	return REG_REQ_OK;
1282}
1283
1284/* Device specific check */
1285static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1286{
1287	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1288}
1289#else
1290static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1291{
1292	return REG_REQ_IGNORE;
1293}
1294
1295static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1296{
1297	return true;
1298}
1299#endif
1300
1301static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1302{
1303	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1304	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1305		return true;
1306	return false;
1307}
1308
1309static bool ignore_reg_update(struct wiphy *wiphy,
1310			      enum nl80211_reg_initiator initiator)
1311{
1312	struct regulatory_request *lr = get_last_request();
1313
1314	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1315		return true;
1316
1317	if (!lr) {
1318		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1319			      "since last_request is not set\n",
1320			      reg_initiator_name(initiator));
1321		return true;
1322	}
1323
1324	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1325	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1326		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1327			      "since the driver uses its own custom "
1328			      "regulatory domain\n",
1329			      reg_initiator_name(initiator));
1330		return true;
1331	}
1332
1333	/*
1334	 * wiphy->regd will be set once the device has its own
1335	 * desired regulatory domain set
1336	 */
1337	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1338	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1339	    !is_world_regdom(lr->alpha2)) {
1340		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1341			      "since the driver requires its own regulatory "
1342			      "domain to be set first\n",
1343			      reg_initiator_name(initiator));
1344		return true;
1345	}
1346
1347	if (reg_request_cell_base(lr))
1348		return reg_dev_ignore_cell_hint(wiphy);
1349
1350	return false;
1351}
1352
1353static bool reg_is_world_roaming(struct wiphy *wiphy)
1354{
1355	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1356	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1357	struct regulatory_request *lr = get_last_request();
1358
1359	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1360		return true;
1361
1362	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1363	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1364		return true;
1365
1366	return false;
1367}
1368
1369static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1370			      struct reg_beacon *reg_beacon)
1371{
1372	struct ieee80211_supported_band *sband;
1373	struct ieee80211_channel *chan;
1374	bool channel_changed = false;
1375	struct ieee80211_channel chan_before;
1376
1377	sband = wiphy->bands[reg_beacon->chan.band];
1378	chan = &sband->channels[chan_idx];
1379
1380	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1381		return;
1382
1383	if (chan->beacon_found)
1384		return;
1385
1386	chan->beacon_found = true;
1387
1388	if (!reg_is_world_roaming(wiphy))
1389		return;
1390
1391	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1392		return;
1393
1394	chan_before.center_freq = chan->center_freq;
1395	chan_before.flags = chan->flags;
1396
1397	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1398		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1399		channel_changed = true;
1400	}
1401
1402	if (channel_changed)
1403		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1404}
1405
1406/*
1407 * Called when a scan on a wiphy finds a beacon on
1408 * new channel
1409 */
1410static void wiphy_update_new_beacon(struct wiphy *wiphy,
1411				    struct reg_beacon *reg_beacon)
1412{
1413	unsigned int i;
1414	struct ieee80211_supported_band *sband;
1415
1416	if (!wiphy->bands[reg_beacon->chan.band])
1417		return;
1418
1419	sband = wiphy->bands[reg_beacon->chan.band];
1420
1421	for (i = 0; i < sband->n_channels; i++)
1422		handle_reg_beacon(wiphy, i, reg_beacon);
1423}
1424
1425/*
1426 * Called upon reg changes or a new wiphy is added
1427 */
1428static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1429{
1430	unsigned int i;
1431	struct ieee80211_supported_band *sband;
1432	struct reg_beacon *reg_beacon;
1433
1434	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1435		if (!wiphy->bands[reg_beacon->chan.band])
1436			continue;
1437		sband = wiphy->bands[reg_beacon->chan.band];
1438		for (i = 0; i < sband->n_channels; i++)
1439			handle_reg_beacon(wiphy, i, reg_beacon);
1440	}
1441}
1442
1443/* Reap the advantages of previously found beacons */
1444static void reg_process_beacons(struct wiphy *wiphy)
1445{
1446	/*
1447	 * Means we are just firing up cfg80211, so no beacons would
1448	 * have been processed yet.
1449	 */
1450	if (!last_request)
1451		return;
1452	wiphy_update_beacon_reg(wiphy);
1453}
1454
1455static bool is_ht40_allowed(struct ieee80211_channel *chan)
1456{
1457	if (!chan)
1458		return false;
1459	if (chan->flags & IEEE80211_CHAN_DISABLED)
1460		return false;
1461	/* This would happen when regulatory rules disallow HT40 completely */
1462	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1463		return false;
1464	return true;
1465}
1466
1467static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1468					 struct ieee80211_channel *channel)
1469{
1470	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1471	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1472	unsigned int i;
1473
1474	if (!is_ht40_allowed(channel)) {
1475		channel->flags |= IEEE80211_CHAN_NO_HT40;
1476		return;
1477	}
1478
1479	/*
1480	 * We need to ensure the extension channels exist to
1481	 * be able to use HT40- or HT40+, this finds them (or not)
1482	 */
1483	for (i = 0; i < sband->n_channels; i++) {
1484		struct ieee80211_channel *c = &sband->channels[i];
1485
1486		if (c->center_freq == (channel->center_freq - 20))
1487			channel_before = c;
1488		if (c->center_freq == (channel->center_freq + 20))
1489			channel_after = c;
1490	}
1491
1492	/*
1493	 * Please note that this assumes target bandwidth is 20 MHz,
1494	 * if that ever changes we also need to change the below logic
1495	 * to include that as well.
