1/* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55#include <linux/types.h> 56#include <linux/kernel.h> 57#include <linux/wait.h> 58#include <linux/time.h> 59#include <linux/ip.h> 60#include <linux/capability.h> 61#include <linux/fcntl.h> 62#include <linux/poll.h> 63#include <linux/init.h> 64#include <linux/crypto.h> 65#include <linux/slab.h> 66#include <linux/file.h> 67#include <linux/compat.h> 68 69#include <net/ip.h> 70#include <net/icmp.h> 71#include <net/route.h> 72#include <net/ipv6.h> 73#include <net/inet_common.h> 74#include <net/busy_poll.h> 75 76#include <linux/socket.h> /* for sa_family_t */ 77#include <linux/export.h> 78#include <net/sock.h> 79#include <net/sctp/sctp.h> 80#include <net/sctp/sm.h> 81 82/* Forward declarations for internal helper functions. */ 83static int sctp_writeable(struct sock *sk); 84static void sctp_wfree(struct sk_buff *skb); 85static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 86 size_t msg_len); 87static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 88static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 89static int sctp_wait_for_accept(struct sock *sk, long timeo); 90static void sctp_wait_for_close(struct sock *sk, long timeo); 91static void sctp_destruct_sock(struct sock *sk); 92static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 93 union sctp_addr *addr, int len); 94static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 95static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 96static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 97static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 98static int sctp_send_asconf(struct sctp_association *asoc, 99 struct sctp_chunk *chunk); 100static int sctp_do_bind(struct sock *, union sctp_addr *, int); 101static int sctp_autobind(struct sock *sk); 102static void sctp_sock_migrate(struct sock *, struct sock *, 103 struct sctp_association *, sctp_socket_type_t); 104 105static int sctp_memory_pressure; 106static atomic_long_t sctp_memory_allocated; 107struct percpu_counter sctp_sockets_allocated; 108 109static void sctp_enter_memory_pressure(struct sock *sk) 110{ 111 sctp_memory_pressure = 1; 112} 113 114 115/* Get the sndbuf space available at the time on the association. */ 116static inline int sctp_wspace(struct sctp_association *asoc) 117{ 118 int amt; 119 120 if (asoc->ep->sndbuf_policy) 121 amt = asoc->sndbuf_used; 122 else 123 amt = sk_wmem_alloc_get(asoc->base.sk); 124 125 if (amt >= asoc->base.sk->sk_sndbuf) { 126 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 127 amt = 0; 128 else { 129 amt = sk_stream_wspace(asoc->base.sk); 130 if (amt < 0) 131 amt = 0; 132 } 133 } else { 134 amt = asoc->base.sk->sk_sndbuf - amt; 135 } 136 return amt; 137} 138 139/* Increment the used sndbuf space count of the corresponding association by 140 * the size of the outgoing data chunk. 141 * Also, set the skb destructor for sndbuf accounting later. 142 * 143 * Since it is always 1-1 between chunk and skb, and also a new skb is always 144 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 145 * destructor in the data chunk skb for the purpose of the sndbuf space 146 * tracking. 147 */ 148static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 149{ 150 struct sctp_association *asoc = chunk->asoc; 151 struct sock *sk = asoc->base.sk; 152 153 /* The sndbuf space is tracked per association. */ 154 sctp_association_hold(asoc); 155 156 skb_set_owner_w(chunk->skb, sk); 157 158 chunk->skb->destructor = sctp_wfree; 159 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 160 skb_shinfo(chunk->skb)->destructor_arg = chunk; 161 162 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 163 sizeof(struct sk_buff) + 164 sizeof(struct sctp_chunk); 165 166 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 167 sk->sk_wmem_queued += chunk->skb->truesize; 168 sk_mem_charge(sk, chunk->skb->truesize); 169} 170 171/* Verify that this is a valid address. */ 172static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 173 int len) 174{ 175 struct sctp_af *af; 176 177 /* Verify basic sockaddr. */ 178 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 179 if (!af) 180 return -EINVAL; 181 182 /* Is this a valid SCTP address? */ 183 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 184 return -EINVAL; 185 186 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 187 return -EINVAL; 188 189 return 0; 190} 191 192/* Look up the association by its id. If this is not a UDP-style 193 * socket, the ID field is always ignored. 194 */ 195struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 196{ 197 struct sctp_association *asoc = NULL; 198 199 /* If this is not a UDP-style socket, assoc id should be ignored. */ 200 if (!sctp_style(sk, UDP)) { 201 /* Return NULL if the socket state is not ESTABLISHED. It 202 * could be a TCP-style listening socket or a socket which 203 * hasn't yet called connect() to establish an association. 204 */ 205 if (!sctp_sstate(sk, ESTABLISHED)) 206 return NULL; 207 208 /* Get the first and the only association from the list. */ 209 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 210 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 211 struct sctp_association, asocs); 212 return asoc; 213 } 214 215 /* Otherwise this is a UDP-style socket. */ 216 if (!id || (id == (sctp_assoc_t)-1)) 217 return NULL; 218 219 spin_lock_bh(&sctp_assocs_id_lock); 220 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 221 spin_unlock_bh(&sctp_assocs_id_lock); 222 223 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 224 return NULL; 225 226 return asoc; 227} 228 229/* Look up the transport from an address and an assoc id. If both address and 230 * id are specified, the associations matching the address and the id should be 231 * the same. 232 */ 233static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 234 struct sockaddr_storage *addr, 235 sctp_assoc_t id) 236{ 237 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 238 struct sctp_transport *transport; 239 union sctp_addr *laddr = (union sctp_addr *)addr; 240 241 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 242 laddr, 243 &transport); 244 245 if (!addr_asoc) 246 return NULL; 247 248 id_asoc = sctp_id2assoc(sk, id); 249 if (id_asoc && (id_asoc != addr_asoc)) 250 return NULL; 251 252 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 253 (union sctp_addr *)addr); 254 255 return transport; 256} 257 258/* API 3.1.2 bind() - UDP Style Syntax 259 * The syntax of bind() is, 260 * 261 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 262 * 263 * sd - the socket descriptor returned by socket(). 264 * addr - the address structure (struct sockaddr_in or struct 265 * sockaddr_in6 [RFC 2553]), 266 * addr_len - the size of the address structure. 267 */ 268static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 269{ 270 int retval = 0; 271 272 lock_sock(sk); 273 274 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 275 addr, addr_len); 276 277 /* Disallow binding twice. */ 278 if (!sctp_sk(sk)->ep->base.bind_addr.port) 279 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 280 addr_len); 281 else 282 retval = -EINVAL; 283 284 release_sock(sk); 285 286 return retval; 287} 288 289static long sctp_get_port_local(struct sock *, union sctp_addr *); 290 291/* Verify this is a valid sockaddr. */ 292static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 293 union sctp_addr *addr, int len) 294{ 295 struct sctp_af *af; 296 297 /* Check minimum size. */ 298 if (len < sizeof (struct sockaddr)) 299 return NULL; 300 301 /* V4 mapped address are really of AF_INET family */ 302 if (addr->sa.sa_family == AF_INET6 && 303 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 304 if (!opt->pf->af_supported(AF_INET, opt)) 305 return NULL; 306 } else { 307 /* Does this PF support this AF? */ 308 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 309 return NULL; 310 } 311 312 /* If we get this far, af is valid. */ 313 af = sctp_get_af_specific(addr->sa.sa_family); 314 315 if (len < af->sockaddr_len) 316 return NULL; 317 318 return af; 319} 320 321/* Bind a local address either to an endpoint or to an association. */ 322static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 323{ 324 struct net *net = sock_net(sk); 325 struct sctp_sock *sp = sctp_sk(sk); 326 struct sctp_endpoint *ep = sp->ep; 327 struct sctp_bind_addr *bp = &ep->base.bind_addr; 328 struct sctp_af *af; 329 unsigned short snum; 330 int ret = 0; 331 332 /* Common sockaddr verification. */ 333 af = sctp_sockaddr_af(sp, addr, len); 334 if (!af) { 335 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 336 __func__, sk, addr, len); 337 return -EINVAL; 338 } 339 340 snum = ntohs(addr->v4.sin_port); 341 342 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 343 __func__, sk, &addr->sa, bp->port, snum, len); 344 345 /* PF specific bind() address verification. */ 346 if (!sp->pf->bind_verify(sp, addr)) 347 return -EADDRNOTAVAIL; 348 349 /* We must either be unbound, or bind to the same port. 350 * It's OK to allow 0 ports if we are already bound. 351 * We'll just inhert an already bound port in this case 352 */ 353 if (bp->port) { 354 if (!snum) 355 snum = bp->port; 356 else if (snum != bp->port) { 357 pr_debug("%s: new port %d doesn't match existing port " 358 "%d\n", __func__, snum, bp->port); 359 return -EINVAL; 360 } 361 } 362 363 if (snum && snum < PROT_SOCK && 364 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 365 return -EACCES; 366 367 /* See if the address matches any of the addresses we may have 368 * already bound before checking against other endpoints. 369 */ 370 if (sctp_bind_addr_match(bp, addr, sp)) 371 return -EINVAL; 372 373 /* Make sure we are allowed to bind here. 374 * The function sctp_get_port_local() does duplicate address 375 * detection. 376 */ 377 addr->v4.sin_port = htons(snum); 378 if ((ret = sctp_get_port_local(sk, addr))) { 379 return -EADDRINUSE; 380 } 381 382 /* Refresh ephemeral port. */ 383 if (!bp->port) 384 bp->port = inet_sk(sk)->inet_num; 385 386 /* Add the address to the bind address list. 387 * Use GFP_ATOMIC since BHs will be disabled. 388 */ 389 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 390 391 /* Copy back into socket for getsockname() use. */ 392 if (!ret) { 393 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 394 sp->pf->to_sk_saddr(addr, sk); 395 } 396 397 return ret; 398} 399 400 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 401 * 402 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 403 * at any one time. If a sender, after sending an ASCONF chunk, decides 404 * it needs to transfer another ASCONF Chunk, it MUST wait until the 405 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 406 * subsequent ASCONF. Note this restriction binds each side, so at any 407 * time two ASCONF may be in-transit on any given association (one sent 408 * from each endpoint). 409 */ 410static int sctp_send_asconf(struct sctp_association *asoc, 411 struct sctp_chunk *chunk) 412{ 413 struct net *net = sock_net(asoc->base.sk); 414 int retval = 0; 415 416 /* If there is an outstanding ASCONF chunk, queue it for later 417 * transmission. 418 */ 419 if (asoc->addip_last_asconf) { 420 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 421 goto out; 422 } 423 424 /* Hold the chunk until an ASCONF_ACK is received. */ 425 sctp_chunk_hold(chunk); 426 retval = sctp_primitive_ASCONF(net, asoc, chunk); 427 if (retval) 428 sctp_chunk_free(chunk); 429 else 430 asoc->addip_last_asconf = chunk; 431 432out: 433 return retval; 434} 435 436/* Add a list of addresses as bind addresses to local endpoint or 437 * association. 438 * 439 * Basically run through each address specified in the addrs/addrcnt 440 * array/length pair, determine if it is IPv6 or IPv4 and call 441 * sctp_do_bind() on it. 442 * 443 * If any of them fails, then the operation will be reversed and the 444 * ones that were added will be removed. 445 * 446 * Only sctp_setsockopt_bindx() is supposed to call this function. 447 */ 448static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 449{ 450 int cnt; 451 int retval = 0; 452 void *addr_buf; 453 struct sockaddr *sa_addr; 454 struct sctp_af *af; 455 456 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 457 addrs, addrcnt); 458 459 addr_buf = addrs; 460 for (cnt = 0; cnt < addrcnt; cnt++) { 461 /* The list may contain either IPv4 or IPv6 address; 462 * determine the address length for walking thru the list. 463 */ 464 sa_addr = addr_buf; 465 af = sctp_get_af_specific(sa_addr->sa_family); 466 if (!af) { 467 retval = -EINVAL; 468 goto err_bindx_add; 469 } 470 471 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 472 af->sockaddr_len); 473 474 addr_buf += af->sockaddr_len; 475 476err_bindx_add: 477 if (retval < 0) { 478 /* Failed. Cleanup the ones that have been added */ 479 if (cnt > 0) 480 sctp_bindx_rem(sk, addrs, cnt); 481 return retval; 482 } 483 } 484 485 return retval; 486} 487 488/* Send an ASCONF chunk with Add IP address parameters to all the peers of the 489 * associations that are part of the endpoint indicating that a list of local 490 * addresses are added to the endpoint. 491 * 492 * If any of the addresses is already in the bind address list of the 493 * association, we do not send the chunk for that association. But it will not 494 * affect other associations. 495 * 496 * Only sctp_setsockopt_bindx() is supposed to call this function. 497 */ 498static int sctp_send_asconf_add_ip(struct sock *sk, 499 struct sockaddr *addrs, 500 int addrcnt) 501{ 502 struct net *net = sock_net(sk); 503 struct sctp_sock *sp; 504 struct sctp_endpoint *ep; 505 struct sctp_association *asoc; 506 struct sctp_bind_addr *bp; 507 struct sctp_chunk *chunk; 508 struct sctp_sockaddr_entry *laddr; 509 union sctp_addr *addr; 510 union sctp_addr saveaddr; 511 void *addr_buf; 512 struct sctp_af *af; 513 struct list_head *p; 514 int i; 515 int retval = 0; 516 517 if (!net->sctp.addip_enable) 518 return retval; 519 520 sp = sctp_sk(sk); 521 ep = sp->ep; 522 523 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 524 __func__, sk, addrs, addrcnt); 525 526 list_for_each_entry(asoc, &ep->asocs, asocs) { 527 if (!asoc->peer.asconf_capable) 528 continue; 529 530 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 531 continue; 532 533 if (!sctp_state(asoc, ESTABLISHED)) 534 continue; 535 536 /* Check if any address in the packed array of addresses is 537 * in the bind address list of the association. If so, 538 * do not send the asconf chunk to its peer, but continue with 539 * other associations. 540 */ 541 addr_buf = addrs; 542 for (i = 0; i < addrcnt; i++) { 543 addr = addr_buf; 544 af = sctp_get_af_specific(addr->v4.sin_family); 545 if (!af) { 546 retval = -EINVAL; 547 goto out; 548 } 549 550 if (sctp_assoc_lookup_laddr(asoc, addr)) 551 break; 552 553 addr_buf += af->sockaddr_len; 554 } 555 if (i < addrcnt) 556 continue; 557 558 /* Use the first valid address in bind addr list of 559 * association as Address Parameter of ASCONF CHUNK. 560 */ 561 bp = &asoc->base.bind_addr; 562 p = bp->address_list.next; 563 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 564 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 565 addrcnt, SCTP_PARAM_ADD_IP); 566 if (!chunk) { 567 retval = -ENOMEM; 568 goto out; 569 } 570 571 /* Add the new addresses to the bind address list with 572 * use_as_src set to 0. 573 */ 574 addr_buf = addrs; 575 for (i = 0; i < addrcnt; i++) { 576 addr = addr_buf; 577 af = sctp_get_af_specific(addr->v4.sin_family); 578 memcpy(&saveaddr, addr, af->sockaddr_len); 579 retval = sctp_add_bind_addr(bp, &saveaddr, 580 SCTP_ADDR_NEW, GFP_ATOMIC); 581 addr_buf += af->sockaddr_len; 582 } 583 if (asoc->src_out_of_asoc_ok) { 584 struct sctp_transport *trans; 585 586 list_for_each_entry(trans, 587 &asoc->peer.transport_addr_list, transports) { 588 /* Clear the source and route cache */ 589 dst_release(trans->dst); 590 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 591 2*asoc->pathmtu, 4380)); 592 trans->ssthresh = asoc->peer.i.a_rwnd; 593 trans->rto = asoc->rto_initial; 594 sctp_max_rto(asoc, trans); 595 trans->rtt = trans->srtt = trans->rttvar = 0; 596 sctp_transport_route(trans, NULL, 597 sctp_sk(asoc->base.sk)); 598 } 599 } 600 retval = sctp_send_asconf(asoc, chunk); 601 } 602 603out: 604 return retval; 605} 606 607/* Remove a list of addresses from bind addresses list. Do not remove the 608 * last address. 609 * 610 * Basically run through each address specified in the addrs/addrcnt 611 * array/length pair, determine if it is IPv6 or IPv4 and call 612 * sctp_del_bind() on it. 613 * 614 * If any of them fails, then the operation will be reversed and the 615 * ones that were removed will be added back. 616 * 617 * At least one address has to be left; if only one address is 618 * available, the operation will return -EBUSY. 619 * 620 * Only sctp_setsockopt_bindx() is supposed to call this function. 621 */ 622static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 623{ 624 struct sctp_sock *sp = sctp_sk(sk); 625 struct sctp_endpoint *ep = sp->ep; 626 int cnt; 627 struct sctp_bind_addr *bp = &ep->base.bind_addr; 628 int retval = 0; 629 void *addr_buf; 630 union sctp_addr *sa_addr; 631 struct sctp_af *af; 632 633 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 634 __func__, sk, addrs, addrcnt); 635 636 addr_buf = addrs; 637 for (cnt = 0; cnt < addrcnt; cnt++) { 638 /* If the bind address list is empty or if there is only one 639 * bind address, there is nothing more to be removed (we need 640 * at least one address here). 641 */ 642 if (list_empty(&bp->address_list) || 643 (sctp_list_single_entry(&bp->address_list))) { 644 retval = -EBUSY; 645 goto err_bindx_rem; 646 } 647 648 sa_addr = addr_buf; 649 af = sctp_get_af_specific(sa_addr->sa.sa_family); 650 if (!af) { 651 retval = -EINVAL; 652 goto err_bindx_rem; 653 } 654 655 if (!af->addr_valid(sa_addr, sp, NULL)) { 656 retval = -EADDRNOTAVAIL; 657 goto err_bindx_rem; 658 } 659 660 if (sa_addr->v4.sin_port && 661 sa_addr->v4.sin_port != htons(bp->port)) { 662 retval = -EINVAL; 663 goto err_bindx_rem; 664 } 665 666 if (!sa_addr->v4.sin_port) 667 sa_addr->v4.sin_port = htons(bp->port); 668 669 /* FIXME - There is probably a need to check if sk->sk_saddr and 670 * sk->sk_rcv_addr are currently set to one of the addresses to 671 * be removed. This is something which needs to be looked into 672 * when we are fixing the outstanding issues with multi-homing 673 * socket routing and failover schemes. Refer to comments in 674 * sctp_do_bind(). -daisy 675 */ 676 retval = sctp_del_bind_addr(bp, sa_addr); 677 678 addr_buf += af->sockaddr_len; 679err_bindx_rem: 680 if (retval < 0) { 681 /* Failed. Add the ones that has been removed back */ 682 if (cnt > 0) 683 sctp_bindx_add(sk, addrs, cnt); 684 return retval; 685 } 686 } 687 688 return retval; 689} 690 691/* Send an ASCONF chunk with Delete IP address parameters to all the peers of 692 * the associations that are part of the endpoint indicating that a list of 693 * local addresses are removed from the endpoint. 694 * 695 * If any of the addresses is already in the bind address list of the 696 * association, we do not send the chunk for that association. But it will not 697 * affect other associations. 698 * 699 * Only sctp_setsockopt_bindx() is supposed to call this function. 700 */ 701static int sctp_send_asconf_del_ip(struct sock *sk, 702 struct sockaddr *addrs, 703 int addrcnt) 704{ 705 struct net *net = sock_net(sk); 706 struct sctp_sock *sp; 707 struct sctp_endpoint *ep; 708 struct sctp_association *asoc; 709 struct sctp_transport *transport; 710 struct sctp_bind_addr *bp; 711 struct sctp_chunk *chunk; 712 union sctp_addr *laddr; 713 void *addr_buf; 714 struct sctp_af *af; 715 struct sctp_sockaddr_entry *saddr; 716 int i; 717 int retval = 0; 718 int stored = 0; 719 720 chunk = NULL; 721 if (!net->sctp.addip_enable) 722 return retval; 723 724 sp = sctp_sk(sk); 725 ep = sp->ep; 726 727 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 728 __func__, sk, addrs, addrcnt); 729 730 list_for_each_entry(asoc, &ep->asocs, asocs) { 731 732 if (!asoc->peer.asconf_capable) 733 continue; 734 735 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 736 continue; 737 738 if (!sctp_state(asoc, ESTABLISHED)) 739 continue; 740 741 /* Check if any address in the packed array of addresses is 742 * not present in the bind address list of the association. 743 * If so, do not send the asconf chunk to its peer, but 744 * continue with other associations. 745 */ 746 addr_buf = addrs; 747 for (i = 0; i < addrcnt; i++) { 748 laddr = addr_buf; 749 af = sctp_get_af_specific(laddr->v4.sin_family); 750 if (!af) { 751 retval = -EINVAL; 752 goto out; 753 } 754 755 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 756 break; 757 758 addr_buf += af->sockaddr_len; 759 } 760 if (i < addrcnt) 761 continue; 762 763 /* Find one address in the association's bind address list 764 * that is not in the packed array of addresses. This is to 765 * make sure that we do not delete all the addresses in the 766 * association. 767 */ 768 bp = &asoc->base.bind_addr; 769 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 770 addrcnt, sp); 771 if ((laddr == NULL) && (addrcnt == 1)) { 772 if (asoc->asconf_addr_del_pending) 773 continue; 774 asoc->asconf_addr_del_pending = 775 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 776 if (asoc->asconf_addr_del_pending == NULL) { 777 retval = -ENOMEM; 778 goto out; 779 } 780 asoc->asconf_addr_del_pending->sa.sa_family = 781 addrs->sa_family; 782 asoc->asconf_addr_del_pending->v4.sin_port = 783 htons(bp->port); 784 if (addrs->sa_family == AF_INET) { 785 struct sockaddr_in *sin; 786 787 sin = (struct sockaddr_in *)addrs; 788 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 789 } else if (addrs->sa_family == AF_INET6) { 790 struct sockaddr_in6 *sin6; 791 792 sin6 = (struct sockaddr_in6 *)addrs; 793 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 794 } 795 796 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 797 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 798 asoc->asconf_addr_del_pending); 799 800 asoc->src_out_of_asoc_ok = 1; 801 stored = 1; 802 goto skip_mkasconf; 803 } 804 805 if (laddr == NULL) 806 return -EINVAL; 807 808 /* We do not need RCU protection throughout this loop 809 * because this is done under a socket lock from the 810 * setsockopt call. 811 */ 812 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 813 SCTP_PARAM_DEL_IP); 814 if (!chunk) { 815 retval = -ENOMEM; 816 goto out; 817 } 818 819skip_mkasconf: 820 /* Reset use_as_src flag for the addresses in the bind address 821 * list that are to be deleted. 822 */ 823 addr_buf = addrs; 824 for (i = 0; i < addrcnt; i++) { 825 laddr = addr_buf; 826 af = sctp_get_af_specific(laddr->v4.sin_family); 827 list_for_each_entry(saddr, &bp->address_list, list) { 828 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 829 saddr->state = SCTP_ADDR_DEL; 830 } 831 addr_buf += af->sockaddr_len; 832 } 833 834 /* Update the route and saddr entries for all the transports 835 * as some of the addresses in the bind address list are 836 * about to be deleted and cannot be used as source addresses. 837 */ 838 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 839 transports) { 840 dst_release(transport->dst); 841 sctp_transport_route(transport, NULL, 842 sctp_sk(asoc->base.sk)); 843 } 844 845 if (stored) 846 /* We don't need to transmit ASCONF */ 847 continue; 848 retval = sctp_send_asconf(asoc, chunk); 849 } 850out: 851 return retval; 852} 853 854/* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 855int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 856{ 857 struct sock *sk = sctp_opt2sk(sp); 858 union sctp_addr *addr; 859 struct sctp_af *af; 860 861 /* It is safe to write port space in caller. */ 862 addr = &addrw->a; 863 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 864 af = sctp_get_af_specific(addr->sa.sa_family); 865 if (!af) 866 return -EINVAL; 867 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 868 return -EINVAL; 869 870 if (addrw->state == SCTP_ADDR_NEW) 871 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 872 else 873 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 874} 875 876/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 877 * 878 * API 8.1 879 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 880 * int flags); 881 * 882 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 883 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 884 * or IPv6 addresses. 885 * 886 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 887 * Section 3.1.2 for this usage. 888 * 889 * addrs is a pointer to an array of one or more socket addresses. Each 890 * address is contained in its appropriate structure (i.e. struct 891 * sockaddr_in or struct sockaddr_in6) the family of the address type 892 * must be used to distinguish the address length (note that this 893 * representation is termed a "packed array" of addresses). The caller 894 * specifies the number of addresses in the array with addrcnt. 895 * 896 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 897 * -1, and sets errno to the appropriate error code. 898 * 899 * For SCTP, the port given in each socket address must be the same, or 900 * sctp_bindx() will fail, setting errno to EINVAL. 901 * 902 * The flags parameter is formed from the bitwise OR of zero or more of 903 * the following currently defined flags: 904 * 905 * SCTP_BINDX_ADD_ADDR 906 * 907 * SCTP_BINDX_REM_ADDR 908 * 909 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 910 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 911 * addresses from the association. The two flags are mutually exclusive; 912 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 913 * not remove all addresses from an association; sctp_bindx() will 914 * reject such an attempt with EINVAL. 915 * 916 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 917 * additional addresses with an endpoint after calling bind(). Or use 918 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 919 * socket is associated with so that no new association accepted will be 920 * associated with those addresses. If the endpoint supports dynamic 921 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 922 * endpoint to send the appropriate message to the peer to change the 923 * peers address lists. 924 * 925 * Adding and removing addresses from a connected association is 926 * optional functionality. Implementations that do not support this 927 * functionality should return EOPNOTSUPP. 928 * 929 * Basically do nothing but copying the addresses from user to kernel 930 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 931 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 932 * from userspace. 933 * 934 * We don't use copy_from_user() for optimization: we first do the 935 * sanity checks (buffer size -fast- and access check-healthy 936 * pointer); if all of those succeed, then we can alloc the memory 937 * (expensive operation) needed to copy the data to kernel. Then we do 938 * the copying without checking the user space area 939 * (__copy_from_user()). 940 * 941 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 942 * it. 943 * 944 * sk The sk of the socket 945 * addrs The pointer to the addresses in user land 946 * addrssize Size of the addrs buffer 947 * op Operation to perform (add or remove, see the flags of 948 * sctp_bindx) 949 * 950 * Returns 0 if ok, <0 errno code on error. 951 */ 952static int sctp_setsockopt_bindx(struct sock *sk, 953 struct sockaddr __user *addrs, 954 int addrs_size, int op) 955{ 956 struct sockaddr *kaddrs; 957 int err; 958 int addrcnt = 0; 959 int walk_size = 0; 960 struct sockaddr *sa_addr; 961 void *addr_buf; 962 struct sctp_af *af; 963 964 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 965 __func__, sk, addrs, addrs_size, op); 966 967 if (unlikely(addrs_size <= 0)) 968 return -EINVAL; 969 970 /* Check the user passed a healthy pointer. */ 971 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 972 return -EFAULT; 973 974 /* Alloc space for the address array in kernel memory. */ 975 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 976 if (unlikely(!kaddrs)) 977 return -ENOMEM; 978 979 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 980 kfree(kaddrs); 981 return -EFAULT; 982 } 983 984 /* Walk through the addrs buffer and count the number of addresses. */ 985 addr_buf = kaddrs; 986 while (walk_size < addrs_size) { 987 if (walk_size + sizeof(sa_family_t) > addrs_size) { 988 kfree(kaddrs); 989 return -EINVAL; 990 } 991 992 sa_addr = addr_buf; 993 af = sctp_get_af_specific(sa_addr->sa_family); 994 995 /* If the address family is not supported or if this address 996 * causes the address buffer to overflow return EINVAL. 