1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		The User Datagram Protocol (UDP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 *		Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 *		Alan Cox	:	verify_area() calls
16 *		Alan Cox	: 	stopped close while in use off icmp
17 *					messages. Not a fix but a botch that
18 *					for udp at least is 'valid'.
19 *		Alan Cox	:	Fixed icmp handling properly
20 *		Alan Cox	: 	Correct error for oversized datagrams
21 *		Alan Cox	:	Tidied select() semantics.
22 *		Alan Cox	:	udp_err() fixed properly, also now
23 *					select and read wake correctly on errors
24 *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25 *		Alan Cox	:	UDP can count its memory
26 *		Alan Cox	:	send to an unknown connection causes
27 *					an ECONNREFUSED off the icmp, but
28 *					does NOT close.
29 *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30 *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31 *					bug no longer crashes it.
32 *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33 *		Alan Cox	:	Uses skb_free_datagram
34 *		Alan Cox	:	Added get/set sockopt support.
35 *		Alan Cox	:	Broadcasting without option set returns EACCES.
36 *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37 *		Alan Cox	:	Use ip_tos and ip_ttl
38 *		Alan Cox	:	SNMP Mibs
39 *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40 *		Matt Dillon	:	UDP length checks.
41 *		Alan Cox	:	Smarter af_inet used properly.
42 *		Alan Cox	:	Use new kernel side addressing.
43 *		Alan Cox	:	Incorrect return on truncated datagram receive.
44 *	Arnt Gulbrandsen 	:	New udp_send and stuff
45 *		Alan Cox	:	Cache last socket
46 *		Alan Cox	:	Route cache
47 *		Jon Peatfield	:	Minor efficiency fix to sendto().
48 *		Mike Shaver	:	RFC1122 checks.
49 *		Alan Cox	:	Nonblocking error fix.
50 *	Willy Konynenberg	:	Transparent proxying support.
51 *		Mike McLagan	:	Routing by source
52 *		David S. Miller	:	New socket lookup architecture.
53 *					Last socket cache retained as it
54 *					does have a high hit rate.
55 *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56 *		Andi Kleen	:	Some cleanups, cache destination entry
57 *					for connect.
58 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59 *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60 *					return ENOTCONN for unconnected sockets (POSIX)
61 *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62 *					bound-to-device socket
63 *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64 *					datagrams.
65 *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66 *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68 *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69 *					a single port at the same time.
70 *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 *	James Chapman		:	Add L2TP encapsulation type.
72 *
73 *
74 *		This program is free software; you can redistribute it and/or
75 *		modify it under the terms of the GNU General Public License
76 *		as published by the Free Software Foundation; either version
77 *		2 of the License, or (at your option) any later version.
78 */
79
80#define pr_fmt(fmt) "UDP: " fmt
81
82#include <asm/uaccess.h>
83#include <asm/ioctls.h>
84#include <linux/bootmem.h>
85#include <linux/highmem.h>
86#include <linux/swap.h>
87#include <linux/types.h>
88#include <linux/fcntl.h>
89#include <linux/module.h>
90#include <linux/socket.h>
91#include <linux/sockios.h>
92#include <linux/igmp.h>
93#include <linux/inetdevice.h>
94#include <linux/in.h>
95#include <linux/errno.h>
96#include <linux/timer.h>
97#include <linux/mm.h>
98#include <linux/inet.h>
99#include <linux/netdevice.h>
100#include <linux/slab.h>
101#include <net/tcp_states.h>
102#include <linux/skbuff.h>
103#include <linux/netdevice.h>
104#include <linux/proc_fs.h>
105#include <linux/seq_file.h>
106#include <net/net_namespace.h>
107#include <net/icmp.h>
108#include <net/inet_hashtables.h>
109#include <net/route.h>
110#include <net/checksum.h>
111#include <net/xfrm.h>
112#include <trace/events/udp.h>
113#include <linux/static_key.h>
114#include <trace/events/skb.h>
115#include <net/busy_poll.h>
116#include "udp_impl.h"
117
118struct udp_table udp_table __read_mostly;
119EXPORT_SYMBOL(udp_table);
120
121long sysctl_udp_mem[3] __read_mostly;
122EXPORT_SYMBOL(sysctl_udp_mem);
123
124int sysctl_udp_rmem_min __read_mostly;
125EXPORT_SYMBOL(sysctl_udp_rmem_min);
126
127int sysctl_udp_wmem_min __read_mostly;
128EXPORT_SYMBOL(sysctl_udp_wmem_min);
129
130atomic_long_t udp_memory_allocated;
131EXPORT_SYMBOL(udp_memory_allocated);
132
133#define MAX_UDP_PORTS 65536
134#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
135
136static int udp_lib_lport_inuse(struct net *net, __u16 num,
137			       const struct udp_hslot *hslot,
138			       unsigned long *bitmap,
139			       struct sock *sk,
140			       int (*saddr_comp)(const struct sock *sk1,
141						 const struct sock *sk2),
142			       unsigned int log)
143{
144	struct sock *sk2;
145	struct hlist_nulls_node *node;
146	kuid_t uid = sock_i_uid(sk);
147
148	sk_nulls_for_each(sk2, node, &hslot->head) {
149		if (net_eq(sock_net(sk2), net) &&
150		    sk2 != sk &&
151		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
152		    (!sk2->sk_reuse || !sk->sk_reuse) &&
153		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
154		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
155		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
156		     !uid_eq(uid, sock_i_uid(sk2))) &&
157		    saddr_comp(sk, sk2)) {
158			if (!bitmap)
159				return 1;
160			__set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
161		}
162	}
163	return 0;
164}
165
166/*
167 * Note: we still hold spinlock of primary hash chain, so no other writer
168 * can insert/delete a socket with local_port == num
169 */
170static int udp_lib_lport_inuse2(struct net *net, __u16 num,
171				struct udp_hslot *hslot2,
172				struct sock *sk,
173				int (*saddr_comp)(const struct sock *sk1,
174						  const struct sock *sk2))
175{
176	struct sock *sk2;
177	struct hlist_nulls_node *node;
178	kuid_t uid = sock_i_uid(sk);
179	int res = 0;
180
181	spin_lock(&hslot2->lock);
182	udp_portaddr_for_each_entry(sk2, node, &hslot2->head) {
183		if (net_eq(sock_net(sk2), net) &&
184		    sk2 != sk &&
185		    (udp_sk(sk2)->udp_port_hash == num) &&
186		    (!sk2->sk_reuse || !sk->sk_reuse) &&
187		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
188		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
189		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
190		     !uid_eq(uid, sock_i_uid(sk2))) &&
191		    saddr_comp(sk, sk2)) {
192			res = 1;
193			break;
194		}
195	}
196	spin_unlock(&hslot2->lock);
197	return res;
198}
199
200/**
201 *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
202 *
203 *  @sk:          socket struct in question
204 *  @snum:        port number to look up
205 *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
206 *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
207 *                   with NULL address
208 */
209int udp_lib_get_port(struct sock *sk, unsigned short snum,
210		     int (*saddr_comp)(const struct sock *sk1,
211				       const struct sock *sk2),
212		     unsigned int hash2_nulladdr)
213{
214	struct udp_hslot *hslot, *hslot2;
215	struct udp_table *udptable = sk->sk_prot->h.udp_table;
216	int    error = 1;
217	struct net *net = sock_net(sk);
218
219	if (!snum) {
220		int low, high, remaining;
221		unsigned int rand;
222		unsigned short first, last;
223		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
224
225		inet_get_local_port_range(net, &low, &high);
226		remaining = (high - low) + 1;
227
228		rand = prandom_u32();
229		first = reciprocal_scale(rand, remaining) + low;
230		/*
231		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
232		 */
233		rand = (rand | 1) * (udptable->mask + 1);
234		last = first + udptable->mask + 1;
235		do {
236			hslot = udp_hashslot(udptable, net, first);
237			bitmap_zero(bitmap, PORTS_PER_CHAIN);
238			spin_lock_bh(&hslot->lock);
239			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
240					    saddr_comp, udptable->log);
241
242			snum = first;
243			/*
244			 * Iterate on all possible values of snum for this hash.
245			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
246			 * give us randomization and full range coverage.
