1/*
2 * Copyright (c) 2006 Oracle.  All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *
18 *      - Redistributions in binary form must reproduce the above
19 *        copyright notice, this list of conditions and the following
20 *        disclaimer in the documentation and/or other materials
21 *        provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33#include <linux/kernel.h>
34#include <linux/in.h>
35#include <linux/device.h>
36#include <linux/dmapool.h>
37#include <linux/ratelimit.h>
38
39#include "rds.h"
40#include "iw.h"
41
42static void rds_iw_send_rdma_complete(struct rds_message *rm,
43				      int wc_status)
44{
45	int notify_status;
46
47	switch (wc_status) {
48	case IB_WC_WR_FLUSH_ERR:
49		return;
50
51	case IB_WC_SUCCESS:
52		notify_status = RDS_RDMA_SUCCESS;
53		break;
54
55	case IB_WC_REM_ACCESS_ERR:
56		notify_status = RDS_RDMA_REMOTE_ERROR;
57		break;
58
59	default:
60		notify_status = RDS_RDMA_OTHER_ERROR;
61		break;
62	}
63	rds_rdma_send_complete(rm, notify_status);
64}
65
66static void rds_iw_send_unmap_rdma(struct rds_iw_connection *ic,
67				   struct rm_rdma_op *op)
68{
69	if (op->op_mapped) {
70		ib_dma_unmap_sg(ic->i_cm_id->device,
71			op->op_sg, op->op_nents,
72			op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
73		op->op_mapped = 0;
74	}
75}
76
77static void rds_iw_send_unmap_rm(struct rds_iw_connection *ic,
78			  struct rds_iw_send_work *send,
79			  int wc_status)
80{
81	struct rds_message *rm = send->s_rm;
82
83	rdsdebug("ic %p send %p rm %p\n", ic, send, rm);
84
85	ib_dma_unmap_sg(ic->i_cm_id->device,
86		     rm->data.op_sg, rm->data.op_nents,
87		     DMA_TO_DEVICE);
88
89	if (rm->rdma.op_active) {
90		rds_iw_send_unmap_rdma(ic, &rm->rdma);
91
92		/* If the user asked for a completion notification on this
93		 * message, we can implement three different semantics:
94		 *  1.	Notify when we received the ACK on the RDS message
95		 *	that was queued with the RDMA. This provides reliable
96		 *	notification of RDMA status at the expense of a one-way
97		 *	packet delay.
98		 *  2.	Notify when the IB stack gives us the completion event for
99		 *	the RDMA operation.
100		 *  3.	Notify when the IB stack gives us the completion event for
101		 *	the accompanying RDS messages.
102		 * Here, we implement approach #3. To implement approach #2,
103		 * call rds_rdma_send_complete from the cq_handler. To implement #1,
104		 * don't call rds_rdma_send_complete at all, and fall back to the notify
105		 * handling in the ACK processing code.
106		 *
107		 * Note: There's no need to explicitly sync any RDMA buffers using
108		 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
109		 * operation itself unmapped the RDMA buffers, which takes care
110		 * of synching.
