1/*
2 * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8#include <linux/netdevice.h>
9#include <linux/types.h>
10#include <linux/skbuff.h>
11#include <linux/debugfs.h>
12#include <linux/random.h>
13#include <linux/moduleparam.h>
14#include <linux/ieee80211.h>
15#include <net/mac80211.h>
16#include "rate.h"
17#include "rc80211_minstrel.h"
18#include "rc80211_minstrel_ht.h"
19
20#define AVG_AMPDU_SIZE	16
21#define AVG_PKT_SIZE	1200
22
23/* Number of bits for an average sized packet */
24#define MCS_NBITS ((AVG_PKT_SIZE * AVG_AMPDU_SIZE) << 3)
25
26/* Number of symbols for a packet with (bps) bits per symbol */
27#define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps))
28
29/* Transmission time (nanoseconds) for a packet containing (syms) symbols */
30#define MCS_SYMBOL_TIME(sgi, syms)					\
31	(sgi ?								\
32	  ((syms) * 18000 + 4000) / 5 :	/* syms * 3.6 us */		\
33	  ((syms) * 1000) << 2		/* syms * 4 us */		\
34	)
35
36/* Transmit duration for the raw data part of an average sized packet */
37#define MCS_DURATION(streams, sgi, bps) \
38	(MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps))) / AVG_AMPDU_SIZE)
39
40#define BW_20			0
41#define BW_40			1
42#define BW_80			2
43
44/*
45 * Define group sort order: HT40 -> SGI -> #streams
46 */
47#define GROUP_IDX(_streams, _sgi, _ht40)	\
48	MINSTREL_HT_GROUP_0 +			\
49	MINSTREL_MAX_STREAMS * 2 * _ht40 +	\
50	MINSTREL_MAX_STREAMS * _sgi +	\
51	_streams - 1
52
53/* MCS rate information for an MCS group */
54#define MCS_GROUP(_streams, _sgi, _ht40)				\
55	[GROUP_IDX(_streams, _sgi, _ht40)] = {				\
56	.streams = _streams,						\
57	.flags =							\
58		IEEE80211_TX_RC_MCS |					\
59		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
60		(_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),		\
61	.duration = {							\
62		MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26),		\
63		MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52),		\
64		MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78),		\
65		MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104),	\
66		MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156),	\
67		MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208),	\
68		MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234),	\
69		MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260)		\
70	}								\
71}
72
73#define VHT_GROUP_IDX(_streams, _sgi, _bw)				\
74	(MINSTREL_VHT_GROUP_0 +						\
75	 MINSTREL_MAX_STREAMS * 2 * (_bw) +				\
76	 MINSTREL_MAX_STREAMS * (_sgi) +				\
77	 (_streams) - 1)
78
79#define BW2VBPS(_bw, r3, r2, r1)					\
80	(_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1)
81
82#define VHT_GROUP(_streams, _sgi, _bw)					\
83	[VHT_GROUP_IDX(_streams, _sgi, _bw)] = {			\
84	.streams = _streams,						\
85	.flags =							\
86		IEEE80211_TX_RC_VHT_MCS |				\
87		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
88		(_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH :		\
89		 _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),	\
90	.duration = {							\
91		MCS_DURATION(_streams, _sgi,				\
92			     BW2VBPS(_bw,  117,  54,  26)),		\
93		MCS_DURATION(_streams, _sgi,				\
94			     BW2VBPS(_bw,  234, 108,  52)),		\
95		MCS_DURATION(_streams, _sgi,				\
96			     BW2VBPS(_bw,  351, 162,  78)),		\
97		MCS_DURATION(_streams, _sgi,				\
98			     BW2VBPS(_bw,  468, 216, 104)),		\
99		MCS_DURATION(_streams, _sgi,				\
100			     BW2VBPS(_bw,  702, 324, 156)),		\
101		MCS_DURATION(_streams, _sgi,				\
102			     BW2VBPS(_bw,  936, 432, 208)),		\
103		MCS_DURATION(_streams, _sgi,				\
104			     BW2VBPS(_bw, 1053, 486, 234)),		\
105		MCS_DURATION(_streams, _sgi,				\
106			     BW2VBPS(_bw, 1170, 540, 260)),		\
107		MCS_DURATION(_streams, _sgi,				\
108			     BW2VBPS(_bw, 1404, 648, 312)),		\
109		MCS_DURATION(_streams, _sgi,				\
110			     BW2VBPS(_bw, 1560, 720, 346))		\
111	}								\
112}
113
114#define CCK_DURATION(_bitrate, _short, _len)		\
115	(1000 * (10 /* SIFS */ +			\
116	 (_short ? 72 + 24 : 144 + 48) +		\
117	 (8 * (_len + 4) * 10) / (_bitrate)))
118
119#define CCK_ACK_DURATION(_bitrate, _short)			\
120	(CCK_DURATION((_bitrate > 10 ? 20 : 10), false, 60) +	\
121	 CCK_DURATION(_bitrate, _short, AVG_PKT_SIZE))
122
123#define CCK_DURATION_LIST(_short)			\
124	CCK_ACK_DURATION(10, _short),			\
125	CCK_ACK_DURATION(20, _short),			\
126	CCK_ACK_DURATION(55, _short),			\
127	CCK_ACK_DURATION(110, _short)
128
129#define CCK_GROUP					\
130	[MINSTREL_CCK_GROUP] = {			\
131		.streams = 0,				\
132		.flags = 0,				\
133		.duration = {				\
134			CCK_DURATION_LIST(false),	\
135			CCK_DURATION_LIST(true)		\
136		}					\
137	}
138
139#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
140static bool minstrel_vht_only = true;
141module_param(minstrel_vht_only, bool, 0644);
142MODULE_PARM_DESC(minstrel_vht_only,
143		 "Use only VHT rates when VHT is supported by sta.");
144#endif
145
146/*
147 * To enable sufficiently targeted rate sampling, MCS rates are divided into
148 * groups, based on the number of streams and flags (HT40, SGI) that they
149 * use.
