1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23 *				:	Fragmentation on mtu decrease
24 *				:	Segment collapse on retransmit
25 *				:	AF independence
26 *
27 *		Linus Torvalds	:	send_delayed_ack
28 *		David S. Miller	:	Charge memory using the right skb
29 *					during syn/ack processing.
30 *		David S. Miller :	Output engine completely rewritten.
31 *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32 *		Cacophonix Gaul :	draft-minshall-nagle-01
33 *		J Hadi Salim	:	ECN support
34 *
35 */
36
37#define pr_fmt(fmt) "TCP: " fmt
38
39#include <net/tcp.h>
40
41#include <linux/compiler.h>
42#include <linux/gfp.h>
43#include <linux/module.h>
44
45/* People can turn this off for buggy TCP's found in printers etc. */
46int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48/* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53/* Default TSQ limit of two TSO segments */
54int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55
56/* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume.  Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62/* By default, RFC2861 behavior.  */
63int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64
65unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
66EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
67
68static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
69			   int push_one, gfp_t gfp);
70
71/* Account for new data that has been sent to the network. */
72static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
73{
74	struct inet_connection_sock *icsk = inet_csk(sk);
75	struct tcp_sock *tp = tcp_sk(sk);
76	unsigned int prior_packets = tp->packets_out;
77
78	tcp_advance_send_head(sk, skb);
79	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
80
81	tp->packets_out += tcp_skb_pcount(skb);
82	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
83	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
84		tcp_rearm_rto(sk);
85	}
86
87	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
88		      tcp_skb_pcount(skb));
89}
90
91/* SND.NXT, if window was not shrunk.
92 * If window has been shrunk, what should we make? It is not clear at all.
93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95 * invalid. OK, let's make this for now:
96 */
97static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98{
99	const struct tcp_sock *tp = tcp_sk(sk);
100
101	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
102		return tp->snd_nxt;
103	else
104		return tcp_wnd_end(tp);
105}
106
107/* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109 *
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 *    attached devices, because some buggy hosts are confused by
114 *    large MSS.
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 *    This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 *    probably even Jumbo".
120 */
121static __u16 tcp_advertise_mss(struct sock *sk)
122{
123	struct tcp_sock *tp = tcp_sk(sk);
124	const struct dst_entry *dst = __sk_dst_get(sk);
125	int mss = tp->advmss;
126
127	if (dst) {
128		unsigned int metric = dst_metric_advmss(dst);
129
130		if (metric < mss) {
131			mss = metric;
132			tp->advmss = mss;
133		}
134	}
135
136	return (__u16)mss;
137}
138
139/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism. */
141static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
142{
143	struct tcp_sock *tp = tcp_sk(sk);
144	s32 delta = tcp_time_stamp - tp->lsndtime;
145	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
146	u32 cwnd = tp->snd_cwnd;
147
148	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149
150	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151	restart_cwnd = min(restart_cwnd, cwnd);
152
153	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154		cwnd >>= 1;
155	tp->snd_cwnd = max(cwnd, restart_cwnd);
156	tp->snd_cwnd_stamp = tcp_time_stamp;
157	tp->snd_cwnd_used = 0;
158}
159
160/* Congestion state accounting after a packet has been sent. */
161static void tcp_event_data_sent(struct tcp_sock *tp,
162				struct sock *sk)
163{
164	struct inet_connection_sock *icsk = inet_csk(sk);
165	const u32 now = tcp_time_stamp;
166	const struct dst_entry *dst = __sk_dst_get(sk);
167
168	if (sysctl_tcp_slow_start_after_idle &&
169	    (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
170		tcp_cwnd_restart(sk, __sk_dst_get(sk));
171
172	tp->lsndtime = now;
173
174	/* If it is a reply for ato after last received
175	 * packet, enter pingpong mode.
176	 */
177	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
178	    (!dst || !dst_metric(dst, RTAX_QUICKACK)))
179			icsk->icsk_ack.pingpong = 1;
180}
181
182/* Account for an ACK we sent. */
183static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
184{
185	tcp_dec_quickack_mode(sk, pkts);
186	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
187}
188
189
190u32 tcp_default_init_rwnd(u32 mss)
191{
192	/* Initial receive window should be twice of TCP_INIT_CWND to
193	 * enable proper sending of new unsent data during fast recovery
194	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
195	 * limit when mss is larger than 1460.
196	 */
197	u32 init_rwnd = TCP_INIT_CWND * 2;
198
199	if (mss > 1460)
200		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
201	return init_rwnd;
202}
203
204/* Determine a window scaling and initial window to offer.
205 * Based on the assumption that the given amount of space
206 * will be offered. Store the results in the tp structure.
207 * NOTE: for smooth operation initial space offering should
208 * be a multiple of mss if possible. We assume here that mss >= 1.
209 * This MUST be enforced by all callers.
210 */
211void tcp_select_initial_window(int __space, __u32 mss,
212			       __u32 *rcv_wnd, __u32 *window_clamp,
213			       int wscale_ok, __u8 *rcv_wscale,
214			       __u32 init_rcv_wnd)
215{
216	unsigned int space = (__space < 0 ? 0 : __space);
217
218	/* If no clamp set the clamp to the max possible scaled window */
219	if (*window_clamp == 0)
220		(*window_clamp) = (65535 << 14);
221	space = min(*window_clamp, space);
222
223	/* Quantize space offering to a multiple of mss if possible. */
224	if (space > mss)
225		space = (space / mss) * mss;
226
227	/* NOTE: offering an initial window larger than 32767
228	 * will break some buggy TCP stacks. If the admin tells us
229	 * it is likely we could be speaking with such a buggy stack
230	 * we will truncate our initial window offering to 32K-1
231	 * unless the remote has sent us a window scaling option,
232	 * which we interpret as a sign the remote TCP is not
233	 * misinterpreting the window field as a signed quantity.
234	 */
235	if (sysctl_tcp_workaround_signed_windows)
236		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
237	else
238		(*rcv_wnd) = space;
239
240	(*rcv_wscale) = 0;
241	if (wscale_ok) {
242		/* Set window scaling on max possible window
243		 * See RFC1323 for an explanation of the limit to 14
244		 */
245		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
246		space = min_t(u32, space, *window_clamp);
247		while (space > 65535 && (*rcv_wscale) < 14) {
248			space >>= 1;
249			(*rcv_wscale)++;
250		}
251	}
252
253	if (mss > (1 << *rcv_wscale)) {
254		if (!init_rcv_wnd) /* Use default unless specified otherwise */
255			init_rcv_wnd = tcp_default_init_rwnd(mss);
256		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
257	}
258
259	/* Set the clamp no higher than max representable value */
260	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
261}
262EXPORT_SYMBOL(tcp_select_initial_window);
263
264/* Chose a new window to advertise, update state in tcp_sock for the
265 * socket, and return result with RFC1323 scaling applied.  The return
266 * value can be stuffed directly into th->window for an outgoing
267 * frame.
268 */
269static u16 tcp_select_window(struct sock *sk)
270{
271	struct tcp_sock *tp = tcp_sk(sk);
272	u32 old_win = tp->rcv_wnd;
273	u32 cur_win = tcp_receive_window(tp);
274	u32 new_win = __tcp_select_window(sk);
275
276	/* Never shrink the offered window */
277	if (new_win < cur_win) {
278		/* Danger Will Robinson!
279		 * Don't update rcv_wup/rcv_wnd here or else
280		 * we will not be able to advertise a zero
281		 * window in time.  --DaveM
282		 *
283		 * Relax Will Robinson.
284		 */
285		if (new_win == 0)
286			NET_INC_STATS(sock_net(sk),
287				      LINUX_MIB_TCPWANTZEROWINDOWADV);
288		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
289	}
290	tp->rcv_wnd = new_win;
291	tp->rcv_wup = tp->rcv_nxt;
292
293	/* Make sure we do not exceed the maximum possible
294	 * scaled window.
295	 */
296	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
297		new_win = min(new_win, MAX_TCP_WINDOW);
298	else
299		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
300
301	/* RFC1323 scaling applied */
302	new_win >>= tp->rx_opt.rcv_wscale;
303
304	/* If we advertise zero window, disable fast path. */
305	if (new_win == 0) {
306		tp->pred_flags = 0;
307		if (old_win)
308			NET_INC_STATS(sock_net(sk),
309				      LINUX_MIB_TCPTOZEROWINDOWADV);
310	} else if (old_win == 0) {
311		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
312	}
313
314	return new_win;
315}
316
317/* Packet ECN state for a SYN-ACK */
318static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
319{
320	const struct tcp_sock *tp = tcp_sk(sk);
321
322	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
323	if (!(tp->ecn_flags & TCP_ECN_OK))
324		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
325	else if (tcp_ca_needs_ecn(sk))
326		INET_ECN_xmit(sk);
327}
328
329/* Packet ECN state for a SYN.  */
330static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
331{
332	struct tcp_sock *tp = tcp_sk(sk);
333	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
334		       tcp_ca_needs_ecn(sk);
335
336	if (!use_ecn) {
337		const struct dst_entry *dst = __sk_dst_get(sk);
338
339		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
340			use_ecn = true;
341	}
342
343	tp->ecn_flags = 0;
344
345	if (use_ecn) {
346		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
347		tp->ecn_flags = TCP_ECN_OK;
348		if (tcp_ca_needs_ecn(sk))
349			INET_ECN_xmit(sk);
350	}
351}
352
353static void
354tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th,
355		    struct sock *sk)
356{
357	if (inet_rsk(req)->ecn_ok) {
358		th->ece = 1;
359		if (tcp_ca_needs_ecn(sk))
360			INET_ECN_xmit(sk);
361	}
362}
363
364/* Set up ECN state for a packet on a ESTABLISHED socket that is about to
365 * be sent.
366 */
367static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
368				int tcp_header_len)
369{
370	struct tcp_sock *tp = tcp_sk(sk);
371
372	if (tp->ecn_flags & TCP_ECN_OK) {
373		/* Not-retransmitted data segment: set ECT and inject CWR. */
374		if (skb->len != tcp_header_len &&
375		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
376			INET_ECN_xmit(sk);
377			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
378				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
379				tcp_hdr(skb)->cwr = 1;
380				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
381			}
382		} else if (!tcp_ca_needs_ecn(sk)) {
383			/* ACK or retransmitted segment: clear ECT|CE */
384			INET_ECN_dontxmit(sk);
385		}
386		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
387			tcp_hdr(skb)->ece = 1;
388	}
389}
390
391/* Constructs common control bits of non-data skb. If SYN/FIN is present,
392 * auto increment end seqno.
393 */
394static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
395{
396	struct skb_shared_info *shinfo = skb_shinfo(skb);
397
398	skb->ip_summed = CHECKSUM_PARTIAL;
399	skb->csum = 0;
400
401	TCP_SKB_CB(skb)->tcp_flags = flags;
402	TCP_SKB_CB(skb)->sacked = 0;
403
404	tcp_skb_pcount_set(skb, 1);
405	shinfo->gso_size = 0;
406	shinfo->gso_type = 0;
407
408	TCP_SKB_CB(skb)->seq = seq;
409	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
410		seq++;
411	TCP_SKB_CB(skb)->end_seq = seq;
412}
413
414static inline bool tcp_urg_mode(const struct tcp_sock *tp)
415{
416	return tp->snd_una != tp->snd_up;
417}
418
419#define OPTION_SACK_ADVERTISE	(1 << 0)
420#define OPTION_TS		(1 << 1)
421#define OPTION_MD5		(1 << 2)
422#define OPTION_WSCALE		(1 << 3)
423#define OPTION_FAST_OPEN_COOKIE	(1 << 8)
424
425struct tcp_out_options {
426	u16 options;		/* bit field of OPTION_* */
427	u16 mss;		/* 0 to disable */
428	u8 ws;			/* window scale, 0 to disable */
429	u8 num_sack_blocks;	/* number of SACK blocks to include */
430	u8 hash_size;		/* bytes in hash_location */
431	__u8 *hash_location;	/* temporary pointer, overloaded */
432	__u32 tsval, tsecr;	/* need to include OPTION_TS */
433	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
434};
435
436/* Write previously computed TCP options to the packet.
437 *
438 * Beware: Something in the Internet is very sensitive to the ordering of
439 * TCP options, we learned this through the hard way, so be careful here.
440 * Luckily we can at least blame others for their non-compliance but from
441 * inter-operability perspective it seems that we're somewhat stuck with
442 * the ordering which we have been using if we want to keep working with
443 * those broken things (not that it currently hurts anybody as there isn't
444 * particular reason why the ordering would need to be changed).
445 *
446 * At least SACK_PERM as the first option is known to lead to a disaster
447 * (but it may well be that other scenarios fail similarly).