111		 */
112		rds_iw_send_rdma_complete(rm, wc_status);
113
114		if (rm->rdma.op_write)
115			rds_stats_add(s_send_rdma_bytes, rm->rdma.op_bytes);
116		else
117			rds_stats_add(s_recv_rdma_bytes, rm->rdma.op_bytes);
118	}
119
120	/* If anyone waited for this message to get flushed out, wake
121	 * them up now */
122	rds_message_unmapped(rm);
123
124	rds_message_put(rm);
125	send->s_rm = NULL;
126}
127
128void rds_iw_send_init_ring(struct rds_iw_connection *ic)
129{
130	struct rds_iw_send_work *send;
131	u32 i;
132
133	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
134		struct ib_sge *sge;
135
136		send->s_rm = NULL;
137		send->s_op = NULL;
138		send->s_mapping = NULL;
139
140		send->s_wr.next = NULL;
141		send->s_wr.wr_id = i;
142		send->s_wr.sg_list = send->s_sge;
143		send->s_wr.num_sge = 1;
144		send->s_wr.opcode = IB_WR_SEND;
145		send->s_wr.send_flags = 0;
146		send->s_wr.ex.imm_data = 0;
147
148		sge = rds_iw_data_sge(ic, send->s_sge);
149		sge->lkey = 0;
150
151		sge = rds_iw_header_sge(ic, send->s_sge);
152		sge->addr = ic->i_send_hdrs_dma + (i * sizeof(struct rds_header));
153		sge->length = sizeof(struct rds_header);
154		sge->lkey = 0;
155
156		send->s_mr = ib_alloc_fast_reg_mr(ic->i_pd, fastreg_message_size);
157		if (IS_ERR(send->s_mr)) {
158			printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed\n");
159			break;
160		}
161
162		send->s_page_list = ib_alloc_fast_reg_page_list(
163			ic->i_cm_id->device, fastreg_message_size);
164		if (IS_ERR(send->s_page_list)) {
165			printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed\n");
166			break;
167		}
168	}
169}
170
171void rds_iw_send_clear_ring(struct rds_iw_connection *ic)
172{
173	struct rds_iw_send_work *send;
174	u32 i;
175
176	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
177		BUG_ON(!send->s_mr);
178		ib_dereg_mr(send->s_mr);
179		BUG_ON(!send->s_page_list);
180		ib_free_fast_reg_page_list(send->s_page_list);
181		if (send->s_wr.opcode == 0xdead)
182			continue;
183		if (send->s_rm)
184			rds_iw_send_unmap_rm(ic, send, IB_WC_WR_FLUSH_ERR);
185		if (send->s_op)
186			rds_iw_send_unmap_rdma(ic, send->s_op);
187	}
188}
189
190/*
191 * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
192 * operations performed in the send path.  As the sender allocs and potentially
193 * unallocs the next free entry in the ring it doesn't alter which is
194 * the next to be freed, which is what this is concerned with.
195 */
196void rds_iw_send_cq_comp_handler(struct ib_cq *cq, void *context)
197{
198	struct rds_connection *conn = context;
199	struct rds_iw_connection *ic = conn->c_transport_data;
200	struct ib_wc wc;
201	struct rds_iw_send_work *send;
202	u32 completed;
203	u32 oldest;
204	u32 i;
205	int ret;
206
207	rdsdebug("cq %p conn %p\n", cq, conn);
208	rds_iw_stats_inc(s_iw_tx_cq_call);
209	ret = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
210	if (ret)
211		rdsdebug("ib_req_notify_cq send failed: %d\n", ret);
212
213	while (ib_poll_cq(cq, 1, &wc) > 0) {
214		rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
215			 (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
216			 be32_to_cpu(wc.ex.imm_data));
217		rds_iw_stats_inc(s_iw_tx_cq_event);
218
219		if (wc.status != IB_WC_SUCCESS) {
220			printk(KERN_ERR "WC Error:  status = %d opcode = %d\n", wc.status, wc.opcode);
221			break;
222		}
223
224		if (wc.opcode == IB_WC_LOCAL_INV && wc.wr_id == RDS_IW_LOCAL_INV_WR_ID) {
225			ic->i_fastreg_posted = 0;
226			continue;
227		}
228
229		if (wc.opcode == IB_WC_FAST_REG_MR && wc.wr_id == RDS_IW_FAST_REG_WR_ID) {
230			ic->i_fastreg_posted = 1;
231			continue;
232		}
233
234		if (wc.wr_id == RDS_IW_ACK_WR_ID) {
235			if (time_after(jiffies, ic->i_ack_queued + HZ/2))
236				rds_iw_stats_inc(s_iw_tx_stalled);
237			rds_iw_ack_send_complete(ic);
238			continue;
239		}
240
241		oldest = rds_iw_ring_oldest(&ic->i_send_ring);
242
243		completed = rds_iw_ring_completed(&ic->i_send_ring, wc.wr_id, oldest);
244
245		for (i = 0; i < completed; i++) {
246			send = &ic->i_sends[oldest];
247
