1/*
2 * Copyright (c) 2007-2014 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19#include <linux/uaccess.h>
20#include <linux/netdevice.h>
21#include <linux/etherdevice.h>
22#include <linux/if_ether.h>
23#include <linux/if_vlan.h>
24#include <net/llc_pdu.h>
25#include <linux/kernel.h>
26#include <linux/jhash.h>
27#include <linux/jiffies.h>
28#include <linux/llc.h>
29#include <linux/module.h>
30#include <linux/in.h>
31#include <linux/rcupdate.h>
32#include <linux/if_arp.h>
33#include <linux/ip.h>
34#include <linux/ipv6.h>
35#include <linux/mpls.h>
36#include <linux/sctp.h>
37#include <linux/smp.h>
38#include <linux/tcp.h>
39#include <linux/udp.h>
40#include <linux/icmp.h>
41#include <linux/icmpv6.h>
42#include <linux/rculist.h>
43#include <net/ip.h>
44#include <net/ip_tunnels.h>
45#include <net/ipv6.h>
46#include <net/mpls.h>
47#include <net/ndisc.h>
48
49#include "datapath.h"
50#include "flow.h"
51#include "flow_netlink.h"
52
53u64 ovs_flow_used_time(unsigned long flow_jiffies)
54{
55	struct timespec cur_ts;
56	u64 cur_ms, idle_ms;
57
58	ktime_get_ts(&cur_ts);
59	idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
60	cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
61		 cur_ts.tv_nsec / NSEC_PER_MSEC;
62
63	return cur_ms - idle_ms;
64}
65
66#define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
67
68void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
69			   const struct sk_buff *skb)
70{
71	struct flow_stats *stats;
72	int node = numa_node_id();
73	int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
74
75	stats = rcu_dereference(flow->stats[node]);
76
77	/* Check if already have node-specific stats. */
78	if (likely(stats)) {
79		spin_lock(&stats->lock);
80		/* Mark if we write on the pre-allocated stats. */
81		if (node == 0 && unlikely(flow->stats_last_writer != node))
82			flow->stats_last_writer = node;
83	} else {
84		stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
85		spin_lock(&stats->lock);
86
87		/* If the current NUMA-node is the only writer on the
88		 * pre-allocated stats keep using them.
89		 */
90		if (unlikely(flow->stats_last_writer != node)) {
91			/* A previous locker may have already allocated the
92			 * stats, so we need to check again.  If node-specific
93			 * stats were already allocated, we update the pre-
94			 * allocated stats as we have already locked them.
95			 */
96			if (likely(flow->stats_last_writer != NUMA_NO_NODE)
97			    && likely(!rcu_access_pointer(flow->stats[node]))) {
98				/* Try to allocate node-specific stats. */
99				struct flow_stats *new_stats;
100
101				new_stats =
102					kmem_cache_alloc_node(flow_stats_cache,
103							      GFP_NOWAIT |
104							      __GFP_THISNODE |
105							      __GFP_NOWARN |
106							      __GFP_NOMEMALLOC,
107							      node);
108				if (likely(new_stats)) {
109					new_stats->used = jiffies;
110					new_stats->packet_count = 1;
111					new_stats->byte_count = len;
112					new_stats->tcp_flags = tcp_flags;
113					spin_lock_init(&new_stats->lock);
114
115					rcu_assign_pointer(flow->stats[node],
116							   new_stats);
117					goto unlock;
118				}
119			}
120			flow->stats_last_writer = node;
121		}
122	}
123
124	stats->used = jiffies;
125	stats->packet_count++;
126	stats->byte_count += len;
127	stats->tcp_flags |= tcp_flags;
128unlock:
129	spin_unlock(&stats->lock);
130}
131
132/* Must be called with rcu_read_lock or ovs_mutex. */
133void ovs_flow_stats_get(const struct sw_flow *flow,
134			struct ovs_flow_stats *ovs_stats,
135			unsigned long *used, __be16 *tcp_flags)
136{
137	int node;
138
139	*used = 0;
140	*tcp_flags = 0;
141	memset(ovs_stats, 0, sizeof(*ovs_stats));
142
143	for_each_node(node) {
144		struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[node]);
145
146		if (stats) {
147			/* Local CPU may write on non-local stats, so we must
148			 * block bottom-halves here.
