1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 *		Pedro Roque	:	Fast Retransmit/Recovery.
24 *					Two receive queues.
25 *					Retransmit queue handled by TCP.
26 *					Better retransmit timer handling.
27 *					New congestion avoidance.
28 *					Header prediction.
29 *					Variable renaming.
30 *
31 *		Eric		:	Fast Retransmit.
32 *		Randy Scott	:	MSS option defines.
33 *		Eric Schenk	:	Fixes to slow start algorithm.
34 *		Eric Schenk	:	Yet another double ACK bug.
35 *		Eric Schenk	:	Delayed ACK bug fixes.
36 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37 *		David S. Miller	:	Don't allow zero congestion window.
38 *		Eric Schenk	:	Fix retransmitter so that it sends
39 *					next packet on ack of previous packet.
40 *		Andi Kleen	:	Moved open_request checking here
41 *					and process RSTs for open_requests.
42 *		Andi Kleen	:	Better prune_queue, and other fixes.
43 *		Andrey Savochkin:	Fix RTT measurements in the presence of
44 *					timestamps.
45 *		Andrey Savochkin:	Check sequence numbers correctly when
46 *					removing SACKs due to in sequence incoming
47 *					data segments.
48 *		Andi Kleen:		Make sure we never ack data there is not
49 *					enough room for. Also make this condition
50 *					a fatal error if it might still happen.
51 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52 *					connections with MSS<min(MTU,ann. MSS)
53 *					work without delayed acks.
54 *		Andi Kleen:		Process packets with PSH set in the
55 *					fast path.
56 *		J Hadi Salim:		ECN support
57 *	 	Andrei Gurtov,
58 *		Pasi Sarolahti,
59 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60 *					engine. Lots of bugs are found.
61 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62 */
63
64#define pr_fmt(fmt) "TCP: " fmt
65
66#include <linux/mm.h>
67#include <linux/slab.h>
68#include <linux/module.h>
69#include <linux/sysctl.h>
70#include <linux/kernel.h>
71#include <linux/prefetch.h>
72#include <net/dst.h>
73#include <net/tcp.h>
74#include <net/inet_common.h>
75#include <linux/ipsec.h>
76#include <asm/unaligned.h>
77#include <linux/errqueue.h>
78
79int sysctl_tcp_timestamps __read_mostly = 1;
80int sysctl_tcp_window_scaling __read_mostly = 1;
81int sysctl_tcp_sack __read_mostly = 1;
82int sysctl_tcp_fack __read_mostly = 1;
83int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84int sysctl_tcp_max_reordering __read_mostly = 300;
85EXPORT_SYMBOL(sysctl_tcp_reordering);
86int sysctl_tcp_dsack __read_mostly = 1;
87int sysctl_tcp_app_win __read_mostly = 31;
88int sysctl_tcp_adv_win_scale __read_mostly = 1;
89EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91/* rfc5961 challenge ack rate limiting */
92int sysctl_tcp_challenge_ack_limit = 100;
93
94int sysctl_tcp_stdurg __read_mostly;
95int sysctl_tcp_rfc1337 __read_mostly;
96int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97int sysctl_tcp_frto __read_mostly = 2;
98
99int sysctl_tcp_thin_dupack __read_mostly;
100
101int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
102int sysctl_tcp_early_retrans __read_mostly = 3;
103int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
104
105#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
106#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
107#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
108#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
109#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
110#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
111#define FLAG_ECE		0x40 /* ECE in this ACK				*/
112#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
113#define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
114#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
116#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
117#define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
118
119#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
122#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
123
124#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126
127/* Adapt the MSS value used to make delayed ack decision to the
128 * real world.
129 */
130static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
131{
132	struct inet_connection_sock *icsk = inet_csk(sk);
133	const unsigned int lss = icsk->icsk_ack.last_seg_size;
134	unsigned int len;
135
136	icsk->icsk_ack.last_seg_size = 0;
137
138	/* skb->len may jitter because of SACKs, even if peer
139	 * sends good full-sized frames.
140	 */
141	len = skb_shinfo(skb)->gso_size ? : skb->len;
142	if (len >= icsk->icsk_ack.rcv_mss) {
143		icsk->icsk_ack.rcv_mss = len;
144	} else {
145		/* Otherwise, we make more careful check taking into account,
146		 * that SACKs block is variable.
147		 *
148		 * "len" is invariant segment length, including TCP header.
149		 */
150		len += skb->data - skb_transport_header(skb);
151		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
152		    /* If PSH is not set, packet should be
153		     * full sized, provided peer TCP is not badly broken.
154		     * This observation (if it is correct 8)) allows
155		     * to handle super-low mtu links fairly.
156		     */
157		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
158		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
159			/* Subtract also invariant (if peer is RFC compliant),
160			 * tcp header plus fixed timestamp option length.
161			 * Resulting "len" is MSS free of SACK jitter.
162			 */
163			len -= tcp_sk(sk)->tcp_header_len;
164			icsk->icsk_ack.last_seg_size = len;
165			if (len == lss) {
166				icsk->icsk_ack.rcv_mss = len;
167				return;
168			}
169		}
170		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
171			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
172		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173	}
174}
175
176static void tcp_incr_quickack(struct sock *sk)
177{
178	struct inet_connection_sock *icsk = inet_csk(sk);
179	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
180
181	if (quickacks == 0)
182		quickacks = 2;
183	if (quickacks > icsk->icsk_ack.quick)
184		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185}
186
187static void tcp_enter_quickack_mode(struct sock *sk)
188{
189	struct inet_connection_sock *icsk = inet_csk(sk);
190	tcp_incr_quickack(sk);
191	icsk->icsk_ack.pingpong = 0;
192	icsk->icsk_ack.ato = TCP_ATO_MIN;
193}
194
195/* Send ACKs quickly, if "quick" count is not exhausted
196 * and the session is not interactive.
197 */
198
199static inline bool tcp_in_quickack_mode(const struct sock *sk)
200{
201	const struct inet_connection_sock *icsk = inet_csk(sk);
202
203	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
204}
205
206static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
207{
208	if (tp->ecn_flags & TCP_ECN_OK)
209		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
210}
211
212static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
213{
214	if (tcp_hdr(skb)->cwr)
215		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216}
217
218static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
219{
220	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
221}
222
223static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
224{
225	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226	case INET_ECN_NOT_ECT:
227		/* Funny extension: if ECT is not set on a segment,
228		 * and we already seen ECT on a previous segment,
229		 * it is probably a retransmit.
230		 */
231		if (tp->ecn_flags & TCP_ECN_SEEN)
232			tcp_enter_quickack_mode((struct sock *)tp);
233		break;
234	case INET_ECN_CE:
235		if (tcp_ca_needs_ecn((struct sock *)tp))
236			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
237
238		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
239			/* Better not delay acks, sender can have a very low cwnd */
240			tcp_enter_quickack_mode((struct sock *)tp);
241			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
242		}
243		tp->ecn_flags |= TCP_ECN_SEEN;
244		break;
245	default:
246		if (tcp_ca_needs_ecn((struct sock *)tp))
247			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
248		tp->ecn_flags |= TCP_ECN_SEEN;
249		break;
250	}
251}
252
253static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
254{
255	if (tp->ecn_flags & TCP_ECN_OK)
256		__tcp_ecn_check_ce(tp, skb);
257}
258
259static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
260{
261	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
262		tp->ecn_flags &= ~TCP_ECN_OK;
263}
264
265static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
266{
267	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
268		tp->ecn_flags &= ~TCP_ECN_OK;
269}
270
271static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
272{
273	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
274		return true;
275	return false;
276}
277
278/* Buffer size and advertised window tuning.
279 *
280 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
281 */
282
283static void tcp_sndbuf_expand(struct sock *sk)
284{
285	const struct tcp_sock *tp = tcp_sk(sk);
286	int sndmem, per_mss;
287	u32 nr_segs;
288
289	/* Worst case is non GSO/TSO : each frame consumes one skb
290	 * and skb->head is kmalloced using power of two area of memory
291	 */
292	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
293		  MAX_TCP_HEADER +
294		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
295
296	per_mss = roundup_pow_of_two(per_mss) +
297		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
298
299	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
300	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
301
302	/* Fast Recovery (RFC 5681 3.2) :
303	 * Cubic needs 1.7 factor, rounded to 2 to include
304	 * extra cushion (application might react slowly to POLLOUT)
305	 */
306	sndmem = 2 * nr_segs * per_mss;
307
308	if (sk->sk_sndbuf < sndmem)
309		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
310}
311
312/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
313 *
314 * All tcp_full_space() is split to two parts: "network" buffer, allocated
315 * forward and advertised in receiver window (tp->rcv_wnd) and
316 * "application buffer", required to isolate scheduling/application
317 * latencies from network.
318 * window_clamp is maximal advertised window. It can be less than
319 * tcp_full_space(), in this case tcp_full_space() - window_clamp
320 * is reserved for "application" buffer. The less window_clamp is
321 * the smoother our behaviour from viewpoint of network, but the lower
322 * throughput and the higher sensitivity of the connection to losses. 8)
323 *
324 * rcv_ssthresh is more strict window_clamp used at "slow start"
325 * phase to predict further behaviour of this connection.
326 * It is used for two goals:
327 * - to enforce header prediction at sender, even when application
328 *   requires some significant "application buffer". It is check #1.
329 * - to prevent pruning of receive queue because of misprediction
330 *   of receiver window. Check #2.
331 *
332 * The scheme does not work when sender sends good segments opening
333 * window and then starts to feed us spaghetti. But it should work
334 * in common situations. Otherwise, we have to rely on queue collapsing.
335 */
336
337/* Slow part of check#2. */
338static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
339{
340	struct tcp_sock *tp = tcp_sk(sk);
341	/* Optimize this! */
342	int truesize = tcp_win_from_space(skb->truesize) >> 1;
343	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
344
345	while (tp->rcv_ssthresh <= window) {
346		if (truesize <= skb->len)
347			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
348
349		truesize >>= 1;
350		window >>= 1;
351	}
352	return 0;
353}
354
355static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
356{
357	struct tcp_sock *tp = tcp_sk(sk);
358
359	/* Check #1 */
360	if (tp->rcv_ssthresh < tp->window_clamp &&
361	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
362	    !sk_under_memory_pressure(sk)) {
363		int incr;
364
365		/* Check #2. Increase window, if skb with such overhead
366		 * will fit to rcvbuf in future.
367		 */
368		if (tcp_win_from_space(skb->truesize) <= skb->len)
369			incr = 2 * tp->advmss;
370		else
371			incr = __tcp_grow_window(sk, skb);
372
373		if (incr) {
374			incr = max_t(int, incr, 2 * skb->len);
375			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
376					       tp->window_clamp);
377			inet_csk(sk)->icsk_ack.quick |= 1;
378		}
379	}
380}
381
382/* 3. Tuning rcvbuf, when connection enters established state. */
383static void tcp_fixup_rcvbuf(struct sock *sk)
384{
385	u32 mss = tcp_sk(sk)->advmss;
386	int rcvmem;
387
388	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
389		 tcp_default_init_rwnd(mss);
390
391	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
392	 * Allow enough cushion so that sender is not limited by our window
393	 */
394	if (sysctl_tcp_moderate_rcvbuf)
395		rcvmem <<= 2;
396
397	if (sk->sk_rcvbuf < rcvmem)
398		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
399}
400
401/* 4. Try to fixup all. It is made immediately after connection enters
402 *    established state.
403 */
404void tcp_init_buffer_space(struct sock *sk)
405{
406	struct tcp_sock *tp = tcp_sk(sk);
407	int maxwin;
408
409	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
410		tcp_fixup_rcvbuf(sk);
411	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
412		tcp_sndbuf_expand(sk);
413
414	tp->rcvq_space.space = tp->rcv_wnd;
415	tp->rcvq_space.time = tcp_time_stamp;
416	tp->rcvq_space.seq = tp->copied_seq;
417
418	maxwin = tcp_full_space(sk);
419
420	if (tp->window_clamp >= maxwin) {
421		tp->window_clamp = maxwin;
422
423		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
424			tp->window_clamp = max(maxwin -
425					       (maxwin >> sysctl_tcp_app_win),
426					       4 * tp->advmss);
427	}
428
429	/* Force reservation of one segment. */
430	if (sysctl_tcp_app_win &&
431	    tp->window_clamp > 2 * tp->advmss &&
432	    tp->window_clamp + tp->advmss > maxwin)
433		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
434
435	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
436	tp->snd_cwnd_stamp = tcp_time_stamp;
437}
438
439/* 5. Recalculate window clamp after socket hit its memory bounds. */
440static void tcp_clamp_window(struct sock *sk)
441{
442	struct tcp_sock *tp = tcp_sk(sk);
443	struct inet_connection_sock *icsk = inet_csk(sk);
444
445	icsk->icsk_ack.quick = 0;
446
447	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
448	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
449	    !sk_under_memory_pressure(sk) &&
450	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
451		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
452				    sysctl_tcp_rmem[2]);
453	}
454	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
455		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
456}
457
458/* Initialize RCV_MSS value.
459 * RCV_MSS is an our guess about MSS used by the peer.
460 * We haven't any direct information about the MSS.
461 * It's better to underestimate the RCV_MSS rather than overestimate.
462 * Overestimations make us ACKing less frequently than needed.
463 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
464 */
465void tcp_initialize_rcv_mss(struct sock *sk)
466{
467	const struct tcp_sock *tp = tcp_sk(sk);
468	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
469
470	hint = min(hint, tp->rcv_wnd / 2);
471	hint = min(hint, TCP_MSS_DEFAULT);
472	hint = max(hint, TCP_MIN_MSS);
473
474	inet_csk(sk)->icsk_ack.rcv_mss = hint;
475}
476EXPORT_SYMBOL(tcp_initialize_rcv_mss);
477
478/* Receiver "autotuning" code.
479 *
480 * The algorithm for RTT estimation w/o timestamps is based on
481 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
482 * <http://public.lanl.gov/radiant/pubs.html#DRS>
483 *
484 * More detail on this code can be found at
485 * <http://staff.psc.edu/jheffner/>,
486 * though this reference is out of date.  A new paper
487 * is pending.
488 */
489static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
490{
491	u32 new_sample = tp->rcv_rtt_est.rtt;
492	long m = sample;
493
494	if (m == 0)
495		m = 1;
496
497	if (new_sample != 0) {
498		/* If we sample in larger samples in the non-timestamp
499		 * case, we could grossly overestimate the RTT especially
500		 * with chatty applications or bulk transfer apps which
501		 * are stalled on filesystem I/O.
502		 *
503		 * Also, since we are only going for a minimum in the
504		 * non-timestamp case, we do not smooth things out
505		 * else with timestamps disabled convergence takes too
506		 * long.
507		 */
508		if (!win_dep) {
509			m -= (new_sample >> 3);
510			new_sample += m;
511		} else {
512			m <<= 3;
513			if (m < new_sample)
514				new_sample = m;
515		}
516	} else {
517		/* No previous measure. */
518		new_sample = m << 3;
519	}
520
521	if (tp->rcv_rtt_est.rtt != new_sample)
522		tp->rcv_rtt_est.rtt = new_sample;
523}
524
525static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
526{
527	if (tp->rcv_rtt_est.time == 0)
528		goto new_measure;
529	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
530		return;
531	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
532
533new_measure:
534	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
535	tp->rcv_rtt_est.time = tcp_time_stamp;
536}
537
538static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
539					  const struct sk_buff *skb)
540{
541	struct tcp_sock *tp = tcp_sk(sk);
542	if (tp->rx_opt.rcv_tsecr &&
543	    (TCP_SKB_CB(skb)->end_seq -
544	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
545		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
546}
547
548/*
549 * This function should be called every time data is copied to user space.
550 * It calculates the appropriate TCP receive buffer space.
551 */
552void tcp_rcv_space_adjust(struct sock *sk)
553{
554	struct tcp_sock *tp = tcp_sk(sk);
555	int time;
556	int copied;
557
558	time = tcp_time_stamp - tp->rcvq_space.time;
559	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
560		return;
561
562	/* Number of bytes copied to user in last RTT */
563	copied = tp->copied_seq - tp->rcvq_space.seq;
564	if (copied <= tp->rcvq_space.space)
565		goto new_measure;
566
567	/* A bit of theory :
568	 * copied = bytes received in previous RTT, our base window
569	 * To cope with packet losses, we need a 2x factor
570	 * To cope with slow start, and sender growing its cwin by 100 %
571	 * every RTT, we need a 4x factor, because the ACK we are sending
572	 * now is for the next RTT, not the current one :
573	 * <prev RTT . ><current RTT .. ><next RTT .... >
574	 */
575
576	if (sysctl_tcp_moderate_rcvbuf &&
577	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
578		int rcvwin, rcvmem, rcvbuf;
579
580		/* minimal window to cope with packet losses, assuming
581		 * steady state. Add some cushion because of small variations.
582		 */
583		rcvwin = (copied << 1) + 16 * tp->advmss;
584
585		/* If rate increased by 25%,
586		 *	assume slow start, rcvwin = 3 * copied
587		 * If rate increased by 50%,
588		 *	assume sender can use 2x growth, rcvwin = 4 * copied
589		 */
590		if (copied >=
591		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
592			if (copied >=
593			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
594				rcvwin <<= 1;
595			else
596				rcvwin += (rcvwin >> 1);
597		}
598
599		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
600		while (tcp_win_from_space(rcvmem) < tp->advmss)
601			rcvmem += 128;
602
603		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
604		if (rcvbuf > sk->sk_rcvbuf) {
605			sk->sk_rcvbuf = rcvbuf;
606
607			/* Make the window clamp follow along.  */
608			tp->window_clamp = rcvwin;
609		}
610	}
611	tp->rcvq_space.space = copied;
612
613new_measure:
614	tp->rcvq_space.seq = tp->copied_seq;
615	tp->rcvq_space.time = tcp_time_stamp;
616}
617
618/* There is something which you must keep in mind when you analyze the
619 * behavior of the tp->ato delayed ack timeout interval.  When a
620 * connection starts up, we want to ack as quickly as possible.  The
621 * problem is that "good" TCP's do slow start at the beginning of data
622 * transmission.  The means that until we send the first few ACK's the
623 * sender will sit on his end and only queue most of his data, because
624 * he can only send snd_cwnd unacked packets at any given time.  For
625 * each ACK we send, he increments snd_cwnd and transmits more of his
626 * queue.  -DaveM
627 */
628static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
629{
630	struct tcp_sock *tp = tcp_sk(sk);
631	struct inet_connection_sock *icsk = inet_csk(sk);
632	u32 now;
633
634	inet_csk_schedule_ack(sk);
635
636	tcp_measure_rcv_mss(sk, skb);
637
638	tcp_rcv_rtt_measure(tp);
639
640	now = tcp_time_stamp;
641
642	if (!icsk->icsk_ack.ato) {
643		/* The _first_ data packet received, initialize
644		 * delayed ACK engine.
645		 */
646		tcp_incr_quickack(sk);
647		icsk->icsk_ack.ato = TCP_ATO_MIN;
648	} else {
649		int m = now - icsk->icsk_ack.lrcvtime;
650
651		if (m <= TCP_ATO_MIN / 2) {
652			/* The fastest case is the first. */
653			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
654		} else if (m < icsk->icsk_ack.ato) {
655			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
656			if (icsk->icsk_ack.ato > icsk->icsk_rto)
657				icsk->icsk_ack.ato = icsk->icsk_rto;
658		} else if (m > icsk->icsk_rto) {
659			/* Too long gap. Apparently sender failed to
660			 * restart window, so that we send ACKs quickly.
661			 */
662			tcp_incr_quickack(sk);
663			sk_mem_reclaim(sk);
664		}
665	}
666	icsk->icsk_ack.lrcvtime = now;
667
668	tcp_ecn_check_ce(tp, skb);
669
670	if (skb->len >= 128)
671		tcp_grow_window(sk, skb);
672}
673
674/* Called to compute a smoothed rtt estimate. The data fed to this
675 * routine either comes from timestamps, or from segments that were
676 * known _not_ to have been retransmitted [see Karn/Partridge
677 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
678 * piece by Van Jacobson.
679 * NOTE: the next three routines used to be one big routine.
680 * To save cycles in the RFC 1323 implementation it was better to break
681 * it up into three procedures. -- erics
682 */
683static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
684{
685	struct tcp_sock *tp = tcp_sk(sk);
686	long m = mrtt_us; /* RTT */
687	u32 srtt = tp->srtt_us;
688
689	/*	The following amusing code comes from Jacobson's
690	 *	article in SIGCOMM '88.  Note that rtt and mdev
691	 *	are scaled versions of rtt and mean deviation.
692	 *	This is designed to be as fast as possible
693	 *	m stands for "measurement".
694	 *
695	 *	On a 1990 paper the rto value is changed to:
696	 *	RTO = rtt + 4 * mdev
697	 *
698	 * Funny. This algorithm seems to be very broken.
699	 * These formulae increase RTO, when it should be decreased, increase
700	 * too slowly, when it should be increased quickly, decrease too quickly
701	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
702	 * does not matter how to _calculate_ it. Seems, it was trap
703	 * that VJ failed to avoid. 8)
704	 */
705	if (srtt != 0) {
706		m -= (srtt >> 3);	/* m is now error in rtt est */
707		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
708		if (m < 0) {
709			m = -m;		/* m is now abs(error) */
710			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
711			/* This is similar to one of Eifel findings.