248			/* In the error case, wc.opcode sometimes contains garbage */
249			switch (send->s_wr.opcode) {
250			case IB_WR_SEND:
251				if (send->s_rm)
252					rds_iw_send_unmap_rm(ic, send, wc.status);
253				break;
254			case IB_WR_FAST_REG_MR:
255			case IB_WR_RDMA_WRITE:
256			case IB_WR_RDMA_READ:
257			case IB_WR_RDMA_READ_WITH_INV:
258				/* Nothing to be done - the SG list will be unmapped
259				 * when the SEND completes. */
260				break;
261			default:
262				printk_ratelimited(KERN_NOTICE
263						"RDS/IW: %s: unexpected opcode 0x%x in WR!\n",
264						__func__, send->s_wr.opcode);
265				break;
266			}
267
268			send->s_wr.opcode = 0xdead;
269			send->s_wr.num_sge = 1;
270			if (time_after(jiffies, send->s_queued + HZ/2))
271				rds_iw_stats_inc(s_iw_tx_stalled);
272
273			/* If a RDMA operation produced an error, signal this right
274			 * away. If we don't, the subsequent SEND that goes with this
275			 * RDMA will be canceled with ERR_WFLUSH, and the application
276			 * never learn that the RDMA failed. */
277			if (unlikely(wc.status == IB_WC_REM_ACCESS_ERR && send->s_op)) {
278				struct rds_message *rm;
279
280				rm = rds_send_get_message(conn, send->s_op);
281				if (rm)
282					rds_iw_send_rdma_complete(rm, wc.status);
283			}
284
285			oldest = (oldest + 1) % ic->i_send_ring.w_nr;
286		}
287
288		rds_iw_ring_free(&ic->i_send_ring, completed);
289
290		if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
291		    test_bit(0, &conn->c_map_queued))
292			queue_delayed_work(rds_wq, &conn->c_send_w, 0);
293
294		/* We expect errors as the qp is drained during shutdown */
295		if (wc.status != IB_WC_SUCCESS && rds_conn_up(conn)) {
296			rds_iw_conn_error(conn,
297				"send completion on %pI4 "
298				"had status %u, disconnecting and reconnecting\n",
299				&conn->c_faddr, wc.status);
300		}
301	}
302}
303
304/*
305 * This is the main function for allocating credits when sending
306 * messages.
307 *
308 * Conceptually, we have two counters:
309 *  -	send credits: this tells us how many WRs we're allowed
310 *	to submit without overruning the receiver's queue. For
311 *	each SEND WR we post, we decrement this by one.
312 *
313 *  -	posted credits: this tells us how many WRs we recently
314 *	posted to the receive queue. This value is transferred
315 *	to the peer as a "credit update" in a RDS header field.
316 *	Every time we transmit credits to the peer, we subtract
317 *	the amount of transferred credits from this counter.
318 *
319 * It is essential that we avoid situations where both sides have
320 * exhausted their send credits, and are unable to send new credits
321 * to the peer. We achieve this by requiring that we send at least
322 * one credit update to the peer before exhausting our credits.
323 * When new credits arrive, we subtract one credit that is withheld
324 * until we've posted new buffers and are ready to transmit these
325 * credits (see rds_iw_send_add_credits below).
326 *
327 * The RDS send code is essentially single-threaded; rds_send_xmit
328 * grabs c_send_lock to ensure exclusive access to the send ring.
329 * However, the ACK sending code is independent and can race with
330 * message SENDs.
331 *
332 * In the send path, we need to update the counters for send credits
333 * and the counter of posted buffers atomically - when we use the
334 * last available credit, we cannot allow another thread to race us
335 * and grab the posted credits counter.  Hence, we have to use a
336 * spinlock to protect the credit counter, or use atomics.
337 *
338 * Spinlocks shared between the send and the receive path are bad,
339 * because they create unnecessary delays. An early implementation
340 * using a spinlock showed a 5% degradation in throughput at some
341 * loads.
342 *
343 * This implementation avoids spinlocks completely, putting both
344 * counters into a single atomic, and updating that atomic using
345 * atomic_add (in the receive path, when receiving fresh credits),
346 * and using atomic_cmpxchg when updating the two counters.