149			 */
150			spin_lock_bh(&stats->lock);
151			if (!*used || time_after(stats->used, *used))
152				*used = stats->used;
153			*tcp_flags |= stats->tcp_flags;
154			ovs_stats->n_packets += stats->packet_count;
155			ovs_stats->n_bytes += stats->byte_count;
156			spin_unlock_bh(&stats->lock);
157		}
158	}
159}
160
161/* Called with ovs_mutex. */
162void ovs_flow_stats_clear(struct sw_flow *flow)
163{
164	int node;
165
166	for_each_node(node) {
167		struct flow_stats *stats = ovsl_dereference(flow->stats[node]);
168
169		if (stats) {
170			spin_lock_bh(&stats->lock);
171			stats->used = 0;
172			stats->packet_count = 0;
173			stats->byte_count = 0;
174			stats->tcp_flags = 0;
175			spin_unlock_bh(&stats->lock);
176		}
177	}
178}
179
180static int check_header(struct sk_buff *skb, int len)
181{
182	if (unlikely(skb->len < len))
183		return -EINVAL;
184	if (unlikely(!pskb_may_pull(skb, len)))
185		return -ENOMEM;
186	return 0;
187}
188
189static bool arphdr_ok(struct sk_buff *skb)
190{
191	return pskb_may_pull(skb, skb_network_offset(skb) +
192				  sizeof(struct arp_eth_header));
193}
194
195static int check_iphdr(struct sk_buff *skb)
196{
197	unsigned int nh_ofs = skb_network_offset(skb);
198	unsigned int ip_len;
199	int err;
200
201	err = check_header(skb, nh_ofs + sizeof(struct iphdr));
202	if (unlikely(err))
203		return err;
204
205	ip_len = ip_hdrlen(skb);
206	if (unlikely(ip_len < sizeof(struct iphdr) ||
207		     skb->len < nh_ofs + ip_len))
208		return -EINVAL;
209
210	skb_set_transport_header(skb, nh_ofs + ip_len);
211	return 0;
212}
213
214static bool tcphdr_ok(struct sk_buff *skb)
215{
216	int th_ofs = skb_transport_offset(skb);
217	int tcp_len;
218
219	if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
220		return false;
221
222	tcp_len = tcp_hdrlen(skb);
223	if (unlikely(tcp_len < sizeof(struct tcphdr) ||
224		     skb->len < th_ofs + tcp_len))
225		return false;
226
227	return true;
228}
229
230static bool udphdr_ok(struct sk_buff *skb)
231{
232	return pskb_may_pull(skb, skb_transport_offset(skb) +
233				  sizeof(struct udphdr));
234}
235
236static bool sctphdr_ok(struct sk_buff *skb)
237{
238	return pskb_may_pull(skb, skb_transport_offset(skb) +
239				  sizeof(struct sctphdr));
240}
241
242static bool icmphdr_ok(struct sk_buff *skb)
243{
244	return pskb_may_pull(skb, skb_transport_offset(skb) +
245				  sizeof(struct icmphdr));
246}
247
248static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
249{
250	unsigned int nh_ofs = skb_network_offset(skb);
251	unsigned int nh_len;
252	int payload_ofs;
253	struct ipv6hdr *nh;
254	uint8_t nexthdr;
255	__be16 frag_off;
256	int err;
257
258	err = check_header(skb, nh_ofs + sizeof(*nh));
259	if (unlikely(err))
260		return err;
261
262	nh = ipv6_hdr(skb);
263	nexthdr = nh->nexthdr;
264	payload_ofs = (u8 *)(nh + 1) - skb->data;
265
266	key->ip.proto = NEXTHDR_NONE;
267	key->ip.tos = ipv6_get_dsfield(nh);
268	key->ip.ttl = nh->hop_limit;
269	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
270	key->ipv6.addr.src = nh->saddr;
271	key->ipv6.addr.dst = nh->daddr;
272
273	payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
274	if (unlikely(payload_ofs < 0))
275		return -EINVAL;
276
277	if (frag_off) {
278		if (frag_off & htons(~0x7))
279			key->ip.frag = OVS_FRAG_TYPE_LATER;
280		else
281			key->ip.frag = OVS_FRAG_TYPE_FIRST;
282	} else {