997 */ 998 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 999 kfree(kaddrs); 1000 return -EINVAL; 1001 } 1002 addrcnt++; 1003 addr_buf += af->sockaddr_len; 1004 walk_size += af->sockaddr_len; 1005 } 1006 1007 /* Do the work. */ 1008 switch (op) { 1009 case SCTP_BINDX_ADD_ADDR: 1010 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1011 if (err) 1012 goto out; 1013 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1014 break; 1015 1016 case SCTP_BINDX_REM_ADDR: 1017 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1018 if (err) 1019 goto out; 1020 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1021 break; 1022 1023 default: 1024 err = -EINVAL; 1025 break; 1026 } 1027 1028out: 1029 kfree(kaddrs); 1030 1031 return err; 1032} 1033 1034/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1035 * 1036 * Common routine for handling connect() and sctp_connectx(). 1037 * Connect will come in with just a single address. 1038 */ 1039static int __sctp_connect(struct sock *sk, 1040 struct sockaddr *kaddrs, 1041 int addrs_size, 1042 sctp_assoc_t *assoc_id) 1043{ 1044 struct net *net = sock_net(sk); 1045 struct sctp_sock *sp; 1046 struct sctp_endpoint *ep; 1047 struct sctp_association *asoc = NULL; 1048 struct sctp_association *asoc2; 1049 struct sctp_transport *transport; 1050 union sctp_addr to; 1051 sctp_scope_t scope; 1052 long timeo; 1053 int err = 0; 1054 int addrcnt = 0; 1055 int walk_size = 0; 1056 union sctp_addr *sa_addr = NULL; 1057 void *addr_buf; 1058 unsigned short port; 1059 unsigned int f_flags = 0; 1060 1061 sp = sctp_sk(sk); 1062 ep = sp->ep; 1063 1064 /* connect() cannot be done on a socket that is already in ESTABLISHED 1065 * state - UDP-style peeled off socket or a TCP-style socket that 1066 * is already connected. 1067 * It cannot be done even on a TCP-style listening socket. 1068 */ 1069 if (sctp_sstate(sk, ESTABLISHED) || 1070 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1071 err = -EISCONN; 1072 goto out_free; 1073 } 1074 1075 /* Walk through the addrs buffer and count the number of addresses. */ 1076 addr_buf = kaddrs; 1077 while (walk_size < addrs_size) { 1078 struct sctp_af *af; 1079 1080 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1081 err = -EINVAL; 1082 goto out_free; 1083 } 1084 1085 sa_addr = addr_buf; 1086 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1087 1088 /* If the address family is not supported or if this address 1089 * causes the address buffer to overflow return EINVAL. 1090 */ 1091 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1092 err = -EINVAL; 1093 goto out_free; 1094 } 1095 1096 port = ntohs(sa_addr->v4.sin_port); 1097 1098 /* Save current address so we can work with it */ 1099 memcpy(&to, sa_addr, af->sockaddr_len); 1100 1101 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1102 if (err) 1103 goto out_free; 1104 1105 /* Make sure the destination port is correctly set 1106 * in all addresses. 1107 */ 1108 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1109 err = -EINVAL; 1110 goto out_free; 1111 } 1112 1113 /* Check if there already is a matching association on the 1114 * endpoint (other than the one created here). 1115 */ 1116 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1117 if (asoc2 && asoc2 != asoc) { 1118 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1119 err = -EISCONN; 1120 else 1121 err = -EALREADY; 1122 goto out_free; 1123 } 1124 1125 /* If we could not find a matching association on the endpoint, 1126 * make sure that there is no peeled-off association matching 1127 * the peer address even on another socket. 1128 */ 1129 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1130 err = -EADDRNOTAVAIL; 1131 goto out_free; 1132 } 1133 1134 if (!asoc) { 1135 /* If a bind() or sctp_bindx() is not called prior to 1136 * an sctp_connectx() call, the system picks an 1137 * ephemeral port and will choose an address set 1138 * equivalent to binding with a wildcard address. 1139 */ 1140 if (!ep->base.bind_addr.port) { 1141 if (sctp_autobind(sk)) { 1142 err = -EAGAIN; 1143 goto out_free; 1144 } 1145 } else { 1146 /* 1147 * If an unprivileged user inherits a 1-many 1148 * style socket with open associations on a 1149 * privileged port, it MAY be permitted to 1150 * accept new associations, but it SHOULD NOT 1151 * be permitted to open new associations. 1152 */ 1153 if (ep->base.bind_addr.port < PROT_SOCK && 1154 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1155 err = -EACCES; 1156 goto out_free; 1157 } 1158 } 1159 1160 scope = sctp_scope(&to); 1161 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1162 if (!asoc) { 1163 err = -ENOMEM; 1164 goto out_free; 1165 } 1166 1167 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1168 GFP_KERNEL); 1169 if (err < 0) { 1170 goto out_free; 1171 } 1172 1173 } 1174 1175 /* Prime the peer's transport structures. */ 1176 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1177 SCTP_UNKNOWN); 1178 if (!transport) { 1179 err = -ENOMEM; 1180 goto out_free; 1181 } 1182 1183 addrcnt++; 1184 addr_buf += af->sockaddr_len; 1185 walk_size += af->sockaddr_len; 1186 } 1187 1188 /* In case the user of sctp_connectx() wants an association 1189 * id back, assign one now. 1190 */ 1191 if (assoc_id) { 1192 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1193 if (err < 0) 1194 goto out_free; 1195 } 1196 1197 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1198 if (err < 0) { 1199 goto out_free; 1200 } 1201 1202 /* Initialize sk's dport and daddr for getpeername() */ 1203 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1204 sp->pf->to_sk_daddr(sa_addr, sk); 1205 sk->sk_err = 0; 1206 1207 /* in-kernel sockets don't generally have a file allocated to them 1208 * if all they do is call sock_create_kern(). 1209 */ 1210 if (sk->sk_socket->file) 1211 f_flags = sk->sk_socket->file->f_flags; 1212 1213 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1214 1215 err = sctp_wait_for_connect(asoc, &timeo); 1216 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1217 *assoc_id = asoc->assoc_id; 1218 1219 /* Don't free association on exit. */ 1220 asoc = NULL; 1221 1222out_free: 1223 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1224 __func__, asoc, kaddrs, err); 1225 1226 if (asoc) { 1227 /* sctp_primitive_ASSOCIATE may have added this association 1228 * To the hash table, try to unhash it, just in case, its a noop 1229 * if it wasn't hashed so we're safe 1230 */ 1231 sctp_unhash_established(asoc); 1232 sctp_association_free(asoc); 1233 } 1234 return err; 1235} 1236 1237/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1238 * 1239 * API 8.9 1240 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1241 * sctp_assoc_t *asoc); 1242 * 1243 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1244 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1245 * or IPv6 addresses. 1246 * 1247 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1248 * Section 3.1.2 for this usage. 1249 * 1250 * addrs is a pointer to an array of one or more socket addresses. Each 1251 * address is contained in its appropriate structure (i.e. struct 1252 * sockaddr_in or struct sockaddr_in6) the family of the address type 1253 * must be used to distengish the address length (note that this 1254 * representation is termed a "packed array" of addresses). The caller 1255 * specifies the number of addresses in the array with addrcnt. 1256 * 1257 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1258 * the association id of the new association. On failure, sctp_connectx() 1259 * returns -1, and sets errno to the appropriate error code. The assoc_id 1260 * is not touched by the kernel. 1261 * 1262 * For SCTP, the port given in each socket address must be the same, or 1263 * sctp_connectx() will fail, setting errno to EINVAL. 1264 * 1265 * An application can use sctp_connectx to initiate an association with 1266 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1267 * allows a caller to specify multiple addresses at which a peer can be 1268 * reached. The way the SCTP stack uses the list of addresses to set up 1269 * the association is implementation dependent. This function only 1270 * specifies that the stack will try to make use of all the addresses in 1271 * the list when needed. 1272 * 1273 * Note that the list of addresses passed in is only used for setting up 1274 * the association. It does not necessarily equal the set of addresses 1275 * the peer uses for the resulting association. If the caller wants to 1276 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1277 * retrieve them after the association has been set up. 1278 * 1279 * Basically do nothing but copying the addresses from user to kernel 1280 * land and invoking either sctp_connectx(). This is used for tunneling 1281 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1282 * 1283 * We don't use copy_from_user() for optimization: we first do the 1284 * sanity checks (buffer size -fast- and access check-healthy 1285 * pointer); if all of those succeed, then we can alloc the memory 1286 * (expensive operation) needed to copy the data to kernel. Then we do 1287 * the copying without checking the user space area 1288 * (__copy_from_user()). 1289 * 1290 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1291 * it. 1292 * 1293 * sk The sk of the socket 1294 * addrs The pointer to the addresses in user land 1295 * addrssize Size of the addrs buffer 1296 * 1297 * Returns >=0 if ok, <0 errno code on error. 1298 */ 1299static int __sctp_setsockopt_connectx(struct sock *sk, 1300 struct sockaddr __user *addrs, 1301 int addrs_size, 1302 sctp_assoc_t *assoc_id) 1303{ 1304 int err = 0; 1305 struct sockaddr *kaddrs; 1306 1307 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1308 __func__, sk, addrs, addrs_size); 1309 1310 if (unlikely(addrs_size <= 0)) 1311 return -EINVAL; 1312 1313 /* Check the user passed a healthy pointer. */ 1314 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1315 return -EFAULT; 1316 1317 /* Alloc space for the address array in kernel memory. */ 1318 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1319 if (unlikely(!kaddrs)) 1320 return -ENOMEM; 1321 1322 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1323 err = -EFAULT; 1324 } else { 1325 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1326 } 1327 1328 kfree(kaddrs); 1329 1330 return err; 1331} 1332 1333/* 1334 * This is an older interface. It's kept for backward compatibility 1335 * to the option that doesn't provide association id. 1336 */ 1337static int sctp_setsockopt_connectx_old(struct sock *sk, 1338 struct sockaddr __user *addrs, 1339 int addrs_size) 1340{ 1341 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1342} 1343 1344/* 1345 * New interface for the API. The since the API is done with a socket 1346 * option, to make it simple we feed back the association id is as a return 1347 * indication to the call. Error is always negative and association id is 1348 * always positive. 1349 */ 1350static int sctp_setsockopt_connectx(struct sock *sk, 1351 struct sockaddr __user *addrs, 1352 int addrs_size) 1353{ 1354 sctp_assoc_t assoc_id = 0; 1355 int err = 0; 1356 1357 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1358 1359 if (err) 1360 return err; 1361 else 1362 return assoc_id; 1363} 1364 1365/* 1366 * New (hopefully final) interface for the API. 1367 * We use the sctp_getaddrs_old structure so that use-space library 1368 * can avoid any unnecessary allocations. The only different part 1369 * is that we store the actual length of the address buffer into the 1370 * addrs_num structure member. That way we can re-use the existing 1371 * code. 1372 */ 1373#ifdef CONFIG_COMPAT 1374struct compat_sctp_getaddrs_old { 1375 sctp_assoc_t assoc_id; 1376 s32 addr_num; 1377 compat_uptr_t addrs; /* struct sockaddr * */ 1378}; 1379#endif 1380 1381static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1382 char __user *optval, 1383 int __user *optlen) 1384{ 1385 struct sctp_getaddrs_old param; 1386 sctp_assoc_t assoc_id = 0; 1387 int err = 0; 1388 1389#ifdef CONFIG_COMPAT 1390 if (is_compat_task()) { 1391 struct compat_sctp_getaddrs_old param32; 1392 1393 if (len < sizeof(param32)) 1394 return -EINVAL; 1395 if (copy_from_user(¶m32, optval, sizeof(param32))) 1396 return -EFAULT; 1397 1398 param.assoc_id = param32.assoc_id; 1399 param.addr_num = param32.addr_num; 1400 param.addrs = compat_ptr(param32.addrs); 1401 } else 1402#endif 1403 { 1404 if (len < sizeof(param)) 1405 return -EINVAL; 1406 if (copy_from_user(¶m, optval, sizeof(param))) 1407 return -EFAULT; 1408 } 1409 1410 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1411 param.addrs, param.addr_num, 1412 &assoc_id); 1413 if (err == 0 || err == -EINPROGRESS) { 1414 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1415 return -EFAULT; 1416 if (put_user(sizeof(assoc_id), optlen)) 1417 return -EFAULT; 1418 } 1419 1420 return err; 1421} 1422 1423/* API 3.1.4 close() - UDP Style Syntax 1424 * Applications use close() to perform graceful shutdown (as described in 1425 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1426 * by a UDP-style socket. 1427 * 1428 * The syntax is 1429 * 1430 * ret = close(int sd); 1431 * 1432 * sd - the socket descriptor of the associations to be closed. 1433 * 1434 * To gracefully shutdown a specific association represented by the 1435 * UDP-style socket, an application should use the sendmsg() call, 1436 * passing no user data, but including the appropriate flag in the 1437 * ancillary data (see Section xxxx). 1438 * 1439 * If sd in the close() call is a branched-off socket representing only 1440 * one association, the shutdown is performed on that association only. 1441 * 1442 * 4.1.6 close() - TCP Style Syntax 1443 * 1444 * Applications use close() to gracefully close down an association. 1445 * 1446 * The syntax is: 1447 * 1448 * int close(int sd); 1449 * 1450 * sd - the socket descriptor of the association to be closed. 1451 * 1452 * After an application calls close() on a socket descriptor, no further 1453 * socket operations will succeed on that descriptor. 1454 * 1455 * API 7.1.4 SO_LINGER 1456 * 1457 * An application using the TCP-style socket can use this option to 1458 * perform the SCTP ABORT primitive. The linger option structure is: 1459 * 1460 * struct linger { 1461 * int l_onoff; // option on/off 1462 * int l_linger; // linger time 1463 * }; 1464 * 1465 * To enable the option, set l_onoff to 1. If the l_linger value is set 1466 * to 0, calling close() is the same as the ABORT primitive. If the 1467 * value is set to a negative value, the setsockopt() call will return 1468 * an error. If the value is set to a positive value linger_time, the 1469 * close() can be blocked for at most linger_time ms. If the graceful 1470 * shutdown phase does not finish during this period, close() will 1471 * return but the graceful shutdown phase continues in the system. 1472 */ 1473static void sctp_close(struct sock *sk, long timeout) 1474{ 1475 struct net *net = sock_net(sk); 1476 struct sctp_endpoint *ep; 1477 struct sctp_association *asoc; 1478 struct list_head *pos, *temp; 1479 unsigned int data_was_unread; 1480 1481 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1482 1483 lock_sock(sk); 1484 sk->sk_shutdown = SHUTDOWN_MASK; 1485 sk->sk_state = SCTP_SS_CLOSING; 1486 1487 ep = sctp_sk(sk)->ep; 1488 1489 /* Clean up any skbs sitting on the receive queue. */ 1490 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1491 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1492 1493 /* Walk all associations on an endpoint. */ 1494 list_for_each_safe(pos, temp, &ep->asocs) { 1495 asoc = list_entry(pos, struct sctp_association, asocs); 1496 1497 if (sctp_style(sk, TCP)) { 1498 /* A closed association can still be in the list if 1499 * it belongs to a TCP-style listening socket that is 1500 * not yet accepted. If so, free it. If not, send an 1501 * ABORT or SHUTDOWN based on the linger options. 1502 */ 1503 if (sctp_state(asoc, CLOSED)) { 1504 sctp_unhash_established(asoc); 1505 sctp_association_free(asoc); 1506 continue; 1507 } 1508 } 1509 1510 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1511 !skb_queue_empty(&asoc->ulpq.reasm) || 1512 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1513 struct sctp_chunk *chunk; 1514 1515 chunk = sctp_make_abort_user(asoc, NULL, 0); 1516 sctp_primitive_ABORT(net, asoc, chunk); 1517 } else 1518 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1519 } 1520 1521 /* On a TCP-style socket, block for at most linger_time if set. */ 1522 if (sctp_style(sk, TCP) && timeout) 1523 sctp_wait_for_close(sk, timeout); 1524 1525 /* This will run the backlog queue. */ 1526 release_sock(sk); 1527 1528 /* Supposedly, no process has access to the socket, but 1529 * the net layers still may. 1530 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1531 * held and that should be grabbed before socket lock. 1532 */ 1533 spin_lock_bh(&net->sctp.addr_wq_lock); 1534 bh_lock_sock(sk); 1535 1536 /* Hold the sock, since sk_common_release() will put sock_put() 1537 * and we have just a little more cleanup. 1538 */ 1539 sock_hold(sk); 1540 sk_common_release(sk); 1541 1542 bh_unlock_sock(sk); 1543 spin_unlock_bh(&net->sctp.addr_wq_lock); 1544 1545 sock_put(sk); 1546 1547 SCTP_DBG_OBJCNT_DEC(sock); 1548} 1549 1550/* Handle EPIPE error. */ 1551static int sctp_error(struct sock *sk, int flags, int err) 1552{ 1553 if (err == -EPIPE) 1554 err = sock_error(sk) ? : -EPIPE; 1555 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1556 send_sig(SIGPIPE, current, 0); 1557 return err; 1558} 1559 1560/* API 3.1.3 sendmsg() - UDP Style Syntax 1561 * 1562 * An application uses sendmsg() and recvmsg() calls to transmit data to 1563 * and receive data from its peer. 1564 * 1565 * ssize_t sendmsg(int socket, const struct msghdr *message, 1566 * int flags); 1567 * 1568 * socket - the socket descriptor of the endpoint. 1569 * message - pointer to the msghdr structure which contains a single 1570 * user message and possibly some ancillary data. 1571 * 1572 * See Section 5 for complete description of the data 1573 * structures. 1574 * 1575 * flags - flags sent or received with the user message, see Section 1576 * 5 for complete description of the flags. 1577 * 1578 * Note: This function could use a rewrite especially when explicit 1579 * connect support comes in. 1580 */ 1581/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1582 1583static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1584 1585static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1586{ 1587 struct net *net = sock_net(sk); 1588 struct sctp_sock *sp; 1589 struct sctp_endpoint *ep; 1590 struct sctp_association *new_asoc = NULL, *asoc = NULL; 1591 struct sctp_transport *transport, *chunk_tp; 1592 struct sctp_chunk *chunk; 1593 union sctp_addr to; 1594 struct sockaddr *msg_name = NULL; 1595 struct sctp_sndrcvinfo default_sinfo; 1596 struct sctp_sndrcvinfo *sinfo; 1597 struct sctp_initmsg *sinit; 1598 sctp_assoc_t associd = 0; 1599 sctp_cmsgs_t cmsgs = { NULL }; 1600 sctp_scope_t scope; 1601 bool fill_sinfo_ttl = false, wait_connect = false; 1602 struct sctp_datamsg *datamsg; 1603 int msg_flags = msg->msg_flags; 1604 __u16 sinfo_flags = 0; 1605 long timeo; 1606 int err; 1607 1608 err = 0; 1609 sp = sctp_sk(sk); 1610 ep = sp->ep; 1611 1612 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, 1613 msg, msg_len, ep); 1614 1615 /* We cannot send a message over a TCP-style listening socket. */ 1616 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1617 err = -EPIPE; 1618 goto out_nounlock; 1619 } 1620 1621 /* Parse out the SCTP CMSGs. */ 1622 err = sctp_msghdr_parse(msg, &cmsgs); 1623 if (err) { 1624 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1625 goto out_nounlock; 1626 } 1627 1628 /* Fetch the destination address for this packet. This 1629 * address only selects the association--it is not necessarily 1630 * the address we will send to. 1631 * For a peeled-off socket, msg_name is ignored. 1632 */ 1633 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1634 int msg_namelen = msg->msg_namelen; 1635 1636 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1637 msg_namelen); 1638 if (err) 1639 return err; 1640 1641 if (msg_namelen > sizeof(to)) 1642 msg_namelen = sizeof(to); 1643 memcpy(&to, msg->msg_name, msg_namelen); 1644 msg_name = msg->msg_name; 1645 } 1646 1647 sinit = cmsgs.init; 1648 if (cmsgs.sinfo != NULL) { 1649 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1650 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid; 1651 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags; 1652 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid; 1653 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context; 1654 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id; 1655 1656 sinfo = &default_sinfo; 1657 fill_sinfo_ttl = true; 1658 } else { 1659 sinfo = cmsgs.srinfo; 1660 } 1661 /* Did the user specify SNDINFO/SNDRCVINFO? */ 1662 if (sinfo) { 1663 sinfo_flags = sinfo->sinfo_flags; 1664 associd = sinfo->sinfo_assoc_id; 1665 } 1666 1667 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, 1668 msg_len, sinfo_flags); 1669 1670 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1671 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1672 err = -EINVAL; 1673 goto out_nounlock; 1674 } 1675 1676 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1677 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1678 * If SCTP_ABORT is set, the message length could be non zero with 1679 * the msg_iov set to the user abort reason. 1680 */ 1681 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1682 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1683 err = -EINVAL; 1684 goto out_nounlock; 1685 } 1686 1687 /* If SCTP_ADDR_OVER is set, there must be an address 1688 * specified in msg_name. 1689 */ 1690 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1691 err = -EINVAL; 1692 goto out_nounlock; 1693 } 1694 1695 transport = NULL; 1696 1697 pr_debug("%s: about to look up association\n", __func__); 1698 1699 lock_sock(sk); 1700 1701 /* If a msg_name has been specified, assume this is to be used. */ 1702 if (msg_name) { 1703 /* Look for a matching association on the endpoint. */ 1704 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1705 if (!asoc) { 1706 /* If we could not find a matching association on the 1707 * endpoint, make sure that it is not a TCP-style 1708 * socket that already has an association or there is 1709 * no peeled-off association on another socket. 1710 */ 1711 if ((sctp_style(sk, TCP) && 1712 sctp_sstate(sk, ESTABLISHED)) || 1713 sctp_endpoint_is_peeled_off(ep, &to)) { 1714 err = -EADDRNOTAVAIL; 1715 goto out_unlock; 1716 } 1717 } 1718 } else { 1719 asoc = sctp_id2assoc(sk, associd); 1720 if (!asoc) { 1721 err = -EPIPE; 1722 goto out_unlock; 1723 } 1724 } 1725 1726 if (asoc) { 1727 pr_debug("%s: just looked up association:%p\n", __func__, asoc); 1728 1729 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1730 * socket that has an association in CLOSED state. This can 1731 * happen when an accepted socket has an association that is 1732 * already CLOSED. 1733 */ 1734 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1735 err = -EPIPE; 1736 goto out_unlock; 1737 } 1738 1739 if (sinfo_flags & SCTP_EOF) { 1740 pr_debug("%s: shutting down association:%p\n", 1741 __func__, asoc); 1742 1743 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1744 err = 0; 1745 goto out_unlock; 1746 } 1747 if (sinfo_flags & SCTP_ABORT) { 1748 1749 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1750 if (!chunk) { 1751 err = -ENOMEM; 1752 goto out_unlock; 1753 } 1754 1755 pr_debug("%s: aborting association:%p\n", 1756 __func__, asoc); 1757 1758 sctp_primitive_ABORT(net, asoc, chunk); 1759 err = 0; 1760 goto out_unlock; 1761 } 1762 } 1763 1764 /* Do we need to create the association? */ 1765 if (!asoc) { 1766 pr_debug("%s: there is no association yet\n", __func__); 1767 1768 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1769 err = -EINVAL; 1770 goto out_unlock; 1771 } 1772 1773 /* Check for invalid stream against the stream counts, 1774 * either the default or the user specified stream counts. 1775 */ 1776 if (sinfo) { 1777 if (!sinit || !sinit->sinit_num_ostreams) { 1778 /* Check against the defaults. */ 1779 if (sinfo->sinfo_stream >= 1780 sp->initmsg.sinit_num_ostreams) { 1781 err = -EINVAL; 1782 goto out_unlock; 1783 } 1784 } else { 1785 /* Check against the requested. */ 1786 if (sinfo->sinfo_stream >= 1787 sinit->sinit_num_ostreams) { 1788 err = -EINVAL; 1789 goto out_unlock; 1790 } 1791 } 1792 } 1793 1794 /* 1795 * API 3.1.2 bind() - UDP Style Syntax 1796 * If a bind() or sctp_bindx() is not called prior to a 1797 * sendmsg() call that initiates a new association, the 1798 * system picks an ephemeral port and will choose an address 1799 * set equivalent to binding with a wildcard address. 1800 */ 1801 if (!ep->base.bind_addr.port) { 1802 if (sctp_autobind(sk)) { 1803 err = -EAGAIN; 1804 goto out_unlock; 1805 } 1806 } else { 1807 /* 1808 * If an unprivileged user inherits a one-to-many 1809 * style socket with open associations on a privileged 1810 * port, it MAY be permitted to accept new associations, 1811 * but it SHOULD NOT be permitted to open new 1812 * associations. 1813 */ 1814 if (ep->base.bind_addr.port < PROT_SOCK && 1815 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1816 err = -EACCES; 1817 goto out_unlock; 1818 } 1819 } 1820 1821 scope = sctp_scope(&to); 1822 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1823 if (!new_asoc) { 1824 err = -ENOMEM; 1825 goto out_unlock; 1826 } 1827 asoc = new_asoc; 1828 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1829 if (err < 0) { 1830 err = -ENOMEM; 1831 goto out_free; 1832 } 1833 1834 /* If the SCTP_INIT ancillary data is specified, set all 1835 * the association init values accordingly. 1836 */ 1837 if (sinit) { 1838 if (sinit->sinit_num_ostreams) { 1839 asoc->c.sinit_num_ostreams = 1840 sinit->sinit_num_ostreams; 1841 } 1842 if (sinit->sinit_max_instreams) { 1843 asoc->c.sinit_max_instreams = 1844 sinit->sinit_max_instreams; 1845 } 1846 if (sinit->sinit_max_attempts) { 1847 asoc->max_init_attempts 1848 = sinit->sinit_max_attempts; 1849 } 1850 if (sinit->sinit_max_init_timeo) { 1851 asoc->max_init_timeo = 1852 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1853 } 1854 } 1855 1856 /* Prime the peer's transport structures. */ 1857 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1858 if (!transport) { 1859 err = -ENOMEM; 1860 goto out_free; 1861 } 1862 } 1863 1864 /* ASSERT: we have a valid association at this point. */ 1865 pr_debug("%s: we have a valid association\n", __func__); 1866 1867 if (!sinfo) { 1868 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up 1869 * one with some defaults. 