347 */
348int rds_iw_send_grab_credits(struct rds_iw_connection *ic,
349			     u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
350{
351	unsigned int avail, posted, got = 0, advertise;
352	long oldval, newval;
353
354	*adv_credits = 0;
355	if (!ic->i_flowctl)
356		return wanted;
357
358try_again:
359	advertise = 0;
360	oldval = newval = atomic_read(&ic->i_credits);
361	posted = IB_GET_POST_CREDITS(oldval);
362	avail = IB_GET_SEND_CREDITS(oldval);
363
364	rdsdebug("wanted=%u credits=%u posted=%u\n",
365			wanted, avail, posted);
366
367	/* The last credit must be used to send a credit update. */
368	if (avail && !posted)
369		avail--;
370
371	if (avail < wanted) {
372		struct rds_connection *conn = ic->i_cm_id->context;
373
374		/* Oops, there aren't that many credits left! */
375		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
376		got = avail;
377	} else {
378		/* Sometimes you get what you want, lalala. */
379		got = wanted;
380	}
381	newval -= IB_SET_SEND_CREDITS(got);
382
383	/*
384	 * If need_posted is non-zero, then the caller wants
385	 * the posted regardless of whether any send credits are
386	 * available.
387	 */
388	if (posted && (got || need_posted)) {
389		advertise = min_t(unsigned int, posted, max_posted);
390		newval -= IB_SET_POST_CREDITS(advertise);
391	}
392
393	/* Finally bill everything */
394	if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
395		goto try_again;
396
397	*adv_credits = advertise;
398	return got;
399}
400
401void rds_iw_send_add_credits(struct rds_connection *conn, unsigned int credits)
402{
403	struct rds_iw_connection *ic = conn->c_transport_data;
404
405	if (credits == 0)
406		return;
407
408	rdsdebug("credits=%u current=%u%s\n",
409			credits,
410			IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
411			test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");
412
413	atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
414	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
415		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
416
417	WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);
418
419	rds_iw_stats_inc(s_iw_rx_credit_updates);
420}
421
422void rds_iw_advertise_credits(struct rds_connection *conn, unsigned int posted)
423{
424	struct rds_iw_connection *ic = conn->c_transport_data;
425
426	if (posted == 0)
427		return;
428
429	atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);
430
431	/* Decide whether to send an update to the peer now.
432	 * If we would send a credit update for every single buffer we
433	 * post, we would end up with an ACK storm (ACK arrives,
434	 * consumes buffer, we refill the ring, send ACK to remote
435	 * advertising the newly posted buffer... ad inf)
436	 *
437	 * Performance pretty much depends on how often we send
438	 * credit updates - too frequent updates mean lots of ACKs.
439	 * Too infrequent updates, and the peer will run out of
440	 * credits and has to throttle.
441	 * For the time being, 16 seems to be a good compromise.
442	 */
443	if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
444		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
445}
446
447static inline void
448rds_iw_xmit_populate_wr(struct rds_iw_connection *ic,
449		struct rds_iw_send_work *send, unsigned int pos,
450		unsigned long buffer, unsigned int length,
451		int send_flags)
452{
453	struct ib_sge *sge;
454
455	WARN_ON(pos != send - ic->i_sends);
456
457	send->s_wr.send_flags = send_flags;
458	send->s_wr.opcode = IB_WR_SEND;
459	send->s_wr.num_sge = 2;
460	send->s_wr.next = NULL;
461	send->s_queued = jiffies;
462	send->s_op = NULL;
463
464	if (length != 0) {
465		sge = rds_iw_data_sge(ic, send->s_sge);
466		sge->addr = buffer;
467		sge->length = length;
468		sge->lkey = rds_iw_local_dma_lkey(ic);
469
470		sge = rds_iw_header_sge(ic, send->s_sge);
471	} else {
472		/* We're sending a packet with no payload. There is only
473		 * one SGE */
474		send->s_wr.num_sge = 1;
475		sge = &send->s_sge[0];
476	}
477
478	sge->addr = ic->i_send_hdrs_dma + (pos * sizeof(struct rds_header));
479	sge->length = sizeof(struct rds_header);
480	sge->lkey = rds_iw_local_dma_lkey(ic);
481}
482
483/*
484 * This can be called multiple times for a given message.  The first time
485 * we see a message we map its scatterlist into the IB device so that
486 * we can provide that mapped address to the IB scatter gather entries
487 * in the IB work requests.  We translate the scatterlist into a series
488 * of work requests that fragment the message.  These work requests complete
489 * in order so we pass ownership of the message to the completion handler
490 * once we send the final fragment.
491 *
492 * The RDS core uses the c_send_lock to only enter this function once
493 * per connection.  This makes sure that the tx ring alloc/unalloc pairs
494 * don't get out of sync and confuse the ring.