712			 * Eifel blocks mdev updates when rtt decreases.
713			 * This solution is a bit different: we use finer gain
714			 * for mdev in this case (alpha*beta).
715			 * Like Eifel it also prevents growth of rto,
716			 * but also it limits too fast rto decreases,
717			 * happening in pure Eifel.
718			 */
719			if (m > 0)
720				m >>= 3;
721		} else {
722			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
723		}
724		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
725		if (tp->mdev_us > tp->mdev_max_us) {
726			tp->mdev_max_us = tp->mdev_us;
727			if (tp->mdev_max_us > tp->rttvar_us)
728				tp->rttvar_us = tp->mdev_max_us;
729		}
730		if (after(tp->snd_una, tp->rtt_seq)) {
731			if (tp->mdev_max_us < tp->rttvar_us)
732				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
733			tp->rtt_seq = tp->snd_nxt;
734			tp->mdev_max_us = tcp_rto_min_us(sk);
735		}
736	} else {
737		/* no previous measure. */
738		srtt = m << 3;		/* take the measured time to be rtt */
739		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
740		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
741		tp->mdev_max_us = tp->rttvar_us;
742		tp->rtt_seq = tp->snd_nxt;
743	}
744	tp->srtt_us = max(1U, srtt);
745}
746
747/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
748 * Note: TCP stack does not yet implement pacing.
749 * FQ packet scheduler can be used to implement cheap but effective
750 * TCP pacing, to smooth the burst on large writes when packets
751 * in flight is significantly lower than cwnd (or rwin)
752 */
753static void tcp_update_pacing_rate(struct sock *sk)
754{
755	const struct tcp_sock *tp = tcp_sk(sk);
756	u64 rate;
757
758	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
759	rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
760
761	rate *= max(tp->snd_cwnd, tp->packets_out);
762
763	if (likely(tp->srtt_us))
764		do_div(rate, tp->srtt_us);
765
766	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
767	 * without any lock. We want to make sure compiler wont store
768	 * intermediate values in this location.
769	 */
770	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
771						sk->sk_max_pacing_rate);
772}
773
774/* Calculate rto without backoff.  This is the second half of Van Jacobson's
775 * routine referred to above.
776 */
777static void tcp_set_rto(struct sock *sk)
778{
779	const struct tcp_sock *tp = tcp_sk(sk);
780	/* Old crap is replaced with new one. 8)
781	 *
782	 * More seriously:
783	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
784	 *    It cannot be less due to utterly erratic ACK generation made
785	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
786	 *    to do with delayed acks, because at cwnd>2 true delack timeout
787	 *    is invisible. Actually, Linux-2.4 also generates erratic
788	 *    ACKs in some circumstances.
789	 */
790	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
791
792	/* 2. Fixups made earlier cannot be right.
793	 *    If we do not estimate RTO correctly without them,
794	 *    all the algo is pure shit and should be replaced
795	 *    with correct one. It is exactly, which we pretend to do.
796	 */
797
798	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
799	 * guarantees that rto is higher.
800	 */
801	tcp_bound_rto(sk);
802}
803
804__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
805{
806	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
807
808	if (!cwnd)
809		cwnd = TCP_INIT_CWND;
810	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
811}
812
813/*
814 * Packet counting of FACK is based on in-order assumptions, therefore TCP
815 * disables it when reordering is detected
816 */
817void tcp_disable_fack(struct tcp_sock *tp)
818{
819	/* RFC3517 uses different metric in lost marker => reset on change */
820	if (tcp_is_fack(tp))
821		tp->lost_skb_hint = NULL;
822	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
823}
824
825/* Take a notice that peer is sending D-SACKs */
826static void tcp_dsack_seen(struct tcp_sock *tp)
827{
828	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
829}
830
831static void tcp_update_reordering(struct sock *sk, const int metric,
832				  const int ts)
833{
834	struct tcp_sock *tp = tcp_sk(sk);
835	if (metric > tp->reordering) {
836		int mib_idx;
837
838		tp->reordering = min(sysctl_tcp_max_reordering, metric);
839
840		/* This exciting event is worth to be remembered. 8) */
841		if (ts)
842			mib_idx = LINUX_MIB_TCPTSREORDER;
843		else if (tcp_is_reno(tp))
844			mib_idx = LINUX_MIB_TCPRENOREORDER;
845		else if (tcp_is_fack(tp))
846			mib_idx = LINUX_MIB_TCPFACKREORDER;
847		else
848			mib_idx = LINUX_MIB_TCPSACKREORDER;
849
850		NET_INC_STATS_BH(sock_net(sk), mib_idx);
851#if FASTRETRANS_DEBUG > 1
852		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
853			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
854			 tp->reordering,
855			 tp->fackets_out,
856			 tp->sacked_out,
857			 tp->undo_marker ? tp->undo_retrans : 0);
858#endif
859		tcp_disable_fack(tp);
860	}
861
862	if (metric > 0)
863		tcp_disable_early_retrans(tp);
864}
865
866/* This must be called before lost_out is incremented */
867static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
868{
869	if (!tp->retransmit_skb_hint ||
870	    before(TCP_SKB_CB(skb)->seq,
871		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
872		tp->retransmit_skb_hint = skb;
873
874	if (!tp->lost_out ||
875	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
876		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
877}
878
879static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
880{
881	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
882		tcp_verify_retransmit_hint(tp, skb);
883
884		tp->lost_out += tcp_skb_pcount(skb);
885		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
886	}
887}
888
889static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
890					    struct sk_buff *skb)
891{
892	tcp_verify_retransmit_hint(tp, skb);
893
894	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
895		tp->lost_out += tcp_skb_pcount(skb);
896		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
897	}
898}
899
900/* This procedure tags the retransmission queue when SACKs arrive.
901 *
902 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
903 * Packets in queue with these bits set are counted in variables
904 * sacked_out, retrans_out and lost_out, correspondingly.
905 *
906 * Valid combinations are:
907 * Tag  InFlight	Description
908 * 0	1		- orig segment is in flight.
909 * S	0		- nothing flies, orig reached receiver.
910 * L	0		- nothing flies, orig lost by net.
911 * R	2		- both orig and retransmit are in flight.
912 * L|R	1		- orig is lost, retransmit is in flight.
913 * S|R  1		- orig reached receiver, retrans is still in flight.
914 * (L|S|R is logically valid, it could occur when L|R is sacked,
915 *  but it is equivalent to plain S and code short-curcuits it to S.
916 *  L|S is logically invalid, it would mean -1 packet in flight 8))
917 *
918 * These 6 states form finite state machine, controlled by the following events:
919 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
920 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
921 * 3. Loss detection event of two flavors:
922 *	A. Scoreboard estimator decided the packet is lost.
923 *	   A'. Reno "three dupacks" marks head of queue lost.
924 *	   A''. Its FACK modification, head until snd.fack is lost.
925 *	B. SACK arrives sacking SND.NXT at the moment, when the
926 *	   segment was retransmitted.
927 * 4. D-SACK added new rule: D-SACK changes any tag to S.
928 *
929 * It is pleasant to note, that state diagram turns out to be commutative,
930 * so that we are allowed not to be bothered by order of our actions,
931 * when multiple events arrive simultaneously. (see the function below).
932 *
933 * Reordering detection.
934 * --------------------
935 * Reordering metric is maximal distance, which a packet can be displaced
936 * in packet stream. With SACKs we can estimate it:
937 *
938 * 1. SACK fills old hole and the corresponding segment was not
939 *    ever retransmitted -> reordering. Alas, we cannot use it
940 *    when segment was retransmitted.
941 * 2. The last flaw is solved with D-SACK. D-SACK arrives
942 *    for retransmitted and already SACKed segment -> reordering..
943 * Both of these heuristics are not used in Loss state, when we cannot
944 * account for retransmits accurately.
945 *
946 * SACK block validation.
947 * ----------------------
948 *
949 * SACK block range validation checks that the received SACK block fits to
950 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
951 * Note that SND.UNA is not included to the range though being valid because
952 * it means that the receiver is rather inconsistent with itself reporting
953 * SACK reneging when it should advance SND.UNA. Such SACK block this is
954 * perfectly valid, however, in light of RFC2018 which explicitly states
955 * that "SACK block MUST reflect the newest segment.  Even if the newest
956 * segment is going to be discarded ...", not that it looks very clever
957 * in case of head skb. Due to potentional receiver driven attacks, we
958 * choose to avoid immediate execution of a walk in write queue due to
959 * reneging and defer head skb's loss recovery to standard loss recovery
960 * procedure that will eventually trigger (nothing forbids us doing this).
961 *
962 * Implements also blockage to start_seq wrap-around. Problem lies in the
963 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
964 * there's no guarantee that it will be before snd_nxt (n). The problem
965 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
966 * wrap (s_w):
967 *
968 *         <- outs wnd ->                          <- wrapzone ->
969 *         u     e      n                         u_w   e_w  s n_w
970 *         |     |      |                          |     |   |  |
971 * |<------------+------+----- TCP seqno space --------------+---------->|
972 * ...-- <2^31 ->|                                           |<--------...
973 * ...---- >2^31 ------>|                                    |<--------...
974 *
975 * Current code wouldn't be vulnerable but it's better still to discard such
976 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
977 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
978 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
979 * equal to the ideal case (infinite seqno space without wrap caused issues).
980 *
981 * With D-SACK the lower bound is extended to cover sequence space below
982 * SND.UNA down to undo_marker, which is the last point of interest. Yet
983 * again, D-SACK block must not to go across snd_una (for the same reason as
984 * for the normal SACK blocks, explained above). But there all simplicity
985 * ends, TCP might receive valid D-SACKs below that. As long as they reside
986 * fully below undo_marker they do not affect behavior in anyway and can
987 * therefore be safely ignored. In rare cases (which are more or less
988 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
989 * fragmentation and packet reordering past skb's retransmission. To consider
990 * them correctly, the acceptable range must be extended even more though
991 * the exact amount is rather hard to quantify. However, tp->max_window can
992 * be used as an exaggerated estimate.
993 */
994static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
995				   u32 start_seq, u32 end_seq)
996{
997	/* Too far in future, or reversed (interpretation is ambiguous) */
998	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
999		return false;
1000
1001	/* Nasty start_seq wrap-around check (see comments above) */
1002	if (!before(start_seq, tp->snd_nxt))
1003		return false;
1004
1005	/* In outstanding window? ...This is valid exit for D-SACKs too.
1006	 * start_seq == snd_una is non-sensical (see comments above)
1007	 */
1008	if (after(start_seq, tp->snd_una))
1009		return true;
1010
1011	if (!is_dsack || !tp->undo_marker)
1012		return false;
1013
1014	/* ...Then it's D-SACK, and must reside below snd_una completely */
1015	if (after(end_seq, tp->snd_una))
1016		return false;
1017
1018	if (!before(start_seq, tp->undo_marker))
1019		return true;
1020
1021	/* Too old */
1022	if (!after(end_seq, tp->undo_marker))
1023		return false;
1024
1025	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1026	 *   start_seq < undo_marker and end_seq >= undo_marker.
1027	 */
1028	return !before(start_seq, end_seq - tp->max_window);
1029}
1030
1031/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1032 * Event "B". Later note: FACK people cheated me again 8), we have to account
1033 * for reordering! Ugly, but should help.
1034 *
1035 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1036 * less than what is now known to be received by the other end (derived from
1037 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1038 * retransmitted skbs to avoid some costly processing per ACKs.
1039 */
1040static void tcp_mark_lost_retrans(struct sock *sk)
1041{
1042	const struct inet_connection_sock *icsk = inet_csk(sk);
1043	struct tcp_sock *tp = tcp_sk(sk);
1044	struct sk_buff *skb;
1045	int cnt = 0;
1046	u32 new_low_seq = tp->snd_nxt;
1047	u32 received_upto = tcp_highest_sack_seq(tp);
1048
1049	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1050	    !after(received_upto, tp->lost_retrans_low) ||
1051	    icsk->icsk_ca_state != TCP_CA_Recovery)
1052		return;
1053
1054	tcp_for_write_queue(skb, sk) {
1055		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1056
1057		if (skb == tcp_send_head(sk))
1058			break;
1059		if (cnt == tp->retrans_out)
1060			break;
1061		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1062			continue;
1063
1064		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1065			continue;
1066
1067		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1068		 * constraint here (see above) but figuring out that at
1069		 * least tp->reordering SACK blocks reside between ack_seq
1070		 * and received_upto is not easy task to do cheaply with
1071		 * the available datastructures.
1072		 *
1073		 * Whether FACK should check here for tp->reordering segs
1074		 * in-between one could argue for either way (it would be
1075		 * rather simple to implement as we could count fack_count
1076		 * during the walk and do tp->fackets_out - fack_count).
1077		 */
1078		if (after(received_upto, ack_seq)) {
1079			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1080			tp->retrans_out -= tcp_skb_pcount(skb);
1081
1082			tcp_skb_mark_lost_uncond_verify(tp, skb);
1083			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1084		} else {
1085			if (before(ack_seq, new_low_seq))
1086				new_low_seq = ack_seq;
1087			cnt += tcp_skb_pcount(skb);
1088		}
1089	}
1090
1091	if (tp->retrans_out)
1092		tp->lost_retrans_low = new_low_seq;
1093}
1094
1095static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1096			    struct tcp_sack_block_wire *sp, int num_sacks,
1097			    u32 prior_snd_una)
1098{
1099	struct tcp_sock *tp = tcp_sk(sk);
1100	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1101	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1102	bool dup_sack = false;
1103
1104	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1105		dup_sack = true;
1106		tcp_dsack_seen(tp);
1107		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1108	} else if (num_sacks > 1) {
1109		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1110		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1111
1112		if (!after(end_seq_0, end_seq_1) &&
1113		    !before(start_seq_0, start_seq_1)) {
1114			dup_sack = true;
1115			tcp_dsack_seen(tp);
1116			NET_INC_STATS_BH(sock_net(sk),
1117					LINUX_MIB_TCPDSACKOFORECV);
1118		}
1119	}
1120
1121	/* D-SACK for already forgotten data... Do dumb counting. */
1122	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1123	    !after(end_seq_0, prior_snd_una) &&
1124	    after(end_seq_0, tp->undo_marker))
1125		tp->undo_retrans--;
1126
1127	return dup_sack;
1128}
1129
1130struct tcp_sacktag_state {
1131	int	reord;
1132	int	fack_count;
1133	long	rtt_us; /* RTT measured by SACKing never-retransmitted data */
1134	int	flag;
1135};
1136
1137/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1138 * the incoming SACK may not exactly match but we can find smaller MSS
1139 * aligned portion of it that matches. Therefore we might need to fragment
1140 * which may fail and creates some hassle (caller must handle error case
1141 * returns).
1142 *
1143 * FIXME: this could be merged to shift decision code
1144 */
1145static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1146				  u32 start_seq, u32 end_seq)
1147{
1148	int err;
1149	bool in_sack;
1150	unsigned int pkt_len;
1151	unsigned int mss;
1152
1153	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1154		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1155
1156	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1157	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1158		mss = tcp_skb_mss(skb);
1159		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1160
1161		if (!in_sack) {
1162			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1163			if (pkt_len < mss)
1164				pkt_len = mss;
1165		} else {
1166			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1167			if (pkt_len < mss)
1168				return -EINVAL;
1169		}
1170
1171		/* Round if necessary so that SACKs cover only full MSSes
1172		 * and/or the remaining small portion (if present)
1173		 */
1174		if (pkt_len > mss) {
1175			unsigned int new_len = (pkt_len / mss) * mss;
1176			if (!in_sack && new_len < pkt_len) {
1177				new_len += mss;
1178				if (new_len >= skb->len)
1179					return 0;
1180			}
1181			pkt_len = new_len;
1182		}
1183		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1184		if (err < 0)
1185			return err;
1186	}
1187
1188	return in_sack;
1189}
1190
1191/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1192static u8 tcp_sacktag_one(struct sock *sk,
1193			  struct tcp_sacktag_state *state, u8 sacked,
1194			  u32 start_seq, u32 end_seq,
1195			  int dup_sack, int pcount,
1196			  const struct skb_mstamp *xmit_time)
1197{
1198	struct tcp_sock *tp = tcp_sk(sk);
1199	int fack_count = state->fack_count;
1200
1201	/* Account D-SACK for retransmitted packet. */
1202	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1203		if (tp->undo_marker && tp->undo_retrans > 0 &&
1204		    after(end_seq, tp->undo_marker))
1205			tp->undo_retrans--;
1206		if (sacked & TCPCB_SACKED_ACKED)
1207			state->reord = min(fack_count, state->reord);
1208	}
1209
1210	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1211	if (!after(end_seq, tp->snd_una))
1212		return sacked;
1213
1214	if (!(sacked & TCPCB_SACKED_ACKED)) {
1215		if (sacked & TCPCB_SACKED_RETRANS) {
1216			/* If the segment is not tagged as lost,
1217			 * we do not clear RETRANS, believing
1218			 * that retransmission is still in flight.
1219			 */
1220			if (sacked & TCPCB_LOST) {
1221				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1222				tp->lost_out -= pcount;
1223				tp->retrans_out -= pcount;
1224			}
1225		} else {
1226			if (!(sacked & TCPCB_RETRANS)) {
1227				/* New sack for not retransmitted frame,
1228				 * which was in hole. It is reordering.
1229				 */
1230				if (before(start_seq,
1231					   tcp_highest_sack_seq(tp)))
1232					state->reord = min(fack_count,
1233							   state->reord);
1234				if (!after(end_seq, tp->high_seq))
1235					state->flag |= FLAG_ORIG_SACK_ACKED;
1236				/* Pick the earliest sequence sacked for RTT */
1237				if (state->rtt_us < 0) {
1238					struct skb_mstamp now;
1239
1240					skb_mstamp_get(&now);
1241					state->rtt_us = skb_mstamp_us_delta(&now,
1242								xmit_time);
1243				}
1244			}
1245
1246			if (sacked & TCPCB_LOST) {
1247				sacked &= ~TCPCB_LOST;
1248				tp->lost_out -= pcount;
1249			}
1250		}
1251
1252		sacked |= TCPCB_SACKED_ACKED;
1253		state->flag |= FLAG_DATA_SACKED;
1254		tp->sacked_out += pcount;
1255
1256		fack_count += pcount;
1257
1258		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1259		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1260		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1261			tp->lost_cnt_hint += pcount;
1262
1263		if (fack_count > tp->fackets_out)
1264			tp->fackets_out = fack_count;
1265	}
1266
1267	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1268	 * frames and clear it. undo_retrans is decreased above, L|R frames
1269	 * are accounted above as well.
1270	 */
1271	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1272		sacked &= ~TCPCB_SACKED_RETRANS;
1273		tp->retrans_out -= pcount;
1274	}
1275
1276	return sacked;
1277}
1278
1279/* Shift newly-SACKed bytes from this skb to the immediately previous
1280 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1281 */
1282static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1283			    struct tcp_sacktag_state *state,
1284			    unsigned int pcount, int shifted, int mss,
1285			    bool dup_sack)
1286{
1287	struct tcp_sock *tp = tcp_sk(sk);
1288	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1289	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1290	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1291
1292	BUG_ON(!pcount);
1293
1294	/* Adjust counters and hints for the newly sacked sequence
1295	 * range but discard the return value since prev is already
1296	 * marked. We must tag the range first because the seq
1297	 * advancement below implicitly advances
1298	 * tcp_highest_sack_seq() when skb is highest_sack.
1299	 */
1300	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1301			start_seq, end_seq, dup_sack, pcount,
1302			&skb->skb_mstamp);
1303
1304	if (skb == tp->lost_skb_hint)
1305		tp->lost_cnt_hint += pcount;
1306
1307	TCP_SKB_CB(prev)->end_seq += shifted;
1308	TCP_SKB_CB(skb)->seq += shifted;
1309
1310	tcp_skb_pcount_add(prev, pcount);
1311	BUG_ON(tcp_skb_pcount(skb) < pcount);
1312	tcp_skb_pcount_add(skb, -pcount);
1313
1314	/* When we're adding to gso_segs == 1, gso_size will be zero,
1315	 * in theory this shouldn't be necessary but as long as DSACK
1316	 * code can come after this skb later on it's better to keep
1317	 * setting gso_size to something.