1496	 */
1497	if (!is_ht40_allowed(channel_before))
1498		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1499	else
1500		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1501
1502	if (!is_ht40_allowed(channel_after))
1503		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1504	else
1505		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1506}
1507
1508static void reg_process_ht_flags_band(struct wiphy *wiphy,
1509				      struct ieee80211_supported_band *sband)
1510{
1511	unsigned int i;
1512
1513	if (!sband)
1514		return;
1515
1516	for (i = 0; i < sband->n_channels; i++)
1517		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1518}
1519
1520static void reg_process_ht_flags(struct wiphy *wiphy)
1521{
1522	enum ieee80211_band band;
1523
1524	if (!wiphy)
1525		return;
1526
1527	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1528		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1529}
1530
1531static void reg_call_notifier(struct wiphy *wiphy,
1532			      struct regulatory_request *request)
1533{
1534	if (wiphy->reg_notifier)
1535		wiphy->reg_notifier(wiphy, request);
1536}
1537
1538static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1539{
1540	struct cfg80211_chan_def chandef;
1541	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1542	enum nl80211_iftype iftype;
1543
1544	wdev_lock(wdev);
1545	iftype = wdev->iftype;
1546
1547	/* make sure the interface is active */
1548	if (!wdev->netdev || !netif_running(wdev->netdev))
1549		goto wdev_inactive_unlock;
1550
1551	switch (iftype) {
1552	case NL80211_IFTYPE_AP:
1553	case NL80211_IFTYPE_P2P_GO:
1554		if (!wdev->beacon_interval)
1555			goto wdev_inactive_unlock;
1556		chandef = wdev->chandef;
1557		break;
1558	case NL80211_IFTYPE_ADHOC:
1559		if (!wdev->ssid_len)
1560			goto wdev_inactive_unlock;
1561		chandef = wdev->chandef;
1562		break;
1563	case NL80211_IFTYPE_STATION:
1564	case NL80211_IFTYPE_P2P_CLIENT:
1565		if (!wdev->current_bss ||
1566		    !wdev->current_bss->pub.channel)
1567			goto wdev_inactive_unlock;
1568
1569		if (!rdev->ops->get_channel ||
1570		    rdev_get_channel(rdev, wdev, &chandef))
1571			cfg80211_chandef_create(&chandef,
1572						wdev->current_bss->pub.channel,
1573						NL80211_CHAN_NO_HT);
1574		break;
1575	case NL80211_IFTYPE_MONITOR:
1576	case NL80211_IFTYPE_AP_VLAN:
1577	case NL80211_IFTYPE_P2P_DEVICE:
1578		/* no enforcement required */
1579		break;
1580	default:
1581		/* others not implemented for now */
1582		WARN_ON(1);
1583		break;
1584	}
1585
1586	wdev_unlock(wdev);
1587
1588	switch (iftype) {
1589	case NL80211_IFTYPE_AP:
1590	case NL80211_IFTYPE_P2P_GO:
1591	case NL80211_IFTYPE_ADHOC:
1592		return cfg80211_reg_can_beacon(wiphy, &chandef, iftype);
1593	case NL80211_IFTYPE_STATION:
1594	case NL80211_IFTYPE_P2P_CLIENT:
1595		return cfg80211_chandef_usable(wiphy, &chandef,
1596					       IEEE80211_CHAN_DISABLED);
1597	default:
1598		break;
1599	}
1600
1601	return true;
1602
1603wdev_inactive_unlock:
1604	wdev_unlock(wdev);
1605	return true;
1606}
1607
1608static void reg_leave_invalid_chans(struct wiphy *wiphy)
1609{
1610	struct wireless_dev *wdev;
1611	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1612
1613	ASSERT_RTNL();
1614
1615	list_for_each_entry(wdev, &rdev->wdev_list, list)
1616		if (!reg_wdev_chan_valid(wiphy, wdev))
1617			cfg80211_leave(rdev, wdev);
1618}
1619
1620static void reg_check_chans_work(struct work_struct *work)
1621{
1622	struct cfg80211_registered_device *rdev;
1623
1624	REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1625	rtnl_lock();
1626
1627	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1628		if (!(rdev->wiphy.regulatory_flags &
1629		      REGULATORY_IGNORE_STALE_KICKOFF))
1630			reg_leave_invalid_chans(&rdev->wiphy);
1631
1632	rtnl_unlock();
1633}
1634
1635static void reg_check_channels(void)
1636{
1637	/*
1638	 * Give usermode a chance to do something nicer (move to another
1639	 * channel, orderly disconnection), before forcing a disconnection.
1640	 */
1641	mod_delayed_work(system_power_efficient_wq,
1642			 &reg_check_chans,
1643			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1644}
1645
1646static void wiphy_update_regulatory(struct wiphy *wiphy,
1647				    enum nl80211_reg_initiator initiator)
1648{
1649	enum ieee80211_band band;
1650	struct regulatory_request *lr = get_last_request();
1651
1652	if (ignore_reg_update(wiphy, initiator)) {
1653		/*
1654		 * Regulatory updates set by CORE are ignored for custom
1655		 * regulatory cards. Let us notify the changes to the driver,
1656		 * as some drivers used this to restore its orig_* reg domain.
1657		 */
1658		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1659		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1660			reg_call_notifier(wiphy, lr);
1661		return;
1662	}
1663
1664	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1665
1666	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1667		handle_band(wiphy, initiator, wiphy->bands[band]);
1668
1669	reg_process_beacons(wiphy);
1670	reg_process_ht_flags(wiphy);
1671	reg_call_notifier(wiphy, lr);
1672}
1673
1674static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1675{
1676	struct cfg80211_registered_device *rdev;
1677	struct wiphy *wiphy;
1678
1679	ASSERT_RTNL();
1680
1681	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1682		wiphy = &rdev->wiphy;
1683		wiphy_update_regulatory(wiphy, initiator);
1684	}
1685
1686	reg_check_channels();
1687}
1688
1689static void handle_channel_custom(struct wiphy *wiphy,
1690				  struct ieee80211_channel *chan,
1691				  const struct ieee80211_regdomain *regd)
1692{
1693	u32 bw_flags = 0;
1694	const struct ieee80211_reg_rule *reg_rule = NULL;
1695	const struct ieee80211_power_rule *power_rule = NULL;
1696	const struct ieee80211_freq_range *freq_range = NULL;
1697	u32 max_bandwidth_khz;
1698
1699	reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1700				      regd);
1701
1702	if (IS_ERR(reg_rule)) {
1703		REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1704			      chan->center_freq);
1705		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1706			chan->flags |= IEEE80211_CHAN_DISABLED;
1707		} else {
1708			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1709			chan->flags = chan->orig_flags;
1710		}
1711		return;
1712	}
1713
1714	chan_reg_rule_print_dbg(regd, chan, reg_rule);
1715
1716	power_rule = &reg_rule->power_rule;
1717	freq_range = &reg_rule->freq_range;
1718
1719	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1720	/* Check if auto calculation requested */
1721	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1722		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1723
1724	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1725		bw_flags = IEEE80211_CHAN_NO_HT40;
1726	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1727		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1728	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1729		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1730
1731	chan->dfs_state_entered = jiffies;
1732	chan->dfs_state = NL80211_DFS_USABLE;
1733
1734	chan->beacon_found = false;
1735
1736	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1737		chan->flags = chan->orig_flags | bw_flags |
1738			      map_regdom_flags(reg_rule->flags);
1739	else
1740		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1741
1742	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1743	chan->max_reg_power = chan->max_power =
1744		(int) MBM_TO_DBM(power_rule->max_eirp);
1745
1746	if (chan->flags & IEEE80211_CHAN_RADAR) {
1747		if (reg_rule->dfs_cac_ms)
1748			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1749		else
1750			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1751	}
1752
1753	chan->max_power = chan->max_reg_power;
1754}
1755
1756static void handle_band_custom(struct wiphy *wiphy,
1757			       struct ieee80211_supported_band *sband,
1758			       const struct ieee80211_regdomain *regd)
1759{
1760	unsigned int i;
1761
1762	if (!sband)
1763		return;
1764
1765	for (i = 0; i < sband->n_channels; i++)
1766		handle_channel_custom(wiphy, &sband->channels[i], regd);
1767}
1768
1769/* Used by drivers prior to wiphy registration */
1770void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1771				   const struct ieee80211_regdomain *regd)
1772{
1773	enum ieee80211_band band;
1774	unsigned int bands_set = 0;
1775
1776	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1777	     "wiphy should have REGULATORY_CUSTOM_REG\n");
1778	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1779
1780	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1781		if (!wiphy->bands[band])
1782			continue;
1783		handle_band_custom(wiphy, wiphy->bands[band], regd);
1784		bands_set++;
1785	}
1786
1787	/*
1788	 * no point in calling this if it won't have any effect
1789	 * on your device's supported bands.