247			 */
248			do {
249				if (low <= snum && snum <= high &&
250				    !test_bit(snum >> udptable->log, bitmap) &&
251				    !inet_is_local_reserved_port(net, snum))
252					goto found;
253				snum += rand;
254			} while (snum != first);
255			spin_unlock_bh(&hslot->lock);
256		} while (++first != last);
257		goto fail;
258	} else {
259		hslot = udp_hashslot(udptable, net, snum);
260		spin_lock_bh(&hslot->lock);
261		if (hslot->count > 10) {
262			int exist;
263			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
264
265			slot2          &= udptable->mask;
266			hash2_nulladdr &= udptable->mask;
267
268			hslot2 = udp_hashslot2(udptable, slot2);
269			if (hslot->count < hslot2->count)
270				goto scan_primary_hash;
271
272			exist = udp_lib_lport_inuse2(net, snum, hslot2,
273						     sk, saddr_comp);
274			if (!exist && (hash2_nulladdr != slot2)) {
275				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
276				exist = udp_lib_lport_inuse2(net, snum, hslot2,
277							     sk, saddr_comp);
278			}
279			if (exist)
280				goto fail_unlock;
281			else
282				goto found;
283		}
284scan_primary_hash:
285		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
286					saddr_comp, 0))
287			goto fail_unlock;
288	}
289found:
290	inet_sk(sk)->inet_num = snum;
291	udp_sk(sk)->udp_port_hash = snum;
292	udp_sk(sk)->udp_portaddr_hash ^= snum;
293	if (sk_unhashed(sk)) {
294		sk_nulls_add_node_rcu(sk, &hslot->head);
295		hslot->count++;
296		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
297
298		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
299		spin_lock(&hslot2->lock);
300		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
301					 &hslot2->head);
302		hslot2->count++;
303		spin_unlock(&hslot2->lock);
304	}
305	error = 0;
306fail_unlock:
307	spin_unlock_bh(&hslot->lock);
308fail:
309	return error;
310}
311EXPORT_SYMBOL(udp_lib_get_port);
312
313static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
314{
315	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
316
317	return 	(!ipv6_only_sock(sk2)  &&
318		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
319		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
320}
321
322static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
323			      unsigned int port)
324{
325	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
326}
327
328int udp_v4_get_port(struct sock *sk, unsigned short snum)
329{
330	unsigned int hash2_nulladdr =
331		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
332	unsigned int hash2_partial =
333		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
334
335	/* precompute partial secondary hash */
336	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
337	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
338}
339
340static inline int compute_score(struct sock *sk, struct net *net,
341				__be32 saddr, unsigned short hnum, __be16 sport,
342				__be32 daddr, __be16 dport, int dif)
343{
344	int score;
345	struct inet_sock *inet;
346
347	if (!net_eq(sock_net(sk), net) ||
348	    udp_sk(sk)->udp_port_hash != hnum ||
349	    ipv6_only_sock(sk))
350		return -1;
351
352	score = (sk->sk_family == PF_INET) ? 2 : 1;
353	inet = inet_sk(sk);
354
355	if (inet->inet_rcv_saddr) {
356		if (inet->inet_rcv_saddr != daddr)
357			return -1;
358		score += 4;
359	}
360
361	if (inet->inet_daddr) {
362		if (inet->inet_daddr != saddr)
363			return -1;
364		score += 4;
365	}
366
367	if (inet->inet_dport) {
368		if (inet->inet_dport != sport)
369			return -1;
370		score += 4;
371	}
372
373	if (sk->sk_bound_dev_if) {
374		if (sk->sk_bound_dev_if != dif)
375			return -1;
376		score += 4;
377	}
378
379	return score;
380}
381
382/*
383 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
384 */
385static inline int compute_score2(struct sock *sk, struct net *net,
386				 __be32 saddr, __be16 sport,
387				 __be32 daddr, unsigned int hnum, int dif)
388{
389	int score;
390	struct inet_sock *inet;
391
392	if (!net_eq(sock_net(sk), net) ||
393	    ipv6_only_sock(sk))
394		return -1;
395
396	inet = inet_sk(sk);
397
398	if (inet->inet_rcv_saddr != daddr ||
399	    inet->inet_num != hnum)
400		return -1;
401
402	score = (sk->sk_family == PF_INET) ? 2 : 1;
403
404	if (inet->inet_daddr) {
405		if (inet->inet_daddr != saddr)
406			return -1;
407		score += 4;
408	}
409
410	if (inet->inet_dport) {
411		if (inet->inet_dport != sport)
412			return -1;
413		score += 4;
414	}
415
416	if (sk->sk_bound_dev_if) {
417		if (sk->sk_bound_dev_if != dif)
418			return -1;
419		score += 4;
420	}
421
422	return score;
423}
424
425static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
426		       const __u16 lport, const __be32 faddr,
427		       const __be16 fport)
428{
429	static u32 udp_ehash_secret __read_mostly;
430
431	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
432
433	return __inet_ehashfn(laddr, lport, faddr, fport,
434			      udp_ehash_secret + net_hash_mix(net));
435}
436
437/* called with read_rcu_lock() */
438static struct sock *udp4_lib_lookup2(struct net *net,
439		__be32 saddr, __be16 sport,
440		__be32 daddr, unsigned int hnum, int dif,
441		struct udp_hslot *hslot2, unsigned int slot2)
442{
443	struct sock *sk, *result;
444	struct hlist_nulls_node *node;
445	int score, badness, matches = 0, reuseport = 0;
446	u32 hash = 0;
447
448begin:
449	result = NULL;
450	badness = 0;
451	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
452		score = compute_score2(sk, net, saddr, sport,
453				      daddr, hnum, dif);
454		if (score > badness) {
455			result = sk;
456			badness = score;
457			reuseport = sk->sk_reuseport;
458			if (reuseport) {
459				hash = udp_ehashfn(net, daddr, hnum,
460						   saddr, sport);
461				matches = 1;
462			}
463		} else if (score == badness && reuseport) {
464			matches++;
465			if (reciprocal_scale(hash, matches) == 0)
466				result = sk;
467			hash = next_pseudo_random32(hash);
468		}
469	}
470	/*
471	 * if the nulls value we got at the end of this lookup is
472	 * not the expected one, we must restart lookup.
473	 * We probably met an item that was moved to another chain.
474	 */
475	if (get_nulls_value(node) != slot2)
476		goto begin;
477	if (result) {
478		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
479			result = NULL;
480		else if (unlikely(compute_score2(result, net, saddr, sport,
481				  daddr, hnum, dif) < badness)) {
482			sock_put(result);
483			goto begin;
484		}
485	}
486	return result;
487}
488
489/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
490 * harder than this. -DaveM
491 */
492struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
493		__be16 sport, __be32 daddr, __be16 dport,
494		int dif, struct udp_table *udptable)
495{
496	struct sock *sk, *result;
497	struct hlist_nulls_node *node;
498	unsigned short hnum = ntohs(dport);
499	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
500	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
501	int score, badness, matches = 0, reuseport = 0;
502	u32 hash = 0;
503
504	rcu_read_lock();
505	if (hslot->count > 10) {
506		hash2 = udp4_portaddr_hash(net, daddr, hnum);
507		slot2 = hash2 & udptable->mask;
508		hslot2 = &udptable->hash2[slot2];
509		if (hslot->count < hslot2->count)
510			goto begin;
511
512		result = udp4_lib_lookup2(net, saddr, sport,
513					  daddr, hnum, dif,
514					  hslot2, slot2);
515		if (!result) {
516			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
517			slot2 = hash2 & udptable->mask;
518			hslot2 = &udptable->hash2[slot2];
519			if (hslot->count < hslot2->count)
520				goto begin;
521
522			result = udp4_lib_lookup2(net, saddr, sport,
523						  htonl(INADDR_ANY), hnum, dif,
524						  hslot2, slot2);
525		}
526		rcu_read_unlock();
527		return result;
528	}
529begin:
530	result = NULL;
531	badness = 0;
532	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
533		score = compute_score(sk, net, saddr, hnum, sport,
534				      daddr, dport, dif);
535		if (score > badness) {
536			result = sk;
537			badness = score;
538			reuseport = sk->sk_reuseport;
539			if (reuseport) {
540				hash = udp_ehashfn(net, daddr, hnum,
541						   saddr, sport);
542				matches = 1;
543			}
544		} else if (score == badness && reuseport) {
545			matches++;
546			if (reciprocal_scale(hash, matches) == 0)
547				result = sk;
548			hash = next_pseudo_random32(hash);
549		}
550	}
551	/*
552	 * if the nulls value we got at the end of this lookup is
553	 * not the expected one, we must restart lookup.
554	 * We probably met an item that was moved to another chain.
555	 */
556	if (get_nulls_value(node) != slot)
557		goto begin;
558
559	if (result) {
560		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
561			result = NULL;
562		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
563				  daddr, dport, dif) < badness)) {
564			sock_put(result);
565			goto begin;
566		}
567	}
568	rcu_read_unlock();
569	return result;
570}
571EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
572
573static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
574						 __be16 sport, __be16 dport,
575						 struct udp_table *udptable)
576{
577	const struct iphdr *iph = ip_hdr(skb);
578
579	return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
580				 iph->daddr, dport, inet_iif(skb),
581				 udptable);
582}
583
584struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
585			     __be32 daddr, __be16 dport, int dif)
586{
587	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
588}
589EXPORT_SYMBOL_GPL(udp4_lib_lookup);
590
591static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
592				       __be16 loc_port, __be32 loc_addr,
593				       __be16 rmt_port, __be32 rmt_addr,
594				       int dif, unsigned short hnum)
595{
596	struct inet_sock *inet = inet_sk(sk);
597
598	if (!net_eq(sock_net(sk), net) ||
599	    udp_sk(sk)->udp_port_hash != hnum ||
600	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
601	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
602	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
603	    ipv6_only_sock(sk) ||
604	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
605		return false;
606	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
607		return false;
608	return true;
609}
610
611/*
612 * This routine is called by the ICMP module when it gets some
613 * sort of error condition.  If err < 0 then the socket should
614 * be closed and the error returned to the user.  If err > 0
615 * it's just the icmp type << 8 | icmp code.
616 * Header points to the ip header of the error packet. We move
617 * on past this. Then (as it used to claim before adjustment)
618 * header points to the first 8 bytes of the udp header.  We need
619 * to find the appropriate port.