1870 */ 1871 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1872 default_sinfo.sinfo_stream = asoc->default_stream; 1873 default_sinfo.sinfo_flags = asoc->default_flags; 1874 default_sinfo.sinfo_ppid = asoc->default_ppid; 1875 default_sinfo.sinfo_context = asoc->default_context; 1876 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1877 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1878 1879 sinfo = &default_sinfo; 1880 } else if (fill_sinfo_ttl) { 1881 /* In case SNDINFO was specified, we still need to fill 1882 * it with a default ttl from the assoc here. 1883 */ 1884 sinfo->sinfo_timetolive = asoc->default_timetolive; 1885 } 1886 1887 /* API 7.1.7, the sndbuf size per association bounds the 1888 * maximum size of data that can be sent in a single send call. 1889 */ 1890 if (msg_len > sk->sk_sndbuf) { 1891 err = -EMSGSIZE; 1892 goto out_free; 1893 } 1894 1895 if (asoc->pmtu_pending) 1896 sctp_assoc_pending_pmtu(sk, asoc); 1897 1898 /* If fragmentation is disabled and the message length exceeds the 1899 * association fragmentation point, return EMSGSIZE. The I-D 1900 * does not specify what this error is, but this looks like 1901 * a great fit. 1902 */ 1903 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1904 err = -EMSGSIZE; 1905 goto out_free; 1906 } 1907 1908 /* Check for invalid stream. */ 1909 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1910 err = -EINVAL; 1911 goto out_free; 1912 } 1913 1914 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1915 if (!sctp_wspace(asoc)) { 1916 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1917 if (err) 1918 goto out_free; 1919 } 1920 1921 /* If an address is passed with the sendto/sendmsg call, it is used 1922 * to override the primary destination address in the TCP model, or 1923 * when SCTP_ADDR_OVER flag is set in the UDP model. 1924 */ 1925 if ((sctp_style(sk, TCP) && msg_name) || 1926 (sinfo_flags & SCTP_ADDR_OVER)) { 1927 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1928 if (!chunk_tp) { 1929 err = -EINVAL; 1930 goto out_free; 1931 } 1932 } else 1933 chunk_tp = NULL; 1934 1935 /* Auto-connect, if we aren't connected already. */ 1936 if (sctp_state(asoc, CLOSED)) { 1937 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1938 if (err < 0) 1939 goto out_free; 1940 1941 wait_connect = true; 1942 pr_debug("%s: we associated primitively\n", __func__); 1943 } 1944 1945 /* Break the message into multiple chunks of maximum size. */ 1946 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1947 if (IS_ERR(datamsg)) { 1948 err = PTR_ERR(datamsg); 1949 goto out_free; 1950 } 1951 1952 /* Now send the (possibly) fragmented message. */ 1953 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1954 sctp_chunk_hold(chunk); 1955 1956 /* Do accounting for the write space. */ 1957 sctp_set_owner_w(chunk); 1958 1959 chunk->transport = chunk_tp; 1960 } 1961 1962 /* Send it to the lower layers. Note: all chunks 1963 * must either fail or succeed. The lower layer 1964 * works that way today. Keep it that way or this 1965 * breaks. 1966 */ 1967 err = sctp_primitive_SEND(net, asoc, datamsg); 1968 /* Did the lower layer accept the chunk? */ 1969 if (err) { 1970 sctp_datamsg_free(datamsg); 1971 goto out_free; 1972 } 1973 1974 pr_debug("%s: we sent primitively\n", __func__); 1975 1976 sctp_datamsg_put(datamsg); 1977 err = msg_len; 1978 1979 if (unlikely(wait_connect)) { 1980 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT); 1981 sctp_wait_for_connect(asoc, &timeo); 1982 } 1983 1984 /* If we are already past ASSOCIATE, the lower 1985 * layers are responsible for association cleanup. 1986 */ 1987 goto out_unlock; 1988 1989out_free: 1990 if (new_asoc) { 1991 sctp_unhash_established(asoc); 1992 sctp_association_free(asoc); 1993 } 1994out_unlock: 1995 release_sock(sk); 1996 1997out_nounlock: 1998 return sctp_error(sk, msg_flags, err); 1999 2000#if 0 2001do_sock_err: 2002 if (msg_len) 2003 err = msg_len; 2004 else 2005 err = sock_error(sk); 2006 goto out; 2007 2008do_interrupted: 2009 if (msg_len) 2010 err = msg_len; 2011 goto out; 2012#endif /* 0 */ 2013} 2014 2015/* This is an extended version of skb_pull() that removes the data from the 2016 * start of a skb even when data is spread across the list of skb's in the 2017 * frag_list. len specifies the total amount of data that needs to be removed. 2018 * when 'len' bytes could be removed from the skb, it returns 0. 2019 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2020 * could not be removed. 2021 */ 2022static int sctp_skb_pull(struct sk_buff *skb, int len) 2023{ 2024 struct sk_buff *list; 2025 int skb_len = skb_headlen(skb); 2026 int rlen; 2027 2028 if (len <= skb_len) { 2029 __skb_pull(skb, len); 2030 return 0; 2031 } 2032 len -= skb_len; 2033 __skb_pull(skb, skb_len); 2034 2035 skb_walk_frags(skb, list) { 2036 rlen = sctp_skb_pull(list, len); 2037 skb->len -= (len-rlen); 2038 skb->data_len -= (len-rlen); 2039 2040 if (!rlen) 2041 return 0; 2042 2043 len = rlen; 2044 } 2045 2046 return len; 2047} 2048 2049/* API 3.1.3 recvmsg() - UDP Style Syntax 2050 * 2051 * ssize_t recvmsg(int socket, struct msghdr *message, 2052 * int flags); 2053 * 2054 * socket - the socket descriptor of the endpoint. 2055 * message - pointer to the msghdr structure which contains a single 2056 * user message and possibly some ancillary data. 2057 * 2058 * See Section 5 for complete description of the data 2059 * structures. 2060 * 2061 * flags - flags sent or received with the user message, see Section 2062 * 5 for complete description of the flags. 2063 */ 2064static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2065 int noblock, int flags, int *addr_len) 2066{ 2067 struct sctp_ulpevent *event = NULL; 2068 struct sctp_sock *sp = sctp_sk(sk); 2069 struct sk_buff *skb; 2070 int copied; 2071 int err = 0; 2072 int skb_len; 2073 2074 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2075 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2076 addr_len); 2077 2078 lock_sock(sk); 2079 2080 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 2081 err = -ENOTCONN; 2082 goto out; 2083 } 2084 2085 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2086 if (!skb) 2087 goto out; 2088 2089 /* Get the total length of the skb including any skb's in the 2090 * frag_list. 2091 */ 2092 skb_len = skb->len; 2093 2094 copied = skb_len; 2095 if (copied > len) 2096 copied = len; 2097 2098 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2099 2100 event = sctp_skb2event(skb); 2101 2102 if (err) 2103 goto out_free; 2104 2105 sock_recv_ts_and_drops(msg, sk, skb); 2106 if (sctp_ulpevent_is_notification(event)) { 2107 msg->msg_flags |= MSG_NOTIFICATION; 2108 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2109 } else { 2110 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 2111 } 2112 2113 /* Check if we allow SCTP_NXTINFO. */ 2114 if (sp->recvnxtinfo) 2115 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2116 /* Check if we allow SCTP_RCVINFO. */ 2117 if (sp->recvrcvinfo) 2118 sctp_ulpevent_read_rcvinfo(event, msg); 2119 /* Check if we allow SCTP_SNDRCVINFO. */ 2120 if (sp->subscribe.sctp_data_io_event) 2121 sctp_ulpevent_read_sndrcvinfo(event, msg); 2122 2123#if 0 2124 /* FIXME: we should be calling IP/IPv6 layers. */ 2125 if (sk->sk_protinfo.af_inet.cmsg_flags) 2126 ip_cmsg_recv(msg, skb); 2127#endif 2128 2129 err = copied; 2130 2131 /* If skb's length exceeds the user's buffer, update the skb and 2132 * push it back to the receive_queue so that the next call to 2133 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2134 */ 2135 if (skb_len > copied) { 2136 msg->msg_flags &= ~MSG_EOR; 2137 if (flags & MSG_PEEK) 2138 goto out_free; 2139 sctp_skb_pull(skb, copied); 2140 skb_queue_head(&sk->sk_receive_queue, skb); 2141 2142 /* When only partial message is copied to the user, increase 2143 * rwnd by that amount. If all the data in the skb is read, 2144 * rwnd is updated when the event is freed. 2145 */ 2146 if (!sctp_ulpevent_is_notification(event)) 2147 sctp_assoc_rwnd_increase(event->asoc, copied); 2148 goto out; 2149 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2150 (event->msg_flags & MSG_EOR)) 2151 msg->msg_flags |= MSG_EOR; 2152 else 2153 msg->msg_flags &= ~MSG_EOR; 2154 2155out_free: 2156 if (flags & MSG_PEEK) { 2157 /* Release the skb reference acquired after peeking the skb in 2158 * sctp_skb_recv_datagram(). 2159 */ 2160 kfree_skb(skb); 2161 } else { 2162 /* Free the event which includes releasing the reference to 2163 * the owner of the skb, freeing the skb and updating the 2164 * rwnd. 2165 */ 2166 sctp_ulpevent_free(event); 2167 } 2168out: 2169 release_sock(sk); 2170 return err; 2171} 2172 2173/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2174 * 2175 * This option is a on/off flag. If enabled no SCTP message 2176 * fragmentation will be performed. Instead if a message being sent 2177 * exceeds the current PMTU size, the message will NOT be sent and 2178 * instead a error will be indicated to the user. 2179 */ 2180static int sctp_setsockopt_disable_fragments(struct sock *sk, 2181 char __user *optval, 2182 unsigned int optlen) 2183{ 2184 int val; 2185 2186 if (optlen < sizeof(int)) 2187 return -EINVAL; 2188 2189 if (get_user(val, (int __user *)optval)) 2190 return -EFAULT; 2191 2192 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2193 2194 return 0; 2195} 2196 2197static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2198 unsigned int optlen) 2199{ 2200 struct sctp_association *asoc; 2201 struct sctp_ulpevent *event; 2202 2203 if (optlen > sizeof(struct sctp_event_subscribe)) 2204 return -EINVAL; 2205 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2206 return -EFAULT; 2207 2208 if (sctp_sk(sk)->subscribe.sctp_data_io_event) 2209 pr_warn_ratelimited(DEPRECATED "%s (pid %d) " 2210 "Requested SCTP_SNDRCVINFO event.\n" 2211 "Use SCTP_RCVINFO through SCTP_RECVRCVINFO option instead.\n", 2212 current->comm, task_pid_nr(current)); 2213 2214 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2215 * if there is no data to be sent or retransmit, the stack will 2216 * immediately send up this notification. 2217 */ 2218 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2219 &sctp_sk(sk)->subscribe)) { 2220 asoc = sctp_id2assoc(sk, 0); 2221 2222 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2223 event = sctp_ulpevent_make_sender_dry_event(asoc, 2224 GFP_ATOMIC); 2225 if (!event) 2226 return -ENOMEM; 2227 2228 sctp_ulpq_tail_event(&asoc->ulpq, event); 2229 } 2230 } 2231 2232 return 0; 2233} 2234 2235/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2236 * 2237 * This socket option is applicable to the UDP-style socket only. When 2238 * set it will cause associations that are idle for more than the 2239 * specified number of seconds to automatically close. An association 2240 * being idle is defined an association that has NOT sent or received 2241 * user data. The special value of '0' indicates that no automatic 2242 * close of any associations should be performed. The option expects an 2243 * integer defining the number of seconds of idle time before an 2244 * association is closed. 2245 */ 2246static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2247 unsigned int optlen) 2248{ 2249 struct sctp_sock *sp = sctp_sk(sk); 2250 struct net *net = sock_net(sk); 2251 2252 /* Applicable to UDP-style socket only */ 2253 if (sctp_style(sk, TCP)) 2254 return -EOPNOTSUPP; 2255 if (optlen != sizeof(int)) 2256 return -EINVAL; 2257 if (copy_from_user(&sp->autoclose, optval, optlen)) 2258 return -EFAULT; 2259 2260 if (sp->autoclose > net->sctp.max_autoclose) 2261 sp->autoclose = net->sctp.max_autoclose; 2262 2263 return 0; 2264} 2265 2266/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2267 * 2268 * Applications can enable or disable heartbeats for any peer address of 2269 * an association, modify an address's heartbeat interval, force a 2270 * heartbeat to be sent immediately, and adjust the address's maximum 2271 * number of retransmissions sent before an address is considered 2272 * unreachable. The following structure is used to access and modify an 2273 * address's parameters: 2274 * 2275 * struct sctp_paddrparams { 2276 * sctp_assoc_t spp_assoc_id; 2277 * struct sockaddr_storage spp_address; 2278 * uint32_t spp_hbinterval; 2279 * uint16_t spp_pathmaxrxt; 2280 * uint32_t spp_pathmtu; 2281 * uint32_t spp_sackdelay; 2282 * uint32_t spp_flags; 2283 * }; 2284 * 2285 * spp_assoc_id - (one-to-many style socket) This is filled in the 2286 * application, and identifies the association for 2287 * this query. 2288 * spp_address - This specifies which address is of interest. 2289 * spp_hbinterval - This contains the value of the heartbeat interval, 2290 * in milliseconds. If a value of zero 2291 * is present in this field then no changes are to 2292 * be made to this parameter. 2293 * spp_pathmaxrxt - This contains the maximum number of 2294 * retransmissions before this address shall be 2295 * considered unreachable. If a value of zero 2296 * is present in this field then no changes are to 2297 * be made to this parameter. 2298 * spp_pathmtu - When Path MTU discovery is disabled the value 2299 * specified here will be the "fixed" path mtu. 2300 * Note that if the spp_address field is empty 2301 * then all associations on this address will 2302 * have this fixed path mtu set upon them. 2303 * 2304 * spp_sackdelay - When delayed sack is enabled, this value specifies 2305 * the number of milliseconds that sacks will be delayed 2306 * for. This value will apply to all addresses of an 2307 * association if the spp_address field is empty. Note 2308 * also, that if delayed sack is enabled and this 2309 * value is set to 0, no change is made to the last 2310 * recorded delayed sack timer value. 2311 * 2312 * spp_flags - These flags are used to control various features 2313 * on an association. The flag field may contain 2314 * zero or more of the following options. 2315 * 2316 * SPP_HB_ENABLE - Enable heartbeats on the 2317 * specified address. Note that if the address 2318 * field is empty all addresses for the association 2319 * have heartbeats enabled upon them. 2320 * 2321 * SPP_HB_DISABLE - Disable heartbeats on the 2322 * speicifed address. Note that if the address 2323 * field is empty all addresses for the association 2324 * will have their heartbeats disabled. Note also 2325 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2326 * mutually exclusive, only one of these two should 2327 * be specified. Enabling both fields will have 2328 * undetermined results. 2329 * 2330 * SPP_HB_DEMAND - Request a user initiated heartbeat 2331 * to be made immediately. 2332 * 2333 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2334 * heartbeat delayis to be set to the value of 0 2335 * milliseconds. 2336 * 2337 * SPP_PMTUD_ENABLE - This field will enable PMTU 2338 * discovery upon the specified address. Note that 2339 * if the address feild is empty then all addresses 2340 * on the association are effected. 2341 * 2342 * SPP_PMTUD_DISABLE - This field will disable PMTU 2343 * discovery upon the specified address. Note that 2344 * if the address feild is empty then all addresses 2345 * on the association are effected. Not also that 2346 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2347 * exclusive. Enabling both will have undetermined 2348 * results. 2349 * 2350 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2351 * on delayed sack. The time specified in spp_sackdelay 2352 * is used to specify the sack delay for this address. Note 2353 * that if spp_address is empty then all addresses will 2354 * enable delayed sack and take on the sack delay 2355 * value specified in spp_sackdelay. 2356 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2357 * off delayed sack. If the spp_address field is blank then 2358 * delayed sack is disabled for the entire association. Note 2359 * also that this field is mutually exclusive to 2360 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2361 * results. 2362 */ 2363static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2364 struct sctp_transport *trans, 2365 struct sctp_association *asoc, 2366 struct sctp_sock *sp, 2367 int hb_change, 2368 int pmtud_change, 2369 int sackdelay_change) 2370{ 2371 int error; 2372 2373 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2374 struct net *net = sock_net(trans->asoc->base.sk); 2375 2376 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2377 if (error) 2378 return error; 2379 } 2380 2381 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2382 * this field is ignored. Note also that a value of zero indicates 2383 * the current setting should be left unchanged. 2384 */ 2385 if (params->spp_flags & SPP_HB_ENABLE) { 2386 2387 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2388 * set. This lets us use 0 value when this flag 2389 * is set. 2390 */ 2391 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2392 params->spp_hbinterval = 0; 2393 2394 if (params->spp_hbinterval || 2395 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2396 if (trans) { 2397 trans->hbinterval = 2398 msecs_to_jiffies(params->spp_hbinterval); 2399 } else if (asoc) { 2400 asoc->hbinterval = 2401 msecs_to_jiffies(params->spp_hbinterval); 2402 } else { 2403 sp->hbinterval = params->spp_hbinterval; 2404 } 2405 } 2406 } 2407 2408 if (hb_change) { 2409 if (trans) { 2410 trans->param_flags = 2411 (trans->param_flags & ~SPP_HB) | hb_change; 2412 } else if (asoc) { 2413 asoc->param_flags = 2414 (asoc->param_flags & ~SPP_HB) | hb_change; 2415 } else { 2416 sp->param_flags = 2417 (sp->param_flags & ~SPP_HB) | hb_change; 2418 } 2419 } 2420 2421 /* When Path MTU discovery is disabled the value specified here will 2422 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2423 * include the flag SPP_PMTUD_DISABLE for this field to have any 2424 * effect). 2425 */ 2426 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2427 if (trans) { 2428 trans->pathmtu = params->spp_pathmtu; 2429 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2430 } else if (asoc) { 2431 asoc->pathmtu = params->spp_pathmtu; 2432 sctp_frag_point(asoc, params->spp_pathmtu); 2433 } else { 2434 sp->pathmtu = params->spp_pathmtu; 2435 } 2436 } 2437 2438 if (pmtud_change) { 2439 if (trans) { 2440 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2441 (params->spp_flags & SPP_PMTUD_ENABLE); 2442 trans->param_flags = 2443 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2444 if (update) { 2445 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2446 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2447 } 2448 } else if (asoc) { 2449 asoc->param_flags = 2450 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2451 } else { 2452 sp->param_flags = 2453 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2454 } 2455 } 2456 2457 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2458 * value of this field is ignored. Note also that a value of zero 2459 * indicates the current setting should be left unchanged. 2460 */ 2461 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2462 if (trans) { 2463 trans->sackdelay = 2464 msecs_to_jiffies(params->spp_sackdelay); 2465 } else if (asoc) { 2466 asoc->sackdelay = 2467 msecs_to_jiffies(params->spp_sackdelay); 2468 } else { 2469 sp->sackdelay = params->spp_sackdelay; 2470 } 2471 } 2472 2473 if (sackdelay_change) { 2474 if (trans) { 2475 trans->param_flags = 2476 (trans->param_flags & ~SPP_SACKDELAY) | 2477 sackdelay_change; 2478 } else if (asoc) { 2479 asoc->param_flags = 2480 (asoc->param_flags & ~SPP_SACKDELAY) | 2481 sackdelay_change; 2482 } else { 2483 sp->param_flags = 2484 (sp->param_flags & ~SPP_SACKDELAY) | 2485 sackdelay_change; 2486 } 2487 } 2488 2489 /* Note that a value of zero indicates the current setting should be 2490 left unchanged. 2491 */ 2492 if (params->spp_pathmaxrxt) { 2493 if (trans) { 2494 trans->pathmaxrxt = params->spp_pathmaxrxt; 2495 } else if (asoc) { 2496 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2497 } else { 2498 sp->pathmaxrxt = params->spp_pathmaxrxt; 2499 } 2500 } 2501 2502 return 0; 2503} 2504 2505static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2506 char __user *optval, 2507 unsigned int optlen) 2508{ 2509 struct sctp_paddrparams params; 2510 struct sctp_transport *trans = NULL; 2511 struct sctp_association *asoc = NULL; 2512 struct sctp_sock *sp = sctp_sk(sk); 2513 int error; 2514 int hb_change, pmtud_change, sackdelay_change; 2515 2516 if (optlen != sizeof(struct sctp_paddrparams)) 2517 return -EINVAL; 2518 2519 if (copy_from_user(¶ms, optval, optlen)) 2520 return -EFAULT; 2521 2522 /* Validate flags and value parameters. */ 2523 hb_change = params.spp_flags & SPP_HB; 2524 pmtud_change = params.spp_flags & SPP_PMTUD; 2525 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2526 2527 if (hb_change == SPP_HB || 2528 pmtud_change == SPP_PMTUD || 2529 sackdelay_change == SPP_SACKDELAY || 2530 params.spp_sackdelay > 500 || 2531 (params.spp_pathmtu && 2532 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2533 return -EINVAL; 2534 2535 /* If an address other than INADDR_ANY is specified, and 2536 * no transport is found, then the request is invalid. 2537 */ 2538 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2539 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2540 params.spp_assoc_id); 2541 if (!trans) 2542 return -EINVAL; 2543 } 2544 2545 /* Get association, if assoc_id != 0 and the socket is a one 2546 * to many style socket, and an association was not found, then 2547 * the id was invalid. 2548 */ 2549 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2550 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2551 return -EINVAL; 2552 2553 /* Heartbeat demand can only be sent on a transport or 2554 * association, but not a socket. 2555 */ 2556 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2557 return -EINVAL; 2558 2559 /* Process parameters. */ 2560 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2561 hb_change, pmtud_change, 2562 sackdelay_change); 2563 2564 if (error) 2565 return error; 2566 2567 /* If changes are for association, also apply parameters to each 2568 * transport. 2569 */ 2570 if (!trans && asoc) { 2571 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2572 transports) { 2573 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2574 hb_change, pmtud_change, 2575 sackdelay_change); 2576 } 2577 } 2578 2579 return 0; 2580} 2581 2582static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2583{ 2584 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2585} 2586 2587static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2588{ 2589 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2590} 2591 2592/* 2593 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2594 * 2595 * This option will effect the way delayed acks are performed. This 2596 * option allows you to get or set the delayed ack time, in 2597 * milliseconds. It also allows changing the delayed ack frequency. 2598 * Changing the frequency to 1 disables the delayed sack algorithm. If 2599 * the assoc_id is 0, then this sets or gets the endpoints default 2600 * values. If the assoc_id field is non-zero, then the set or get 2601 * effects the specified association for the one to many model (the 2602 * assoc_id field is ignored by the one to one model). Note that if 2603 * sack_delay or sack_freq are 0 when setting this option, then the 2604 * current values will remain unchanged. 2605 * 2606 * struct sctp_sack_info { 2607 * sctp_assoc_t sack_assoc_id; 2608 * uint32_t sack_delay; 2609 * uint32_t sack_freq; 2610 * }; 2611 * 2612 * sack_assoc_id - This parameter, indicates which association the user 2613 * is performing an action upon. Note that if this field's value is 2614 * zero then the endpoints default value is changed (effecting future 2615 * associations only). 2616 * 2617 * sack_delay - This parameter contains the number of milliseconds that 2618 * the user is requesting the delayed ACK timer be set to. Note that 2619 * this value is defined in the standard to be between 200 and 500 2620 * milliseconds. 2621 * 2622 * sack_freq - This parameter contains the number of packets that must 2623 * be received before a sack is sent without waiting for the delay 2624 * timer to expire. The default value for this is 2, setting this 2625 * value to 1 will disable the delayed sack algorithm. 2626 */ 2627 2628static int sctp_setsockopt_delayed_ack(struct sock *sk, 2629 char __user *optval, unsigned int optlen) 2630{ 2631 struct sctp_sack_info params; 2632 struct sctp_transport *trans = NULL; 2633 struct sctp_association *asoc = NULL; 2634 struct sctp_sock *sp = sctp_sk(sk); 2635 2636 if (optlen == sizeof(struct sctp_sack_info)) { 2637 if (copy_from_user(¶ms, optval, optlen)) 2638 return -EFAULT; 2639 2640 if (params.sack_delay == 0 && params.sack_freq == 0) 2641 return 0; 2642 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2643 pr_warn_ratelimited(DEPRECATED 2644 "%s (pid %d) " 2645 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2646 "Use struct sctp_sack_info instead\n", 2647 current->comm, task_pid_nr(current)); 2648 if (copy_from_user(¶ms, optval, optlen)) 2649 return -EFAULT; 2650 2651 if (params.sack_delay == 0) 2652 params.sack_freq = 1; 2653 else 2654 params.sack_freq = 0; 2655 } else 2656 return -EINVAL; 2657 2658 /* Validate value parameter. */ 2659 if (params.sack_delay > 500) 2660 return -EINVAL; 2661 2662 /* Get association, if sack_assoc_id != 0 and the socket is a one 2663 * to many style socket, and an association was not found, then 2664 * the id was invalid. 2665 */ 2666 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2667 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2668 return -EINVAL; 2669 2670 if (params.sack_delay) { 2671 if (asoc) { 2672 asoc->sackdelay = 2673 msecs_to_jiffies(params.sack_delay); 2674 asoc->param_flags = 2675 sctp_spp_sackdelay_enable(asoc->param_flags); 2676 } else { 2677 sp->sackdelay = params.sack_delay; 2678 sp->param_flags = 2679 sctp_spp_sackdelay_enable(sp->param_flags); 2680 } 2681 } 2682 2683 if (params.sack_freq == 1) { 2684 if (asoc) { 2685 asoc->param_flags = 2686 sctp_spp_sackdelay_disable(asoc->param_flags); 2687 } else { 2688 sp->param_flags = 2689 sctp_spp_sackdelay_disable(sp->param_flags); 2690 } 2691 } else if (params.sack_freq > 1) { 2692 if (asoc) { 2693 asoc->sackfreq = params.sack_freq; 2694 asoc->param_flags = 2695 sctp_spp_sackdelay_enable(asoc->param_flags); 2696 } else { 2697 sp->sackfreq = params.sack_freq; 2698 sp->param_flags = 2699 sctp_spp_sackdelay_enable(sp->param_flags); 2700 } 2701 } 2702 2703 /* If change is for association, also apply to each transport. */ 2704 if (asoc) { 2705 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2706 transports) { 2707 if (params.sack_delay) { 2708 trans->sackdelay = 2709 msecs_to_jiffies(params.sack_delay); 2710 trans->param_flags = 2711 sctp_spp_sackdelay_enable(trans->param_flags); 2712 } 2713 if (params.sack_freq == 1) { 2714 trans->param_flags = 2715 sctp_spp_sackdelay_disable(trans->param_flags); 2716 } else if (params.sack_freq > 1) { 2717 trans->sackfreq = params.sack_freq; 2718 trans->param_flags = 2719 sctp_spp_sackdelay_enable(trans->param_flags); 2720 } 2721 } 2722 } 2723 2724 return 0; 2725} 2726 2727/* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2728 * 2729 * Applications can specify protocol parameters for the default association 2730 * initialization. The option name argument to setsockopt() and getsockopt() 2731 * is SCTP_INITMSG. 2732 * 2733 * Setting initialization parameters is effective only on an unconnected 2734 * socket (for UDP-style sockets only future associations are effected 2735 * by the change). With TCP-style sockets, this option is inherited by 2736 * sockets derived from a listener socket. 2737 */ 2738static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2739{ 2740 struct sctp_initmsg sinit; 2741 struct sctp_sock *sp = sctp_sk(sk); 2742 2743 if (optlen != sizeof(struct sctp_initmsg)) 2744 return -EINVAL; 2745 if (copy_from_user(&sinit, optval, optlen)) 2746 return -EFAULT; 2747 2748 if (sinit.sinit_num_ostreams) 2749 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2750 if (sinit.sinit_max_instreams) 2751 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2752 if (sinit.sinit_max_attempts) 2753 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2754 if (sinit.sinit_max_init_timeo) 2755 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2756 2757 return 0; 2758} 2759 2760/* 2761 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2762 * 2763 * Applications that wish to use the sendto() system call may wish to 2764 * specify a default set of parameters that would normally be supplied 2765 * through the inclusion of ancillary data. This socket option allows 2766 * such an application to set the default sctp_sndrcvinfo structure. 