1790	 */
1791	WARN_ON(!bands_set);
1792}
1793EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1794
1795static void reg_set_request_processed(void)
1796{
1797	bool need_more_processing = false;
1798	struct regulatory_request *lr = get_last_request();
1799
1800	lr->processed = true;
1801
1802	spin_lock(&reg_requests_lock);
1803	if (!list_empty(&reg_requests_list))
1804		need_more_processing = true;
1805	spin_unlock(&reg_requests_lock);
1806
1807	cancel_delayed_work(&reg_timeout);
1808
1809	if (need_more_processing)
1810		schedule_work(&reg_work);
1811}
1812
1813/**
1814 * reg_process_hint_core - process core regulatory requests
1815 * @pending_request: a pending core regulatory request
1816 *
1817 * The wireless subsystem can use this function to process
1818 * a regulatory request issued by the regulatory core.
1819 *
1820 * Returns one of the different reg request treatment values.
1821 */
1822static enum reg_request_treatment
1823reg_process_hint_core(struct regulatory_request *core_request)
1824{
1825
1826	core_request->intersect = false;
1827	core_request->processed = false;
1828
1829	reg_update_last_request(core_request);
1830
1831	return reg_call_crda(core_request);
1832}
1833
1834static enum reg_request_treatment
1835__reg_process_hint_user(struct regulatory_request *user_request)
1836{
1837	struct regulatory_request *lr = get_last_request();
1838
1839	if (reg_request_cell_base(user_request))
1840		return reg_ignore_cell_hint(user_request);
1841
1842	if (reg_request_cell_base(lr))
1843		return REG_REQ_IGNORE;
1844
1845	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1846		return REG_REQ_INTERSECT;
1847	/*
1848	 * If the user knows better the user should set the regdom
1849	 * to their country before the IE is picked up
1850	 */
1851	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1852	    lr->intersect)
1853		return REG_REQ_IGNORE;
1854	/*
1855	 * Process user requests only after previous user/driver/core
1856	 * requests have been processed
1857	 */
1858	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1859	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1860	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1861	    regdom_changes(lr->alpha2))
1862		return REG_REQ_IGNORE;
1863
1864	if (!regdom_changes(user_request->alpha2))
1865		return REG_REQ_ALREADY_SET;
1866
1867	return REG_REQ_OK;
1868}
1869
1870/**
1871 * reg_process_hint_user - process user regulatory requests
1872 * @user_request: a pending user regulatory request
1873 *
1874 * The wireless subsystem can use this function to process
1875 * a regulatory request initiated by userspace.
1876 *
1877 * Returns one of the different reg request treatment values.
1878 */
1879static enum reg_request_treatment
1880reg_process_hint_user(struct regulatory_request *user_request)
1881{
1882	enum reg_request_treatment treatment;
1883
1884	treatment = __reg_process_hint_user(user_request);
1885	if (treatment == REG_REQ_IGNORE ||
1886	    treatment == REG_REQ_ALREADY_SET) {
1887		reg_free_request(user_request);
1888		return treatment;
1889	}
1890
1891	user_request->intersect = treatment == REG_REQ_INTERSECT;
1892	user_request->processed = false;
1893
1894	reg_update_last_request(user_request);
1895
1896	user_alpha2[0] = user_request->alpha2[0];
1897	user_alpha2[1] = user_request->alpha2[1];
1898
1899	return reg_call_crda(user_request);
1900}
1901
1902static enum reg_request_treatment
1903__reg_process_hint_driver(struct regulatory_request *driver_request)
1904{
1905	struct regulatory_request *lr = get_last_request();
1906
1907	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1908		if (regdom_changes(driver_request->alpha2))
1909			return REG_REQ_OK;
1910		return REG_REQ_ALREADY_SET;
1911	}
1912
1913	/*
1914	 * This would happen if you unplug and plug your card
1915	 * back in or if you add a new device for which the previously
1916	 * loaded card also agrees on the regulatory domain.
1917	 */
1918	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1919	    !regdom_changes(driver_request->alpha2))
1920		return REG_REQ_ALREADY_SET;
1921
1922	return REG_REQ_INTERSECT;
1923}
1924
1925/**
1926 * reg_process_hint_driver - process driver regulatory requests
1927 * @driver_request: a pending driver regulatory request
1928 *
1929 * The wireless subsystem can use this function to process
1930 * a regulatory request issued by an 802.11 driver.
1931 *
1932 * Returns one of the different reg request treatment values.
1933 */
1934static enum reg_request_treatment
1935reg_process_hint_driver(struct wiphy *wiphy,
1936			struct regulatory_request *driver_request)
1937{
1938	const struct ieee80211_regdomain *regd, *tmp;
1939	enum reg_request_treatment treatment;
1940
1941	treatment = __reg_process_hint_driver(driver_request);
1942
1943	switch (treatment) {
1944	case REG_REQ_OK:
1945		break;
1946	case REG_REQ_IGNORE:
1947		reg_free_request(driver_request);
1948		return treatment;
1949	case REG_REQ_INTERSECT:
1950		/* fall through */
1951	case REG_REQ_ALREADY_SET:
1952		regd = reg_copy_regd(get_cfg80211_regdom());
1953		if (IS_ERR(regd)) {
1954			reg_free_request(driver_request);
1955			return REG_REQ_IGNORE;
1956		}
1957
1958		tmp = get_wiphy_regdom(wiphy);
1959		rcu_assign_pointer(wiphy->regd, regd);
1960		rcu_free_regdom(tmp);
1961	}
1962
1963
1964	driver_request->intersect = treatment == REG_REQ_INTERSECT;
1965	driver_request->processed = false;
1966
1967	reg_update_last_request(driver_request);
1968
1969	/*
1970	 * Since CRDA will not be called in this case as we already
1971	 * have applied the requested regulatory domain before we just
1972	 * inform userspace we have processed the request
1973	 */
1974	if (treatment == REG_REQ_ALREADY_SET) {
1975		nl80211_send_reg_change_event(driver_request);
1976		reg_set_request_processed();
1977		return treatment;
1978	}
1979
1980	return reg_call_crda(driver_request);
1981}
1982
1983static enum reg_request_treatment
1984__reg_process_hint_country_ie(struct wiphy *wiphy,
1985			      struct regulatory_request *country_ie_request)
1986{
1987	struct wiphy *last_wiphy = NULL;
1988	struct regulatory_request *lr = get_last_request();
1989
1990	if (reg_request_cell_base(lr)) {
1991		/* Trust a Cell base station over the AP's country IE */
1992		if (regdom_changes(country_ie_request->alpha2))
1993			return REG_REQ_IGNORE;
1994		return REG_REQ_ALREADY_SET;
1995	} else {
1996		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1997			return REG_REQ_IGNORE;
1998	}
1999
2000	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2001		return -EINVAL;
2002
2003	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2004		return REG_REQ_OK;
2005
2006	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2007
2008	if (last_wiphy != wiphy) {
2009		/*
2010		 * Two cards with two APs claiming different
2011		 * Country IE alpha2s. We could
2012		 * intersect them, but that seems unlikely
2013		 * to be correct. Reject second one for now.