1318	 */
1319	if (!skb_shinfo(prev)->gso_size) {
1320		skb_shinfo(prev)->gso_size = mss;
1321		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1322	}
1323
1324	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1325	if (tcp_skb_pcount(skb) <= 1) {
1326		skb_shinfo(skb)->gso_size = 0;
1327		skb_shinfo(skb)->gso_type = 0;
1328	}
1329
1330	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1331	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1332
1333	if (skb->len > 0) {
1334		BUG_ON(!tcp_skb_pcount(skb));
1335		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1336		return false;
1337	}
1338
1339	/* Whole SKB was eaten :-) */
1340
1341	if (skb == tp->retransmit_skb_hint)
1342		tp->retransmit_skb_hint = prev;
1343	if (skb == tp->lost_skb_hint) {
1344		tp->lost_skb_hint = prev;
1345		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1346	}
1347
1348	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1349	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1350		TCP_SKB_CB(prev)->end_seq++;
1351
1352	if (skb == tcp_highest_sack(sk))
1353		tcp_advance_highest_sack(sk, skb);
1354
1355	tcp_unlink_write_queue(skb, sk);
1356	sk_wmem_free_skb(sk, skb);
1357
1358	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1359
1360	return true;
1361}
1362
1363/* I wish gso_size would have a bit more sane initialization than
1364 * something-or-zero which complicates things
1365 */
1366static int tcp_skb_seglen(const struct sk_buff *skb)
1367{
1368	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1369}
1370
1371/* Shifting pages past head area doesn't work */
1372static int skb_can_shift(const struct sk_buff *skb)
1373{
1374	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1375}
1376
1377/* Try collapsing SACK blocks spanning across multiple skbs to a single
1378 * skb.
1379 */
1380static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1381					  struct tcp_sacktag_state *state,
1382					  u32 start_seq, u32 end_seq,
1383					  bool dup_sack)
1384{
1385	struct tcp_sock *tp = tcp_sk(sk);
1386	struct sk_buff *prev;
1387	int mss;
1388	int pcount = 0;
1389	int len;
1390	int in_sack;
1391
1392	if (!sk_can_gso(sk))
1393		goto fallback;
1394
1395	/* Normally R but no L won't result in plain S */
1396	if (!dup_sack &&
1397	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1398		goto fallback;
1399	if (!skb_can_shift(skb))
1400		goto fallback;
1401	/* This frame is about to be dropped (was ACKed). */
1402	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1403		goto fallback;
1404
1405	/* Can only happen with delayed DSACK + discard craziness */
1406	if (unlikely(skb == tcp_write_queue_head(sk)))
1407		goto fallback;
1408	prev = tcp_write_queue_prev(sk, skb);
1409
1410	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1411		goto fallback;
1412
1413	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1414		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1415
1416	if (in_sack) {
1417		len = skb->len;
1418		pcount = tcp_skb_pcount(skb);
1419		mss = tcp_skb_seglen(skb);
1420
1421		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1422		 * drop this restriction as unnecessary
1423		 */
1424		if (mss != tcp_skb_seglen(prev))
1425			goto fallback;
1426	} else {
1427		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1428			goto noop;
1429		/* CHECKME: This is non-MSS split case only?, this will
1430		 * cause skipped skbs due to advancing loop btw, original
1431		 * has that feature too
1432		 */
1433		if (tcp_skb_pcount(skb) <= 1)
1434			goto noop;
1435
1436		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1437		if (!in_sack) {
1438			/* TODO: head merge to next could be attempted here
1439			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1440			 * though it might not be worth of the additional hassle
1441			 *
1442			 * ...we can probably just fallback to what was done
1443			 * previously. We could try merging non-SACKed ones
1444			 * as well but it probably isn't going to buy off
1445			 * because later SACKs might again split them, and
1446			 * it would make skb timestamp tracking considerably
1447			 * harder problem.
1448			 */
1449			goto fallback;
1450		}
1451
1452		len = end_seq - TCP_SKB_CB(skb)->seq;
1453		BUG_ON(len < 0);
1454		BUG_ON(len > skb->len);
1455
1456		/* MSS boundaries should be honoured or else pcount will
1457		 * severely break even though it makes things bit trickier.
1458		 * Optimize common case to avoid most of the divides
1459		 */
1460		mss = tcp_skb_mss(skb);
1461
1462		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1463		 * drop this restriction as unnecessary
1464		 */
1465		if (mss != tcp_skb_seglen(prev))
1466			goto fallback;
1467
1468		if (len == mss) {
1469			pcount = 1;
1470		} else if (len < mss) {
1471			goto noop;
1472		} else {
1473			pcount = len / mss;
1474			len = pcount * mss;
1475		}
1476	}
1477
1478	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1479	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1480		goto fallback;
1481
1482	if (!skb_shift(prev, skb, len))
1483		goto fallback;
1484	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1485		goto out;
1486
1487	/* Hole filled allows collapsing with the next as well, this is very
1488	 * useful when hole on every nth skb pattern happens
1489	 */
1490	if (prev == tcp_write_queue_tail(sk))
1491		goto out;
1492	skb = tcp_write_queue_next(sk, prev);
1493
1494	if (!skb_can_shift(skb) ||
1495	    (skb == tcp_send_head(sk)) ||
1496	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1497	    (mss != tcp_skb_seglen(skb)))
1498		goto out;
1499
1500	len = skb->len;
1501	if (skb_shift(prev, skb, len)) {
1502		pcount += tcp_skb_pcount(skb);
1503		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1504	}
1505
1506out:
1507	state->fack_count += pcount;
1508	return prev;
1509
1510noop:
1511	return skb;
1512
1513fallback:
1514	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1515	return NULL;
1516}
1517
1518static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1519					struct tcp_sack_block *next_dup,
1520					struct tcp_sacktag_state *state,
1521					u32 start_seq, u32 end_seq,
1522					bool dup_sack_in)
1523{
1524	struct tcp_sock *tp = tcp_sk(sk);
1525	struct sk_buff *tmp;
1526
1527	tcp_for_write_queue_from(skb, sk) {
1528		int in_sack = 0;
1529		bool dup_sack = dup_sack_in;
1530
1531		if (skb == tcp_send_head(sk))
1532			break;
1533
1534		/* queue is in-order => we can short-circuit the walk early */
1535		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1536			break;
1537
1538		if (next_dup  &&
1539		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1540			in_sack = tcp_match_skb_to_sack(sk, skb,
1541							next_dup->start_seq,
1542							next_dup->end_seq);
1543			if (in_sack > 0)
1544				dup_sack = true;
1545		}
1546
1547		/* skb reference here is a bit tricky to get right, since
1548		 * shifting can eat and free both this skb and the next,
1549		 * so not even _safe variant of the loop is enough.
1550		 */
1551		if (in_sack <= 0) {
1552			tmp = tcp_shift_skb_data(sk, skb, state,
1553						 start_seq, end_seq, dup_sack);
1554			if (tmp) {
1555				if (tmp != skb) {
1556					skb = tmp;
1557					continue;
1558				}
1559
1560				in_sack = 0;
1561			} else {
1562				in_sack = tcp_match_skb_to_sack(sk, skb,
1563								start_seq,
1564								end_seq);
1565			}
1566		}
1567
1568		if (unlikely(in_sack < 0))
1569			break;
1570
1571		if (in_sack) {
1572			TCP_SKB_CB(skb)->sacked =
1573				tcp_sacktag_one(sk,
1574						state,
1575						TCP_SKB_CB(skb)->sacked,
1576						TCP_SKB_CB(skb)->seq,
1577						TCP_SKB_CB(skb)->end_seq,
1578						dup_sack,
1579						tcp_skb_pcount(skb),
1580						&skb->skb_mstamp);
1581
1582			if (!before(TCP_SKB_CB(skb)->seq,
1583				    tcp_highest_sack_seq(tp)))
1584				tcp_advance_highest_sack(sk, skb);
1585		}
1586
1587		state->fack_count += tcp_skb_pcount(skb);
1588	}
1589	return skb;
1590}
1591
1592/* Avoid all extra work that is being done by sacktag while walking in
1593 * a normal way
1594 */
1595static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1596					struct tcp_sacktag_state *state,
1597					u32 skip_to_seq)
1598{
1599	tcp_for_write_queue_from(skb, sk) {
1600		if (skb == tcp_send_head(sk))
1601			break;
1602
1603		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1604			break;
1605
1606		state->fack_count += tcp_skb_pcount(skb);
1607	}
1608	return skb;
1609}
1610
1611static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1612						struct sock *sk,
1613						struct tcp_sack_block *next_dup,
1614						struct tcp_sacktag_state *state,
1615						u32 skip_to_seq)
1616{
1617	if (!next_dup)
1618		return skb;
1619
1620	if (before(next_dup->start_seq, skip_to_seq)) {
1621		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1622		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1623				       next_dup->start_seq, next_dup->end_seq,
1624				       1);
1625	}
1626
1627	return skb;
1628}
1629
1630static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1631{
1632	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1633}
1634
1635static int
1636tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1637			u32 prior_snd_una, long *sack_rtt_us)
1638{
1639	struct tcp_sock *tp = tcp_sk(sk);
1640	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1641				    TCP_SKB_CB(ack_skb)->sacked);
1642	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1643	struct tcp_sack_block sp[TCP_NUM_SACKS];
1644	struct tcp_sack_block *cache;
1645	struct tcp_sacktag_state state;
1646	struct sk_buff *skb;
1647	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1648	int used_sacks;
1649	bool found_dup_sack = false;
1650	int i, j;
1651	int first_sack_index;
1652
1653	state.flag = 0;
1654	state.reord = tp->packets_out;
1655	state.rtt_us = -1L;
1656
1657	if (!tp->sacked_out) {
1658		if (WARN_ON(tp->fackets_out))
1659			tp->fackets_out = 0;
1660		tcp_highest_sack_reset(sk);
1661	}
1662
1663	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1664					 num_sacks, prior_snd_una);
1665	if (found_dup_sack)
1666		state.flag |= FLAG_DSACKING_ACK;
1667
1668	/* Eliminate too old ACKs, but take into
1669	 * account more or less fresh ones, they can
1670	 * contain valid SACK info.
1671	 */
1672	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1673		return 0;
1674
1675	if (!tp->packets_out)
1676		goto out;
1677
1678	used_sacks = 0;
1679	first_sack_index = 0;
1680	for (i = 0; i < num_sacks; i++) {
1681		bool dup_sack = !i && found_dup_sack;
1682
1683		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1684		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1685
1686		if (!tcp_is_sackblock_valid(tp, dup_sack,
1687					    sp[used_sacks].start_seq,
1688					    sp[used_sacks].end_seq)) {
1689			int mib_idx;
1690
1691			if (dup_sack) {
1692				if (!tp->undo_marker)
1693					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1694				else
1695					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1696			} else {
1697				/* Don't count olds caused by ACK reordering */
1698				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1699				    !after(sp[used_sacks].end_seq, tp->snd_una))
1700					continue;
1701				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1702			}
1703
1704			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1705			if (i == 0)
1706				first_sack_index = -1;
1707			continue;
1708		}
1709
1710		/* Ignore very old stuff early */
1711		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1712			continue;
1713
1714		used_sacks++;
1715	}
1716
1717	/* order SACK blocks to allow in order walk of the retrans queue */
1718	for (i = used_sacks - 1; i > 0; i--) {
1719		for (j = 0; j < i; j++) {
1720			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1721				swap(sp[j], sp[j + 1]);
1722
1723				/* Track where the first SACK block goes to */
1724				if (j == first_sack_index)
1725					first_sack_index = j + 1;
1726			}
1727		}
1728	}
1729
1730	skb = tcp_write_queue_head(sk);
1731	state.fack_count = 0;
1732	i = 0;
1733
1734	if (!tp->sacked_out) {
1735		/* It's already past, so skip checking against it */
1736		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1737	} else {
1738		cache = tp->recv_sack_cache;
1739		/* Skip empty blocks in at head of the cache */
1740		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1741		       !cache->end_seq)
1742			cache++;
1743	}
1744
1745	while (i < used_sacks) {
1746		u32 start_seq = sp[i].start_seq;
1747		u32 end_seq = sp[i].end_seq;
1748		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1749		struct tcp_sack_block *next_dup = NULL;
1750
1751		if (found_dup_sack && ((i + 1) == first_sack_index))
1752			next_dup = &sp[i + 1];
1753
1754		/* Skip too early cached blocks */
1755		while (tcp_sack_cache_ok(tp, cache) &&
1756		       !before(start_seq, cache->end_seq))
1757			cache++;
1758
1759		/* Can skip some work by looking recv_sack_cache? */
1760		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1761		    after(end_seq, cache->start_seq)) {
1762
1763			/* Head todo? */
1764			if (before(start_seq, cache->start_seq)) {
1765				skb = tcp_sacktag_skip(skb, sk, &state,
1766						       start_seq);
1767				skb = tcp_sacktag_walk(skb, sk, next_dup,
1768						       &state,
1769						       start_seq,
1770						       cache->start_seq,
1771						       dup_sack);
1772			}
1773
1774			/* Rest of the block already fully processed? */
1775			if (!after(end_seq, cache->end_seq))
1776				goto advance_sp;
1777
1778			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1779						       &state,
1780						       cache->end_seq);
1781
1782			/* ...tail remains todo... */
1783			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1784				/* ...but better entrypoint exists! */
1785				skb = tcp_highest_sack(sk);
1786				if (!skb)
1787					break;
1788				state.fack_count = tp->fackets_out;
1789				cache++;
1790				goto walk;
1791			}
1792
1793			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1794			/* Check overlap against next cached too (past this one already) */
1795			cache++;
1796			continue;
1797		}
1798
1799		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1800			skb = tcp_highest_sack(sk);
1801			if (!skb)
1802				break;
1803			state.fack_count = tp->fackets_out;
1804		}
1805		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1806
1807walk:
1808		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1809				       start_seq, end_seq, dup_sack);
1810
1811advance_sp:
1812		i++;
1813	}
1814
1815	/* Clear the head of the cache sack blocks so we can skip it next time */
1816	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1817		tp->recv_sack_cache[i].start_seq = 0;
1818		tp->recv_sack_cache[i].end_seq = 0;
1819	}
1820	for (j = 0; j < used_sacks; j++)
1821		tp->recv_sack_cache[i++] = sp[j];
1822
1823	if ((state.reord < tp->fackets_out) &&
1824	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1825		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1826
1827	tcp_mark_lost_retrans(sk);
1828	tcp_verify_left_out(tp);
1829out:
1830
1831#if FASTRETRANS_DEBUG > 0
1832	WARN_ON((int)tp->sacked_out < 0);
1833	WARN_ON((int)tp->lost_out < 0);
1834	WARN_ON((int)tp->retrans_out < 0);
1835	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1836#endif
1837	*sack_rtt_us = state.rtt_us;
1838	return state.flag;
1839}
1840
1841/* Limits sacked_out so that sum with lost_out isn't ever larger than
1842 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1843 */
1844static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1845{
1846	u32 holes;
1847
1848	holes = max(tp->lost_out, 1U);
1849	holes = min(holes, tp->packets_out);
1850
1851	if ((tp->sacked_out + holes) > tp->packets_out) {
1852		tp->sacked_out = tp->packets_out - holes;
1853		return true;
1854	}
1855	return false;
1856}
1857
1858/* If we receive more dupacks than we expected counting segments
1859 * in assumption of absent reordering, interpret this as reordering.
1860 * The only another reason could be bug in receiver TCP.
1861 */
1862static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1863{
1864	struct tcp_sock *tp = tcp_sk(sk);
1865	if (tcp_limit_reno_sacked(tp))
1866		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1867}
1868
1869/* Emulate SACKs for SACKless connection: account for a new dupack. */
1870
1871static void tcp_add_reno_sack(struct sock *sk)
1872{
1873	struct tcp_sock *tp = tcp_sk(sk);
1874	tp->sacked_out++;
1875	tcp_check_reno_reordering(sk, 0);
1876	tcp_verify_left_out(tp);
1877}
1878
1879/* Account for ACK, ACKing some data in Reno Recovery phase. */
1880
1881static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1882{
1883	struct tcp_sock *tp = tcp_sk(sk);
1884
1885	if (acked > 0) {
1886		/* One ACK acked hole. The rest eat duplicate ACKs. */
1887		if (acked - 1 >= tp->sacked_out)
1888			tp->sacked_out = 0;
1889		else
1890			tp->sacked_out -= acked - 1;
1891	}
1892	tcp_check_reno_reordering(sk, acked);
1893	tcp_verify_left_out(tp);
1894}
1895
1896static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1897{
1898	tp->sacked_out = 0;
1899}
1900
1901void tcp_clear_retrans(struct tcp_sock *tp)
1902{
1903	tp->retrans_out = 0;
1904	tp->lost_out = 0;
1905	tp->undo_marker = 0;
1906	tp->undo_retrans = -1;
1907	tp->fackets_out = 0;
1908	tp->sacked_out = 0;
1909}
1910
1911static inline void tcp_init_undo(struct tcp_sock *tp)
1912{
1913	tp->undo_marker = tp->snd_una;
1914	/* Retransmission still in flight may cause DSACKs later. */
1915	tp->undo_retrans = tp->retrans_out ? : -1;
1916}
1917
1918/* Enter Loss state. If we detect SACK reneging, forget all SACK information
1919 * and reset tags completely, otherwise preserve SACKs. If receiver
1920 * dropped its ofo queue, we will know this due to reneging detection.
1921 */
1922void tcp_enter_loss(struct sock *sk)
1923{
1924	const struct inet_connection_sock *icsk = inet_csk(sk);
1925	struct tcp_sock *tp = tcp_sk(sk);
1926	struct sk_buff *skb;
1927	bool new_recovery = false;
1928	bool is_reneg;			/* is receiver reneging on SACKs? */
1929
1930	/* Reduce ssthresh if it has not yet been made inside this window. */
1931	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1932	    !after(tp->high_seq, tp->snd_una) ||
1933	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1934		new_recovery = true;
1935		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1936		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1937		tcp_ca_event(sk, CA_EVENT_LOSS);
1938		tcp_init_undo(tp);
1939	}
1940	tp->snd_cwnd	   = 1;
1941	tp->snd_cwnd_cnt   = 0;
1942	tp->snd_cwnd_stamp = tcp_time_stamp;
1943
1944	tp->retrans_out = 0;
1945	tp->lost_out = 0;
1946
1947	if (tcp_is_reno(tp))
1948		tcp_reset_reno_sack(tp);
1949
1950	skb = tcp_write_queue_head(sk);
1951	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1952	if (is_reneg) {
1953		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1954		tp->sacked_out = 0;
1955		tp->fackets_out = 0;
1956	}
1957	tcp_clear_all_retrans_hints(tp);
1958
1959	tcp_for_write_queue(skb, sk) {
1960		if (skb == tcp_send_head(sk))
1961			break;
1962
1963		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1964		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1965			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1966			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1967			tp->lost_out += tcp_skb_pcount(skb);
1968			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1969		}
1970	}
1971	tcp_verify_left_out(tp);
1972
1973	/* Timeout in disordered state after receiving substantial DUPACKs
1974	 * suggests that the degree of reordering is over-estimated.
1975	 */
1976	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1977	    tp->sacked_out >= sysctl_tcp_reordering)
1978		tp->reordering = min_t(unsigned int, tp->reordering,
1979				       sysctl_tcp_reordering);
1980	tcp_set_ca_state(sk, TCP_CA_Loss);
1981	tp->high_seq = tp->snd_nxt;
1982	tcp_ecn_queue_cwr(tp);
1983
1984	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1985	 * loss recovery is underway except recurring timeout(s) on
1986	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1987	 */
1988	tp->frto = sysctl_tcp_frto &&
1989		   (new_recovery || icsk->icsk_retransmits) &&
1990		   !inet_csk(sk)->icsk_mtup.probe_size;
1991}
1992
1993/* If ACK arrived pointing to a remembered SACK, it means that our
1994 * remembered SACKs do not reflect real state of receiver i.e.
1995 * receiver _host_ is heavily congested (or buggy).
1996 *
1997 * To avoid big spurious retransmission bursts due to transient SACK
1998 * scoreboard oddities that look like reneging, we give the receiver a
1999 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2000 * restore sanity to the SACK scoreboard. If the apparent reneging
2001 * persists until this RTO then we'll clear the SACK scoreboard.
2002 */
2003static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2004{
2005	if (flag & FLAG_SACK_RENEGING) {
2006		struct tcp_sock *tp = tcp_sk(sk);
2007		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2008					  msecs_to_jiffies(10));
2009
2010		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2011					  delay, TCP_RTO_MAX);
2012		return true;
2013	}
2014	return false;
2015}
2016
2017static inline int tcp_fackets_out(const struct tcp_sock *tp)
2018{
2019	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2020}
2021
2022/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2023 * counter when SACK is enabled (without SACK, sacked_out is used for
2024 * that purpose).
2025 *
2026 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2027 * segments up to the highest received SACK block so far and holes in
2028 * between them.
2029 *
2030 * With reordering, holes may still be in flight, so RFC3517 recovery
2031 * uses pure sacked_out (total number of SACKed segments) even though
2032 * it violates the RFC that uses duplicate ACKs, often these are equal
2033 * but when e.g. out-of-window ACKs or packet duplication occurs,
2034 * they differ. Since neither occurs due to loss, TCP should really
2035 * ignore them.
2036 */
2037static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2038{
2039	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2040}
2041
2042static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2043{
2044	struct tcp_sock *tp = tcp_sk(sk);
2045	unsigned long delay;
2046
2047	/* Delay early retransmit and entering fast recovery for
2048	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2049	 * available, or RTO is scheduled to fire first.
2050	 */
2051	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2052	    (flag & FLAG_ECE) || !tp->srtt_us)
2053		return false;
2054
2055	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2056		    msecs_to_jiffies(2));
2057
2058	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2059		return false;
2060
2061	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2062				  TCP_RTO_MAX);
2063	return true;
2064}
2065
2066/* Linux NewReno/SACK/FACK/ECN state machine.