283		key->ip.frag = OVS_FRAG_TYPE_NONE;
284	}
285
286	nh_len = payload_ofs - nh_ofs;
287	skb_set_transport_header(skb, nh_ofs + nh_len);
288	key->ip.proto = nexthdr;
289	return nh_len;
290}
291
292static bool icmp6hdr_ok(struct sk_buff *skb)
293{
294	return pskb_may_pull(skb, skb_transport_offset(skb) +
295				  sizeof(struct icmp6hdr));
296}
297
298static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
299{
300	struct qtag_prefix {
301		__be16 eth_type; /* ETH_P_8021Q */
302		__be16 tci;
303	};
304	struct qtag_prefix *qp;
305
306	if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
307		return 0;
308
309	if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
310					 sizeof(__be16))))
311		return -ENOMEM;
312
313	qp = (struct qtag_prefix *) skb->data;
314	key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
315	__skb_pull(skb, sizeof(struct qtag_prefix));
316
317	return 0;
318}
319
320static __be16 parse_ethertype(struct sk_buff *skb)
321{
322	struct llc_snap_hdr {
323		u8  dsap;  /* Always 0xAA */
324		u8  ssap;  /* Always 0xAA */
325		u8  ctrl;
326		u8  oui[3];
327		__be16 ethertype;
328	};
329	struct llc_snap_hdr *llc;
330	__be16 proto;
331
332	proto = *(__be16 *) skb->data;
333	__skb_pull(skb, sizeof(__be16));
334
335	if (ntohs(proto) >= ETH_P_802_3_MIN)
336		return proto;
337
338	if (skb->len < sizeof(struct llc_snap_hdr))
339		return htons(ETH_P_802_2);
340
341	if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
342		return htons(0);
343
344	llc = (struct llc_snap_hdr *) skb->data;
345	if (llc->dsap != LLC_SAP_SNAP ||
346	    llc->ssap != LLC_SAP_SNAP ||
347	    (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
348		return htons(ETH_P_802_2);
349
350	__skb_pull(skb, sizeof(struct llc_snap_hdr));
351
352	if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN)
353		return llc->ethertype;
354
355	return htons(ETH_P_802_2);
356}
357
358static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
359			int nh_len)
360{
361	struct icmp6hdr *icmp = icmp6_hdr(skb);
362
363	/* The ICMPv6 type and code fields use the 16-bit transport port
364	 * fields, so we need to store them in 16-bit network byte order.
365	 */
366	key->tp.src = htons(icmp->icmp6_type);
367	key->tp.dst = htons(icmp->icmp6_code);
368	memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
369
370	if (icmp->icmp6_code == 0 &&
371	    (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
372	     icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
373		int icmp_len = skb->len - skb_transport_offset(skb);
374		struct nd_msg *nd;
375		int offset;
376
377		/* In order to process neighbor discovery options, we need the
378		 * entire packet.
379		 */
380		if (unlikely(icmp_len < sizeof(*nd)))
381			return 0;
382
383		if (unlikely(skb_linearize(skb)))
384			return -ENOMEM;
385
386		nd = (struct nd_msg *)skb_transport_header(skb);
387		key->ipv6.nd.target = nd->target;
388
389		icmp_len -= sizeof(*nd);
390		offset = 0;
391		while (icmp_len >= 8) {
392			struct nd_opt_hdr *nd_opt =
393				 (struct nd_opt_hdr *)(nd->opt + offset);
394			int opt_len = nd_opt->nd_opt_len * 8;
395
396			if (unlikely(!opt_len || opt_len > icmp_len))
397				return 0;
398
399			/* Store the link layer address if the appropriate
400			 * option is provided.  It is considered an error if
401			 * the same link layer option is specified twice.