620 */
621
622void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
623{
624	struct inet_sock *inet;
625	const struct iphdr *iph = (const struct iphdr *)skb->data;
626	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
627	const int type = icmp_hdr(skb)->type;
628	const int code = icmp_hdr(skb)->code;
629	struct sock *sk;
630	int harderr;
631	int err;
632	struct net *net = dev_net(skb->dev);
633
634	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
635			iph->saddr, uh->source, skb->dev->ifindex, udptable);
636	if (!sk) {
637		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
638		return;	/* No socket for error */
639	}
640
641	err = 0;
642	harderr = 0;
643	inet = inet_sk(sk);
644
645	switch (type) {
646	default:
647	case ICMP_TIME_EXCEEDED:
648		err = EHOSTUNREACH;
649		break;
650	case ICMP_SOURCE_QUENCH:
651		goto out;
652	case ICMP_PARAMETERPROB:
653		err = EPROTO;
654		harderr = 1;
655		break;
656	case ICMP_DEST_UNREACH:
657		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
658			ipv4_sk_update_pmtu(skb, sk, info);
659			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
660				err = EMSGSIZE;
661				harderr = 1;
662				break;
663			}
664			goto out;
665		}
666		err = EHOSTUNREACH;
667		if (code <= NR_ICMP_UNREACH) {
668			harderr = icmp_err_convert[code].fatal;
669			err = icmp_err_convert[code].errno;
670		}
671		break;
672	case ICMP_REDIRECT:
673		ipv4_sk_redirect(skb, sk);
674		goto out;
675	}
676
677	/*
678	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
679	 *	4.1.3.3.
680	 */
681	if (!inet->recverr) {
682		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
683			goto out;
684	} else
685		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
686
687	sk->sk_err = err;
688	sk->sk_error_report(sk);
689out:
690	sock_put(sk);
691}
692
693void udp_err(struct sk_buff *skb, u32 info)
694{
695	__udp4_lib_err(skb, info, &udp_table);
696}
697
698/*
699 * Throw away all pending data and cancel the corking. Socket is locked.
700 */
701void udp_flush_pending_frames(struct sock *sk)
702{
703	struct udp_sock *up = udp_sk(sk);
704
705	if (up->pending) {
706		up->len = 0;
707		up->pending = 0;
708		ip_flush_pending_frames(sk);
709	}
710}
711EXPORT_SYMBOL(udp_flush_pending_frames);
712
713/**
714 * 	udp4_hwcsum  -  handle outgoing HW checksumming
715 * 	@skb: 	sk_buff containing the filled-in UDP header
716 * 	        (checksum field must be zeroed out)
717 *	@src:	source IP address
718 *	@dst:	destination IP address
719 */
720void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
721{
722	struct udphdr *uh = udp_hdr(skb);
723	int offset = skb_transport_offset(skb);
724	int len = skb->len - offset;
725	int hlen = len;
726	__wsum csum = 0;
727
728	if (!skb_has_frag_list(skb)) {
729		/*
730		 * Only one fragment on the socket.
731		 */
732		skb->csum_start = skb_transport_header(skb) - skb->head;
733		skb->csum_offset = offsetof(struct udphdr, check);
734		uh->check = ~csum_tcpudp_magic(src, dst, len,
735					       IPPROTO_UDP, 0);
736	} else {
737		struct sk_buff *frags;
738
739		/*
740		 * HW-checksum won't work as there are two or more
741		 * fragments on the socket so that all csums of sk_buffs
742		 * should be together
743		 */
744		skb_walk_frags(skb, frags) {
745			csum = csum_add(csum, frags->csum);
746			hlen -= frags->len;
747		}
748
749		csum = skb_checksum(skb, offset, hlen, csum);
750		skb->ip_summed = CHECKSUM_NONE;
751
752		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
753		if (uh->check == 0)
754			uh->check = CSUM_MANGLED_0;
755	}
756}
757EXPORT_SYMBOL_GPL(udp4_hwcsum);
758
759/* Function to set UDP checksum for an IPv4 UDP packet. This is intended
760 * for the simple case like when setting the checksum for a UDP tunnel.
761 */
762void udp_set_csum(bool nocheck, struct sk_buff *skb,
763		  __be32 saddr, __be32 daddr, int len)
764{
765	struct udphdr *uh = udp_hdr(skb);
766
767	if (nocheck)
768		uh->check = 0;
769	else if (skb_is_gso(skb))
770		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
771	else if (skb_dst(skb) && skb_dst(skb)->dev &&
772		 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
773
774		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
775
776		skb->ip_summed = CHECKSUM_PARTIAL;
777		skb->csum_start = skb_transport_header(skb) - skb->head;
778		skb->csum_offset = offsetof(struct udphdr, check);
779		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
780	} else {
781		__wsum csum;
782
783		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
784
785		uh->check = 0;
786		csum = skb_checksum(skb, 0, len, 0);
787		uh->check = udp_v4_check(len, saddr, daddr, csum);
788		if (uh->check == 0)
789			uh->check = CSUM_MANGLED_0;
790
791		skb->ip_summed = CHECKSUM_UNNECESSARY;
792	}
793}
794EXPORT_SYMBOL(udp_set_csum);
795
796static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
797{
798	struct sock *sk = skb->sk;
799	struct inet_sock *inet = inet_sk(sk);
800	struct udphdr *uh;
801	int err = 0;
802	int is_udplite = IS_UDPLITE(sk);
803	int offset = skb_transport_offset(skb);
804	int len = skb->len - offset;
805	__wsum csum = 0;
806
807	/*
808	 * Create a UDP header
809	 */
810	uh = udp_hdr(skb);
811	uh->source = inet->inet_sport;
812	uh->dest = fl4->fl4_dport;
813	uh->len = htons(len);
814	uh->check = 0;
815
816	if (is_udplite)  				 /*     UDP-Lite      */
817		csum = udplite_csum(skb);
818
819	else if (sk->sk_no_check_tx) {   /* UDP csum disabled */
820
821		skb->ip_summed = CHECKSUM_NONE;
822		goto send;
823
824	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
825
826		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
827		goto send;
828
829	} else
830		csum = udp_csum(skb);
831
832	/* add protocol-dependent pseudo-header */
833	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
834				      sk->sk_protocol, csum);
835	if (uh->check == 0)
836		uh->check = CSUM_MANGLED_0;
837
838send:
839	err = ip_send_skb(sock_net(sk), skb);
840	if (err) {
841		if (err == -ENOBUFS && !inet->recverr) {
842			UDP_INC_STATS_USER(sock_net(sk),
843					   UDP_MIB_SNDBUFERRORS, is_udplite);
844			err = 0;
845		}
846	} else
847		UDP_INC_STATS_USER(sock_net(sk),
848				   UDP_MIB_OUTDATAGRAMS, is_udplite);
849	return err;
850}
851
852/*
853 * Push out all pending data as one UDP datagram. Socket is locked.
854 */
855int udp_push_pending_frames(struct sock *sk)
856{
857	struct udp_sock  *up = udp_sk(sk);
858	struct inet_sock *inet = inet_sk(sk);
859	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
860	struct sk_buff *skb;
861	int err = 0;
862
863	skb = ip_finish_skb(sk, fl4);
864	if (!skb)
865		goto out;
866
867	err = udp_send_skb(skb, fl4);
868
869out:
870	up->len = 0;
871	up->pending = 0;
872	return err;
873}
874EXPORT_SYMBOL(udp_push_pending_frames);
875
876int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
877{
878	struct inet_sock *inet = inet_sk(sk);
879	struct udp_sock *up = udp_sk(sk);
880	struct flowi4 fl4_stack;
881	struct flowi4 *fl4;
882	int ulen = len;
883	struct ipcm_cookie ipc;
884	struct rtable *rt = NULL;
885	int free = 0;
886	int connected = 0;
887	__be32 daddr, faddr, saddr;
888	__be16 dport;
889	u8  tos;
890	int err, is_udplite = IS_UDPLITE(sk);
891	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
892	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
893	struct sk_buff *skb;
894	struct ip_options_data opt_copy;
895
896	if (len > 0xFFFF)
897		return -EMSGSIZE;
898
899	/*
900	 *	Check the flags.
901	 */
902
903	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
904		return -EOPNOTSUPP;
905
906	ipc.opt = NULL;
907	ipc.tx_flags = 0;
908	ipc.ttl = 0;
909	ipc.tos = -1;
910
911	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
912
913	fl4 = &inet->cork.fl.u.ip4;
914	if (up->pending) {
915		/*
916		 * There are pending frames.
917		 * The socket lock must be held while it's corked.
918		 */
919		lock_sock(sk);
920		if (likely(up->pending)) {
921			if (unlikely(up->pending != AF_INET)) {
922				release_sock(sk);
923				return -EINVAL;
924			}
925			goto do_append_data;
926		}
927		release_sock(sk);
928	}
929	ulen += sizeof(struct udphdr);
930
931	/*
932	 *	Get and verify the address.
933	 */
934	if (msg->msg_name) {
935		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
936		if (msg->msg_namelen < sizeof(*usin))
937			return -EINVAL;
938		if (usin->sin_family != AF_INET) {
939			if (usin->sin_family != AF_UNSPEC)
940				return -EAFNOSUPPORT;
941		}
942
943		daddr = usin->sin_addr.s_addr;
944		dport = usin->sin_port;
945		if (dport == 0)
946			return -EINVAL;
947	} else {
948		if (sk->sk_state != TCP_ESTABLISHED)
949			return -EDESTADDRREQ;
950		daddr = inet->inet_daddr;
951		dport = inet->inet_dport;
952		/* Open fast path for connected socket.