2067 * --------------------------------------
2068 *
2069 * "Open"	Normal state, no dubious events, fast path.
2070 * "Disorder"   In all the respects it is "Open",
2071 *		but requires a bit more attention. It is entered when
2072 *		we see some SACKs or dupacks. It is split of "Open"
2073 *		mainly to move some processing from fast path to slow one.
2074 * "CWR"	CWND was reduced due to some Congestion Notification event.
2075 *		It can be ECN, ICMP source quench, local device congestion.
2076 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2077 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2078 *
2079 * tcp_fastretrans_alert() is entered:
2080 * - each incoming ACK, if state is not "Open"
2081 * - when arrived ACK is unusual, namely:
2082 *	* SACK
2083 *	* Duplicate ACK.
2084 *	* ECN ECE.
2085 *
2086 * Counting packets in flight is pretty simple.
2087 *
2088 *	in_flight = packets_out - left_out + retrans_out
2089 *
2090 *	packets_out is SND.NXT-SND.UNA counted in packets.
2091 *
2092 *	retrans_out is number of retransmitted segments.
2093 *
2094 *	left_out is number of segments left network, but not ACKed yet.
2095 *
2096 *		left_out = sacked_out + lost_out
2097 *
2098 *     sacked_out: Packets, which arrived to receiver out of order
2099 *		   and hence not ACKed. With SACKs this number is simply
2100 *		   amount of SACKed data. Even without SACKs
2101 *		   it is easy to give pretty reliable estimate of this number,
2102 *		   counting duplicate ACKs.
2103 *
2104 *       lost_out: Packets lost by network. TCP has no explicit
2105 *		   "loss notification" feedback from network (for now).
2106 *		   It means that this number can be only _guessed_.
2107 *		   Actually, it is the heuristics to predict lossage that
2108 *		   distinguishes different algorithms.
2109 *
2110 *	F.e. after RTO, when all the queue is considered as lost,
2111 *	lost_out = packets_out and in_flight = retrans_out.
2112 *
2113 *		Essentially, we have now two algorithms counting
2114 *		lost packets.
2115 *
2116 *		FACK: It is the simplest heuristics. As soon as we decided
2117 *		that something is lost, we decide that _all_ not SACKed
2118 *		packets until the most forward SACK are lost. I.e.
2119 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2120 *		It is absolutely correct estimate, if network does not reorder
2121 *		packets. And it loses any connection to reality when reordering
2122 *		takes place. We use FACK by default until reordering
2123 *		is suspected on the path to this destination.
2124 *
2125 *		NewReno: when Recovery is entered, we assume that one segment
2126 *		is lost (classic Reno). While we are in Recovery and
2127 *		a partial ACK arrives, we assume that one more packet
2128 *		is lost (NewReno). This heuristics are the same in NewReno
2129 *		and SACK.
2130 *
2131 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2132 *  deflation etc. CWND is real congestion window, never inflated, changes
2133 *  only according to classic VJ rules.
2134 *
2135 * Really tricky (and requiring careful tuning) part of algorithm
2136 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2137 * The first determines the moment _when_ we should reduce CWND and,
2138 * hence, slow down forward transmission. In fact, it determines the moment
2139 * when we decide that hole is caused by loss, rather than by a reorder.
2140 *
2141 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2142 * holes, caused by lost packets.
2143 *
2144 * And the most logically complicated part of algorithm is undo
2145 * heuristics. We detect false retransmits due to both too early
2146 * fast retransmit (reordering) and underestimated RTO, analyzing
2147 * timestamps and D-SACKs. When we detect that some segments were
2148 * retransmitted by mistake and CWND reduction was wrong, we undo
2149 * window reduction and abort recovery phase. This logic is hidden
2150 * inside several functions named tcp_try_undo_<something>.
2151 */
2152
2153/* This function decides, when we should leave Disordered state
2154 * and enter Recovery phase, reducing congestion window.
2155 *
2156 * Main question: may we further continue forward transmission
2157 * with the same cwnd?
2158 */
2159static bool tcp_time_to_recover(struct sock *sk, int flag)
2160{
2161	struct tcp_sock *tp = tcp_sk(sk);
2162	__u32 packets_out;
2163
2164	/* Trick#1: The loss is proven. */
2165	if (tp->lost_out)
2166		return true;
2167
2168	/* Not-A-Trick#2 : Classic rule... */
2169	if (tcp_dupack_heuristics(tp) > tp->reordering)
2170		return true;
2171
2172	/* Trick#4: It is still not OK... But will it be useful to delay
2173	 * recovery more?
2174	 */
2175	packets_out = tp->packets_out;
2176	if (packets_out <= tp->reordering &&
2177	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2178	    !tcp_may_send_now(sk)) {
2179		/* We have nothing to send. This connection is limited
2180		 * either by receiver window or by application.
2181		 */
2182		return true;
2183	}
2184
2185	/* If a thin stream is detected, retransmit after first
2186	 * received dupack. Employ only if SACK is supported in order
2187	 * to avoid possible corner-case series of spurious retransmissions
2188	 * Use only if there are no unsent data.
2189	 */
2190	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2191	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2192	    tcp_is_sack(tp) && !tcp_send_head(sk))
2193		return true;
2194
2195	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2196	 * retransmissions due to small network reorderings, we implement
2197	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2198	 * interval if appropriate.
2199	 */
2200	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2201	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2202	    !tcp_may_send_now(sk))
2203		return !tcp_pause_early_retransmit(sk, flag);
2204
2205	return false;
2206}
2207
2208/* Detect loss in event "A" above by marking head of queue up as lost.
2209 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2210 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2211 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2212 * the maximum SACKed segments to pass before reaching this limit.
2213 */
2214static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2215{
2216	struct tcp_sock *tp = tcp_sk(sk);
2217	struct sk_buff *skb;
2218	int cnt, oldcnt;
2219	int err;
2220	unsigned int mss;
2221	/* Use SACK to deduce losses of new sequences sent during recovery */
2222	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2223
2224	WARN_ON(packets > tp->packets_out);
2225	if (tp->lost_skb_hint) {
2226		skb = tp->lost_skb_hint;
2227		cnt = tp->lost_cnt_hint;
2228		/* Head already handled? */
2229		if (mark_head && skb != tcp_write_queue_head(sk))
2230			return;
2231	} else {
2232		skb = tcp_write_queue_head(sk);
2233		cnt = 0;
2234	}
2235
2236	tcp_for_write_queue_from(skb, sk) {
2237		if (skb == tcp_send_head(sk))
2238			break;
2239		/* TODO: do this better */
2240		/* this is not the most efficient way to do this... */
2241		tp->lost_skb_hint = skb;
2242		tp->lost_cnt_hint = cnt;
2243
2244		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2245			break;
2246
2247		oldcnt = cnt;
2248		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2249		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2250			cnt += tcp_skb_pcount(skb);
2251
2252		if (cnt > packets) {
2253			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2254			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2255			    (oldcnt >= packets))
2256				break;
2257
2258			mss = skb_shinfo(skb)->gso_size;
2259			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
2260					   mss, GFP_ATOMIC);
2261			if (err < 0)
2262				break;
2263			cnt = packets;
2264		}
2265
2266		tcp_skb_mark_lost(tp, skb);
2267
2268		if (mark_head)
2269			break;
2270	}
2271	tcp_verify_left_out(tp);
2272}
2273
2274/* Account newly detected lost packet(s) */
2275
2276static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2277{
2278	struct tcp_sock *tp = tcp_sk(sk);
2279
2280	if (tcp_is_reno(tp)) {
2281		tcp_mark_head_lost(sk, 1, 1);
2282	} else if (tcp_is_fack(tp)) {
2283		int lost = tp->fackets_out - tp->reordering;
2284		if (lost <= 0)
2285			lost = 1;
2286		tcp_mark_head_lost(sk, lost, 0);
2287	} else {
2288		int sacked_upto = tp->sacked_out - tp->reordering;
2289		if (sacked_upto >= 0)
2290			tcp_mark_head_lost(sk, sacked_upto, 0);
2291		else if (fast_rexmit)
2292			tcp_mark_head_lost(sk, 1, 1);
2293	}
2294}
2295
2296/* CWND moderation, preventing bursts due to too big ACKs
2297 * in dubious situations.
2298 */
2299static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2300{
2301	tp->snd_cwnd = min(tp->snd_cwnd,
2302			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2303	tp->snd_cwnd_stamp = tcp_time_stamp;
2304}
2305
2306/* Nothing was retransmitted or returned timestamp is less
2307 * than timestamp of the first retransmission.
2308 */
2309static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2310{
2311	return !tp->retrans_stamp ||
2312		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2313		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2314}
2315
2316/* Undo procedures. */
2317
2318/* We can clear retrans_stamp when there are no retransmissions in the
2319 * window. It would seem that it is trivially available for us in
2320 * tp->retrans_out, however, that kind of assumptions doesn't consider
2321 * what will happen if errors occur when sending retransmission for the
2322 * second time. ...It could the that such segment has only
2323 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2324 * the head skb is enough except for some reneging corner cases that
2325 * are not worth the effort.
2326 *
2327 * Main reason for all this complexity is the fact that connection dying
2328 * time now depends on the validity of the retrans_stamp, in particular,
2329 * that successive retransmissions of a segment must not advance
2330 * retrans_stamp under any conditions.
2331 */
2332static bool tcp_any_retrans_done(const struct sock *sk)
2333{
2334	const struct tcp_sock *tp = tcp_sk(sk);
2335	struct sk_buff *skb;
2336
2337	if (tp->retrans_out)
2338		return true;
2339
2340	skb = tcp_write_queue_head(sk);
2341	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2342		return true;
2343
2344	return false;
2345}
2346
2347#if FASTRETRANS_DEBUG > 1
2348static void DBGUNDO(struct sock *sk, const char *msg)
2349{
2350	struct tcp_sock *tp = tcp_sk(sk);
2351	struct inet_sock *inet = inet_sk(sk);
2352
2353	if (sk->sk_family == AF_INET) {
2354		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2355			 msg,
2356			 &inet->inet_daddr, ntohs(inet->inet_dport),
2357			 tp->snd_cwnd, tcp_left_out(tp),
2358			 tp->snd_ssthresh, tp->prior_ssthresh,
2359			 tp->packets_out);
2360	}
2361#if IS_ENABLED(CONFIG_IPV6)
2362	else if (sk->sk_family == AF_INET6) {
2363		struct ipv6_pinfo *np = inet6_sk(sk);
2364		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2365			 msg,
2366			 &np->daddr, ntohs(inet->inet_dport),
2367			 tp->snd_cwnd, tcp_left_out(tp),
2368			 tp->snd_ssthresh, tp->prior_ssthresh,
2369			 tp->packets_out);
2370	}
2371#endif
2372}
2373#else
2374#define DBGUNDO(x...) do { } while (0)
2375#endif
2376
2377static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2378{
2379	struct tcp_sock *tp = tcp_sk(sk);
2380
2381	if (unmark_loss) {
2382		struct sk_buff *skb;
2383
2384		tcp_for_write_queue(skb, sk) {
2385			if (skb == tcp_send_head(sk))
2386				break;
2387			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2388		}
2389		tp->lost_out = 0;
2390		tcp_clear_all_retrans_hints(tp);
2391	}
2392
2393	if (tp->prior_ssthresh) {
2394		const struct inet_connection_sock *icsk = inet_csk(sk);
2395
2396		if (icsk->icsk_ca_ops->undo_cwnd)
2397			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2398		else
2399			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2400
2401		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2402			tp->snd_ssthresh = tp->prior_ssthresh;
2403			tcp_ecn_withdraw_cwr(tp);
2404		}
2405	} else {
2406		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2407	}
2408	tp->snd_cwnd_stamp = tcp_time_stamp;
2409	tp->undo_marker = 0;
2410}
2411
2412static inline bool tcp_may_undo(const struct tcp_sock *tp)
2413{
2414	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2415}
2416
2417/* People celebrate: "We love our President!" */
2418static bool tcp_try_undo_recovery(struct sock *sk)
2419{
2420	struct tcp_sock *tp = tcp_sk(sk);
2421
2422	if (tcp_may_undo(tp)) {
2423		int mib_idx;
2424
2425		/* Happy end! We did not retransmit anything
2426		 * or our original transmission succeeded.
2427		 */
2428		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2429		tcp_undo_cwnd_reduction(sk, false);
2430		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2431			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2432		else
2433			mib_idx = LINUX_MIB_TCPFULLUNDO;
2434
2435		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2436	}
2437	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2438		/* Hold old state until something *above* high_seq
2439		 * is ACKed. For Reno it is MUST to prevent false
2440		 * fast retransmits (RFC2582). SACK TCP is safe. */
2441		tcp_moderate_cwnd(tp);
2442		if (!tcp_any_retrans_done(sk))
2443			tp->retrans_stamp = 0;
2444		return true;
2445	}
2446	tcp_set_ca_state(sk, TCP_CA_Open);
2447	return false;
2448}
2449
2450/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2451static bool tcp_try_undo_dsack(struct sock *sk)
2452{
2453	struct tcp_sock *tp = tcp_sk(sk);
2454
2455	if (tp->undo_marker && !tp->undo_retrans) {
2456		DBGUNDO(sk, "D-SACK");
2457		tcp_undo_cwnd_reduction(sk, false);
2458		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2459		return true;
2460	}
2461	return false;
2462}
2463
2464/* Undo during loss recovery after partial ACK or using F-RTO. */
2465static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2466{
2467	struct tcp_sock *tp = tcp_sk(sk);
2468
2469	if (frto_undo || tcp_may_undo(tp)) {
2470		tcp_undo_cwnd_reduction(sk, true);
2471
2472		DBGUNDO(sk, "partial loss");
2473		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2474		if (frto_undo)
2475			NET_INC_STATS_BH(sock_net(sk),
2476					 LINUX_MIB_TCPSPURIOUSRTOS);
2477		inet_csk(sk)->icsk_retransmits = 0;
2478		if (frto_undo || tcp_is_sack(tp))
2479			tcp_set_ca_state(sk, TCP_CA_Open);
2480		return true;
2481	}
2482	return false;
2483}
2484
2485/* The cwnd reduction in CWR and Recovery use the PRR algorithm
2486 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2487 * It computes the number of packets to send (sndcnt) based on packets newly
2488 * delivered:
2489 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2490 *	cwnd reductions across a full RTT.
2491 *   2) If packets in flight is lower than ssthresh (such as due to excess
2492 *	losses and/or application stalls), do not perform any further cwnd
2493 *	reductions, but instead slow start up to ssthresh.
2494 */
2495static void tcp_init_cwnd_reduction(struct sock *sk)
2496{
2497	struct tcp_sock *tp = tcp_sk(sk);
2498
2499	tp->high_seq = tp->snd_nxt;
2500	tp->tlp_high_seq = 0;
2501	tp->snd_cwnd_cnt = 0;
2502	tp->prior_cwnd = tp->snd_cwnd;
2503	tp->prr_delivered = 0;
2504	tp->prr_out = 0;
2505	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2506	tcp_ecn_queue_cwr(tp);
2507}
2508
2509static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2510			       int fast_rexmit)
2511{
2512	struct tcp_sock *tp = tcp_sk(sk);
2513	int sndcnt = 0;
2514	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2515	int newly_acked_sacked = prior_unsacked -
2516				 (tp->packets_out - tp->sacked_out);
2517
2518	tp->prr_delivered += newly_acked_sacked;
2519	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2520		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2521			       tp->prior_cwnd - 1;
2522		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2523	} else {
2524		sndcnt = min_t(int, delta,
2525			       max_t(int, tp->prr_delivered - tp->prr_out,
2526				     newly_acked_sacked) + 1);
2527	}
2528
2529	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2530	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2531}
2532
2533static inline void tcp_end_cwnd_reduction(struct sock *sk)
2534{
2535	struct tcp_sock *tp = tcp_sk(sk);
2536
2537	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2538	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2539	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2540		tp->snd_cwnd = tp->snd_ssthresh;
2541		tp->snd_cwnd_stamp = tcp_time_stamp;
2542	}
2543	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2544}
2545
2546/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2547void tcp_enter_cwr(struct sock *sk)
2548{
2549	struct tcp_sock *tp = tcp_sk(sk);
2550
2551	tp->prior_ssthresh = 0;
2552	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2553		tp->undo_marker = 0;
2554		tcp_init_cwnd_reduction(sk);
2555		tcp_set_ca_state(sk, TCP_CA_CWR);
2556	}
2557}
2558
2559static void tcp_try_keep_open(struct sock *sk)
2560{
2561	struct tcp_sock *tp = tcp_sk(sk);
2562	int state = TCP_CA_Open;
2563
2564	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2565		state = TCP_CA_Disorder;
2566
2567	if (inet_csk(sk)->icsk_ca_state != state) {
2568		tcp_set_ca_state(sk, state);
2569		tp->high_seq = tp->snd_nxt;
2570	}
2571}
2572
2573static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2574{
2575	struct tcp_sock *tp = tcp_sk(sk);
2576
2577	tcp_verify_left_out(tp);
2578
2579	if (!tcp_any_retrans_done(sk))
2580		tp->retrans_stamp = 0;
2581
2582	if (flag & FLAG_ECE)
2583		tcp_enter_cwr(sk);
2584
2585	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2586		tcp_try_keep_open(sk);
2587	} else {
2588		tcp_cwnd_reduction(sk, prior_unsacked, 0);
2589	}
2590}
2591
2592static void tcp_mtup_probe_failed(struct sock *sk)
2593{
2594	struct inet_connection_sock *icsk = inet_csk(sk);
2595
2596	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2597	icsk->icsk_mtup.probe_size = 0;
2598}
2599
2600static void tcp_mtup_probe_success(struct sock *sk)
2601{
2602	struct tcp_sock *tp = tcp_sk(sk);
2603	struct inet_connection_sock *icsk = inet_csk(sk);
2604
2605	/* FIXME: breaks with very large cwnd */
2606	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2607	tp->snd_cwnd = tp->snd_cwnd *
2608		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2609		       icsk->icsk_mtup.probe_size;
2610	tp->snd_cwnd_cnt = 0;
2611	tp->snd_cwnd_stamp = tcp_time_stamp;
2612	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2613
2614	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2615	icsk->icsk_mtup.probe_size = 0;
2616	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2617}
2618
2619/* Do a simple retransmit without using the backoff mechanisms in
2620 * tcp_timer. This is used for path mtu discovery.
2621 * The socket is already locked here.
2622 */
2623void tcp_simple_retransmit(struct sock *sk)
2624{
2625	const struct inet_connection_sock *icsk = inet_csk(sk);
2626	struct tcp_sock *tp = tcp_sk(sk);
2627	struct sk_buff *skb;
2628	unsigned int mss = tcp_current_mss(sk);
2629	u32 prior_lost = tp->lost_out;
2630
2631	tcp_for_write_queue(skb, sk) {
2632		if (skb == tcp_send_head(sk))
2633			break;
2634		if (tcp_skb_seglen(skb) > mss &&
2635		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2636			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2637				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2638				tp->retrans_out -= tcp_skb_pcount(skb);
2639			}
2640			tcp_skb_mark_lost_uncond_verify(tp, skb);
2641		}
2642	}
2643
2644	tcp_clear_retrans_hints_partial(tp);
2645
2646	if (prior_lost == tp->lost_out)
2647		return;
2648
2649	if (tcp_is_reno(tp))
2650		tcp_limit_reno_sacked(tp);
2651
2652	tcp_verify_left_out(tp);
2653
2654	/* Don't muck with the congestion window here.
2655	 * Reason is that we do not increase amount of _data_
2656	 * in network, but units changed and effective
2657	 * cwnd/ssthresh really reduced now.
2658	 */
2659	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2660		tp->high_seq = tp->snd_nxt;
2661		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2662		tp->prior_ssthresh = 0;
2663		tp->undo_marker = 0;
2664		tcp_set_ca_state(sk, TCP_CA_Loss);
2665	}
2666	tcp_xmit_retransmit_queue(sk);
2667}
2668EXPORT_SYMBOL(tcp_simple_retransmit);
2669
2670static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2671{
2672	struct tcp_sock *tp = tcp_sk(sk);
2673	int mib_idx;
2674
2675	if (tcp_is_reno(tp))
2676		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2677	else
2678		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2679
2680	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2681
2682	tp->prior_ssthresh = 0;
2683	tcp_init_undo(tp);
2684
2685	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2686		if (!ece_ack)
2687			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2688		tcp_init_cwnd_reduction(sk);
2689	}
2690	tcp_set_ca_state(sk, TCP_CA_Recovery);
2691}
2692
2693/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2694 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2695 */
2696static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2697{
2698	struct tcp_sock *tp = tcp_sk(sk);
2699	bool recovered = !before(tp->snd_una, tp->high_seq);
2700
2701	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2702	    tcp_try_undo_loss(sk, false))
2703		return;
2704
2705	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2706		/* Step 3.b. A timeout is spurious if not all data are
2707		 * lost, i.e., never-retransmitted data are (s)acked.