448 */
449static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
450			      struct tcp_out_options *opts)
451{
452	u16 options = opts->options;	/* mungable copy */
453
454	if (unlikely(OPTION_MD5 & options)) {
455		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
456			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
457		/* overload cookie hash location */
458		opts->hash_location = (__u8 *)ptr;
459		ptr += 4;
460	}
461
462	if (unlikely(opts->mss)) {
463		*ptr++ = htonl((TCPOPT_MSS << 24) |
464			       (TCPOLEN_MSS << 16) |
465			       opts->mss);
466	}
467
468	if (likely(OPTION_TS & options)) {
469		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
470			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
471				       (TCPOLEN_SACK_PERM << 16) |
472				       (TCPOPT_TIMESTAMP << 8) |
473				       TCPOLEN_TIMESTAMP);
474			options &= ~OPTION_SACK_ADVERTISE;
475		} else {
476			*ptr++ = htonl((TCPOPT_NOP << 24) |
477				       (TCPOPT_NOP << 16) |
478				       (TCPOPT_TIMESTAMP << 8) |
479				       TCPOLEN_TIMESTAMP);
480		}
481		*ptr++ = htonl(opts->tsval);
482		*ptr++ = htonl(opts->tsecr);
483	}
484
485	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
486		*ptr++ = htonl((TCPOPT_NOP << 24) |
487			       (TCPOPT_NOP << 16) |
488			       (TCPOPT_SACK_PERM << 8) |
489			       TCPOLEN_SACK_PERM);
490	}
491
492	if (unlikely(OPTION_WSCALE & options)) {
493		*ptr++ = htonl((TCPOPT_NOP << 24) |
494			       (TCPOPT_WINDOW << 16) |
495			       (TCPOLEN_WINDOW << 8) |
496			       opts->ws);
497	}
498
499	if (unlikely(opts->num_sack_blocks)) {
500		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
501			tp->duplicate_sack : tp->selective_acks;
502		int this_sack;
503
504		*ptr++ = htonl((TCPOPT_NOP  << 24) |
505			       (TCPOPT_NOP  << 16) |
506			       (TCPOPT_SACK <<  8) |
507			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
508						     TCPOLEN_SACK_PERBLOCK)));
509
510		for (this_sack = 0; this_sack < opts->num_sack_blocks;
511		     ++this_sack) {
512			*ptr++ = htonl(sp[this_sack].start_seq);
513			*ptr++ = htonl(sp[this_sack].end_seq);
514		}
515
516		tp->rx_opt.dsack = 0;
517	}
518
519	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
520		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
521		u8 *p = (u8 *)ptr;
522		u32 len; /* Fast Open option length */
523
524		if (foc->exp) {
525			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
526			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
527				     TCPOPT_FASTOPEN_MAGIC);
528			p += TCPOLEN_EXP_FASTOPEN_BASE;
529		} else {
530			len = TCPOLEN_FASTOPEN_BASE + foc->len;
531			*p++ = TCPOPT_FASTOPEN;
532			*p++ = len;
533		}
534
535		memcpy(p, foc->val, foc->len);
536		if ((len & 3) == 2) {
537			p[foc->len] = TCPOPT_NOP;
538			p[foc->len + 1] = TCPOPT_NOP;
539		}
540		ptr += (len + 3) >> 2;
541	}
542}
543
544/* Compute TCP options for SYN packets. This is not the final
545 * network wire format yet.
546 */
547static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
548				struct tcp_out_options *opts,
549				struct tcp_md5sig_key **md5)
550{
551	struct tcp_sock *tp = tcp_sk(sk);
552	unsigned int remaining = MAX_TCP_OPTION_SPACE;
553	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
554
555#ifdef CONFIG_TCP_MD5SIG
556	*md5 = tp->af_specific->md5_lookup(sk, sk);
557	if (*md5) {
558		opts->options |= OPTION_MD5;
559		remaining -= TCPOLEN_MD5SIG_ALIGNED;
560	}
561#else
562	*md5 = NULL;
563#endif
564
565	/* We always get an MSS option.  The option bytes which will be seen in
566	 * normal data packets should timestamps be used, must be in the MSS
567	 * advertised.  But we subtract them from tp->mss_cache so that
568	 * calculations in tcp_sendmsg are simpler etc.  So account for this
569	 * fact here if necessary.  If we don't do this correctly, as a
570	 * receiver we won't recognize data packets as being full sized when we
571	 * should, and thus we won't abide by the delayed ACK rules correctly.
572	 * SACKs don't matter, we never delay an ACK when we have any of those
573	 * going out.  */
574	opts->mss = tcp_advertise_mss(sk);
575	remaining -= TCPOLEN_MSS_ALIGNED;
576
577	if (likely(sysctl_tcp_timestamps && !*md5)) {
578		opts->options |= OPTION_TS;
579		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
580		opts->tsecr = tp->rx_opt.ts_recent;
581		remaining -= TCPOLEN_TSTAMP_ALIGNED;
582	}
583	if (likely(sysctl_tcp_window_scaling)) {
584		opts->ws = tp->rx_opt.rcv_wscale;
585		opts->options |= OPTION_WSCALE;
586		remaining -= TCPOLEN_WSCALE_ALIGNED;
587	}
588	if (likely(sysctl_tcp_sack)) {
589		opts->options |= OPTION_SACK_ADVERTISE;
590		if (unlikely(!(OPTION_TS & opts->options)))
591			remaining -= TCPOLEN_SACKPERM_ALIGNED;
592	}
593
594	if (fastopen && fastopen->cookie.len >= 0) {
595		u32 need = fastopen->cookie.len;
596
597		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
598					       TCPOLEN_FASTOPEN_BASE;
599		need = (need + 3) & ~3U;  /* Align to 32 bits */
600		if (remaining >= need) {
601			opts->options |= OPTION_FAST_OPEN_COOKIE;
602			opts->fastopen_cookie = &fastopen->cookie;
603			remaining -= need;
604			tp->syn_fastopen = 1;
605			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
606		}
607	}
608
609	return MAX_TCP_OPTION_SPACE - remaining;
610}
611
612/* Set up TCP options for SYN-ACKs. */
613static unsigned int tcp_synack_options(struct sock *sk,
614				   struct request_sock *req,
615				   unsigned int mss, struct sk_buff *skb,
616				   struct tcp_out_options *opts,
617				   const struct tcp_md5sig_key *md5,
618				   struct tcp_fastopen_cookie *foc)
619{
620	struct inet_request_sock *ireq = inet_rsk(req);
621	unsigned int remaining = MAX_TCP_OPTION_SPACE;
622
623#ifdef CONFIG_TCP_MD5SIG
624	if (md5) {
625		opts->options |= OPTION_MD5;
626		remaining -= TCPOLEN_MD5SIG_ALIGNED;
627
628		/* We can't fit any SACK blocks in a packet with MD5 + TS
629		 * options. There was discussion about disabling SACK
630		 * rather than TS in order to fit in better with old,
631		 * buggy kernels, but that was deemed to be unnecessary.
632		 */
633		ireq->tstamp_ok &= !ireq->sack_ok;
634	}
635#endif
636
637	/* We always send an MSS option. */
638	opts->mss = mss;
639	remaining -= TCPOLEN_MSS_ALIGNED;
640
641	if (likely(ireq->wscale_ok)) {
642		opts->ws = ireq->rcv_wscale;
643		opts->options |= OPTION_WSCALE;
644		remaining -= TCPOLEN_WSCALE_ALIGNED;
645	}
646	if (likely(ireq->tstamp_ok)) {
647		opts->options |= OPTION_TS;
648		opts->tsval = tcp_skb_timestamp(skb);
649		opts->tsecr = req->ts_recent;
650		remaining -= TCPOLEN_TSTAMP_ALIGNED;
651	}
652	if (likely(ireq->sack_ok)) {
653		opts->options |= OPTION_SACK_ADVERTISE;
654		if (unlikely(!ireq->tstamp_ok))
655			remaining -= TCPOLEN_SACKPERM_ALIGNED;
656	}
657	if (foc != NULL && foc->len >= 0) {
658		u32 need = foc->len;
659
660		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
661				   TCPOLEN_FASTOPEN_BASE;
662		need = (need + 3) & ~3U;  /* Align to 32 bits */
663		if (remaining >= need) {
664			opts->options |= OPTION_FAST_OPEN_COOKIE;
665			opts->fastopen_cookie = foc;
666			remaining -= need;
667		}
668	}
669
670	return MAX_TCP_OPTION_SPACE - remaining;
671}
672
673/* Compute TCP options for ESTABLISHED sockets. This is not the
674 * final wire format yet.
675 */
676static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
677					struct tcp_out_options *opts,
678					struct tcp_md5sig_key **md5)
679{
680	struct tcp_sock *tp = tcp_sk(sk);
681	unsigned int size = 0;
682	unsigned int eff_sacks;
683
684	opts->options = 0;
685
686#ifdef CONFIG_TCP_MD5SIG
687	*md5 = tp->af_specific->md5_lookup(sk, sk);
688	if (unlikely(*md5)) {
689		opts->options |= OPTION_MD5;
690		size += TCPOLEN_MD5SIG_ALIGNED;
691	}
692#else
693	*md5 = NULL;
694#endif
695
696	if (likely(tp->rx_opt.tstamp_ok)) {
697		opts->options |= OPTION_TS;
698		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
699		opts->tsecr = tp->rx_opt.ts_recent;
700		size += TCPOLEN_TSTAMP_ALIGNED;
701	}
702
703	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
704	if (unlikely(eff_sacks)) {
705		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
706		opts->num_sack_blocks =
707			min_t(unsigned int, eff_sacks,
708			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
709			      TCPOLEN_SACK_PERBLOCK);
710		size += TCPOLEN_SACK_BASE_ALIGNED +
711			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
712	}
713
714	return size;
715}
716
717
718/* TCP SMALL QUEUES (TSQ)
719 *
720 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
721 * to reduce RTT and bufferbloat.
722 * We do this using a special skb destructor (tcp_wfree).
723 *
724 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
725 * needs to be reallocated in a driver.
726 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
727 *
728 * Since transmit from skb destructor is forbidden, we use a tasklet
729 * to process all sockets that eventually need to send more skbs.
730 * We use one tasklet per cpu, with its own queue of sockets.
731 */
732struct tsq_tasklet {
733	struct tasklet_struct	tasklet;
734	struct list_head	head; /* queue of tcp sockets */
735};
736static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
737
738static void tcp_tsq_handler(struct sock *sk)
739{
740	if ((1 << sk->sk_state) &
741	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
742	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
743		tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
744			       0, GFP_ATOMIC);
745}
746/*
747 * One tasklet per cpu tries to send more skbs.
748 * We run in tasklet context but need to disable irqs when
749 * transferring tsq->head because tcp_wfree() might
750 * interrupt us (non NAPI drivers)
751 */
752static void tcp_tasklet_func(unsigned long data)
753{
754	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
755	LIST_HEAD(list);
756	unsigned long flags;
757	struct list_head *q, *n;
758	struct tcp_sock *tp;
759	struct sock *sk;
760
761	local_irq_save(flags);
762	list_splice_init(&tsq->head, &list);
763	local_irq_restore(flags);
764
765	list_for_each_safe(q, n, &list) {
766		tp = list_entry(q, struct tcp_sock, tsq_node);
767		list_del(&tp->tsq_node);
768
769		sk = (struct sock *)tp;
770		bh_lock_sock(sk);
771
772		if (!sock_owned_by_user(sk)) {
773			tcp_tsq_handler(sk);
774		} else {
775			/* defer the work to tcp_release_cb() */
776			set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
777		}
778		bh_unlock_sock(sk);
779
780		clear_bit(TSQ_QUEUED, &tp->tsq_flags);
781		sk_free(sk);
782	}
783}
784
785#define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |		\
786			  (1UL << TCP_WRITE_TIMER_DEFERRED) |	\
787			  (1UL << TCP_DELACK_TIMER_DEFERRED) |	\
788			  (1UL << TCP_MTU_REDUCED_DEFERRED))
789/**
790 * tcp_release_cb - tcp release_sock() callback
791 * @sk: socket
792 *
793 * called from release_sock() to perform protocol dependent
794 * actions before socket release.
795 */
796void tcp_release_cb(struct sock *sk)
797{
798	struct tcp_sock *tp = tcp_sk(sk);
799	unsigned long flags, nflags;
800
801	/* perform an atomic operation only if at least one flag is set */
802	do {
803		flags = tp->tsq_flags;
804		if (!(flags & TCP_DEFERRED_ALL))
805			return;
806		nflags = flags & ~TCP_DEFERRED_ALL;
807	} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
808
809	if (flags & (1UL << TCP_TSQ_DEFERRED))
810		tcp_tsq_handler(sk);
811
812	/* Here begins the tricky part :
813	 * We are called from release_sock() with :
814	 * 1) BH disabled
815	 * 2) sk_lock.slock spinlock held
816	 * 3) socket owned by us (sk->sk_lock.owned == 1)
817	 *
818	 * But following code is meant to be called from BH handlers,
819	 * so we should keep BH disabled, but early release socket ownership
820	 */
821	sock_release_ownership(sk);
822
823	if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
824		tcp_write_timer_handler(sk);
825		__sock_put(sk);
826	}
827	if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
828		tcp_delack_timer_handler(sk);
829		__sock_put(sk);
830	}
831	if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
832		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
833		__sock_put(sk);
834	}
835}
836EXPORT_SYMBOL(tcp_release_cb);
837
838void __init tcp_tasklet_init(void)
839{
840	int i;
841
842	for_each_possible_cpu(i) {
843		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
844
845		INIT_LIST_HEAD(&tsq->head);
846		tasklet_init(&tsq->tasklet,
847			     tcp_tasklet_func,
848			     (unsigned long)tsq);
849	}
850}
851
852/*
853 * Write buffer destructor automatically called from kfree_skb.
854 * We can't xmit new skbs from this context, as we might already
855 * hold qdisc lock.
856 */
857void tcp_wfree(struct sk_buff *skb)
858{
859	struct sock *sk = skb->sk;
860	struct tcp_sock *tp = tcp_sk(sk);
861	int wmem;
862
863	/* Keep one reference on sk_wmem_alloc.
864	 * Will be released by sk_free() from here or tcp_tasklet_func()
865	 */
866	wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
867
868	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
869	 * Wait until our queues (qdisc + devices) are drained.
870	 * This gives :
871	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
872	 * - chance for incoming ACK (processed by another cpu maybe)
873	 *   to migrate this flow (skb->ooo_okay will be eventually set)
874	 */
875	if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
876		goto out;
877
878	if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
879	    !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
880		unsigned long flags;
881		struct tsq_tasklet *tsq;
882
883		/* queue this socket to tasklet queue */
884		local_irq_save(flags);
885		tsq = this_cpu_ptr(&tsq_tasklet);
886		list_add(&tp->tsq_node, &tsq->head);
887		tasklet_schedule(&tsq->tasklet);
888		local_irq_restore(flags);
889		return;
890	}
891out:
892	sk_free(sk);
893}
894
895/* This routine actually transmits TCP packets queued in by
896 * tcp_do_sendmsg().  This is used by both the initial
897 * transmission and possible later retransmissions.