495 */
496int rds_iw_xmit(struct rds_connection *conn, struct rds_message *rm,
497		unsigned int hdr_off, unsigned int sg, unsigned int off)
498{
499	struct rds_iw_connection *ic = conn->c_transport_data;
500	struct ib_device *dev = ic->i_cm_id->device;
501	struct rds_iw_send_work *send = NULL;
502	struct rds_iw_send_work *first;
503	struct rds_iw_send_work *prev;
504	struct ib_send_wr *failed_wr;
505	struct scatterlist *scat;
506	u32 pos;
507	u32 i;
508	u32 work_alloc;
509	u32 credit_alloc;
510	u32 posted;
511	u32 adv_credits = 0;
512	int send_flags = 0;
513	int sent;
514	int ret;
515	int flow_controlled = 0;
516
517	BUG_ON(off % RDS_FRAG_SIZE);
518	BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));
519
520	/* Fastreg support */
521	if (rds_rdma_cookie_key(rm->m_rdma_cookie) && !ic->i_fastreg_posted) {
522		ret = -EAGAIN;
523		goto out;
524	}
525
526	/* FIXME we may overallocate here */
527	if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
528		i = 1;
529	else
530		i = ceil(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);
531
532	work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, i, &pos);
533	if (work_alloc == 0) {
534		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
535		rds_iw_stats_inc(s_iw_tx_ring_full);
536		ret = -ENOMEM;
537		goto out;
538	}
539
540	credit_alloc = work_alloc;
541	if (ic->i_flowctl) {
542		credit_alloc = rds_iw_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
543		adv_credits += posted;
544		if (credit_alloc < work_alloc) {
545			rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
546			work_alloc = credit_alloc;
547			flow_controlled++;
548		}
549		if (work_alloc == 0) {
550			set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
551			rds_iw_stats_inc(s_iw_tx_throttle);
552			ret = -ENOMEM;
553			goto out;
554		}
555	}
556
557	/* map the message the first time we see it */
558	if (!ic->i_rm) {
559		/*
560		printk(KERN_NOTICE "rds_iw_xmit prep msg dport=%u flags=0x%x len=%d\n",
561				be16_to_cpu(rm->m_inc.i_hdr.h_dport),
562				rm->m_inc.i_hdr.h_flags,
563				be32_to_cpu(rm->m_inc.i_hdr.h_len));
564		   */
565		if (rm->data.op_nents) {
566			rm->data.op_count = ib_dma_map_sg(dev,
567							  rm->data.op_sg,
568							  rm->data.op_nents,
569							  DMA_TO_DEVICE);
570			rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count);
571			if (rm->data.op_count == 0) {
572				rds_iw_stats_inc(s_iw_tx_sg_mapping_failure);
573				rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
574				ret = -ENOMEM; /* XXX ? */
575				goto out;
576			}
577		} else {
578			rm->data.op_count = 0;
579		}
580
581		ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs;
582		ic->i_unsignaled_bytes = rds_iw_sysctl_max_unsig_bytes;
583		rds_message_addref(rm);
584		ic->i_rm = rm;
585
586		/* Finalize the header */
587		if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
588			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
589		if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
590			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
591
592		/* If it has a RDMA op, tell the peer we did it. This is
593		 * used by the peer to release use-once RDMA MRs. */
594		if (rm->rdma.op_active) {
595			struct rds_ext_header_rdma ext_hdr;
596
597			ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey);
598			rds_message_add_extension(&rm->m_inc.i_hdr,
599					RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
600		}
601		if (rm->m_rdma_cookie) {
602			rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
603					rds_rdma_cookie_key(rm->m_rdma_cookie),
604					rds_rdma_cookie_offset(rm->m_rdma_cookie));
605		}
606
607		/* Note - rds_iw_piggyb_ack clears the ACK_REQUIRED bit, so
608		 * we should not do this unless we have a chance of at least
609		 * sticking the header into the send ring. Which is why we
610		 * should call rds_iw_ring_alloc first. */
611		rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_iw_piggyb_ack(ic));
612		rds_message_make_checksum(&rm->m_inc.i_hdr);
613
614		/*
615		 * Update adv_credits since we reset the ACK_REQUIRED bit.