2708		 */
2709		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2710		    tcp_try_undo_loss(sk, true))
2711			return;
2712
2713		if (after(tp->snd_nxt, tp->high_seq)) {
2714			if (flag & FLAG_DATA_SACKED || is_dupack)
2715				tp->frto = 0; /* Step 3.a. loss was real */
2716		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2717			tp->high_seq = tp->snd_nxt;
2718			__tcp_push_pending_frames(sk, tcp_current_mss(sk),
2719						  TCP_NAGLE_OFF);
2720			if (after(tp->snd_nxt, tp->high_seq))
2721				return; /* Step 2.b */
2722			tp->frto = 0;
2723		}
2724	}
2725
2726	if (recovered) {
2727		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2728		tcp_try_undo_recovery(sk);
2729		return;
2730	}
2731	if (tcp_is_reno(tp)) {
2732		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2733		 * delivered. Lower inflight to clock out (re)tranmissions.
2734		 */
2735		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2736			tcp_add_reno_sack(sk);
2737		else if (flag & FLAG_SND_UNA_ADVANCED)
2738			tcp_reset_reno_sack(tp);
2739	}
2740	tcp_xmit_retransmit_queue(sk);
2741}
2742
2743/* Undo during fast recovery after partial ACK. */
2744static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2745				 const int prior_unsacked)
2746{
2747	struct tcp_sock *tp = tcp_sk(sk);
2748
2749	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2750		/* Plain luck! Hole if filled with delayed
2751		 * packet, rather than with a retransmit.
2752		 */
2753		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2754
2755		/* We are getting evidence that the reordering degree is higher
2756		 * than we realized. If there are no retransmits out then we
2757		 * can undo. Otherwise we clock out new packets but do not
2758		 * mark more packets lost or retransmit more.
2759		 */
2760		if (tp->retrans_out) {
2761			tcp_cwnd_reduction(sk, prior_unsacked, 0);
2762			return true;
2763		}
2764
2765		if (!tcp_any_retrans_done(sk))
2766			tp->retrans_stamp = 0;
2767
2768		DBGUNDO(sk, "partial recovery");
2769		tcp_undo_cwnd_reduction(sk, true);
2770		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2771		tcp_try_keep_open(sk);
2772		return true;
2773	}
2774	return false;
2775}
2776
2777/* Process an event, which can update packets-in-flight not trivially.
2778 * Main goal of this function is to calculate new estimate for left_out,
2779 * taking into account both packets sitting in receiver's buffer and
2780 * packets lost by network.
2781 *
2782 * Besides that it does CWND reduction, when packet loss is detected
2783 * and changes state of machine.
2784 *
2785 * It does _not_ decide what to send, it is made in function
2786 * tcp_xmit_retransmit_queue().
2787 */
2788static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2789				  const int prior_unsacked,
2790				  bool is_dupack, int flag)
2791{
2792	struct inet_connection_sock *icsk = inet_csk(sk);
2793	struct tcp_sock *tp = tcp_sk(sk);
2794	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2795				    (tcp_fackets_out(tp) > tp->reordering));
2796	int fast_rexmit = 0;
2797
2798	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2799		tp->sacked_out = 0;
2800	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2801		tp->fackets_out = 0;
2802
2803	/* Now state machine starts.
2804	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2805	if (flag & FLAG_ECE)
2806		tp->prior_ssthresh = 0;
2807
2808	/* B. In all the states check for reneging SACKs. */
2809	if (tcp_check_sack_reneging(sk, flag))
2810		return;
2811
2812	/* C. Check consistency of the current state. */
2813	tcp_verify_left_out(tp);
2814
2815	/* D. Check state exit conditions. State can be terminated
2816	 *    when high_seq is ACKed. */
2817	if (icsk->icsk_ca_state == TCP_CA_Open) {
2818		WARN_ON(tp->retrans_out != 0);
2819		tp->retrans_stamp = 0;
2820	} else if (!before(tp->snd_una, tp->high_seq)) {
2821		switch (icsk->icsk_ca_state) {
2822		case TCP_CA_CWR:
2823			/* CWR is to be held something *above* high_seq
2824			 * is ACKed for CWR bit to reach receiver. */
2825			if (tp->snd_una != tp->high_seq) {
2826				tcp_end_cwnd_reduction(sk);
2827				tcp_set_ca_state(sk, TCP_CA_Open);
2828			}
2829			break;
2830
2831		case TCP_CA_Recovery:
2832			if (tcp_is_reno(tp))
2833				tcp_reset_reno_sack(tp);
2834			if (tcp_try_undo_recovery(sk))
2835				return;
2836			tcp_end_cwnd_reduction(sk);
2837			break;
2838		}
2839	}
2840
2841	/* E. Process state. */
2842	switch (icsk->icsk_ca_state) {
2843	case TCP_CA_Recovery:
2844		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2845			if (tcp_is_reno(tp) && is_dupack)
2846				tcp_add_reno_sack(sk);
2847		} else {
2848			if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2849				return;
2850			/* Partial ACK arrived. Force fast retransmit. */
2851			do_lost = tcp_is_reno(tp) ||
2852				  tcp_fackets_out(tp) > tp->reordering;
2853		}
2854		if (tcp_try_undo_dsack(sk)) {
2855			tcp_try_keep_open(sk);
2856			return;
2857		}
2858		break;
2859	case TCP_CA_Loss:
2860		tcp_process_loss(sk, flag, is_dupack);
2861		if (icsk->icsk_ca_state != TCP_CA_Open)
2862			return;
2863		/* Fall through to processing in Open state. */
2864	default:
2865		if (tcp_is_reno(tp)) {
2866			if (flag & FLAG_SND_UNA_ADVANCED)
2867				tcp_reset_reno_sack(tp);
2868			if (is_dupack)
2869				tcp_add_reno_sack(sk);
2870		}
2871
2872		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2873			tcp_try_undo_dsack(sk);
2874
2875		if (!tcp_time_to_recover(sk, flag)) {
2876			tcp_try_to_open(sk, flag, prior_unsacked);
2877			return;
2878		}
2879
2880		/* MTU probe failure: don't reduce cwnd */
2881		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2882		    icsk->icsk_mtup.probe_size &&
2883		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2884			tcp_mtup_probe_failed(sk);
2885			/* Restores the reduction we did in tcp_mtup_probe() */
2886			tp->snd_cwnd++;
2887			tcp_simple_retransmit(sk);
2888			return;
2889		}
2890
2891		/* Otherwise enter Recovery state */
2892		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2893		fast_rexmit = 1;
2894	}
2895
2896	if (do_lost)
2897		tcp_update_scoreboard(sk, fast_rexmit);
2898	tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2899	tcp_xmit_retransmit_queue(sk);
2900}
2901
2902static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2903				      long seq_rtt_us, long sack_rtt_us)
2904{
2905	const struct tcp_sock *tp = tcp_sk(sk);
2906
2907	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2908	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2909	 * Karn's algorithm forbids taking RTT if some retransmitted data
2910	 * is acked (RFC6298).
2911	 */
2912	if (flag & FLAG_RETRANS_DATA_ACKED)
2913		seq_rtt_us = -1L;
2914
2915	if (seq_rtt_us < 0)
2916		seq_rtt_us = sack_rtt_us;
2917
2918	/* RTTM Rule: A TSecr value received in a segment is used to
2919	 * update the averaged RTT measurement only if the segment
2920	 * acknowledges some new data, i.e., only if it advances the
2921	 * left edge of the send window.
2922	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2923	 */
2924	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2925	    flag & FLAG_ACKED)
2926		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2927
2928	if (seq_rtt_us < 0)
2929		return false;
2930
2931	tcp_rtt_estimator(sk, seq_rtt_us);
2932	tcp_set_rto(sk);
2933
2934	/* RFC6298: only reset backoff on valid RTT measurement. */
2935	inet_csk(sk)->icsk_backoff = 0;
2936	return true;
2937}
2938
2939/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2940static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2941{
2942	struct tcp_sock *tp = tcp_sk(sk);
2943	long seq_rtt_us = -1L;
2944
2945	if (synack_stamp && !tp->total_retrans)
2946		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2947
2948	/* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2949	 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2950	 */
2951	if (!tp->srtt_us)
2952		tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2953}
2954
2955static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2956{
2957	const struct inet_connection_sock *icsk = inet_csk(sk);
2958
2959	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2960	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2961}
2962
2963/* Restart timer after forward progress on connection.
2964 * RFC2988 recommends to restart timer to now+rto.
2965 */
2966void tcp_rearm_rto(struct sock *sk)
2967{
2968	const struct inet_connection_sock *icsk = inet_csk(sk);
2969	struct tcp_sock *tp = tcp_sk(sk);
2970
2971	/* If the retrans timer is currently being used by Fast Open
2972	 * for SYN-ACK retrans purpose, stay put.
2973	 */
2974	if (tp->fastopen_rsk)
2975		return;
2976
2977	if (!tp->packets_out) {
2978		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2979	} else {
2980		u32 rto = inet_csk(sk)->icsk_rto;
2981		/* Offset the time elapsed after installing regular RTO */
2982		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2983		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2984			struct sk_buff *skb = tcp_write_queue_head(sk);
2985			const u32 rto_time_stamp =
2986				tcp_skb_timestamp(skb) + rto;
2987			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2988			/* delta may not be positive if the socket is locked
2989			 * when the retrans timer fires and is rescheduled.
2990			 */
2991			if (delta > 0)
2992				rto = delta;
2993		}
2994		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2995					  TCP_RTO_MAX);
2996	}
2997}
2998
2999/* This function is called when the delayed ER timer fires. TCP enters
3000 * fast recovery and performs fast-retransmit.
3001 */
3002void tcp_resume_early_retransmit(struct sock *sk)
3003{
3004	struct tcp_sock *tp = tcp_sk(sk);
3005
3006	tcp_rearm_rto(sk);
3007
3008	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3009	if (!tp->do_early_retrans)
3010		return;
3011
3012	tcp_enter_recovery(sk, false);
3013	tcp_update_scoreboard(sk, 1);
3014	tcp_xmit_retransmit_queue(sk);
3015}
3016
3017/* If we get here, the whole TSO packet has not been acked. */
3018static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3019{
3020	struct tcp_sock *tp = tcp_sk(sk);
3021	u32 packets_acked;
3022
3023	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3024
3025	packets_acked = tcp_skb_pcount(skb);
3026	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3027		return 0;
3028	packets_acked -= tcp_skb_pcount(skb);
3029
3030	if (packets_acked) {
3031		BUG_ON(tcp_skb_pcount(skb) == 0);
3032		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3033	}
3034
3035	return packets_acked;
3036}
3037
3038static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3039			   u32 prior_snd_una)
3040{
3041	const struct skb_shared_info *shinfo;
3042
3043	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3044	if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3045		return;
3046
3047	shinfo = skb_shinfo(skb);
3048	if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3049	    between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3050		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3051}
3052
3053/* Remove acknowledged frames from the retransmission queue. If our packet
3054 * is before the ack sequence we can discard it as it's confirmed to have
3055 * arrived at the other end.
3056 */
3057static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3058			       u32 prior_snd_una, long sack_rtt_us)
3059{
3060	const struct inet_connection_sock *icsk = inet_csk(sk);
3061	struct skb_mstamp first_ackt, last_ackt, now;
3062	struct tcp_sock *tp = tcp_sk(sk);
3063	u32 prior_sacked = tp->sacked_out;
3064	u32 reord = tp->packets_out;
3065	bool fully_acked = true;
3066	long ca_seq_rtt_us = -1L;
3067	long seq_rtt_us = -1L;
3068	struct sk_buff *skb;
3069	u32 pkts_acked = 0;
3070	bool rtt_update;
3071	int flag = 0;
3072
3073	first_ackt.v64 = 0;
3074
3075	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3076		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3077		u8 sacked = scb->sacked;
3078		u32 acked_pcount;
3079
3080		tcp_ack_tstamp(sk, skb, prior_snd_una);
3081
3082		/* Determine how many packets and what bytes were acked, tso and else */
3083		if (after(scb->end_seq, tp->snd_una)) {
3084			if (tcp_skb_pcount(skb) == 1 ||
3085			    !after(tp->snd_una, scb->seq))
3086				break;
3087
3088			acked_pcount = tcp_tso_acked(sk, skb);
3089			if (!acked_pcount)
3090				break;
3091
3092			fully_acked = false;
3093		} else {
3094			/* Speedup tcp_unlink_write_queue() and next loop */
3095			prefetchw(skb->next);
3096			acked_pcount = tcp_skb_pcount(skb);
3097		}
3098
3099		if (unlikely(sacked & TCPCB_RETRANS)) {
3100			if (sacked & TCPCB_SACKED_RETRANS)
3101				tp->retrans_out -= acked_pcount;
3102			flag |= FLAG_RETRANS_DATA_ACKED;
3103		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3104			last_ackt = skb->skb_mstamp;
3105			WARN_ON_ONCE(last_ackt.v64 == 0);
3106			if (!first_ackt.v64)
3107				first_ackt = last_ackt;
3108
3109			reord = min(pkts_acked, reord);
3110			if (!after(scb->end_seq, tp->high_seq))
3111				flag |= FLAG_ORIG_SACK_ACKED;
3112		}
3113
3114		if (sacked & TCPCB_SACKED_ACKED)
3115			tp->sacked_out -= acked_pcount;
3116		if (sacked & TCPCB_LOST)
3117			tp->lost_out -= acked_pcount;
3118
3119		tp->packets_out -= acked_pcount;
3120		pkts_acked += acked_pcount;
3121
3122		/* Initial outgoing SYN's get put onto the write_queue
3123		 * just like anything else we transmit.  It is not
3124		 * true data, and if we misinform our callers that
3125		 * this ACK acks real data, we will erroneously exit
3126		 * connection startup slow start one packet too
3127		 * quickly.  This is severely frowned upon behavior.
3128		 */
3129		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3130			flag |= FLAG_DATA_ACKED;
3131		} else {
3132			flag |= FLAG_SYN_ACKED;
3133			tp->retrans_stamp = 0;
3134		}
3135
3136		if (!fully_acked)
3137			break;
3138
3139		tcp_unlink_write_queue(skb, sk);
3140		sk_wmem_free_skb(sk, skb);
3141		if (unlikely(skb == tp->retransmit_skb_hint))
3142			tp->retransmit_skb_hint = NULL;
3143		if (unlikely(skb == tp->lost_skb_hint))
3144			tp->lost_skb_hint = NULL;
3145	}
3146
3147	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3148		tp->snd_up = tp->snd_una;
3149
3150	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3151		flag |= FLAG_SACK_RENEGING;
3152
3153	skb_mstamp_get(&now);
3154	if (likely(first_ackt.v64)) {
3155		seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3156		ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3157	}
3158
3159	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3160
3161	if (flag & FLAG_ACKED) {
3162		const struct tcp_congestion_ops *ca_ops
3163			= inet_csk(sk)->icsk_ca_ops;
3164
3165		tcp_rearm_rto(sk);
3166		if (unlikely(icsk->icsk_mtup.probe_size &&
3167			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3168			tcp_mtup_probe_success(sk);
3169		}
3170
3171		if (tcp_is_reno(tp)) {
3172			tcp_remove_reno_sacks(sk, pkts_acked);
3173		} else {
3174			int delta;
3175
3176			/* Non-retransmitted hole got filled? That's reordering */
3177			if (reord < prior_fackets)
3178				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3179
3180			delta = tcp_is_fack(tp) ? pkts_acked :
3181						  prior_sacked - tp->sacked_out;
3182			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3183		}
3184
3185		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3186
3187		if (ca_ops->pkts_acked) {
3188			long rtt_us = min_t(ulong, ca_seq_rtt_us, sack_rtt_us);
3189			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3190		}
3191
3192	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3193		   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3194		/* Do not re-arm RTO if the sack RTT is measured from data sent
3195		 * after when the head was last (re)transmitted. Otherwise the
3196		 * timeout may continue to extend in loss recovery.
3197		 */
3198		tcp_rearm_rto(sk);
3199	}
3200
3201#if FASTRETRANS_DEBUG > 0
3202	WARN_ON((int)tp->sacked_out < 0);
3203	WARN_ON((int)tp->lost_out < 0);
3204	WARN_ON((int)tp->retrans_out < 0);
3205	if (!tp->packets_out && tcp_is_sack(tp)) {
3206		icsk = inet_csk(sk);
3207		if (tp->lost_out) {
3208			pr_debug("Leak l=%u %d\n",
3209				 tp->lost_out, icsk->icsk_ca_state);
3210			tp->lost_out = 0;
3211		}
3212		if (tp->sacked_out) {
3213			pr_debug("Leak s=%u %d\n",
3214				 tp->sacked_out, icsk->icsk_ca_state);
3215			tp->sacked_out = 0;
3216		}
3217		if (tp->retrans_out) {
3218			pr_debug("Leak r=%u %d\n",
3219				 tp->retrans_out, icsk->icsk_ca_state);
3220			tp->retrans_out = 0;
3221		}
3222	}
3223#endif
3224	return flag;
3225}
3226
3227static void tcp_ack_probe(struct sock *sk)
3228{
3229	const struct tcp_sock *tp = tcp_sk(sk);
3230	struct inet_connection_sock *icsk = inet_csk(sk);
3231
3232	/* Was it a usable window open? */
3233
3234	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3235		icsk->icsk_backoff = 0;
3236		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3237		/* Socket must be waked up by subsequent tcp_data_snd_check().
3238		 * This function is not for random using!
3239		 */
3240	} else {
3241		unsigned long when = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
3242
3243		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3244					  when, TCP_RTO_MAX);
3245	}
3246}
3247
3248static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3249{
3250	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3251		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3252}
3253
3254/* Decide wheather to run the increase function of congestion control. */
3255static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3256{
3257	if (tcp_in_cwnd_reduction(sk))
3258		return false;
3259
3260	/* If reordering is high then always grow cwnd whenever data is
3261	 * delivered regardless of its ordering. Otherwise stay conservative
3262	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3263	 * new SACK or ECE mark may first advance cwnd here and later reduce
3264	 * cwnd in tcp_fastretrans_alert() based on more states.
3265	 */
3266	if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3267		return flag & FLAG_FORWARD_PROGRESS;
3268
3269	return flag & FLAG_DATA_ACKED;
3270}
3271
3272/* Check that window update is acceptable.
3273 * The function assumes that snd_una<=ack<=snd_next.
3274 */
3275static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3276					const u32 ack, const u32 ack_seq,
3277					const u32 nwin)
3278{
3279	return	after(ack, tp->snd_una) ||
3280		after(ack_seq, tp->snd_wl1) ||
3281		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3282}
3283
3284/* If we update tp->snd_una, also update tp->bytes_acked */
3285static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3286{
3287	u32 delta = ack - tp->snd_una;
3288
3289	u64_stats_update_begin(&tp->syncp);
3290	tp->bytes_acked += delta;
3291	u64_stats_update_end(&tp->syncp);
3292	tp->snd_una = ack;
3293}
3294
3295/* If we update tp->rcv_nxt, also update tp->bytes_received */
3296static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3297{
3298	u32 delta = seq - tp->rcv_nxt;
3299
3300	u64_stats_update_begin(&tp->syncp);
3301	tp->bytes_received += delta;
3302	u64_stats_update_end(&tp->syncp);
3303	tp->rcv_nxt = seq;
3304}
3305
3306/* Update our send window.
3307 *
3308 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3309 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3310 */
3311static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3312				 u32 ack_seq)
3313{
3314	struct tcp_sock *tp = tcp_sk(sk);
3315	int flag = 0;
3316	u32 nwin = ntohs(tcp_hdr(skb)->window);
3317
3318	if (likely(!tcp_hdr(skb)->syn))
3319		nwin <<= tp->rx_opt.snd_wscale;
3320
3321	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3322		flag |= FLAG_WIN_UPDATE;
3323		tcp_update_wl(tp, ack_seq);
3324
3325		if (tp->snd_wnd != nwin) {
3326			tp->snd_wnd = nwin;
3327
3328			/* Note, it is the only place, where
3329			 * fast path is recovered for sending TCP.
3330			 */
3331			tp->pred_flags = 0;
3332			tcp_fast_path_check(sk);
3333
3334			if (nwin > tp->max_window) {
3335				tp->max_window = nwin;
3336				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3337			}
3338		}
3339	}
3340
3341	tcp_snd_una_update(tp, ack);
3342
3343	return flag;
3344}
3345
3346/* Return true if we're currently rate-limiting out-of-window ACKs and
3347 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3348 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3349 * attacks that send repeated SYNs or ACKs for the same connection. To
3350 * do this, we do not send a duplicate SYNACK or ACK if the remote
3351 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3352 */
3353bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3354			  int mib_idx, u32 *last_oow_ack_time)
3355{
3356	/* Data packets without SYNs are not likely part of an ACK loop. */
3357	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3358	    !tcp_hdr(skb)->syn)
3359		goto not_rate_limited;
3360
3361	if (*last_oow_ack_time) {
3362		s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3363
3364		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3365			NET_INC_STATS_BH(net, mib_idx);
3366			return true;	/* rate-limited: don't send yet! */
3367		}
3368	}
3369
3370	*last_oow_ack_time = tcp_time_stamp;
3371
3372not_rate_limited:
3373	return false;	/* not rate-limited: go ahead, send dupack now! */
3374}
3375
3376/* RFC 5961 7 [ACK Throttling] */
3377static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3378{
3379	/* unprotected vars, we dont care of overwrites */
3380	static u32 challenge_timestamp;
3381	static unsigned int challenge_count;
3382	struct tcp_sock *tp = tcp_sk(sk);
3383	u32 now;
3384
3385	/* First check our per-socket dupack rate limit. */
3386	if (tcp_oow_rate_limited(sock_net(sk), skb,
3387				 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3388				 &tp->last_oow_ack_time))
3389		return;
3390
3391	/* Then check the check host-wide RFC 5961 rate limit. */
3392	now = jiffies / HZ;
3393	if (now != challenge_timestamp) {
3394		challenge_timestamp = now;
3395		challenge_count = 0;
3396	}
3397	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3398		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3399		tcp_send_ack(sk);
3400	}
3401}
3402
3403static void tcp_store_ts_recent(struct tcp_sock *tp)
3404{
3405	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3406	tp->rx_opt.ts_recent_stamp = get_seconds();
3407}
3408
3409static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3410{
3411	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3412		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3413		 * extra check below makes sure this can only happen
3414		 * for pure ACK frames.  -DaveM
3415		 *
3416		 * Not only, also it occurs for expired timestamps.