150 *
151 * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
152 * BW -> SGI -> #streams
153 */
154const struct mcs_group minstrel_mcs_groups[] = {
155	MCS_GROUP(1, 0, BW_20),
156	MCS_GROUP(2, 0, BW_20),
157#if MINSTREL_MAX_STREAMS >= 3
158	MCS_GROUP(3, 0, BW_20),
159#endif
160
161	MCS_GROUP(1, 1, BW_20),
162	MCS_GROUP(2, 1, BW_20),
163#if MINSTREL_MAX_STREAMS >= 3
164	MCS_GROUP(3, 1, BW_20),
165#endif
166
167	MCS_GROUP(1, 0, BW_40),
168	MCS_GROUP(2, 0, BW_40),
169#if MINSTREL_MAX_STREAMS >= 3
170	MCS_GROUP(3, 0, BW_40),
171#endif
172
173	MCS_GROUP(1, 1, BW_40),
174	MCS_GROUP(2, 1, BW_40),
175#if MINSTREL_MAX_STREAMS >= 3
176	MCS_GROUP(3, 1, BW_40),
177#endif
178
179	CCK_GROUP,
180
181#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
182	VHT_GROUP(1, 0, BW_20),
183	VHT_GROUP(2, 0, BW_20),
184#if MINSTREL_MAX_STREAMS >= 3
185	VHT_GROUP(3, 0, BW_20),
186#endif
187
188	VHT_GROUP(1, 1, BW_20),
189	VHT_GROUP(2, 1, BW_20),
190#if MINSTREL_MAX_STREAMS >= 3
191	VHT_GROUP(3, 1, BW_20),
192#endif
193
194	VHT_GROUP(1, 0, BW_40),
195	VHT_GROUP(2, 0, BW_40),
196#if MINSTREL_MAX_STREAMS >= 3
197	VHT_GROUP(3, 0, BW_40),
198#endif
199
200	VHT_GROUP(1, 1, BW_40),
201	VHT_GROUP(2, 1, BW_40),
202#if MINSTREL_MAX_STREAMS >= 3
203	VHT_GROUP(3, 1, BW_40),
204#endif
205
206	VHT_GROUP(1, 0, BW_80),
207	VHT_GROUP(2, 0, BW_80),
208#if MINSTREL_MAX_STREAMS >= 3
209	VHT_GROUP(3, 0, BW_80),
210#endif
211
212	VHT_GROUP(1, 1, BW_80),
213	VHT_GROUP(2, 1, BW_80),
214#if MINSTREL_MAX_STREAMS >= 3
215	VHT_GROUP(3, 1, BW_80),
216#endif
217#endif
218};
219
220static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly;
221
222static void
223minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);
224
225/*
226 * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer)
227 * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1
228 *
229 * Returns the valid mcs map for struct minstrel_mcs_group_data.supported
230 */
231static u16
232minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map)
233{
234	u16 mask = 0;
235
236	if (bw == BW_20) {
237		if (nss != 3 && nss != 6)
238			mask = BIT(9);
239	} else if (bw == BW_80) {
240		if (nss == 3 || nss == 7)
241			mask = BIT(6);
242		else if (nss == 6)
243			mask = BIT(9);
244	} else {
245		WARN_ON(bw != BW_40);
246	}
247
248	switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) {
249	case IEEE80211_VHT_MCS_SUPPORT_0_7:
250		mask |= 0x300;
251		break;
252	case IEEE80211_VHT_MCS_SUPPORT_0_8:
253		mask |= 0x200;
254		break;
255	case IEEE80211_VHT_MCS_SUPPORT_0_9:
256		break;
257	default:
258		mask = 0x3ff;
259	}
260
261	return 0x3ff & ~mask;
262}
263
264/*
265 * Look up an MCS group index based on mac80211 rate information
266 */
267static int
268minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
269{
270	return GROUP_IDX((rate->idx / 8) + 1,
271			 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
272			 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
273}
274
275static int
276minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate)
277{
278	return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate),
279			     !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
280			     !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) +
281			     2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH));
282}
283
284static struct minstrel_rate_stats *
285minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
286		      struct ieee80211_tx_rate *rate)
287{
288	int group, idx;
289
290	if (rate->flags & IEEE80211_TX_RC_MCS) {
291		group = minstrel_ht_get_group_idx(rate);
292		idx = rate->idx % 8;
293	} else if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
294		group = minstrel_vht_get_group_idx(rate);
295		idx = ieee80211_rate_get_vht_mcs(rate);
296	} else {
297		group = MINSTREL_CCK_GROUP;
298
299		for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++)
300			if (rate->idx == mp->cck_rates[idx])
301				break;
302
303		/* short preamble */
304		if (!(mi->groups[group].supported & BIT(idx)))
305			idx += 4;
306	}
307	return &mi->groups[group].rates[idx];
308}
309
310static inline struct minstrel_rate_stats *
311minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
312{
313	return &mi->groups[index / MCS_GROUP_RATES].rates[index % MCS_GROUP_RATES];
314}
315
316/*
317 * Return current throughput based on the average A-MPDU length, taking into
318 * account the expected number of retransmissions and their expected length
319 */
320int
321minstrel_ht_get_tp_avg(struct minstrel_ht_sta *mi, int group, int rate,
322		       int prob_ewma)
323{
324	unsigned int nsecs = 0;
325
326	/* do not account throughput if sucess prob is below 10% */
327	if (prob_ewma < MINSTREL_FRAC(10, 100))
328		return 0;
329
330	if (group != MINSTREL_CCK_GROUP)
331		nsecs = 1000 * mi->overhead / MINSTREL_TRUNC(mi->avg_ampdu_len);
332
333	nsecs += minstrel_mcs_groups[group].duration[rate];
334
335	/*
336	 * For the throughput calculation, limit the probability value to 90% to
337	 * account for collision related packet error rate fluctuation
338	 * (prob is scaled - see MINSTREL_FRAC above)
339	 */
340	if (prob_ewma > MINSTREL_FRAC(90, 100))
341		return MINSTREL_TRUNC(100000 * ((MINSTREL_FRAC(90, 100) * 1000)
342								      / nsecs));
343	else
344		return MINSTREL_TRUNC(100000 * ((prob_ewma * 1000) / nsecs));
345}
346
347/*
348 * Find & sort topmost throughput rates
349 *
350 * If multiple rates provide equal throughput the sorting is based on their
351 * current success probability. Higher success probability is preferred among
352 * MCS groups, CCK rates do not provide aggregation and are therefore at last.