616		 */
617		rds_iw_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
618		adv_credits += posted;
619		BUG_ON(adv_credits > 255);
620	}
621
622	send = &ic->i_sends[pos];
623	first = send;
624	prev = NULL;
625	scat = &rm->data.op_sg[sg];
626	sent = 0;
627	i = 0;
628
629	/* Sometimes you want to put a fence between an RDMA
630	 * READ and the following SEND.
631	 * We could either do this all the time
632	 * or when requested by the user. Right now, we let
633	 * the application choose.
634	 */
635	if (rm->rdma.op_active && rm->rdma.op_fence)
636		send_flags = IB_SEND_FENCE;
637
638	/*
639	 * We could be copying the header into the unused tail of the page.
640	 * That would need to be changed in the future when those pages might
641	 * be mapped userspace pages or page cache pages.  So instead we always
642	 * use a second sge and our long-lived ring of mapped headers.  We send
643	 * the header after the data so that the data payload can be aligned on
644	 * the receiver.
645	 */
646
647	/* handle a 0-len message */
648	if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0) {
649		rds_iw_xmit_populate_wr(ic, send, pos, 0, 0, send_flags);
650		goto add_header;
651	}
652
653	/* if there's data reference it with a chain of work reqs */
654	for (; i < work_alloc && scat != &rm->data.op_sg[rm->data.op_count]; i++) {
655		unsigned int len;
656
657		send = &ic->i_sends[pos];
658
659		len = min(RDS_FRAG_SIZE, ib_sg_dma_len(dev, scat) - off);
660		rds_iw_xmit_populate_wr(ic, send, pos,
661				ib_sg_dma_address(dev, scat) + off, len,
662				send_flags);
663
664		/*
665		 * We want to delay signaling completions just enough to get
666		 * the batching benefits but not so much that we create dead time
667		 * on the wire.
668		 */
669		if (ic->i_unsignaled_wrs-- == 0) {
670			ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs;
671			send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
672		}
673
674		ic->i_unsignaled_bytes -= len;
675		if (ic->i_unsignaled_bytes <= 0) {
676			ic->i_unsignaled_bytes = rds_iw_sysctl_max_unsig_bytes;
677			send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
678		}
679
680		/*
681		 * Always signal the last one if we're stopping due to flow control.
682		 */
683		if (flow_controlled && i == (work_alloc-1))
684			send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
685
686		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
687			 &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
688
689		sent += len;
690		off += len;
691		if (off == ib_sg_dma_len(dev, scat)) {
692			scat++;
693			off = 0;
694		}
695
696add_header:
697		/* Tack on the header after the data. The header SGE should already
698		 * have been set up to point to the right header buffer. */
699		memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header));
700
701		if (0) {
702			struct rds_header *hdr = &ic->i_send_hdrs[pos];
703
704			printk(KERN_NOTICE "send WR dport=%u flags=0x%x len=%d\n",
705				be16_to_cpu(hdr->h_dport),
706				hdr->h_flags,
707				be32_to_cpu(hdr->h_len));
708		}
709		if (adv_credits) {
710			struct rds_header *hdr = &ic->i_send_hdrs[pos];
711
712			/* add credit and redo the header checksum */
713			hdr->h_credit = adv_credits;
714			rds_message_make_checksum(hdr);
715			adv_credits = 0;
716			rds_iw_stats_inc(s_iw_tx_credit_updates);
717		}
718
719		if (prev)
720			prev->s_wr.next = &send->s_wr;
721		prev = send;
722
723		pos = (pos + 1) % ic->i_send_ring.w_nr;
724	}
725
726	/* Account the RDS header in the number of bytes we sent, but just once.