3417		 */
3418
3419		if (tcp_paws_check(&tp->rx_opt, 0))
3420			tcp_store_ts_recent(tp);
3421	}
3422}
3423
3424/* This routine deals with acks during a TLP episode.
3425 * We mark the end of a TLP episode on receiving TLP dupack or when
3426 * ack is after tlp_high_seq.
3427 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3428 */
3429static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3430{
3431	struct tcp_sock *tp = tcp_sk(sk);
3432
3433	if (before(ack, tp->tlp_high_seq))
3434		return;
3435
3436	if (flag & FLAG_DSACKING_ACK) {
3437		/* This DSACK means original and TLP probe arrived; no loss */
3438		tp->tlp_high_seq = 0;
3439	} else if (after(ack, tp->tlp_high_seq)) {
3440		/* ACK advances: there was a loss, so reduce cwnd. Reset
3441		 * tlp_high_seq in tcp_init_cwnd_reduction()
3442		 */
3443		tcp_init_cwnd_reduction(sk);
3444		tcp_set_ca_state(sk, TCP_CA_CWR);
3445		tcp_end_cwnd_reduction(sk);
3446		tcp_try_keep_open(sk);
3447		NET_INC_STATS_BH(sock_net(sk),
3448				 LINUX_MIB_TCPLOSSPROBERECOVERY);
3449	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3450			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3451		/* Pure dupack: original and TLP probe arrived; no loss */
3452		tp->tlp_high_seq = 0;
3453	}
3454}
3455
3456static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3457{
3458	const struct inet_connection_sock *icsk = inet_csk(sk);
3459
3460	if (icsk->icsk_ca_ops->in_ack_event)
3461		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3462}
3463
3464/* This routine deals with incoming acks, but not outgoing ones. */
3465static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3466{
3467	struct inet_connection_sock *icsk = inet_csk(sk);
3468	struct tcp_sock *tp = tcp_sk(sk);
3469	u32 prior_snd_una = tp->snd_una;
3470	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3471	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3472	bool is_dupack = false;
3473	u32 prior_fackets;
3474	int prior_packets = tp->packets_out;
3475	const int prior_unsacked = tp->packets_out - tp->sacked_out;
3476	int acked = 0; /* Number of packets newly acked */
3477	long sack_rtt_us = -1L;
3478
3479	/* We very likely will need to access write queue head. */
3480	prefetchw(sk->sk_write_queue.next);
3481
3482	/* If the ack is older than previous acks
3483	 * then we can probably ignore it.
3484	 */
3485	if (before(ack, prior_snd_una)) {
3486		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3487		if (before(ack, prior_snd_una - tp->max_window)) {
3488			tcp_send_challenge_ack(sk, skb);
3489			return -1;
3490		}
3491		goto old_ack;
3492	}
3493
3494	/* If the ack includes data we haven't sent yet, discard
3495	 * this segment (RFC793 Section 3.9).
3496	 */
3497	if (after(ack, tp->snd_nxt))
3498		goto invalid_ack;
3499
3500	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3501	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3502		tcp_rearm_rto(sk);
3503
3504	if (after(ack, prior_snd_una)) {
3505		flag |= FLAG_SND_UNA_ADVANCED;
3506		icsk->icsk_retransmits = 0;
3507	}
3508
3509	prior_fackets = tp->fackets_out;
3510
3511	/* ts_recent update must be made after we are sure that the packet
3512	 * is in window.
3513	 */
3514	if (flag & FLAG_UPDATE_TS_RECENT)
3515		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3516
3517	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3518		/* Window is constant, pure forward advance.
3519		 * No more checks are required.
3520		 * Note, we use the fact that SND.UNA>=SND.WL2.
3521		 */
3522		tcp_update_wl(tp, ack_seq);
3523		tcp_snd_una_update(tp, ack);
3524		flag |= FLAG_WIN_UPDATE;
3525
3526		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3527
3528		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3529	} else {
3530		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3531
3532		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3533			flag |= FLAG_DATA;
3534		else
3535			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3536
3537		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3538
3539		if (TCP_SKB_CB(skb)->sacked)
3540			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3541							&sack_rtt_us);
3542
3543		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3544			flag |= FLAG_ECE;
3545			ack_ev_flags |= CA_ACK_ECE;
3546		}
3547
3548		if (flag & FLAG_WIN_UPDATE)
3549			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3550
3551		tcp_in_ack_event(sk, ack_ev_flags);
3552	}
3553
3554	/* We passed data and got it acked, remove any soft error
3555	 * log. Something worked...
3556	 */
3557	sk->sk_err_soft = 0;
3558	icsk->icsk_probes_out = 0;
3559	tp->rcv_tstamp = tcp_time_stamp;
3560	if (!prior_packets)
3561		goto no_queue;
3562
3563	/* See if we can take anything off of the retransmit queue. */
3564	acked = tp->packets_out;
3565	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3566				    sack_rtt_us);
3567	acked -= tp->packets_out;
3568
3569	/* Advance cwnd if state allows */
3570	if (tcp_may_raise_cwnd(sk, flag))
3571		tcp_cong_avoid(sk, ack, acked);
3572
3573	if (tcp_ack_is_dubious(sk, flag)) {
3574		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3575		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3576				      is_dupack, flag);
3577	}
3578	if (tp->tlp_high_seq)
3579		tcp_process_tlp_ack(sk, ack, flag);
3580
3581	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3582		struct dst_entry *dst = __sk_dst_get(sk);
3583		if (dst)
3584			dst_confirm(dst);
3585	}
3586
3587	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3588		tcp_schedule_loss_probe(sk);
3589	tcp_update_pacing_rate(sk);
3590	return 1;
3591
3592no_queue:
3593	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3594	if (flag & FLAG_DSACKING_ACK)
3595		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3596				      is_dupack, flag);
3597	/* If this ack opens up a zero window, clear backoff.  It was
3598	 * being used to time the probes, and is probably far higher than
3599	 * it needs to be for normal retransmission.
3600	 */
3601	if (tcp_send_head(sk))
3602		tcp_ack_probe(sk);
3603
3604	if (tp->tlp_high_seq)
3605		tcp_process_tlp_ack(sk, ack, flag);
3606	return 1;
3607
3608invalid_ack:
3609	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3610	return -1;
3611
3612old_ack:
3613	/* If data was SACKed, tag it and see if we should send more data.
3614	 * If data was DSACKed, see if we can undo a cwnd reduction.
3615	 */
3616	if (TCP_SKB_CB(skb)->sacked) {
3617		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3618						&sack_rtt_us);
3619		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3620				      is_dupack, flag);
3621	}
3622
3623	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3624	return 0;
3625}
3626
3627static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3628				      bool syn, struct tcp_fastopen_cookie *foc,
3629				      bool exp_opt)
3630{
3631	/* Valid only in SYN or SYN-ACK with an even length.  */
3632	if (!foc || !syn || len < 0 || (len & 1))
3633		return;
3634
3635	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3636	    len <= TCP_FASTOPEN_COOKIE_MAX)
3637		memcpy(foc->val, cookie, len);
3638	else if (len != 0)
3639		len = -1;
3640	foc->len = len;
3641	foc->exp = exp_opt;
3642}
3643
3644/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3645 * But, this can also be called on packets in the established flow when
3646 * the fast version below fails.
3647 */
3648void tcp_parse_options(const struct sk_buff *skb,
3649		       struct tcp_options_received *opt_rx, int estab,
3650		       struct tcp_fastopen_cookie *foc)
3651{
3652	const unsigned char *ptr;
3653	const struct tcphdr *th = tcp_hdr(skb);
3654	int length = (th->doff * 4) - sizeof(struct tcphdr);
3655
3656	ptr = (const unsigned char *)(th + 1);
3657	opt_rx->saw_tstamp = 0;
3658
3659	while (length > 0) {
3660		int opcode = *ptr++;
3661		int opsize;
3662
3663		switch (opcode) {
3664		case TCPOPT_EOL:
3665			return;
3666		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3667			length--;
3668			continue;
3669		default:
3670			opsize = *ptr++;
3671			if (opsize < 2) /* "silly options" */
3672				return;
3673			if (opsize > length)
3674				return;	/* don't parse partial options */
3675			switch (opcode) {
3676			case TCPOPT_MSS:
3677				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3678					u16 in_mss = get_unaligned_be16(ptr);
3679					if (in_mss) {
3680						if (opt_rx->user_mss &&
3681						    opt_rx->user_mss < in_mss)
3682							in_mss = opt_rx->user_mss;
3683						opt_rx->mss_clamp = in_mss;
3684					}
3685				}
3686				break;
3687			case TCPOPT_WINDOW:
3688				if (opsize == TCPOLEN_WINDOW && th->syn &&
3689				    !estab && sysctl_tcp_window_scaling) {
3690					__u8 snd_wscale = *(__u8 *)ptr;
3691					opt_rx->wscale_ok = 1;
3692					if (snd_wscale > 14) {
3693						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3694								     __func__,
3695								     snd_wscale);
3696						snd_wscale = 14;
3697					}
3698					opt_rx->snd_wscale = snd_wscale;
3699				}
3700				break;
3701			case TCPOPT_TIMESTAMP:
3702				if ((opsize == TCPOLEN_TIMESTAMP) &&
3703				    ((estab && opt_rx->tstamp_ok) ||
3704				     (!estab && sysctl_tcp_timestamps))) {
3705					opt_rx->saw_tstamp = 1;
3706					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3707					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3708				}
3709				break;
3710			case TCPOPT_SACK_PERM:
3711				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3712				    !estab && sysctl_tcp_sack) {
3713					opt_rx->sack_ok = TCP_SACK_SEEN;
3714					tcp_sack_reset(opt_rx);
3715				}
3716				break;
3717
3718			case TCPOPT_SACK:
3719				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3720				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3721				   opt_rx->sack_ok) {
3722					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3723				}
3724				break;
3725#ifdef CONFIG_TCP_MD5SIG
3726			case TCPOPT_MD5SIG:
3727				/*
3728				 * The MD5 Hash has already been
3729				 * checked (see tcp_v{4,6}_do_rcv()).
3730				 */
3731				break;
3732#endif
3733			case TCPOPT_FASTOPEN:
3734				tcp_parse_fastopen_option(
3735					opsize - TCPOLEN_FASTOPEN_BASE,
3736					ptr, th->syn, foc, false);
3737				break;
3738
3739			case TCPOPT_EXP:
3740				/* Fast Open option shares code 254 using a
3741				 * 16 bits magic number.
3742				 */
3743				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3744				    get_unaligned_be16(ptr) ==
3745				    TCPOPT_FASTOPEN_MAGIC)
3746					tcp_parse_fastopen_option(opsize -
3747						TCPOLEN_EXP_FASTOPEN_BASE,
3748						ptr + 2, th->syn, foc, true);
3749				break;
3750
3751			}
3752			ptr += opsize-2;
3753			length -= opsize;
3754		}
3755	}
3756}
3757EXPORT_SYMBOL(tcp_parse_options);
3758
3759static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3760{
3761	const __be32 *ptr = (const __be32 *)(th + 1);
3762
3763	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3764			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3765		tp->rx_opt.saw_tstamp = 1;
3766		++ptr;
3767		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3768		++ptr;
3769		if (*ptr)
3770			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3771		else
3772			tp->rx_opt.rcv_tsecr = 0;
3773		return true;
3774	}
3775	return false;
3776}
3777
3778/* Fast parse options. This hopes to only see timestamps.
3779 * If it is wrong it falls back on tcp_parse_options().
3780 */
3781static bool tcp_fast_parse_options(const struct sk_buff *skb,
3782				   const struct tcphdr *th, struct tcp_sock *tp)
3783{
3784	/* In the spirit of fast parsing, compare doff directly to constant
3785	 * values.  Because equality is used, short doff can be ignored here.
3786	 */
3787	if (th->doff == (sizeof(*th) / 4)) {
3788		tp->rx_opt.saw_tstamp = 0;
3789		return false;
3790	} else if (tp->rx_opt.tstamp_ok &&
3791		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3792		if (tcp_parse_aligned_timestamp(tp, th))
3793			return true;
3794	}
3795
3796	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3797	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3798		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3799
3800	return true;
3801}
3802
3803#ifdef CONFIG_TCP_MD5SIG
3804/*
3805 * Parse MD5 Signature option
3806 */
3807const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3808{
3809	int length = (th->doff << 2) - sizeof(*th);
3810	const u8 *ptr = (const u8 *)(th + 1);
3811
3812	/* If the TCP option is too short, we can short cut */
3813	if (length < TCPOLEN_MD5SIG)
3814		return NULL;
3815
3816	while (length > 0) {
3817		int opcode = *ptr++;
3818		int opsize;
3819
3820		switch (opcode) {
3821		case TCPOPT_EOL:
3822			return NULL;
3823		case TCPOPT_NOP:
3824			length--;
3825			continue;
3826		default:
3827			opsize = *ptr++;
3828			if (opsize < 2 || opsize > length)
3829				return NULL;
3830			if (opcode == TCPOPT_MD5SIG)
3831				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3832		}
3833		ptr += opsize - 2;
3834		length -= opsize;
3835	}
3836	return NULL;
3837}
3838EXPORT_SYMBOL(tcp_parse_md5sig_option);
3839#endif
3840
3841/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3842 *
3843 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3844 * it can pass through stack. So, the following predicate verifies that
3845 * this segment is not used for anything but congestion avoidance or
3846 * fast retransmit. Moreover, we even are able to eliminate most of such
3847 * second order effects, if we apply some small "replay" window (~RTO)
3848 * to timestamp space.
3849 *
3850 * All these measures still do not guarantee that we reject wrapped ACKs
3851 * on networks with high bandwidth, when sequence space is recycled fastly,
3852 * but it guarantees that such events will be very rare and do not affect
3853 * connection seriously. This doesn't look nice, but alas, PAWS is really
3854 * buggy extension.
3855 *
3856 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3857 * states that events when retransmit arrives after original data are rare.
3858 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3859 * the biggest problem on large power networks even with minor reordering.
3860 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3861 * up to bandwidth of 18Gigabit/sec. 8) ]
3862 */
3863
3864static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3865{
3866	const struct tcp_sock *tp = tcp_sk(sk);
3867	const struct tcphdr *th = tcp_hdr(skb);
3868	u32 seq = TCP_SKB_CB(skb)->seq;
3869	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3870
3871	return (/* 1. Pure ACK with correct sequence number. */
3872		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3873
3874		/* 2. ... and duplicate ACK. */
3875		ack == tp->snd_una &&
3876
3877		/* 3. ... and does not update window. */
3878		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3879
3880		/* 4. ... and sits in replay window. */
3881		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3882}
3883
3884static inline bool tcp_paws_discard(const struct sock *sk,
3885				   const struct sk_buff *skb)
3886{
3887	const struct tcp_sock *tp = tcp_sk(sk);
3888
3889	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3890	       !tcp_disordered_ack(sk, skb);
3891}
3892
3893/* Check segment sequence number for validity.
3894 *
3895 * Segment controls are considered valid, if the segment
3896 * fits to the window after truncation to the window. Acceptability
3897 * of data (and SYN, FIN, of course) is checked separately.
3898 * See tcp_data_queue(), for example.
3899 *
3900 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3901 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3902 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3903 * (borrowed from freebsd)
3904 */
3905
3906static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3907{
3908	return	!before(end_seq, tp->rcv_wup) &&
3909		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3910}
3911
3912/* When we get a reset we do this. */
3913void tcp_reset(struct sock *sk)
3914{
3915	/* We want the right error as BSD sees it (and indeed as we do). */
3916	switch (sk->sk_state) {
3917	case TCP_SYN_SENT:
3918		sk->sk_err = ECONNREFUSED;
3919		break;
3920	case TCP_CLOSE_WAIT:
3921		sk->sk_err = EPIPE;
3922		break;
3923	case TCP_CLOSE:
3924		return;
3925	default:
3926		sk->sk_err = ECONNRESET;
3927	}
3928	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3929	smp_wmb();
3930
3931	if (!sock_flag(sk, SOCK_DEAD))
3932		sk->sk_error_report(sk);
3933
3934	tcp_done(sk);
3935}
3936
3937/*
3938 * 	Process the FIN bit. This now behaves as it is supposed to work
3939 *	and the FIN takes effect when it is validly part of sequence
3940 *	space. Not before when we get holes.
3941 *
3942 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3943 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3944 *	TIME-WAIT)
3945 *
3946 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3947 *	close and we go into CLOSING (and later onto TIME-WAIT)
3948 *
3949 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3950 */
3951static void tcp_fin(struct sock *sk)
3952{
3953	struct tcp_sock *tp = tcp_sk(sk);
3954	const struct dst_entry *dst;
3955
3956	inet_csk_schedule_ack(sk);
3957
3958	sk->sk_shutdown |= RCV_SHUTDOWN;
3959	sock_set_flag(sk, SOCK_DONE);
3960
3961	switch (sk->sk_state) {
3962	case TCP_SYN_RECV:
3963	case TCP_ESTABLISHED:
3964		/* Move to CLOSE_WAIT */
3965		tcp_set_state(sk, TCP_CLOSE_WAIT);
3966		dst = __sk_dst_get(sk);
3967		if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3968			inet_csk(sk)->icsk_ack.pingpong = 1;
3969		break;
3970
3971	case TCP_CLOSE_WAIT:
3972	case TCP_CLOSING:
3973		/* Received a retransmission of the FIN, do
3974		 * nothing.
3975		 */
3976		break;
3977	case TCP_LAST_ACK:
3978		/* RFC793: Remain in the LAST-ACK state. */
3979		break;
3980
3981	case TCP_FIN_WAIT1:
3982		/* This case occurs when a simultaneous close
3983		 * happens, we must ack the received FIN and
3984		 * enter the CLOSING state.
3985		 */
3986		tcp_send_ack(sk);
3987		tcp_set_state(sk, TCP_CLOSING);
3988		break;
3989	case TCP_FIN_WAIT2:
3990		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3991		tcp_send_ack(sk);
3992		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3993		break;
3994	default:
3995		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3996		 * cases we should never reach this piece of code.
3997		 */
3998		pr_err("%s: Impossible, sk->sk_state=%d\n",
3999		       __func__, sk->sk_state);
4000		break;
4001	}
4002
4003	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4004	 * Probably, we should reset in this case. For now drop them.
4005	 */
4006	__skb_queue_purge(&tp->out_of_order_queue);
4007	if (tcp_is_sack(tp))
4008		tcp_sack_reset(&tp->rx_opt);
4009	sk_mem_reclaim(sk);
4010
4011	if (!sock_flag(sk, SOCK_DEAD)) {
4012		sk->sk_state_change(sk);
4013
4014		/* Do not send POLL_HUP for half duplex close. */
4015		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4016		    sk->sk_state == TCP_CLOSE)
4017			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4018		else
4019			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4020	}
4021}
4022
4023static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4024				  u32 end_seq)
4025{
4026	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4027		if (before(seq, sp->start_seq))
4028			sp->start_seq = seq;
4029		if (after(end_seq, sp->end_seq))
4030			sp->end_seq = end_seq;
4031		return true;
4032	}
4033	return false;
4034}
4035
4036static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4037{
4038	struct tcp_sock *tp = tcp_sk(sk);
4039
4040	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4041		int mib_idx;
4042
4043		if (before(seq, tp->rcv_nxt))
4044			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4045		else
4046			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4047
4048		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4049
4050		tp->rx_opt.dsack = 1;
4051		tp->duplicate_sack[0].start_seq = seq;
4052		tp->duplicate_sack[0].end_seq = end_seq;
4053	}
4054}
4055
4056static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4057{
4058	struct tcp_sock *tp = tcp_sk(sk);
4059
4060	if (!tp->rx_opt.dsack)
4061		tcp_dsack_set(sk, seq, end_seq);
4062	else
4063		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4064}
4065
4066static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4067{
4068	struct tcp_sock *tp = tcp_sk(sk);
4069
4070	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4071	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4072		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4073		tcp_enter_quickack_mode(sk);
4074
4075		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4076			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4077
4078			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4079				end_seq = tp->rcv_nxt;
4080			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4081		}
4082	}
4083
4084	tcp_send_ack(sk);
4085}
4086
4087/* These routines update the SACK block as out-of-order packets arrive or
4088 * in-order packets close up the sequence space.
