1/*
2 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3 *
4 *  Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
5 *
6 *	This program is free software; you can redistribute it and/or
7 *	modify it under the terms of the GNU General Public License
8 *	as published by the Free Software Foundation; either version
9 *	2 of the License, or (at your option) any later version.
10 *
11 *  Meant to be mostly used for locally generated traffic :
12 *  Fast classification depends on skb->sk being set before reaching us.
13 *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14 *  All packets belonging to a socket are considered as a 'flow'.
15 *
16 *  Flows are dynamically allocated and stored in a hash table of RB trees
17 *  They are also part of one Round Robin 'queues' (new or old flows)
18 *
19 *  Burst avoidance (aka pacing) capability :
20 *
21 *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22 *  bunch of packets, and this packet scheduler adds delay between
23 *  packets to respect rate limitation.
24 *
25 *  enqueue() :
26 *   - lookup one RB tree (out of 1024 or more) to find the flow.
27 *     If non existent flow, create it, add it to the tree.
28 *     Add skb to the per flow list of skb (fifo).
29 *   - Use a special fifo for high prio packets
30 *
31 *  dequeue() : serves flows in Round Robin
32 *  Note : When a flow becomes empty, we do not immediately remove it from
33 *  rb trees, for performance reasons (its expected to send additional packets,
34 *  or SLAB cache will reuse socket for another flow)
35 */
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/jiffies.h>
41#include <linux/string.h>
42#include <linux/in.h>
43#include <linux/errno.h>
44#include <linux/init.h>
45#include <linux/skbuff.h>
46#include <linux/slab.h>
47#include <linux/rbtree.h>
48#include <linux/hash.h>
49#include <linux/prefetch.h>
50#include <linux/vmalloc.h>
51#include <net/netlink.h>
52#include <net/pkt_sched.h>
53#include <net/sock.h>
54#include <net/tcp_states.h>
55#include <net/tcp.h>
56
57/*
58 * Per flow structure, dynamically allocated
59 */
60struct fq_flow {
61	struct sk_buff	*head;		/* list of skbs for this flow : first skb */
62	union {
63		struct sk_buff *tail;	/* last skb in the list */
64		unsigned long  age;	/* jiffies when flow was emptied, for gc */
65	};
66	struct rb_node	fq_node;	/* anchor in fq_root[] trees */
67	struct sock	*sk;
68	int		qlen;		/* number of packets in flow queue */
69	int		credit;
70	u32		socket_hash;	/* sk_hash */
71	struct fq_flow *next;		/* next pointer in RR lists, or &detached */
72
73	struct rb_node  rate_node;	/* anchor in q->delayed tree */
74	u64		time_next_packet;
75};
76
77struct fq_flow_head {
78	struct fq_flow *first;
79	struct fq_flow *last;
80};
81
82struct fq_sched_data {
83	struct fq_flow_head new_flows;
84
85	struct fq_flow_head old_flows;
86
87	struct rb_root	delayed;	/* for rate limited flows */
88	u64		time_next_delayed_flow;
89
90	struct fq_flow	internal;	/* for non classified or high prio packets */
91	u32		quantum;
92	u32		initial_quantum;
93	u32		flow_refill_delay;
94	u32		flow_max_rate;	/* optional max rate per flow */
95	u32		flow_plimit;	/* max packets per flow */
96	u32		orphan_mask;	/* mask for orphaned skb */
97	struct rb_root	*fq_root;
98	u8		rate_enable;
99	u8		fq_trees_log;
100
101	u32		flows;
102	u32		inactive_flows;
103	u32		throttled_flows;
104
105	u64		stat_gc_flows;
106	u64		stat_internal_packets;
107	u64		stat_tcp_retrans;
108	u64		stat_throttled;
109	u64		stat_flows_plimit;
110	u64		stat_pkts_too_long;
111	u64		stat_allocation_errors;
112	struct qdisc_watchdog watchdog;
113};
114
115/* special value to mark a detached flow (not on old/new list) */
116static struct fq_flow detached, throttled;
117
118static void fq_flow_set_detached(struct fq_flow *f)
119{
120	f->next = &detached;
121	f->age = jiffies;
122}
123
124static bool fq_flow_is_detached(const struct fq_flow *f)
125{
126	return f->next == &detached;
127}
128
129static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
130{
131	struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
132
133	while (*p) {
134		struct fq_flow *aux;
135
136		parent = *p;
137		aux = container_of(parent, struct fq_flow, rate_node);
138		if (f->time_next_packet >= aux->time_next_packet)
139			p = &parent->rb_right;
140		else
141			p = &parent->rb_left;
142	}
143	rb_link_node(&f->rate_node, parent, p);
144	rb_insert_color(&f->rate_node, &q->delayed);