898 * All SKB's seen here are completely headerless.  It is our
899 * job to build the TCP header, and pass the packet down to
900 * IP so it can do the same plus pass the packet off to the
901 * device.
902 *
903 * We are working here with either a clone of the original
904 * SKB, or a fresh unique copy made by the retransmit engine.
905 */
906static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
907			    gfp_t gfp_mask)
908{
909	const struct inet_connection_sock *icsk = inet_csk(sk);
910	struct inet_sock *inet;
911	struct tcp_sock *tp;
912	struct tcp_skb_cb *tcb;
913	struct tcp_out_options opts;
914	unsigned int tcp_options_size, tcp_header_size;
915	struct tcp_md5sig_key *md5;
916	struct tcphdr *th;
917	int err;
918
919	BUG_ON(!skb || !tcp_skb_pcount(skb));
920
921	if (clone_it) {
922		skb_mstamp_get(&skb->skb_mstamp);
923
924		if (unlikely(skb_cloned(skb)))
925			skb = pskb_copy(skb, gfp_mask);
926		else
927			skb = skb_clone(skb, gfp_mask);
928		if (unlikely(!skb))
929			return -ENOBUFS;
930	}
931
932	inet = inet_sk(sk);
933	tp = tcp_sk(sk);
934	tcb = TCP_SKB_CB(skb);
935	memset(&opts, 0, sizeof(opts));
936
937	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
938		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
939	else
940		tcp_options_size = tcp_established_options(sk, skb, &opts,
941							   &md5);
942	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
943
944	if (tcp_packets_in_flight(tp) == 0)
945		tcp_ca_event(sk, CA_EVENT_TX_START);
946
947	/* if no packet is in qdisc/device queue, then allow XPS to select
948	 * another queue. We can be called from tcp_tsq_handler()
949	 * which holds one reference to sk_wmem_alloc.
950	 *
951	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
952	 * One way to get this would be to set skb->truesize = 2 on them.
953	 */
954	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
955
956	skb_push(skb, tcp_header_size);
957	skb_reset_transport_header(skb);
958
959	skb_orphan(skb);
960	skb->sk = sk;
961	skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree;
962	skb_set_hash_from_sk(skb, sk);
963	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
964
965	/* Build TCP header and checksum it. */
966	th = tcp_hdr(skb);
967	th->source		= inet->inet_sport;
968	th->dest		= inet->inet_dport;
969	th->seq			= htonl(tcb->seq);
970	th->ack_seq		= htonl(tp->rcv_nxt);
971	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
972					tcb->tcp_flags);
973
974	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
975		/* RFC1323: The window in SYN & SYN/ACK segments
976		 * is never scaled.
977		 */
978		th->window	= htons(min(tp->rcv_wnd, 65535U));
979	} else {
980		th->window	= htons(tcp_select_window(sk));
981	}
982	th->check		= 0;
983	th->urg_ptr		= 0;
984
985	/* The urg_mode check is necessary during a below snd_una win probe */
986	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
987		if (before(tp->snd_up, tcb->seq + 0x10000)) {
988			th->urg_ptr = htons(tp->snd_up - tcb->seq);
989			th->urg = 1;
990		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
991			th->urg_ptr = htons(0xFFFF);
992			th->urg = 1;
993		}
994	}
995
996	tcp_options_write((__be32 *)(th + 1), tp, &opts);
997	if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
998		tcp_ecn_send(sk, skb, tcp_header_size);
999
1000#ifdef CONFIG_TCP_MD5SIG
1001	/* Calculate the MD5 hash, as we have all we need now */
1002	if (md5) {
1003		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1004		tp->af_specific->calc_md5_hash(opts.hash_location,
1005					       md5, sk, skb);
1006	}
1007#endif
1008
1009	icsk->icsk_af_ops->send_check(sk, skb);
1010
1011	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1012		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1013
1014	if (skb->len != tcp_header_size)
1015		tcp_event_data_sent(tp, sk);
1016
1017	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1018		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1019			      tcp_skb_pcount(skb));
1020
1021	/* OK, its time to fill skb_shinfo(skb)->gso_segs */
1022	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1023
1024	/* Our usage of tstamp should remain private */
1025	skb->tstamp.tv64 = 0;
1026
1027	/* Cleanup our debris for IP stacks */
1028	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1029			       sizeof(struct inet6_skb_parm)));
1030
1031	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1032
1033	if (likely(err <= 0))
1034		return err;
1035
1036	tcp_enter_cwr(sk);
1037
1038	return net_xmit_eval(err);
1039}
1040
1041/* This routine just queues the buffer for sending.
1042 *
1043 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1044 * otherwise socket can stall.
1045 */
1046static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1047{
1048	struct tcp_sock *tp = tcp_sk(sk);
1049
1050	/* Advance write_seq and place onto the write_queue. */
1051	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1052	__skb_header_release(skb);
1053	tcp_add_write_queue_tail(sk, skb);
1054	sk->sk_wmem_queued += skb->truesize;
1055	sk_mem_charge(sk, skb->truesize);
1056}
1057
1058/* Initialize TSO segments for a packet. */
1059static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1060				 unsigned int mss_now)
1061{
1062	struct skb_shared_info *shinfo = skb_shinfo(skb);
1063
1064	/* Make sure we own this skb before messing gso_size/gso_segs */
1065	WARN_ON_ONCE(skb_cloned(skb));
1066
1067	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1068		/* Avoid the costly divide in the normal
1069		 * non-TSO case.
1070		 */
1071		tcp_skb_pcount_set(skb, 1);
1072		shinfo->gso_size = 0;
1073		shinfo->gso_type = 0;
1074	} else {
1075		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1076		shinfo->gso_size = mss_now;
1077		shinfo->gso_type = sk->sk_gso_type;
1078	}
1079}
1080
1081/* When a modification to fackets out becomes necessary, we need to check
1082 * skb is counted to fackets_out or not.
1083 */
1084static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1085				   int decr)
1086{
1087	struct tcp_sock *tp = tcp_sk(sk);
1088
1089	if (!tp->sacked_out || tcp_is_reno(tp))
1090		return;
1091
1092	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1093		tp->fackets_out -= decr;
1094}
1095
1096/* Pcount in the middle of the write queue got changed, we need to do various
1097 * tweaks to fix counters
1098 */
1099static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1100{
1101	struct tcp_sock *tp = tcp_sk(sk);
1102
1103	tp->packets_out -= decr;
1104
1105	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1106		tp->sacked_out -= decr;
1107	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1108		tp->retrans_out -= decr;
1109	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1110		tp->lost_out -= decr;
1111
1112	/* Reno case is special. Sigh... */
1113	if (tcp_is_reno(tp) && decr > 0)
1114		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1115
1116	tcp_adjust_fackets_out(sk, skb, decr);
1117
1118	if (tp->lost_skb_hint &&
1119	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1120	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1121		tp->lost_cnt_hint -= decr;
1122
1123	tcp_verify_left_out(tp);
1124}
1125
1126static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1127{
1128	struct skb_shared_info *shinfo = skb_shinfo(skb);
1129
1130	if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1131	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1132		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1133		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1134
1135		shinfo->tx_flags &= ~tsflags;
1136		shinfo2->tx_flags |= tsflags;
1137		swap(shinfo->tskey, shinfo2->tskey);
1138	}
1139}
1140
1141/* Function to create two new TCP segments.  Shrinks the given segment
1142 * to the specified size and appends a new segment with the rest of the
1143 * packet to the list.  This won't be called frequently, I hope.
1144 * Remember, these are still headerless SKBs at this point.
1145 */
1146int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1147		 unsigned int mss_now, gfp_t gfp)
1148{
1149	struct tcp_sock *tp = tcp_sk(sk);
1150	struct sk_buff *buff;
1151	int nsize, old_factor;
1152	int nlen;
1153	u8 flags;
1154
1155	if (WARN_ON(len > skb->len))
1156		return -EINVAL;
1157
1158	nsize = skb_headlen(skb) - len;
1159	if (nsize < 0)
1160		nsize = 0;
1161
1162	if (skb_unclone(skb, gfp))
1163		return -ENOMEM;
1164
1165	/* Get a new skb... force flag on. */
1166	buff = sk_stream_alloc_skb(sk, nsize, gfp);
1167	if (!buff)
1168		return -ENOMEM; /* We'll just try again later. */
1169
1170	sk->sk_wmem_queued += buff->truesize;
1171	sk_mem_charge(sk, buff->truesize);
1172	nlen = skb->len - len - nsize;
1173	buff->truesize += nlen;
1174	skb->truesize -= nlen;
1175
1176	/* Correct the sequence numbers. */
1177	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1178	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1179	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1180
1181	/* PSH and FIN should only be set in the second packet. */
1182	flags = TCP_SKB_CB(skb)->tcp_flags;
1183	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1184	TCP_SKB_CB(buff)->tcp_flags = flags;
1185	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1186
1187	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1188		/* Copy and checksum data tail into the new buffer. */
1189		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1190						       skb_put(buff, nsize),
1191						       nsize, 0);
1192
1193		skb_trim(skb, len);
1194
1195		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1196	} else {
1197		skb->ip_summed = CHECKSUM_PARTIAL;
1198		skb_split(skb, buff, len);
1199	}
1200
1201	buff->ip_summed = skb->ip_summed;
1202
1203	buff->tstamp = skb->tstamp;
1204	tcp_fragment_tstamp(skb, buff);
1205
1206	old_factor = tcp_skb_pcount(skb);
1207
1208	/* Fix up tso_factor for both original and new SKB.  */
1209	tcp_set_skb_tso_segs(sk, skb, mss_now);
1210	tcp_set_skb_tso_segs(sk, buff, mss_now);
1211
1212	/* If this packet has been sent out already, we must
1213	 * adjust the various packet counters.
1214	 */
1215	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1216		int diff = old_factor - tcp_skb_pcount(skb) -
1217			tcp_skb_pcount(buff);
1218
1219		if (diff)
1220			tcp_adjust_pcount(sk, skb, diff);
1221	}
1222
1223	/* Link BUFF into the send queue. */
1224	__skb_header_release(buff);
1225	tcp_insert_write_queue_after(skb, buff, sk);
1226
1227	return 0;
1228}
1229
1230/* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1231 * eventually). The difference is that pulled data not copied, but
1232 * immediately discarded.
1233 */
1234static void __pskb_trim_head(struct sk_buff *skb, int len)
1235{
1236	struct skb_shared_info *shinfo;
1237	int i, k, eat;
1238
1239	eat = min_t(int, len, skb_headlen(skb));
1240	if (eat) {
1241		__skb_pull(skb, eat);
1242		len -= eat;
1243		if (!len)
1244			return;
1245	}
1246	eat = len;
1247	k = 0;
1248	shinfo = skb_shinfo(skb);
1249	for (i = 0; i < shinfo->nr_frags; i++) {
1250		int size = skb_frag_size(&shinfo->frags[i]);
1251
1252		if (size <= eat) {
1253			skb_frag_unref(skb, i);
1254			eat -= size;
1255		} else {
1256			shinfo->frags[k] = shinfo->frags[i];
1257			if (eat) {
1258				shinfo->frags[k].page_offset += eat;
1259				skb_frag_size_sub(&shinfo->frags[k], eat);
1260				eat = 0;
1261			}
1262			k++;
1263		}
1264	}
1265	shinfo->nr_frags = k;
1266
1267	skb_reset_tail_pointer(skb);
1268	skb->data_len -= len;
1269	skb->len = skb->data_len;
1270}
1271
1272/* Remove acked data from a packet in the transmit queue. */
1273int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1274{
1275	if (skb_unclone(skb, GFP_ATOMIC))
1276		return -ENOMEM;
1277
1278	__pskb_trim_head(skb, len);
1279
1280	TCP_SKB_CB(skb)->seq += len;
1281	skb->ip_summed = CHECKSUM_PARTIAL;
1282
1283	skb->truesize	     -= len;
1284	sk->sk_wmem_queued   -= len;
1285	sk_mem_uncharge(sk, len);
1286	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1287
1288	/* Any change of skb->len requires recalculation of tso factor. */
1289	if (tcp_skb_pcount(skb) > 1)
1290		tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1291
1292	return 0;
1293}
1294
1295/* Calculate MSS not accounting any TCP options.  */
1296static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1297{
1298	const struct tcp_sock *tp = tcp_sk(sk);
1299	const struct inet_connection_sock *icsk = inet_csk(sk);
1300	int mss_now;
1301
1302	/* Calculate base mss without TCP options:
1303	   It is MMS_S - sizeof(tcphdr) of rfc1122
1304	 */
1305	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1306
1307	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1308	if (icsk->icsk_af_ops->net_frag_header_len) {
1309		const struct dst_entry *dst = __sk_dst_get(sk);
1310
1311		if (dst && dst_allfrag(dst))
1312			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1313	}
1314
1315	/* Clamp it (mss_clamp does not include tcp options) */
1316	if (mss_now > tp->rx_opt.mss_clamp)
1317		mss_now = tp->rx_opt.mss_clamp;
1318
1319	/* Now subtract optional transport overhead */
1320	mss_now -= icsk->icsk_ext_hdr_len;
1321
1322	/* Then reserve room for full set of TCP options and 8 bytes of data */
1323	if (mss_now < 48)
1324		mss_now = 48;
1325	return mss_now;
1326}
1327
1328/* Calculate MSS. Not accounting for SACKs here.  */
1329int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1330{
1331	/* Subtract TCP options size, not including SACKs */
1332	return __tcp_mtu_to_mss(sk, pmtu) -
1333	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1334}
1335
1336/* Inverse of above */
1337int tcp_mss_to_mtu(struct sock *sk, int mss)
1338{
1339	const struct tcp_sock *tp = tcp_sk(sk);
1340	const struct inet_connection_sock *icsk = inet_csk(sk);
1341	int mtu;
1342
1343	mtu = mss +
1344	      tp->tcp_header_len +
1345	      icsk->icsk_ext_hdr_len +
1346	      icsk->icsk_af_ops->net_header_len;
1347
1348	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1349	if (icsk->icsk_af_ops->net_frag_header_len) {
1350		const struct dst_entry *dst = __sk_dst_get(sk);
1351
1352		if (dst && dst_allfrag(dst))
1353			mtu += icsk->icsk_af_ops->net_frag_header_len;
1354	}
1355	return mtu;
1356}
1357
1358/* MTU probing init per socket */
1359void tcp_mtup_init(struct sock *sk)
1360{
1361	struct tcp_sock *tp = tcp_sk(sk);
1362	struct inet_connection_sock *icsk = inet_csk(sk);
1363	struct net *net = sock_net(sk);
1364
1365	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1366	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1367			       icsk->icsk_af_ops->net_header_len;
1368	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1369	icsk->icsk_mtup.probe_size = 0;
1370	if (icsk->icsk_mtup.enabled)
1371		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1372}
1373EXPORT_SYMBOL(tcp_mtup_init);
1374
1375/* This function synchronize snd mss to current pmtu/exthdr set.