402			 */
403			if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
404			    && opt_len == 8) {
405				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
406					goto invalid;
407				ether_addr_copy(key->ipv6.nd.sll,
408						&nd->opt[offset+sizeof(*nd_opt)]);
409			} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
410				   && opt_len == 8) {
411				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
412					goto invalid;
413				ether_addr_copy(key->ipv6.nd.tll,
414						&nd->opt[offset+sizeof(*nd_opt)]);
415			}
416
417			icmp_len -= opt_len;
418			offset += opt_len;
419		}
420	}
421
422	return 0;
423
424invalid:
425	memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
426	memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
427	memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
428
429	return 0;
430}
431
432/**
433 * key_extract - extracts a flow key from an Ethernet frame.
434 * @skb: sk_buff that contains the frame, with skb->data pointing to the
435 * Ethernet header
436 * @key: output flow key
437 *
438 * The caller must ensure that skb->len >= ETH_HLEN.
439 *
440 * Returns 0 if successful, otherwise a negative errno value.
441 *
442 * Initializes @skb header pointers as follows:
443 *
444 *    - skb->mac_header: the Ethernet header.
445 *
446 *    - skb->network_header: just past the Ethernet header, or just past the
447 *      VLAN header, to the first byte of the Ethernet payload.
448 *
449 *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
450 *      on output, then just past the IP header, if one is present and
451 *      of a correct length, otherwise the same as skb->network_header.
452 *      For other key->eth.type values it is left untouched.
453 */
454static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
455{
456	int error;
457	struct ethhdr *eth;
458
459	/* Flags are always used as part of stats */
460	key->tp.flags = 0;
461
462	skb_reset_mac_header(skb);
463
464	/* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
465	 * header in the linear data area.
466	 */
467	eth = eth_hdr(skb);
468	ether_addr_copy(key->eth.src, eth->h_source);
469	ether_addr_copy(key->eth.dst, eth->h_dest);
470
471	__skb_pull(skb, 2 * ETH_ALEN);
472	/* We are going to push all headers that we pull, so no need to
473	 * update skb->csum here.
474	 */
475
476	key->eth.tci = 0;
477	if (skb_vlan_tag_present(skb))
478		key->eth.tci = htons(skb->vlan_tci);
479	else if (eth->h_proto == htons(ETH_P_8021Q))
480		if (unlikely(parse_vlan(skb, key)))
481			return -ENOMEM;
482
483	key->eth.type = parse_ethertype(skb);
484	if (unlikely(key->eth.type == htons(0)))
485		return -ENOMEM;
486
487	skb_reset_network_header(skb);
488	skb_reset_mac_len(skb);
489	__skb_push(skb, skb->data - skb_mac_header(skb));
490
491	/* Network layer. */
492	if (key->eth.type == htons(ETH_P_IP)) {
493		struct iphdr *nh;
494		__be16 offset;
495
496		error = check_iphdr(skb);
497		if (unlikely(error)) {
498			memset(&key->ip, 0, sizeof(key->ip));
499			memset(&key->ipv4, 0, sizeof(key->ipv4));
500			if (error == -EINVAL) {
501				skb->transport_header = skb->network_header;
502				error = 0;