145	q->throttled_flows++;
146	q->stat_throttled++;
147
148	f->next = &throttled;
149	if (q->time_next_delayed_flow > f->time_next_packet)
150		q->time_next_delayed_flow = f->time_next_packet;
151}
152
153
154static struct kmem_cache *fq_flow_cachep __read_mostly;
155
156static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
157{
158	if (head->first)
159		head->last->next = flow;
160	else
161		head->first = flow;
162	head->last = flow;
163	flow->next = NULL;
164}
165
166/* limit number of collected flows per round */
167#define FQ_GC_MAX 8
168#define FQ_GC_AGE (3*HZ)
169
170static bool fq_gc_candidate(const struct fq_flow *f)
171{
172	return fq_flow_is_detached(f) &&
173	       time_after(jiffies, f->age + FQ_GC_AGE);
174}
175
176static void fq_gc(struct fq_sched_data *q,
177		  struct rb_root *root,
178		  struct sock *sk)
179{
180	struct fq_flow *f, *tofree[FQ_GC_MAX];
181	struct rb_node **p, *parent;
182	int fcnt = 0;
183
184	p = &root->rb_node;
185	parent = NULL;
186	while (*p) {
187		parent = *p;
188
189		f = container_of(parent, struct fq_flow, fq_node);
190		if (f->sk == sk)
191			break;
192
193		if (fq_gc_candidate(f)) {
194			tofree[fcnt++] = f;
195			if (fcnt == FQ_GC_MAX)
196				break;
197		}
198
199		if (f->sk > sk)
200			p = &parent->rb_right;
201		else
202			p = &parent->rb_left;
203	}
204
205	q->flows -= fcnt;
206	q->inactive_flows -= fcnt;
207	q->stat_gc_flows += fcnt;
208	while (fcnt) {
209		struct fq_flow *f = tofree[--fcnt];
210
211		rb_erase(&f->fq_node, root);
212		kmem_cache_free(fq_flow_cachep, f);
213	}
214}
215
216static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
217{
218	struct rb_node **p, *parent;
219	struct sock *sk = skb->sk;
220	struct rb_root *root;
221	struct fq_flow *f;
222
223	/* warning: no starvation prevention... */
224	if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
225		return &q->internal;
226
227	/* SYNACK messages are attached to a listener socket.
228	 * 1) They are not part of a 'flow' yet
229	 * 2) We do not want to rate limit them (eg SYNFLOOD attack),
230	 *    especially if the listener set SO_MAX_PACING_RATE
231	 * 3) We pretend they are orphaned
232	 */
233	if (!sk || sk->sk_state == TCP_LISTEN) {
234		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
235
236		/* By forcing low order bit to 1, we make sure to not
237		 * collide with a local flow (socket pointers are word aligned)
238		 */
239		sk = (struct sock *)((hash << 1) | 1UL);
240		skb_orphan(skb);
241	}
242
243	root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
244
245	if (q->flows >= (2U << q->fq_trees_log) &&
246	    q->inactive_flows > q->flows/2)
247		fq_gc(q, root, sk);
248
249	p = &root->rb_node;
250	parent = NULL;
251	while (*p) {
252		parent = *p;
253
254		f = container_of(parent, struct fq_flow, fq_node);
255		if (f->sk == sk) {
256			/* socket might have been reallocated, so check
257			 * if its sk_hash is the same.
258			 * It not, we need to refill credit with
259			 * initial quantum
260			 */
261			if (unlikely(skb->sk &&
262				     f->socket_hash != sk->sk_hash)) {
263				f->credit = q->initial_quantum;
264				f->socket_hash = sk->sk_hash;
265				f->time_next_packet = 0ULL;
266			}
267			return f;
268		}
269		if (f->sk > sk)
270			p = &parent->rb_right;
271		else
272			p = &parent->rb_left;
273	}
274
275	f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
276	if (unlikely(!f)) {
277		q->stat_allocation_errors++;
278		return &q->internal;
279	}
280	fq_flow_set_detached(f);
281	f->sk = sk;
282	if (skb->sk)
283		f->socket_hash = sk->sk_hash;
284	f->credit = q->initial_quantum;
285
286	rb_link_node(&f->fq_node, parent, p);
287	rb_insert_color(&f->fq_node, root);
288
289	q->flows++;
290	q->inactive_flows++;
291	return f;
292}
293
294
295/* remove one skb from head of flow queue */
296static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
297{
298	struct sk_buff *skb = flow->head;
299
300	if (skb) {
301		flow->head = skb->next;
302		skb->next = NULL;
303		flow->qlen--;
304		qdisc_qstats_backlog_dec(sch, skb);
305		sch->q.qlen--;
306	}
307	return skb;
308}
309
310/* We might add in the future detection of retransmits
311 * For the time being, just return false
312 */
313static bool skb_is_retransmit(struct sk_buff *skb)
314{
315	return false;
316}
317
318/* add skb to flow queue
319 * flow queue is a linked list, kind of FIFO, except for TCP retransmits
320 * We special case tcp retransmits to be transmitted before other packets.