1376
1377   tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1378   for TCP options, but includes only bare TCP header.
1379
1380   tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1381   It is minimum of user_mss and mss received with SYN.
1382   It also does not include TCP options.
1383
1384   inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1385
1386   tp->mss_cache is current effective sending mss, including
1387   all tcp options except for SACKs. It is evaluated,
1388   taking into account current pmtu, but never exceeds
1389   tp->rx_opt.mss_clamp.
1390
1391   NOTE1. rfc1122 clearly states that advertised MSS
1392   DOES NOT include either tcp or ip options.
1393
1394   NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1395   are READ ONLY outside this function.		--ANK (980731)
1396 */
1397unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1398{
1399	struct tcp_sock *tp = tcp_sk(sk);
1400	struct inet_connection_sock *icsk = inet_csk(sk);
1401	int mss_now;
1402
1403	if (icsk->icsk_mtup.search_high > pmtu)
1404		icsk->icsk_mtup.search_high = pmtu;
1405
1406	mss_now = tcp_mtu_to_mss(sk, pmtu);
1407	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1408
1409	/* And store cached results */
1410	icsk->icsk_pmtu_cookie = pmtu;
1411	if (icsk->icsk_mtup.enabled)
1412		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1413	tp->mss_cache = mss_now;
1414
1415	return mss_now;
1416}
1417EXPORT_SYMBOL(tcp_sync_mss);
1418
1419/* Compute the current effective MSS, taking SACKs and IP options,
1420 * and even PMTU discovery events into account.
1421 */
1422unsigned int tcp_current_mss(struct sock *sk)
1423{
1424	const struct tcp_sock *tp = tcp_sk(sk);
1425	const struct dst_entry *dst = __sk_dst_get(sk);
1426	u32 mss_now;
1427	unsigned int header_len;
1428	struct tcp_out_options opts;
1429	struct tcp_md5sig_key *md5;
1430
1431	mss_now = tp->mss_cache;
1432
1433	if (dst) {
1434		u32 mtu = dst_mtu(dst);
1435		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1436			mss_now = tcp_sync_mss(sk, mtu);
1437	}
1438
1439	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1440		     sizeof(struct tcphdr);
1441	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1442	 * some common options. If this is an odd packet (because we have SACK
1443	 * blocks etc) then our calculated header_len will be different, and
1444	 * we have to adjust mss_now correspondingly */
1445	if (header_len != tp->tcp_header_len) {
1446		int delta = (int) header_len - tp->tcp_header_len;
1447		mss_now -= delta;
1448	}
1449
1450	return mss_now;
1451}
1452
1453/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1454 * As additional protections, we do not touch cwnd in retransmission phases,
1455 * and if application hit its sndbuf limit recently.
1456 */
1457static void tcp_cwnd_application_limited(struct sock *sk)
1458{
1459	struct tcp_sock *tp = tcp_sk(sk);
1460
1461	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1462	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1463		/* Limited by application or receiver window. */
1464		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1465		u32 win_used = max(tp->snd_cwnd_used, init_win);
1466		if (win_used < tp->snd_cwnd) {
1467			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1468			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1469		}
1470		tp->snd_cwnd_used = 0;
1471	}
1472	tp->snd_cwnd_stamp = tcp_time_stamp;
1473}
1474
1475static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1476{
1477	struct tcp_sock *tp = tcp_sk(sk);
1478
1479	/* Track the maximum number of outstanding packets in each
1480	 * window, and remember whether we were cwnd-limited then.
1481	 */
1482	if (!before(tp->snd_una, tp->max_packets_seq) ||
1483	    tp->packets_out > tp->max_packets_out) {
1484		tp->max_packets_out = tp->packets_out;
1485		tp->max_packets_seq = tp->snd_nxt;
1486		tp->is_cwnd_limited = is_cwnd_limited;
1487	}
1488
1489	if (tcp_is_cwnd_limited(sk)) {
1490		/* Network is feed fully. */
1491		tp->snd_cwnd_used = 0;
1492		tp->snd_cwnd_stamp = tcp_time_stamp;
1493	} else {
1494		/* Network starves. */
1495		if (tp->packets_out > tp->snd_cwnd_used)
1496			tp->snd_cwnd_used = tp->packets_out;
1497
1498		if (sysctl_tcp_slow_start_after_idle &&
1499		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1500			tcp_cwnd_application_limited(sk);
1501	}
1502}
1503
1504/* Minshall's variant of the Nagle send check. */
1505static bool tcp_minshall_check(const struct tcp_sock *tp)
1506{
1507	return after(tp->snd_sml, tp->snd_una) &&
1508		!after(tp->snd_sml, tp->snd_nxt);
1509}
1510
1511/* Update snd_sml if this skb is under mss
1512 * Note that a TSO packet might end with a sub-mss segment
1513 * The test is really :
1514 * if ((skb->len % mss) != 0)
1515 *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1516 * But we can avoid doing the divide again given we already have
1517 *  skb_pcount = skb->len / mss_now
1518 */
1519static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1520				const struct sk_buff *skb)
1521{
1522	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1523		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1524}
1525
1526/* Return false, if packet can be sent now without violation Nagle's rules:
1527 * 1. It is full sized. (provided by caller in %partial bool)
1528 * 2. Or it contains FIN. (already checked by caller)
1529 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1530 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1531 *    With Minshall's modification: all sent small packets are ACKed.
1532 */
1533static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1534			    int nonagle)
1535{
1536	return partial &&
1537		((nonagle & TCP_NAGLE_CORK) ||
1538		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1539}
1540
1541/* Return how many segs we'd like on a TSO packet,
1542 * to send one TSO packet per ms
1543 */
1544static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1545{
1546	u32 bytes, segs;
1547
1548	bytes = min(sk->sk_pacing_rate >> 10,
1549		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1550
1551	/* Goal is to send at least one packet per ms,
1552	 * not one big TSO packet every 100 ms.
1553	 * This preserves ACK clocking and is consistent
1554	 * with tcp_tso_should_defer() heuristic.
1555	 */
1556	segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1557
1558	return min_t(u32, segs, sk->sk_gso_max_segs);
1559}
1560
1561/* Returns the portion of skb which can be sent right away */
1562static unsigned int tcp_mss_split_point(const struct sock *sk,
1563					const struct sk_buff *skb,
1564					unsigned int mss_now,
1565					unsigned int max_segs,
1566					int nonagle)
1567{
1568	const struct tcp_sock *tp = tcp_sk(sk);
1569	u32 partial, needed, window, max_len;
1570
1571	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1572	max_len = mss_now * max_segs;
1573
1574	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1575		return max_len;
1576
1577	needed = min(skb->len, window);
1578
1579	if (max_len <= needed)
1580		return max_len;
1581
1582	partial = needed % mss_now;
1583	/* If last segment is not a full MSS, check if Nagle rules allow us
1584	 * to include this last segment in this skb.
1585	 * Otherwise, we'll split the skb at last MSS boundary
1586	 */
1587	if (tcp_nagle_check(partial != 0, tp, nonagle))
1588		return needed - partial;
1589
1590	return needed;
1591}
1592
1593/* Can at least one segment of SKB be sent right now, according to the
1594 * congestion window rules?  If so, return how many segments are allowed.
1595 */
1596static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1597					 const struct sk_buff *skb)
1598{
1599	u32 in_flight, cwnd, halfcwnd;
1600
1601	/* Don't be strict about the congestion window for the final FIN.  */
1602	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1603	    tcp_skb_pcount(skb) == 1)
1604		return 1;
1605
1606	in_flight = tcp_packets_in_flight(tp);
1607	cwnd = tp->snd_cwnd;
1608	if (in_flight >= cwnd)
1609		return 0;
1610
1611	/* For better scheduling, ensure we have at least
1612	 * 2 GSO packets in flight.
1613	 */
1614	halfcwnd = max(cwnd >> 1, 1U);
1615	return min(halfcwnd, cwnd - in_flight);
1616}
1617
1618/* Initialize TSO state of a skb.
1619 * This must be invoked the first time we consider transmitting
1620 * SKB onto the wire.
1621 */
1622static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1623			     unsigned int mss_now)
1624{
1625	int tso_segs = tcp_skb_pcount(skb);
1626
1627	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1628		tcp_set_skb_tso_segs(sk, skb, mss_now);
1629		tso_segs = tcp_skb_pcount(skb);
1630	}
1631	return tso_segs;
1632}
1633
1634
1635/* Return true if the Nagle test allows this packet to be
1636 * sent now.
1637 */
1638static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1639				  unsigned int cur_mss, int nonagle)
1640{
1641	/* Nagle rule does not apply to frames, which sit in the middle of the
1642	 * write_queue (they have no chances to get new data).
1643	 *
1644	 * This is implemented in the callers, where they modify the 'nonagle'
1645	 * argument based upon the location of SKB in the send queue.
1646	 */
1647	if (nonagle & TCP_NAGLE_PUSH)
1648		return true;
1649
1650	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1651	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1652		return true;
1653
1654	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1655		return true;
1656
1657	return false;
1658}
1659
1660/* Does at least the first segment of SKB fit into the send window? */
1661static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1662			     const struct sk_buff *skb,
1663			     unsigned int cur_mss)
1664{
1665	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1666
1667	if (skb->len > cur_mss)
1668		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1669
1670	return !after(end_seq, tcp_wnd_end(tp));
1671}
1672
1673/* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1674 * should be put on the wire right now.  If so, it returns the number of
1675 * packets allowed by the congestion window.
1676 */
1677static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1678				 unsigned int cur_mss, int nonagle)
1679{
1680	const struct tcp_sock *tp = tcp_sk(sk);
1681	unsigned int cwnd_quota;
1682
1683	tcp_init_tso_segs(sk, skb, cur_mss);
1684
1685	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1686		return 0;
1687
1688	cwnd_quota = tcp_cwnd_test(tp, skb);
1689	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1690		cwnd_quota = 0;
1691
1692	return cwnd_quota;
1693}
1694
1695/* Test if sending is allowed right now. */
1696bool tcp_may_send_now(struct sock *sk)
1697{
1698	const struct tcp_sock *tp = tcp_sk(sk);
1699	struct sk_buff *skb = tcp_send_head(sk);
1700
1701	return skb &&
1702		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1703			     (tcp_skb_is_last(sk, skb) ?
1704			      tp->nonagle : TCP_NAGLE_PUSH));
1705}
1706
1707/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1708 * which is put after SKB on the list.  It is very much like
1709 * tcp_fragment() except that it may make several kinds of assumptions
1710 * in order to speed up the splitting operation.  In particular, we
1711 * know that all the data is in scatter-gather pages, and that the
1712 * packet has never been sent out before (and thus is not cloned).
1713 */
1714static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1715			unsigned int mss_now, gfp_t gfp)
1716{
1717	struct sk_buff *buff;
1718	int nlen = skb->len - len;
1719	u8 flags;
1720
1721	/* All of a TSO frame must be composed of paged data.  */
1722	if (skb->len != skb->data_len)
1723		return tcp_fragment(sk, skb, len, mss_now, gfp);
1724
1725	buff = sk_stream_alloc_skb(sk, 0, gfp);
1726	if (unlikely(!buff))
1727		return -ENOMEM;
1728
1729	sk->sk_wmem_queued += buff->truesize;
1730	sk_mem_charge(sk, buff->truesize);
1731	buff->truesize += nlen;
1732	skb->truesize -= nlen;
1733
1734	/* Correct the sequence numbers. */
1735	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1736	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1737	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1738
1739	/* PSH and FIN should only be set in the second packet. */
1740	flags = TCP_SKB_CB(skb)->tcp_flags;
1741	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1742	TCP_SKB_CB(buff)->tcp_flags = flags;
1743
1744	/* This packet was never sent out yet, so no SACK bits. */
1745	TCP_SKB_CB(buff)->sacked = 0;
1746
1747	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1748	skb_split(skb, buff, len);
1749	tcp_fragment_tstamp(skb, buff);
1750
1751	/* Fix up tso_factor for both original and new SKB.  */
1752	tcp_set_skb_tso_segs(sk, skb, mss_now);
1753	tcp_set_skb_tso_segs(sk, buff, mss_now);
1754
1755	/* Link BUFF into the send queue. */
1756	__skb_header_release(buff);
1757	tcp_insert_write_queue_after(skb, buff, sk);
1758
1759	return 0;
1760}
1761
1762/* Try to defer sending, if possible, in order to minimize the amount
1763 * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1764 *
1765 * This algorithm is from John Heffner.