2014		 */
2015		if (regdom_changes(country_ie_request->alpha2))
2016			return REG_REQ_IGNORE;
2017		return REG_REQ_ALREADY_SET;
2018	}
2019
2020	if (regdom_changes(country_ie_request->alpha2))
2021		return REG_REQ_OK;
2022	return REG_REQ_ALREADY_SET;
2023}
2024
2025/**
2026 * reg_process_hint_country_ie - process regulatory requests from country IEs
2027 * @country_ie_request: a regulatory request from a country IE
2028 *
2029 * The wireless subsystem can use this function to process
2030 * a regulatory request issued by a country Information Element.
2031 *
2032 * Returns one of the different reg request treatment values.
2033 */
2034static enum reg_request_treatment
2035reg_process_hint_country_ie(struct wiphy *wiphy,
2036			    struct regulatory_request *country_ie_request)
2037{
2038	enum reg_request_treatment treatment;
2039
2040	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2041
2042	switch (treatment) {
2043	case REG_REQ_OK:
2044		break;
2045	case REG_REQ_IGNORE:
2046		/* fall through */
2047	case REG_REQ_ALREADY_SET:
2048		reg_free_request(country_ie_request);
2049		return treatment;
2050	case REG_REQ_INTERSECT:
2051		reg_free_request(country_ie_request);
2052		/*
2053		 * This doesn't happen yet, not sure we
2054		 * ever want to support it for this case.
2055		 */
2056		WARN_ONCE(1, "Unexpected intersection for country IEs");
2057		return REG_REQ_IGNORE;
2058	}
2059
2060	country_ie_request->intersect = false;
2061	country_ie_request->processed = false;
2062
2063	reg_update_last_request(country_ie_request);
2064
2065	return reg_call_crda(country_ie_request);
2066}
2067
2068/* This processes *all* regulatory hints */
2069static void reg_process_hint(struct regulatory_request *reg_request)
2070{
2071	struct wiphy *wiphy = NULL;
2072	enum reg_request_treatment treatment;
2073
2074	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2075		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2076
2077	switch (reg_request->initiator) {
2078	case NL80211_REGDOM_SET_BY_CORE:
2079		reg_process_hint_core(reg_request);
2080		return;
2081	case NL80211_REGDOM_SET_BY_USER:
2082		treatment = reg_process_hint_user(reg_request);
2083		if (treatment == REG_REQ_IGNORE ||
2084		    treatment == REG_REQ_ALREADY_SET)
2085			return;
2086		return;
2087	case NL80211_REGDOM_SET_BY_DRIVER:
2088		if (!wiphy)
2089			goto out_free;
2090		treatment = reg_process_hint_driver(wiphy, reg_request);
2091		break;
2092	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2093		if (!wiphy)
2094			goto out_free;
2095		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2096		break;
2097	default:
2098		WARN(1, "invalid initiator %d\n", reg_request->initiator);
2099		goto out_free;
2100	}
2101
2102	/* This is required so that the orig_* parameters are saved */
2103	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2104	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2105		wiphy_update_regulatory(wiphy, reg_request->initiator);
2106		reg_check_channels();
2107	}
2108
2109	return;
2110
2111out_free:
2112	reg_free_request(reg_request);
2113}
2114
2115static bool reg_only_self_managed_wiphys(void)
2116{
2117	struct cfg80211_registered_device *rdev;
2118	struct wiphy *wiphy;
2119	bool self_managed_found = false;
2120
2121	ASSERT_RTNL();
2122
2123	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2124		wiphy = &rdev->wiphy;
2125		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2126			self_managed_found = true;
2127		else
2128			return false;
2129	}
2130
2131	/* make sure at least one self-managed wiphy exists */
2132	return self_managed_found;
2133}
2134
2135/*
2136 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2137 * Regulatory hints come on a first come first serve basis and we
2138 * must process each one atomically.
2139 */
2140static void reg_process_pending_hints(void)
2141{
2142	struct regulatory_request *reg_request, *lr;
2143
2144	lr = get_last_request();
2145
2146	/* When last_request->processed becomes true this will be rescheduled */
2147	if (lr && !lr->processed) {
2148		reg_process_hint(lr);
2149		return;
2150	}
2151
2152	spin_lock(&reg_requests_lock);
2153
2154	if (list_empty(&reg_requests_list)) {
2155		spin_unlock(&reg_requests_lock);
2156		return;
2157	}
2158
2159	reg_request = list_first_entry(&reg_requests_list,
2160				       struct regulatory_request,
2161				       list);
2162	list_del_init(&reg_request->list);
2163
2164	spin_unlock(&reg_requests_lock);
2165
2166	if (reg_only_self_managed_wiphys()) {
2167		reg_free_request(reg_request);
2168		return;
2169	}
2170
2171	reg_process_hint(reg_request);
2172
2173	lr = get_last_request();
2174
2175	spin_lock(&reg_requests_lock);
2176	if (!list_empty(&reg_requests_list) && lr && lr->processed)
2177		schedule_work(&reg_work);
2178	spin_unlock(&reg_requests_lock);
2179}
2180
2181/* Processes beacon hints -- this has nothing to do with country IEs */
2182static void reg_process_pending_beacon_hints(void)
2183{
2184	struct cfg80211_registered_device *rdev;
2185	struct reg_beacon *pending_beacon, *tmp;
2186
2187	/* This goes through the _pending_ beacon list */
2188	spin_lock_bh(&reg_pending_beacons_lock);
2189
2190	list_for_each_entry_safe(pending_beacon, tmp,
2191				 &reg_pending_beacons, list) {
2192		list_del_init(&pending_beacon->list);
2193
2194		/* Applies the beacon hint to current wiphys */
2195		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2196			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2197
2198		/* Remembers the beacon hint for new wiphys or reg changes */
2199		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2200	}
2201
2202	spin_unlock_bh(&reg_pending_beacons_lock);
2203}
2204
2205static void reg_process_self_managed_hints(void)
2206{
2207	struct cfg80211_registered_device *rdev;
2208	struct wiphy *wiphy;
2209	const struct ieee80211_regdomain *tmp;
2210	const struct ieee80211_regdomain *regd;
2211	enum ieee80211_band band;
2212	struct regulatory_request request = {};
2213
2214	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2215		wiphy = &rdev->wiphy;
2216
2217		spin_lock(&reg_requests_lock);
2218		regd = rdev->requested_regd;
2219		rdev->requested_regd = NULL;
2220		spin_unlock(&reg_requests_lock);
2221
2222		if (regd == NULL)
2223			continue;
2224
2225		tmp = get_wiphy_regdom(wiphy);
2226		rcu_assign_pointer(wiphy->regd, regd);
2227		rcu_free_regdom(tmp);
2228
2229		for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2230			handle_band_custom(wiphy, wiphy->bands[band], regd);
2231
2232		reg_process_ht_flags(wiphy);
2233
2234		request.wiphy_idx = get_wiphy_idx(wiphy);
2235		request.alpha2[0] = regd->alpha2[0];
2236		request.alpha2[1] = regd->alpha2[1];
2237		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2238
2239		nl80211_send_wiphy_reg_change_event(&request);
2240	}
2241
2242	reg_check_channels();
2243}
2244
2245static void reg_todo(struct work_struct *work)
2246{
2247	rtnl_lock();
2248	reg_process_pending_hints();
2249	reg_process_pending_beacon_hints();
2250	reg_process_self_managed_hints();
2251	rtnl_unlock();
2252}
2253
2254static void queue_regulatory_request(struct regulatory_request *request)
2255{
2256	request->alpha2[0] = toupper(request->alpha2[0]);
2257	request->alpha2[1] = toupper(request->alpha2[1]);
2258
2259	spin_lock(&reg_requests_lock);
2260	list_add_tail(&request->list, &reg_requests_list);
2261	spin_unlock(&reg_requests_lock);
2262
2263	schedule_work(&reg_work);
2264}
2265
2266/*
2267 * Core regulatory hint -- happens during cfg80211_init()
2268 * and when we restore regulatory settings.