727	 * The caller has no concept of fragmentation. */
728	if (hdr_off == 0)
729		sent += sizeof(struct rds_header);
730
731	/* if we finished the message then send completion owns it */
732	if (scat == &rm->data.op_sg[rm->data.op_count]) {
733		prev->s_rm = ic->i_rm;
734		prev->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
735		ic->i_rm = NULL;
736	}
737
738	if (i < work_alloc) {
739		rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - i);
740		work_alloc = i;
741	}
742	if (ic->i_flowctl && i < credit_alloc)
743		rds_iw_send_add_credits(conn, credit_alloc - i);
744
745	/* XXX need to worry about failed_wr and partial sends. */
746	failed_wr = &first->s_wr;
747	ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
748	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
749		 first, &first->s_wr, ret, failed_wr);
750	BUG_ON(failed_wr != &first->s_wr);
751	if (ret) {
752		printk(KERN_WARNING "RDS/IW: ib_post_send to %pI4 "
753		       "returned %d\n", &conn->c_faddr, ret);
754		rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
755		if (prev->s_rm) {
756			ic->i_rm = prev->s_rm;
757			prev->s_rm = NULL;
758		}
759		goto out;
760	}
761
762	ret = sent;
763out:
764	BUG_ON(adv_credits);
765	return ret;
766}
767
768static void rds_iw_build_send_fastreg(struct rds_iw_device *rds_iwdev, struct rds_iw_connection *ic, struct rds_iw_send_work *send, int nent, int len, u64 sg_addr)
769{
770	BUG_ON(nent > send->s_page_list->max_page_list_len);
771	/*
772	 * Perform a WR for the fast_reg_mr. Each individual page
773	 * in the sg list is added to the fast reg page list and placed
774	 * inside the fast_reg_mr WR.
775	 */
776	send->s_wr.opcode = IB_WR_FAST_REG_MR;
777	send->s_wr.wr.fast_reg.length = len;
778	send->s_wr.wr.fast_reg.rkey = send->s_mr->rkey;
779	send->s_wr.wr.fast_reg.page_list = send->s_page_list;
780	send->s_wr.wr.fast_reg.page_list_len = nent;
781	send->s_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
782	send->s_wr.wr.fast_reg.access_flags = IB_ACCESS_REMOTE_WRITE;
783	send->s_wr.wr.fast_reg.iova_start = sg_addr;
784
785	ib_update_fast_reg_key(send->s_mr, send->s_remap_count++);
786}
787
788int rds_iw_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op)
789{
790	struct rds_iw_connection *ic = conn->c_transport_data;
791	struct rds_iw_send_work *send = NULL;
792	struct rds_iw_send_work *first;
793	struct rds_iw_send_work *prev;
794	struct ib_send_wr *failed_wr;
795	struct rds_iw_device *rds_iwdev;
796	struct scatterlist *scat;
797	unsigned long len;
798	u64 remote_addr = op->op_remote_addr;
799	u32 pos, fr_pos;
800	u32 work_alloc;
801	u32 i;
802	u32 j;
803	int sent;
804	int ret;
805	int num_sge;
806
807	rds_iwdev = ib_get_client_data(ic->i_cm_id->device, &rds_iw_client);
808
809	/* map the message the first time we see it */
810	if (!op->op_mapped) {
811		op->op_count = ib_dma_map_sg(ic->i_cm_id->device,
812					     op->op_sg, op->op_nents, (op->op_write) ?
813					     DMA_TO_DEVICE : DMA_FROM_DEVICE);
814		rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->op_count);
815		if (op->op_count == 0) {
816			rds_iw_stats_inc(s_iw_tx_sg_mapping_failure);
817			ret = -ENOMEM; /* XXX ? */
818			goto out;
819		}
820
821		op->op_mapped = 1;
822	}
823
824	if (!op->op_write) {
825		/* Alloc space on the send queue for the fastreg */
826		work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, 1, &fr_pos);
827		if (work_alloc != 1) {
828			rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
829			rds_iw_stats_inc(s_iw_tx_ring_full);
830			ret = -ENOMEM;
831			goto out;
832		}
833	}
834
835	/*
836	 * Instead of knowing how to return a partial rdma read/write we insist that there
837	 * be enough work requests to send the entire message.
838	 */
839	i = ceil(op->op_count, rds_iwdev->max_sge);
840
841	work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, i, &pos);
842	if (work_alloc != i) {
843		rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
844		rds_iw_stats_inc(s_iw_tx_ring_full);
845		ret = -ENOMEM;
846		goto out;
847	}
848
849	send = &ic->i_sends[pos];
850	if (!op->op_write) {
851		first = prev = &ic->i_sends[fr_pos];
852	} else {
853		first = send;
854		prev = NULL;
855	}
856	scat = &op->op_sg[0];
857	sent = 0;
858	num_sge = op->op_count;
859
860	for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) {
861		send->s_wr.send_flags = 0;
862		send->s_queued = jiffies;
863
864		/*
865		 * We want to delay signaling completions just enough to get
866		 * the batching benefits but not so much that we create dead time on the wire.