353 */
354static void
355minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index,
356			       u16 *tp_list)
357{
358	int cur_group, cur_idx, cur_tp_avg, cur_prob;
359	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
360	int j = MAX_THR_RATES;
361
362	cur_group = index / MCS_GROUP_RATES;
363	cur_idx = index  % MCS_GROUP_RATES;
364	cur_prob = mi->groups[cur_group].rates[cur_idx].prob_ewma;
365	cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, cur_prob);
366
367	do {
368		tmp_group = tp_list[j - 1] / MCS_GROUP_RATES;
369		tmp_idx = tp_list[j - 1] % MCS_GROUP_RATES;
370		tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
371		tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx,
372						    tmp_prob);
373		if (cur_tp_avg < tmp_tp_avg ||
374		    (cur_tp_avg == tmp_tp_avg && cur_prob <= tmp_prob))
375			break;
376		j--;
377	} while (j > 0);
378
379	if (j < MAX_THR_RATES - 1) {
380		memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) *
381		       (MAX_THR_RATES - (j + 1))));
382	}
383	if (j < MAX_THR_RATES)
384		tp_list[j] = index;
385}
386
387/*
388 * Find and set the topmost probability rate per sta and per group
389 */
390static void
391minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 index)
392{
393	struct minstrel_mcs_group_data *mg;
394	struct minstrel_rate_stats *mrs;
395	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
396	int max_tp_group, cur_tp_avg, cur_group, cur_idx;
397	int max_gpr_group, max_gpr_idx;
398	int max_gpr_tp_avg, max_gpr_prob;
399
400	cur_group = index / MCS_GROUP_RATES;
401	cur_idx = index % MCS_GROUP_RATES;
402	mg = &mi->groups[index / MCS_GROUP_RATES];
403	mrs = &mg->rates[index % MCS_GROUP_RATES];
404
405	tmp_group = mi->max_prob_rate / MCS_GROUP_RATES;
406	tmp_idx = mi->max_prob_rate % MCS_GROUP_RATES;
407	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
408	tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
409
410	/* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from
411	 * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */
412	max_tp_group = mi->max_tp_rate[0] / MCS_GROUP_RATES;
413	if((index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) &&
414	    (max_tp_group != MINSTREL_CCK_GROUP))
415		return;
416
417	if (mrs->prob_ewma > MINSTREL_FRAC(75, 100)) {
418		cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx,
419						    mrs->prob_ewma);
420		if (cur_tp_avg > tmp_tp_avg)
421			mi->max_prob_rate = index;
422
423		max_gpr_group = mg->max_group_prob_rate / MCS_GROUP_RATES;
424		max_gpr_idx = mg->max_group_prob_rate %	MCS_GROUP_RATES;
425		max_gpr_prob = mi->groups[max_gpr_group].rates[max_gpr_idx].prob_ewma;
426		max_gpr_tp_avg = minstrel_ht_get_tp_avg(mi, max_gpr_group,
427							max_gpr_idx,
428							max_gpr_prob);
429		if (cur_tp_avg > max_gpr_tp_avg)
430			mg->max_group_prob_rate = index;
431	} else {
432		if (mrs->prob_ewma > tmp_prob)
433			mi->max_prob_rate = index;
434		if (mrs->prob_ewma > mg->rates[mg->max_group_prob_rate].prob_ewma)
435			mg->max_group_prob_rate = index;
436	}
437}
438
439
440/*
441 * Assign new rate set per sta and use CCK rates only if the fastest
442 * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted
443 * rate sets where MCS and CCK rates are mixed, because CCK rates can
444 * not use aggregation.
445 */
446static void
447minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi,
448				 u16 tmp_mcs_tp_rate[MAX_THR_RATES],
449				 u16 tmp_cck_tp_rate[MAX_THR_RATES])
450{
451	unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp, tmp_prob;
452	int i;
453
454	tmp_group = tmp_cck_tp_rate[0] / MCS_GROUP_RATES;
455	tmp_idx = tmp_cck_tp_rate[0] % MCS_GROUP_RATES;
456	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
457	tmp_cck_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
458
459	tmp_group = tmp_mcs_tp_rate[0] / MCS_GROUP_RATES;
460	tmp_idx = tmp_mcs_tp_rate[0] % MCS_GROUP_RATES;
461	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
462	tmp_mcs_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
463
464	if (tmp_cck_tp > tmp_mcs_tp) {
465		for(i = 0; i < MAX_THR_RATES; i++) {
466			minstrel_ht_sort_best_tp_rates(mi, tmp_cck_tp_rate[i],
467						       tmp_mcs_tp_rate);
468		}
469	}
470
471}
472
473/*
474 * Try to increase robustness of max_prob rate by decrease number of
475 * streams if possible.