321 * We rely on fact that TCP retransmits are unlikely, so we do not waste
322 * a separate queue or a pointer.
323 * head->  [retrans pkt 1]
324 *         [retrans pkt 2]
325 *         [ normal pkt 1]
326 *         [ normal pkt 2]
327 *         [ normal pkt 3]
328 * tail->  [ normal pkt 4]
329 */
330static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
331{
332	struct sk_buff *prev, *head = flow->head;
333
334	skb->next = NULL;
335	if (!head) {
336		flow->head = skb;
337		flow->tail = skb;
338		return;
339	}
340	if (likely(!skb_is_retransmit(skb))) {
341		flow->tail->next = skb;
342		flow->tail = skb;
343		return;
344	}
345
346	/* This skb is a tcp retransmit,
347	 * find the last retrans packet in the queue
348	 */
349	prev = NULL;
350	while (skb_is_retransmit(head)) {
351		prev = head;
352		head = head->next;
353		if (!head)
354			break;
355	}
356	if (!prev) { /* no rtx packet in queue, become the new head */
357		skb->next = flow->head;
358		flow->head = skb;
359	} else {
360		if (prev == flow->tail)
361			flow->tail = skb;
362		else
363			skb->next = prev->next;
364		prev->next = skb;
365	}
366}
367
368static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
369{
370	struct fq_sched_data *q = qdisc_priv(sch);
371	struct fq_flow *f;
372
373	if (unlikely(sch->q.qlen >= sch->limit))
374		return qdisc_drop(skb, sch);
375
376	f = fq_classify(skb, q);
377	if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
378		q->stat_flows_plimit++;
379		return qdisc_drop(skb, sch);
380	}
381
382	f->qlen++;
383	if (skb_is_retransmit(skb))
384		q->stat_tcp_retrans++;
385	qdisc_qstats_backlog_inc(sch, skb);
386	if (fq_flow_is_detached(f)) {
387		fq_flow_add_tail(&q->new_flows, f);
388		if (time_after(jiffies, f->age + q->flow_refill_delay))
389			f->credit = max_t(u32, f->credit, q->quantum);
390		q->inactive_flows--;
391	}
392
393	/* Note: this overwrites f->age */
394	flow_queue_add(f, skb);
395
396	if (unlikely(f == &q->internal)) {
397		q->stat_internal_packets++;
398	}
399	sch->q.qlen++;
400
401	return NET_XMIT_SUCCESS;
402}
403
404static void fq_check_throttled(struct fq_sched_data *q, u64 now)
405{
406	struct rb_node *p;
407
408	if (q->time_next_delayed_flow > now)
409		return;
410
411	q->time_next_delayed_flow = ~0ULL;
412	while ((p = rb_first(&q->delayed)) != NULL) {
413		struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
414
415		if (f->time_next_packet > now) {
416			q->time_next_delayed_flow = f->time_next_packet;
417			break;
418		}
419		rb_erase(p, &q->delayed);
420		q->throttled_flows--;
421		fq_flow_add_tail(&q->old_flows, f);
422	}
423}
424
425static struct sk_buff *fq_dequeue(struct Qdisc *sch)
426{
427	struct fq_sched_data *q = qdisc_priv(sch);
428	u64 now = ktime_get_ns();
429	struct fq_flow_head *head;
430	struct sk_buff *skb;
431	struct fq_flow *f;
432	u32 rate;
433
434	skb = fq_dequeue_head(sch, &q->internal);
435	if (skb)
436		goto out;
437	fq_check_throttled(q, now);
438begin:
439	head = &q->new_flows;
440	if (!head->first) {
441		head = &q->old_flows;
442		if (!head->first) {
443			if (q->time_next_delayed_flow != ~0ULL)
444				qdisc_watchdog_schedule_ns(&q->watchdog,
445							   q->time_next_delayed_flow,
446							   false);
447			return NULL;
448		}
449	}
450	f = head->first;
451
452	if (f->credit <= 0) {
453		f->credit += q->quantum;
454		head->first = f->next;
455		fq_flow_add_tail(&q->old_flows, f);
456		goto begin;
457	}
458
459	skb = f->head;
460	if (unlikely(skb && now < f->time_next_packet &&
461		     !skb_is_tcp_pure_ack(skb))) {
462		head->first = f->next;
463		fq_flow_set_throttled(q, f);
464		goto begin;
465	}