2767 * The application that wishes to use this socket option simply passes 2768 * in to this call the sctp_sndrcvinfo structure defined in Section 2769 * 5.2.2) The input parameters accepted by this call include 2770 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2771 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2772 * to this call if the caller is using the UDP model. 2773 */ 2774static int sctp_setsockopt_default_send_param(struct sock *sk, 2775 char __user *optval, 2776 unsigned int optlen) 2777{ 2778 struct sctp_sock *sp = sctp_sk(sk); 2779 struct sctp_association *asoc; 2780 struct sctp_sndrcvinfo info; 2781 2782 if (optlen != sizeof(info)) 2783 return -EINVAL; 2784 if (copy_from_user(&info, optval, optlen)) 2785 return -EFAULT; 2786 if (info.sinfo_flags & 2787 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2788 SCTP_ABORT | SCTP_EOF)) 2789 return -EINVAL; 2790 2791 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2792 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2793 return -EINVAL; 2794 if (asoc) { 2795 asoc->default_stream = info.sinfo_stream; 2796 asoc->default_flags = info.sinfo_flags; 2797 asoc->default_ppid = info.sinfo_ppid; 2798 asoc->default_context = info.sinfo_context; 2799 asoc->default_timetolive = info.sinfo_timetolive; 2800 } else { 2801 sp->default_stream = info.sinfo_stream; 2802 sp->default_flags = info.sinfo_flags; 2803 sp->default_ppid = info.sinfo_ppid; 2804 sp->default_context = info.sinfo_context; 2805 sp->default_timetolive = info.sinfo_timetolive; 2806 } 2807 2808 return 0; 2809} 2810 2811/* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2812 * (SCTP_DEFAULT_SNDINFO) 2813 */ 2814static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2815 char __user *optval, 2816 unsigned int optlen) 2817{ 2818 struct sctp_sock *sp = sctp_sk(sk); 2819 struct sctp_association *asoc; 2820 struct sctp_sndinfo info; 2821 2822 if (optlen != sizeof(info)) 2823 return -EINVAL; 2824 if (copy_from_user(&info, optval, optlen)) 2825 return -EFAULT; 2826 if (info.snd_flags & 2827 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2828 SCTP_ABORT | SCTP_EOF)) 2829 return -EINVAL; 2830 2831 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2832 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 2833 return -EINVAL; 2834 if (asoc) { 2835 asoc->default_stream = info.snd_sid; 2836 asoc->default_flags = info.snd_flags; 2837 asoc->default_ppid = info.snd_ppid; 2838 asoc->default_context = info.snd_context; 2839 } else { 2840 sp->default_stream = info.snd_sid; 2841 sp->default_flags = info.snd_flags; 2842 sp->default_ppid = info.snd_ppid; 2843 sp->default_context = info.snd_context; 2844 } 2845 2846 return 0; 2847} 2848 2849/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2850 * 2851 * Requests that the local SCTP stack use the enclosed peer address as 2852 * the association primary. The enclosed address must be one of the 2853 * association peer's addresses. 2854 */ 2855static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2856 unsigned int optlen) 2857{ 2858 struct sctp_prim prim; 2859 struct sctp_transport *trans; 2860 2861 if (optlen != sizeof(struct sctp_prim)) 2862 return -EINVAL; 2863 2864 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2865 return -EFAULT; 2866 2867 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2868 if (!trans) 2869 return -EINVAL; 2870 2871 sctp_assoc_set_primary(trans->asoc, trans); 2872 2873 return 0; 2874} 2875 2876/* 2877 * 7.1.5 SCTP_NODELAY 2878 * 2879 * Turn on/off any Nagle-like algorithm. This means that packets are 2880 * generally sent as soon as possible and no unnecessary delays are 2881 * introduced, at the cost of more packets in the network. Expects an 2882 * integer boolean flag. 2883 */ 2884static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2885 unsigned int optlen) 2886{ 2887 int val; 2888 2889 if (optlen < sizeof(int)) 2890 return -EINVAL; 2891 if (get_user(val, (int __user *)optval)) 2892 return -EFAULT; 2893 2894 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2895 return 0; 2896} 2897 2898/* 2899 * 2900 * 7.1.1 SCTP_RTOINFO 2901 * 2902 * The protocol parameters used to initialize and bound retransmission 2903 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2904 * and modify these parameters. 2905 * All parameters are time values, in milliseconds. A value of 0, when 2906 * modifying the parameters, indicates that the current value should not 2907 * be changed. 2908 * 2909 */ 2910static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2911{ 2912 struct sctp_rtoinfo rtoinfo; 2913 struct sctp_association *asoc; 2914 unsigned long rto_min, rto_max; 2915 struct sctp_sock *sp = sctp_sk(sk); 2916 2917 if (optlen != sizeof (struct sctp_rtoinfo)) 2918 return -EINVAL; 2919 2920 if (copy_from_user(&rtoinfo, optval, optlen)) 2921 return -EFAULT; 2922 2923 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2924 2925 /* Set the values to the specific association */ 2926 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2927 return -EINVAL; 2928 2929 rto_max = rtoinfo.srto_max; 2930 rto_min = rtoinfo.srto_min; 2931 2932 if (rto_max) 2933 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 2934 else 2935 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 2936 2937 if (rto_min) 2938 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 2939 else 2940 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 2941 2942 if (rto_min > rto_max) 2943 return -EINVAL; 2944 2945 if (asoc) { 2946 if (rtoinfo.srto_initial != 0) 2947 asoc->rto_initial = 2948 msecs_to_jiffies(rtoinfo.srto_initial); 2949 asoc->rto_max = rto_max; 2950 asoc->rto_min = rto_min; 2951 } else { 2952 /* If there is no association or the association-id = 0 2953 * set the values to the endpoint. 2954 */ 2955 if (rtoinfo.srto_initial != 0) 2956 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2957 sp->rtoinfo.srto_max = rto_max; 2958 sp->rtoinfo.srto_min = rto_min; 2959 } 2960 2961 return 0; 2962} 2963 2964/* 2965 * 2966 * 7.1.2 SCTP_ASSOCINFO 2967 * 2968 * This option is used to tune the maximum retransmission attempts 2969 * of the association. 2970 * Returns an error if the new association retransmission value is 2971 * greater than the sum of the retransmission value of the peer. 2972 * See [SCTP] for more information. 2973 * 2974 */ 2975static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2976{ 2977 2978 struct sctp_assocparams assocparams; 2979 struct sctp_association *asoc; 2980 2981 if (optlen != sizeof(struct sctp_assocparams)) 2982 return -EINVAL; 2983 if (copy_from_user(&assocparams, optval, optlen)) 2984 return -EFAULT; 2985 2986 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2987 2988 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2989 return -EINVAL; 2990 2991 /* Set the values to the specific association */ 2992 if (asoc) { 2993 if (assocparams.sasoc_asocmaxrxt != 0) { 2994 __u32 path_sum = 0; 2995 int paths = 0; 2996 struct sctp_transport *peer_addr; 2997 2998 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2999 transports) { 3000 path_sum += peer_addr->pathmaxrxt; 3001 paths++; 3002 } 3003 3004 /* Only validate asocmaxrxt if we have more than 3005 * one path/transport. We do this because path 3006 * retransmissions are only counted when we have more 3007 * then one path. 3008 */ 3009 if (paths > 1 && 3010 assocparams.sasoc_asocmaxrxt > path_sum) 3011 return -EINVAL; 3012 3013 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3014 } 3015 3016 if (assocparams.sasoc_cookie_life != 0) 3017 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3018 } else { 3019 /* Set the values to the endpoint */ 3020 struct sctp_sock *sp = sctp_sk(sk); 3021 3022 if (assocparams.sasoc_asocmaxrxt != 0) 3023 sp->assocparams.sasoc_asocmaxrxt = 3024 assocparams.sasoc_asocmaxrxt; 3025 if (assocparams.sasoc_cookie_life != 0) 3026 sp->assocparams.sasoc_cookie_life = 3027 assocparams.sasoc_cookie_life; 3028 } 3029 return 0; 3030} 3031 3032/* 3033 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3034 * 3035 * This socket option is a boolean flag which turns on or off mapped V4 3036 * addresses. If this option is turned on and the socket is type 3037 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3038 * If this option is turned off, then no mapping will be done of V4 3039 * addresses and a user will receive both PF_INET6 and PF_INET type 3040 * addresses on the socket. 3041 */ 3042static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3043{ 3044 int val; 3045 struct sctp_sock *sp = sctp_sk(sk); 3046 3047 if (optlen < sizeof(int)) 3048 return -EINVAL; 3049 if (get_user(val, (int __user *)optval)) 3050 return -EFAULT; 3051 if (val) 3052 sp->v4mapped = 1; 3053 else 3054 sp->v4mapped = 0; 3055 3056 return 0; 3057} 3058 3059/* 3060 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3061 * This option will get or set the maximum size to put in any outgoing 3062 * SCTP DATA chunk. If a message is larger than this size it will be 3063 * fragmented by SCTP into the specified size. Note that the underlying 3064 * SCTP implementation may fragment into smaller sized chunks when the 3065 * PMTU of the underlying association is smaller than the value set by 3066 * the user. The default value for this option is '0' which indicates 3067 * the user is NOT limiting fragmentation and only the PMTU will effect 3068 * SCTP's choice of DATA chunk size. Note also that values set larger 3069 * than the maximum size of an IP datagram will effectively let SCTP 3070 * control fragmentation (i.e. the same as setting this option to 0). 3071 * 3072 * The following structure is used to access and modify this parameter: 3073 * 3074 * struct sctp_assoc_value { 3075 * sctp_assoc_t assoc_id; 3076 * uint32_t assoc_value; 3077 * }; 3078 * 3079 * assoc_id: This parameter is ignored for one-to-one style sockets. 3080 * For one-to-many style sockets this parameter indicates which 3081 * association the user is performing an action upon. Note that if 3082 * this field's value is zero then the endpoints default value is 3083 * changed (effecting future associations only). 3084 * assoc_value: This parameter specifies the maximum size in bytes. 3085 */ 3086static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3087{ 3088 struct sctp_assoc_value params; 3089 struct sctp_association *asoc; 3090 struct sctp_sock *sp = sctp_sk(sk); 3091 int val; 3092 3093 if (optlen == sizeof(int)) { 3094 pr_warn_ratelimited(DEPRECATED 3095 "%s (pid %d) " 3096 "Use of int in maxseg socket option.\n" 3097 "Use struct sctp_assoc_value instead\n", 3098 current->comm, task_pid_nr(current)); 3099 if (copy_from_user(&val, optval, optlen)) 3100 return -EFAULT; 3101 params.assoc_id = 0; 3102 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3103 if (copy_from_user(¶ms, optval, optlen)) 3104 return -EFAULT; 3105 val = params.assoc_value; 3106 } else 3107 return -EINVAL; 3108 3109 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 3110 return -EINVAL; 3111 3112 asoc = sctp_id2assoc(sk, params.assoc_id); 3113 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3114 return -EINVAL; 3115 3116 if (asoc) { 3117 if (val == 0) { 3118 val = asoc->pathmtu; 3119 val -= sp->pf->af->net_header_len; 3120 val -= sizeof(struct sctphdr) + 3121 sizeof(struct sctp_data_chunk); 3122 } 3123 asoc->user_frag = val; 3124 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3125 } else { 3126 sp->user_frag = val; 3127 } 3128 3129 return 0; 3130} 3131 3132 3133/* 3134 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3135 * 3136 * Requests that the peer mark the enclosed address as the association 3137 * primary. The enclosed address must be one of the association's 3138 * locally bound addresses. The following structure is used to make a 3139 * set primary request: 3140 */ 3141static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3142 unsigned int optlen) 3143{ 3144 struct net *net = sock_net(sk); 3145 struct sctp_sock *sp; 3146 struct sctp_association *asoc = NULL; 3147 struct sctp_setpeerprim prim; 3148 struct sctp_chunk *chunk; 3149 struct sctp_af *af; 3150 int err; 3151 3152 sp = sctp_sk(sk); 3153 3154 if (!net->sctp.addip_enable) 3155 return -EPERM; 3156 3157 if (optlen != sizeof(struct sctp_setpeerprim)) 3158 return -EINVAL; 3159 3160 if (copy_from_user(&prim, optval, optlen)) 3161 return -EFAULT; 3162 3163 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3164 if (!asoc) 3165 return -EINVAL; 3166 3167 if (!asoc->peer.asconf_capable) 3168 return -EPERM; 3169 3170 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3171 return -EPERM; 3172 3173 if (!sctp_state(asoc, ESTABLISHED)) 3174 return -ENOTCONN; 3175 3176 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3177 if (!af) 3178 return -EINVAL; 3179 3180 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3181 return -EADDRNOTAVAIL; 3182 3183 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3184 return -EADDRNOTAVAIL; 3185 3186 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3187 chunk = sctp_make_asconf_set_prim(asoc, 3188 (union sctp_addr *)&prim.sspp_addr); 3189 if (!chunk) 3190 return -ENOMEM; 3191 3192 err = sctp_send_asconf(asoc, chunk); 3193 3194 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3195 3196 return err; 3197} 3198 3199static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3200 unsigned int optlen) 3201{ 3202 struct sctp_setadaptation adaptation; 3203 3204 if (optlen != sizeof(struct sctp_setadaptation)) 3205 return -EINVAL; 3206 if (copy_from_user(&adaptation, optval, optlen)) 3207 return -EFAULT; 3208 3209 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3210 3211 return 0; 3212} 3213 3214/* 3215 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3216 * 3217 * The context field in the sctp_sndrcvinfo structure is normally only 3218 * used when a failed message is retrieved holding the value that was 3219 * sent down on the actual send call. This option allows the setting of 3220 * a default context on an association basis that will be received on 3221 * reading messages from the peer. This is especially helpful in the 3222 * one-2-many model for an application to keep some reference to an 3223 * internal state machine that is processing messages on the 3224 * association. Note that the setting of this value only effects 3225 * received messages from the peer and does not effect the value that is 3226 * saved with outbound messages. 3227 */ 3228static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3229 unsigned int optlen) 3230{ 3231 struct sctp_assoc_value params; 3232 struct sctp_sock *sp; 3233 struct sctp_association *asoc; 3234 3235 if (optlen != sizeof(struct sctp_assoc_value)) 3236 return -EINVAL; 3237 if (copy_from_user(¶ms, optval, optlen)) 3238 return -EFAULT; 3239 3240 sp = sctp_sk(sk); 3241 3242 if (params.assoc_id != 0) { 3243 asoc = sctp_id2assoc(sk, params.assoc_id); 3244 if (!asoc) 3245 return -EINVAL; 3246 asoc->default_rcv_context = params.assoc_value; 3247 } else { 3248 sp->default_rcv_context = params.assoc_value; 3249 } 3250 3251 return 0; 3252} 3253 3254/* 3255 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3256 * 3257 * This options will at a minimum specify if the implementation is doing 3258 * fragmented interleave. Fragmented interleave, for a one to many 3259 * socket, is when subsequent calls to receive a message may return 3260 * parts of messages from different associations. Some implementations 3261 * may allow you to turn this value on or off. If so, when turned off, 3262 * no fragment interleave will occur (which will cause a head of line 3263 * blocking amongst multiple associations sharing the same one to many 3264 * socket). When this option is turned on, then each receive call may 3265 * come from a different association (thus the user must receive data 3266 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3267 * association each receive belongs to. 3268 * 3269 * This option takes a boolean value. A non-zero value indicates that 3270 * fragmented interleave is on. A value of zero indicates that 3271 * fragmented interleave is off. 3272 * 3273 * Note that it is important that an implementation that allows this 3274 * option to be turned on, have it off by default. Otherwise an unaware 3275 * application using the one to many model may become confused and act 3276 * incorrectly. 3277 */ 3278static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3279 char __user *optval, 3280 unsigned int optlen) 3281{ 3282 int val; 3283 3284 if (optlen != sizeof(int)) 3285 return -EINVAL; 3286 if (get_user(val, (int __user *)optval)) 3287 return -EFAULT; 3288 3289 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3290 3291 return 0; 3292} 3293 3294/* 3295 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3296 * (SCTP_PARTIAL_DELIVERY_POINT) 3297 * 3298 * This option will set or get the SCTP partial delivery point. This 3299 * point is the size of a message where the partial delivery API will be 3300 * invoked to help free up rwnd space for the peer. Setting this to a 3301 * lower value will cause partial deliveries to happen more often. The 3302 * calls argument is an integer that sets or gets the partial delivery 3303 * point. Note also that the call will fail if the user attempts to set 3304 * this value larger than the socket receive buffer size. 3305 * 3306 * Note that any single message having a length smaller than or equal to 3307 * the SCTP partial delivery point will be delivered in one single read 3308 * call as long as the user provided buffer is large enough to hold the 3309 * message. 3310 */ 3311static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3312 char __user *optval, 3313 unsigned int optlen) 3314{ 3315 u32 val; 3316 3317 if (optlen != sizeof(u32)) 3318 return -EINVAL; 3319 if (get_user(val, (int __user *)optval)) 3320 return -EFAULT; 3321 3322 /* Note: We double the receive buffer from what the user sets 3323 * it to be, also initial rwnd is based on rcvbuf/2. 3324 */ 3325 if (val > (sk->sk_rcvbuf >> 1)) 3326 return -EINVAL; 3327 3328 sctp_sk(sk)->pd_point = val; 3329 3330 return 0; /* is this the right error code? */ 3331} 3332 3333/* 3334 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3335 * 3336 * This option will allow a user to change the maximum burst of packets 3337 * that can be emitted by this association. Note that the default value 3338 * is 4, and some implementations may restrict this setting so that it 3339 * can only be lowered. 3340 * 3341 * NOTE: This text doesn't seem right. Do this on a socket basis with 3342 * future associations inheriting the socket value. 3343 */ 3344static int sctp_setsockopt_maxburst(struct sock *sk, 3345 char __user *optval, 3346 unsigned int optlen) 3347{ 3348 struct sctp_assoc_value params; 3349 struct sctp_sock *sp; 3350 struct sctp_association *asoc; 3351 int val; 3352 int assoc_id = 0; 3353 3354 if (optlen == sizeof(int)) { 3355 pr_warn_ratelimited(DEPRECATED 3356 "%s (pid %d) " 3357 "Use of int in max_burst socket option deprecated.\n" 3358 "Use struct sctp_assoc_value instead\n", 3359 current->comm, task_pid_nr(current)); 3360 if (copy_from_user(&val, optval, optlen)) 3361 return -EFAULT; 3362 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3363 if (copy_from_user(¶ms, optval, optlen)) 3364 return -EFAULT; 3365 val = params.assoc_value; 3366 assoc_id = params.assoc_id; 3367 } else 3368 return -EINVAL; 3369 3370 sp = sctp_sk(sk); 3371 3372 if (assoc_id != 0) { 3373 asoc = sctp_id2assoc(sk, assoc_id); 3374 if (!asoc) 3375 return -EINVAL; 3376 asoc->max_burst = val; 3377 } else 3378 sp->max_burst = val; 3379 3380 return 0; 3381} 3382 3383/* 3384 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3385 * 3386 * This set option adds a chunk type that the user is requesting to be 3387 * received only in an authenticated way. Changes to the list of chunks 3388 * will only effect future associations on the socket. 3389 */ 3390static int sctp_setsockopt_auth_chunk(struct sock *sk, 3391 char __user *optval, 3392 unsigned int optlen) 3393{ 3394 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3395 struct sctp_authchunk val; 3396 3397 if (!ep->auth_enable) 3398 return -EACCES; 3399 3400 if (optlen != sizeof(struct sctp_authchunk)) 3401 return -EINVAL; 3402 if (copy_from_user(&val, optval, optlen)) 3403 return -EFAULT; 3404 3405 switch (val.sauth_chunk) { 3406 case SCTP_CID_INIT: 3407 case SCTP_CID_INIT_ACK: 3408 case SCTP_CID_SHUTDOWN_COMPLETE: 3409 case SCTP_CID_AUTH: 3410 return -EINVAL; 3411 } 3412 3413 /* add this chunk id to the endpoint */ 3414 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3415} 3416 3417/* 3418 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3419 * 3420 * This option gets or sets the list of HMAC algorithms that the local 3421 * endpoint requires the peer to use. 3422 */ 3423static int sctp_setsockopt_hmac_ident(struct sock *sk, 3424 char __user *optval, 3425 unsigned int optlen) 3426{ 3427 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3428 struct sctp_hmacalgo *hmacs; 3429 u32 idents; 3430 int err; 3431 3432 if (!ep->auth_enable) 3433 return -EACCES; 3434 3435 if (optlen < sizeof(struct sctp_hmacalgo)) 3436 return -EINVAL; 3437 3438 hmacs = memdup_user(optval, optlen); 3439 if (IS_ERR(hmacs)) 3440 return PTR_ERR(hmacs); 3441 3442 idents = hmacs->shmac_num_idents; 3443 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3444 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3445 err = -EINVAL; 3446 goto out; 3447 } 3448 3449 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3450out: 3451 kfree(hmacs); 3452 return err; 3453} 3454 3455/* 3456 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3457 * 3458 * This option will set a shared secret key which is used to build an 3459 * association shared key. 3460 */ 3461static int sctp_setsockopt_auth_key(struct sock *sk, 3462 char __user *optval, 3463 unsigned int optlen) 3464{ 3465 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3466 struct sctp_authkey *authkey; 3467 struct sctp_association *asoc; 3468 int ret; 3469 3470 if (!ep->auth_enable) 3471 return -EACCES; 3472 3473 if (optlen <= sizeof(struct sctp_authkey)) 3474 return -EINVAL; 3475 3476 authkey = memdup_user(optval, optlen); 3477 if (IS_ERR(authkey)) 3478 return PTR_ERR(authkey); 3479 3480 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3481 ret = -EINVAL; 3482 goto out; 3483 } 3484 3485 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3486 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3487 ret = -EINVAL; 3488 goto out; 3489 } 3490 3491 ret = sctp_auth_set_key(ep, asoc, authkey); 3492out: 3493 kzfree(authkey); 3494 return ret; 3495} 3496 3497/* 3498 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3499 * 3500 * This option will get or set the active shared key to be used to build 3501 * the association shared key. 3502 */ 3503static int sctp_setsockopt_active_key(struct sock *sk, 3504 char __user *optval, 3505 unsigned int optlen) 3506{ 3507 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3508 struct sctp_authkeyid val; 3509 struct sctp_association *asoc; 3510 3511 if (!ep->auth_enable) 3512 return -EACCES; 3513 3514 if (optlen != sizeof(struct sctp_authkeyid)) 3515 return -EINVAL; 3516 if (copy_from_user(&val, optval, optlen)) 3517 return -EFAULT; 3518 3519 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3520 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3521 return -EINVAL; 3522 3523 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3524} 3525 3526/* 3527 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3528 * 3529 * This set option will delete a shared secret key from use. 3530 */ 3531static int sctp_setsockopt_del_key(struct sock *sk, 3532 char __user *optval, 3533 unsigned int optlen) 3534{ 3535 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3536 struct sctp_authkeyid val; 3537 struct sctp_association *asoc; 3538 3539 if (!ep->auth_enable) 3540 return -EACCES; 3541 3542 if (optlen != sizeof(struct sctp_authkeyid)) 3543 return -EINVAL; 3544 if (copy_from_user(&val, optval, optlen)) 3545 return -EFAULT; 3546 3547 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3548 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3549 return -EINVAL; 3550 3551 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3552 3553} 3554 3555/* 3556 * 8.1.23 SCTP_AUTO_ASCONF 3557 * 3558 * This option will enable or disable the use of the automatic generation of 3559 * ASCONF chunks to add and delete addresses to an existing association. Note 3560 * that this option has two caveats namely: a) it only affects sockets that 3561 * are bound to all addresses available to the SCTP stack, and b) the system 3562 * administrator may have an overriding control that turns the ASCONF feature 3563 * off no matter what setting the socket option may have. 3564 * This option expects an integer boolean flag, where a non-zero value turns on 3565 * the option, and a zero value turns off the option. 3566 * Note. In this implementation, socket operation overrides default parameter 3567 * being set by sysctl as well as FreeBSD implementation 3568 */ 3569static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3570 unsigned int optlen) 3571{ 3572 int val; 3573 struct sctp_sock *sp = sctp_sk(sk); 3574 3575 if (optlen < sizeof(int)) 3576 return -EINVAL; 3577 if (get_user(val, (int __user *)optval)) 3578 return -EFAULT; 3579 if (!sctp_is_ep_boundall(sk) && val) 3580 return -EINVAL; 3581 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3582 return 0; 3583 3584 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3585 if (val == 0 && sp->do_auto_asconf) { 3586 list_del(&sp->auto_asconf_list); 3587 sp->do_auto_asconf = 0; 3588 } else if (val && !sp->do_auto_asconf) { 3589 list_add_tail(&sp->auto_asconf_list, 3590 &sock_net(sk)->sctp.auto_asconf_splist); 3591 sp->do_auto_asconf = 1; 3592 } 3593 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3594 return 0; 3595} 3596 3597/* 3598 * SCTP_PEER_ADDR_THLDS 3599 * 3600 * This option allows us to alter the partially failed threshold for one or all 3601 * transports in an association. See Section 6.1 of: 3602 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3603 */ 3604static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3605 char __user *optval, 3606 unsigned int optlen) 3607{ 3608 struct sctp_paddrthlds val; 3609 struct sctp_transport *trans; 3610 struct sctp_association *asoc; 3611 3612 if (optlen < sizeof(struct sctp_paddrthlds)) 3613 return -EINVAL; 3614 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3615 sizeof(struct sctp_paddrthlds))) 3616 return -EFAULT; 3617 3618 3619 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3620 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3621 if (!asoc) 3622 return -ENOENT; 3623 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3624 transports) { 3625 if (val.spt_pathmaxrxt) 3626 trans->pathmaxrxt = val.spt_pathmaxrxt; 3627 trans->pf_retrans = val.spt_pathpfthld; 3628 } 3629 3630 if (val.spt_pathmaxrxt) 3631 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3632 asoc->pf_retrans = val.spt_pathpfthld; 3633 } else { 3634 trans = sctp_addr_id2transport(sk, &val.spt_address, 3635 val.spt_assoc_id); 3636 if (!trans) 3637 return -ENOENT; 3638 3639 if (val.spt_pathmaxrxt) 3640 trans->pathmaxrxt = val.spt_pathmaxrxt; 3641 trans->pf_retrans = val.spt_pathpfthld; 3642 } 3643 3644 return 0; 3645} 3646 3647static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3648 char __user *optval, 3649 unsigned int optlen) 3650{ 3651 int val; 3652 3653 if (optlen < sizeof(int)) 3654 return -EINVAL; 3655 if (get_user(val, (int __user *) optval)) 3656 return -EFAULT; 3657 3658 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3659 3660 return 0; 3661} 3662 3663static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3664 char __user *optval, 3665 unsigned int optlen) 3666{ 3667 int val; 3668 3669 if (optlen < sizeof(int)) 3670 return -EINVAL; 3671 if (get_user(val, (int __user *) optval)) 3672 return -EFAULT; 3673 3674 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3675 3676 return 0; 3677} 3678 3679/* API 6.2 setsockopt(), getsockopt() 3680 * 3681 * Applications use setsockopt() and getsockopt() to set or retrieve 3682 * socket options. Socket options are used to change the default 3683 * behavior of sockets calls. They are described in Section 7. 