476 */
477static inline void
478minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi)
479{
480	struct minstrel_mcs_group_data *mg;
481	int tmp_max_streams, group, tmp_idx, tmp_prob;
482	int tmp_tp = 0;
483
484	tmp_max_streams = minstrel_mcs_groups[mi->max_tp_rate[0] /
485			  MCS_GROUP_RATES].streams;
486	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
487		mg = &mi->groups[group];
488		if (!mg->supported || group == MINSTREL_CCK_GROUP)
489			continue;
490
491		tmp_idx = mg->max_group_prob_rate % MCS_GROUP_RATES;
492		tmp_prob = mi->groups[group].rates[tmp_idx].prob_ewma;
493
494		if (tmp_tp < minstrel_ht_get_tp_avg(mi, group, tmp_idx, tmp_prob) &&
495		   (minstrel_mcs_groups[group].streams < tmp_max_streams)) {
496				mi->max_prob_rate = mg->max_group_prob_rate;
497				tmp_tp = minstrel_ht_get_tp_avg(mi, group,
498								tmp_idx,
499								tmp_prob);
500		}
501	}
502}
503
504/*
505 * Update rate statistics and select new primary rates
506 *
507 * Rules for rate selection:
508 *  - max_prob_rate must use only one stream, as a tradeoff between delivery
509 *    probability and throughput during strong fluctuations
510 *  - as long as the max prob rate has a probability of more than 75%, pick
511 *    higher throughput rates, even if the probablity is a bit lower
512 */
513static void
514minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
515{
516	struct minstrel_mcs_group_data *mg;
517	struct minstrel_rate_stats *mrs;
518	int group, i, j, cur_prob;
519	u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES];
520	u16 tmp_cck_tp_rate[MAX_THR_RATES], index;
521
522	if (mi->ampdu_packets > 0) {
523		mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
524			MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets), EWMA_LEVEL);
525		mi->ampdu_len = 0;
526		mi->ampdu_packets = 0;
527	}
528
529	mi->sample_slow = 0;
530	mi->sample_count = 0;
531
532	/* Initialize global rate indexes */
533	for(j = 0; j < MAX_THR_RATES; j++){
534		tmp_mcs_tp_rate[j] = 0;
535		tmp_cck_tp_rate[j] = 0;
536	}
537
538	/* Find best rate sets within all MCS groups*/
539	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
540
541		mg = &mi->groups[group];
542		if (!mg->supported)
543			continue;
544
545		mi->sample_count++;
546
547		/* (re)Initialize group rate indexes */
548		for(j = 0; j < MAX_THR_RATES; j++)
549			tmp_group_tp_rate[j] = group;
550
551		for (i = 0; i < MCS_GROUP_RATES; i++) {
552			if (!(mg->supported & BIT(i)))
553				continue;
554
555			index = MCS_GROUP_RATES * group + i;
556
557			mrs = &mg->rates[i];
558			mrs->retry_updated = false;
559			minstrel_calc_rate_stats(mrs);
560			cur_prob = mrs->prob_ewma;
561
562			if (minstrel_ht_get_tp_avg(mi, group, i, cur_prob) == 0)
563				continue;
564
565			/* Find max throughput rate set */
566			if (group != MINSTREL_CCK_GROUP) {
567				minstrel_ht_sort_best_tp_rates(mi, index,
568							       tmp_mcs_tp_rate);
569			} else if (group == MINSTREL_CCK_GROUP) {
570				minstrel_ht_sort_best_tp_rates(mi, index,
571							       tmp_cck_tp_rate);
572			}
573
574			/* Find max throughput rate set within a group */
575			minstrel_ht_sort_best_tp_rates(mi, index,
576						       tmp_group_tp_rate);
577
578			/* Find max probability rate per group and global */
579			minstrel_ht_set_best_prob_rate(mi, index);
580		}
581
582		memcpy(mg->max_group_tp_rate, tmp_group_tp_rate,
583		       sizeof(mg->max_group_tp_rate));
584	}
585
586	/* Assign new rate set per sta */
587	minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate, tmp_cck_tp_rate);
588	memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate));
589
590	/* Try to increase robustness of max_prob_rate*/
591	minstrel_ht_prob_rate_reduce_streams(mi);
592
593	/* try to sample all available rates during each interval */
594	mi->sample_count *= 8;
595
596#ifdef CONFIG_MAC80211_DEBUGFS
597	/* use fixed index if set */
598	if (mp->fixed_rate_idx != -1) {
599		for (i = 0; i < 4; i++)
600			mi->max_tp_rate[i] = mp->fixed_rate_idx;
601		mi->max_prob_rate = mp->fixed_rate_idx;
602	}
603#endif
604
605	/* Reset update timer */
606	mi->last_stats_update = jiffies;
607}
608
609static bool
610minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct ieee80211_tx_rate *rate)
611{
612	if (rate->idx < 0)
613		return false;
614
615	if (!rate->count)
616		return false;
617
618	if (rate->flags & IEEE80211_TX_RC_MCS ||
619	    rate->flags & IEEE80211_TX_RC_VHT_MCS)
620		return true;
621
622	return rate->idx == mp->cck_rates[0] ||
623	       rate->idx == mp->cck_rates[1] ||
624	       rate->idx == mp->cck_rates[2] ||
625	       rate->idx == mp->cck_rates[3];
626}
627
628static void
629minstrel_set_next_sample_idx(struct minstrel_ht_sta *mi)
630{
631	struct minstrel_mcs_group_data *mg;
632
633	for (;;) {
634		mi->sample_group++;
635		mi->sample_group %= ARRAY_SIZE(minstrel_mcs_groups);
636		mg = &mi->groups[mi->sample_group];
637
638		if (!mg->supported)
639			continue;
640
641		if (++mg->index >= MCS_GROUP_RATES) {
642			mg->index = 0;
643			if (++mg->column >= ARRAY_SIZE(sample_table))
644				mg->column = 0;
645		}
646		break;
647	}
648}
649
650static void
651minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary)
652{
653	int group, orig_group;
654
655	orig_group = group = *idx / MCS_GROUP_RATES;
656	while (group > 0) {
657		group--;
658
659		if (!mi->groups[group].supported)
660			continue;
661
662		if (minstrel_mcs_groups[group].streams >