466
467	skb = fq_dequeue_head(sch, f);
468	if (!skb) {
469		head->first = f->next;
470		/* force a pass through old_flows to prevent starvation */
471		if ((head == &q->new_flows) && q->old_flows.first) {
472			fq_flow_add_tail(&q->old_flows, f);
473		} else {
474			fq_flow_set_detached(f);
475			q->inactive_flows++;
476		}
477		goto begin;
478	}
479	prefetch(&skb->end);
480	f->credit -= qdisc_pkt_len(skb);
481
482	if (f->credit > 0 || !q->rate_enable)
483		goto out;
484
485	/* Do not pace locally generated ack packets */
486	if (skb_is_tcp_pure_ack(skb))
487		goto out;
488
489	rate = q->flow_max_rate;
490	if (skb->sk)
491		rate = min(skb->sk->sk_pacing_rate, rate);
492
493	if (rate != ~0U) {
494		u32 plen = max(qdisc_pkt_len(skb), q->quantum);
495		u64 len = (u64)plen * NSEC_PER_SEC;
496
497		if (likely(rate))
498			do_div(len, rate);
499		/* Since socket rate can change later,
500		 * clamp the delay to 1 second.
501		 * Really, providers of too big packets should be fixed !
502		 */
503		if (unlikely(len > NSEC_PER_SEC)) {
504			len = NSEC_PER_SEC;
505			q->stat_pkts_too_long++;
506		}
507
508		f->time_next_packet = now + len;
509	}
510out:
511	qdisc_bstats_update(sch, skb);
512	return skb;
513}
514
515static void fq_reset(struct Qdisc *sch)
516{
517	struct fq_sched_data *q = qdisc_priv(sch);
518	struct rb_root *root;
519	struct sk_buff *skb;
520	struct rb_node *p;
521	struct fq_flow *f;
522	unsigned int idx;
523
524	while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
525		kfree_skb(skb);
526
527	if (!q->fq_root)
528		return;
529
530	for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
531		root = &q->fq_root[idx];
532		while ((p = rb_first(root)) != NULL) {
533			f = container_of(p, struct fq_flow, fq_node);
534			rb_erase(p, root);
535
536			while ((skb = fq_dequeue_head(sch, f)) != NULL)
537				kfree_skb(skb);
538
539			kmem_cache_free(fq_flow_cachep, f);
540		}
541	}
542	q->new_flows.first	= NULL;
543	q->old_flows.first	= NULL;
544	q->delayed		= RB_ROOT;
545	q->flows		= 0;
546	q->inactive_flows	= 0;
547	q->throttled_flows	= 0;
548}
549
550static void fq_rehash(struct fq_sched_data *q,
551		      struct rb_root *old_array, u32 old_log,
552		      struct rb_root *new_array, u32 new_log)
553{
554	struct rb_node *op, **np, *parent;
555	struct rb_root *oroot, *nroot;
556	struct fq_flow *of, *nf;
557	int fcnt = 0;
558	u32 idx;
559
560	for (idx = 0; idx < (1U << old_log); idx++) {
561		oroot = &old_array[idx];
562		while ((op = rb_first(oroot)) != NULL) {
563			rb_erase(op, oroot);
564			of = container_of(op, struct fq_flow, fq_node);
565			if (fq_gc_candidate(of)) {
566				fcnt++;
567				kmem_cache_free(fq_flow_cachep, of);
568				continue;
569			}
570			nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
571
572			np = &nroot->rb_node;
573			parent = NULL;
574			while (*np) {
575				parent = *np;
576
577				nf = container_of(parent, struct fq_flow, fq_node);
578				BUG_ON(nf->sk == of->sk);
579
580				if (nf->sk > of->sk)
581					np = &parent->rb_right;
582				else
583					np = &parent->rb_left;
584			}
585
586			rb_link_node(&of->fq_node, parent, np);
587			rb_insert_color(&of->fq_node, nroot);
588		}
589	}
590	q->flows -= fcnt;
591	q->inactive_flows -= fcnt;
592	q->stat_gc_flows += fcnt;
593}
594
595static void *fq_alloc_node(size_t sz, int node)
596{
597	void *ptr;
598
599	ptr = kmalloc_node(sz, GFP_KERNEL | __GFP_REPEAT | __GFP_NOWARN, node);
600	if (!ptr)
601		ptr = vmalloc_node(sz, node);
602	return ptr;
603}
604
605static void fq_free(void *addr)
606{
607	kvfree(addr);
608}
609
610static int fq_resize(struct Qdisc *sch, u32 log)