2269 */
2270static int regulatory_hint_core(const char *alpha2)
2271{
2272	struct regulatory_request *request;
2273
2274	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2275	if (!request)
2276		return -ENOMEM;
2277
2278	request->alpha2[0] = alpha2[0];
2279	request->alpha2[1] = alpha2[1];
2280	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2281
2282	queue_regulatory_request(request);
2283
2284	return 0;
2285}
2286
2287/* User hints */
2288int regulatory_hint_user(const char *alpha2,
2289			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2290{
2291	struct regulatory_request *request;
2292
2293	if (WARN_ON(!alpha2))
2294		return -EINVAL;
2295
2296	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2297	if (!request)
2298		return -ENOMEM;
2299
2300	request->wiphy_idx = WIPHY_IDX_INVALID;
2301	request->alpha2[0] = alpha2[0];
2302	request->alpha2[1] = alpha2[1];
2303	request->initiator = NL80211_REGDOM_SET_BY_USER;
2304	request->user_reg_hint_type = user_reg_hint_type;
2305
2306	/* Allow calling CRDA again */
2307	reg_crda_timeouts = 0;
2308
2309	queue_regulatory_request(request);
2310
2311	return 0;
2312}
2313
2314int regulatory_hint_indoor(bool is_indoor, u32 portid)
2315{
2316	spin_lock(&reg_indoor_lock);
2317
2318	/* It is possible that more than one user space process is trying to
2319	 * configure the indoor setting. To handle such cases, clear the indoor
2320	 * setting in case that some process does not think that the device
2321	 * is operating in an indoor environment. In addition, if a user space
2322	 * process indicates that it is controlling the indoor setting, save its
2323	 * portid, i.e., make it the owner.
2324	 */
2325	reg_is_indoor = is_indoor;
2326	if (reg_is_indoor) {
2327		if (!reg_is_indoor_portid)
2328			reg_is_indoor_portid = portid;
2329	} else {
2330		reg_is_indoor_portid = 0;
2331	}
2332
2333	spin_unlock(&reg_indoor_lock);
2334
2335	if (!is_indoor)
2336		reg_check_channels();
2337
2338	return 0;
2339}
2340
2341void regulatory_netlink_notify(u32 portid)
2342{
2343	spin_lock(&reg_indoor_lock);
2344
2345	if (reg_is_indoor_portid != portid) {
2346		spin_unlock(&reg_indoor_lock);
2347		return;
2348	}
2349
2350	reg_is_indoor = false;
2351	reg_is_indoor_portid = 0;
2352
2353	spin_unlock(&reg_indoor_lock);
2354
2355	reg_check_channels();
2356}
2357
2358/* Driver hints */
2359int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2360{
2361	struct regulatory_request *request;
2362
2363	if (WARN_ON(!alpha2 || !wiphy))
2364		return -EINVAL;
2365
2366	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2367
2368	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2369	if (!request)
2370		return -ENOMEM;
2371
2372	request->wiphy_idx = get_wiphy_idx(wiphy);
2373
2374	request->alpha2[0] = alpha2[0];
2375	request->alpha2[1] = alpha2[1];
2376	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2377
2378	/* Allow calling CRDA again */
2379	reg_crda_timeouts = 0;
2380
2381	queue_regulatory_request(request);
2382
2383	return 0;
2384}
2385EXPORT_SYMBOL(regulatory_hint);
2386
2387void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2388				const u8 *country_ie, u8 country_ie_len)
2389{
2390	char alpha2[2];
2391	enum environment_cap env = ENVIRON_ANY;
2392	struct regulatory_request *request = NULL, *lr;
2393
2394	/* IE len must be evenly divisible by 2 */
2395	if (country_ie_len & 0x01)
2396		return;
2397
2398	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2399		return;
2400
2401	request = kzalloc(sizeof(*request), GFP_KERNEL);
2402	if (!request)
2403		return;
2404
2405	alpha2[0] = country_ie[0];
2406	alpha2[1] = country_ie[1];
2407
2408	if (country_ie[2] == 'I')
2409		env = ENVIRON_INDOOR;
2410	else if (country_ie[2] == 'O')
2411		env = ENVIRON_OUTDOOR;
2412
2413	rcu_read_lock();
2414	lr = get_last_request();
2415
2416	if (unlikely(!lr))
2417		goto out;
2418
2419	/*
2420	 * We will run this only upon a successful connection on cfg80211.
2421	 * We leave conflict resolution to the workqueue, where can hold
2422	 * the RTNL.
2423	 */
2424	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2425	    lr->wiphy_idx != WIPHY_IDX_INVALID)
2426		goto out;
2427
2428	request->wiphy_idx = get_wiphy_idx(wiphy);
2429	request->alpha2[0] = alpha2[0];
2430	request->alpha2[1] = alpha2[1];
2431	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2432	request->country_ie_env = env;
2433
2434	/* Allow calling CRDA again */
2435	reg_crda_timeouts = 0;
2436
2437	queue_regulatory_request(request);
2438	request = NULL;
2439out:
2440	kfree(request);
2441	rcu_read_unlock();
2442}
2443
2444static void restore_alpha2(char *alpha2, bool reset_user)
2445{
2446	/* indicates there is no alpha2 to consider for restoration */
2447	alpha2[0] = '9';
2448	alpha2[1] = '7';
2449
2450	/* The user setting has precedence over the module parameter */
2451	if (is_user_regdom_saved()) {
2452		/* Unless we're asked to ignore it and reset it */
2453		if (reset_user) {
2454			REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2455			user_alpha2[0] = '9';
2456			user_alpha2[1] = '7';
2457
2458			/*
2459			 * If we're ignoring user settings, we still need to
2460			 * check the module parameter to ensure we put things
2461			 * back as they were for a full restore.