3684 * 3685 * The syntax is: 3686 * 3687 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3688 * int __user *optlen); 3689 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3690 * int optlen); 3691 * 3692 * sd - the socket descript. 3693 * level - set to IPPROTO_SCTP for all SCTP options. 3694 * optname - the option name. 3695 * optval - the buffer to store the value of the option. 3696 * optlen - the size of the buffer. 3697 */ 3698static int sctp_setsockopt(struct sock *sk, int level, int optname, 3699 char __user *optval, unsigned int optlen) 3700{ 3701 int retval = 0; 3702 3703 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 3704 3705 /* I can hardly begin to describe how wrong this is. This is 3706 * so broken as to be worse than useless. The API draft 3707 * REALLY is NOT helpful here... I am not convinced that the 3708 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3709 * are at all well-founded. 3710 */ 3711 if (level != SOL_SCTP) { 3712 struct sctp_af *af = sctp_sk(sk)->pf->af; 3713 retval = af->setsockopt(sk, level, optname, optval, optlen); 3714 goto out_nounlock; 3715 } 3716 3717 lock_sock(sk); 3718 3719 switch (optname) { 3720 case SCTP_SOCKOPT_BINDX_ADD: 3721 /* 'optlen' is the size of the addresses buffer. */ 3722 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3723 optlen, SCTP_BINDX_ADD_ADDR); 3724 break; 3725 3726 case SCTP_SOCKOPT_BINDX_REM: 3727 /* 'optlen' is the size of the addresses buffer. */ 3728 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3729 optlen, SCTP_BINDX_REM_ADDR); 3730 break; 3731 3732 case SCTP_SOCKOPT_CONNECTX_OLD: 3733 /* 'optlen' is the size of the addresses buffer. */ 3734 retval = sctp_setsockopt_connectx_old(sk, 3735 (struct sockaddr __user *)optval, 3736 optlen); 3737 break; 3738 3739 case SCTP_SOCKOPT_CONNECTX: 3740 /* 'optlen' is the size of the addresses buffer. */ 3741 retval = sctp_setsockopt_connectx(sk, 3742 (struct sockaddr __user *)optval, 3743 optlen); 3744 break; 3745 3746 case SCTP_DISABLE_FRAGMENTS: 3747 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3748 break; 3749 3750 case SCTP_EVENTS: 3751 retval = sctp_setsockopt_events(sk, optval, optlen); 3752 break; 3753 3754 case SCTP_AUTOCLOSE: 3755 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3756 break; 3757 3758 case SCTP_PEER_ADDR_PARAMS: 3759 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3760 break; 3761 3762 case SCTP_DELAYED_SACK: 3763 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3764 break; 3765 case SCTP_PARTIAL_DELIVERY_POINT: 3766 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3767 break; 3768 3769 case SCTP_INITMSG: 3770 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3771 break; 3772 case SCTP_DEFAULT_SEND_PARAM: 3773 retval = sctp_setsockopt_default_send_param(sk, optval, 3774 optlen); 3775 break; 3776 case SCTP_DEFAULT_SNDINFO: 3777 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 3778 break; 3779 case SCTP_PRIMARY_ADDR: 3780 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3781 break; 3782 case SCTP_SET_PEER_PRIMARY_ADDR: 3783 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3784 break; 3785 case SCTP_NODELAY: 3786 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3787 break; 3788 case SCTP_RTOINFO: 3789 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3790 break; 3791 case SCTP_ASSOCINFO: 3792 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3793 break; 3794 case SCTP_I_WANT_MAPPED_V4_ADDR: 3795 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3796 break; 3797 case SCTP_MAXSEG: 3798 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3799 break; 3800 case SCTP_ADAPTATION_LAYER: 3801 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3802 break; 3803 case SCTP_CONTEXT: 3804 retval = sctp_setsockopt_context(sk, optval, optlen); 3805 break; 3806 case SCTP_FRAGMENT_INTERLEAVE: 3807 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3808 break; 3809 case SCTP_MAX_BURST: 3810 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3811 break; 3812 case SCTP_AUTH_CHUNK: 3813 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3814 break; 3815 case SCTP_HMAC_IDENT: 3816 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3817 break; 3818 case SCTP_AUTH_KEY: 3819 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3820 break; 3821 case SCTP_AUTH_ACTIVE_KEY: 3822 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3823 break; 3824 case SCTP_AUTH_DELETE_KEY: 3825 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3826 break; 3827 case SCTP_AUTO_ASCONF: 3828 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 3829 break; 3830 case SCTP_PEER_ADDR_THLDS: 3831 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 3832 break; 3833 case SCTP_RECVRCVINFO: 3834 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 3835 break; 3836 case SCTP_RECVNXTINFO: 3837 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 3838 break; 3839 default: 3840 retval = -ENOPROTOOPT; 3841 break; 3842 } 3843 3844 release_sock(sk); 3845 3846out_nounlock: 3847 return retval; 3848} 3849 3850/* API 3.1.6 connect() - UDP Style Syntax 3851 * 3852 * An application may use the connect() call in the UDP model to initiate an 3853 * association without sending data. 3854 * 3855 * The syntax is: 3856 * 3857 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3858 * 3859 * sd: the socket descriptor to have a new association added to. 3860 * 3861 * nam: the address structure (either struct sockaddr_in or struct 3862 * sockaddr_in6 defined in RFC2553 [7]). 3863 * 3864 * len: the size of the address. 3865 */ 3866static int sctp_connect(struct sock *sk, struct sockaddr *addr, 3867 int addr_len) 3868{ 3869 int err = 0; 3870 struct sctp_af *af; 3871 3872 lock_sock(sk); 3873 3874 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 3875 addr, addr_len); 3876 3877 /* Validate addr_len before calling common connect/connectx routine. */ 3878 af = sctp_get_af_specific(addr->sa_family); 3879 if (!af || addr_len < af->sockaddr_len) { 3880 err = -EINVAL; 3881 } else { 3882 /* Pass correct addr len to common routine (so it knows there 3883 * is only one address being passed. 3884 */ 3885 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3886 } 3887 3888 release_sock(sk); 3889 return err; 3890} 3891 3892/* FIXME: Write comments. */ 3893static int sctp_disconnect(struct sock *sk, int flags) 3894{ 3895 return -EOPNOTSUPP; /* STUB */ 3896} 3897 3898/* 4.1.4 accept() - TCP Style Syntax 3899 * 3900 * Applications use accept() call to remove an established SCTP 3901 * association from the accept queue of the endpoint. A new socket 3902 * descriptor will be returned from accept() to represent the newly 3903 * formed association. 3904 */ 3905static struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3906{ 3907 struct sctp_sock *sp; 3908 struct sctp_endpoint *ep; 3909 struct sock *newsk = NULL; 3910 struct sctp_association *asoc; 3911 long timeo; 3912 int error = 0; 3913 3914 lock_sock(sk); 3915 3916 sp = sctp_sk(sk); 3917 ep = sp->ep; 3918 3919 if (!sctp_style(sk, TCP)) { 3920 error = -EOPNOTSUPP; 3921 goto out; 3922 } 3923 3924 if (!sctp_sstate(sk, LISTENING)) { 3925 error = -EINVAL; 3926 goto out; 3927 } 3928 3929 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3930 3931 error = sctp_wait_for_accept(sk, timeo); 3932 if (error) 3933 goto out; 3934 3935 /* We treat the list of associations on the endpoint as the accept 3936 * queue and pick the first association on the list. 3937 */ 3938 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3939 3940 newsk = sp->pf->create_accept_sk(sk, asoc); 3941 if (!newsk) { 3942 error = -ENOMEM; 3943 goto out; 3944 } 3945 3946 /* Populate the fields of the newsk from the oldsk and migrate the 3947 * asoc to the newsk. 3948 */ 3949 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3950 3951out: 3952 release_sock(sk); 3953 *err = error; 3954 return newsk; 3955} 3956 3957/* The SCTP ioctl handler. */ 3958static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3959{ 3960 int rc = -ENOTCONN; 3961 3962 lock_sock(sk); 3963 3964 /* 3965 * SEQPACKET-style sockets in LISTENING state are valid, for 3966 * SCTP, so only discard TCP-style sockets in LISTENING state. 3967 */ 3968 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 3969 goto out; 3970 3971 switch (cmd) { 3972 case SIOCINQ: { 3973 struct sk_buff *skb; 3974 unsigned int amount = 0; 3975 3976 skb = skb_peek(&sk->sk_receive_queue); 3977 if (skb != NULL) { 3978 /* 3979 * We will only return the amount of this packet since 3980 * that is all that will be read. 3981 */ 3982 amount = skb->len; 3983 } 3984 rc = put_user(amount, (int __user *)arg); 3985 break; 3986 } 3987 default: 3988 rc = -ENOIOCTLCMD; 3989 break; 3990 } 3991out: 3992 release_sock(sk); 3993 return rc; 3994} 3995 3996/* This is the function which gets called during socket creation to 3997 * initialized the SCTP-specific portion of the sock. 3998 * The sock structure should already be zero-filled memory. 3999 */ 4000static int sctp_init_sock(struct sock *sk) 4001{ 4002 struct net *net = sock_net(sk); 4003 struct sctp_sock *sp; 4004 4005 pr_debug("%s: sk:%p\n", __func__, sk); 4006 4007 sp = sctp_sk(sk); 4008 4009 /* Initialize the SCTP per socket area. */ 4010 switch (sk->sk_type) { 4011 case SOCK_SEQPACKET: 4012 sp->type = SCTP_SOCKET_UDP; 4013 break; 4014 case SOCK_STREAM: 4015 sp->type = SCTP_SOCKET_TCP; 4016 break; 4017 default: 4018 return -ESOCKTNOSUPPORT; 4019 } 4020 4021 /* Initialize default send parameters. These parameters can be 4022 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4023 */ 4024 sp->default_stream = 0; 4025 sp->default_ppid = 0; 4026 sp->default_flags = 0; 4027 sp->default_context = 0; 4028 sp->default_timetolive = 0; 4029 4030 sp->default_rcv_context = 0; 4031 sp->max_burst = net->sctp.max_burst; 4032 4033 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4034 4035 /* Initialize default setup parameters. These parameters 4036 * can be modified with the SCTP_INITMSG socket option or 4037 * overridden by the SCTP_INIT CMSG. 4038 */ 4039 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4040 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4041 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4042 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4043 4044 /* Initialize default RTO related parameters. These parameters can 4045 * be modified for with the SCTP_RTOINFO socket option. 4046 */ 4047 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4048 sp->rtoinfo.srto_max = net->sctp.rto_max; 4049 sp->rtoinfo.srto_min = net->sctp.rto_min; 4050 4051 /* Initialize default association related parameters. These parameters 4052 * can be modified with the SCTP_ASSOCINFO socket option. 4053 */ 4054 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4055 sp->assocparams.sasoc_number_peer_destinations = 0; 4056 sp->assocparams.sasoc_peer_rwnd = 0; 4057 sp->assocparams.sasoc_local_rwnd = 0; 4058 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4059 4060 /* Initialize default event subscriptions. By default, all the 4061 * options are off. 4062 */ 4063 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4064 4065 /* Default Peer Address Parameters. These defaults can 4066 * be modified via SCTP_PEER_ADDR_PARAMS 4067 */ 4068 sp->hbinterval = net->sctp.hb_interval; 4069 sp->pathmaxrxt = net->sctp.max_retrans_path; 4070 sp->pathmtu = 0; /* allow default discovery */ 4071 sp->sackdelay = net->sctp.sack_timeout; 4072 sp->sackfreq = 2; 4073 sp->param_flags = SPP_HB_ENABLE | 4074 SPP_PMTUD_ENABLE | 4075 SPP_SACKDELAY_ENABLE; 4076 4077 /* If enabled no SCTP message fragmentation will be performed. 4078 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4079 */ 4080 sp->disable_fragments = 0; 4081 4082 /* Enable Nagle algorithm by default. */ 4083 sp->nodelay = 0; 4084 4085 sp->recvrcvinfo = 0; 4086 sp->recvnxtinfo = 0; 4087 4088 /* Enable by default. */ 4089 sp->v4mapped = 1; 4090 4091 /* Auto-close idle associations after the configured 4092 * number of seconds. A value of 0 disables this 4093 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4094 * for UDP-style sockets only. 4095 */ 4096 sp->autoclose = 0; 4097 4098 /* User specified fragmentation limit. */ 4099 sp->user_frag = 0; 4100 4101 sp->adaptation_ind = 0; 4102 4103 sp->pf = sctp_get_pf_specific(sk->sk_family); 4104 4105 /* Control variables for partial data delivery. */ 4106 atomic_set(&sp->pd_mode, 0); 4107 skb_queue_head_init(&sp->pd_lobby); 4108 sp->frag_interleave = 0; 4109 4110 /* Create a per socket endpoint structure. Even if we 4111 * change the data structure relationships, this may still 4112 * be useful for storing pre-connect address information. 4113 */ 4114 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4115 if (!sp->ep) 4116 return -ENOMEM; 4117 4118 sp->hmac = NULL; 4119 4120 sk->sk_destruct = sctp_destruct_sock; 4121 4122 SCTP_DBG_OBJCNT_INC(sock); 4123 4124 local_bh_disable(); 4125 percpu_counter_inc(&sctp_sockets_allocated); 4126 sock_prot_inuse_add(net, sk->sk_prot, 1); 4127 4128 /* Nothing can fail after this block, otherwise 4129 * sctp_destroy_sock() will be called without addr_wq_lock held 4130 */ 4131 if (net->sctp.default_auto_asconf) { 4132 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4133 list_add_tail(&sp->auto_asconf_list, 4134 &net->sctp.auto_asconf_splist); 4135 sp->do_auto_asconf = 1; 4136 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4137 } else { 4138 sp->do_auto_asconf = 0; 4139 } 4140 4141 local_bh_enable(); 4142 4143 return 0; 4144} 4145 4146/* Cleanup any SCTP per socket resources. Must be called with 4147 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4148 */ 4149static void sctp_destroy_sock(struct sock *sk) 4150{ 4151 struct sctp_sock *sp; 4152 4153 pr_debug("%s: sk:%p\n", __func__, sk); 4154 4155 /* Release our hold on the endpoint. */ 4156 sp = sctp_sk(sk); 4157 /* This could happen during socket init, thus we bail out 4158 * early, since the rest of the below is not setup either. 4159 */ 4160 if (sp->ep == NULL) 4161 return; 4162 4163 if (sp->do_auto_asconf) { 4164 sp->do_auto_asconf = 0; 4165 list_del(&sp->auto_asconf_list); 4166 } 4167 sctp_endpoint_free(sp->ep); 4168 local_bh_disable(); 4169 percpu_counter_dec(&sctp_sockets_allocated); 4170 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4171 local_bh_enable(); 4172} 4173 4174/* Triggered when there are no references on the socket anymore */ 4175static void sctp_destruct_sock(struct sock *sk) 4176{ 4177 struct sctp_sock *sp = sctp_sk(sk); 4178 4179 /* Free up the HMAC transform. */ 4180 crypto_free_hash(sp->hmac); 4181 4182 inet_sock_destruct(sk); 4183} 4184 4185/* API 4.1.7 shutdown() - TCP Style Syntax 4186 * int shutdown(int socket, int how); 4187 * 4188 * sd - the socket descriptor of the association to be closed. 4189 * how - Specifies the type of shutdown. The values are 4190 * as follows: 4191 * SHUT_RD 4192 * Disables further receive operations. No SCTP 4193 * protocol action is taken. 4194 * SHUT_WR 4195 * Disables further send operations, and initiates 4196 * the SCTP shutdown sequence. 4197 * SHUT_RDWR 4198 * Disables further send and receive operations 4199 * and initiates the SCTP shutdown sequence. 4200 */ 4201static void sctp_shutdown(struct sock *sk, int how) 4202{ 4203 struct net *net = sock_net(sk); 4204 struct sctp_endpoint *ep; 4205 struct sctp_association *asoc; 4206 4207 if (!sctp_style(sk, TCP)) 4208 return; 4209 4210 if (how & SEND_SHUTDOWN) { 4211 ep = sctp_sk(sk)->ep; 4212 if (!list_empty(&ep->asocs)) { 4213 asoc = list_entry(ep->asocs.next, 4214 struct sctp_association, asocs); 4215 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4216 } 4217 } 4218} 4219 4220/* 7.2.1 Association Status (SCTP_STATUS) 4221 4222 * Applications can retrieve current status information about an 4223 * association, including association state, peer receiver window size, 4224 * number of unacked data chunks, and number of data chunks pending 4225 * receipt. This information is read-only. 4226 */ 4227static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4228 char __user *optval, 4229 int __user *optlen) 4230{ 4231 struct sctp_status status; 4232 struct sctp_association *asoc = NULL; 4233 struct sctp_transport *transport; 4234 sctp_assoc_t associd; 4235 int retval = 0; 4236 4237 if (len < sizeof(status)) { 4238 retval = -EINVAL; 4239 goto out; 4240 } 4241 4242 len = sizeof(status); 4243 if (copy_from_user(&status, optval, len)) { 4244 retval = -EFAULT; 4245 goto out; 4246 } 4247 4248 associd = status.sstat_assoc_id; 4249 asoc = sctp_id2assoc(sk, associd); 4250 if (!asoc) { 4251 retval = -EINVAL; 4252 goto out; 4253 } 4254 4255 transport = asoc->peer.primary_path; 4256 4257 status.sstat_assoc_id = sctp_assoc2id(asoc); 4258 status.sstat_state = sctp_assoc_to_state(asoc); 4259 status.sstat_rwnd = asoc->peer.rwnd; 4260 status.sstat_unackdata = asoc->unack_data; 4261 4262 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4263 status.sstat_instrms = asoc->c.sinit_max_instreams; 4264 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 4265 status.sstat_fragmentation_point = asoc->frag_point; 4266 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4267 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4268 transport->af_specific->sockaddr_len); 4269 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4270 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 4271 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4272 status.sstat_primary.spinfo_state = transport->state; 4273 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4274 status.sstat_primary.spinfo_srtt = transport->srtt; 4275 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4276 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4277 4278 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4279 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4280 4281 if (put_user(len, optlen)) { 4282 retval = -EFAULT; 4283 goto out; 4284 } 4285 4286 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 4287 __func__, len, status.sstat_state, status.sstat_rwnd, 4288 status.sstat_assoc_id); 4289 4290 if (copy_to_user(optval, &status, len)) { 4291 retval = -EFAULT; 4292 goto out; 4293 } 4294 4295out: 4296 return retval; 4297} 4298 4299 4300/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4301 * 4302 * Applications can retrieve information about a specific peer address 4303 * of an association, including its reachability state, congestion 4304 * window, and retransmission timer values. This information is 4305 * read-only. 4306 */ 4307static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4308 char __user *optval, 4309 int __user *optlen) 4310{ 4311 struct sctp_paddrinfo pinfo; 4312 struct sctp_transport *transport; 4313 int retval = 0; 4314 4315 if (len < sizeof(pinfo)) { 4316 retval = -EINVAL; 4317 goto out; 4318 } 4319 4320 len = sizeof(pinfo); 4321 if (copy_from_user(&pinfo, optval, len)) { 4322 retval = -EFAULT; 4323 goto out; 4324 } 4325 4326 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4327 pinfo.spinfo_assoc_id); 4328 if (!transport) 4329 return -EINVAL; 4330 4331 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4332 pinfo.spinfo_state = transport->state; 4333 pinfo.spinfo_cwnd = transport->cwnd; 4334 pinfo.spinfo_srtt = transport->srtt; 4335 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4336 pinfo.spinfo_mtu = transport->pathmtu; 4337 4338 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4339 pinfo.spinfo_state = SCTP_ACTIVE; 4340 4341 if (put_user(len, optlen)) { 4342 retval = -EFAULT; 4343 goto out; 4344 } 4345 4346 if (copy_to_user(optval, &pinfo, len)) { 4347 retval = -EFAULT; 4348 goto out; 4349 } 4350 4351out: 4352 return retval; 4353} 4354 4355/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4356 * 4357 * This option is a on/off flag. If enabled no SCTP message 4358 * fragmentation will be performed. Instead if a message being sent 4359 * exceeds the current PMTU size, the message will NOT be sent and 4360 * instead a error will be indicated to the user. 4361 */ 4362static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4363 char __user *optval, int __user *optlen) 4364{ 4365 int val; 4366 4367 if (len < sizeof(int)) 4368 return -EINVAL; 4369 4370 len = sizeof(int); 4371 val = (sctp_sk(sk)->disable_fragments == 1); 4372 if (put_user(len, optlen)) 4373 return -EFAULT; 4374 if (copy_to_user(optval, &val, len)) 4375 return -EFAULT; 4376 return 0; 4377} 4378 4379/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4380 * 4381 * This socket option is used to specify various notifications and 4382 * ancillary data the user wishes to receive. 4383 */ 4384static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4385 int __user *optlen) 4386{ 4387 if (len <= 0) 4388 return -EINVAL; 4389 if (len > sizeof(struct sctp_event_subscribe)) 4390 len = sizeof(struct sctp_event_subscribe); 4391 if (put_user(len, optlen)) 4392 return -EFAULT; 4393 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4394 return -EFAULT; 4395 return 0; 4396} 4397 4398/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4399 * 4400 * This socket option is applicable to the UDP-style socket only. When 4401 * set it will cause associations that are idle for more than the 4402 * specified number of seconds to automatically close. An association 4403 * being idle is defined an association that has NOT sent or received 4404 * user data. The special value of '0' indicates that no automatic 4405 * close of any associations should be performed. The option expects an 4406 * integer defining the number of seconds of idle time before an 4407 * association is closed. 4408 */ 4409static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4410{ 4411 /* Applicable to UDP-style socket only */ 4412 if (sctp_style(sk, TCP)) 4413 return -EOPNOTSUPP; 4414 if (len < sizeof(int)) 4415 return -EINVAL; 4416 len = sizeof(int); 4417 if (put_user(len, optlen)) 4418 return -EFAULT; 4419 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4420 return -EFAULT; 4421 return 0; 4422} 4423 4424/* Helper routine to branch off an association to a new socket. */ 4425int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 4426{ 4427 struct sctp_association *asoc = sctp_id2assoc(sk, id); 4428 struct sctp_sock *sp = sctp_sk(sk); 4429 struct socket *sock; 4430 int err = 0; 4431 4432 if (!asoc) 4433 return -EINVAL; 4434 4435 /* An association cannot be branched off from an already peeled-off 4436 * socket, nor is this supported for tcp style sockets. 4437 */ 4438 if (!sctp_style(sk, UDP)) 4439 return -EINVAL; 4440 4441 /* Create a new socket. */ 4442 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4443 if (err < 0) 4444 return err; 4445 4446 sctp_copy_sock(sock->sk, sk, asoc); 4447 4448 /* Make peeled-off sockets more like 1-1 accepted sockets. 4449 * Set the daddr and initialize id to something more random 4450 */ 4451 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 4452 4453 /* Populate the fields of the newsk from the oldsk and migrate the 4454 * asoc to the newsk. 4455 */ 4456 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4457 4458 *sockp = sock; 4459 4460 return err; 4461} 4462EXPORT_SYMBOL(sctp_do_peeloff); 4463 4464static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4465{ 4466 sctp_peeloff_arg_t peeloff; 4467 struct socket *newsock; 4468 struct file *newfile; 4469 int retval = 0; 4470 4471 if (len < sizeof(sctp_peeloff_arg_t)) 4472 return -EINVAL; 4473 len = sizeof(sctp_peeloff_arg_t); 4474 if (copy_from_user(&peeloff, optval, len)) 4475 return -EFAULT; 4476 4477 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock); 4478 if (retval < 0) 4479 goto out; 4480 4481 /* Map the socket to an unused fd that can be returned to the user. */ 4482 retval = get_unused_fd_flags(0); 4483 if (retval < 0) { 4484 sock_release(newsock); 4485 goto out; 4486 } 4487 4488 newfile = sock_alloc_file(newsock, 0, NULL); 4489 if (unlikely(IS_ERR(newfile))) { 4490 put_unused_fd(retval); 4491 sock_release(newsock); 4492 return PTR_ERR(newfile); 4493 } 4494 4495 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 4496 retval); 4497 4498 /* Return the fd mapped to the new socket. */ 4499 if (put_user(len, optlen)) { 4500 fput(newfile); 4501 put_unused_fd(retval); 4502 return -EFAULT; 4503 } 4504 peeloff.sd = retval; 4505 if (copy_to_user(optval, &peeloff, len)) { 4506 fput(newfile); 4507 put_unused_fd(retval); 4508 return -EFAULT; 4509 } 4510 fd_install(retval, newfile); 4511out: 4512 return retval; 4513} 4514 4515/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4516 * 4517 * Applications can enable or disable heartbeats for any peer address of 4518 * an association, modify an address's heartbeat interval, force a 4519 * heartbeat to be sent immediately, and adjust the address's maximum 4520 * number of retransmissions sent before an address is considered 4521 * unreachable. The following structure is used to access and modify an 4522 * address's parameters: 4523 * 4524 * struct sctp_paddrparams { 4525 * sctp_assoc_t spp_assoc_id; 4526 * struct sockaddr_storage spp_address; 4527 * uint32_t spp_hbinterval; 4528 * uint16_t spp_pathmaxrxt; 4529 * uint32_t spp_pathmtu; 4530 * uint32_t spp_sackdelay; 4531 * uint32_t spp_flags; 4532 * }; 4533 * 4534 * spp_assoc_id - (one-to-many style socket) This is filled in the 4535 * application, and identifies the association for 4536 * this query. 4537 * spp_address - This specifies which address is of interest. 4538 * spp_hbinterval - This contains the value of the heartbeat interval, 4539 * in milliseconds. If a value of zero 4540 * is present in this field then no changes are to 4541 * be made to this parameter. 4542 * spp_pathmaxrxt - This contains the maximum number of 4543 * retransmissions before this address shall be 4544 * considered unreachable. If a value of zero 4545 * is present in this field then no changes are to 4546 * be made to this parameter. 4547 * spp_pathmtu - When Path MTU discovery is disabled the value 4548 * specified here will be the "fixed" path mtu. 4549 * Note that if the spp_address field is empty 4550 * then all associations on this address will 4551 * have this fixed path mtu set upon them. 4552 * 4553 * spp_sackdelay - When delayed sack is enabled, this value specifies 4554 * the number of milliseconds that sacks will be delayed 4555 * for. This value will apply to all addresses of an 4556 * association if the spp_address field is empty. Note 4557 * also, that if delayed sack is enabled and this 4558 * value is set to 0, no change is made to the last 4559 * recorded delayed sack timer value. 4560 * 4561 * spp_flags - These flags are used to control various features 4562 * on an association. The flag field may contain 4563 * zero or more of the following options. 4564 * 4565 * SPP_HB_ENABLE - Enable heartbeats on the 4566 * specified address. Note that if the address 4567 * field is empty all addresses for the association 4568 * have heartbeats enabled upon them. 4569 * 4570 * SPP_HB_DISABLE - Disable heartbeats on the 4571 * speicifed address. Note that if the address 4572 * field is empty all addresses for the association 4573 * will have their heartbeats disabled. Note also 4574 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4575 * mutually exclusive, only one of these two should 4576 * be specified. Enabling both fields will have 4577 * undetermined results. 4578 * 4579 * SPP_HB_DEMAND - Request a user initiated heartbeat 4580 * to be made immediately. 4581 * 4582 * SPP_PMTUD_ENABLE - This field will enable PMTU 4583 * discovery upon the specified address. Note that 4584 * if the address feild is empty then all addresses 4585 * on the association are effected. 4586 * 4587 * SPP_PMTUD_DISABLE - This field will disable PMTU 4588 * discovery upon the specified address. Note that 4589 * if the address feild is empty then all addresses 4590 * on the association are effected. Not also that 4591 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4592 * exclusive. Enabling both will have undetermined 4593 * results. 