611{
612	struct fq_sched_data *q = qdisc_priv(sch);
613	struct rb_root *array;
614	void *old_fq_root;
615	u32 idx;
616
617	if (q->fq_root && log == q->fq_trees_log)
618		return 0;
619
620	/* If XPS was setup, we can allocate memory on right NUMA node */
621	array = fq_alloc_node(sizeof(struct rb_root) << log,
622			      netdev_queue_numa_node_read(sch->dev_queue));
623	if (!array)
624		return -ENOMEM;
625
626	for (idx = 0; idx < (1U << log); idx++)
627		array[idx] = RB_ROOT;
628
629	sch_tree_lock(sch);
630
631	old_fq_root = q->fq_root;
632	if (old_fq_root)
633		fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
634
635	q->fq_root = array;
636	q->fq_trees_log = log;
637
638	sch_tree_unlock(sch);
639
640	fq_free(old_fq_root);
641
642	return 0;
643}
644
645static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
646	[TCA_FQ_PLIMIT]			= { .type = NLA_U32 },
647	[TCA_FQ_FLOW_PLIMIT]		= { .type = NLA_U32 },
648	[TCA_FQ_QUANTUM]		= { .type = NLA_U32 },
649	[TCA_FQ_INITIAL_QUANTUM]	= { .type = NLA_U32 },
650	[TCA_FQ_RATE_ENABLE]		= { .type = NLA_U32 },
651	[TCA_FQ_FLOW_DEFAULT_RATE]	= { .type = NLA_U32 },
652	[TCA_FQ_FLOW_MAX_RATE]		= { .type = NLA_U32 },
653	[TCA_FQ_BUCKETS_LOG]		= { .type = NLA_U32 },
654	[TCA_FQ_FLOW_REFILL_DELAY]	= { .type = NLA_U32 },
655};
656
657static int fq_change(struct Qdisc *sch, struct nlattr *opt)
658{
659	struct fq_sched_data *q = qdisc_priv(sch);
660	struct nlattr *tb[TCA_FQ_MAX + 1];
661	int err, drop_count = 0;
662	u32 fq_log;
663
664	if (!opt)
665		return -EINVAL;
666
667	err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
668	if (err < 0)
669		return err;
670
671	sch_tree_lock(sch);
672
673	fq_log = q->fq_trees_log;
674
675	if (tb[TCA_FQ_BUCKETS_LOG]) {
676		u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
677
678		if (nval >= 1 && nval <= ilog2(256*1024))
679			fq_log = nval;
680		else
681			err = -EINVAL;
682	}
683	if (tb[TCA_FQ_PLIMIT])
684		sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
685
686	if (tb[TCA_FQ_FLOW_PLIMIT])
687		q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
688
689	if (tb[TCA_FQ_QUANTUM]) {
690		u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
691
692		if (quantum > 0)
693			q->quantum = quantum;
694		else
695			err = -EINVAL;
696	}
697
698	if (tb[TCA_FQ_INITIAL_QUANTUM])
699		q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
700
701	if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
702		pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
703				    nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
704
705	if (tb[TCA_FQ_FLOW_MAX_RATE])
706		q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
707
708	if (tb[TCA_FQ_RATE_ENABLE]) {
709		u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
710
711		if (enable <= 1)
712			q->rate_enable = enable;
713		else
714			err = -EINVAL;
715	}
716
717	if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
718		u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
719
720		q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
721	}
722
723	if (tb[TCA_FQ_ORPHAN_MASK])
724		q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
725
726	if (!err) {
727		sch_tree_unlock(sch);
728		err = fq_resize(sch, fq_log);
729		sch_tree_lock(sch);
730	}
731	while (sch->q.qlen > sch->limit) {
732		struct sk_buff *skb = fq_dequeue(sch);
733
734		if (!skb)
735			break;
736		kfree_skb(skb);
737		drop_count++;
738	}
739	qdisc_tree_decrease_qlen(sch, drop_count);
740
741	sch_tree_unlock(sch);
742	return err;
743}
744
745static void fq_destroy(struct Qdisc *sch)
746{
747	struct fq_sched_data *q = qdisc_priv(sch);
748
749	fq_reset(sch);