503			}
504			return error;
505		}
506
507		nh = ip_hdr(skb);
508		key->ipv4.addr.src = nh->saddr;
509		key->ipv4.addr.dst = nh->daddr;
510
511		key->ip.proto = nh->protocol;
512		key->ip.tos = nh->tos;
513		key->ip.ttl = nh->ttl;
514
515		offset = nh->frag_off & htons(IP_OFFSET);
516		if (offset) {
517			key->ip.frag = OVS_FRAG_TYPE_LATER;
518			return 0;
519		}
520		if (nh->frag_off & htons(IP_MF) ||
521			skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
522			key->ip.frag = OVS_FRAG_TYPE_FIRST;
523		else
524			key->ip.frag = OVS_FRAG_TYPE_NONE;
525
526		/* Transport layer. */
527		if (key->ip.proto == IPPROTO_TCP) {
528			if (tcphdr_ok(skb)) {
529				struct tcphdr *tcp = tcp_hdr(skb);
530				key->tp.src = tcp->source;
531				key->tp.dst = tcp->dest;
532				key->tp.flags = TCP_FLAGS_BE16(tcp);
533			} else {
534				memset(&key->tp, 0, sizeof(key->tp));
535			}
536
537		} else if (key->ip.proto == IPPROTO_UDP) {
538			if (udphdr_ok(skb)) {
539				struct udphdr *udp = udp_hdr(skb);
540				key->tp.src = udp->source;
541				key->tp.dst = udp->dest;
542			} else {
543				memset(&key->tp, 0, sizeof(key->tp));
544			}
545		} else if (key->ip.proto == IPPROTO_SCTP) {
546			if (sctphdr_ok(skb)) {
547				struct sctphdr *sctp = sctp_hdr(skb);
548				key->tp.src = sctp->source;
549				key->tp.dst = sctp->dest;
550			} else {
551				memset(&key->tp, 0, sizeof(key->tp));
552			}
553		} else if (key->ip.proto == IPPROTO_ICMP) {
554			if (icmphdr_ok(skb)) {
555				struct icmphdr *icmp = icmp_hdr(skb);
556				/* The ICMP type and code fields use the 16-bit
557				 * transport port fields, so we need to store
558				 * them in 16-bit network byte order. */
559				key->tp.src = htons(icmp->type);
560				key->tp.dst = htons(icmp->code);
561			} else {
562				memset(&key->tp, 0, sizeof(key->tp));
563			}
564		}
565
566	} else if (key->eth.type == htons(ETH_P_ARP) ||
567		   key->eth.type == htons(ETH_P_RARP)) {
568		struct arp_eth_header *arp;
569		bool arp_available = arphdr_ok(skb);
570
571		arp = (struct arp_eth_header *)skb_network_header(skb);
572
573		if (arp_available &&
574		    arp->ar_hrd == htons(ARPHRD_ETHER) &&
575		    arp->ar_pro == htons(ETH_P_IP) &&
576		    arp->ar_hln == ETH_ALEN &&
577		    arp->ar_pln == 4) {
578
579			/* We only match on the lower 8 bits of the opcode. */
580			if (ntohs(arp->ar_op) <= 0xff)
581				key->ip.proto = ntohs(arp->ar_op);
582			else
583				key->ip.proto = 0;
584
585			memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
586			memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
587			ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
588			ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
589		} else {
590			memset(&key->ip, 0, sizeof(key->ip));
591			memset(&key->ipv4, 0, sizeof(key->ipv4));
592		}
593	} else if (eth_p_mpls(key->eth.type)) {
594		size_t stack_len = MPLS_HLEN;
595
596		/* In the presence of an MPLS label stack the end of the L2
597		 * header and the beginning of the L3 header differ.
598		 *
599		 * Advance network_header to the beginning of the L3
600		 * header. mac_len corresponds to the end of the L2 header.