1766 */
1767static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1768				 bool *is_cwnd_limited, u32 max_segs)
1769{
1770	const struct inet_connection_sock *icsk = inet_csk(sk);
1771	u32 age, send_win, cong_win, limit, in_flight;
1772	struct tcp_sock *tp = tcp_sk(sk);
1773	struct skb_mstamp now;
1774	struct sk_buff *head;
1775	int win_divisor;
1776
1777	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1778		goto send_now;
1779
1780	if (!((1 << icsk->icsk_ca_state) & (TCPF_CA_Open | TCPF_CA_CWR)))
1781		goto send_now;
1782
1783	/* Avoid bursty behavior by allowing defer
1784	 * only if the last write was recent.
1785	 */
1786	if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1787		goto send_now;
1788
1789	in_flight = tcp_packets_in_flight(tp);
1790
1791	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1792
1793	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1794
1795	/* From in_flight test above, we know that cwnd > in_flight.  */
1796	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1797
1798	limit = min(send_win, cong_win);
1799
1800	/* If a full-sized TSO skb can be sent, do it. */
1801	if (limit >= max_segs * tp->mss_cache)
1802		goto send_now;
1803
1804	/* Middle in queue won't get any more data, full sendable already? */
1805	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1806		goto send_now;
1807
1808	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1809	if (win_divisor) {
1810		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1811
1812		/* If at least some fraction of a window is available,
1813		 * just use it.
1814		 */
1815		chunk /= win_divisor;
1816		if (limit >= chunk)
1817			goto send_now;
1818	} else {
1819		/* Different approach, try not to defer past a single
1820		 * ACK.  Receiver should ACK every other full sized
1821		 * frame, so if we have space for more than 3 frames
1822		 * then send now.
1823		 */
1824		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1825			goto send_now;
1826	}
1827
1828	head = tcp_write_queue_head(sk);
1829	skb_mstamp_get(&now);
1830	age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1831	/* If next ACK is likely to come too late (half srtt), do not defer */
1832	if (age < (tp->srtt_us >> 4))
1833		goto send_now;
1834
1835	/* Ok, it looks like it is advisable to defer. */
1836
1837	if (cong_win < send_win && cong_win < skb->len)
1838		*is_cwnd_limited = true;
1839
1840	return true;
1841
1842send_now:
1843	return false;
1844}
1845
1846static inline void tcp_mtu_check_reprobe(struct sock *sk)
1847{
1848	struct inet_connection_sock *icsk = inet_csk(sk);
1849	struct tcp_sock *tp = tcp_sk(sk);
1850	struct net *net = sock_net(sk);
1851	u32 interval;
1852	s32 delta;
1853
1854	interval = net->ipv4.sysctl_tcp_probe_interval;
1855	delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1856	if (unlikely(delta >= interval * HZ)) {
1857		int mss = tcp_current_mss(sk);
1858
1859		/* Update current search range */
1860		icsk->icsk_mtup.probe_size = 0;
1861		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1862			sizeof(struct tcphdr) +
1863			icsk->icsk_af_ops->net_header_len;
1864		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1865
1866		/* Update probe time stamp */
1867		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1868	}
1869}
1870
1871/* Create a new MTU probe if we are ready.
1872 * MTU probe is regularly attempting to increase the path MTU by
1873 * deliberately sending larger packets.  This discovers routing
1874 * changes resulting in larger path MTUs.
1875 *
1876 * Returns 0 if we should wait to probe (no cwnd available),
1877 *         1 if a probe was sent,
1878 *         -1 otherwise
1879 */
1880static int tcp_mtu_probe(struct sock *sk)
1881{
1882	struct tcp_sock *tp = tcp_sk(sk);
1883	struct inet_connection_sock *icsk = inet_csk(sk);
1884	struct sk_buff *skb, *nskb, *next;
1885	struct net *net = sock_net(sk);
1886	int len;
1887	int probe_size;
1888	int size_needed;
1889	int copy;
1890	int mss_now;
1891	int interval;
1892
1893	/* Not currently probing/verifying,
1894	 * not in recovery,
1895	 * have enough cwnd, and
1896	 * not SACKing (the variable headers throw things off) */
1897	if (!icsk->icsk_mtup.enabled ||
1898	    icsk->icsk_mtup.probe_size ||
1899	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1900	    tp->snd_cwnd < 11 ||
1901	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1902		return -1;
1903
1904	/* Use binary search for probe_size between tcp_mss_base,
1905	 * and current mss_clamp. if (search_high - search_low)
1906	 * smaller than a threshold, backoff from probing.
1907	 */
1908	mss_now = tcp_current_mss(sk);
1909	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1910				    icsk->icsk_mtup.search_low) >> 1);
1911	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1912	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1913	/* When misfortune happens, we are reprobing actively,
1914	 * and then reprobe timer has expired. We stick with current
1915	 * probing process by not resetting search range to its orignal.
1916	 */
1917	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1918		interval < net->ipv4.sysctl_tcp_probe_threshold) {
1919		/* Check whether enough time has elaplased for
1920		 * another round of probing.
1921		 */
1922		tcp_mtu_check_reprobe(sk);
1923		return -1;
1924	}
1925
1926	/* Have enough data in the send queue to probe? */
1927	if (tp->write_seq - tp->snd_nxt < size_needed)
1928		return -1;
1929
1930	if (tp->snd_wnd < size_needed)
1931		return -1;
1932	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1933		return 0;
1934
1935	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1936	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1937		if (!tcp_packets_in_flight(tp))
1938			return -1;
1939		else
1940			return 0;
1941	}
1942
1943	/* We're allowed to probe.  Build it now. */
1944	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC);
1945	if (!nskb)
1946		return -1;
1947	sk->sk_wmem_queued += nskb->truesize;
1948	sk_mem_charge(sk, nskb->truesize);
1949
1950	skb = tcp_send_head(sk);
1951
1952	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1953	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1954	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1955	TCP_SKB_CB(nskb)->sacked = 0;
1956	nskb->csum = 0;
1957	nskb->ip_summed = skb->ip_summed;
1958
1959	tcp_insert_write_queue_before(nskb, skb, sk);
1960
1961	len = 0;
1962	tcp_for_write_queue_from_safe(skb, next, sk) {
1963		copy = min_t(int, skb->len, probe_size - len);
1964		if (nskb->ip_summed)
1965			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1966		else
1967			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1968							    skb_put(nskb, copy),
1969							    copy, nskb->csum);
1970
1971		if (skb->len <= copy) {
1972			/* We've eaten all the data from this skb.
1973			 * Throw it away. */
1974			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1975			tcp_unlink_write_queue(skb, sk);
1976			sk_wmem_free_skb(sk, skb);
1977		} else {
1978			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1979						   ~(TCPHDR_FIN|TCPHDR_PSH);
1980			if (!skb_shinfo(skb)->nr_frags) {
1981				skb_pull(skb, copy);
1982				if (skb->ip_summed != CHECKSUM_PARTIAL)
1983					skb->csum = csum_partial(skb->data,
1984								 skb->len, 0);
1985			} else {
1986				__pskb_trim_head(skb, copy);
1987				tcp_set_skb_tso_segs(sk, skb, mss_now);
1988			}
1989			TCP_SKB_CB(skb)->seq += copy;
1990		}
1991
1992		len += copy;
1993
1994		if (len >= probe_size)
1995			break;
1996	}
1997	tcp_init_tso_segs(sk, nskb, nskb->len);
1998
1999	/* We're ready to send.  If this fails, the probe will
2000	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2001	 */
2002	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2003		/* Decrement cwnd here because we are sending
2004		 * effectively two packets. */
2005		tp->snd_cwnd--;
2006		tcp_event_new_data_sent(sk, nskb);
2007
2008		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2009		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2010		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2011
2012		return 1;
2013	}
2014
2015	return -1;
2016}
2017
2018/* This routine writes packets to the network.  It advances the
2019 * send_head.  This happens as incoming acks open up the remote
2020 * window for us.
2021 *
2022 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2023 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2024 * account rare use of URG, this is not a big flaw.
2025 *
2026 * Send at most one packet when push_one > 0. Temporarily ignore
2027 * cwnd limit to force at most one packet out when push_one == 2.
2028
2029 * Returns true, if no segments are in flight and we have queued segments,
2030 * but cannot send anything now because of SWS or another problem.
2031 */
2032static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2033			   int push_one, gfp_t gfp)
2034{
2035	struct tcp_sock *tp = tcp_sk(sk);
2036	struct sk_buff *skb;
2037	unsigned int tso_segs, sent_pkts;
2038	int cwnd_quota;
2039	int result;
2040	bool is_cwnd_limited = false;
2041	u32 max_segs;
2042
2043	sent_pkts = 0;
2044
2045	if (!push_one) {
2046		/* Do MTU probing. */
2047		result = tcp_mtu_probe(sk);
2048		if (!result) {
2049			return false;
2050		} else if (result > 0) {
2051			sent_pkts = 1;
2052		}
2053	}
2054
2055	max_segs = tcp_tso_autosize(sk, mss_now);
2056	while ((skb = tcp_send_head(sk))) {
2057		unsigned int limit;
2058
2059		tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
2060		BUG_ON(!tso_segs);
2061
2062		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2063			/* "skb_mstamp" is used as a start point for the retransmit timer */
2064			skb_mstamp_get(&skb->skb_mstamp);
2065			goto repair; /* Skip network transmission */
2066		}
2067
2068		cwnd_quota = tcp_cwnd_test(tp, skb);
2069		if (!cwnd_quota) {
2070			is_cwnd_limited = true;
2071			if (push_one == 2)
2072				/* Force out a loss probe pkt. */
2073				cwnd_quota = 1;
2074			else
2075				break;
2076		}
2077
2078		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2079			break;
2080
2081		if (tso_segs == 1 || !max_segs) {
2082			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2083						     (tcp_skb_is_last(sk, skb) ?
2084						      nonagle : TCP_NAGLE_PUSH))))
2085				break;
2086		} else {
2087			if (!push_one &&
2088			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2089						 max_segs))
2090				break;
2091		}
2092
2093		limit = mss_now;
2094		if (tso_segs > 1 && max_segs && !tcp_urg_mode(tp))
2095			limit = tcp_mss_split_point(sk, skb, mss_now,
2096						    min_t(unsigned int,
2097							  cwnd_quota,
2098							  max_segs),
2099						    nonagle);
2100
2101		if (skb->len > limit &&
2102		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2103			break;
2104
2105		/* TCP Small Queues :
2106		 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2107		 * This allows for :
2108		 *  - better RTT estimation and ACK scheduling
2109		 *  - faster recovery
2110		 *  - high rates
2111		 * Alas, some drivers / subsystems require a fair amount
2112		 * of queued bytes to ensure line rate.
2113		 * One example is wifi aggregation (802.11 AMPDU)
2114		 */
2115		limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2116		limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2117
2118		if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2119			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2120			/* It is possible TX completion already happened
2121			 * before we set TSQ_THROTTLED, so we must
2122			 * test again the condition.
2123			 */
2124			smp_mb__after_atomic();
2125			if (atomic_read(&sk->sk_wmem_alloc) > limit)
2126				break;
2127		}
2128
2129		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2130			break;
2131
2132repair:
2133		/* Advance the send_head.  This one is sent out.
2134		 * This call will increment packets_out.
2135		 */
2136		tcp_event_new_data_sent(sk, skb);
2137
2138		tcp_minshall_update(tp, mss_now, skb);
2139		sent_pkts += tcp_skb_pcount(skb);
2140
2141		if (push_one)
2142			break;
2143	}
2144
2145	if (likely(sent_pkts)) {
2146		if (tcp_in_cwnd_reduction(sk))
2147			tp->prr_out += sent_pkts;
2148
2149		/* Send one loss probe per tail loss episode. */
2150		if (push_one != 2)
2151			tcp_schedule_loss_probe(sk);
2152		tcp_cwnd_validate(sk, is_cwnd_limited);
2153		return false;
2154	}
2155	return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
2156}
2157
2158bool tcp_schedule_loss_probe(struct sock *sk)
2159{
2160	struct inet_connection_sock *icsk = inet_csk(sk);
2161	struct tcp_sock *tp = tcp_sk(sk);
2162	u32 timeout, tlp_time_stamp, rto_time_stamp;
2163	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2164
2165	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2166		return false;
2167	/* No consecutive loss probes. */
2168	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2169		tcp_rearm_rto(sk);
2170		return false;
2171	}
2172	/* Don't do any loss probe on a Fast Open connection before 3WHS
2173	 * finishes.
2174	 */
2175	if (sk->sk_state == TCP_SYN_RECV)
2176		return false;
2177
2178	/* TLP is only scheduled when next timer event is RTO. */
2179	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2180		return false;
2181
2182	/* Schedule a loss probe in 2*RTT for SACK capable connections
2183	 * in Open state, that are either limited by cwnd or application.
2184	 */
2185	if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out ||
2186	    !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2187		return false;
2188
2189	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2190	     tcp_send_head(sk))
2191		return false;
2192
2193	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2194	 * for delayed ack when there's one outstanding packet.
2195	 */
2196	timeout = rtt << 1;
2197	if (tp->packets_out == 1)
2198		timeout = max_t(u32, timeout,
2199				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2200	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2201
2202	/* If RTO is shorter, just schedule TLP in its place. */
2203	tlp_time_stamp = tcp_time_stamp + timeout;
2204	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2205	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2206		s32 delta = rto_time_stamp - tcp_time_stamp;
2207		if (delta > 0)
2208			timeout = delta;
2209	}
2210
2211	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2212				  TCP_RTO_MAX);
2213	return true;
2214}
2215
2216/* Thanks to skb fast clones, we can detect if a prior transmit of
2217 * a packet is still in a qdisc or driver queue.
2218 * In this case, there is very little point doing a retransmit !
2219 * Note: This is called from BH context only.