953		   Route will not be used, if at least one option is set.
954		 */
955		connected = 1;
956	}
957	ipc.addr = inet->inet_saddr;
958
959	ipc.oif = sk->sk_bound_dev_if;
960
961	sock_tx_timestamp(sk, &ipc.tx_flags);
962
963	if (msg->msg_controllen) {
964		err = ip_cmsg_send(sock_net(sk), msg, &ipc,
965				   sk->sk_family == AF_INET6);
966		if (unlikely(err)) {
967			kfree(ipc.opt);
968			return err;
969		}
970		if (ipc.opt)
971			free = 1;
972		connected = 0;
973	}
974	if (!ipc.opt) {
975		struct ip_options_rcu *inet_opt;
976
977		rcu_read_lock();
978		inet_opt = rcu_dereference(inet->inet_opt);
979		if (inet_opt) {
980			memcpy(&opt_copy, inet_opt,
981			       sizeof(*inet_opt) + inet_opt->opt.optlen);
982			ipc.opt = &opt_copy.opt;
983		}
984		rcu_read_unlock();
985	}
986
987	saddr = ipc.addr;
988	ipc.addr = faddr = daddr;
989
990	if (ipc.opt && ipc.opt->opt.srr) {
991		if (!daddr)
992			return -EINVAL;
993		faddr = ipc.opt->opt.faddr;
994		connected = 0;
995	}
996	tos = get_rttos(&ipc, inet);
997	if (sock_flag(sk, SOCK_LOCALROUTE) ||
998	    (msg->msg_flags & MSG_DONTROUTE) ||
999	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1000		tos |= RTO_ONLINK;
1001		connected = 0;
1002	}
1003
1004	if (ipv4_is_multicast(daddr)) {
1005		if (!ipc.oif)
1006			ipc.oif = inet->mc_index;
1007		if (!saddr)
1008			saddr = inet->mc_addr;
1009		connected = 0;
1010	} else if (!ipc.oif)
1011		ipc.oif = inet->uc_index;
1012
1013	if (connected)
1014		rt = (struct rtable *)sk_dst_check(sk, 0);
1015
1016	if (!rt) {
1017		struct net *net = sock_net(sk);
1018
1019		fl4 = &fl4_stack;
1020		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1021				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1022				   inet_sk_flowi_flags(sk),
1023				   faddr, saddr, dport, inet->inet_sport);
1024
1025		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1026		rt = ip_route_output_flow(net, fl4, sk);
1027		if (IS_ERR(rt)) {
1028			err = PTR_ERR(rt);
1029			rt = NULL;
1030			if (err == -ENETUNREACH)
1031				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1032			goto out;
1033		}
1034
1035		err = -EACCES;
1036		if ((rt->rt_flags & RTCF_BROADCAST) &&
1037		    !sock_flag(sk, SOCK_BROADCAST))
1038			goto out;
1039		if (connected)
1040			sk_dst_set(sk, dst_clone(&rt->dst));
1041	}
1042
1043	if (msg->msg_flags&MSG_CONFIRM)
1044		goto do_confirm;
1045back_from_confirm:
1046
1047	saddr = fl4->saddr;
1048	if (!ipc.addr)
1049		daddr = ipc.addr = fl4->daddr;
1050
1051	/* Lockless fast path for the non-corking case. */
1052	if (!corkreq) {
1053		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1054				  sizeof(struct udphdr), &ipc, &rt,
1055				  msg->msg_flags);
1056		err = PTR_ERR(skb);
1057		if (!IS_ERR_OR_NULL(skb))
1058			err = udp_send_skb(skb, fl4);
1059		goto out;
1060	}
1061
1062	lock_sock(sk);
1063	if (unlikely(up->pending)) {
1064		/* The socket is already corked while preparing it. */
1065		/* ... which is an evident application bug. --ANK */
1066		release_sock(sk);
1067
1068		net_dbg_ratelimited("cork app bug 2\n");
1069		err = -EINVAL;
1070		goto out;
1071	}
1072	/*
1073	 *	Now cork the socket to pend data.
1074	 */
1075	fl4 = &inet->cork.fl.u.ip4;
1076	fl4->daddr = daddr;
1077	fl4->saddr = saddr;
1078	fl4->fl4_dport = dport;
1079	fl4->fl4_sport = inet->inet_sport;
1080	up->pending = AF_INET;
1081
1082do_append_data:
1083	up->len += ulen;
1084	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1085			     sizeof(struct udphdr), &ipc, &rt,
1086			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1087	if (err)
1088		udp_flush_pending_frames(sk);
1089	else if (!corkreq)
1090		err = udp_push_pending_frames(sk);
1091	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1092		up->pending = 0;
1093	release_sock(sk);
1094
1095out:
1096	ip_rt_put(rt);
1097	if (free)
1098		kfree(ipc.opt);
1099	if (!err)
1100		return len;
1101	/*
1102	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1103	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1104	 * we don't have a good statistic (IpOutDiscards but it can be too many
1105	 * things).  We could add another new stat but at least for now that
1106	 * seems like overkill.
1107	 */
1108	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1109		UDP_INC_STATS_USER(sock_net(sk),
1110				UDP_MIB_SNDBUFERRORS, is_udplite);
1111	}
1112	return err;
1113
1114do_confirm:
1115	dst_confirm(&rt->dst);
1116	if (!(msg->msg_flags&MSG_PROBE) || len)
1117		goto back_from_confirm;
1118	err = 0;
1119	goto out;
1120}
1121EXPORT_SYMBOL(udp_sendmsg);
1122
1123int udp_sendpage(struct sock *sk, struct page *page, int offset,
1124		 size_t size, int flags)
1125{
1126	struct inet_sock *inet = inet_sk(sk);
1127	struct udp_sock *up = udp_sk(sk);
1128	int ret;
1129
1130	if (flags & MSG_SENDPAGE_NOTLAST)
1131		flags |= MSG_MORE;
1132
1133	if (!up->pending) {
1134		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1135
1136		/* Call udp_sendmsg to specify destination address which
1137		 * sendpage interface can't pass.
1138		 * This will succeed only when the socket is connected.
1139		 */
1140		ret = udp_sendmsg(sk, &msg, 0);
1141		if (ret < 0)
1142			return ret;
1143	}
1144
1145	lock_sock(sk);
1146
1147	if (unlikely(!up->pending)) {
1148		release_sock(sk);
1149
1150		net_dbg_ratelimited("udp cork app bug 3\n");
1151		return -EINVAL;
1152	}
1153
1154	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1155			     page, offset, size, flags);
1156	if (ret == -EOPNOTSUPP) {
1157		release_sock(sk);
1158		return sock_no_sendpage(sk->sk_socket, page, offset,
1159					size, flags);
1160	}
1161	if (ret < 0) {
1162		udp_flush_pending_frames(sk);
1163		goto out;
1164	}
1165
1166	up->len += size;
1167	if (!(up->corkflag || (flags&MSG_MORE)))
1168		ret = udp_push_pending_frames(sk);
1169	if (!ret)
1170		ret = size;
1171out:
1172	release_sock(sk);
1173	return ret;
1174}
1175
1176/**
1177 *	first_packet_length	- return length of first packet in receive queue
1178 *	@sk: socket
1179 *
1180 *	Drops all bad checksum frames, until a valid one is found.
1181 *	Returns the length of found skb, or 0 if none is found.
1182 */
1183static unsigned int first_packet_length(struct sock *sk)
1184{
1185	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1186	struct sk_buff *skb;
1187	unsigned int res;
1188
1189	__skb_queue_head_init(&list_kill);
1190
1191	spin_lock_bh(&rcvq->lock);
1192	while ((skb = skb_peek(rcvq)) != NULL &&
1193		udp_lib_checksum_complete(skb)) {
1194		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1195				 IS_UDPLITE(sk));
1196		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1197				 IS_UDPLITE(sk));
1198		atomic_inc(&sk->sk_drops);
1199		__skb_unlink(skb, rcvq);
1200		__skb_queue_tail(&list_kill, skb);
1201	}
1202	res = skb ? skb->len : 0;
1203	spin_unlock_bh(&rcvq->lock);
1204
1205	if (!skb_queue_empty(&list_kill)) {
1206		bool slow = lock_sock_fast(sk);
1207
1208		__skb_queue_purge(&list_kill);
1209		sk_mem_reclaim_partial(sk);
1210		unlock_sock_fast(sk, slow);
1211	}
1212	return res;
1213}
1214
1215/*
1216 *	IOCTL requests applicable to the UDP protocol
1217 */
1218
1219int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1220{
1221	switch (cmd) {
1222	case SIOCOUTQ:
1223	{
1224		int amount = sk_wmem_alloc_get(sk);
1225
1226		return put_user(amount, (int __user *)arg);
1227	}
1228
1229	case SIOCINQ:
1230	{
1231		unsigned int amount = first_packet_length(sk);
1232
1233		if (amount)
1234			/*
1235			 * We will only return the amount
1236			 * of this packet since that is all
1237			 * that will be read.
1238			 */
1239			amount -= sizeof(struct udphdr);
1240
1241		return put_user(amount, (int __user *)arg);
1242	}
1243
1244	default:
1245		return -ENOIOCTLCMD;
1246	}
1247
1248	return 0;
1249}
1250EXPORT_SYMBOL(udp_ioctl);
1251
1252/*
1253 * 	This should be easy, if there is something there we
1254 * 	return it, otherwise we block.
1255 */
1256
1257int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1258		int flags, int *addr_len)
1259{
1260	struct inet_sock *inet = inet_sk(sk);
1261	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1262	struct sk_buff *skb;
1263	unsigned int ulen, copied;
1264	int peeked, off = 0;
1265	int err;
1266	int is_udplite = IS_UDPLITE(sk);
1267	bool slow;
1268
1269	if (flags & MSG_ERRQUEUE)
1270		return ip_recv_error(sk, msg, len, addr_len);
1271
1272try_again:
1273	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1274				  &peeked, &off, &err);
1275	if (!skb)
1276		goto out;
1277
1278	ulen = skb->len - sizeof(struct udphdr);
1279	copied = len;
1280	if (copied > ulen)
1281		copied = ulen;
1282	else if (copied < ulen)
1283		msg->msg_flags |= MSG_TRUNC;
1284
1285	/*
1286	 * If checksum is needed at all, try to do it while copying the
1287	 * data.  If the data is truncated, or if we only want a partial
1288	 * coverage checksum (UDP-Lite), do it before the copy.