2462			 */
2463			if (!is_world_regdom(ieee80211_regdom)) {
2464				REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2465					      ieee80211_regdom[0], ieee80211_regdom[1]);
2466				alpha2[0] = ieee80211_regdom[0];
2467				alpha2[1] = ieee80211_regdom[1];
2468			}
2469		} else {
2470			REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2471				      user_alpha2[0], user_alpha2[1]);
2472			alpha2[0] = user_alpha2[0];
2473			alpha2[1] = user_alpha2[1];
2474		}
2475	} else if (!is_world_regdom(ieee80211_regdom)) {
2476		REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2477			      ieee80211_regdom[0], ieee80211_regdom[1]);
2478		alpha2[0] = ieee80211_regdom[0];
2479		alpha2[1] = ieee80211_regdom[1];
2480	} else
2481		REG_DBG_PRINT("Restoring regulatory settings\n");
2482}
2483
2484static void restore_custom_reg_settings(struct wiphy *wiphy)
2485{
2486	struct ieee80211_supported_band *sband;
2487	enum ieee80211_band band;
2488	struct ieee80211_channel *chan;
2489	int i;
2490
2491	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2492		sband = wiphy->bands[band];
2493		if (!sband)
2494			continue;
2495		for (i = 0; i < sband->n_channels; i++) {
2496			chan = &sband->channels[i];
2497			chan->flags = chan->orig_flags;
2498			chan->max_antenna_gain = chan->orig_mag;
2499			chan->max_power = chan->orig_mpwr;
2500			chan->beacon_found = false;
2501		}
2502	}
2503}
2504
2505/*
2506 * Restoring regulatory settings involves ingoring any
2507 * possibly stale country IE information and user regulatory
2508 * settings if so desired, this includes any beacon hints
2509 * learned as we could have traveled outside to another country
2510 * after disconnection. To restore regulatory settings we do
2511 * exactly what we did at bootup:
2512 *
2513 *   - send a core regulatory hint
2514 *   - send a user regulatory hint if applicable
2515 *
2516 * Device drivers that send a regulatory hint for a specific country
2517 * keep their own regulatory domain on wiphy->regd so that does does
2518 * not need to be remembered.
2519 */
2520static void restore_regulatory_settings(bool reset_user)
2521{
2522	char alpha2[2];
2523	char world_alpha2[2];
2524	struct reg_beacon *reg_beacon, *btmp;
2525	LIST_HEAD(tmp_reg_req_list);
2526	struct cfg80211_registered_device *rdev;
2527
2528	ASSERT_RTNL();
2529
2530	/*
2531	 * Clear the indoor setting in case that it is not controlled by user
2532	 * space, as otherwise there is no guarantee that the device is still
2533	 * operating in an indoor environment.
2534	 */
2535	spin_lock(&reg_indoor_lock);
2536	if (reg_is_indoor && !reg_is_indoor_portid) {
2537		reg_is_indoor = false;
2538		reg_check_channels();
2539	}
2540	spin_unlock(&reg_indoor_lock);
2541
2542	reset_regdomains(true, &world_regdom);
2543	restore_alpha2(alpha2, reset_user);
2544
2545	/*
2546	 * If there's any pending requests we simply
2547	 * stash them to a temporary pending queue and
2548	 * add then after we've restored regulatory
2549	 * settings.
2550	 */
2551	spin_lock(&reg_requests_lock);
2552	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2553	spin_unlock(&reg_requests_lock);
2554
2555	/* Clear beacon hints */
2556	spin_lock_bh(&reg_pending_beacons_lock);
2557	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2558		list_del(&reg_beacon->list);
2559		kfree(reg_beacon);
2560	}
2561	spin_unlock_bh(&reg_pending_beacons_lock);
2562
2563	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2564		list_del(&reg_beacon->list);
2565		kfree(reg_beacon);
2566	}
2567
2568	/* First restore to the basic regulatory settings */
2569	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2570	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2571
2572	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2573		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2574			continue;
2575		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2576			restore_custom_reg_settings(&rdev->wiphy);
2577	}
2578
2579	regulatory_hint_core(world_alpha2);
2580
2581	/*
2582	 * This restores the ieee80211_regdom module parameter
2583	 * preference or the last user requested regulatory
2584	 * settings, user regulatory settings takes precedence.
2585	 */
2586	if (is_an_alpha2(alpha2))
2587		regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2588
2589	spin_lock(&reg_requests_lock);
2590	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2591	spin_unlock(&reg_requests_lock);
2592
2593	REG_DBG_PRINT("Kicking the queue\n");
2594
2595	schedule_work(&reg_work);
2596}
2597
2598void regulatory_hint_disconnect(void)
2599{
2600	REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2601	restore_regulatory_settings(false);
2602}
2603
2604static bool freq_is_chan_12_13_14(u16 freq)
2605{
2606	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2607	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2608	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2609		return true;
2610	return false;
2611}
2612
2613static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2614{
2615	struct reg_beacon *pending_beacon;
2616
2617	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2618		if (beacon_chan->center_freq ==
2619		    pending_beacon->chan.center_freq)
2620			return true;
2621	return false;
2622}
2623
2624int regulatory_hint_found_beacon(struct wiphy *wiphy,
2625				 struct ieee80211_channel *beacon_chan,
2626				 gfp_t gfp)
2627{
2628	struct reg_beacon *reg_beacon;
2629	bool processing;
2630
2631	if (beacon_chan->beacon_found ||
2632	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2633	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2634	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2635		return 0;
2636
2637	spin_lock_bh(&reg_pending_beacons_lock);
2638	processing = pending_reg_beacon(beacon_chan);
2639	spin_unlock_bh(&reg_pending_beacons_lock);
2640
2641	if (processing)
2642		return 0;
2643
2644	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2645	if (!reg_beacon)
2646		return -ENOMEM;
2647
2648	REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2649		      beacon_chan->center_freq,
2650		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
2651		      wiphy_name(wiphy));
2652
2653	memcpy(&reg_beacon->chan, beacon_chan,
2654	       sizeof(struct ieee80211_channel));
2655
2656	/*
2657	 * Since we can be called from BH or and non-BH context
2658	 * we must use spin_lock_bh()
2659	 */
2660	spin_lock_bh(&reg_pending_beacons_lock);
2661	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2662	spin_unlock_bh(&reg_pending_beacons_lock);
2663
2664	schedule_work(&reg_work);
2665
2666	return 0;
2667}
2668
2669static void print_rd_rules(const struct ieee80211_regdomain *rd)
2670{
2671	unsigned int i;
2672	const struct ieee80211_reg_rule *reg_rule = NULL;
2673	const struct ieee80211_freq_range *freq_range = NULL;
2674	const struct ieee80211_power_rule *power_rule = NULL;