4594 * 4595 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4596 * on delayed sack. The time specified in spp_sackdelay 4597 * is used to specify the sack delay for this address. Note 4598 * that if spp_address is empty then all addresses will 4599 * enable delayed sack and take on the sack delay 4600 * value specified in spp_sackdelay. 4601 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4602 * off delayed sack. If the spp_address field is blank then 4603 * delayed sack is disabled for the entire association. Note 4604 * also that this field is mutually exclusive to 4605 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4606 * results. 4607 */ 4608static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4609 char __user *optval, int __user *optlen) 4610{ 4611 struct sctp_paddrparams params; 4612 struct sctp_transport *trans = NULL; 4613 struct sctp_association *asoc = NULL; 4614 struct sctp_sock *sp = sctp_sk(sk); 4615 4616 if (len < sizeof(struct sctp_paddrparams)) 4617 return -EINVAL; 4618 len = sizeof(struct sctp_paddrparams); 4619 if (copy_from_user(¶ms, optval, len)) 4620 return -EFAULT; 4621 4622 /* If an address other than INADDR_ANY is specified, and 4623 * no transport is found, then the request is invalid. 4624 */ 4625 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 4626 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4627 params.spp_assoc_id); 4628 if (!trans) { 4629 pr_debug("%s: failed no transport\n", __func__); 4630 return -EINVAL; 4631 } 4632 } 4633 4634 /* Get association, if assoc_id != 0 and the socket is a one 4635 * to many style socket, and an association was not found, then 4636 * the id was invalid. 4637 */ 4638 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4639 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4640 pr_debug("%s: failed no association\n", __func__); 4641 return -EINVAL; 4642 } 4643 4644 if (trans) { 4645 /* Fetch transport values. */ 4646 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4647 params.spp_pathmtu = trans->pathmtu; 4648 params.spp_pathmaxrxt = trans->pathmaxrxt; 4649 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4650 4651 /*draft-11 doesn't say what to return in spp_flags*/ 4652 params.spp_flags = trans->param_flags; 4653 } else if (asoc) { 4654 /* Fetch association values. */ 4655 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4656 params.spp_pathmtu = asoc->pathmtu; 4657 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4658 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4659 4660 /*draft-11 doesn't say what to return in spp_flags*/ 4661 params.spp_flags = asoc->param_flags; 4662 } else { 4663 /* Fetch socket values. */ 4664 params.spp_hbinterval = sp->hbinterval; 4665 params.spp_pathmtu = sp->pathmtu; 4666 params.spp_sackdelay = sp->sackdelay; 4667 params.spp_pathmaxrxt = sp->pathmaxrxt; 4668 4669 /*draft-11 doesn't say what to return in spp_flags*/ 4670 params.spp_flags = sp->param_flags; 4671 } 4672 4673 if (copy_to_user(optval, ¶ms, len)) 4674 return -EFAULT; 4675 4676 if (put_user(len, optlen)) 4677 return -EFAULT; 4678 4679 return 0; 4680} 4681 4682/* 4683 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4684 * 4685 * This option will effect the way delayed acks are performed. This 4686 * option allows you to get or set the delayed ack time, in 4687 * milliseconds. It also allows changing the delayed ack frequency. 4688 * Changing the frequency to 1 disables the delayed sack algorithm. If 4689 * the assoc_id is 0, then this sets or gets the endpoints default 4690 * values. If the assoc_id field is non-zero, then the set or get 4691 * effects the specified association for the one to many model (the 4692 * assoc_id field is ignored by the one to one model). Note that if 4693 * sack_delay or sack_freq are 0 when setting this option, then the 4694 * current values will remain unchanged. 4695 * 4696 * struct sctp_sack_info { 4697 * sctp_assoc_t sack_assoc_id; 4698 * uint32_t sack_delay; 4699 * uint32_t sack_freq; 4700 * }; 4701 * 4702 * sack_assoc_id - This parameter, indicates which association the user 4703 * is performing an action upon. Note that if this field's value is 4704 * zero then the endpoints default value is changed (effecting future 4705 * associations only). 4706 * 4707 * sack_delay - This parameter contains the number of milliseconds that 4708 * the user is requesting the delayed ACK timer be set to. Note that 4709 * this value is defined in the standard to be between 200 and 500 4710 * milliseconds. 4711 * 4712 * sack_freq - This parameter contains the number of packets that must 4713 * be received before a sack is sent without waiting for the delay 4714 * timer to expire. The default value for this is 2, setting this 4715 * value to 1 will disable the delayed sack algorithm. 4716 */ 4717static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4718 char __user *optval, 4719 int __user *optlen) 4720{ 4721 struct sctp_sack_info params; 4722 struct sctp_association *asoc = NULL; 4723 struct sctp_sock *sp = sctp_sk(sk); 4724 4725 if (len >= sizeof(struct sctp_sack_info)) { 4726 len = sizeof(struct sctp_sack_info); 4727 4728 if (copy_from_user(¶ms, optval, len)) 4729 return -EFAULT; 4730 } else if (len == sizeof(struct sctp_assoc_value)) { 4731 pr_warn_ratelimited(DEPRECATED 4732 "%s (pid %d) " 4733 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 4734 "Use struct sctp_sack_info instead\n", 4735 current->comm, task_pid_nr(current)); 4736 if (copy_from_user(¶ms, optval, len)) 4737 return -EFAULT; 4738 } else 4739 return -EINVAL; 4740 4741 /* Get association, if sack_assoc_id != 0 and the socket is a one 4742 * to many style socket, and an association was not found, then 4743 * the id was invalid. 4744 */ 4745 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4746 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4747 return -EINVAL; 4748 4749 if (asoc) { 4750 /* Fetch association values. */ 4751 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4752 params.sack_delay = jiffies_to_msecs( 4753 asoc->sackdelay); 4754 params.sack_freq = asoc->sackfreq; 4755 4756 } else { 4757 params.sack_delay = 0; 4758 params.sack_freq = 1; 4759 } 4760 } else { 4761 /* Fetch socket values. */ 4762 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4763 params.sack_delay = sp->sackdelay; 4764 params.sack_freq = sp->sackfreq; 4765 } else { 4766 params.sack_delay = 0; 4767 params.sack_freq = 1; 4768 } 4769 } 4770 4771 if (copy_to_user(optval, ¶ms, len)) 4772 return -EFAULT; 4773 4774 if (put_user(len, optlen)) 4775 return -EFAULT; 4776 4777 return 0; 4778} 4779 4780/* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4781 * 4782 * Applications can specify protocol parameters for the default association 4783 * initialization. The option name argument to setsockopt() and getsockopt() 4784 * is SCTP_INITMSG. 4785 * 4786 * Setting initialization parameters is effective only on an unconnected 4787 * socket (for UDP-style sockets only future associations are effected 4788 * by the change). With TCP-style sockets, this option is inherited by 4789 * sockets derived from a listener socket. 4790 */ 4791static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4792{ 4793 if (len < sizeof(struct sctp_initmsg)) 4794 return -EINVAL; 4795 len = sizeof(struct sctp_initmsg); 4796 if (put_user(len, optlen)) 4797 return -EFAULT; 4798 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4799 return -EFAULT; 4800 return 0; 4801} 4802 4803 4804static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4805 char __user *optval, int __user *optlen) 4806{ 4807 struct sctp_association *asoc; 4808 int cnt = 0; 4809 struct sctp_getaddrs getaddrs; 4810 struct sctp_transport *from; 4811 void __user *to; 4812 union sctp_addr temp; 4813 struct sctp_sock *sp = sctp_sk(sk); 4814 int addrlen; 4815 size_t space_left; 4816 int bytes_copied; 4817 4818 if (len < sizeof(struct sctp_getaddrs)) 4819 return -EINVAL; 4820 4821 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4822 return -EFAULT; 4823 4824 /* For UDP-style sockets, id specifies the association to query. */ 4825 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4826 if (!asoc) 4827 return -EINVAL; 4828 4829 to = optval + offsetof(struct sctp_getaddrs, addrs); 4830 space_left = len - offsetof(struct sctp_getaddrs, addrs); 4831 4832 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4833 transports) { 4834 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4835 addrlen = sctp_get_pf_specific(sk->sk_family) 4836 ->addr_to_user(sp, &temp); 4837 if (space_left < addrlen) 4838 return -ENOMEM; 4839 if (copy_to_user(to, &temp, addrlen)) 4840 return -EFAULT; 4841 to += addrlen; 4842 cnt++; 4843 space_left -= addrlen; 4844 } 4845 4846 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4847 return -EFAULT; 4848 bytes_copied = ((char __user *)to) - optval; 4849 if (put_user(bytes_copied, optlen)) 4850 return -EFAULT; 4851 4852 return 0; 4853} 4854 4855static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4856 size_t space_left, int *bytes_copied) 4857{ 4858 struct sctp_sockaddr_entry *addr; 4859 union sctp_addr temp; 4860 int cnt = 0; 4861 int addrlen; 4862 struct net *net = sock_net(sk); 4863 4864 rcu_read_lock(); 4865 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 4866 if (!addr->valid) 4867 continue; 4868 4869 if ((PF_INET == sk->sk_family) && 4870 (AF_INET6 == addr->a.sa.sa_family)) 4871 continue; 4872 if ((PF_INET6 == sk->sk_family) && 4873 inet_v6_ipv6only(sk) && 4874 (AF_INET == addr->a.sa.sa_family)) 4875 continue; 4876 memcpy(&temp, &addr->a, sizeof(temp)); 4877 if (!temp.v4.sin_port) 4878 temp.v4.sin_port = htons(port); 4879 4880 addrlen = sctp_get_pf_specific(sk->sk_family) 4881 ->addr_to_user(sctp_sk(sk), &temp); 4882 4883 if (space_left < addrlen) { 4884 cnt = -ENOMEM; 4885 break; 4886 } 4887 memcpy(to, &temp, addrlen); 4888 4889 to += addrlen; 4890 cnt++; 4891 space_left -= addrlen; 4892 *bytes_copied += addrlen; 4893 } 4894 rcu_read_unlock(); 4895 4896 return cnt; 4897} 4898 4899 4900static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4901 char __user *optval, int __user *optlen) 4902{ 4903 struct sctp_bind_addr *bp; 4904 struct sctp_association *asoc; 4905 int cnt = 0; 4906 struct sctp_getaddrs getaddrs; 4907 struct sctp_sockaddr_entry *addr; 4908 void __user *to; 4909 union sctp_addr temp; 4910 struct sctp_sock *sp = sctp_sk(sk); 4911 int addrlen; 4912 int err = 0; 4913 size_t space_left; 4914 int bytes_copied = 0; 4915 void *addrs; 4916 void *buf; 4917 4918 if (len < sizeof(struct sctp_getaddrs)) 4919 return -EINVAL; 4920 4921 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4922 return -EFAULT; 4923 4924 /* 4925 * For UDP-style sockets, id specifies the association to query. 4926 * If the id field is set to the value '0' then the locally bound 4927 * addresses are returned without regard to any particular 4928 * association. 4929 */ 4930 if (0 == getaddrs.assoc_id) { 4931 bp = &sctp_sk(sk)->ep->base.bind_addr; 4932 } else { 4933 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4934 if (!asoc) 4935 return -EINVAL; 4936 bp = &asoc->base.bind_addr; 4937 } 4938 4939 to = optval + offsetof(struct sctp_getaddrs, addrs); 4940 space_left = len - offsetof(struct sctp_getaddrs, addrs); 4941 4942 addrs = kmalloc(space_left, GFP_KERNEL); 4943 if (!addrs) 4944 return -ENOMEM; 4945 4946 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4947 * addresses from the global local address list. 4948 */ 4949 if (sctp_list_single_entry(&bp->address_list)) { 4950 addr = list_entry(bp->address_list.next, 4951 struct sctp_sockaddr_entry, list); 4952 if (sctp_is_any(sk, &addr->a)) { 4953 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4954 space_left, &bytes_copied); 4955 if (cnt < 0) { 4956 err = cnt; 4957 goto out; 4958 } 4959 goto copy_getaddrs; 4960 } 4961 } 4962 4963 buf = addrs; 4964 /* Protection on the bound address list is not needed since 4965 * in the socket option context we hold a socket lock and 4966 * thus the bound address list can't change. 4967 */ 4968 list_for_each_entry(addr, &bp->address_list, list) { 4969 memcpy(&temp, &addr->a, sizeof(temp)); 4970 addrlen = sctp_get_pf_specific(sk->sk_family) 4971 ->addr_to_user(sp, &temp); 4972 if (space_left < addrlen) { 4973 err = -ENOMEM; /*fixme: right error?*/ 4974 goto out; 4975 } 4976 memcpy(buf, &temp, addrlen); 4977 buf += addrlen; 4978 bytes_copied += addrlen; 4979 cnt++; 4980 space_left -= addrlen; 4981 } 4982 4983copy_getaddrs: 4984 if (copy_to_user(to, addrs, bytes_copied)) { 4985 err = -EFAULT; 4986 goto out; 4987 } 4988 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4989 err = -EFAULT; 4990 goto out; 4991 } 4992 if (put_user(bytes_copied, optlen)) 4993 err = -EFAULT; 4994out: 4995 kfree(addrs); 4996 return err; 4997} 4998 4999/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 5000 * 5001 * Requests that the local SCTP stack use the enclosed peer address as 5002 * the association primary. The enclosed address must be one of the 5003 * association peer's addresses. 5004 */ 5005static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 5006 char __user *optval, int __user *optlen) 5007{ 5008 struct sctp_prim prim; 5009 struct sctp_association *asoc; 5010 struct sctp_sock *sp = sctp_sk(sk); 5011 5012 if (len < sizeof(struct sctp_prim)) 5013 return -EINVAL; 5014 5015 len = sizeof(struct sctp_prim); 5016 5017 if (copy_from_user(&prim, optval, len)) 5018 return -EFAULT; 5019 5020 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 5021 if (!asoc) 5022 return -EINVAL; 5023 5024 if (!asoc->peer.primary_path) 5025 return -ENOTCONN; 5026 5027 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 5028 asoc->peer.primary_path->af_specific->sockaddr_len); 5029 5030 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 5031 (union sctp_addr *)&prim.ssp_addr); 5032 5033 if (put_user(len, optlen)) 5034 return -EFAULT; 5035 if (copy_to_user(optval, &prim, len)) 5036 return -EFAULT; 5037 5038 return 0; 5039} 5040 5041/* 5042 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 5043 * 5044 * Requests that the local endpoint set the specified Adaptation Layer 5045 * Indication parameter for all future INIT and INIT-ACK exchanges. 5046 */ 5047static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 5048 char __user *optval, int __user *optlen) 5049{ 5050 struct sctp_setadaptation adaptation; 5051 5052 if (len < sizeof(struct sctp_setadaptation)) 5053 return -EINVAL; 5054 5055 len = sizeof(struct sctp_setadaptation); 5056 5057 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 5058 5059 if (put_user(len, optlen)) 5060 return -EFAULT; 5061 if (copy_to_user(optval, &adaptation, len)) 5062 return -EFAULT; 5063 5064 return 0; 5065} 5066 5067/* 5068 * 5069 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 5070 * 5071 * Applications that wish to use the sendto() system call may wish to 5072 * specify a default set of parameters that would normally be supplied 5073 * through the inclusion of ancillary data. This socket option allows 5074 * such an application to set the default sctp_sndrcvinfo structure. 5075 5076 5077 * The application that wishes to use this socket option simply passes 5078 * in to this call the sctp_sndrcvinfo structure defined in Section 5079 * 5.2.2) The input parameters accepted by this call include 5080 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 5081 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 5082 * to this call if the caller is using the UDP model. 5083 * 5084 * For getsockopt, it get the default sctp_sndrcvinfo structure. 5085 */ 5086static int sctp_getsockopt_default_send_param(struct sock *sk, 5087 int len, char __user *optval, 5088 int __user *optlen) 5089{ 5090 struct sctp_sock *sp = sctp_sk(sk); 5091 struct sctp_association *asoc; 5092 struct sctp_sndrcvinfo info; 5093 5094 if (len < sizeof(info)) 5095 return -EINVAL; 5096 5097 len = sizeof(info); 5098 5099 if (copy_from_user(&info, optval, len)) 5100 return -EFAULT; 5101 5102 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 5103 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 5104 return -EINVAL; 5105 if (asoc) { 5106 info.sinfo_stream = asoc->default_stream; 5107 info.sinfo_flags = asoc->default_flags; 5108 info.sinfo_ppid = asoc->default_ppid; 5109 info.sinfo_context = asoc->default_context; 5110 info.sinfo_timetolive = asoc->default_timetolive; 5111 } else { 5112 info.sinfo_stream = sp->default_stream; 5113 info.sinfo_flags = sp->default_flags; 5114 info.sinfo_ppid = sp->default_ppid; 5115 info.sinfo_context = sp->default_context; 5116 info.sinfo_timetolive = sp->default_timetolive; 5117 } 5118 5119 if (put_user(len, optlen)) 5120 return -EFAULT; 5121 if (copy_to_user(optval, &info, len)) 5122 return -EFAULT; 5123 5124 return 0; 5125} 5126 5127/* RFC6458, Section 8.1.31. Set/get Default Send Parameters 5128 * (SCTP_DEFAULT_SNDINFO) 5129 */ 5130static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 5131 char __user *optval, 5132 int __user *optlen) 5133{ 5134 struct sctp_sock *sp = sctp_sk(sk); 5135 struct sctp_association *asoc; 5136 struct sctp_sndinfo info; 5137 5138 if (len < sizeof(info)) 5139 return -EINVAL; 5140 5141 len = sizeof(info); 5142 5143 if (copy_from_user(&info, optval, len)) 5144 return -EFAULT; 5145 5146 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 5147 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 5148 return -EINVAL; 5149 if (asoc) { 5150 info.snd_sid = asoc->default_stream; 5151 info.snd_flags = asoc->default_flags; 5152 info.snd_ppid = asoc->default_ppid; 5153 info.snd_context = asoc->default_context; 5154 } else { 5155 info.snd_sid = sp->default_stream; 5156 info.snd_flags = sp->default_flags; 5157 info.snd_ppid = sp->default_ppid; 5158 info.snd_context = sp->default_context; 5159 } 5160 5161 if (put_user(len, optlen)) 5162 return -EFAULT; 5163 if (copy_to_user(optval, &info, len)) 5164 return -EFAULT; 5165 5166 return 0; 5167} 5168 5169/* 5170 * 5171 * 7.1.5 SCTP_NODELAY 5172 * 5173 * Turn on/off any Nagle-like algorithm. This means that packets are 5174 * generally sent as soon as possible and no unnecessary delays are 5175 * introduced, at the cost of more packets in the network. Expects an 5176 * integer boolean flag. 5177 */ 5178 5179static int sctp_getsockopt_nodelay(struct sock *sk, int len, 5180 char __user *optval, int __user *optlen) 5181{ 5182 int val; 5183 5184 if (len < sizeof(int)) 5185 return -EINVAL; 5186 5187 len = sizeof(int); 5188 val = (sctp_sk(sk)->nodelay == 1); 5189 if (put_user(len, optlen)) 5190 return -EFAULT; 5191 if (copy_to_user(optval, &val, len)) 5192 return -EFAULT; 5193 return 0; 5194} 5195 5196/* 5197 * 5198 * 7.1.1 SCTP_RTOINFO 5199 * 5200 * The protocol parameters used to initialize and bound retransmission 5201 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 5202 * and modify these parameters. 5203 * All parameters are time values, in milliseconds. A value of 0, when 5204 * modifying the parameters, indicates that the current value should not 5205 * be changed. 5206 * 5207 */ 5208static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5209 char __user *optval, 5210 int __user *optlen) { 5211 struct sctp_rtoinfo rtoinfo; 5212 struct sctp_association *asoc; 5213 5214 if (len < sizeof (struct sctp_rtoinfo)) 5215 return -EINVAL; 5216 5217 len = sizeof(struct sctp_rtoinfo); 5218 5219 if (copy_from_user(&rtoinfo, optval, len)) 5220 return -EFAULT; 5221 5222 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5223 5224 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5225 return -EINVAL; 5226 5227 /* Values corresponding to the specific association. */ 5228 if (asoc) { 5229 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5230 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5231 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5232 } else { 5233 /* Values corresponding to the endpoint. */ 5234 struct sctp_sock *sp = sctp_sk(sk); 5235 5236 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5237 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5238 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5239 } 5240 5241 if (put_user(len, optlen)) 5242 return -EFAULT; 5243 5244 if (copy_to_user(optval, &rtoinfo, len)) 5245 return -EFAULT; 5246 5247 return 0; 5248} 5249 5250/* 5251 * 5252 * 7.1.2 SCTP_ASSOCINFO 5253 * 5254 * This option is used to tune the maximum retransmission attempts 5255 * of the association. 5256 * Returns an error if the new association retransmission value is 5257 * greater than the sum of the retransmission value of the peer. 5258 * See [SCTP] for more information. 5259 * 5260 */ 5261static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5262 char __user *optval, 5263 int __user *optlen) 5264{ 5265 5266 struct sctp_assocparams assocparams; 5267 struct sctp_association *asoc; 5268 struct list_head *pos; 5269 int cnt = 0; 5270 5271 if (len < sizeof (struct sctp_assocparams)) 5272 return -EINVAL; 5273 5274 len = sizeof(struct sctp_assocparams); 5275 5276 if (copy_from_user(&assocparams, optval, len)) 5277 return -EFAULT; 5278 5279 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5280 5281 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5282 return -EINVAL; 5283 5284 /* Values correspoinding to the specific association */ 5285 if (asoc) { 5286 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5287 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5288 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5289 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 5290 5291 list_for_each(pos, &asoc->peer.transport_addr_list) { 5292 cnt++; 5293 } 5294 5295 assocparams.sasoc_number_peer_destinations = cnt; 5296 } else { 5297 /* Values corresponding to the endpoint */ 5298 struct sctp_sock *sp = sctp_sk(sk); 5299 5300 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5301 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5302 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5303 assocparams.sasoc_cookie_life = 5304 sp->assocparams.sasoc_cookie_life; 5305 assocparams.sasoc_number_peer_destinations = 5306 sp->assocparams. 5307 sasoc_number_peer_destinations; 5308 } 5309 5310 if (put_user(len, optlen)) 5311 return -EFAULT; 5312 5313 if (copy_to_user(optval, &assocparams, len)) 5314 return -EFAULT; 5315 5316 return 0; 5317} 5318 5319/* 5320 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5321 * 5322 * This socket option is a boolean flag which turns on or off mapped V4 5323 * addresses. If this option is turned on and the socket is type 5324 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5325 * If this option is turned off, then no mapping will be done of V4 5326 * addresses and a user will receive both PF_INET6 and PF_INET type 5327 * addresses on the socket. 5328 */ 5329static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5330 char __user *optval, int __user *optlen) 5331{ 5332 int val; 5333 struct sctp_sock *sp = sctp_sk(sk); 5334 5335 if (len < sizeof(int)) 5336 return -EINVAL; 5337 5338 len = sizeof(int); 5339 val = sp->v4mapped; 5340 if (put_user(len, optlen)) 5341 return -EFAULT; 5342 if (copy_to_user(optval, &val, len)) 5343 return -EFAULT; 5344 5345 return 0; 5346} 5347 5348/* 5349 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5350 * (chapter and verse is quoted at sctp_setsockopt_context()) 5351 */ 5352static int sctp_getsockopt_context(struct sock *sk, int len, 5353 char __user *optval, int __user *optlen) 5354{ 5355 struct sctp_assoc_value params; 5356 struct sctp_sock *sp; 5357 struct sctp_association *asoc; 5358 5359 if (len < sizeof(struct sctp_assoc_value)) 5360 return -EINVAL; 5361 5362 len = sizeof(struct sctp_assoc_value); 5363 5364 if (copy_from_user(¶ms, optval, len)) 5365 return -EFAULT; 5366 5367 sp = sctp_sk(sk); 5368 5369 if (params.assoc_id != 0) { 5370 asoc = sctp_id2assoc(sk, params.assoc_id); 5371 if (!asoc) 5372 return -EINVAL; 5373 params.assoc_value = asoc->default_rcv_context; 5374 } else { 5375 params.assoc_value = sp->default_rcv_context; 5376 } 5377 5378 if (put_user(len, optlen)) 5379 return -EFAULT; 5380 if (copy_to_user(optval, ¶ms, len)) 5381 return -EFAULT; 5382 5383 return 0; 5384} 5385 5386/* 5387 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5388 * This option will get or set the maximum size to put in any outgoing 5389 * SCTP DATA chunk. If a message is larger than this size it will be 5390 * fragmented by SCTP into the specified size. Note that the underlying 5391 * SCTP implementation may fragment into smaller sized chunks when the 5392 * PMTU of the underlying association is smaller than the value set by 5393 * the user. The default value for this option is '0' which indicates 5394 * the user is NOT limiting fragmentation and only the PMTU will effect 5395 * SCTP's choice of DATA chunk size. Note also that values set larger 5396 * than the maximum size of an IP datagram will effectively let SCTP 5397 * control fragmentation (i.e. the same as setting this option to 0). 5398 * 5399 * The following structure is used to access and modify this parameter: 5400 * 5401 * struct sctp_assoc_value { 5402 * sctp_assoc_t assoc_id; 5403 * uint32_t assoc_value; 5404 * }; 5405 * 5406 * assoc_id: This parameter is ignored for one-to-one style sockets. 5407 * For one-to-many style sockets this parameter indicates which 5408 * association the user is performing an action upon. Note that if 5409 * this field's value is zero then the endpoints default value is 5410 * changed (effecting future associations only). 5411 * assoc_value: This parameter specifies the maximum size in bytes. 5412 */ 5413static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5414 char __user *optval, int __user *optlen) 5415{ 5416 struct sctp_assoc_value params; 5417 struct sctp_association *asoc; 5418 5419 if (len == sizeof(int)) { 5420 pr_warn_ratelimited(DEPRECATED 5421 "%s (pid %d) " 5422 "Use of int in maxseg socket option.\n" 5423 "Use struct sctp_assoc_value instead\n", 5424 current->comm, task_pid_nr(current)); 5425 params.assoc_id = 0; 5426 } else if (len >= sizeof(struct sctp_assoc_value)) { 5427 len = sizeof(struct sctp_assoc_value); 5428 if (copy_from_user(¶ms, optval, sizeof(params))) 5429 return -EFAULT; 5430 } else 5431 return -EINVAL; 5432 5433 asoc = sctp_id2assoc(sk, params.assoc_id); 5434 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5435 return -EINVAL; 5436 5437 if (asoc) 5438 params.assoc_value = asoc->frag_point; 5439 else 5440 params.assoc_value = sctp_sk(sk)->user_frag; 5441 5442 if (put_user(len, optlen)) 5443 return -EFAULT; 5444 if (len == sizeof(int)) { 5445 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5446 return -EFAULT; 5447 } else { 5448 if (copy_to_user(optval, ¶ms, len)) 5449 return -EFAULT; 5450 } 5451 5452 return 0; 5453} 5454 5455/* 5456 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5457 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5458 */ 5459static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5460 char __user *optval, int __user *optlen) 5461{ 5462 int val; 5463 5464 if (len < sizeof(int)) 5465 return -EINVAL; 5466 5467 len = sizeof(int); 5468 5469 val = sctp_sk(sk)->frag_interleave; 5470 if (put_user(len, optlen)) 5471 return -EFAULT; 5472 if (copy_to_user(optval, &val, len)) 5473 return -EFAULT; 5474 5475 return 0; 5476} 5477 5478/* 5479 * 7.1.25. Set or Get the sctp partial delivery point 5480 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5481 */ 5482static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5483 char __user *optval, 5484 int __user *optlen) 5485{ 5486 u32 val; 5487 5488 if (len < sizeof(u32)) 5489 return -EINVAL; 5490 5491 len = sizeof(u32); 5492 5493 val = sctp_sk(sk)->pd_point; 5494 if (put_user(len, optlen)) 5495 return -EFAULT; 5496 if (copy_to_user(optval, &val, len)) 5497 return -EFAULT; 5498 5499 return 0; 5500} 5501 5502/* 5503 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5504 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5505 */ 5506static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5507 char __user *optval, 5508 int __user *optlen) 5509{ 5510 struct sctp_assoc_value params; 5511 struct sctp_sock *sp; 5512 struct sctp_association *asoc; 5513 5514 if (len == sizeof(int)) { 5515 pr_warn_ratelimited(DEPRECATED 5516 "%s (pid %d) " 5517 "Use of int in max_burst socket option.