867		 */
868		if (ic->i_unsignaled_wrs-- == 0) {
869			ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs;
870			send->s_wr.send_flags = IB_SEND_SIGNALED;
871		}
872
873		/* To avoid the need to have the plumbing to invalidate the fastreg_mr used
874		 * for local access after RDS is finished with it, using
875		 * IB_WR_RDMA_READ_WITH_INV will invalidate it after the read has completed.
876		 */
877		if (op->op_write)
878			send->s_wr.opcode = IB_WR_RDMA_WRITE;
879		else
880			send->s_wr.opcode = IB_WR_RDMA_READ_WITH_INV;
881
882		send->s_wr.wr.rdma.remote_addr = remote_addr;
883		send->s_wr.wr.rdma.rkey = op->op_rkey;
884		send->s_op = op;
885
886		if (num_sge > rds_iwdev->max_sge) {
887			send->s_wr.num_sge = rds_iwdev->max_sge;
888			num_sge -= rds_iwdev->max_sge;
889		} else
890			send->s_wr.num_sge = num_sge;
891
892		send->s_wr.next = NULL;
893
894		if (prev)
895			prev->s_wr.next = &send->s_wr;
896
897		for (j = 0; j < send->s_wr.num_sge && scat != &op->op_sg[op->op_count]; j++) {
898			len = ib_sg_dma_len(ic->i_cm_id->device, scat);
899
900			if (send->s_wr.opcode == IB_WR_RDMA_READ_WITH_INV)
901				send->s_page_list->page_list[j] = ib_sg_dma_address(ic->i_cm_id->device, scat);
902			else {
903				send->s_sge[j].addr = ib_sg_dma_address(ic->i_cm_id->device, scat);
904				send->s_sge[j].length = len;
905				send->s_sge[j].lkey = rds_iw_local_dma_lkey(ic);
906			}
907
908			sent += len;
909			rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
910			remote_addr += len;
911
912			scat++;
913		}
914
915		if (send->s_wr.opcode == IB_WR_RDMA_READ_WITH_INV) {
916			send->s_wr.num_sge = 1;
917			send->s_sge[0].addr = conn->c_xmit_rm->m_rs->rs_user_addr;
918			send->s_sge[0].length = conn->c_xmit_rm->m_rs->rs_user_bytes;
919			send->s_sge[0].lkey = ic->i_sends[fr_pos].s_mr->lkey;
920		}
921
922		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
923			&send->s_wr, send->s_wr.num_sge, send->s_wr.next);
924
925		prev = send;
926		if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
927			send = ic->i_sends;
928	}
929
930	/* if we finished the message then send completion owns it */
931	if (scat == &op->op_sg[op->op_count])
932		first->s_wr.send_flags = IB_SEND_SIGNALED;
933
934	if (i < work_alloc) {
935		rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - i);
936		work_alloc = i;
937	}
938
939	/* On iWARP, local memory access by a remote system (ie, RDMA Read) is not
940	 * recommended.  Putting the lkey on the wire is a security hole, as it can
941	 * allow for memory access to all of memory on the remote system.  Some
942	 * adapters do not allow using the lkey for this at all.  To bypass this use a
943	 * fastreg_mr (or possibly a dma_mr)
944	 */
945	if (!op->op_write) {
946		rds_iw_build_send_fastreg(rds_iwdev, ic, &ic->i_sends[fr_pos],
947			op->op_count, sent, conn->c_xmit_rm->m_rs->rs_user_addr);
948		work_alloc++;
949	}
950
951	failed_wr = &first->s_wr;
952	ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
953	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
954		 first, &first->s_wr, ret, failed_wr);
955	BUG_ON(failed_wr != &first->s_wr);
956	if (ret) {
957		printk(KERN_WARNING "RDS/IW: rdma ib_post_send to %pI4 "
958		       "returned %d\n", &conn->c_faddr, ret);
959		rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
960		goto out;
961	}
962
963out:
964	return ret;
965}
966
967void rds_iw_xmit_complete(struct rds_connection *conn)
968{
969	struct rds_iw_connection *ic = conn->c_transport_data;
970
971	/* We may have a pending ACK or window update we were unable
972	 * to send previously (due to flow control). Try again. */
973	rds_iw_attempt_ack(ic);
974}
975