601		 */
602		while (1) {
603			__be32 lse;
604
605			error = check_header(skb, skb->mac_len + stack_len);
606			if (unlikely(error))
607				return 0;
608
609			memcpy(&lse, skb_network_header(skb), MPLS_HLEN);
610
611			if (stack_len == MPLS_HLEN)
612				memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
613
614			skb_set_network_header(skb, skb->mac_len + stack_len);
615			if (lse & htonl(MPLS_LS_S_MASK))
616				break;
617
618			stack_len += MPLS_HLEN;
619		}
620	} else if (key->eth.type == htons(ETH_P_IPV6)) {
621		int nh_len;             /* IPv6 Header + Extensions */
622
623		nh_len = parse_ipv6hdr(skb, key);
624		if (unlikely(nh_len < 0)) {
625			memset(&key->ip, 0, sizeof(key->ip));
626			memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
627			if (nh_len == -EINVAL) {
628				skb->transport_header = skb->network_header;
629				error = 0;
630			} else {
631				error = nh_len;
632			}
633			return error;
634		}
635
636		if (key->ip.frag == OVS_FRAG_TYPE_LATER)
637			return 0;
638		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
639			key->ip.frag = OVS_FRAG_TYPE_FIRST;
640
641		/* Transport layer. */
642		if (key->ip.proto == NEXTHDR_TCP) {
643			if (tcphdr_ok(skb)) {
644				struct tcphdr *tcp = tcp_hdr(skb);
645				key->tp.src = tcp->source;
646				key->tp.dst = tcp->dest;
647				key->tp.flags = TCP_FLAGS_BE16(tcp);
648			} else {
649				memset(&key->tp, 0, sizeof(key->tp));
650			}
651		} else if (key->ip.proto == NEXTHDR_UDP) {
652			if (udphdr_ok(skb)) {
653				struct udphdr *udp = udp_hdr(skb);
654				key->tp.src = udp->source;
655				key->tp.dst = udp->dest;
656			} else {
657				memset(&key->tp, 0, sizeof(key->tp));
658			}
659		} else if (key->ip.proto == NEXTHDR_SCTP) {
660			if (sctphdr_ok(skb)) {
661				struct sctphdr *sctp = sctp_hdr(skb);
662				key->tp.src = sctp->source;
663				key->tp.dst = sctp->dest;
664			} else {
665				memset(&key->tp, 0, sizeof(key->tp));
666			}
667		} else if (key->ip.proto == NEXTHDR_ICMP) {
668			if (icmp6hdr_ok(skb)) {
669				error = parse_icmpv6(skb, key, nh_len);
670				if (error)
671					return error;
672			} else {
673				memset(&key->tp, 0, sizeof(key->tp));
674			}
675		}
676	}
677	return 0;
678}
679
680int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
681{
682	return key_extract(skb, key);
683}
684
685int ovs_flow_key_extract(const struct ovs_tunnel_info *tun_info,
686			 struct sk_buff *skb, struct sw_flow_key *key)
687{
688	/* Extract metadata from packet. */
689	if (tun_info) {
690		memcpy(&key->tun_key, &tun_info->tunnel, sizeof(key->tun_key));
691
692		if (tun_info->options) {
693			BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
694						   8)) - 1
695					> sizeof(key->tun_opts));
696			memcpy(TUN_METADATA_OPTS(key, tun_info->options_len),
697			       tun_info->options, tun_info->options_len);
698			key->tun_opts_len = tun_info->options_len;
699		} else {
700			key->tun_opts_len = 0;
701		}
702	} else  {
703		key->tun_opts_len = 0;
704		memset(&key->tun_key, 0, sizeof(key->tun_key));
705	}
706
707	key->phy.priority = skb->priority;
708	key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
709	key->phy.skb_mark = skb->mark;
710	key->ovs_flow_hash = 0;
711	key->recirc_id = 0;
712
713	return key_extract(skb, key);
714}
715
716int ovs_flow_key_extract_userspace(const struct nlattr *attr,
717				   struct sk_buff *skb,
718				   struct sw_flow_key *key, bool log)
719{
720	int err;
721
722	memset(key, 0, OVS_SW_FLOW_KEY_METADATA_SIZE);
723
724	/* Extract metadata from netlink attributes. */
725	err = ovs_nla_get_flow_metadata(attr, key, log);
726	if (err)
727		return err;
728
729	return key_extract(skb, key);
730}
731