2675	char bw[32], cac_time[32];
2676
2677	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2678
2679	for (i = 0; i < rd->n_reg_rules; i++) {
2680		reg_rule = &rd->reg_rules[i];
2681		freq_range = &reg_rule->freq_range;
2682		power_rule = &reg_rule->power_rule;
2683
2684		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2685			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2686				 freq_range->max_bandwidth_khz,
2687				 reg_get_max_bandwidth(rd, reg_rule));
2688		else
2689			snprintf(bw, sizeof(bw), "%d KHz",
2690				 freq_range->max_bandwidth_khz);
2691
2692		if (reg_rule->flags & NL80211_RRF_DFS)
2693			scnprintf(cac_time, sizeof(cac_time), "%u s",
2694				  reg_rule->dfs_cac_ms/1000);
2695		else
2696			scnprintf(cac_time, sizeof(cac_time), "N/A");
2697
2698
2699		/*
2700		 * There may not be documentation for max antenna gain
2701		 * in certain regions
2702		 */
2703		if (power_rule->max_antenna_gain)
2704			pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2705				freq_range->start_freq_khz,
2706				freq_range->end_freq_khz,
2707				bw,
2708				power_rule->max_antenna_gain,
2709				power_rule->max_eirp,
2710				cac_time);
2711		else
2712			pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2713				freq_range->start_freq_khz,
2714				freq_range->end_freq_khz,
2715				bw,
2716				power_rule->max_eirp,
2717				cac_time);
2718	}
2719}
2720
2721bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2722{
2723	switch (dfs_region) {
2724	case NL80211_DFS_UNSET:
2725	case NL80211_DFS_FCC:
2726	case NL80211_DFS_ETSI:
2727	case NL80211_DFS_JP:
2728		return true;
2729	default:
2730		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2731			      dfs_region);
2732		return false;
2733	}
2734}
2735
2736static void print_regdomain(const struct ieee80211_regdomain *rd)
2737{
2738	struct regulatory_request *lr = get_last_request();
2739
2740	if (is_intersected_alpha2(rd->alpha2)) {
2741		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2742			struct cfg80211_registered_device *rdev;
2743			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2744			if (rdev) {
2745				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2746					rdev->country_ie_alpha2[0],
2747					rdev->country_ie_alpha2[1]);
2748			} else
2749				pr_info("Current regulatory domain intersected:\n");
2750		} else
2751			pr_info("Current regulatory domain intersected:\n");
2752	} else if (is_world_regdom(rd->alpha2)) {
2753		pr_info("World regulatory domain updated:\n");
2754	} else {
2755		if (is_unknown_alpha2(rd->alpha2))
2756			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2757		else {
2758			if (reg_request_cell_base(lr))
2759				pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2760					rd->alpha2[0], rd->alpha2[1]);
2761			else
2762				pr_info("Regulatory domain changed to country: %c%c\n",
2763					rd->alpha2[0], rd->alpha2[1]);
2764		}
2765	}
2766
2767	pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2768	print_rd_rules(rd);
2769}
2770
2771static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2772{
2773	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2774	print_rd_rules(rd);
2775}
2776
2777static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2778{
2779	if (!is_world_regdom(rd->alpha2))
2780		return -EINVAL;
2781	update_world_regdomain(rd);
2782	return 0;
2783}
2784
2785static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2786			   struct regulatory_request *user_request)
2787{
2788	const struct ieee80211_regdomain *intersected_rd = NULL;
2789
2790	if (!regdom_changes(rd->alpha2))
2791		return -EALREADY;
2792
2793	if (!is_valid_rd(rd)) {
2794		pr_err("Invalid regulatory domain detected:\n");
2795		print_regdomain_info(rd);
2796		return -EINVAL;
2797	}
2798
2799	if (!user_request->intersect) {
2800		reset_regdomains(false, rd);
2801		return 0;
2802	}
2803
2804	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2805	if (!intersected_rd)
2806		return -EINVAL;
2807
2808	kfree(rd);
2809	rd = NULL;
2810	reset_regdomains(false, intersected_rd);
2811
2812	return 0;
2813}
2814
2815static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2816			     struct regulatory_request *driver_request)
2817{
2818	const struct ieee80211_regdomain *regd;
2819	const struct ieee80211_regdomain *intersected_rd = NULL;
2820	const struct ieee80211_regdomain *tmp;
2821	struct wiphy *request_wiphy;
2822
2823	if (is_world_regdom(rd->alpha2))
2824		return -EINVAL;
2825
2826	if (!regdom_changes(rd->alpha2))
2827		return -EALREADY;
2828
2829	if (!is_valid_rd(rd)) {
2830		pr_err("Invalid regulatory domain detected:\n");
2831		print_regdomain_info(rd);
2832		return -EINVAL;
2833	}
2834
2835	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2836	if (!request_wiphy) {
2837		queue_delayed_work(system_power_efficient_wq,
2838				   &reg_timeout, 0);
2839		return -ENODEV;
2840	}
2841
2842	if (!driver_request->intersect) {
2843		if (request_wiphy->regd)
2844			return -EALREADY;
2845
2846		regd = reg_copy_regd(rd);
2847		if (IS_ERR(regd))
2848			return PTR_ERR(regd);
2849
2850		rcu_assign_pointer(request_wiphy->regd, regd);
2851		reset_regdomains(false, rd);
2852		return 0;
2853	}
2854
2855	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2856	if (!intersected_rd)
2857		return -EINVAL;
2858
2859	/*
2860	 * We can trash what CRDA provided now.
2861	 * However if a driver requested this specific regulatory
2862	 * domain we keep it for its private use
2863	 */
2864	tmp = get_wiphy_regdom(request_wiphy);
2865	rcu_assign_pointer(request_wiphy->regd, rd);
2866	rcu_free_regdom(tmp);
2867
2868	rd = NULL;
2869
2870	reset_regdomains(false, intersected_rd);
2871
2872	return 0;
2873}
2874
2875static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2876				 struct regulatory_request *country_ie_request)
2877{
2878	struct wiphy *request_wiphy;
2879
2880	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2881	    !is_unknown_alpha2(rd->alpha2))
2882		return -EINVAL;
2883
2884	/*
2885	 * Lets only bother proceeding on the same alpha2 if the current
2886	 * rd is non static (it means CRDA was present and was used last)
2887	 * and the pending request came in from a country IE
2888	 */
2889
2890	if (!is_valid_rd(rd)) {
2891		pr_err("Invalid regulatory domain detected:\n");
2892		print_regdomain_info(rd);
2893		return -EINVAL;
2894	}
2895
2896	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2897	if (!request_wiphy) {
2898		queue_delayed_work(system_power_efficient_wq,
2899				   &reg_timeout, 0);
2900		return -ENODEV;
2901	}
2902
2903	if (country_ie_request->intersect)
2904		return -EINVAL;
2905
2906	reset_regdomains(false, rd);
2907	return 0;
2908}
2909
2910/*
2911 * Use this call to set the current regulatory domain. Conflicts with
2912 * multiple drivers can be ironed out later. Caller must've already
2913 * kmalloc'd the rd structure.