663		    minstrel_mcs_groups[orig_group].streams)
664			continue;
665
666		if (primary)
667			*idx = mi->groups[group].max_group_tp_rate[0];
668		else
669			*idx = mi->groups[group].max_group_tp_rate[1];
670		break;
671	}
672}
673
674static void
675minstrel_aggr_check(struct ieee80211_sta *pubsta, struct sk_buff *skb)
676{
677	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
678	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
679	u16 tid;
680
681	if (skb_get_queue_mapping(skb) == IEEE80211_AC_VO)
682		return;
683
684	if (unlikely(!ieee80211_is_data_qos(hdr->frame_control)))
685		return;
686
687	if (unlikely(skb->protocol == cpu_to_be16(ETH_P_PAE)))
688		return;
689
690	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
691	if (likely(sta->ampdu_mlme.tid_tx[tid]))
692		return;
693
694	ieee80211_start_tx_ba_session(pubsta, tid, 0);
695}
696
697static void
698minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
699                      struct ieee80211_sta *sta, void *priv_sta,
700                      struct ieee80211_tx_info *info)
701{
702	struct minstrel_ht_sta_priv *msp = priv_sta;
703	struct minstrel_ht_sta *mi = &msp->ht;
704	struct ieee80211_tx_rate *ar = info->status.rates;
705	struct minstrel_rate_stats *rate, *rate2;
706	struct minstrel_priv *mp = priv;
707	bool last, update = false;
708	int i;
709
710	if (!msp->is_ht)
711		return mac80211_minstrel.tx_status_noskb(priv, sband, sta,
712							 &msp->legacy, info);
713
714	/* This packet was aggregated but doesn't carry status info */
715	if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
716	    !(info->flags & IEEE80211_TX_STAT_AMPDU))
717		return;
718
719	if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
720		info->status.ampdu_ack_len =
721			(info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
722		info->status.ampdu_len = 1;
723	}
724
725	mi->ampdu_packets++;
726	mi->ampdu_len += info->status.ampdu_len;
727
728	if (!mi->sample_wait && !mi->sample_tries && mi->sample_count > 0) {
729		mi->sample_wait = 16 + 2 * MINSTREL_TRUNC(mi->avg_ampdu_len);
730		mi->sample_tries = 1;
731		mi->sample_count--;
732	}
733
734	if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
735		mi->sample_packets += info->status.ampdu_len;
736
737	last = !minstrel_ht_txstat_valid(mp, &ar[0]);
738	for (i = 0; !last; i++) {
739		last = (i == IEEE80211_TX_MAX_RATES - 1) ||
740		       !minstrel_ht_txstat_valid(mp, &ar[i + 1]);
741
742		rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
743
744		if (last)
745			rate->success += info->status.ampdu_ack_len;
746
747		rate->attempts += ar[i].count * info->status.ampdu_len;
748	}
749
750	/*
751	 * check for sudden death of spatial multiplexing,
752	 * downgrade to a lower number of streams if necessary.
753	 */
754	rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
755	if (rate->attempts > 30 &&
756	    MINSTREL_FRAC(rate->success, rate->attempts) <
757	    MINSTREL_FRAC(20, 100)) {
758		minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true);
759		update = true;
760	}
761
762	rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]);
763	if (rate2->attempts > 30 &&
764	    MINSTREL_FRAC(rate2->success, rate2->attempts) <
765	    MINSTREL_FRAC(20, 100)) {
766		minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false);
767		update = true;
768	}
769
770	if (time_after(jiffies, mi->last_stats_update +
771				(mp->update_interval / 2 * HZ) / 1000)) {
772		update = true;
773		minstrel_ht_update_stats(mp, mi);
774	}
775
776	if (update)
777		minstrel_ht_update_rates(mp, mi);
778}
779
780static void
781minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
782                         int index)
783{
784	struct minstrel_rate_stats *mrs;
785	const struct mcs_group *group;
786	unsigned int tx_time, tx_time_rtscts, tx_time_data;
787	unsigned int cw = mp->cw_min;
788	unsigned int ctime = 0;
789	unsigned int t_slot = 9; /* FIXME */
790	unsigned int ampdu_len = MINSTREL_TRUNC(mi->avg_ampdu_len);
791	unsigned int overhead = 0, overhead_rtscts = 0;
792
793	mrs = minstrel_get_ratestats(mi, index);
794	if (mrs->prob_ewma < MINSTREL_FRAC(1, 10)) {
795		mrs->retry_count = 1;
796		mrs->retry_count_rtscts = 1;
797		return;
798	}
799
800	mrs->retry_count = 2;
801	mrs->retry_count_rtscts = 2;
802	mrs->retry_updated = true;
803
804	group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
805	tx_time_data = group->duration[index % MCS_GROUP_RATES] * ampdu_len / 1000;
806
807	/* Contention time for first 2 tries */
808	ctime = (t_slot * cw) >> 1;
809	cw = min((cw << 1) | 1, mp->cw_max);
810	ctime += (t_slot * cw) >> 1;
811	cw = min((cw << 1) | 1, mp->cw_max);
812
813	if (index / MCS_GROUP_RATES != MINSTREL_CCK_GROUP) {
814		overhead = mi->overhead;
815		overhead_rtscts = mi->overhead_rtscts;
816	}
817
818	/* Total TX time for data and Contention after first 2 tries */
819	tx_time = ctime + 2 * (overhead + tx_time_data);
820	tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
821
822	/* See how many more tries we can fit inside segment size */
823	do {
824		/* Contention time for this try */
825		ctime = (t_slot * cw) >> 1;
826		cw = min((cw << 1) | 1, mp->cw_max);
827
828		/* Total TX time after this try */
829		tx_time += ctime + overhead + tx_time_data;
830		tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
831
832		if (tx_time_rtscts < mp->segment_size)
833			mrs->retry_count_rtscts++;
834	} while ((tx_time < mp->segment_size) &&