2220 */
2221static bool skb_still_in_host_queue(const struct sock *sk,
2222				    const struct sk_buff *skb)
2223{
2224	if (unlikely(skb_fclone_busy(sk, skb))) {
2225		NET_INC_STATS_BH(sock_net(sk),
2226				 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2227		return true;
2228	}
2229	return false;
2230}
2231
2232/* When probe timeout (PTO) fires, send a new segment if one exists, else
2233 * retransmit the last segment.
2234 */
2235void tcp_send_loss_probe(struct sock *sk)
2236{
2237	struct tcp_sock *tp = tcp_sk(sk);
2238	struct sk_buff *skb;
2239	int pcount;
2240	int mss = tcp_current_mss(sk);
2241	int err = -1;
2242
2243	if (tcp_send_head(sk)) {
2244		err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2245		goto rearm_timer;
2246	}
2247
2248	/* At most one outstanding TLP retransmission. */
2249	if (tp->tlp_high_seq)
2250		goto rearm_timer;
2251
2252	/* Retransmit last segment. */
2253	skb = tcp_write_queue_tail(sk);
2254	if (WARN_ON(!skb))
2255		goto rearm_timer;
2256
2257	if (skb_still_in_host_queue(sk, skb))
2258		goto rearm_timer;
2259
2260	pcount = tcp_skb_pcount(skb);
2261	if (WARN_ON(!pcount))
2262		goto rearm_timer;
2263
2264	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2265		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2266					  GFP_ATOMIC)))
2267			goto rearm_timer;
2268		skb = tcp_write_queue_tail(sk);
2269	}
2270
2271	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2272		goto rearm_timer;
2273
2274	err = __tcp_retransmit_skb(sk, skb);
2275
2276	/* Record snd_nxt for loss detection. */
2277	if (likely(!err))
2278		tp->tlp_high_seq = tp->snd_nxt;
2279
2280rearm_timer:
2281	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2282				  inet_csk(sk)->icsk_rto,
2283				  TCP_RTO_MAX);
2284
2285	if (likely(!err))
2286		NET_INC_STATS_BH(sock_net(sk),
2287				 LINUX_MIB_TCPLOSSPROBES);
2288}
2289
2290/* Push out any pending frames which were held back due to
2291 * TCP_CORK or attempt at coalescing tiny packets.
2292 * The socket must be locked by the caller.
2293 */
2294void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2295			       int nonagle)
2296{
2297	/* If we are closed, the bytes will have to remain here.
2298	 * In time closedown will finish, we empty the write queue and
2299	 * all will be happy.
2300	 */
2301	if (unlikely(sk->sk_state == TCP_CLOSE))
2302		return;
2303
2304	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2305			   sk_gfp_atomic(sk, GFP_ATOMIC)))
2306		tcp_check_probe_timer(sk);
2307}
2308
2309/* Send _single_ skb sitting at the send head. This function requires
2310 * true push pending frames to setup probe timer etc.
2311 */
2312void tcp_push_one(struct sock *sk, unsigned int mss_now)
2313{
2314	struct sk_buff *skb = tcp_send_head(sk);
2315
2316	BUG_ON(!skb || skb->len < mss_now);
2317
2318	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2319}
2320
2321/* This function returns the amount that we can raise the
2322 * usable window based on the following constraints
2323 *
2324 * 1. The window can never be shrunk once it is offered (RFC 793)
2325 * 2. We limit memory per socket
2326 *
2327 * RFC 1122:
2328 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2329 *  RECV.NEXT + RCV.WIN fixed until:
2330 *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2331 *
2332 * i.e. don't raise the right edge of the window until you can raise
2333 * it at least MSS bytes.
2334 *
2335 * Unfortunately, the recommended algorithm breaks header prediction,
2336 * since header prediction assumes th->window stays fixed.
2337 *
2338 * Strictly speaking, keeping th->window fixed violates the receiver
2339 * side SWS prevention criteria. The problem is that under this rule
2340 * a stream of single byte packets will cause the right side of the
2341 * window to always advance by a single byte.
2342 *
2343 * Of course, if the sender implements sender side SWS prevention
2344 * then this will not be a problem.
2345 *
2346 * BSD seems to make the following compromise:
2347 *
2348 *	If the free space is less than the 1/4 of the maximum
2349 *	space available and the free space is less than 1/2 mss,
2350 *	then set the window to 0.
2351 *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2352 *	Otherwise, just prevent the window from shrinking
2353 *	and from being larger than the largest representable value.
2354 *
2355 * This prevents incremental opening of the window in the regime
2356 * where TCP is limited by the speed of the reader side taking
2357 * data out of the TCP receive queue. It does nothing about
2358 * those cases where the window is constrained on the sender side
2359 * because the pipeline is full.
2360 *
2361 * BSD also seems to "accidentally" limit itself to windows that are a
2362 * multiple of MSS, at least until the free space gets quite small.
2363 * This would appear to be a side effect of the mbuf implementation.
2364 * Combining these two algorithms results in the observed behavior
2365 * of having a fixed window size at almost all times.
2366 *
2367 * Below we obtain similar behavior by forcing the offered window to
2368 * a multiple of the mss when it is feasible to do so.
2369 *
2370 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2371 * Regular options like TIMESTAMP are taken into account.
2372 */
2373u32 __tcp_select_window(struct sock *sk)
2374{
2375	struct inet_connection_sock *icsk = inet_csk(sk);
2376	struct tcp_sock *tp = tcp_sk(sk);
2377	/* MSS for the peer's data.  Previous versions used mss_clamp
2378	 * here.  I don't know if the value based on our guesses
2379	 * of peer's MSS is better for the performance.  It's more correct
2380	 * but may be worse for the performance because of rcv_mss
2381	 * fluctuations.  --SAW  1998/11/1
2382	 */
2383	int mss = icsk->icsk_ack.rcv_mss;
2384	int free_space = tcp_space(sk);
2385	int allowed_space = tcp_full_space(sk);
2386	int full_space = min_t(int, tp->window_clamp, allowed_space);
2387	int window;
2388
2389	if (mss > full_space)
2390		mss = full_space;
2391
2392	if (free_space < (full_space >> 1)) {
2393		icsk->icsk_ack.quick = 0;
2394
2395		if (sk_under_memory_pressure(sk))
2396			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2397					       4U * tp->advmss);
2398
2399		/* free_space might become our new window, make sure we don't
2400		 * increase it due to wscale.
2401		 */
2402		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2403
2404		/* if free space is less than mss estimate, or is below 1/16th
2405		 * of the maximum allowed, try to move to zero-window, else
2406		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2407		 * new incoming data is dropped due to memory limits.
2408		 * With large window, mss test triggers way too late in order
2409		 * to announce zero window in time before rmem limit kicks in.
2410		 */
2411		if (free_space < (allowed_space >> 4) || free_space < mss)
2412			return 0;
2413	}
2414
2415	if (free_space > tp->rcv_ssthresh)
2416		free_space = tp->rcv_ssthresh;
2417
2418	/* Don't do rounding if we are using window scaling, since the
2419	 * scaled window will not line up with the MSS boundary anyway.
2420	 */
2421	window = tp->rcv_wnd;
2422	if (tp->rx_opt.rcv_wscale) {
2423		window = free_space;
2424
2425		/* Advertise enough space so that it won't get scaled away.
2426		 * Import case: prevent zero window announcement if
2427		 * 1<<rcv_wscale > mss.
2428		 */
2429		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2430			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2431				  << tp->rx_opt.rcv_wscale);
2432	} else {
2433		/* Get the largest window that is a nice multiple of mss.
2434		 * Window clamp already applied above.
2435		 * If our current window offering is within 1 mss of the
2436		 * free space we just keep it. This prevents the divide
2437		 * and multiply from happening most of the time.
2438		 * We also don't do any window rounding when the free space
2439		 * is too small.
2440		 */
2441		if (window <= free_space - mss || window > free_space)
2442			window = (free_space / mss) * mss;
2443		else if (mss == full_space &&
2444			 free_space > window + (full_space >> 1))
2445			window = free_space;
2446	}
2447
2448	return window;
2449}
2450
2451/* Collapses two adjacent SKB's during retransmission. */
2452static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2453{
2454	struct tcp_sock *tp = tcp_sk(sk);
2455	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2456	int skb_size, next_skb_size;
2457
2458	skb_size = skb->len;
2459	next_skb_size = next_skb->len;
2460
2461	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2462
2463	tcp_highest_sack_combine(sk, next_skb, skb);
2464
2465	tcp_unlink_write_queue(next_skb, sk);
2466
2467	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2468				  next_skb_size);
2469
2470	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2471		skb->ip_summed = CHECKSUM_PARTIAL;
2472
2473	if (skb->ip_summed != CHECKSUM_PARTIAL)
2474		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2475
2476	/* Update sequence range on original skb. */
2477	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2478
2479	/* Merge over control information. This moves PSH/FIN etc. over */
2480	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2481
2482	/* All done, get rid of second SKB and account for it so
2483	 * packet counting does not break.
2484	 */
2485	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2486
2487	/* changed transmit queue under us so clear hints */
2488	tcp_clear_retrans_hints_partial(tp);
2489	if (next_skb == tp->retransmit_skb_hint)
2490		tp->retransmit_skb_hint = skb;
2491
2492	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2493
2494	sk_wmem_free_skb(sk, next_skb);
2495}
2496
2497/* Check if coalescing SKBs is legal. */
2498static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2499{
2500	if (tcp_skb_pcount(skb) > 1)
2501		return false;
2502	/* TODO: SACK collapsing could be used to remove this condition */
2503	if (skb_shinfo(skb)->nr_frags != 0)
2504		return false;
2505	if (skb_cloned(skb))
2506		return false;
2507	if (skb == tcp_send_head(sk))
2508		return false;
2509	/* Some heurestics for collapsing over SACK'd could be invented */
2510	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2511		return false;
2512
2513	return true;
2514}
2515
2516/* Collapse packets in the retransmit queue to make to create
2517 * less packets on the wire. This is only done on retransmission.
2518 */
2519static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2520				     int space)
2521{
2522	struct tcp_sock *tp = tcp_sk(sk);
2523	struct sk_buff *skb = to, *tmp;
2524	bool first = true;
2525
2526	if (!sysctl_tcp_retrans_collapse)
2527		return;
2528	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2529		return;
2530
2531	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2532		if (!tcp_can_collapse(sk, skb))
2533			break;
2534
2535		space -= skb->len;
2536
2537		if (first) {
2538			first = false;
2539			continue;
2540		}
2541
2542		if (space < 0)
2543			break;
2544		/* Punt if not enough space exists in the first SKB for
2545		 * the data in the second
2546		 */
2547		if (skb->len > skb_availroom(to))
2548			break;
2549
2550		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2551			break;
2552
2553		tcp_collapse_retrans(sk, to);
2554	}
2555}
2556
2557/* This retransmits one SKB.  Policy decisions and retransmit queue
2558 * state updates are done by the caller.  Returns non-zero if an
2559 * error occurred which prevented the send.
2560 */
2561int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2562{
2563	struct tcp_sock *tp = tcp_sk(sk);
2564	struct inet_connection_sock *icsk = inet_csk(sk);
2565	unsigned int cur_mss;
2566	int err;
2567
2568	/* Inconslusive MTU probe */
2569	if (icsk->icsk_mtup.probe_size) {
2570		icsk->icsk_mtup.probe_size = 0;
2571	}
2572
2573	/* Do not sent more than we queued. 1/4 is reserved for possible
2574	 * copying overhead: fragmentation, tunneling, mangling etc.
2575	 */
2576	if (atomic_read(&sk->sk_wmem_alloc) >
2577	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2578		return -EAGAIN;
2579
2580	if (skb_still_in_host_queue(sk, skb))
2581		return -EBUSY;
2582
2583	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2584		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2585			BUG();
2586		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2587			return -ENOMEM;
2588	}
2589
2590	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2591		return -EHOSTUNREACH; /* Routing failure or similar. */
2592
2593	cur_mss = tcp_current_mss(sk);
2594
2595	/* If receiver has shrunk his window, and skb is out of
2596	 * new window, do not retransmit it. The exception is the
2597	 * case, when window is shrunk to zero. In this case
2598	 * our retransmit serves as a zero window probe.
2599	 */
2600	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2601	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2602		return -EAGAIN;
2603
2604	if (skb->len > cur_mss) {
2605		if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2606			return -ENOMEM; /* We'll try again later. */
2607	} else {
2608		int oldpcount = tcp_skb_pcount(skb);
2609
2610		if (unlikely(oldpcount > 1)) {
2611			if (skb_unclone(skb, GFP_ATOMIC))
2612				return -ENOMEM;
2613			tcp_init_tso_segs(sk, skb, cur_mss);
2614			tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2615		}
2616	}
2617
2618	tcp_retrans_try_collapse(sk, skb, cur_mss);
2619
2620	/* Make a copy, if the first transmission SKB clone we made
2621	 * is still in somebody's hands, else make a clone.
2622	 */
2623
2624	/* make sure skb->data is aligned on arches that require it
2625	 * and check if ack-trimming & collapsing extended the headroom
2626	 * beyond what csum_start can cover.
2627	 */
2628	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2629		     skb_headroom(skb) >= 0xFFFF)) {
2630		struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2631						   GFP_ATOMIC);
2632		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2633			     -ENOBUFS;
2634	} else {
2635		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2636	}
2637
2638	if (likely(!err)) {
2639		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2640		/* Update global TCP statistics. */
2641		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2642		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2643			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2644		tp->total_retrans++;
2645	}
2646	return err;
2647}
2648
2649int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2650{
2651	struct tcp_sock *tp = tcp_sk(sk);
2652	int err = __tcp_retransmit_skb(sk, skb);
2653
2654	if (err == 0) {
2655#if FASTRETRANS_DEBUG > 0
2656		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2657			net_dbg_ratelimited("retrans_out leaked\n");
2658		}
2659#endif
2660		if (!tp->retrans_out)
2661			tp->lost_retrans_low = tp->snd_nxt;
2662		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2663		tp->retrans_out += tcp_skb_pcount(skb);
2664
2665		/* Save stamp of the first retransmit. */
2666		if (!tp->retrans_stamp)
2667			tp->retrans_stamp = tcp_skb_timestamp(skb);
2668
2669		/* snd_nxt is stored to detect loss of retransmitted segment,
2670		 * see tcp_input.c tcp_sacktag_write_queue().