2914 */
2915int set_regdom(const struct ieee80211_regdomain *rd,
2916	       enum ieee80211_regd_source regd_src)
2917{
2918	struct regulatory_request *lr;
2919	bool user_reset = false;
2920	int r;
2921
2922	if (!reg_is_valid_request(rd->alpha2)) {
2923		kfree(rd);
2924		return -EINVAL;
2925	}
2926
2927	if (regd_src == REGD_SOURCE_CRDA)
2928		reg_crda_timeouts = 0;
2929
2930	lr = get_last_request();
2931
2932	/* Note that this doesn't update the wiphys, this is done below */
2933	switch (lr->initiator) {
2934	case NL80211_REGDOM_SET_BY_CORE:
2935		r = reg_set_rd_core(rd);
2936		break;
2937	case NL80211_REGDOM_SET_BY_USER:
2938		r = reg_set_rd_user(rd, lr);
2939		user_reset = true;
2940		break;
2941	case NL80211_REGDOM_SET_BY_DRIVER:
2942		r = reg_set_rd_driver(rd, lr);
2943		break;
2944	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2945		r = reg_set_rd_country_ie(rd, lr);
2946		break;
2947	default:
2948		WARN(1, "invalid initiator %d\n", lr->initiator);
2949		return -EINVAL;
2950	}
2951
2952	if (r) {
2953		switch (r) {
2954		case -EALREADY:
2955			reg_set_request_processed();
2956			break;
2957		default:
2958			/* Back to world regulatory in case of errors */
2959			restore_regulatory_settings(user_reset);
2960		}
2961
2962		kfree(rd);
2963		return r;
2964	}
2965
2966	/* This would make this whole thing pointless */
2967	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2968		return -EINVAL;
2969
2970	/* update all wiphys now with the new established regulatory domain */
2971	update_all_wiphy_regulatory(lr->initiator);
2972
2973	print_regdomain(get_cfg80211_regdom());
2974
2975	nl80211_send_reg_change_event(lr);
2976
2977	reg_set_request_processed();
2978
2979	return 0;
2980}
2981
2982static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
2983				       struct ieee80211_regdomain *rd)
2984{
2985	const struct ieee80211_regdomain *regd;
2986	const struct ieee80211_regdomain *prev_regd;
2987	struct cfg80211_registered_device *rdev;
2988
2989	if (WARN_ON(!wiphy || !rd))
2990		return -EINVAL;
2991
2992	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
2993		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
2994		return -EPERM;
2995
2996	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
2997		print_regdomain_info(rd);
2998		return -EINVAL;
2999	}
3000
3001	regd = reg_copy_regd(rd);
3002	if (IS_ERR(regd))
3003		return PTR_ERR(regd);
3004
3005	rdev = wiphy_to_rdev(wiphy);
3006
3007	spin_lock(&reg_requests_lock);
3008	prev_regd = rdev->requested_regd;
3009	rdev->requested_regd = regd;
3010	spin_unlock(&reg_requests_lock);
3011
3012	kfree(prev_regd);
3013	return 0;
3014}
3015
3016int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3017			      struct ieee80211_regdomain *rd)
3018{
3019	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3020
3021	if (ret)
3022		return ret;
3023
3024	schedule_work(&reg_work);
3025	return 0;
3026}
3027EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3028
3029int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3030					struct ieee80211_regdomain *rd)
3031{
3032	int ret;
3033
3034	ASSERT_RTNL();
3035
3036	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3037	if (ret)
3038		return ret;
3039
3040	/* process the request immediately */
3041	reg_process_self_managed_hints();
3042	return 0;
3043}
3044EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3045
3046void wiphy_regulatory_register(struct wiphy *wiphy)
3047{
3048	struct regulatory_request *lr;
3049
3050	/* self-managed devices ignore external hints */
3051	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3052		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3053					   REGULATORY_COUNTRY_IE_IGNORE;
3054
3055	if (!reg_dev_ignore_cell_hint(wiphy))
3056		reg_num_devs_support_basehint++;
3057
3058	lr = get_last_request();
3059	wiphy_update_regulatory(wiphy, lr->initiator);
3060}
3061
3062void wiphy_regulatory_deregister(struct wiphy *wiphy)
3063{
3064	struct wiphy *request_wiphy = NULL;
3065	struct regulatory_request *lr;
3066
3067	lr = get_last_request();
3068
3069	if (!reg_dev_ignore_cell_hint(wiphy))
3070		reg_num_devs_support_basehint--;
3071
3072	rcu_free_regdom(get_wiphy_regdom(wiphy));
3073	RCU_INIT_POINTER(wiphy->regd, NULL);
3074
3075	if (lr)
3076		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3077
3078	if (!request_wiphy || request_wiphy != wiphy)
3079		return;
3080
3081	lr->wiphy_idx = WIPHY_IDX_INVALID;
3082	lr->country_ie_env = ENVIRON_ANY;
3083}
3084
3085static void reg_timeout_work(struct work_struct *work)
3086{
3087	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
3088	rtnl_lock();
3089	reg_crda_timeouts++;
3090	restore_regulatory_settings(true);
3091	rtnl_unlock();
3092}
3093
3094/*
3095 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3096 * UNII band definitions
3097 */
3098int cfg80211_get_unii(int freq)
3099{
3100	/* UNII-1 */
3101	if (freq >= 5150 && freq <= 5250)
3102		return 0;
3103
3104	/* UNII-2A */
3105	if (freq > 5250 && freq <= 5350)
3106		return 1;
3107
3108	/* UNII-2B */
3109	if (freq > 5350 && freq <= 5470)
3110		return 2;
3111
3112	/* UNII-2C */
3113	if (freq > 5470 && freq <= 5725)
3114		return 3;
3115
3116	/* UNII-3 */
3117	if (freq > 5725 && freq <= 5825)
3118		return 4;
3119
3120	return -EINVAL;
3121}
3122
3123bool regulatory_indoor_allowed(void)
3124{
3125	return reg_is_indoor;
3126}
3127
3128int __init regulatory_init(void)
3129{
3130	int err = 0;
3131
3132	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3133	if (IS_ERR(reg_pdev))
3134		return PTR_ERR(reg_pdev);
3135
3136	spin_lock_init(&reg_requests_lock);
3137	spin_lock_init(&reg_pending_beacons_lock);
3138	spin_lock_init(&reg_indoor_lock);
3139
3140	reg_regdb_size_check();
3141
3142	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3143
3144	user_alpha2[0] = '9';
3145	user_alpha2[1] = '7';
3146
3147	/* We always try to get an update for the static regdomain */
3148	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3149	if (err) {
3150		if (err == -ENOMEM)
3151			return err;
3152		/*
3153		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3154		 * memory which is handled and propagated appropriately above
3155		 * but it can also fail during a netlink_broadcast() or during
3156		 * early boot for call_usermodehelper(). For now treat these
3157		 * errors as non-fatal.
3158		 */
3159		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3160	}
3161
3162	/*
3163	 * Finally, if the user set the module parameter treat it
3164	 * as a user hint.
3165	 */
3166	if (!is_world_regdom(ieee80211_regdom))
3167		regulatory_hint_user(ieee80211_regdom,
3168				     NL80211_USER_REG_HINT_USER);
3169
3170	return 0;
3171}
3172
3173void regulatory_exit(void)
3174{
3175	struct regulatory_request *reg_request, *tmp;
3176	struct reg_beacon *reg_beacon, *btmp;
3177
3178	cancel_work_sync(&reg_work);
3179	cancel_delayed_work_sync(&reg_timeout);
3180	cancel_delayed_work_sync(&reg_check_chans);
3181
3182	/* Lock to suppress warnings */
3183	rtnl_lock();
3184	reset_regdomains(true, NULL);
3185	rtnl_unlock();
3186
3187	dev_set_uevent_suppress(&reg_pdev->dev, true);
3188
3189	platform_device_unregister(reg_pdev);
3190
3191	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3192		list_del(&reg_beacon->list);
3193		kfree(reg_beacon);
3194	}
3195
3196	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3197		list_del(&reg_beacon->list);
3198		kfree(reg_beacon);
3199	}
3200
3201	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3202		list_del(&reg_request->list);
3203		kfree(reg_request);
3204	}
3205}
3206