\n" 5518 "Use struct sctp_assoc_value instead\n", 5519 current->comm, task_pid_nr(current)); 5520 params.assoc_id = 0; 5521 } else if (len >= sizeof(struct sctp_assoc_value)) { 5522 len = sizeof(struct sctp_assoc_value); 5523 if (copy_from_user(¶ms, optval, len)) 5524 return -EFAULT; 5525 } else 5526 return -EINVAL; 5527 5528 sp = sctp_sk(sk); 5529 5530 if (params.assoc_id != 0) { 5531 asoc = sctp_id2assoc(sk, params.assoc_id); 5532 if (!asoc) 5533 return -EINVAL; 5534 params.assoc_value = asoc->max_burst; 5535 } else 5536 params.assoc_value = sp->max_burst; 5537 5538 if (len == sizeof(int)) { 5539 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5540 return -EFAULT; 5541 } else { 5542 if (copy_to_user(optval, ¶ms, len)) 5543 return -EFAULT; 5544 } 5545 5546 return 0; 5547 5548} 5549 5550static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5551 char __user *optval, int __user *optlen) 5552{ 5553 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5554 struct sctp_hmacalgo __user *p = (void __user *)optval; 5555 struct sctp_hmac_algo_param *hmacs; 5556 __u16 data_len = 0; 5557 u32 num_idents; 5558 int i; 5559 5560 if (!ep->auth_enable) 5561 return -EACCES; 5562 5563 hmacs = ep->auth_hmacs_list; 5564 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5565 5566 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5567 return -EINVAL; 5568 5569 len = sizeof(struct sctp_hmacalgo) + data_len; 5570 num_idents = data_len / sizeof(u16); 5571 5572 if (put_user(len, optlen)) 5573 return -EFAULT; 5574 if (put_user(num_idents, &p->shmac_num_idents)) 5575 return -EFAULT; 5576 for (i = 0; i < num_idents; i++) { 5577 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 5578 5579 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 5580 return -EFAULT; 5581 } 5582 return 0; 5583} 5584 5585static int sctp_getsockopt_active_key(struct sock *sk, int len, 5586 char __user *optval, int __user *optlen) 5587{ 5588 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5589 struct sctp_authkeyid val; 5590 struct sctp_association *asoc; 5591 5592 if (!ep->auth_enable) 5593 return -EACCES; 5594 5595 if (len < sizeof(struct sctp_authkeyid)) 5596 return -EINVAL; 5597 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5598 return -EFAULT; 5599 5600 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5601 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5602 return -EINVAL; 5603 5604 if (asoc) 5605 val.scact_keynumber = asoc->active_key_id; 5606 else 5607 val.scact_keynumber = ep->active_key_id; 5608 5609 len = sizeof(struct sctp_authkeyid); 5610 if (put_user(len, optlen)) 5611 return -EFAULT; 5612 if (copy_to_user(optval, &val, len)) 5613 return -EFAULT; 5614 5615 return 0; 5616} 5617 5618static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5619 char __user *optval, int __user *optlen) 5620{ 5621 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5622 struct sctp_authchunks __user *p = (void __user *)optval; 5623 struct sctp_authchunks val; 5624 struct sctp_association *asoc; 5625 struct sctp_chunks_param *ch; 5626 u32 num_chunks = 0; 5627 char __user *to; 5628 5629 if (!ep->auth_enable) 5630 return -EACCES; 5631 5632 if (len < sizeof(struct sctp_authchunks)) 5633 return -EINVAL; 5634 5635 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5636 return -EFAULT; 5637 5638 to = p->gauth_chunks; 5639 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5640 if (!asoc) 5641 return -EINVAL; 5642 5643 ch = asoc->peer.peer_chunks; 5644 if (!ch) 5645 goto num; 5646 5647 /* See if the user provided enough room for all the data */ 5648 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5649 if (len < num_chunks) 5650 return -EINVAL; 5651 5652 if (copy_to_user(to, ch->chunks, num_chunks)) 5653 return -EFAULT; 5654num: 5655 len = sizeof(struct sctp_authchunks) + num_chunks; 5656 if (put_user(len, optlen)) 5657 return -EFAULT; 5658 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5659 return -EFAULT; 5660 return 0; 5661} 5662 5663static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5664 char __user *optval, int __user *optlen) 5665{ 5666 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5667 struct sctp_authchunks __user *p = (void __user *)optval; 5668 struct sctp_authchunks val; 5669 struct sctp_association *asoc; 5670 struct sctp_chunks_param *ch; 5671 u32 num_chunks = 0; 5672 char __user *to; 5673 5674 if (!ep->auth_enable) 5675 return -EACCES; 5676 5677 if (len < sizeof(struct sctp_authchunks)) 5678 return -EINVAL; 5679 5680 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5681 return -EFAULT; 5682 5683 to = p->gauth_chunks; 5684 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5685 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5686 return -EINVAL; 5687 5688 if (asoc) 5689 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 5690 else 5691 ch = ep->auth_chunk_list; 5692 5693 if (!ch) 5694 goto num; 5695 5696 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5697 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5698 return -EINVAL; 5699 5700 if (copy_to_user(to, ch->chunks, num_chunks)) 5701 return -EFAULT; 5702num: 5703 len = sizeof(struct sctp_authchunks) + num_chunks; 5704 if (put_user(len, optlen)) 5705 return -EFAULT; 5706 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5707 return -EFAULT; 5708 5709 return 0; 5710} 5711 5712/* 5713 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5714 * This option gets the current number of associations that are attached 5715 * to a one-to-many style socket. The option value is an uint32_t. 5716 */ 5717static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5718 char __user *optval, int __user *optlen) 5719{ 5720 struct sctp_sock *sp = sctp_sk(sk); 5721 struct sctp_association *asoc; 5722 u32 val = 0; 5723 5724 if (sctp_style(sk, TCP)) 5725 return -EOPNOTSUPP; 5726 5727 if (len < sizeof(u32)) 5728 return -EINVAL; 5729 5730 len = sizeof(u32); 5731 5732 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5733 val++; 5734 } 5735 5736 if (put_user(len, optlen)) 5737 return -EFAULT; 5738 if (copy_to_user(optval, &val, len)) 5739 return -EFAULT; 5740 5741 return 0; 5742} 5743 5744/* 5745 * 8.1.23 SCTP_AUTO_ASCONF 5746 * See the corresponding setsockopt entry as description 5747 */ 5748static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 5749 char __user *optval, int __user *optlen) 5750{ 5751 int val = 0; 5752 5753 if (len < sizeof(int)) 5754 return -EINVAL; 5755 5756 len = sizeof(int); 5757 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 5758 val = 1; 5759 if (put_user(len, optlen)) 5760 return -EFAULT; 5761 if (copy_to_user(optval, &val, len)) 5762 return -EFAULT; 5763 return 0; 5764} 5765 5766/* 5767 * 8.2.6. Get the Current Identifiers of Associations 5768 * (SCTP_GET_ASSOC_ID_LIST) 5769 * 5770 * This option gets the current list of SCTP association identifiers of 5771 * the SCTP associations handled by a one-to-many style socket. 5772 */ 5773static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 5774 char __user *optval, int __user *optlen) 5775{ 5776 struct sctp_sock *sp = sctp_sk(sk); 5777 struct sctp_association *asoc; 5778 struct sctp_assoc_ids *ids; 5779 u32 num = 0; 5780 5781 if (sctp_style(sk, TCP)) 5782 return -EOPNOTSUPP; 5783 5784 if (len < sizeof(struct sctp_assoc_ids)) 5785 return -EINVAL; 5786 5787 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5788 num++; 5789 } 5790 5791 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 5792 return -EINVAL; 5793 5794 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 5795 5796 ids = kmalloc(len, GFP_KERNEL); 5797 if (unlikely(!ids)) 5798 return -ENOMEM; 5799 5800 ids->gaids_number_of_ids = num; 5801 num = 0; 5802 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5803 ids->gaids_assoc_id[num++] = asoc->assoc_id; 5804 } 5805 5806 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 5807 kfree(ids); 5808 return -EFAULT; 5809 } 5810 5811 kfree(ids); 5812 return 0; 5813} 5814 5815/* 5816 * SCTP_PEER_ADDR_THLDS 5817 * 5818 * This option allows us to fetch the partially failed threshold for one or all 5819 * transports in an association. See Section 6.1 of: 5820 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 5821 */ 5822static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 5823 char __user *optval, 5824 int len, 5825 int __user *optlen) 5826{ 5827 struct sctp_paddrthlds val; 5828 struct sctp_transport *trans; 5829 struct sctp_association *asoc; 5830 5831 if (len < sizeof(struct sctp_paddrthlds)) 5832 return -EINVAL; 5833 len = sizeof(struct sctp_paddrthlds); 5834 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 5835 return -EFAULT; 5836 5837 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 5838 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 5839 if (!asoc) 5840 return -ENOENT; 5841 5842 val.spt_pathpfthld = asoc->pf_retrans; 5843 val.spt_pathmaxrxt = asoc->pathmaxrxt; 5844 } else { 5845 trans = sctp_addr_id2transport(sk, &val.spt_address, 5846 val.spt_assoc_id); 5847 if (!trans) 5848 return -ENOENT; 5849 5850 val.spt_pathmaxrxt = trans->pathmaxrxt; 5851 val.spt_pathpfthld = trans->pf_retrans; 5852 } 5853 5854 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 5855 return -EFAULT; 5856 5857 return 0; 5858} 5859 5860/* 5861 * SCTP_GET_ASSOC_STATS 5862 * 5863 * This option retrieves local per endpoint statistics. It is modeled 5864 * after OpenSolaris' implementation 5865 */ 5866static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 5867 char __user *optval, 5868 int __user *optlen) 5869{ 5870 struct sctp_assoc_stats sas; 5871 struct sctp_association *asoc = NULL; 5872 5873 /* User must provide at least the assoc id */ 5874 if (len < sizeof(sctp_assoc_t)) 5875 return -EINVAL; 5876 5877 /* Allow the struct to grow and fill in as much as possible */ 5878 len = min_t(size_t, len, sizeof(sas)); 5879 5880 if (copy_from_user(&sas, optval, len)) 5881 return -EFAULT; 5882 5883 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 5884 if (!asoc) 5885 return -EINVAL; 5886 5887 sas.sas_rtxchunks = asoc->stats.rtxchunks; 5888 sas.sas_gapcnt = asoc->stats.gapcnt; 5889 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 5890 sas.sas_osacks = asoc->stats.osacks; 5891 sas.sas_isacks = asoc->stats.isacks; 5892 sas.sas_octrlchunks = asoc->stats.octrlchunks; 5893 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 5894 sas.sas_oodchunks = asoc->stats.oodchunks; 5895 sas.sas_iodchunks = asoc->stats.iodchunks; 5896 sas.sas_ouodchunks = asoc->stats.ouodchunks; 5897 sas.sas_iuodchunks = asoc->stats.iuodchunks; 5898 sas.sas_idupchunks = asoc->stats.idupchunks; 5899 sas.sas_opackets = asoc->stats.opackets; 5900 sas.sas_ipackets = asoc->stats.ipackets; 5901 5902 /* New high max rto observed, will return 0 if not a single 5903 * RTO update took place. obs_rto_ipaddr will be bogus 5904 * in such a case 5905 */ 5906 sas.sas_maxrto = asoc->stats.max_obs_rto; 5907 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 5908 sizeof(struct sockaddr_storage)); 5909 5910 /* Mark beginning of a new observation period */ 5911 asoc->stats.max_obs_rto = asoc->rto_min; 5912 5913 if (put_user(len, optlen)) 5914 return -EFAULT; 5915 5916 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 5917 5918 if (copy_to_user(optval, &sas, len)) 5919 return -EFAULT; 5920 5921 return 0; 5922} 5923 5924static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 5925 char __user *optval, 5926 int __user *optlen) 5927{ 5928 int val = 0; 5929 5930 if (len < sizeof(int)) 5931 return -EINVAL; 5932 5933 len = sizeof(int); 5934 if (sctp_sk(sk)->recvrcvinfo) 5935 val = 1; 5936 if (put_user(len, optlen)) 5937 return -EFAULT; 5938 if (copy_to_user(optval, &val, len)) 5939 return -EFAULT; 5940 5941 return 0; 5942} 5943 5944static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 5945 char __user *optval, 5946 int __user *optlen) 5947{ 5948 int val = 0; 5949 5950 if (len < sizeof(int)) 5951 return -EINVAL; 5952 5953 len = sizeof(int); 5954 if (sctp_sk(sk)->recvnxtinfo) 5955 val = 1; 5956 if (put_user(len, optlen)) 5957 return -EFAULT; 5958 if (copy_to_user(optval, &val, len)) 5959 return -EFAULT; 5960 5961 return 0; 5962} 5963 5964static int sctp_getsockopt(struct sock *sk, int level, int optname, 5965 char __user *optval, int __user *optlen) 5966{ 5967 int retval = 0; 5968 int len; 5969 5970 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 5971 5972 /* I can hardly begin to describe how wrong this is. This is 5973 * so broken as to be worse than useless. The API draft 5974 * REALLY is NOT helpful here... I am not convinced that the 5975 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5976 * are at all well-founded. 5977 */ 5978 if (level != SOL_SCTP) { 5979 struct sctp_af *af = sctp_sk(sk)->pf->af; 5980 5981 retval = af->getsockopt(sk, level, optname, optval, optlen); 5982 return retval; 5983 } 5984 5985 if (get_user(len, optlen)) 5986 return -EFAULT; 5987 5988 lock_sock(sk); 5989 5990 switch (optname) { 5991 case SCTP_STATUS: 5992 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5993 break; 5994 case SCTP_DISABLE_FRAGMENTS: 5995 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5996 optlen); 5997 break; 5998 case SCTP_EVENTS: 5999 retval = sctp_getsockopt_events(sk, len, optval, optlen); 6000 break; 6001 case SCTP_AUTOCLOSE: 6002 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 6003 break; 6004 case SCTP_SOCKOPT_PEELOFF: 6005 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 6006 break; 6007 case SCTP_PEER_ADDR_PARAMS: 6008 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 6009 optlen); 6010 break; 6011 case SCTP_DELAYED_SACK: 6012 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 6013 optlen); 6014 break; 6015 case SCTP_INITMSG: 6016 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 6017 break; 6018 case SCTP_GET_PEER_ADDRS: 6019 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 6020 optlen); 6021 break; 6022 case SCTP_GET_LOCAL_ADDRS: 6023 retval = sctp_getsockopt_local_addrs(sk, len, optval, 6024 optlen); 6025 break; 6026 case SCTP_SOCKOPT_CONNECTX3: 6027 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 6028 break; 6029 case SCTP_DEFAULT_SEND_PARAM: 6030 retval = sctp_getsockopt_default_send_param(sk, len, 6031 optval, optlen); 6032 break; 6033 case SCTP_DEFAULT_SNDINFO: 6034 retval = sctp_getsockopt_default_sndinfo(sk, len, 6035 optval, optlen); 6036 break; 6037 case SCTP_PRIMARY_ADDR: 6038 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 6039 break; 6040 case SCTP_NODELAY: 6041 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 6042 break; 6043 case SCTP_RTOINFO: 6044 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 6045 break; 6046 case SCTP_ASSOCINFO: 6047 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 6048 break; 6049 case SCTP_I_WANT_MAPPED_V4_ADDR: 6050 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 6051 break; 6052 case SCTP_MAXSEG: 6053 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 6054 break; 6055 case SCTP_GET_PEER_ADDR_INFO: 6056 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 6057 optlen); 6058 break; 6059 case SCTP_ADAPTATION_LAYER: 6060 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 6061 optlen); 6062 break; 6063 case SCTP_CONTEXT: 6064 retval = sctp_getsockopt_context(sk, len, optval, optlen); 6065 break; 6066 case SCTP_FRAGMENT_INTERLEAVE: 6067 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 6068 optlen); 6069 break; 6070 case SCTP_PARTIAL_DELIVERY_POINT: 6071 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 6072 optlen); 6073 break; 6074 case SCTP_MAX_BURST: 6075 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 6076 break; 6077 case SCTP_AUTH_KEY: 6078 case SCTP_AUTH_CHUNK: 6079 case SCTP_AUTH_DELETE_KEY: 6080 retval = -EOPNOTSUPP; 6081 break; 6082 case SCTP_HMAC_IDENT: 6083 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 6084 break; 6085 case SCTP_AUTH_ACTIVE_KEY: 6086 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 6087 break; 6088 case SCTP_PEER_AUTH_CHUNKS: 6089 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 6090 optlen); 6091 break; 6092 case SCTP_LOCAL_AUTH_CHUNKS: 6093 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 6094 optlen); 6095 break; 6096 case SCTP_GET_ASSOC_NUMBER: 6097 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 6098 break; 6099 case SCTP_GET_ASSOC_ID_LIST: 6100 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 6101 break; 6102 case SCTP_AUTO_ASCONF: 6103 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 6104 break; 6105 case SCTP_PEER_ADDR_THLDS: 6106 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 6107 break; 6108 case SCTP_GET_ASSOC_STATS: 6109 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 6110 break; 6111 case SCTP_RECVRCVINFO: 6112 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 6113 break; 6114 case SCTP_RECVNXTINFO: 6115 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 6116 break; 6117 default: 6118 retval = -ENOPROTOOPT; 6119 break; 6120 } 6121 6122 release_sock(sk); 6123 return retval; 6124} 6125 6126static void sctp_hash(struct sock *sk) 6127{ 6128 /* STUB */ 6129} 6130 6131static void sctp_unhash(struct sock *sk) 6132{ 6133 /* STUB */ 6134} 6135 6136/* Check if port is acceptable. Possibly find first available port. 6137 * 6138 * The port hash table (contained in the 'global' SCTP protocol storage 6139 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 6140 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 6141 * list (the list number is the port number hashed out, so as you 6142 * would expect from a hash function, all the ports in a given list have 6143 * such a number that hashes out to the same list number; you were 6144 * expecting that, right?); so each list has a set of ports, with a 6145 * link to the socket (struct sock) that uses it, the port number and 6146 * a fastreuse flag (FIXME: NPI ipg). 6147 */ 6148static struct sctp_bind_bucket *sctp_bucket_create( 6149 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 6150 6151static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 6152{ 6153 struct sctp_bind_hashbucket *head; /* hash list */ 6154 struct sctp_bind_bucket *pp; 6155 unsigned short snum; 6156 int ret; 6157 6158 snum = ntohs(addr->v4.sin_port); 6159 6160 pr_debug("%s: begins, snum:%d\n", __func__, snum); 6161 6162 local_bh_disable(); 6163 6164 if (snum == 0) { 6165 /* Search for an available port. */ 6166 int low, high, remaining, index; 6167 unsigned int rover; 6168 struct net *net = sock_net(sk); 6169 6170 inet_get_local_port_range(net, &low, &high); 6171 remaining = (high - low) + 1; 6172 rover = prandom_u32() % remaining + low; 6173 6174 do { 6175 rover++; 6176 if ((rover < low) || (rover > high)) 6177 rover = low; 6178 if (inet_is_local_reserved_port(net, rover)) 6179 continue; 6180 index = sctp_phashfn(sock_net(sk), rover); 6181 head = &sctp_port_hashtable[index]; 6182 spin_lock(&head->lock); 6183 sctp_for_each_hentry(pp, &head->chain) 6184 if ((pp->port == rover) && 6185 net_eq(sock_net(sk), pp->net)) 6186 goto next; 6187 break; 6188 next: 6189 spin_unlock(&head->lock); 6190 } while (--remaining > 0); 6191 6192 /* Exhausted local port range during search? */ 6193 ret = 1; 6194 if (remaining <= 0) 6195 goto fail; 6196 6197 /* OK, here is the one we will use. HEAD (the port 6198 * hash table list entry) is non-NULL and we hold it's 6199 * mutex. 6200 */ 6201 snum = rover; 6202 } else { 6203 /* We are given an specific port number; we verify 6204 * that it is not being used. If it is used, we will 6205 * exahust the search in the hash list corresponding 6206 * to the port number (snum) - we detect that with the 6207 * port iterator, pp being NULL. 6208 */ 6209 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 6210 spin_lock(&head->lock); 6211 sctp_for_each_hentry(pp, &head->chain) { 6212 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 6213 goto pp_found; 6214 } 6215 } 6216 pp = NULL; 6217 goto pp_not_found; 6218pp_found: 6219 if (!hlist_empty(&pp->owner)) { 6220 /* We had a port hash table hit - there is an 6221 * available port (pp != NULL) and it is being 6222 * used by other socket (pp->owner not empty); that other 6223 * socket is going to be sk2. 6224 */ 6225 int reuse = sk->sk_reuse; 6226 struct sock *sk2; 6227 6228 pr_debug("%s: found a possible match\n", __func__); 6229 6230 if (pp->fastreuse && sk->sk_reuse && 6231 sk->sk_state != SCTP_SS_LISTENING) 6232 goto success; 6233 6234 /* Run through the list of sockets bound to the port 6235 * (pp->port) [via the pointers bind_next and 6236 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 6237 * we get the endpoint they describe and run through 6238 * the endpoint's list of IP (v4 or v6) addresses, 6239 * comparing each of the addresses with the address of 6240 * the socket sk. If we find a match, then that means 6241 * that this port/socket (sk) combination are already 6242 * in an endpoint. 6243 */ 6244 sk_for_each_bound(sk2, &pp->owner) { 6245 struct sctp_endpoint *ep2; 6246 ep2 = sctp_sk(sk2)->ep; 6247 6248 if (sk == sk2 || 6249 (reuse && sk2->sk_reuse && 6250 sk2->sk_state != SCTP_SS_LISTENING)) 6251 continue; 6252 6253 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 6254 sctp_sk(sk2), sctp_sk(sk))) { 6255 ret = (long)sk2; 6256 goto fail_unlock; 6257 } 6258 } 6259 6260 pr_debug("%s: found a match\n", __func__); 6261 } 6262pp_not_found: 6263 /* If there was a hash table miss, create a new port. */ 6264 ret = 1; 6265 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 6266 goto fail_unlock; 6267 6268 /* In either case (hit or miss), make sure fastreuse is 1 only 6269 * if sk->sk_reuse is too (that is, if the caller requested 6270 * SO_REUSEADDR on this socket -sk-). 6271 */ 6272 if (hlist_empty(&pp->owner)) { 6273 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 6274 pp->fastreuse = 1; 6275 else 6276 pp->fastreuse = 0; 6277 } else if (pp->fastreuse && 6278 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 6279 pp->fastreuse = 0; 6280 6281 /* We are set, so fill up all the data in the hash table 6282 * entry, tie the socket list information with the rest of the 6283 * sockets FIXME: Blurry, NPI (ipg). 6284 */ 6285success: 6286 if (!sctp_sk(sk)->bind_hash) { 6287 inet_sk(sk)->inet_num = snum; 6288 sk_add_bind_node(sk, &pp->owner); 6289 sctp_sk(sk)->bind_hash = pp; 6290 } 6291 ret = 0; 6292 6293fail_unlock: 6294 spin_unlock(&head->lock); 6295 6296fail: 6297 local_bh_enable(); 6298 return ret; 6299} 6300 6301/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 6302 * port is requested. 6303 */ 6304static int sctp_get_port(struct sock *sk, unsigned short snum) 6305{ 6306 union sctp_addr addr; 6307 struct sctp_af *af = sctp_sk(sk)->pf->af; 6308 6309 /* Set up a dummy address struct from the sk. */ 6310 af->from_sk(&addr, sk); 6311 addr.v4.sin_port = htons(snum); 6312 6313 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 6314 return !!sctp_get_port_local(sk, &addr); 6315} 6316 6317/* 6318 * Move a socket to LISTENING state. 6319 */ 6320static int sctp_listen_start(struct sock *sk, int backlog) 6321{ 6322 struct sctp_sock *sp = sctp_sk(sk); 6323 struct sctp_endpoint *ep = sp->ep; 6324 struct crypto_hash *tfm = NULL; 6325 char alg[32]; 6326 6327 /* Allocate HMAC for generating cookie. */ 6328 if (!sp->hmac && sp->sctp_hmac_alg) { 6329 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 6330 tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC); 6331 if (IS_ERR(tfm)) { 6332 net_info_ratelimited("failed to load transform for %s: %ld\n", 6333 sp->sctp_hmac_alg, PTR_ERR(tfm)); 6334 return -ENOSYS; 6335 } 6336 sctp_sk(sk)->hmac = tfm; 6337 } 6338 6339 /* 6340 * If a bind() or sctp_bindx() is not called prior to a listen() 6341 * call that allows new associations to be accepted, the system 6342 * picks an ephemeral port and will choose an address set equivalent 6343 * to binding with a wildcard address. 6344 * 6345 * This is not currently spelled out in the SCTP sockets 6346 * extensions draft, but follows the practice as seen in TCP 6347 * sockets. 6348 * 6349 */ 6350 sk->sk_state = SCTP_SS_LISTENING; 6351 if (!ep->base.bind_addr.port) { 6352 if (sctp_autobind(sk)) 6353 return -EAGAIN; 6354 } else { 6355 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 6356 sk->sk_state = SCTP_SS_CLOSED; 6357 return -EADDRINUSE; 6358 } 6359 } 6360 6361 sk->sk_max_ack_backlog = backlog; 6362 sctp_hash_endpoint(ep); 6363 return 0; 6364} 6365 6366/* 6367 * 4.1.3 / 5.1.3 listen() 6368 * 6369 * By default, new associations are not accepted for UDP style sockets. 6370 * An application uses listen() to mark a socket as being able to 6371 * accept new associations. 6372 * 6373 * On TCP style sockets, applications use listen() to ready the SCTP 6374 * endpoint for accepting inbound associations. 6375 * 6376 * On both types of endpoints a backlog of '0' disables listening. 6377 * 6378 * Move a socket to LISTENING state. 6379 */ 6380int sctp_inet_listen(struct socket *sock, int backlog) 6381{ 6382 struct sock *sk = sock->sk; 6383 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6384 int err = -EINVAL; 6385 6386 if (unlikely(backlog < 0)) 6387 return err; 6388 6389 lock_sock(sk); 6390 6391 /* Peeled-off sockets are not allowed to listen(). */ 6392 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 6393 goto out; 6394 6395 if (sock->state != SS_UNCONNECTED) 6396 goto out; 6397 6398 /* If backlog is zero, disable listening. */ 6399 if (!backlog) { 6400 if (sctp_sstate(sk, CLOSED)) 6401 goto out; 6402 6403 err = 0; 6404 sctp_unhash_endpoint(ep); 6405 sk->sk_state = SCTP_SS_CLOSED; 6406 if (sk->sk_reuse) 6407 sctp_sk(sk)->bind_hash->fastreuse = 1; 6408 goto out; 6409 } 6410 6411 /* If we are already listening, just update the backlog */ 6412 if (sctp_sstate(sk, LISTENING)) 6413 sk->sk_max_ack_backlog = backlog; 6414 else { 6415 err = sctp_listen_start(sk, backlog); 6416 if (err) 6417 goto out; 6418 } 6419 6420 err = 0; 6421out: 6422 release_sock(sk); 6423 return err; 6424} 6425 6426/* 6427 * This function is done by modeling the current datagram_poll() and the 6428 * tcp_poll(). Note that, based on these implementations, we don't 6429 * lock the socket in this function, even though it seems that, 6430 * ideally, locking or some other mechanisms can be used to ensure 6431 * the integrity of the counters (sndbuf and wmem_alloc) used 6432 * in this place. We assume that we don't need locks either until proven 6433 * otherwise. 6434 * 6435 * Another thing to note is that we include the Async I/O support 6436 * here, again, by modeling the current TCP/UDP code. We don't have 6437 * a good way to test with it yet. 6438 */ 6439unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 6440{ 6441 struct sock *sk = sock->sk; 6442 struct sctp_sock *sp = sctp_sk(sk); 6443 unsigned int mask; 6444 6445 poll_wait(file, sk_sleep(sk), wait); 6446 6447 /* A TCP-style listening socket becomes readable when the accept queue 6448 * is not empty. 6449 */ 6450 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 6451 return (!list_empty(&sp->ep->asocs)) ? 