1289	 */
1290
1291	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1292		if (udp_lib_checksum_complete(skb))
1293			goto csum_copy_err;
1294	}
1295
1296	if (skb_csum_unnecessary(skb))
1297		err = skb_copy_datagram_msg(skb, sizeof(struct udphdr),
1298					    msg, copied);
1299	else {
1300		err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr),
1301						     msg);
1302
1303		if (err == -EINVAL)
1304			goto csum_copy_err;
1305	}
1306
1307	if (unlikely(err)) {
1308		trace_kfree_skb(skb, udp_recvmsg);
1309		if (!peeked) {
1310			atomic_inc(&sk->sk_drops);
1311			UDP_INC_STATS_USER(sock_net(sk),
1312					   UDP_MIB_INERRORS, is_udplite);
1313		}
1314		goto out_free;
1315	}
1316
1317	if (!peeked)
1318		UDP_INC_STATS_USER(sock_net(sk),
1319				UDP_MIB_INDATAGRAMS, is_udplite);
1320
1321	sock_recv_ts_and_drops(msg, sk, skb);
1322
1323	/* Copy the address. */
1324	if (sin) {
1325		sin->sin_family = AF_INET;
1326		sin->sin_port = udp_hdr(skb)->source;
1327		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1328		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1329		*addr_len = sizeof(*sin);
1330	}
1331	if (inet->cmsg_flags)
1332		ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr));
1333
1334	err = copied;
1335	if (flags & MSG_TRUNC)
1336		err = ulen;
1337
1338out_free:
1339	skb_free_datagram_locked(sk, skb);
1340out:
1341	return err;
1342
1343csum_copy_err:
1344	slow = lock_sock_fast(sk);
1345	if (!skb_kill_datagram(sk, skb, flags)) {
1346		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1347		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1348	}
1349	unlock_sock_fast(sk, slow);
1350
1351	/* starting over for a new packet, but check if we need to yield */
1352	cond_resched();
1353	msg->msg_flags &= ~MSG_TRUNC;
1354	goto try_again;
1355}
1356
1357int udp_disconnect(struct sock *sk, int flags)
1358{
1359	struct inet_sock *inet = inet_sk(sk);
1360	/*
1361	 *	1003.1g - break association.
1362	 */
1363
1364	sk->sk_state = TCP_CLOSE;
1365	inet->inet_daddr = 0;
1366	inet->inet_dport = 0;
1367	sock_rps_reset_rxhash(sk);
1368	sk->sk_bound_dev_if = 0;
1369	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1370		inet_reset_saddr(sk);
1371
1372	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1373		sk->sk_prot->unhash(sk);
1374		inet->inet_sport = 0;
1375	}
1376	sk_dst_reset(sk);
1377	return 0;
1378}
1379EXPORT_SYMBOL(udp_disconnect);
1380
1381void udp_lib_unhash(struct sock *sk)
1382{
1383	if (sk_hashed(sk)) {
1384		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1385		struct udp_hslot *hslot, *hslot2;
1386
1387		hslot  = udp_hashslot(udptable, sock_net(sk),
1388				      udp_sk(sk)->udp_port_hash);
1389		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1390
1391		spin_lock_bh(&hslot->lock);
1392		if (sk_nulls_del_node_init_rcu(sk)) {
1393			hslot->count--;
1394			inet_sk(sk)->inet_num = 0;
1395			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1396
1397			spin_lock(&hslot2->lock);
1398			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1399			hslot2->count--;
1400			spin_unlock(&hslot2->lock);
1401		}
1402		spin_unlock_bh(&hslot->lock);
1403	}
1404}
1405EXPORT_SYMBOL(udp_lib_unhash);
1406
1407/*
1408 * inet_rcv_saddr was changed, we must rehash secondary hash
1409 */
1410void udp_lib_rehash(struct sock *sk, u16 newhash)
1411{
1412	if (sk_hashed(sk)) {
1413		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1414		struct udp_hslot *hslot, *hslot2, *nhslot2;
1415
1416		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1417		nhslot2 = udp_hashslot2(udptable, newhash);
1418		udp_sk(sk)->udp_portaddr_hash = newhash;
1419		if (hslot2 != nhslot2) {
1420			hslot = udp_hashslot(udptable, sock_net(sk),
1421					     udp_sk(sk)->udp_port_hash);
1422			/* we must lock primary chain too */
1423			spin_lock_bh(&hslot->lock);
1424
1425			spin_lock(&hslot2->lock);
1426			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1427			hslot2->count--;
1428			spin_unlock(&hslot2->lock);
1429
1430			spin_lock(&nhslot2->lock);
1431			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1432						 &nhslot2->head);
1433			nhslot2->count++;
1434			spin_unlock(&nhslot2->lock);
1435
1436			spin_unlock_bh(&hslot->lock);
1437		}
1438	}
1439}
1440EXPORT_SYMBOL(udp_lib_rehash);
1441
1442static void udp_v4_rehash(struct sock *sk)
1443{
1444	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1445					  inet_sk(sk)->inet_rcv_saddr,
1446					  inet_sk(sk)->inet_num);
1447	udp_lib_rehash(sk, new_hash);
1448}
1449
1450static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1451{
1452	int rc;
1453
1454	if (inet_sk(sk)->inet_daddr) {
1455		sock_rps_save_rxhash(sk, skb);
1456		sk_mark_napi_id(sk, skb);
1457		sk_incoming_cpu_update(sk);
1458	}
1459
1460	rc = sock_queue_rcv_skb(sk, skb);
1461	if (rc < 0) {
1462		int is_udplite = IS_UDPLITE(sk);
1463
1464		/* Note that an ENOMEM error is charged twice */
1465		if (rc == -ENOMEM)
1466			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1467					 is_udplite);
1468		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1469		kfree_skb(skb);
1470		trace_udp_fail_queue_rcv_skb(rc, sk);
1471		return -1;
1472	}
1473
1474	return 0;
1475
1476}
1477
1478static struct static_key udp_encap_needed __read_mostly;
1479void udp_encap_enable(void)
1480{
1481	if (!static_key_enabled(&udp_encap_needed))
1482		static_key_slow_inc(&udp_encap_needed);
1483}
1484EXPORT_SYMBOL(udp_encap_enable);
1485
1486/* returns:
1487 *  -1: error
1488 *   0: success
1489 *  >0: "udp encap" protocol resubmission
1490 *
1491 * Note that in the success and error cases, the skb is assumed to
1492 * have either been requeued or freed.
1493 */
1494int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1495{
1496	struct udp_sock *up = udp_sk(sk);
1497	int rc;
1498	int is_udplite = IS_UDPLITE(sk);
1499
1500	/*
1501	 *	Charge it to the socket, dropping if the queue is full.
1502	 */
1503	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1504		goto drop;
1505	nf_reset(skb);
1506
1507	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1508		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1509
1510		/*
1511		 * This is an encapsulation socket so pass the skb to
1512		 * the socket's udp_encap_rcv() hook. Otherwise, just
1513		 * fall through and pass this up the UDP socket.
1514		 * up->encap_rcv() returns the following value:
1515		 * =0 if skb was successfully passed to the encap
1516		 *    handler or was discarded by it.
1517		 * >0 if skb should be passed on to UDP.
1518		 * <0 if skb should be resubmitted as proto -N
1519		 */
1520
1521		/* if we're overly short, let UDP handle it */
1522		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1523		if (skb->len > sizeof(struct udphdr) && encap_rcv) {
1524			int ret;
1525
1526			/* Verify checksum before giving to encap */
1527			if (udp_lib_checksum_complete(skb))
1528				goto csum_error;
1529
1530			ret = encap_rcv(sk, skb);
1531			if (ret <= 0) {
1532				UDP_INC_STATS_BH(sock_net(sk),
1533						 UDP_MIB_INDATAGRAMS,
1534						 is_udplite);
1535				return -ret;
1536			}
1537		}
1538
1539		/* FALLTHROUGH -- it's a UDP Packet */
1540	}
1541
1542	/*
1543	 * 	UDP-Lite specific tests, ignored on UDP sockets
1544	 */
1545	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1546
1547		/*
1548		 * MIB statistics other than incrementing the error count are
1549		 * disabled for the following two types of errors: these depend
1550		 * on the application settings, not on the functioning of the
1551		 * protocol stack as such.
1552		 *
1553		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1554		 * way ... to ... at least let the receiving application block
1555		 * delivery of packets with coverage values less than a value
1556		 * provided by the application."
1557		 */
1558		if (up->pcrlen == 0) {          /* full coverage was set  */
1559			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1560					    UDP_SKB_CB(skb)->cscov, skb->len);
1561			goto drop;
1562		}
1563		/* The next case involves violating the min. coverage requested
1564		 * by the receiver. This is subtle: if receiver wants x and x is
1565		 * greater than the buffersize/MTU then receiver will complain
1566		 * that it wants x while sender emits packets of smaller size y.
1567		 * Therefore the above ...()->partial_cov statement is essential.