2671		 */
2672		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2673	} else if (err != -EBUSY) {
2674		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2675	}
2676
2677	if (tp->undo_retrans < 0)
2678		tp->undo_retrans = 0;
2679	tp->undo_retrans += tcp_skb_pcount(skb);
2680	return err;
2681}
2682
2683/* Check if we forward retransmits are possible in the current
2684 * window/congestion state.
2685 */
2686static bool tcp_can_forward_retransmit(struct sock *sk)
2687{
2688	const struct inet_connection_sock *icsk = inet_csk(sk);
2689	const struct tcp_sock *tp = tcp_sk(sk);
2690
2691	/* Forward retransmissions are possible only during Recovery. */
2692	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2693		return false;
2694
2695	/* No forward retransmissions in Reno are possible. */
2696	if (tcp_is_reno(tp))
2697		return false;
2698
2699	/* Yeah, we have to make difficult choice between forward transmission
2700	 * and retransmission... Both ways have their merits...
2701	 *
2702	 * For now we do not retransmit anything, while we have some new
2703	 * segments to send. In the other cases, follow rule 3 for
2704	 * NextSeg() specified in RFC3517.
2705	 */
2706
2707	if (tcp_may_send_now(sk))
2708		return false;
2709
2710	return true;
2711}
2712
2713/* This gets called after a retransmit timeout, and the initially
2714 * retransmitted data is acknowledged.  It tries to continue
2715 * resending the rest of the retransmit queue, until either
2716 * we've sent it all or the congestion window limit is reached.
2717 * If doing SACK, the first ACK which comes back for a timeout
2718 * based retransmit packet might feed us FACK information again.
2719 * If so, we use it to avoid unnecessarily retransmissions.
2720 */
2721void tcp_xmit_retransmit_queue(struct sock *sk)
2722{
2723	const struct inet_connection_sock *icsk = inet_csk(sk);
2724	struct tcp_sock *tp = tcp_sk(sk);
2725	struct sk_buff *skb;
2726	struct sk_buff *hole = NULL;
2727	u32 last_lost;
2728	int mib_idx;
2729	int fwd_rexmitting = 0;
2730
2731	if (!tp->packets_out)
2732		return;
2733
2734	if (!tp->lost_out)
2735		tp->retransmit_high = tp->snd_una;
2736
2737	if (tp->retransmit_skb_hint) {
2738		skb = tp->retransmit_skb_hint;
2739		last_lost = TCP_SKB_CB(skb)->end_seq;
2740		if (after(last_lost, tp->retransmit_high))
2741			last_lost = tp->retransmit_high;
2742	} else {
2743		skb = tcp_write_queue_head(sk);
2744		last_lost = tp->snd_una;
2745	}
2746
2747	tcp_for_write_queue_from(skb, sk) {
2748		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2749
2750		if (skb == tcp_send_head(sk))
2751			break;
2752		/* we could do better than to assign each time */
2753		if (!hole)
2754			tp->retransmit_skb_hint = skb;
2755
2756		/* Assume this retransmit will generate
2757		 * only one packet for congestion window
2758		 * calculation purposes.  This works because
2759		 * tcp_retransmit_skb() will chop up the
2760		 * packet to be MSS sized and all the
2761		 * packet counting works out.
2762		 */
2763		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2764			return;
2765
2766		if (fwd_rexmitting) {
2767begin_fwd:
2768			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2769				break;
2770			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2771
2772		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2773			tp->retransmit_high = last_lost;
2774			if (!tcp_can_forward_retransmit(sk))
2775				break;
2776			/* Backtrack if necessary to non-L'ed skb */
2777			if (hole) {
2778				skb = hole;
2779				hole = NULL;
2780			}
2781			fwd_rexmitting = 1;
2782			goto begin_fwd;
2783
2784		} else if (!(sacked & TCPCB_LOST)) {
2785			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2786				hole = skb;
2787			continue;
2788
2789		} else {
2790			last_lost = TCP_SKB_CB(skb)->end_seq;
2791			if (icsk->icsk_ca_state != TCP_CA_Loss)
2792				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2793			else
2794				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2795		}
2796
2797		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2798			continue;
2799
2800		if (tcp_retransmit_skb(sk, skb))
2801			return;
2802
2803		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2804
2805		if (tcp_in_cwnd_reduction(sk))
2806			tp->prr_out += tcp_skb_pcount(skb);
2807
2808		if (skb == tcp_write_queue_head(sk))
2809			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2810						  inet_csk(sk)->icsk_rto,
2811						  TCP_RTO_MAX);
2812	}
2813}
2814
2815/* We allow to exceed memory limits for FIN packets to expedite
2816 * connection tear down and (memory) recovery.
2817 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2818 * or even be forced to close flow without any FIN.
2819 */
2820static void sk_forced_wmem_schedule(struct sock *sk, int size)
2821{
2822	int amt, status;
2823
2824	if (size <= sk->sk_forward_alloc)
2825		return;
2826	amt = sk_mem_pages(size);
2827	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2828	sk_memory_allocated_add(sk, amt, &status);
2829}
2830
2831/* Send a FIN. The caller locks the socket for us.
2832 * We should try to send a FIN packet really hard, but eventually give up.
2833 */
2834void tcp_send_fin(struct sock *sk)
2835{
2836	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2837	struct tcp_sock *tp = tcp_sk(sk);
2838
2839	/* Optimization, tack on the FIN if we have one skb in write queue and
2840	 * this skb was not yet sent, or we are under memory pressure.
2841	 * Note: in the latter case, FIN packet will be sent after a timeout,
2842	 * as TCP stack thinks it has already been transmitted.
2843	 */
2844	if (tskb && (tcp_send_head(sk) || sk_under_memory_pressure(sk))) {
2845coalesce:
2846		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2847		TCP_SKB_CB(tskb)->end_seq++;
2848		tp->write_seq++;
2849		if (!tcp_send_head(sk)) {
2850			/* This means tskb was already sent.
2851			 * Pretend we included the FIN on previous transmit.
2852			 * We need to set tp->snd_nxt to the value it would have
2853			 * if FIN had been sent. This is because retransmit path
2854			 * does not change tp->snd_nxt.
2855			 */
2856			tp->snd_nxt++;
2857			return;
2858		}
2859	} else {
2860		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2861		if (unlikely(!skb)) {
2862			if (tskb)
2863				goto coalesce;
2864			return;
2865		}
2866		skb_reserve(skb, MAX_TCP_HEADER);
2867		sk_forced_wmem_schedule(sk, skb->truesize);
2868		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2869		tcp_init_nondata_skb(skb, tp->write_seq,
2870				     TCPHDR_ACK | TCPHDR_FIN);
2871		tcp_queue_skb(sk, skb);
2872	}
2873	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2874}
2875
2876/* We get here when a process closes a file descriptor (either due to
2877 * an explicit close() or as a byproduct of exit()'ing) and there
2878 * was unread data in the receive queue.  This behavior is recommended
2879 * by RFC 2525, section 2.17.  -DaveM
2880 */
2881void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2882{
2883	struct sk_buff *skb;
2884
2885	/* NOTE: No TCP options attached and we never retransmit this. */
2886	skb = alloc_skb(MAX_TCP_HEADER, priority);
2887	if (!skb) {
2888		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2889		return;
2890	}
2891
2892	/* Reserve space for headers and prepare control bits. */
2893	skb_reserve(skb, MAX_TCP_HEADER);
2894	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2895			     TCPHDR_ACK | TCPHDR_RST);
2896	skb_mstamp_get(&skb->skb_mstamp);
2897	/* Send it off. */
2898	if (tcp_transmit_skb(sk, skb, 0, priority))
2899		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2900
2901	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2902}
2903
2904/* Send a crossed SYN-ACK during socket establishment.
2905 * WARNING: This routine must only be called when we have already sent
2906 * a SYN packet that crossed the incoming SYN that caused this routine
2907 * to get called. If this assumption fails then the initial rcv_wnd
2908 * and rcv_wscale values will not be correct.
2909 */
2910int tcp_send_synack(struct sock *sk)
2911{
2912	struct sk_buff *skb;
2913
2914	skb = tcp_write_queue_head(sk);
2915	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2916		pr_debug("%s: wrong queue state\n", __func__);
2917		return -EFAULT;
2918	}
2919	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2920		if (skb_cloned(skb)) {
2921			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2922			if (!nskb)
2923				return -ENOMEM;
2924			tcp_unlink_write_queue(skb, sk);
2925			__skb_header_release(nskb);
2926			__tcp_add_write_queue_head(sk, nskb);
2927			sk_wmem_free_skb(sk, skb);
2928			sk->sk_wmem_queued += nskb->truesize;
2929			sk_mem_charge(sk, nskb->truesize);
2930			skb = nskb;
2931		}
2932
2933		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2934		tcp_ecn_send_synack(sk, skb);
2935	}
2936	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2937}
2938
2939/**
2940 * tcp_make_synack - Prepare a SYN-ACK.
2941 * sk: listener socket
2942 * dst: dst entry attached to the SYNACK
2943 * req: request_sock pointer
2944 *
2945 * Allocate one skb and build a SYNACK packet.
2946 * @dst is consumed : Caller should not use it again.
2947 */
2948struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2949				struct request_sock *req,
2950				struct tcp_fastopen_cookie *foc)
2951{
2952	struct tcp_out_options opts;
2953	struct inet_request_sock *ireq = inet_rsk(req);
2954	struct tcp_sock *tp = tcp_sk(sk);
2955	struct tcphdr *th;
2956	struct sk_buff *skb;
2957	struct tcp_md5sig_key *md5 = NULL;
2958	int tcp_header_size;
2959	int mss;
2960
2961	skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC);
2962	if (unlikely(!skb)) {
2963		dst_release(dst);
2964		return NULL;
2965	}
2966	/* Reserve space for headers. */
2967	skb_reserve(skb, MAX_TCP_HEADER);
2968
2969	skb_dst_set(skb, dst);
2970
2971	mss = dst_metric_advmss(dst);
2972	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2973		mss = tp->rx_opt.user_mss;
2974
2975	memset(&opts, 0, sizeof(opts));
2976#ifdef CONFIG_SYN_COOKIES
2977	if (unlikely(req->cookie_ts))
2978		skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
2979	else
2980#endif
2981	skb_mstamp_get(&skb->skb_mstamp);
2982
2983#ifdef CONFIG_TCP_MD5SIG
2984	rcu_read_lock();
2985	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
2986#endif
2987	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
2988					     foc) + sizeof(*th);
2989
2990	skb_push(skb, tcp_header_size);
2991	skb_reset_transport_header(skb);
2992
2993	th = tcp_hdr(skb);
2994	memset(th, 0, sizeof(struct tcphdr));
2995	th->syn = 1;
2996	th->ack = 1;
2997	tcp_ecn_make_synack(req, th, sk);
2998	th->source = htons(ireq->ir_num);
2999	th->dest = ireq->ir_rmt_port;
3000	/* Setting of flags are superfluous here for callers (and ECE is
3001	 * not even correctly set)
3002	 */
3003	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3004			     TCPHDR_SYN | TCPHDR_ACK);
3005
3006	th->seq = htonl(TCP_SKB_CB(skb)->seq);
3007	/* XXX data is queued and acked as is. No buffer/window check */
3008	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3009
3010	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3011	th->window = htons(min(req->rcv_wnd, 65535U));
3012	tcp_options_write((__be32 *)(th + 1), tp, &opts);
3013	th->doff = (tcp_header_size >> 2);
3014	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
3015
3016#ifdef CONFIG_TCP_MD5SIG
3017	/* Okay, we have all we need - do the md5 hash if needed */
3018	if (md5)
3019		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3020					       md5, req_to_sk(req), skb);
3021	rcu_read_unlock();
3022#endif
3023
3024	/* Do not fool tcpdump (if any), clean our debris */
3025	skb->tstamp.tv64 = 0;
3026	return skb;
3027}
3028EXPORT_SYMBOL(tcp_make_synack);
3029
3030static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3031{
3032	struct inet_connection_sock *icsk = inet_csk(sk);
3033	const struct tcp_congestion_ops *ca;
3034	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3035
3036	if (ca_key == TCP_CA_UNSPEC)
3037		return;
3038
3039	rcu_read_lock();
3040	ca = tcp_ca_find_key(ca_key);
3041	if (likely(ca && try_module_get(ca->owner))) {
3042		module_put(icsk->icsk_ca_ops->owner);
3043		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3044		icsk->icsk_ca_ops = ca;
3045	}
3046	rcu_read_unlock();
3047}
3048
3049/* Do all connect socket setups that can be done AF independent. */
3050static void tcp_connect_init(struct sock *sk)
3051{
3052	const struct dst_entry *dst = __sk_dst_get(sk);
3053	struct tcp_sock *tp = tcp_sk(sk);
3054	__u8 rcv_wscale;
3055
3056	/* We'll fix this up when we get a response from the other end.