750	fq_free(q->fq_root);
751	qdisc_watchdog_cancel(&q->watchdog);
752}
753
754static int fq_init(struct Qdisc *sch, struct nlattr *opt)
755{
756	struct fq_sched_data *q = qdisc_priv(sch);
757	int err;
758
759	sch->limit		= 10000;
760	q->flow_plimit		= 100;
761	q->quantum		= 2 * psched_mtu(qdisc_dev(sch));
762	q->initial_quantum	= 10 * psched_mtu(qdisc_dev(sch));
763	q->flow_refill_delay	= msecs_to_jiffies(40);
764	q->flow_max_rate	= ~0U;
765	q->rate_enable		= 1;
766	q->new_flows.first	= NULL;
767	q->old_flows.first	= NULL;
768	q->delayed		= RB_ROOT;
769	q->fq_root		= NULL;
770	q->fq_trees_log		= ilog2(1024);
771	q->orphan_mask		= 1024 - 1;
772	qdisc_watchdog_init(&q->watchdog, sch);
773
774	if (opt)
775		err = fq_change(sch, opt);
776	else
777		err = fq_resize(sch, q->fq_trees_log);
778
779	return err;
780}
781
782static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
783{
784	struct fq_sched_data *q = qdisc_priv(sch);
785	struct nlattr *opts;
786
787	opts = nla_nest_start(skb, TCA_OPTIONS);
788	if (opts == NULL)
789		goto nla_put_failure;
790
791	/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
792
793	if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
794	    nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
795	    nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
796	    nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
797	    nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
798	    nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
799	    nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
800			jiffies_to_usecs(q->flow_refill_delay)) ||
801	    nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
802	    nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
803		goto nla_put_failure;
804
805	return nla_nest_end(skb, opts);
806
807nla_put_failure:
808	return -1;
809}
810
811static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
812{
813	struct fq_sched_data *q = qdisc_priv(sch);
814	u64 now = ktime_get_ns();
815	struct tc_fq_qd_stats st = {
816		.gc_flows		= q->stat_gc_flows,
817		.highprio_packets	= q->stat_internal_packets,
818		.tcp_retrans		= q->stat_tcp_retrans,
819		.throttled		= q->stat_throttled,
820		.flows_plimit		= q->stat_flows_plimit,
821		.pkts_too_long		= q->stat_pkts_too_long,
822		.allocation_errors	= q->stat_allocation_errors,
823		.flows			= q->flows,
824		.inactive_flows		= q->inactive_flows,
825		.throttled_flows	= q->throttled_flows,
826		.time_next_delayed_flow	= q->time_next_delayed_flow - now,
827	};
828
829	return gnet_stats_copy_app(d, &st, sizeof(st));
830}
831
832static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
833	.id		=	"fq",
834	.priv_size	=	sizeof(struct fq_sched_data),
835
836	.enqueue	=	fq_enqueue,
837	.dequeue	=	fq_dequeue,
838	.peek		=	qdisc_peek_dequeued,
839	.init		=	fq_init,
840	.reset		=	fq_reset,
841	.destroy	=	fq_destroy,
842	.change		=	fq_change,
843	.dump		=	fq_dump,
844	.dump_stats	=	fq_dump_stats,
845	.owner		=	THIS_MODULE,
846};
847
848static int __init fq_module_init(void)
849{
850	int ret;
851
852	fq_flow_cachep = kmem_cache_create("fq_flow_cache",
853					   sizeof(struct fq_flow),
854					   0, 0, NULL);
855	if (!fq_flow_cachep)
856		return -ENOMEM;
857
858	ret = register_qdisc(&fq_qdisc_ops);
859	if (ret)
860		kmem_cache_destroy(fq_flow_cachep);
861	return ret;
862}
863
864static void __exit fq_module_exit(void)
865{
866	unregister_qdisc(&fq_qdisc_ops);
867	kmem_cache_destroy(fq_flow_cachep);
868}
869
870module_init(fq_module_init)
871module_exit(fq_module_exit)
872MODULE_AUTHOR("Eric Dumazet");
873MODULE_LICENSE("GPL");
874