1568		 */
1569		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1570			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1571					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1572			goto drop;
1573		}
1574	}
1575
1576	if (rcu_access_pointer(sk->sk_filter) &&
1577	    udp_lib_checksum_complete(skb))
1578		goto csum_error;
1579
1580	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1581		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1582				 is_udplite);
1583		goto drop;
1584	}
1585
1586	rc = 0;
1587
1588	ipv4_pktinfo_prepare(sk, skb);
1589	bh_lock_sock(sk);
1590	if (!sock_owned_by_user(sk))
1591		rc = __udp_queue_rcv_skb(sk, skb);
1592	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1593		bh_unlock_sock(sk);
1594		goto drop;
1595	}
1596	bh_unlock_sock(sk);
1597
1598	return rc;
1599
1600csum_error:
1601	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1602drop:
1603	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1604	atomic_inc(&sk->sk_drops);
1605	kfree_skb(skb);
1606	return -1;
1607}
1608
1609static void flush_stack(struct sock **stack, unsigned int count,
1610			struct sk_buff *skb, unsigned int final)
1611{
1612	unsigned int i;
1613	struct sk_buff *skb1 = NULL;
1614	struct sock *sk;
1615
1616	for (i = 0; i < count; i++) {
1617		sk = stack[i];
1618		if (likely(!skb1))
1619			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1620
1621		if (!skb1) {
1622			atomic_inc(&sk->sk_drops);
1623			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1624					 IS_UDPLITE(sk));
1625			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1626					 IS_UDPLITE(sk));
1627		}
1628
1629		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1630			skb1 = NULL;
1631
1632		sock_put(sk);
1633	}
1634	if (unlikely(skb1))
1635		kfree_skb(skb1);
1636}
1637
1638/* For TCP sockets, sk_rx_dst is protected by socket lock
1639 * For UDP, we use xchg() to guard against concurrent changes.
1640 */
1641static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1642{
1643	struct dst_entry *old;
1644
1645	dst_hold(dst);
1646	old = xchg(&sk->sk_rx_dst, dst);
1647	dst_release(old);
1648}
1649
1650/*
1651 *	Multicasts and broadcasts go to each listener.
1652 *
1653 *	Note: called only from the BH handler context.
1654 */
1655static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1656				    struct udphdr  *uh,
1657				    __be32 saddr, __be32 daddr,
1658				    struct udp_table *udptable,
1659				    int proto)
1660{
1661	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1662	struct hlist_nulls_node *node;
1663	unsigned short hnum = ntohs(uh->dest);
1664	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1665	int dif = skb->dev->ifindex;
1666	unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1667	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1668	bool inner_flushed = false;
1669
1670	if (use_hash2) {
1671		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1672			    udp_table.mask;
1673		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1674start_lookup:
1675		hslot = &udp_table.hash2[hash2];
1676		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1677	}
1678
1679	spin_lock(&hslot->lock);
1680	sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1681		if (__udp_is_mcast_sock(net, sk,
1682					uh->dest, daddr,
1683					uh->source, saddr,
1684					dif, hnum)) {
1685			if (unlikely(count == ARRAY_SIZE(stack))) {
1686				flush_stack(stack, count, skb, ~0);
1687				inner_flushed = true;
1688				count = 0;
1689			}
1690			stack[count++] = sk;
1691			sock_hold(sk);
1692		}
1693	}
1694
1695	spin_unlock(&hslot->lock);
1696
1697	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
1698	if (use_hash2 && hash2 != hash2_any) {
1699		hash2 = hash2_any;
1700		goto start_lookup;
1701	}
1702
1703	/*
1704	 * do the slow work with no lock held
1705	 */
1706	if (count) {
1707		flush_stack(stack, count, skb, count - 1);
1708	} else {
1709		if (!inner_flushed)
1710			UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI,
1711					 proto == IPPROTO_UDPLITE);
1712		consume_skb(skb);
1713	}
1714	return 0;
1715}
1716
1717/* Initialize UDP checksum. If exited with zero value (success),
1718 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1719 * Otherwise, csum completion requires chacksumming packet body,
1720 * including udp header and folding it to skb->csum.
1721 */
1722static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1723				 int proto)
1724{
1725	int err;
1726
1727	UDP_SKB_CB(skb)->partial_cov = 0;
1728	UDP_SKB_CB(skb)->cscov = skb->len;
1729
1730	if (proto == IPPROTO_UDPLITE) {
1731		err = udplite_checksum_init(skb, uh);
1732		if (err)
1733			return err;
1734	}
1735
1736	return skb_checksum_init_zero_check(skb, proto, uh->check,
1737					    inet_compute_pseudo);
1738}
1739
1740/*
1741 *	All we need to do is get the socket, and then do a checksum.
1742 */
1743
1744int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1745		   int proto)
1746{
1747	struct sock *sk;
1748	struct udphdr *uh;
1749	unsigned short ulen;
1750	struct rtable *rt = skb_rtable(skb);
1751	__be32 saddr, daddr;
1752	struct net *net = dev_net(skb->dev);
1753
1754	/*
1755	 *  Validate the packet.
1756	 */
1757	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1758		goto drop;		/* No space for header. */
1759
1760	uh   = udp_hdr(skb);
1761	ulen = ntohs(uh->len);
1762	saddr = ip_hdr(skb)->saddr;
1763	daddr = ip_hdr(skb)->daddr;
1764
1765	if (ulen > skb->len)
1766		goto short_packet;
1767
1768	if (proto == IPPROTO_UDP) {
1769		/* UDP validates ulen. */
1770		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1771			goto short_packet;
1772		uh = udp_hdr(skb);
1773	}
1774
1775	if (udp4_csum_init(skb, uh, proto))
1776		goto csum_error;
1777
1778	sk = skb_steal_sock(skb);
1779	if (sk) {
1780		struct dst_entry *dst = skb_dst(skb);
1781		int ret;
1782
1783		if (unlikely(sk->sk_rx_dst != dst))
1784			udp_sk_rx_dst_set(sk, dst);
1785
1786		ret = udp_queue_rcv_skb(sk, skb);
1787		sock_put(sk);
1788		/* a return value > 0 means to resubmit the input, but
1789		 * it wants the return to be -protocol, or 0
1790		 */
1791		if (ret > 0)
1792			return -ret;
1793		return 0;
1794	}
1795
1796	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1797		return __udp4_lib_mcast_deliver(net, skb, uh,
1798						saddr, daddr, udptable, proto);
1799
1800	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1801	if (sk) {
1802		int ret;
1803
1804		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1805			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1806						 inet_compute_pseudo);
1807
1808		ret = udp_queue_rcv_skb(sk, skb);
1809		sock_put(sk);
1810
1811		/* a return value > 0 means to resubmit the input, but
1812		 * it wants the return to be -protocol, or 0
1813		 */
1814		if (ret > 0)
1815			return -ret;
1816		return 0;
1817	}
1818
1819	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1820		goto drop;
1821	nf_reset(skb);
1822
1823	/* No socket. Drop packet silently, if checksum is wrong */
1824	if (udp_lib_checksum_complete(skb))
1825		goto csum_error;
1826
1827	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1828	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1829
1830	/*
1831	 * Hmm.  We got an UDP packet to a port to which we
1832	 * don't wanna listen.  Ignore it.
1833	 */
1834	kfree_skb(skb);
1835	return 0;
1836
1837short_packet:
1838	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1839			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1840			    &saddr, ntohs(uh->source),
1841			    ulen, skb->len,
1842			    &daddr, ntohs(uh->dest));
1843	goto drop;
1844
1845csum_error:
1846	/*
1847	 * RFC1122: OK.  Discards the bad packet silently (as far as
1848	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1849	 */
1850	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1851			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1852			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1853			    ulen);
1854	UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1855drop:
1856	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1857	kfree_skb(skb);
1858	return 0;
1859}
1860
1861/* We can only early demux multicast if there is a single matching socket.
1862 * If more than one socket found returns NULL
1863 */
1864static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1865						  __be16 loc_port, __be32 loc_addr,
1866						  __be16 rmt_port, __be32 rmt_addr,
1867						  int dif)
1868{
1869	struct sock *sk, *result;
1870	struct hlist_nulls_node *node;
1871	unsigned short hnum = ntohs(loc_port);
1872	unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1873	struct udp_hslot *hslot = &udp_table.hash[slot];
1874
1875	/* Do not bother scanning a too big list */
1876	if (hslot->count > 10)
1877		return NULL;
1878
1879	rcu_read_lock();
1880begin:
1881	count = 0;
1882	result = NULL;
1883	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1884		if (__udp_is_mcast_sock(net, sk,
1885					loc_port, loc_addr,
1886					rmt_port, rmt_addr,
1887					dif, hnum)) {
1888			result = sk;
1889			++count;
1890		}
1891	}
1892	/*
1893	 * if the nulls value we got at the end of this lookup is
1894	 * not the expected one, we must restart lookup.
1895	 * We probably met an item that was moved to another chain.
1896	 */
1897	if (get_nulls_value(node) != slot)
1898		goto begin;
1899
1900	if (result) {
1901		if (count != 1 ||
1902		    unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1903			result = NULL;
1904		else if (unlikely(!__udp_is_mcast_sock(net, result,
1905						       loc_port, loc_addr,
1906						       rmt_port, rmt_addr,
1907						       dif, hnum))) {
1908			sock_put(result);
1909			result = NULL;
1910		}
1911	}
1912	rcu_read_unlock();
1913	return result;
1914}
1915
1916/* For unicast we should only early demux connected sockets or we can
1917 * break forwarding setups.  The chains here can be long so only check
1918 * if the first socket is an exact match and if not move on.