3057	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3058	 */
3059	tp->tcp_header_len = sizeof(struct tcphdr) +
3060		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3061
3062#ifdef CONFIG_TCP_MD5SIG
3063	if (tp->af_specific->md5_lookup(sk, sk))
3064		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3065#endif
3066
3067	/* If user gave his TCP_MAXSEG, record it to clamp */
3068	if (tp->rx_opt.user_mss)
3069		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3070	tp->max_window = 0;
3071	tcp_mtup_init(sk);
3072	tcp_sync_mss(sk, dst_mtu(dst));
3073
3074	tcp_ca_dst_init(sk, dst);
3075
3076	if (!tp->window_clamp)
3077		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3078	tp->advmss = dst_metric_advmss(dst);
3079	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3080		tp->advmss = tp->rx_opt.user_mss;
3081
3082	tcp_initialize_rcv_mss(sk);
3083
3084	/* limit the window selection if the user enforce a smaller rx buffer */
3085	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3086	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3087		tp->window_clamp = tcp_full_space(sk);
3088
3089	tcp_select_initial_window(tcp_full_space(sk),
3090				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3091				  &tp->rcv_wnd,
3092				  &tp->window_clamp,
3093				  sysctl_tcp_window_scaling,
3094				  &rcv_wscale,
3095				  dst_metric(dst, RTAX_INITRWND));
3096
3097	tp->rx_opt.rcv_wscale = rcv_wscale;
3098	tp->rcv_ssthresh = tp->rcv_wnd;
3099
3100	sk->sk_err = 0;
3101	sock_reset_flag(sk, SOCK_DONE);
3102	tp->snd_wnd = 0;
3103	tcp_init_wl(tp, 0);
3104	tp->snd_una = tp->write_seq;
3105	tp->snd_sml = tp->write_seq;
3106	tp->snd_up = tp->write_seq;
3107	tp->snd_nxt = tp->write_seq;
3108
3109	if (likely(!tp->repair))
3110		tp->rcv_nxt = 0;
3111	else
3112		tp->rcv_tstamp = tcp_time_stamp;
3113	tp->rcv_wup = tp->rcv_nxt;
3114	tp->copied_seq = tp->rcv_nxt;
3115
3116	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3117	inet_csk(sk)->icsk_retransmits = 0;
3118	tcp_clear_retrans(tp);
3119}
3120
3121static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3122{
3123	struct tcp_sock *tp = tcp_sk(sk);
3124	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3125
3126	tcb->end_seq += skb->len;
3127	__skb_header_release(skb);
3128	__tcp_add_write_queue_tail(sk, skb);
3129	sk->sk_wmem_queued += skb->truesize;
3130	sk_mem_charge(sk, skb->truesize);
3131	tp->write_seq = tcb->end_seq;
3132	tp->packets_out += tcp_skb_pcount(skb);
3133}
3134
3135/* Build and send a SYN with data and (cached) Fast Open cookie. However,
3136 * queue a data-only packet after the regular SYN, such that regular SYNs
3137 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3138 * only the SYN sequence, the data are retransmitted in the first ACK.
3139 * If cookie is not cached or other error occurs, falls back to send a
3140 * regular SYN with Fast Open cookie request option.
3141 */
3142static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3143{
3144	struct tcp_sock *tp = tcp_sk(sk);
3145	struct tcp_fastopen_request *fo = tp->fastopen_req;
3146	int syn_loss = 0, space, err = 0;
3147	unsigned long last_syn_loss = 0;
3148	struct sk_buff *syn_data;
3149
3150	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3151	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3152			       &syn_loss, &last_syn_loss);
3153	/* Recurring FO SYN losses: revert to regular handshake temporarily */
3154	if (syn_loss > 1 &&
3155	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3156		fo->cookie.len = -1;
3157		goto fallback;
3158	}
3159
3160	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3161		fo->cookie.len = -1;
3162	else if (fo->cookie.len <= 0)
3163		goto fallback;
3164
3165	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3166	 * user-MSS. Reserve maximum option space for middleboxes that add
3167	 * private TCP options. The cost is reduced data space in SYN :(
3168	 */
3169	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3170		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3171	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3172		MAX_TCP_OPTION_SPACE;
3173
3174	space = min_t(size_t, space, fo->size);
3175
3176	/* limit to order-0 allocations */
3177	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3178
3179	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation);
3180	if (!syn_data)
3181		goto fallback;
3182	syn_data->ip_summed = CHECKSUM_PARTIAL;
3183	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3184	if (space) {
3185		int copied = copy_from_iter(skb_put(syn_data, space), space,
3186					    &fo->data->msg_iter);
3187		if (unlikely(!copied)) {
3188			kfree_skb(syn_data);
3189			goto fallback;
3190		}
3191		if (copied != space) {
3192			skb_trim(syn_data, copied);
3193			space = copied;
3194		}
3195	}
3196	/* No more data pending in inet_wait_for_connect() */
3197	if (space == fo->size)
3198		fo->data = NULL;
3199	fo->copied = space;
3200
3201	tcp_connect_queue_skb(sk, syn_data);
3202
3203	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3204
3205	syn->skb_mstamp = syn_data->skb_mstamp;
3206
3207	/* Now full SYN+DATA was cloned and sent (or not),
3208	 * remove the SYN from the original skb (syn_data)
3209	 * we keep in write queue in case of a retransmit, as we
3210	 * also have the SYN packet (with no data) in the same queue.
3211	 */
3212	TCP_SKB_CB(syn_data)->seq++;
3213	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3214	if (!err) {
3215		tp->syn_data = (fo->copied > 0);
3216		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3217		goto done;
3218	}
3219
3220fallback:
3221	/* Send a regular SYN with Fast Open cookie request option */
3222	if (fo->cookie.len > 0)
3223		fo->cookie.len = 0;
3224	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3225	if (err)
3226		tp->syn_fastopen = 0;
3227done:
3228	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3229	return err;
3230}
3231
3232/* Build a SYN and send it off. */
3233int tcp_connect(struct sock *sk)
3234{
3235	struct tcp_sock *tp = tcp_sk(sk);
3236	struct sk_buff *buff;
3237	int err;
3238
3239	tcp_connect_init(sk);
3240
3241	if (unlikely(tp->repair)) {
3242		tcp_finish_connect(sk, NULL);
3243		return 0;
3244	}
3245
3246	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
3247	if (unlikely(!buff))
3248		return -ENOBUFS;
3249
3250	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3251	tp->retrans_stamp = tcp_time_stamp;
3252	tcp_connect_queue_skb(sk, buff);
3253	tcp_ecn_send_syn(sk, buff);
3254
3255	/* Send off SYN; include data in Fast Open. */
3256	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3257	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3258	if (err == -ECONNREFUSED)
3259		return err;
3260
3261	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3262	 * in order to make this packet get counted in tcpOutSegs.
3263	 */
3264	tp->snd_nxt = tp->write_seq;
3265	tp->pushed_seq = tp->write_seq;
3266	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3267
3268	/* Timer for repeating the SYN until an answer. */
3269	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3270				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3271	return 0;
3272}
3273EXPORT_SYMBOL(tcp_connect);
3274
3275/* Send out a delayed ack, the caller does the policy checking
3276 * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3277 * for details.
3278 */
3279void tcp_send_delayed_ack(struct sock *sk)
3280{
3281	struct inet_connection_sock *icsk = inet_csk(sk);
3282	int ato = icsk->icsk_ack.ato;
3283	unsigned long timeout;
3284
3285	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3286
3287	if (ato > TCP_DELACK_MIN) {
3288		const struct tcp_sock *tp = tcp_sk(sk);
3289		int max_ato = HZ / 2;
3290
3291		if (icsk->icsk_ack.pingpong ||
3292		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3293			max_ato = TCP_DELACK_MAX;
3294
3295		/* Slow path, intersegment interval is "high". */
3296
3297		/* If some rtt estimate is known, use it to bound delayed ack.
3298		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3299		 * directly.
3300		 */
3301		if (tp->srtt_us) {
3302			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3303					TCP_DELACK_MIN);
3304
3305			if (rtt < max_ato)
3306				max_ato = rtt;
3307		}
3308
3309		ato = min(ato, max_ato);
3310	}
3311
3312	/* Stay within the limit we were given */
3313	timeout = jiffies + ato;
3314
3315	/* Use new timeout only if there wasn't a older one earlier. */
3316	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3317		/* If delack timer was blocked or is about to expire,
3318		 * send ACK now.
3319		 */
3320		if (icsk->icsk_ack.blocked ||
3321		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3322			tcp_send_ack(sk);
3323			return;
3324		}
3325
3326		if (!time_before(timeout, icsk->icsk_ack.timeout))
3327			timeout = icsk->icsk_ack.timeout;
3328	}
3329	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3330	icsk->icsk_ack.timeout = timeout;
3331	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3332}
3333
3334/* This routine sends an ack and also updates the window. */
3335void tcp_send_ack(struct sock *sk)
3336{
3337	struct sk_buff *buff;
3338
3339	/* If we have been reset, we may not send again. */
3340	if (sk->sk_state == TCP_CLOSE)
3341		return;
3342
3343	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3344
3345	/* We are not putting this on the write queue, so
3346	 * tcp_transmit_skb() will set the ownership to this
3347	 * sock.
3348	 */
3349	buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3350	if (!buff) {
3351		inet_csk_schedule_ack(sk);
3352		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3353		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3354					  TCP_DELACK_MAX, TCP_RTO_MAX);
3355		return;
3356	}
3357
3358	/* Reserve space for headers and prepare control bits. */
3359	skb_reserve(buff, MAX_TCP_HEADER);
3360	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3361
3362	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3363	 * too much.
3364	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3365	 * We also avoid tcp_wfree() overhead (cache line miss accessing
3366	 * tp->tsq_flags) by using regular sock_wfree()
3367	 */
3368	skb_set_tcp_pure_ack(buff);
3369
3370	/* Send it off, this clears delayed acks for us. */
3371	skb_mstamp_get(&buff->skb_mstamp);
3372	tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3373}
3374EXPORT_SYMBOL_GPL(tcp_send_ack);
3375
3376/* This routine sends a packet with an out of date sequence
3377 * number. It assumes the other end will try to ack it.
3378 *
3379 * Question: what should we make while urgent mode?
3380 * 4.4BSD forces sending single byte of data. We cannot send
3381 * out of window data, because we have SND.NXT==SND.MAX...
3382 *
3383 * Current solution: to send TWO zero-length segments in urgent mode:
3384 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3385 * out-of-date with SND.UNA-1 to probe window.
3386 */
3387static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3388{
3389	struct tcp_sock *tp = tcp_sk(sk);
3390	struct sk_buff *skb;
3391
3392	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3393	skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3394	if (!skb)
3395		return -1;
3396
3397	/* Reserve space for headers and set control bits. */
3398	skb_reserve(skb, MAX_TCP_HEADER);
3399	/* Use a previous sequence.  This should cause the other
3400	 * end to send an ack.  Don't queue or clone SKB, just
3401	 * send it.
3402	 */
3403	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3404	skb_mstamp_get(&skb->skb_mstamp);
3405	return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3406}
3407
3408void tcp_send_window_probe(struct sock *sk)
3409{
3410	if (sk->sk_state == TCP_ESTABLISHED) {
3411		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3412		tcp_xmit_probe_skb(sk, 0);
3413	}
3414}
3415
3416/* Initiate keepalive or window probe from timer. */
3417int tcp_write_wakeup(struct sock *sk)
3418{
3419	struct tcp_sock *tp = tcp_sk(sk);
3420	struct sk_buff *skb;
3421
3422	if (sk->sk_state == TCP_CLOSE)
3423		return -1;
3424
3425	skb = tcp_send_head(sk);
3426	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3427		int err;
3428		unsigned int mss = tcp_current_mss(sk);
3429		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3430
3431		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3432			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3433
3434		/* We are probing the opening of a window
3435		 * but the window size is != 0
3436		 * must have been a result SWS avoidance ( sender )
3437		 */
3438		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3439		    skb->len > mss) {
3440			seg_size = min(seg_size, mss);
3441			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3442			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3443				return -1;
3444		} else if (!tcp_skb_pcount(skb))
3445			tcp_set_skb_tso_segs(sk, skb, mss);
3446
3447		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3448		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3449		if (!err)
3450			tcp_event_new_data_sent(sk, skb);
3451		return err;
3452	} else {
3453		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3454			tcp_xmit_probe_skb(sk, 1);
3455		return tcp_xmit_probe_skb(sk, 0);
3456	}
3457}
3458
3459/* A window probe timeout has occurred.  If window is not closed send
3460 * a partial packet else a zero probe.
3461 */
3462void tcp_send_probe0(struct sock *sk)
3463{
3464	struct inet_connection_sock *icsk = inet_csk(sk);
3465	struct tcp_sock *tp = tcp_sk(sk);
3466	unsigned long probe_max;
3467	int err;
3468
3469	err = tcp_write_wakeup(sk);
3470
3471	if (tp->packets_out || !tcp_send_head(sk)) {
3472		/* Cancel probe timer, if it is not required. */
3473		icsk->icsk_probes_out = 0;
3474		icsk->icsk_backoff = 0;
3475		return;
3476	}
3477
3478	if (err <= 0) {
3479		if (icsk->icsk_backoff < sysctl_tcp_retries2)
3480			icsk->icsk_backoff++;
3481		icsk->icsk_probes_out++;
3482		probe_max = TCP_RTO_MAX;
3483	} else {
3484		/* If packet was not sent due to local congestion,
3485		 * do not backoff and do not remember icsk_probes_out.
3486		 * Let local senders to fight for local resources.
3487		 *
3488		 * Use accumulated backoff yet.
3489		 */
3490		if (!icsk->icsk_probes_out)
3491			icsk->icsk_probes_out = 1;
3492		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3493	}
3494	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3495				  inet_csk_rto_backoff(icsk, probe_max),
3496				  TCP_RTO_MAX);
3497}
3498
3499int tcp_rtx_synack(struct sock *sk, struct request_sock *req)
3500{
3501	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3502	struct flowi fl;
3503	int res;
3504
3505	res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL);
3506	if (!res) {
3507		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3508		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3509	}
3510	return res;
3511}
3512EXPORT_SYMBOL(tcp_rtx_synack);
3513