835	         (++mrs->retry_count < mp->max_retry));
836}
837
838
839static void
840minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
841                     struct ieee80211_sta_rates *ratetbl, int offset, int index)
842{
843	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
844	struct minstrel_rate_stats *mrs;
845	u8 idx;
846	u16 flags = group->flags;
847
848	mrs = minstrel_get_ratestats(mi, index);
849	if (!mrs->retry_updated)
850		minstrel_calc_retransmit(mp, mi, index);
851
852	if (mrs->prob_ewma < MINSTREL_FRAC(20, 100) || !mrs->retry_count) {
853		ratetbl->rate[offset].count = 2;
854		ratetbl->rate[offset].count_rts = 2;
855		ratetbl->rate[offset].count_cts = 2;
856	} else {
857		ratetbl->rate[offset].count = mrs->retry_count;
858		ratetbl->rate[offset].count_cts = mrs->retry_count;
859		ratetbl->rate[offset].count_rts = mrs->retry_count_rtscts;
860	}
861
862	if (index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP)
863		idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
864	else if (flags & IEEE80211_TX_RC_VHT_MCS)
865		idx = ((group->streams - 1) << 4) |
866		      ((index % MCS_GROUP_RATES) & 0xF);
867	else
868		idx = index % MCS_GROUP_RATES + (group->streams - 1) * 8;
869
870	if (offset > 0) {
871		ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
872		flags |= IEEE80211_TX_RC_USE_RTS_CTS;
873	}
874
875	ratetbl->rate[offset].idx = idx;
876	ratetbl->rate[offset].flags = flags;
877}
878
879static void
880minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
881{
882	struct ieee80211_sta_rates *rates;
883	int i = 0;
884
885	rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
886	if (!rates)
887		return;
888
889	/* Start with max_tp_rate[0] */
890	minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[0]);
891
892	if (mp->hw->max_rates >= 3) {
893		/* At least 3 tx rates supported, use max_tp_rate[1] next */
894		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[1]);
895	}
896
897	if (mp->hw->max_rates >= 2) {
898		/*
899		 * At least 2 tx rates supported, use max_prob_rate next */
900		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
901	}
902
903	rates->rate[i].idx = -1;
904	rate_control_set_rates(mp->hw, mi->sta, rates);
905}
906
907static inline int
908minstrel_get_duration(int index)
909{
910	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
911	return group->duration[index % MCS_GROUP_RATES];
912}
913
914static int
915minstrel_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
916{
917	struct minstrel_rate_stats *mrs;
918	struct minstrel_mcs_group_data *mg;
919	unsigned int sample_dur, sample_group, cur_max_tp_streams;
920	int sample_idx = 0;
921
922	if (mi->sample_wait > 0) {
923		mi->sample_wait--;
924		return -1;
925	}
926
927	if (!mi->sample_tries)
928		return -1;
929
930	sample_group = mi->sample_group;
931	mg = &mi->groups[sample_group];
932	sample_idx = sample_table[mg->column][mg->index];
933	minstrel_set_next_sample_idx(mi);
934
935	if (!(mg->supported & BIT(sample_idx)))
936		return -1;
937
938	mrs = &mg->rates[sample_idx];
939	sample_idx += sample_group * MCS_GROUP_RATES;
940
941	/*
942	 * Sampling might add some overhead (RTS, no aggregation)
943	 * to the frame. Hence, don't use sampling for the currently
944	 * used rates.
945	 */
946	if (sample_idx == mi->max_tp_rate[0] ||
947	    sample_idx == mi->max_tp_rate[1] ||
948	    sample_idx == mi->max_prob_rate)
949		return -1;
950
951	/*
952	 * Do not sample if the probability is already higher than 95%
953	 * to avoid wasting airtime.
954	 */
955	if (mrs->prob_ewma > MINSTREL_FRAC(95, 100))
956		return -1;
957
958	/*
959	 * Make sure that lower rates get sampled only occasionally,
960	 * if the link is working perfectly.
961	 */
962
963	cur_max_tp_streams = minstrel_mcs_groups[mi->max_tp_rate[0] /
964		MCS_GROUP_RATES].streams;
965	sample_dur = minstrel_get_duration(sample_idx);
966	if (sample_dur >= minstrel_get_duration(mi->max_tp_rate[1]) &&
967	    (cur_max_tp_streams - 1 <
968	     minstrel_mcs_groups[sample_group].streams ||
969	     sample_dur >= minstrel_get_duration(mi->max_prob_rate))) {
970		if (mrs->sample_skipped < 20)
971			return -1;
972
973		if (mi->sample_slow++ > 2)
974			return -1;
975	}
976	mi->sample_tries--;
977
978	return sample_idx;
979}
980
981static void
982minstrel_ht_check_cck_shortpreamble(struct minstrel_priv *mp,
983				    struct minstrel_ht_sta *mi, bool val)
984{
985	u8 supported = mi->groups[MINSTREL_CCK_GROUP].supported;
986
987	if (!supported || !mi->cck_supported_short)
988		return;
989
990	if (supported & (mi->cck_supported_short << (val * 4)))
991		return;
992
993	supported ^= mi->cck_supported_short | (mi->cck_supported_short << 4);
994	mi->groups[MINSTREL_CCK_GROUP].supported = supported;
995}
996
997static void
998minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
999                     struct ieee80211_tx_rate_control *txrc)
1000{
1001	const struct mcs_group *sample_group;
1002	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
1003	struct ieee80211_tx_rate *rate = &info->status.rates[0];
1004	struct minstrel_ht_sta_priv *msp = priv_sta;
1005	struct minstrel_ht_sta *mi = &msp->ht;
1006	struct minstrel_priv *mp = priv;
1007	int sample_idx;
1008
1009	if (rate_control_send_low(sta, priv_sta, txrc))
1010		return;
1011
1012	if (!msp->is_ht)
1013		return mac80211_minstrel.get_rate(priv, sta, &msp->legacy, txrc);
1014
1015	if (!(info->flags & IEEE80211_TX_CTL_AMPDU) &&