1919 */
1920static struct sock *__udp4_lib_demux_lookup(struct net *net,
1921					    __be16 loc_port, __be32 loc_addr,
1922					    __be16 rmt_port, __be32 rmt_addr,
1923					    int dif)
1924{
1925	struct sock *sk, *result;
1926	struct hlist_nulls_node *node;
1927	unsigned short hnum = ntohs(loc_port);
1928	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1929	unsigned int slot2 = hash2 & udp_table.mask;
1930	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1931	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1932	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1933
1934	rcu_read_lock();
1935	result = NULL;
1936	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1937		if (INET_MATCH(sk, net, acookie,
1938			       rmt_addr, loc_addr, ports, dif))
1939			result = sk;
1940		/* Only check first socket in chain */
1941		break;
1942	}
1943
1944	if (result) {
1945		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1946			result = NULL;
1947		else if (unlikely(!INET_MATCH(sk, net, acookie,
1948					      rmt_addr, loc_addr,
1949					      ports, dif))) {
1950			sock_put(result);
1951			result = NULL;
1952		}
1953	}
1954	rcu_read_unlock();
1955	return result;
1956}
1957
1958void udp_v4_early_demux(struct sk_buff *skb)
1959{
1960	struct net *net = dev_net(skb->dev);
1961	const struct iphdr *iph;
1962	const struct udphdr *uh;
1963	struct sock *sk;
1964	struct dst_entry *dst;
1965	int dif = skb->dev->ifindex;
1966	int ours;
1967
1968	/* validate the packet */
1969	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1970		return;
1971
1972	iph = ip_hdr(skb);
1973	uh = udp_hdr(skb);
1974
1975	if (skb->pkt_type == PACKET_BROADCAST ||
1976	    skb->pkt_type == PACKET_MULTICAST) {
1977		struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
1978
1979		if (!in_dev)
1980			return;
1981
1982		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
1983				       iph->protocol);
1984		if (!ours)
1985			return;
1986		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1987						   uh->source, iph->saddr, dif);
1988	} else if (skb->pkt_type == PACKET_HOST) {
1989		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1990					     uh->source, iph->saddr, dif);
1991	} else {
1992		return;
1993	}
1994
1995	if (!sk)
1996		return;
1997
1998	skb->sk = sk;
1999	skb->destructor = sock_efree;
2000	dst = READ_ONCE(sk->sk_rx_dst);
2001
2002	if (dst)
2003		dst = dst_check(dst, 0);
2004	if (dst) {
2005		/* DST_NOCACHE can not be used without taking a reference */
2006		if (dst->flags & DST_NOCACHE) {
2007			if (likely(atomic_inc_not_zero(&dst->__refcnt)))
2008				skb_dst_set(skb, dst);
2009		} else {
2010			skb_dst_set_noref(skb, dst);
2011		}
2012	}
2013}
2014
2015int udp_rcv(struct sk_buff *skb)
2016{
2017	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2018}
2019
2020void udp_destroy_sock(struct sock *sk)
2021{
2022	struct udp_sock *up = udp_sk(sk);
2023	bool slow = lock_sock_fast(sk);
2024	udp_flush_pending_frames(sk);
2025	unlock_sock_fast(sk, slow);
2026	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2027		void (*encap_destroy)(struct sock *sk);
2028		encap_destroy = ACCESS_ONCE(up->encap_destroy);
2029		if (encap_destroy)
2030			encap_destroy(sk);
2031	}
2032}
2033
2034/*
2035 *	Socket option code for UDP
2036 */
2037int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2038		       char __user *optval, unsigned int optlen,
2039		       int (*push_pending_frames)(struct sock *))
2040{
2041	struct udp_sock *up = udp_sk(sk);
2042	int val, valbool;
2043	int err = 0;
2044	int is_udplite = IS_UDPLITE(sk);
2045
2046	if (optlen < sizeof(int))
2047		return -EINVAL;
2048
2049	if (get_user(val, (int __user *)optval))
2050		return -EFAULT;
2051
2052	valbool = val ? 1 : 0;
2053
2054	switch (optname) {
2055	case UDP_CORK:
2056		if (val != 0) {
2057			up->corkflag = 1;
2058		} else {
2059			up->corkflag = 0;
2060			lock_sock(sk);
2061			push_pending_frames(sk);
2062			release_sock(sk);
2063		}
2064		break;
2065
2066	case UDP_ENCAP:
2067		switch (val) {
2068		case 0:
2069		case UDP_ENCAP_ESPINUDP:
2070		case UDP_ENCAP_ESPINUDP_NON_IKE:
2071			up->encap_rcv = xfrm4_udp_encap_rcv;
2072			/* FALLTHROUGH */
2073		case UDP_ENCAP_L2TPINUDP:
2074			up->encap_type = val;
2075			udp_encap_enable();
2076			break;
2077		default:
2078			err = -ENOPROTOOPT;
2079			break;
2080		}
2081		break;
2082
2083	case UDP_NO_CHECK6_TX:
2084		up->no_check6_tx = valbool;
2085		break;
2086
2087	case UDP_NO_CHECK6_RX:
2088		up->no_check6_rx = valbool;
2089		break;
2090
2091	/*
2092	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2093	 */
2094	/* The sender sets actual checksum coverage length via this option.
2095	 * The case coverage > packet length is handled by send module. */
2096	case UDPLITE_SEND_CSCOV:
2097		if (!is_udplite)         /* Disable the option on UDP sockets */
2098			return -ENOPROTOOPT;
2099		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2100			val = 8;
2101		else if (val > USHRT_MAX)
2102			val = USHRT_MAX;
2103		up->pcslen = val;
2104		up->pcflag |= UDPLITE_SEND_CC;
2105		break;
2106
2107	/* The receiver specifies a minimum checksum coverage value. To make
2108	 * sense, this should be set to at least 8 (as done below). If zero is
2109	 * used, this again means full checksum coverage.                     */
2110	case UDPLITE_RECV_CSCOV:
2111		if (!is_udplite)         /* Disable the option on UDP sockets */
2112			return -ENOPROTOOPT;
2113		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2114			val = 8;
2115		else if (val > USHRT_MAX)
2116			val = USHRT_MAX;
2117		up->pcrlen = val;
2118		up->pcflag |= UDPLITE_RECV_CC;
2119		break;
2120
2121	default:
2122		err = -ENOPROTOOPT;
2123		break;
2124	}
2125
2126	return err;
2127}
2128EXPORT_SYMBOL(udp_lib_setsockopt);
2129
2130int udp_setsockopt(struct sock *sk, int level, int optname,
2131		   char __user *optval, unsigned int optlen)
2132{
2133	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2134		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2135					  udp_push_pending_frames);
2136	return ip_setsockopt(sk, level, optname, optval, optlen);
2137}
2138
2139#ifdef CONFIG_COMPAT
2140int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2141			  char __user *optval, unsigned int optlen)
2142{
2143	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2144		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2145					  udp_push_pending_frames);
2146	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2147}
2148#endif
2149
2150int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2151		       char __user *optval, int __user *optlen)
2152{
2153	struct udp_sock *up = udp_sk(sk);
2154	int val, len;
2155
2156	if (get_user(len, optlen))
2157		return -EFAULT;
2158
2159	len = min_t(unsigned int, len, sizeof(int));
2160
2161	if (len < 0)
2162		return -EINVAL;
2163
2164	switch (optname) {
2165	case UDP_CORK:
2166		val = up->corkflag;
2167		break;
2168
2169	case UDP_ENCAP:
2170		val = up->encap_type;
2171		break;
2172
2173	case UDP_NO_CHECK6_TX:
2174		val = up->no_check6_tx;
2175		break;
2176
2177	case UDP_NO_CHECK6_RX:
2178		val = up->no_check6_rx;
2179		break;
2180
2181	/* The following two cannot be changed on UDP sockets, the return is
2182	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2183	case UDPLITE_SEND_CSCOV:
2184		val = up->pcslen;
2185		break;
2186
2187	case UDPLITE_RECV_CSCOV:
2188		val = up->pcrlen;
2189		break;
2190
2191	default:
2192		return -ENOPROTOOPT;
2193	}
2194
2195	if (put_user(len, optlen))
2196		return -EFAULT;
2197	if (copy_to_user(optval, &val, len))
2198		return -EFAULT;
2199	return 0;
2200}
2201EXPORT_SYMBOL(udp_lib_getsockopt);
2202
2203int udp_getsockopt(struct sock *sk, int level, int optname,
2204		   char __user *optval, int __user *optlen)
2205{
2206	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2207		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2208	return ip_getsockopt(sk, level, optname, optval, optlen);
2209}
2210
2211#ifdef CONFIG_COMPAT
2212int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2213				 char __user *optval, int __user *optlen)
2214{
2215	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2216		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2217	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2218}
2219#endif
2220/**
2221 * 	udp_poll - wait for a UDP event.
2222 *	@file - file struct
2223 *	@sock - socket
2224 *	@wait - poll table
2225 *
2226 *	This is same as datagram poll, except for the special case of
2227 *	blocking sockets. If application is using a blocking fd
2228 *	and a packet with checksum error is in the queue;
2229 *	then it could get return from select indicating data available
2230 *	but then block when reading it. Add special case code
2231 *	to work around these arguably broken applications.