4089 */
4090static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4091{
4092	int this_sack;
4093	struct tcp_sack_block *sp = &tp->selective_acks[0];
4094	struct tcp_sack_block *swalk = sp + 1;
4095
4096	/* See if the recent change to the first SACK eats into
4097	 * or hits the sequence space of other SACK blocks, if so coalesce.
4098	 */
4099	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4100		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4101			int i;
4102
4103			/* Zap SWALK, by moving every further SACK up by one slot.
4104			 * Decrease num_sacks.
4105			 */
4106			tp->rx_opt.num_sacks--;
4107			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4108				sp[i] = sp[i + 1];
4109			continue;
4110		}
4111		this_sack++, swalk++;
4112	}
4113}
4114
4115static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4116{
4117	struct tcp_sock *tp = tcp_sk(sk);
4118	struct tcp_sack_block *sp = &tp->selective_acks[0];
4119	int cur_sacks = tp->rx_opt.num_sacks;
4120	int this_sack;
4121
4122	if (!cur_sacks)
4123		goto new_sack;
4124
4125	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4126		if (tcp_sack_extend(sp, seq, end_seq)) {
4127			/* Rotate this_sack to the first one. */
4128			for (; this_sack > 0; this_sack--, sp--)
4129				swap(*sp, *(sp - 1));
4130			if (cur_sacks > 1)
4131				tcp_sack_maybe_coalesce(tp);
4132			return;
4133		}
4134	}
4135
4136	/* Could not find an adjacent existing SACK, build a new one,
4137	 * put it at the front, and shift everyone else down.  We
4138	 * always know there is at least one SACK present already here.
4139	 *
4140	 * If the sack array is full, forget about the last one.
4141	 */
4142	if (this_sack >= TCP_NUM_SACKS) {
4143		this_sack--;
4144		tp->rx_opt.num_sacks--;
4145		sp--;
4146	}
4147	for (; this_sack > 0; this_sack--, sp--)
4148		*sp = *(sp - 1);
4149
4150new_sack:
4151	/* Build the new head SACK, and we're done. */
4152	sp->start_seq = seq;
4153	sp->end_seq = end_seq;
4154	tp->rx_opt.num_sacks++;
4155}
4156
4157/* RCV.NXT advances, some SACKs should be eaten. */
4158
4159static void tcp_sack_remove(struct tcp_sock *tp)
4160{
4161	struct tcp_sack_block *sp = &tp->selective_acks[0];
4162	int num_sacks = tp->rx_opt.num_sacks;
4163	int this_sack;
4164
4165	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4166	if (skb_queue_empty(&tp->out_of_order_queue)) {
4167		tp->rx_opt.num_sacks = 0;
4168		return;
4169	}
4170
4171	for (this_sack = 0; this_sack < num_sacks;) {
4172		/* Check if the start of the sack is covered by RCV.NXT. */
4173		if (!before(tp->rcv_nxt, sp->start_seq)) {
4174			int i;
4175
4176			/* RCV.NXT must cover all the block! */
4177			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4178
4179			/* Zap this SACK, by moving forward any other SACKS. */
4180			for (i = this_sack+1; i < num_sacks; i++)
4181				tp->selective_acks[i-1] = tp->selective_acks[i];
4182			num_sacks--;
4183			continue;
4184		}
4185		this_sack++;
4186		sp++;
4187	}
4188	tp->rx_opt.num_sacks = num_sacks;
4189}
4190
4191/**
4192 * tcp_try_coalesce - try to merge skb to prior one
4193 * @sk: socket
4194 * @to: prior buffer
4195 * @from: buffer to add in queue
4196 * @fragstolen: pointer to boolean
4197 *
4198 * Before queueing skb @from after @to, try to merge them
4199 * to reduce overall memory use and queue lengths, if cost is small.
4200 * Packets in ofo or receive queues can stay a long time.
4201 * Better try to coalesce them right now to avoid future collapses.
4202 * Returns true if caller should free @from instead of queueing it
4203 */
4204static bool tcp_try_coalesce(struct sock *sk,
4205			     struct sk_buff *to,
4206			     struct sk_buff *from,
4207			     bool *fragstolen)
4208{
4209	int delta;
4210
4211	*fragstolen = false;
4212
4213	/* Its possible this segment overlaps with prior segment in queue */
4214	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4215		return false;
4216
4217	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4218		return false;
4219
4220	atomic_add(delta, &sk->sk_rmem_alloc);
4221	sk_mem_charge(sk, delta);
4222	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4223	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4224	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4225	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4226	return true;
4227}
4228
4229/* This one checks to see if we can put data from the
4230 * out_of_order queue into the receive_queue.
4231 */
4232static void tcp_ofo_queue(struct sock *sk)
4233{
4234	struct tcp_sock *tp = tcp_sk(sk);
4235	__u32 dsack_high = tp->rcv_nxt;
4236	struct sk_buff *skb, *tail;
4237	bool fragstolen, eaten;
4238
4239	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4240		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4241			break;
4242
4243		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4244			__u32 dsack = dsack_high;
4245			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4246				dsack_high = TCP_SKB_CB(skb)->end_seq;
4247			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4248		}
4249
4250		__skb_unlink(skb, &tp->out_of_order_queue);
4251		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4252			SOCK_DEBUG(sk, "ofo packet was already received\n");
4253			__kfree_skb(skb);
4254			continue;
4255		}
4256		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4257			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4258			   TCP_SKB_CB(skb)->end_seq);
4259
4260		tail = skb_peek_tail(&sk->sk_receive_queue);
4261		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4262		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4263		if (!eaten)
4264			__skb_queue_tail(&sk->sk_receive_queue, skb);
4265		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4266			tcp_fin(sk);
4267		if (eaten)
4268			kfree_skb_partial(skb, fragstolen);
4269	}
4270}
4271
4272static bool tcp_prune_ofo_queue(struct sock *sk);
4273static int tcp_prune_queue(struct sock *sk);
4274
4275static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4276				 unsigned int size)
4277{
4278	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4279	    !sk_rmem_schedule(sk, skb, size)) {
4280
4281		if (tcp_prune_queue(sk) < 0)
4282			return -1;
4283
4284		if (!sk_rmem_schedule(sk, skb, size)) {
4285			if (!tcp_prune_ofo_queue(sk))
4286				return -1;
4287
4288			if (!sk_rmem_schedule(sk, skb, size))
4289				return -1;
4290		}
4291	}
4292	return 0;
4293}
4294
4295static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4296{
4297	struct tcp_sock *tp = tcp_sk(sk);
4298	struct sk_buff *skb1;
4299	u32 seq, end_seq;
4300
4301	tcp_ecn_check_ce(tp, skb);
4302
4303	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4304		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4305		__kfree_skb(skb);
4306		return;
4307	}
4308
4309	/* Disable header prediction. */
4310	tp->pred_flags = 0;
4311	inet_csk_schedule_ack(sk);
4312
4313	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4314	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4315		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4316
4317	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4318	if (!skb1) {
4319		/* Initial out of order segment, build 1 SACK. */
4320		if (tcp_is_sack(tp)) {
4321			tp->rx_opt.num_sacks = 1;
4322			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4323			tp->selective_acks[0].end_seq =
4324						TCP_SKB_CB(skb)->end_seq;
4325		}
4326		__skb_queue_head(&tp->out_of_order_queue, skb);
4327		goto end;
4328	}
4329
4330	seq = TCP_SKB_CB(skb)->seq;
4331	end_seq = TCP_SKB_CB(skb)->end_seq;
4332
4333	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4334		bool fragstolen;
4335
4336		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4337			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4338		} else {
4339			tcp_grow_window(sk, skb);
4340			kfree_skb_partial(skb, fragstolen);
4341			skb = NULL;
4342		}
4343
4344		if (!tp->rx_opt.num_sacks ||
4345		    tp->selective_acks[0].end_seq != seq)
4346			goto add_sack;
4347
4348		/* Common case: data arrive in order after hole. */
4349		tp->selective_acks[0].end_seq = end_seq;
4350		goto end;
4351	}
4352
4353	/* Find place to insert this segment. */
4354	while (1) {
4355		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4356			break;
4357		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4358			skb1 = NULL;
4359			break;
4360		}
4361		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4362	}
4363
4364	/* Do skb overlap to previous one? */
4365	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4366		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4367			/* All the bits are present. Drop. */
4368			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4369			__kfree_skb(skb);
4370			skb = NULL;
4371			tcp_dsack_set(sk, seq, end_seq);
4372			goto add_sack;
4373		}
4374		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4375			/* Partial overlap. */
4376			tcp_dsack_set(sk, seq,
4377				      TCP_SKB_CB(skb1)->end_seq);
4378		} else {
4379			if (skb_queue_is_first(&tp->out_of_order_queue,
4380					       skb1))
4381				skb1 = NULL;
4382			else
4383				skb1 = skb_queue_prev(
4384					&tp->out_of_order_queue,
4385					skb1);
4386		}
4387	}
4388	if (!skb1)
4389		__skb_queue_head(&tp->out_of_order_queue, skb);
4390	else
4391		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4392
4393	/* And clean segments covered by new one as whole. */
4394	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4395		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4396
4397		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4398			break;
4399		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4400			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4401					 end_seq);
4402			break;
4403		}
4404		__skb_unlink(skb1, &tp->out_of_order_queue);
4405		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4406				 TCP_SKB_CB(skb1)->end_seq);
4407		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4408		__kfree_skb(skb1);
4409	}
4410
4411add_sack:
4412	if (tcp_is_sack(tp))
4413		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4414end:
4415	if (skb) {
4416		tcp_grow_window(sk, skb);
4417		skb_set_owner_r(skb, sk);
4418	}
4419}
4420
4421static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4422		  bool *fragstolen)
4423{
4424	int eaten;
4425	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4426
4427	__skb_pull(skb, hdrlen);
4428	eaten = (tail &&
4429		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4430	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4431	if (!eaten) {
4432		__skb_queue_tail(&sk->sk_receive_queue, skb);
4433		skb_set_owner_r(skb, sk);
4434	}
4435	return eaten;
4436}
4437
4438int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4439{
4440	struct sk_buff *skb;
4441	int err = -ENOMEM;
4442	int data_len = 0;
4443	bool fragstolen;
4444
4445	if (size == 0)
4446		return 0;
4447
4448	if (size > PAGE_SIZE) {
4449		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4450
4451		data_len = npages << PAGE_SHIFT;
4452		size = data_len + (size & ~PAGE_MASK);
4453	}
4454	skb = alloc_skb_with_frags(size - data_len, data_len,
4455				   PAGE_ALLOC_COSTLY_ORDER,
4456				   &err, sk->sk_allocation);
4457	if (!skb)
4458		goto err;
4459
4460	skb_put(skb, size - data_len);
4461	skb->data_len = data_len;
4462	skb->len = size;
4463
4464	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4465		goto err_free;
4466
4467	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4468	if (err)
4469		goto err_free;
4470
4471	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4472	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4473	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4474
4475	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4476		WARN_ON_ONCE(fragstolen); /* should not happen */
4477		__kfree_skb(skb);
4478	}
4479	return size;
4480
4481err_free:
4482	kfree_skb(skb);
4483err:
4484	return err;
4485
4486}
4487
4488static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4489{
4490	struct tcp_sock *tp = tcp_sk(sk);
4491	int eaten = -1;
4492	bool fragstolen = false;
4493
4494	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4495		goto drop;
4496
4497	skb_dst_drop(skb);
4498	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4499
4500	tcp_ecn_accept_cwr(tp, skb);
4501
4502	tp->rx_opt.dsack = 0;
4503
4504	/*  Queue data for delivery to the user.
4505	 *  Packets in sequence go to the receive queue.
4506	 *  Out of sequence packets to the out_of_order_queue.
4507	 */
4508	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4509		if (tcp_receive_window(tp) == 0)
4510			goto out_of_window;
4511
4512		/* Ok. In sequence. In window. */
4513		if (tp->ucopy.task == current &&
4514		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4515		    sock_owned_by_user(sk) && !tp->urg_data) {
4516			int chunk = min_t(unsigned int, skb->len,
4517					  tp->ucopy.len);
4518
4519			__set_current_state(TASK_RUNNING);
4520
4521			local_bh_enable();
4522			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4523				tp->ucopy.len -= chunk;
4524				tp->copied_seq += chunk;
4525				eaten = (chunk == skb->len);
4526				tcp_rcv_space_adjust(sk);
4527			}
4528			local_bh_disable();
4529		}
4530
4531		if (eaten <= 0) {
4532queue_and_out:
4533			if (eaten < 0 &&
4534			    tcp_try_rmem_schedule(sk, skb, skb->truesize))
4535				goto drop;
4536
4537			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4538		}
4539		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4540		if (skb->len)
4541			tcp_event_data_recv(sk, skb);
4542		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4543			tcp_fin(sk);
4544
4545		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4546			tcp_ofo_queue(sk);
4547
4548			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4549			 * gap in queue is filled.
4550			 */
4551			if (skb_queue_empty(&tp->out_of_order_queue))
4552				inet_csk(sk)->icsk_ack.pingpong = 0;
4553		}
4554
4555		if (tp->rx_opt.num_sacks)
4556			tcp_sack_remove(tp);
4557
4558		tcp_fast_path_check(sk);
4559
4560		if (eaten > 0)
4561			kfree_skb_partial(skb, fragstolen);
4562		if (!sock_flag(sk, SOCK_DEAD))
4563			sk->sk_data_ready(sk);
4564		return;
4565	}
4566
4567	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4568		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4569		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4570		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4571
4572out_of_window:
4573		tcp_enter_quickack_mode(sk);
4574		inet_csk_schedule_ack(sk);
4575drop:
4576		__kfree_skb(skb);
4577		return;
4578	}
4579
4580	/* Out of window. F.e. zero window probe. */
4581	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4582		goto out_of_window;
4583
4584	tcp_enter_quickack_mode(sk);
4585
4586	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4587		/* Partial packet, seq < rcv_next < end_seq */
4588		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4589			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4590			   TCP_SKB_CB(skb)->end_seq);
4591
4592		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4593
4594		/* If window is closed, drop tail of packet. But after
4595		 * remembering D-SACK for its head made in previous line.
4596		 */
4597		if (!tcp_receive_window(tp))
4598			goto out_of_window;
4599		goto queue_and_out;
4600	}
4601
4602	tcp_data_queue_ofo(sk, skb);
4603}
4604
4605static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4606					struct sk_buff_head *list)
4607{
4608	struct sk_buff *next = NULL;
4609
4610	if (!skb_queue_is_last(list, skb))
4611		next = skb_queue_next(list, skb);
4612
4613	__skb_unlink(skb, list);
4614	__kfree_skb(skb);
4615	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4616
4617	return next;
4618}
4619
4620/* Collapse contiguous sequence of skbs head..tail with
4621 * sequence numbers start..end.
4622 *
4623 * If tail is NULL, this means until the end of the list.
4624 *
4625 * Segments with FIN/SYN are not collapsed (only because this
4626 * simplifies code)
4627 */
4628static void
4629tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4630	     struct sk_buff *head, struct sk_buff *tail,
4631	     u32 start, u32 end)
4632{
4633	struct sk_buff *skb, *n;
4634	bool end_of_skbs;
4635
4636	/* First, check that queue is collapsible and find
4637	 * the point where collapsing can be useful. */
4638	skb = head;
4639restart:
4640	end_of_skbs = true;
4641	skb_queue_walk_from_safe(list, skb, n) {
4642		if (skb == tail)
4643			break;
4644		/* No new bits? It is possible on ofo queue. */
4645		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4646			skb = tcp_collapse_one(sk, skb, list);
4647			if (!skb)
4648				break;
4649			goto restart;
4650		}
4651
4652		/* The first skb to collapse is:
4653		 * - not SYN/FIN and
4654		 * - bloated or contains data before "start" or
4655		 *   overlaps to the next one.
4656		 */
4657		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4658		    (tcp_win_from_space(skb->truesize) > skb->len ||
4659		     before(TCP_SKB_CB(skb)->seq, start))) {
4660			end_of_skbs = false;
4661			break;
4662		}
4663
4664		if (!skb_queue_is_last(list, skb)) {
4665			struct sk_buff *next = skb_queue_next(list, skb);
4666			if (next != tail &&
4667			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4668				end_of_skbs = false;
4669				break;
4670			}
4671		}
4672
4673		/* Decided to skip this, advance start seq. */
4674		start = TCP_SKB_CB(skb)->end_seq;
4675	}
4676	if (end_of_skbs ||
4677	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4678		return;
4679
4680	while (before(start, end)) {
4681		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4682		struct sk_buff *nskb;
4683
4684		nskb = alloc_skb(copy, GFP_ATOMIC);
4685		if (!nskb)
4686			return;
4687
4688		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4689		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4690		__skb_queue_before(list, skb, nskb);
4691		skb_set_owner_r(nskb, sk);
4692
4693		/* Copy data, releasing collapsed skbs. */
4694		while (copy > 0) {
4695			int offset = start - TCP_SKB_CB(skb)->seq;
4696			int size = TCP_SKB_CB(skb)->end_seq - start;
4697
4698			BUG_ON(offset < 0);
4699			if (size > 0) {
4700				size = min(copy, size);
4701				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4702					BUG();
4703				TCP_SKB_CB(nskb)->end_seq += size;
4704				copy -= size;
4705				start += size;
4706			}
4707			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4708				skb = tcp_collapse_one(sk, skb, list);
4709				if (!skb ||
4710				    skb == tail ||
4711				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4712					return;
4713			}
4714		}
4715	}
4716}
4717
4718/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4719 * and tcp_collapse() them until all the queue is collapsed.
4720 */
4721static void tcp_collapse_ofo_queue(struct sock *sk)
4722{
4723	struct tcp_sock *tp = tcp_sk(sk);
4724	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4725	struct sk_buff *head;
4726	u32 start, end;
4727
4728	if (!skb)
4729		return;
4730
4731	start = TCP_SKB_CB(skb)->seq;
4732	end = TCP_SKB_CB(skb)->end_seq;
4733	head = skb;
4734
4735	for (;;) {
4736		struct sk_buff *next = NULL;
4737
4738		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4739			next = skb_queue_next(&tp->out_of_order_queue, skb);
4740		skb = next;
4741
4742		/* Segment is terminated when we see gap or when
4743		 * we are at the end of all the queue. */
4744		if (!skb ||
4745		    after(TCP_SKB_CB(skb)->seq, end) ||
4746		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4747			tcp_collapse(sk, &tp->out_of_order_queue,
4748				     head, skb, start, end);
4749			head = skb;
4750			if (!skb)
4751				break;
4752			/* Start new segment */
4753			start = TCP_SKB_CB(skb)->seq;
4754			end = TCP_SKB_CB(skb)->end_seq;
4755		} else {
4756			if (before(TCP_SKB_CB(skb)->seq, start))
4757				start = TCP_SKB_CB(skb)->seq;
4758			if (after(TCP_SKB_CB(skb)->end_seq, end))
4759				end = TCP_SKB_CB(skb)->end_seq;
4760		}
4761	}
4762}
4763
4764/*
4765 * Purge the out-of-order queue.
4766 * Return true if queue was pruned.
4767 */
4768static bool tcp_prune_ofo_queue(struct sock *sk)
4769{
4770	struct tcp_sock *tp = tcp_sk(sk);
4771	bool res = false;
4772
4773	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4774		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4775		__skb_queue_purge(&tp->out_of_order_queue);
4776
4777		/* Reset SACK state.  A conforming SACK implementation will
4778		 * do the same at a timeout based retransmit.  When a connection
4779		 * is in a sad state like this, we care only about integrity
4780		 * of the connection not performance.
4781		 */
4782		if (tp->rx_opt.sack_ok)
4783			tcp_sack_reset(&tp->rx_opt);
4784		sk_mem_reclaim(sk);
4785		res = true;
4786	}
4787	return res;
4788}
4789
4790/* Reduce allocated memory if we can, trying to get
4791 * the socket within its memory limits again.
4792 *
4793 * Return less than zero if we should start dropping frames
4794 * until the socket owning process reads some of the data
4795 * to stabilize the situation.
4796 */
4797static int tcp_prune_queue(struct sock *sk)
4798{
4799	struct tcp_sock *tp = tcp_sk(sk);
4800
4801	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4802
4803	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4804
4805	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4806		tcp_clamp_window(sk);
4807	else if (sk_under_memory_pressure(sk))
4808		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4809
4810	tcp_collapse_ofo_queue(sk);
4811	if (!skb_queue_empty(&sk->sk_receive_queue))
4812		tcp_collapse(sk, &sk->sk_receive_queue,
4813			     skb_peek(&sk->sk_receive_queue),
4814			     NULL,
4815			     tp->copied_seq, tp->rcv_nxt);
4816	sk_mem_reclaim(sk);
4817
4818	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4819		return 0;
4820
4821	/* Collapsing did not help, destructive actions follow.
4822	 * This must not ever occur. */
4823
4824	tcp_prune_ofo_queue(sk);
4825
4826	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4827		return 0;
4828
4829	/* If we are really being abused, tell the caller to silently
4830	 * drop receive data on the floor.  It will get retransmitted
4831	 * and hopefully then we'll have sufficient space.