1016	    mi->max_prob_rate / MCS_GROUP_RATES != MINSTREL_CCK_GROUP)
1017		minstrel_aggr_check(sta, txrc->skb);
1018
1019	info->flags |= mi->tx_flags;
1020	minstrel_ht_check_cck_shortpreamble(mp, mi, txrc->short_preamble);
1021
1022#ifdef CONFIG_MAC80211_DEBUGFS
1023	if (mp->fixed_rate_idx != -1)
1024		return;
1025#endif
1026
1027	/* Don't use EAPOL frames for sampling on non-mrr hw */
1028	if (mp->hw->max_rates == 1 &&
1029	    (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
1030		sample_idx = -1;
1031	else
1032		sample_idx = minstrel_get_sample_rate(mp, mi);
1033
1034	mi->total_packets++;
1035
1036	/* wraparound */
1037	if (mi->total_packets == ~0) {
1038		mi->total_packets = 0;
1039		mi->sample_packets = 0;
1040	}
1041
1042	if (sample_idx < 0)
1043		return;
1044
1045	sample_group = &minstrel_mcs_groups[sample_idx / MCS_GROUP_RATES];
1046	info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
1047	rate->count = 1;
1048
1049	if (sample_idx / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) {
1050		int idx = sample_idx % ARRAY_SIZE(mp->cck_rates);
1051		rate->idx = mp->cck_rates[idx];
1052	} else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) {
1053		ieee80211_rate_set_vht(rate, sample_idx % MCS_GROUP_RATES,
1054				       sample_group->streams);
1055	} else {
1056		rate->idx = sample_idx % MCS_GROUP_RATES +
1057			    (sample_group->streams - 1) * 8;
1058	}
1059
1060	rate->flags = sample_group->flags;
1061}
1062
1063static void
1064minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1065		       struct ieee80211_supported_band *sband,
1066		       struct ieee80211_sta *sta)
1067{
1068	int i;
1069
1070	if (sband->band != IEEE80211_BAND_2GHZ)
1071		return;
1072
1073	if (!(mp->hw->flags & IEEE80211_HW_SUPPORTS_HT_CCK_RATES))
1074		return;
1075
1076	mi->cck_supported = 0;
1077	mi->cck_supported_short = 0;
1078	for (i = 0; i < 4; i++) {
1079		if (!rate_supported(sta, sband->band, mp->cck_rates[i]))
1080			continue;
1081
1082		mi->cck_supported |= BIT(i);
1083		if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
1084			mi->cck_supported_short |= BIT(i);
1085	}
1086
1087	mi->groups[MINSTREL_CCK_GROUP].supported = mi->cck_supported;
1088}
1089
1090static void
1091minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
1092			struct cfg80211_chan_def *chandef,
1093                        struct ieee80211_sta *sta, void *priv_sta)
1094{
1095	struct minstrel_priv *mp = priv;
1096	struct minstrel_ht_sta_priv *msp = priv_sta;
1097	struct minstrel_ht_sta *mi = &msp->ht;
1098	struct ieee80211_mcs_info *mcs = &sta->ht_cap.mcs;
1099	u16 sta_cap = sta->ht_cap.cap;
1100	struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
1101	int use_vht;
1102	int n_supported = 0;
1103	int ack_dur;
1104	int stbc;
1105	int i;
1106
1107	/* fall back to the old minstrel for legacy stations */
1108	if (!sta->ht_cap.ht_supported)
1109		goto use_legacy;
1110
1111	BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB);
1112
1113#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
1114	if (vht_cap->vht_supported)
1115		use_vht = vht_cap->vht_mcs.tx_mcs_map != cpu_to_le16(~0);
1116	else
1117#endif
1118	use_vht = 0;
1119
1120	msp->is_ht = true;
1121	memset(mi, 0, sizeof(*mi));
1122
1123	mi->sta = sta;
1124	mi->last_stats_update = jiffies;
1125
1126	ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1, 0);
1127	mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1, 0);
1128	mi->overhead += ack_dur;
1129	mi->overhead_rtscts = mi->overhead + 2 * ack_dur;
1130
1131	mi->avg_ampdu_len = MINSTREL_FRAC(1, 1);
1132
1133	/* When using MRR, sample more on the first attempt, without delay */
1134	if (mp->has_mrr) {
1135		mi->sample_count = 16;
1136		mi->sample_wait = 0;
1137	} else {
1138		mi->sample_count = 8;
1139		mi->sample_wait = 8;
1140	}
1141	mi->sample_tries = 4;
1142
1143	/* TODO tx_flags for vht - ATM the RC API is not fine-grained enough */
1144	if (!use_vht) {
1145		stbc = (sta_cap & IEEE80211_HT_CAP_RX_STBC) >>
1146			IEEE80211_HT_CAP_RX_STBC_SHIFT;
1147		mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT;
1148
1149		if (sta_cap & IEEE80211_HT_CAP_LDPC_CODING)
1150			mi->tx_flags |= IEEE80211_TX_CTL_LDPC;
1151	}
1152
1153	for (i = 0; i < ARRAY_SIZE(mi->groups); i++) {
1154		u32 gflags = minstrel_mcs_groups[i].flags;
1155		int bw, nss;
1156
1157		mi->groups[i].supported = 0;
1158		if (i == MINSTREL_CCK_GROUP) {
1159			minstrel_ht_update_cck(mp, mi, sband, sta);
1160			continue;
1161		}
1162
1163		if (gflags & IEEE80211_TX_RC_SHORT_GI) {
1164			if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1165				if (!(sta_cap & IEEE80211_HT_CAP_SGI_40))
1166					continue;
1167			} else {
1168				if (!(sta_cap & IEEE80211_HT_CAP_SGI_20))
1169					continue;
1170			}
1171		}
1172
1173		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH &&
1174		    sta->bandwidth < IEEE80211_STA_RX_BW_40)
1175			continue;
1176
1177		nss = minstrel_mcs_groups[i].streams;
1178
1179		/* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
1180		if (sta->smps_mode == IEEE80211_SMPS_STATIC && nss > 1)
1181			continue;
1182
1183		/* HT rate */
1184		if (gflags & IEEE80211_TX_RC_MCS) {
1185#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
1186			if (use_vht && minstrel_vht_only)
1187				continue;
1188#endif
1189			mi->groups[i].supported = mcs->rx_mask[nss - 1];
1190			if (mi->groups[i].supported)
1191				n_supported++;
1192			continue;
1193		}
1194