6452 (POLLIN | POLLRDNORM) : 0; 6453 6454 mask = 0; 6455 6456 /* Is there any exceptional events? */ 6457 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 6458 mask |= POLLERR | 6459 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0); 6460 if (sk->sk_shutdown & RCV_SHUTDOWN) 6461 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 6462 if (sk->sk_shutdown == SHUTDOWN_MASK) 6463 mask |= POLLHUP; 6464 6465 /* Is it readable? Reconsider this code with TCP-style support. */ 6466 if (!skb_queue_empty(&sk->sk_receive_queue)) 6467 mask |= POLLIN | POLLRDNORM; 6468 6469 /* The association is either gone or not ready. */ 6470 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 6471 return mask; 6472 6473 /* Is it writable? */ 6474 if (sctp_writeable(sk)) { 6475 mask |= POLLOUT | POLLWRNORM; 6476 } else { 6477 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 6478 /* 6479 * Since the socket is not locked, the buffer 6480 * might be made available after the writeable check and 6481 * before the bit is set. This could cause a lost I/O 6482 * signal. tcp_poll() has a race breaker for this race 6483 * condition. Based on their implementation, we put 6484 * in the following code to cover it as well. 6485 */ 6486 if (sctp_writeable(sk)) 6487 mask |= POLLOUT | POLLWRNORM; 6488 } 6489 return mask; 6490} 6491 6492/******************************************************************** 6493 * 2nd Level Abstractions 6494 ********************************************************************/ 6495 6496static struct sctp_bind_bucket *sctp_bucket_create( 6497 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 6498{ 6499 struct sctp_bind_bucket *pp; 6500 6501 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 6502 if (pp) { 6503 SCTP_DBG_OBJCNT_INC(bind_bucket); 6504 pp->port = snum; 6505 pp->fastreuse = 0; 6506 INIT_HLIST_HEAD(&pp->owner); 6507 pp->net = net; 6508 hlist_add_head(&pp->node, &head->chain); 6509 } 6510 return pp; 6511} 6512 6513/* Caller must hold hashbucket lock for this tb with local BH disabled */ 6514static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 6515{ 6516 if (pp && hlist_empty(&pp->owner)) { 6517 __hlist_del(&pp->node); 6518 kmem_cache_free(sctp_bucket_cachep, pp); 6519 SCTP_DBG_OBJCNT_DEC(bind_bucket); 6520 } 6521} 6522 6523/* Release this socket's reference to a local port. */ 6524static inline void __sctp_put_port(struct sock *sk) 6525{ 6526 struct sctp_bind_hashbucket *head = 6527 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 6528 inet_sk(sk)->inet_num)]; 6529 struct sctp_bind_bucket *pp; 6530 6531 spin_lock(&head->lock); 6532 pp = sctp_sk(sk)->bind_hash; 6533 __sk_del_bind_node(sk); 6534 sctp_sk(sk)->bind_hash = NULL; 6535 inet_sk(sk)->inet_num = 0; 6536 sctp_bucket_destroy(pp); 6537 spin_unlock(&head->lock); 6538} 6539 6540void sctp_put_port(struct sock *sk) 6541{ 6542 local_bh_disable(); 6543 __sctp_put_port(sk); 6544 local_bh_enable(); 6545} 6546 6547/* 6548 * The system picks an ephemeral port and choose an address set equivalent 6549 * to binding with a wildcard address. 6550 * One of those addresses will be the primary address for the association. 6551 * This automatically enables the multihoming capability of SCTP. 6552 */ 6553static int sctp_autobind(struct sock *sk) 6554{ 6555 union sctp_addr autoaddr; 6556 struct sctp_af *af; 6557 __be16 port; 6558 6559 /* Initialize a local sockaddr structure to INADDR_ANY. */ 6560 af = sctp_sk(sk)->pf->af; 6561 6562 port = htons(inet_sk(sk)->inet_num); 6563 af->inaddr_any(&autoaddr, port); 6564 6565 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 6566} 6567 6568/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 6569 * 6570 * From RFC 2292 6571 * 4.2 The cmsghdr Structure * 6572 * 6573 * When ancillary data is sent or received, any number of ancillary data 6574 * objects can be specified by the msg_control and msg_controllen members of 6575 * the msghdr structure, because each object is preceded by 6576 * a cmsghdr structure defining the object's length (the cmsg_len member). 6577 * Historically Berkeley-derived implementations have passed only one object 6578 * at a time, but this API allows multiple objects to be 6579 * passed in a single call to sendmsg() or recvmsg(). The following example 6580 * shows two ancillary data objects in a control buffer. 6581 * 6582 * |<--------------------------- msg_controllen -------------------------->| 6583 * | | 6584 * 6585 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 6586 * 6587 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 6588 * | | | 6589 * 6590 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 6591 * 6592 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 6593 * | | | | | 6594 * 6595 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6596 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 6597 * 6598 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 6599 * 6600 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6601 * ^ 6602 * | 6603 * 6604 * msg_control 6605 * points here 6606 */ 6607static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs) 6608{ 6609 struct cmsghdr *cmsg; 6610 struct msghdr *my_msg = (struct msghdr *)msg; 6611 6612 for_each_cmsghdr(cmsg, my_msg) { 6613 if (!CMSG_OK(my_msg, cmsg)) 6614 return -EINVAL; 6615 6616 /* Should we parse this header or ignore? */ 6617 if (cmsg->cmsg_level != IPPROTO_SCTP) 6618 continue; 6619 6620 /* Strictly check lengths following example in SCM code. */ 6621 switch (cmsg->cmsg_type) { 6622 case SCTP_INIT: 6623 /* SCTP Socket API Extension 6624 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 6625 * 6626 * This cmsghdr structure provides information for 6627 * initializing new SCTP associations with sendmsg(). 6628 * The SCTP_INITMSG socket option uses this same data 6629 * structure. This structure is not used for 6630 * recvmsg(). 6631 * 6632 * cmsg_level cmsg_type cmsg_data[] 6633 * ------------ ------------ ---------------------- 6634 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 6635 */ 6636 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 6637 return -EINVAL; 6638 6639 cmsgs->init = CMSG_DATA(cmsg); 6640 break; 6641 6642 case SCTP_SNDRCV: 6643 /* SCTP Socket API Extension 6644 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 6645 * 6646 * This cmsghdr structure specifies SCTP options for 6647 * sendmsg() and describes SCTP header information 6648 * about a received message through recvmsg(). 6649 * 6650 * cmsg_level cmsg_type cmsg_data[] 6651 * ------------ ------------ ---------------------- 6652 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 6653 */ 6654 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6655 return -EINVAL; 6656 6657 cmsgs->srinfo = CMSG_DATA(cmsg); 6658 6659 if (cmsgs->srinfo->sinfo_flags & 6660 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6661 SCTP_SACK_IMMEDIATELY | 6662 SCTP_ABORT | SCTP_EOF)) 6663 return -EINVAL; 6664 break; 6665 6666 case SCTP_SNDINFO: 6667 /* SCTP Socket API Extension 6668 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 6669 * 6670 * This cmsghdr structure specifies SCTP options for 6671 * sendmsg(). This structure and SCTP_RCVINFO replaces 6672 * SCTP_SNDRCV which has been deprecated. 6673 * 6674 * cmsg_level cmsg_type cmsg_data[] 6675 * ------------ ------------ --------------------- 6676 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 6677 */ 6678 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 6679 return -EINVAL; 6680 6681 cmsgs->sinfo = CMSG_DATA(cmsg); 6682 6683 if (cmsgs->sinfo->snd_flags & 6684 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6685 SCTP_SACK_IMMEDIATELY | 6686 SCTP_ABORT | SCTP_EOF)) 6687 return -EINVAL; 6688 break; 6689 default: 6690 return -EINVAL; 6691 } 6692 } 6693 6694 return 0; 6695} 6696 6697/* 6698 * Wait for a packet.. 6699 * Note: This function is the same function as in core/datagram.c 6700 * with a few modifications to make lksctp work. 6701 */ 6702static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 6703{ 6704 int error; 6705 DEFINE_WAIT(wait); 6706 6707 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6708 6709 /* Socket errors? */ 6710 error = sock_error(sk); 6711 if (error) 6712 goto out; 6713 6714 if (!skb_queue_empty(&sk->sk_receive_queue)) 6715 goto ready; 6716 6717 /* Socket shut down? */ 6718 if (sk->sk_shutdown & RCV_SHUTDOWN) 6719 goto out; 6720 6721 /* Sequenced packets can come disconnected. If so we report the 6722 * problem. 6723 */ 6724 error = -ENOTCONN; 6725 6726 /* Is there a good reason to think that we may receive some data? */ 6727 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6728 goto out; 6729 6730 /* Handle signals. */ 6731 if (signal_pending(current)) 6732 goto interrupted; 6733 6734 /* Let another process have a go. Since we are going to sleep 6735 * anyway. Note: This may cause odd behaviors if the message 6736 * does not fit in the user's buffer, but this seems to be the 6737 * only way to honor MSG_DONTWAIT realistically. 6738 */ 6739 release_sock(sk); 6740 *timeo_p = schedule_timeout(*timeo_p); 6741 lock_sock(sk); 6742 6743ready: 6744 finish_wait(sk_sleep(sk), &wait); 6745 return 0; 6746 6747interrupted: 6748 error = sock_intr_errno(*timeo_p); 6749 6750out: 6751 finish_wait(sk_sleep(sk), &wait); 6752 *err = error; 6753 return error; 6754} 6755 6756/* Receive a datagram. 6757 * Note: This is pretty much the same routine as in core/datagram.c 6758 * with a few changes to make lksctp work. 6759 */ 6760struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6761 int noblock, int *err) 6762{ 6763 int error; 6764 struct sk_buff *skb; 6765 long timeo; 6766 6767 timeo = sock_rcvtimeo(sk, noblock); 6768 6769 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 6770 MAX_SCHEDULE_TIMEOUT); 6771 6772 do { 6773 /* Again only user level code calls this function, 6774 * so nothing interrupt level 6775 * will suddenly eat the receive_queue. 6776 * 6777 * Look at current nfs client by the way... 6778 * However, this function was correct in any case. 8) 6779 */ 6780 if (flags & MSG_PEEK) { 6781 spin_lock_bh(&sk->sk_receive_queue.lock); 6782 skb = skb_peek(&sk->sk_receive_queue); 6783 if (skb) 6784 atomic_inc(&skb->users); 6785 spin_unlock_bh(&sk->sk_receive_queue.lock); 6786 } else { 6787 skb = skb_dequeue(&sk->sk_receive_queue); 6788 } 6789 6790 if (skb) 6791 return skb; 6792 6793 /* Caller is allowed not to check sk->sk_err before calling. */ 6794 error = sock_error(sk); 6795 if (error) 6796 goto no_packet; 6797 6798 if (sk->sk_shutdown & RCV_SHUTDOWN) 6799 break; 6800 6801 if (sk_can_busy_loop(sk) && 6802 sk_busy_loop(sk, noblock)) 6803 continue; 6804 6805 /* User doesn't want to wait. */ 6806 error = -EAGAIN; 6807 if (!timeo) 6808 goto no_packet; 6809 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6810 6811 return NULL; 6812 6813no_packet: 6814 *err = error; 6815 return NULL; 6816} 6817 6818/* If sndbuf has changed, wake up per association sndbuf waiters. */ 6819static void __sctp_write_space(struct sctp_association *asoc) 6820{ 6821 struct sock *sk = asoc->base.sk; 6822 struct socket *sock = sk->sk_socket; 6823 6824 if ((sctp_wspace(asoc) > 0) && sock) { 6825 if (waitqueue_active(&asoc->wait)) 6826 wake_up_interruptible(&asoc->wait); 6827 6828 if (sctp_writeable(sk)) { 6829 wait_queue_head_t *wq = sk_sleep(sk); 6830 6831 if (wq && waitqueue_active(wq)) 6832 wake_up_interruptible(wq); 6833 6834 /* Note that we try to include the Async I/O support 6835 * here by modeling from the current TCP/UDP code. 6836 * We have not tested with it yet. 6837 */ 6838 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 6839 sock_wake_async(sock, 6840 SOCK_WAKE_SPACE, POLL_OUT); 6841 } 6842 } 6843} 6844 6845static void sctp_wake_up_waiters(struct sock *sk, 6846 struct sctp_association *asoc) 6847{ 6848 struct sctp_association *tmp = asoc; 6849 6850 /* We do accounting for the sndbuf space per association, 6851 * so we only need to wake our own association. 6852 */ 6853 if (asoc->ep->sndbuf_policy) 6854 return __sctp_write_space(asoc); 6855 6856 /* If association goes down and is just flushing its 6857 * outq, then just normally notify others. 6858 */ 6859 if (asoc->base.dead) 6860 return sctp_write_space(sk); 6861 6862 /* Accounting for the sndbuf space is per socket, so we 6863 * need to wake up others, try to be fair and in case of 6864 * other associations, let them have a go first instead 6865 * of just doing a sctp_write_space() call. 6866 * 6867 * Note that we reach sctp_wake_up_waiters() only when 6868 * associations free up queued chunks, thus we are under 6869 * lock and the list of associations on a socket is 6870 * guaranteed not to change. 6871 */ 6872 for (tmp = list_next_entry(tmp, asocs); 1; 6873 tmp = list_next_entry(tmp, asocs)) { 6874 /* Manually skip the head element. */ 6875 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 6876 continue; 6877 /* Wake up association. */ 6878 __sctp_write_space(tmp); 6879 /* We've reached the end. */ 6880 if (tmp == asoc) 6881 break; 6882 } 6883} 6884 6885/* Do accounting for the sndbuf space. 6886 * Decrement the used sndbuf space of the corresponding association by the 6887 * data size which was just transmitted(freed). 6888 */ 6889static void sctp_wfree(struct sk_buff *skb) 6890{ 6891 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 6892 struct sctp_association *asoc = chunk->asoc; 6893 struct sock *sk = asoc->base.sk; 6894 6895 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6896 sizeof(struct sk_buff) + 6897 sizeof(struct sctp_chunk); 6898 6899 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6900 6901 /* 6902 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6903 */ 6904 sk->sk_wmem_queued -= skb->truesize; 6905 sk_mem_uncharge(sk, skb->truesize); 6906 6907 sock_wfree(skb); 6908 sctp_wake_up_waiters(sk, asoc); 6909 6910 sctp_association_put(asoc); 6911} 6912 6913/* Do accounting for the receive space on the socket. 6914 * Accounting for the association is done in ulpevent.c 6915 * We set this as a destructor for the cloned data skbs so that 6916 * accounting is done at the correct time. 6917 */ 6918void sctp_sock_rfree(struct sk_buff *skb) 6919{ 6920 struct sock *sk = skb->sk; 6921 struct sctp_ulpevent *event = sctp_skb2event(skb); 6922 6923 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6924 6925 /* 6926 * Mimic the behavior of sock_rfree 6927 */ 6928 sk_mem_uncharge(sk, event->rmem_len); 6929} 6930 6931 6932/* Helper function to wait for space in the sndbuf. */ 6933static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6934 size_t msg_len) 6935{ 6936 struct sock *sk = asoc->base.sk; 6937 int err = 0; 6938 long current_timeo = *timeo_p; 6939 DEFINE_WAIT(wait); 6940 6941 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 6942 *timeo_p, msg_len); 6943 6944 /* Increment the association's refcnt. */ 6945 sctp_association_hold(asoc); 6946 6947 /* Wait on the association specific sndbuf space. */ 6948 for (;;) { 6949 prepare_to_wait_exclusive(&asoc->wait, &wait, 6950 TASK_INTERRUPTIBLE); 6951 if (!*timeo_p) 6952 goto do_nonblock; 6953 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6954 asoc->base.dead) 6955 goto do_error; 6956 if (signal_pending(current)) 6957 goto do_interrupted; 6958 if (msg_len <= sctp_wspace(asoc)) 6959 break; 6960 6961 /* Let another process have a go. Since we are going 6962 * to sleep anyway. 6963 */ 6964 release_sock(sk); 6965 current_timeo = schedule_timeout(current_timeo); 6966 BUG_ON(sk != asoc->base.sk); 6967 lock_sock(sk); 6968 6969 *timeo_p = current_timeo; 6970 } 6971 6972out: 6973 finish_wait(&asoc->wait, &wait); 6974 6975 /* Release the association's refcnt. */ 6976 sctp_association_put(asoc); 6977 6978 return err; 6979 6980do_error: 6981 err = -EPIPE; 6982 goto out; 6983 6984do_interrupted: 6985 err = sock_intr_errno(*timeo_p); 6986 goto out; 6987 6988do_nonblock: 6989 err = -EAGAIN; 6990 goto out; 6991} 6992 6993void sctp_data_ready(struct sock *sk) 6994{ 6995 struct socket_wq *wq; 6996 6997 rcu_read_lock(); 6998 wq = rcu_dereference(sk->sk_wq); 6999 if (wq_has_sleeper(wq)) 7000 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 7001 POLLRDNORM | POLLRDBAND); 7002 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 7003 rcu_read_unlock(); 7004} 7005 7006/* If socket sndbuf has changed, wake up all per association waiters. */ 7007void sctp_write_space(struct sock *sk) 7008{ 7009 struct sctp_association *asoc; 7010 7011 /* Wake up the tasks in each wait queue. */ 7012 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 7013 __sctp_write_space(asoc); 7014 } 7015} 7016 7017/* Is there any sndbuf space available on the socket? 7018 * 7019 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 7020 * associations on the same socket. For a UDP-style socket with 7021 * multiple associations, it is possible for it to be "unwriteable" 7022 * prematurely. I assume that this is acceptable because 7023 * a premature "unwriteable" is better than an accidental "writeable" which 7024 * would cause an unwanted block under certain circumstances. For the 1-1 7025 * UDP-style sockets or TCP-style sockets, this code should work. 7026 * - Daisy 7027 */ 7028static int sctp_writeable(struct sock *sk) 7029{ 7030 int amt = 0; 7031 7032 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 7033 if (amt < 0) 7034 amt = 0; 7035 return amt; 7036} 7037 7038/* Wait for an association to go into ESTABLISHED state. If timeout is 0, 7039 * returns immediately with EINPROGRESS. 7040 */ 7041static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 7042{ 7043 struct sock *sk = asoc->base.sk; 7044 int err = 0; 7045 long current_timeo = *timeo_p; 7046 DEFINE_WAIT(wait); 7047 7048 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 7049 7050 /* Increment the association's refcnt. */ 7051 sctp_association_hold(asoc); 7052 7053 for (;;) { 7054 prepare_to_wait_exclusive(&asoc->wait, &wait, 7055 TASK_INTERRUPTIBLE); 7056 if (!*timeo_p) 7057 goto do_nonblock; 7058 if (sk->sk_shutdown & RCV_SHUTDOWN) 7059 break; 7060 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7061 asoc->base.dead) 7062 goto do_error; 7063 if (signal_pending(current)) 7064 goto do_interrupted; 7065 7066 if (sctp_state(asoc, ESTABLISHED)) 7067 break; 7068 7069 /* Let another process have a go. Since we are going 7070 * to sleep anyway. 7071 */ 7072 release_sock(sk); 7073 current_timeo = schedule_timeout(current_timeo); 7074 lock_sock(sk); 7075 7076 *timeo_p = current_timeo; 7077 } 7078 7079out: 7080 finish_wait(&asoc->wait, &wait); 7081 7082 /* Release the association's refcnt. */ 7083 sctp_association_put(asoc); 7084 7085 return err; 7086 7087do_error: 7088 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 7089 err = -ETIMEDOUT; 7090 else 7091 err = -ECONNREFUSED; 7092 goto out; 7093 7094do_interrupted: 7095 err = sock_intr_errno(*timeo_p); 7096 goto out; 7097 7098do_nonblock: 7099 err = -EINPROGRESS; 7100 goto out; 7101} 7102 7103static int sctp_wait_for_accept(struct sock *sk, long timeo) 7104{ 7105 struct sctp_endpoint *ep; 7106 int err = 0; 7107 DEFINE_WAIT(wait); 7108 7109 ep = sctp_sk(sk)->ep; 7110 7111 7112 for (;;) { 7113 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 7114 TASK_INTERRUPTIBLE); 7115 7116 if (list_empty(&ep->asocs)) { 7117 release_sock(sk); 7118 timeo = schedule_timeout(timeo); 7119 lock_sock(sk); 7120 } 7121 7122 err = -EINVAL; 7123 if (!sctp_sstate(sk, LISTENING)) 7124 break; 7125 7126 err = 0; 7127 if (!list_empty(&ep->asocs)) 7128 break; 7129 7130 err = sock_intr_errno(timeo); 7131 if (signal_pending(current)) 7132 break; 7133 7134 err = -EAGAIN; 7135 if (!timeo) 7136 break; 7137 } 7138 7139 finish_wait(sk_sleep(sk), &wait); 7140 7141 return err; 7142} 7143 7144static void sctp_wait_for_close(struct sock *sk, long timeout) 7145{ 7146 DEFINE_WAIT(wait); 7147 7148 do { 7149 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7150 if (list_empty(&sctp_sk(sk)->ep->asocs)) 7151 break; 7152 release_sock(sk); 7153 timeout = schedule_timeout(timeout); 7154 lock_sock(sk); 7155 } while (!signal_pending(current) && timeout); 7156 7157 finish_wait(sk_sleep(sk), &wait); 7158} 7159 7160static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 7161{ 7162 struct sk_buff *frag; 7163 7164 if (!skb->data_len) 7165 goto done; 7166 7167 /* Don't forget the fragments. */ 7168 skb_walk_frags(skb, frag) 7169 sctp_skb_set_owner_r_frag(frag, sk); 7170 7171done: 7172 sctp_skb_set_owner_r(skb, sk); 7173} 7174 7175void sctp_copy_sock(struct sock *newsk, struct sock *sk, 7176 struct sctp_association *asoc) 7177{ 7178 struct inet_sock *inet = inet_sk(sk); 7179 struct inet_sock *newinet; 7180 7181 newsk->sk_type = sk->sk_type; 7182 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 7183 newsk->sk_flags = sk->sk_flags; 7184 newsk->sk_tsflags = sk->sk_tsflags; 7185 newsk->sk_no_check_tx = sk->sk_no_check_tx; 7186 newsk->sk_no_check_rx = sk->sk_no_check_rx; 7187 newsk->sk_reuse = sk->sk_reuse; 7188 7189 newsk->sk_shutdown = sk->sk_shutdown; 7190 newsk->sk_destruct = sctp_destruct_sock; 7191 newsk->sk_family = sk->sk_family; 7192 newsk->sk_protocol = IPPROTO_SCTP; 7193 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 7194 newsk->sk_sndbuf = sk->sk_sndbuf; 7195 newsk->sk_rcvbuf = sk->sk_rcvbuf; 7196 newsk->sk_lingertime = sk->sk_lingertime; 7197 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 7198 newsk->sk_sndtimeo = sk->sk_sndtimeo; 7199 7200 newinet = inet_sk(newsk); 7201 7202 /* Initialize sk's sport, dport, rcv_saddr and daddr for 7203 * getsockname() and getpeername() 7204 */ 7205 newinet->inet_sport = inet->inet_sport; 7206 newinet->inet_saddr = inet->inet_saddr; 7207 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 7208 newinet->inet_dport = htons(asoc->peer.port); 7209 newinet->pmtudisc = inet->pmtudisc; 7210 newinet->inet_id = asoc->next_tsn ^ jiffies; 7211 7212 newinet->uc_ttl = inet->uc_ttl; 7213 newinet->mc_loop = 1; 7214 newinet->mc_ttl = 1; 7215 newinet->mc_index = 0; 7216 newinet->mc_list = NULL; 7217 7218 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 7219 net_enable_timestamp(); 7220} 7221 7222static inline void sctp_copy_descendant(struct sock *sk_to, 7223 const struct sock *sk_from) 7224{ 7225 int ancestor_size = sizeof(struct inet_sock) + 7226 sizeof(struct sctp_sock) - 7227 offsetof(struct sctp_sock, auto_asconf_list); 7228 7229 if (sk_from->sk_family == PF_INET6) 7230 ancestor_size += sizeof(struct ipv6_pinfo); 7231 7232 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 7233} 7234 7235/* Populate the fields of the newsk from the oldsk and migrate the assoc 7236 * and its messages to the newsk. 7237 */ 7238static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 7239 struct sctp_association *assoc, 7240 sctp_socket_type_t type) 7241{ 7242 struct sctp_sock *oldsp = sctp_sk(oldsk); 7243 struct sctp_sock *newsp = sctp_sk(newsk); 7244 struct sctp_bind_bucket *pp; /* hash list port iterator */ 7245 struct sctp_endpoint *newep = newsp->ep; 7246 struct sk_buff *skb, *tmp; 7247 struct sctp_ulpevent *event; 7248 struct sctp_bind_hashbucket *head; 7249 7250 /* Migrate socket buffer sizes and all the socket level options to the 7251 * new socket. 7252 */ 7253 newsk->sk_sndbuf = oldsk->sk_sndbuf; 7254 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 7255 /* Brute force copy old sctp opt. */ 7256 sctp_copy_descendant(newsk, oldsk); 7257 7258 /* Restore the ep value that was overwritten with the above structure 7259 * copy. 7260 */ 7261 newsp->ep = newep; 7262 newsp->hmac = NULL; 7263 7264 /* Hook this new socket in to the bind_hash list. */ 7265 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 7266 inet_sk(oldsk)->inet_num)]; 7267 local_bh_disable(); 7268 spin_lock(&head->lock); 7269 pp = sctp_sk(oldsk)->bind_hash; 7270 sk_add_bind_node(newsk, &pp->owner); 7271 sctp_sk(newsk)->bind_hash = pp; 7272 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 7273 spin_unlock(&head->lock); 7274 local_bh_enable(); 7275 7276 /* Copy the bind_addr list from the original endpoint to the new 7277 * endpoint so that we can handle restarts properly 7278 */ 7279 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 7280 &oldsp->ep->base.bind_addr, GFP_KERNEL); 7281 7282 /* Move any messages in the old socket's receive queue that are for the 7283 * peeled off association to the new socket's receive queue. 7284 */ 7285 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 7286 event = sctp_skb2event(skb); 7287 if (event->asoc == assoc) { 7288 __skb_unlink(skb, &oldsk->sk_receive_queue); 7289 __skb_queue_tail(&newsk->sk_receive_queue, skb); 7290 sctp_skb_set_owner_r_frag(skb, newsk); 7291 } 7292 } 7293 7294 /* Clean up any messages pending delivery due to partial 7295 * delivery. Three cases: 7296 * 1) No partial deliver; no work. 7297 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 7298 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 7299 */ 7300 skb_queue_head_init(&newsp->pd_lobby); 7301 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 7302 7303 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 7304 struct sk_buff_head *queue; 7305 7306 /* Decide which queue to move pd_lobby skbs to. */ 7307 if (assoc->ulpq.pd_mode) { 7308 queue = &newsp->pd_lobby; 7309 } else 7310 queue = &newsk->sk_receive_queue; 7311 7312 /* Walk through the pd_lobby, looking for skbs that 7313 * need moved to the new socket. 7314 */ 7315 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 7316 event = sctp_skb2event(skb); 7317 if (event->asoc == assoc) { 7318 __skb_unlink(skb, &oldsp->pd_lobby); 7319 __skb_queue_tail(queue, skb); 7320 sctp_skb_set_owner_r_frag(skb, newsk); 7321 } 7322 } 7323 7324 /* Clear up any skbs waiting for the partial 7325 * delivery to finish. 7326 */ 7327 if (assoc->ulpq.pd_mode) 7328 sctp_clear_pd(oldsk, NULL); 7329 7330 } 7331 7332 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 7333 sctp_skb_set_owner_r_frag(skb, newsk); 7334 7335 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 7336 sctp_skb_set_owner_r_frag(skb, newsk); 7337 7338 /* Set the type of socket to indicate that it is peeled off from the 7339 * original UDP-style socket or created with the accept() call on a 7340 * TCP-style socket.. 7341 */ 7342 newsp->type = type; 7343 7344 /* Mark the new socket "in-use" by the user so that any packets 7345 * that may arrive on the association after we've moved it are 7346 * queued to the backlog. This prevents a potential race between 7347 * backlog processing on the old socket and new-packet processing 7348 * on the new socket. 7349 * 7350 * The caller has just allocated newsk so we can guarantee that other 7351 * paths won't try to lock it and then oldsk. 7352 */ 7353 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 7354 sctp_assoc_migrate(assoc, newsk); 7355 7356 /* If the association on the newsk is already closed before accept() 7357 * is called, set RCV_SHUTDOWN flag. 7358 */ 7359 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 7360 newsk->sk_shutdown |= RCV_SHUTDOWN; 7361 7362 newsk->sk_state = SCTP_SS_ESTABLISHED; 7363 release_sock(newsk); 7364} 7365 7366 7367/* This proto struct describes the ULP interface for SCTP. */ 7368struct proto sctp_prot = { 7369 .name = "SCTP", 7370 .owner = THIS_MODULE, 7371 .close = sctp_close, 7372 .connect = sctp_connect, 7373 .disconnect = sctp_disconnect, 7374 .accept = sctp_accept, 7375 .ioctl = sctp_ioctl, 7376 .init = sctp_init_sock, 7377 .destroy = sctp_destroy_sock, 7378 .shutdown = sctp_shutdown, 7379 .setsockopt = sctp_setsockopt, 7380 .getsockopt = sctp_getsockopt, 7381 .sendmsg = sctp_sendmsg, 7382 .recvmsg = sctp_recvmsg, 7383 .bind = sctp_bind, 7384 .backlog_rcv = sctp_backlog_rcv, 7385 .hash = sctp_hash, 7386 .unhash = sctp_unhash, 7387 .get_port = sctp_get_port, 7388 .obj_size = sizeof(struct sctp_sock), 7389 .sysctl_mem = sysctl_sctp_mem, 7390 .sysctl_rmem = sysctl_sctp_rmem, 7391 .sysctl_wmem = sysctl_sctp_wmem, 7392 .memory_pressure = &sctp_memory_pressure, 7393 .enter_memory_pressure = sctp_enter_memory_pressure, 7394 .memory_allocated = &sctp_memory_allocated, 7395 .sockets_allocated = &sctp_sockets_allocated, 7396}; 7397 7398#if IS_ENABLED(CONFIG_IPV6) 7399 7400#include <net/transp_v6.h> 7401static void sctp_v6_destroy_sock(struct sock *sk) 7402{ 7403 sctp_destroy_sock(sk); 7404 inet6_destroy_sock(sk); 7405} 7406 7407struct proto sctpv6_prot = { 7408 .name = "SCTPv6", 7409 .owner = THIS_MODULE, 7410 .close = sctp_close, 7411 .connect = sctp_connect, 7412 .disconnect = sctp_disconnect, 7413 .accept = sctp_accept, 7414 .ioctl = sctp_ioctl, 7415 .init = sctp_init_sock, 7416 .destroy = sctp_v6_destroy_sock, 7417 .shutdown = sctp_shutdown, 7418 .setsockopt = sctp_setsockopt, 7419 .getsockopt = sctp_getsockopt, 7420 .sendmsg = sctp_sendmsg, 7421 .recvmsg = sctp_recvmsg, 7422 .bind = sctp_bind, 7423 .backlog_rcv = sctp_backlog_rcv, 7424 .hash = sctp_hash, 7425 .unhash = sctp_unhash, 7426 .get_port = sctp_get_port, 7427 .obj_size = sizeof(struct sctp6_sock), 7428 .sysctl_mem = sysctl_sctp_mem, 7429 .sysctl_rmem = sysctl_sctp_rmem, 7430 .sysctl_wmem = sysctl_sctp_wmem, 7431 .memory_pressure = &sctp_memory_pressure, 7432 .enter_memory_pressure = sctp_enter_memory_pressure, 7433 .memory_allocated = &sctp_memory_allocated, 7434 .sockets_allocated = &sctp_sockets_allocated, 7435}; 7436#endif /* IS_ENABLED(CONFIG_IPV6) */ 7437