2232 */
2233unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2234{
2235	unsigned int mask = datagram_poll(file, sock, wait);
2236	struct sock *sk = sock->sk;
2237
2238	sock_rps_record_flow(sk);
2239
2240	/* Check for false positives due to checksum errors */
2241	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2242	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2243		mask &= ~(POLLIN | POLLRDNORM);
2244
2245	return mask;
2246
2247}
2248EXPORT_SYMBOL(udp_poll);
2249
2250struct proto udp_prot = {
2251	.name		   = "UDP",
2252	.owner		   = THIS_MODULE,
2253	.close		   = udp_lib_close,
2254	.connect	   = ip4_datagram_connect,
2255	.disconnect	   = udp_disconnect,
2256	.ioctl		   = udp_ioctl,
2257	.destroy	   = udp_destroy_sock,
2258	.setsockopt	   = udp_setsockopt,
2259	.getsockopt	   = udp_getsockopt,
2260	.sendmsg	   = udp_sendmsg,
2261	.recvmsg	   = udp_recvmsg,
2262	.sendpage	   = udp_sendpage,
2263	.backlog_rcv	   = __udp_queue_rcv_skb,
2264	.release_cb	   = ip4_datagram_release_cb,
2265	.hash		   = udp_lib_hash,
2266	.unhash		   = udp_lib_unhash,
2267	.rehash		   = udp_v4_rehash,
2268	.get_port	   = udp_v4_get_port,
2269	.memory_allocated  = &udp_memory_allocated,
2270	.sysctl_mem	   = sysctl_udp_mem,
2271	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2272	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2273	.obj_size	   = sizeof(struct udp_sock),
2274	.slab_flags	   = SLAB_DESTROY_BY_RCU,
2275	.h.udp_table	   = &udp_table,
2276#ifdef CONFIG_COMPAT
2277	.compat_setsockopt = compat_udp_setsockopt,
2278	.compat_getsockopt = compat_udp_getsockopt,
2279#endif
2280	.clear_sk	   = sk_prot_clear_portaddr_nulls,
2281};
2282EXPORT_SYMBOL(udp_prot);
2283
2284/* ------------------------------------------------------------------------ */
2285#ifdef CONFIG_PROC_FS
2286
2287static struct sock *udp_get_first(struct seq_file *seq, int start)
2288{
2289	struct sock *sk;
2290	struct udp_iter_state *state = seq->private;
2291	struct net *net = seq_file_net(seq);
2292
2293	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2294	     ++state->bucket) {
2295		struct hlist_nulls_node *node;
2296		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2297
2298		if (hlist_nulls_empty(&hslot->head))
2299			continue;
2300
2301		spin_lock_bh(&hslot->lock);
2302		sk_nulls_for_each(sk, node, &hslot->head) {
2303			if (!net_eq(sock_net(sk), net))
2304				continue;
2305			if (sk->sk_family == state->family)
2306				goto found;
2307		}
2308		spin_unlock_bh(&hslot->lock);
2309	}
2310	sk = NULL;
2311found:
2312	return sk;
2313}
2314
2315static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2316{
2317	struct udp_iter_state *state = seq->private;
2318	struct net *net = seq_file_net(seq);
2319
2320	do {
2321		sk = sk_nulls_next(sk);
2322	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2323
2324	if (!sk) {
2325		if (state->bucket <= state->udp_table->mask)
2326			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2327		return udp_get_first(seq, state->bucket + 1);
2328	}
2329	return sk;
2330}
2331
2332static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2333{
2334	struct sock *sk = udp_get_first(seq, 0);
2335
2336	if (sk)
2337		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2338			--pos;
2339	return pos ? NULL : sk;
2340}
2341
2342static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2343{
2344	struct udp_iter_state *state = seq->private;
2345	state->bucket = MAX_UDP_PORTS;
2346
2347	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2348}
2349
2350static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2351{
2352	struct sock *sk;
2353
2354	if (v == SEQ_START_TOKEN)
2355		sk = udp_get_idx(seq, 0);
2356	else
2357		sk = udp_get_next(seq, v);
2358
2359	++*pos;
2360	return sk;
2361}
2362
2363static void udp_seq_stop(struct seq_file *seq, void *v)
2364{
2365	struct udp_iter_state *state = seq->private;
2366
2367	if (state->bucket <= state->udp_table->mask)
2368		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2369}
2370
2371int udp_seq_open(struct inode *inode, struct file *file)
2372{
2373	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2374	struct udp_iter_state *s;
2375	int err;
2376
2377	err = seq_open_net(inode, file, &afinfo->seq_ops,
2378			   sizeof(struct udp_iter_state));
2379	if (err < 0)
2380		return err;
2381
2382	s = ((struct seq_file *)file->private_data)->private;
2383	s->family		= afinfo->family;
2384	s->udp_table		= afinfo->udp_table;
2385	return err;
2386}
2387EXPORT_SYMBOL(udp_seq_open);
2388
2389/* ------------------------------------------------------------------------ */
2390int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2391{
2392	struct proc_dir_entry *p;
2393	int rc = 0;
2394
2395	afinfo->seq_ops.start		= udp_seq_start;
2396	afinfo->seq_ops.next		= udp_seq_next;
2397	afinfo->seq_ops.stop		= udp_seq_stop;
2398
2399	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2400			     afinfo->seq_fops, afinfo);
2401	if (!p)
2402		rc = -ENOMEM;
2403	return rc;
2404}
2405EXPORT_SYMBOL(udp_proc_register);
2406
2407void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2408{
2409	remove_proc_entry(afinfo->name, net->proc_net);
2410}
2411EXPORT_SYMBOL(udp_proc_unregister);
2412
2413/* ------------------------------------------------------------------------ */
2414static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2415		int bucket)
2416{
2417	struct inet_sock *inet = inet_sk(sp);
2418	__be32 dest = inet->inet_daddr;
2419	__be32 src  = inet->inet_rcv_saddr;
2420	__u16 destp	  = ntohs(inet->inet_dport);
2421	__u16 srcp	  = ntohs(inet->inet_sport);
2422
2423	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2424		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2425		bucket, src, srcp, dest, destp, sp->sk_state,
2426		sk_wmem_alloc_get(sp),
2427		sk_rmem_alloc_get(sp),
2428		0, 0L, 0,
2429		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2430		0, sock_i_ino(sp),
2431		atomic_read(&sp->sk_refcnt), sp,
2432		atomic_read(&sp->sk_drops));
2433}
2434
2435int udp4_seq_show(struct seq_file *seq, void *v)
2436{
2437	seq_setwidth(seq, 127);
2438	if (v == SEQ_START_TOKEN)
2439		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2440			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2441			   "inode ref pointer drops");
2442	else {
2443		struct udp_iter_state *state = seq->private;
2444
2445		udp4_format_sock(v, seq, state->bucket);
2446	}
2447	seq_pad(seq, '\n');
2448	return 0;
2449}
2450
2451static const struct file_operations udp_afinfo_seq_fops = {
2452	.owner    = THIS_MODULE,
2453	.open     = udp_seq_open,
2454	.read     = seq_read,
2455	.llseek   = seq_lseek,
2456	.release  = seq_release_net
2457};
2458
2459/* ------------------------------------------------------------------------ */
2460static struct udp_seq_afinfo udp4_seq_afinfo = {
2461	.name		= "udp",
2462	.family		= AF_INET,
2463	.udp_table	= &udp_table,
2464	.seq_fops	= &udp_afinfo_seq_fops,
2465	.seq_ops	= {
2466		.show		= udp4_seq_show,
2467	},
2468};
2469
2470static int __net_init udp4_proc_init_net(struct net *net)
2471{
2472	return udp_proc_register(net, &udp4_seq_afinfo);
2473}
2474
2475static void __net_exit udp4_proc_exit_net(struct net *net)
2476{
2477	udp_proc_unregister(net, &udp4_seq_afinfo);
2478}
2479
2480static struct pernet_operations udp4_net_ops = {
2481	.init = udp4_proc_init_net,
2482	.exit = udp4_proc_exit_net,
2483};
2484
2485int __init udp4_proc_init(void)
2486{
2487	return register_pernet_subsys(&udp4_net_ops);
2488}
2489
2490void udp4_proc_exit(void)
2491{
2492	unregister_pernet_subsys(&udp4_net_ops);
2493}
2494#endif /* CONFIG_PROC_FS */
2495
2496static __initdata unsigned long uhash_entries;
2497static int __init set_uhash_entries(char *str)
2498{
2499	ssize_t ret;
2500
2501	if (!str)
2502		return 0;
2503
2504	ret = kstrtoul(str, 0, &uhash_entries);
2505	if (ret)
2506		return 0;
2507
2508	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2509		uhash_entries = UDP_HTABLE_SIZE_MIN;
2510	return 1;
2511}
2512__setup("uhash_entries=", set_uhash_entries);
2513
2514void __init udp_table_init(struct udp_table *table, const char *name)
2515{
2516	unsigned int i;
2517
2518	table->hash = alloc_large_system_hash(name,
2519					      2 * sizeof(struct udp_hslot),
2520					      uhash_entries,
2521					      21, /* one slot per 2 MB */
2522					      0,
2523					      &table->log,
2524					      &table->mask,
2525					      UDP_HTABLE_SIZE_MIN,
2526					      64 * 1024);
2527
2528	table->hash2 = table->hash + (table->mask + 1);
2529	for (i = 0; i <= table->mask; i++) {
2530		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2531		table->hash[i].count = 0;
2532		spin_lock_init(&table->hash[i].lock);
2533	}
2534	for (i = 0; i <= table->mask; i++) {
2535		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2536		table->hash2[i].count = 0;
2537		spin_lock_init(&table->hash2[i].lock);
2538	}
2539}
2540
2541u32 udp_flow_hashrnd(void)
2542{
2543	static u32 hashrnd __read_mostly;
2544
2545	net_get_random_once(&hashrnd, sizeof(hashrnd));
2546
2547	return hashrnd;
2548}
2549EXPORT_SYMBOL(udp_flow_hashrnd);
2550
2551void __init udp_init(void)
2552{
2553	unsigned long limit;
2554
2555	udp_table_init(&udp_table, "UDP");
2556	limit = nr_free_buffer_pages() / 8;
2557	limit = max(limit, 128UL);
2558	sysctl_udp_mem[0] = limit / 4 * 3;
2559	sysctl_udp_mem[1] = limit;
2560	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2561
2562	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2563	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2564}
2565