1195		/* VHT rate */
1196		if (!vht_cap->vht_supported ||
1197		    WARN_ON(!(gflags & IEEE80211_TX_RC_VHT_MCS)) ||
1198		    WARN_ON(gflags & IEEE80211_TX_RC_160_MHZ_WIDTH))
1199			continue;
1200
1201		if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) {
1202			if (sta->bandwidth < IEEE80211_STA_RX_BW_80 ||
1203			    ((gflags & IEEE80211_TX_RC_SHORT_GI) &&
1204			     !(vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80))) {
1205				continue;
1206			}
1207		}
1208
1209		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1210			bw = BW_40;
1211		else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH)
1212			bw = BW_80;
1213		else
1214			bw = BW_20;
1215
1216		mi->groups[i].supported = minstrel_get_valid_vht_rates(bw, nss,
1217				vht_cap->vht_mcs.tx_mcs_map);
1218
1219		if (mi->groups[i].supported)
1220			n_supported++;
1221	}
1222
1223	if (!n_supported)
1224		goto use_legacy;
1225
1226	/* create an initial rate table with the lowest supported rates */
1227	minstrel_ht_update_stats(mp, mi);
1228	minstrel_ht_update_rates(mp, mi);
1229
1230	return;
1231
1232use_legacy:
1233	msp->is_ht = false;
1234	memset(&msp->legacy, 0, sizeof(msp->legacy));
1235	msp->legacy.r = msp->ratelist;
1236	msp->legacy.sample_table = msp->sample_table;
1237	return mac80211_minstrel.rate_init(priv, sband, chandef, sta,
1238					   &msp->legacy);
1239}
1240
1241static void
1242minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband,
1243		      struct cfg80211_chan_def *chandef,
1244                      struct ieee80211_sta *sta, void *priv_sta)
1245{
1246	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1247}
1248
1249static void
1250minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband,
1251			struct cfg80211_chan_def *chandef,
1252                        struct ieee80211_sta *sta, void *priv_sta,
1253                        u32 changed)
1254{
1255	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1256}
1257
1258static void *
1259minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1260{
1261	struct ieee80211_supported_band *sband;
1262	struct minstrel_ht_sta_priv *msp;
1263	struct minstrel_priv *mp = priv;
1264	struct ieee80211_hw *hw = mp->hw;
1265	int max_rates = 0;
1266	int i;
1267
1268	for (i = 0; i < IEEE80211_NUM_BANDS; i++) {
1269		sband = hw->wiphy->bands[i];
1270		if (sband && sband->n_bitrates > max_rates)
1271			max_rates = sband->n_bitrates;
1272	}
1273
1274	msp = kzalloc(sizeof(*msp), gfp);
1275	if (!msp)
1276		return NULL;
1277
1278	msp->ratelist = kzalloc(sizeof(struct minstrel_rate) * max_rates, gfp);
1279	if (!msp->ratelist)
1280		goto error;
1281
1282	msp->sample_table = kmalloc(SAMPLE_COLUMNS * max_rates, gfp);
1283	if (!msp->sample_table)
1284		goto error1;
1285
1286	return msp;
1287
1288error1:
1289	kfree(msp->ratelist);
1290error:
1291	kfree(msp);
1292	return NULL;
1293}
1294
1295static void
1296minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta)
1297{
1298	struct minstrel_ht_sta_priv *msp = priv_sta;
1299
1300	kfree(msp->sample_table);
1301	kfree(msp->ratelist);
1302	kfree(msp);
1303}
1304
1305static void *
1306minstrel_ht_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1307{
1308	return mac80211_minstrel.alloc(hw, debugfsdir);
1309}
1310
1311static void
1312minstrel_ht_free(void *priv)
1313{
1314	mac80211_minstrel.free(priv);
1315}
1316
1317static u32 minstrel_ht_get_expected_throughput(void *priv_sta)
1318{
1319	struct minstrel_ht_sta_priv *msp = priv_sta;
1320	struct minstrel_ht_sta *mi = &msp->ht;
1321	int i, j, prob, tp_avg;
1322
1323	if (!msp->is_ht)
1324		return mac80211_minstrel.get_expected_throughput(priv_sta);
1325
1326	i = mi->max_tp_rate[0] / MCS_GROUP_RATES;
1327	j = mi->max_tp_rate[0] % MCS_GROUP_RATES;
1328	prob = mi->groups[i].rates[j].prob_ewma;
1329
1330	/* convert tp_avg from pkt per second in kbps */
1331	tp_avg = minstrel_ht_get_tp_avg(mi, i, j, prob) * 10;
1332	tp_avg = tp_avg * AVG_PKT_SIZE * 8 / 1024;
1333
1334	return tp_avg;
1335}
1336
1337static const struct rate_control_ops mac80211_minstrel_ht = {
1338	.name = "minstrel_ht",
1339	.tx_status_noskb = minstrel_ht_tx_status,
1340	.get_rate = minstrel_ht_get_rate,
1341	.rate_init = minstrel_ht_rate_init,
1342	.rate_update = minstrel_ht_rate_update,
1343	.alloc_sta = minstrel_ht_alloc_sta,
1344	.free_sta = minstrel_ht_free_sta,
1345	.alloc = minstrel_ht_alloc,
1346	.free = minstrel_ht_free,
1347#ifdef CONFIG_MAC80211_DEBUGFS
1348	.add_sta_debugfs = minstrel_ht_add_sta_debugfs,
1349	.remove_sta_debugfs = minstrel_ht_remove_sta_debugfs,
1350#endif
1351	.get_expected_throughput = minstrel_ht_get_expected_throughput,
1352};
1353
1354
1355static void __init init_sample_table(void)
1356{
1357	int col, i, new_idx;
1358	u8 rnd[MCS_GROUP_RATES];
1359
1360	memset(sample_table, 0xff, sizeof(sample_table));
1361	for (col = 0; col < SAMPLE_COLUMNS; col++) {
1362		prandom_bytes(rnd, sizeof(rnd));
1363		for (i = 0; i < MCS_GROUP_RATES; i++) {
1364			new_idx = (i + rnd[i]) % MCS_GROUP_RATES;
1365			while (sample_table[col][new_idx] != 0xff)
1366				new_idx = (new_idx + 1) % MCS_GROUP_RATES;
1367
1368			sample_table[col][new_idx] = i;
1369		}
1370	}
1371}
1372
1373int __init
1374rc80211_minstrel_ht_init(void)
1375{
1376	init_sample_table();
1377	return ieee80211_rate_control_register(&mac80211_minstrel_ht);
1378}
1379
1380void
1381rc80211_minstrel_ht_exit(void)
1382{
1383	ieee80211_rate_control_unregister(&mac80211_minstrel_ht);
1384}
1385