4832	 */
4833	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4834
4835	/* Massive buffer overcommit. */
4836	tp->pred_flags = 0;
4837	return -1;
4838}
4839
4840static bool tcp_should_expand_sndbuf(const struct sock *sk)
4841{
4842	const struct tcp_sock *tp = tcp_sk(sk);
4843
4844	/* If the user specified a specific send buffer setting, do
4845	 * not modify it.
4846	 */
4847	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4848		return false;
4849
4850	/* If we are under global TCP memory pressure, do not expand.  */
4851	if (sk_under_memory_pressure(sk))
4852		return false;
4853
4854	/* If we are under soft global TCP memory pressure, do not expand.  */
4855	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4856		return false;
4857
4858	/* If we filled the congestion window, do not expand.  */
4859	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4860		return false;
4861
4862	return true;
4863}
4864
4865/* When incoming ACK allowed to free some skb from write_queue,
4866 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4867 * on the exit from tcp input handler.
4868 *
4869 * PROBLEM: sndbuf expansion does not work well with largesend.
4870 */
4871static void tcp_new_space(struct sock *sk)
4872{
4873	struct tcp_sock *tp = tcp_sk(sk);
4874
4875	if (tcp_should_expand_sndbuf(sk)) {
4876		tcp_sndbuf_expand(sk);
4877		tp->snd_cwnd_stamp = tcp_time_stamp;
4878	}
4879
4880	sk->sk_write_space(sk);
4881}
4882
4883static void tcp_check_space(struct sock *sk)
4884{
4885	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4886		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4887		/* pairs with tcp_poll() */
4888		smp_mb__after_atomic();
4889		if (sk->sk_socket &&
4890		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4891			tcp_new_space(sk);
4892	}
4893}
4894
4895static inline void tcp_data_snd_check(struct sock *sk)
4896{
4897	tcp_push_pending_frames(sk);
4898	tcp_check_space(sk);
4899}
4900
4901/*
4902 * Check if sending an ack is needed.
4903 */
4904static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4905{
4906	struct tcp_sock *tp = tcp_sk(sk);
4907
4908	    /* More than one full frame received... */
4909	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4910	     /* ... and right edge of window advances far enough.
4911	      * (tcp_recvmsg() will send ACK otherwise). Or...
4912	      */
4913	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4914	    /* We ACK each frame or... */
4915	    tcp_in_quickack_mode(sk) ||
4916	    /* We have out of order data. */
4917	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4918		/* Then ack it now */
4919		tcp_send_ack(sk);
4920	} else {
4921		/* Else, send delayed ack. */
4922		tcp_send_delayed_ack(sk);
4923	}
4924}
4925
4926static inline void tcp_ack_snd_check(struct sock *sk)
4927{
4928	if (!inet_csk_ack_scheduled(sk)) {
4929		/* We sent a data segment already. */
4930		return;
4931	}
4932	__tcp_ack_snd_check(sk, 1);
4933}
4934
4935/*
4936 *	This routine is only called when we have urgent data
4937 *	signaled. Its the 'slow' part of tcp_urg. It could be
4938 *	moved inline now as tcp_urg is only called from one
4939 *	place. We handle URGent data wrong. We have to - as
4940 *	BSD still doesn't use the correction from RFC961.
4941 *	For 1003.1g we should support a new option TCP_STDURG to permit
4942 *	either form (or just set the sysctl tcp_stdurg).
4943 */
4944
4945static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4946{
4947	struct tcp_sock *tp = tcp_sk(sk);
4948	u32 ptr = ntohs(th->urg_ptr);
4949
4950	if (ptr && !sysctl_tcp_stdurg)
4951		ptr--;
4952	ptr += ntohl(th->seq);
4953
4954	/* Ignore urgent data that we've already seen and read. */
4955	if (after(tp->copied_seq, ptr))
4956		return;
4957
4958	/* Do not replay urg ptr.
4959	 *
4960	 * NOTE: interesting situation not covered by specs.
4961	 * Misbehaving sender may send urg ptr, pointing to segment,
4962	 * which we already have in ofo queue. We are not able to fetch
4963	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4964	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4965	 * situations. But it is worth to think about possibility of some
4966	 * DoSes using some hypothetical application level deadlock.
4967	 */
4968	if (before(ptr, tp->rcv_nxt))
4969		return;
4970
4971	/* Do we already have a newer (or duplicate) urgent pointer? */
4972	if (tp->urg_data && !after(ptr, tp->urg_seq))
4973		return;
4974
4975	/* Tell the world about our new urgent pointer. */
4976	sk_send_sigurg(sk);
4977
4978	/* We may be adding urgent data when the last byte read was
4979	 * urgent. To do this requires some care. We cannot just ignore
4980	 * tp->copied_seq since we would read the last urgent byte again
4981	 * as data, nor can we alter copied_seq until this data arrives
4982	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4983	 *
4984	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4985	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4986	 * and expect that both A and B disappear from stream. This is _wrong_.
4987	 * Though this happens in BSD with high probability, this is occasional.
4988	 * Any application relying on this is buggy. Note also, that fix "works"
4989	 * only in this artificial test. Insert some normal data between A and B and we will
4990	 * decline of BSD again. Verdict: it is better to remove to trap
4991	 * buggy users.
4992	 */
4993	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4994	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4995		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4996		tp->copied_seq++;
4997		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4998			__skb_unlink(skb, &sk->sk_receive_queue);
4999			__kfree_skb(skb);
5000		}
5001	}
5002
5003	tp->urg_data = TCP_URG_NOTYET;
5004	tp->urg_seq = ptr;
5005
5006	/* Disable header prediction. */
5007	tp->pred_flags = 0;
5008}
5009
5010/* This is the 'fast' part of urgent handling. */
5011static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5012{
5013	struct tcp_sock *tp = tcp_sk(sk);
5014
5015	/* Check if we get a new urgent pointer - normally not. */
5016	if (th->urg)
5017		tcp_check_urg(sk, th);
5018
5019	/* Do we wait for any urgent data? - normally not... */
5020	if (tp->urg_data == TCP_URG_NOTYET) {
5021		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5022			  th->syn;
5023
5024		/* Is the urgent pointer pointing into this packet? */
5025		if (ptr < skb->len) {
5026			u8 tmp;
5027			if (skb_copy_bits(skb, ptr, &tmp, 1))
5028				BUG();
5029			tp->urg_data = TCP_URG_VALID | tmp;
5030			if (!sock_flag(sk, SOCK_DEAD))
5031				sk->sk_data_ready(sk);
5032		}
5033	}
5034}
5035
5036static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5037{
5038	struct tcp_sock *tp = tcp_sk(sk);
5039	int chunk = skb->len - hlen;
5040	int err;
5041
5042	local_bh_enable();
5043	if (skb_csum_unnecessary(skb))
5044		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5045	else
5046		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5047
5048	if (!err) {
5049		tp->ucopy.len -= chunk;
5050		tp->copied_seq += chunk;
5051		tcp_rcv_space_adjust(sk);
5052	}
5053
5054	local_bh_disable();
5055	return err;
5056}
5057
5058static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5059					    struct sk_buff *skb)
5060{
5061	__sum16 result;
5062
5063	if (sock_owned_by_user(sk)) {
5064		local_bh_enable();
5065		result = __tcp_checksum_complete(skb);
5066		local_bh_disable();
5067	} else {
5068		result = __tcp_checksum_complete(skb);
5069	}
5070	return result;
5071}
5072
5073static inline bool tcp_checksum_complete_user(struct sock *sk,
5074					     struct sk_buff *skb)
5075{
5076	return !skb_csum_unnecessary(skb) &&
5077	       __tcp_checksum_complete_user(sk, skb);
5078}
5079
5080/* Does PAWS and seqno based validation of an incoming segment, flags will
5081 * play significant role here.
5082 */
5083static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5084				  const struct tcphdr *th, int syn_inerr)
5085{
5086	struct tcp_sock *tp = tcp_sk(sk);
5087
5088	/* RFC1323: H1. Apply PAWS check first. */
5089	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5090	    tcp_paws_discard(sk, skb)) {
5091		if (!th->rst) {
5092			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5093			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5094						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5095						  &tp->last_oow_ack_time))
5096				tcp_send_dupack(sk, skb);
5097			goto discard;
5098		}
5099		/* Reset is accepted even if it did not pass PAWS. */
5100	}
5101
5102	/* Step 1: check sequence number */
5103	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5104		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5105		 * (RST) segments are validated by checking their SEQ-fields."
5106		 * And page 69: "If an incoming segment is not acceptable,
5107		 * an acknowledgment should be sent in reply (unless the RST
5108		 * bit is set, if so drop the segment and return)".
5109		 */
5110		if (!th->rst) {
5111			if (th->syn)
5112				goto syn_challenge;
5113			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5114						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5115						  &tp->last_oow_ack_time))
5116				tcp_send_dupack(sk, skb);
5117		}
5118		goto discard;
5119	}
5120
5121	/* Step 2: check RST bit */
5122	if (th->rst) {
5123		/* RFC 5961 3.2 :
5124		 * If sequence number exactly matches RCV.NXT, then
5125		 *     RESET the connection
5126		 * else
5127		 *     Send a challenge ACK
5128		 */
5129		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5130			tcp_reset(sk);
5131		else
5132			tcp_send_challenge_ack(sk, skb);
5133		goto discard;
5134	}
5135
5136	/* step 3: check security and precedence [ignored] */
5137
5138	/* step 4: Check for a SYN
5139	 * RFC 5961 4.2 : Send a challenge ack
5140	 */
5141	if (th->syn) {
5142syn_challenge:
5143		if (syn_inerr)
5144			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5145		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5146		tcp_send_challenge_ack(sk, skb);
5147		goto discard;
5148	}
5149
5150	return true;
5151
5152discard:
5153	__kfree_skb(skb);
5154	return false;
5155}
5156
5157/*
5158 *	TCP receive function for the ESTABLISHED state.
5159 *
5160 *	It is split into a fast path and a slow path. The fast path is
5161 * 	disabled when:
5162 *	- A zero window was announced from us - zero window probing
5163 *        is only handled properly in the slow path.
5164 *	- Out of order segments arrived.
5165 *	- Urgent data is expected.
5166 *	- There is no buffer space left
5167 *	- Unexpected TCP flags/window values/header lengths are received
5168 *	  (detected by checking the TCP header against pred_flags)
5169 *	- Data is sent in both directions. Fast path only supports pure senders
5170 *	  or pure receivers (this means either the sequence number or the ack
5171 *	  value must stay constant)
5172 *	- Unexpected TCP option.
5173 *
5174 *	When these conditions are not satisfied it drops into a standard
5175 *	receive procedure patterned after RFC793 to handle all cases.
5176 *	The first three cases are guaranteed by proper pred_flags setting,
5177 *	the rest is checked inline. Fast processing is turned on in
5178 *	tcp_data_queue when everything is OK.
5179 */
5180void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5181			 const struct tcphdr *th, unsigned int len)
5182{
5183	struct tcp_sock *tp = tcp_sk(sk);
5184
5185	if (unlikely(!sk->sk_rx_dst))
5186		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5187	/*
5188	 *	Header prediction.
5189	 *	The code loosely follows the one in the famous
5190	 *	"30 instruction TCP receive" Van Jacobson mail.
5191	 *
5192	 *	Van's trick is to deposit buffers into socket queue
5193	 *	on a device interrupt, to call tcp_recv function
5194	 *	on the receive process context and checksum and copy
5195	 *	the buffer to user space. smart...
5196	 *
5197	 *	Our current scheme is not silly either but we take the
5198	 *	extra cost of the net_bh soft interrupt processing...
5199	 *	We do checksum and copy also but from device to kernel.
5200	 */
5201
5202	tp->rx_opt.saw_tstamp = 0;
5203
5204	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5205	 *	if header_prediction is to be made
5206	 *	'S' will always be tp->tcp_header_len >> 2
5207	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5208	 *  turn it off	(when there are holes in the receive
5209	 *	 space for instance)
5210	 *	PSH flag is ignored.
5211	 */
5212
5213	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5214	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5215	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5216		int tcp_header_len = tp->tcp_header_len;
5217
5218		/* Timestamp header prediction: tcp_header_len
5219		 * is automatically equal to th->doff*4 due to pred_flags
5220		 * match.
5221		 */
5222
5223		/* Check timestamp */
5224		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5225			/* No? Slow path! */
5226			if (!tcp_parse_aligned_timestamp(tp, th))
5227				goto slow_path;
5228
5229			/* If PAWS failed, check it more carefully in slow path */
5230			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5231				goto slow_path;
5232
5233			/* DO NOT update ts_recent here, if checksum fails
5234			 * and timestamp was corrupted part, it will result
5235			 * in a hung connection since we will drop all
5236			 * future packets due to the PAWS test.
5237			 */
5238		}
5239
5240		if (len <= tcp_header_len) {
5241			/* Bulk data transfer: sender */
5242			if (len == tcp_header_len) {
5243				/* Predicted packet is in window by definition.
5244				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5245				 * Hence, check seq<=rcv_wup reduces to:
5246				 */
5247				if (tcp_header_len ==
5248				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5249				    tp->rcv_nxt == tp->rcv_wup)
5250					tcp_store_ts_recent(tp);
5251
5252				/* We know that such packets are checksummed
5253				 * on entry.
5254				 */
5255				tcp_ack(sk, skb, 0);
5256				__kfree_skb(skb);
5257				tcp_data_snd_check(sk);
5258				return;
5259			} else { /* Header too small */
5260				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5261				goto discard;
5262			}
5263		} else {
5264			int eaten = 0;
5265			bool fragstolen = false;
5266
5267			if (tp->ucopy.task == current &&
5268			    tp->copied_seq == tp->rcv_nxt &&
5269			    len - tcp_header_len <= tp->ucopy.len &&
5270			    sock_owned_by_user(sk)) {
5271				__set_current_state(TASK_RUNNING);
5272
5273				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5274					/* Predicted packet is in window by definition.
5275					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5276					 * Hence, check seq<=rcv_wup reduces to:
5277					 */
5278					if (tcp_header_len ==
5279					    (sizeof(struct tcphdr) +
5280					     TCPOLEN_TSTAMP_ALIGNED) &&
5281					    tp->rcv_nxt == tp->rcv_wup)
5282						tcp_store_ts_recent(tp);
5283
5284					tcp_rcv_rtt_measure_ts(sk, skb);
5285
5286					__skb_pull(skb, tcp_header_len);
5287					tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5288					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5289					eaten = 1;
5290				}
5291			}
5292			if (!eaten) {
5293				if (tcp_checksum_complete_user(sk, skb))
5294					goto csum_error;
5295
5296				if ((int)skb->truesize > sk->sk_forward_alloc)
5297					goto step5;
5298
5299				/* Predicted packet is in window by definition.
5300				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5301				 * Hence, check seq<=rcv_wup reduces to:
5302				 */
5303				if (tcp_header_len ==
5304				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5305				    tp->rcv_nxt == tp->rcv_wup)
5306					tcp_store_ts_recent(tp);
5307
5308				tcp_rcv_rtt_measure_ts(sk, skb);
5309
5310				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5311
5312				/* Bulk data transfer: receiver */
5313				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5314						      &fragstolen);
5315			}
5316
5317			tcp_event_data_recv(sk, skb);
5318
5319			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5320				/* Well, only one small jumplet in fast path... */
5321				tcp_ack(sk, skb, FLAG_DATA);
5322				tcp_data_snd_check(sk);
5323				if (!inet_csk_ack_scheduled(sk))
5324					goto no_ack;
5325			}
5326
5327			__tcp_ack_snd_check(sk, 0);
5328no_ack:
5329			if (eaten)
5330				kfree_skb_partial(skb, fragstolen);
5331			sk->sk_data_ready(sk);
5332			return;
5333		}
5334	}
5335
5336slow_path:
5337	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5338		goto csum_error;
5339
5340	if (!th->ack && !th->rst && !th->syn)
5341		goto discard;
5342
5343	/*
5344	 *	Standard slow path.
5345	 */
5346
5347	if (!tcp_validate_incoming(sk, skb, th, 1))
5348		return;
5349
5350step5:
5351	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5352		goto discard;
5353
5354	tcp_rcv_rtt_measure_ts(sk, skb);
5355
5356	/* Process urgent data. */
5357	tcp_urg(sk, skb, th);
5358
5359	/* step 7: process the segment text */
5360	tcp_data_queue(sk, skb);
5361
5362	tcp_data_snd_check(sk);
5363	tcp_ack_snd_check(sk);
5364	return;
5365
5366csum_error:
5367	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5368	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5369
5370discard:
5371	__kfree_skb(skb);
5372}
5373EXPORT_SYMBOL(tcp_rcv_established);
5374
5375void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5376{
5377	struct tcp_sock *tp = tcp_sk(sk);
5378	struct inet_connection_sock *icsk = inet_csk(sk);
5379
5380	tcp_set_state(sk, TCP_ESTABLISHED);
5381
5382	if (skb) {
5383		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5384		security_inet_conn_established(sk, skb);
5385	}
5386
5387	/* Make sure socket is routed, for correct metrics.  */
5388	icsk->icsk_af_ops->rebuild_header(sk);
5389
5390	tcp_init_metrics(sk);
5391
5392	tcp_init_congestion_control(sk);
5393
5394	/* Prevent spurious tcp_cwnd_restart() on first data
5395	 * packet.
5396	 */
5397	tp->lsndtime = tcp_time_stamp;
5398
5399	tcp_init_buffer_space(sk);
5400
5401	if (sock_flag(sk, SOCK_KEEPOPEN))
5402		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5403
5404	if (!tp->rx_opt.snd_wscale)
5405		__tcp_fast_path_on(tp, tp->snd_wnd);
5406	else
5407		tp->pred_flags = 0;
5408
5409	if (!sock_flag(sk, SOCK_DEAD)) {
5410		sk->sk_state_change(sk);
5411		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5412	}
5413}
5414
5415static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5416				    struct tcp_fastopen_cookie *cookie)
5417{
5418	struct tcp_sock *tp = tcp_sk(sk);
5419	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5420	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5421	bool syn_drop = false;
5422
5423	if (mss == tp->rx_opt.user_mss) {
5424		struct tcp_options_received opt;
5425
5426		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5427		tcp_clear_options(&opt);
5428		opt.user_mss = opt.mss_clamp = 0;
5429		tcp_parse_options(synack, &opt, 0, NULL);
5430		mss = opt.mss_clamp;
5431	}
5432
5433	if (!tp->syn_fastopen) {
5434		/* Ignore an unsolicited cookie */
5435		cookie->len = -1;
5436	} else if (tp->total_retrans) {
5437		/* SYN timed out and the SYN-ACK neither has a cookie nor
5438		 * acknowledges data. Presumably the remote received only
5439		 * the retransmitted (regular) SYNs: either the original
5440		 * SYN-data or the corresponding SYN-ACK was dropped.
5441		 */
5442		syn_drop = (cookie->len < 0 && data);
5443	} else if (cookie->len < 0 && !tp->syn_data) {
5444		/* We requested a cookie but didn't get it. If we did not use
5445		 * the (old) exp opt format then try so next time (try_exp=1).
5446		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5447		 */
5448		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5449	}
5450
5451	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5452
5453	if (data) { /* Retransmit unacked data in SYN */
5454		tcp_for_write_queue_from(data, sk) {
5455			if (data == tcp_send_head(sk) ||
5456			    __tcp_retransmit_skb(sk, data))
5457				break;
5458		}
5459		tcp_rearm_rto(sk);
5460		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5461		return true;
5462	}
5463	tp->syn_data_acked = tp->syn_data;
5464	if (tp->syn_data_acked)
5465		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5466	return false;
5467}
5468
5469static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5470					 const struct tcphdr *th, unsigned int len)
5471{
5472	struct inet_connection_sock *icsk = inet_csk(sk);
5473	struct tcp_sock *tp = tcp_sk(sk);
5474	struct tcp_fastopen_cookie foc = { .len = -1 };
5475	int saved_clamp = tp->rx_opt.mss_clamp;
5476
5477	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5478	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5479		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5480
5481	if (th->ack) {
5482		/* rfc793:
5483		 * "If the state is SYN-SENT then
5484		 *    first check the ACK bit
5485		 *      If the ACK bit is set
5486		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5487		 *        a reset (unless the RST bit is set, if so drop
5488		 *        the segment and return)"
5489		 */
5490		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5491		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5492			goto reset_and_undo;
5493
5494		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5495		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5496			     tcp_time_stamp)) {
5497			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5498			goto reset_and_undo;
5499		}
5500
5501		/* Now ACK is acceptable.
5502		 *
5503		 * "If the RST bit is set
5504		 *    If the ACK was acceptable then signal the user "error:
5505		 *    connection reset", drop the segment, enter CLOSED state,
5506		 *    delete TCB, and return."
5507		 */
5508
5509		if (th->rst) {
5510			tcp_reset(sk);
5511			goto discard;
5512		}
5513
5514		/* rfc793:
5515		 *   "fifth, if neither of the SYN or RST bits is set then
5516		 *    drop the segment and return."
5517		 *
5518		 *    See note below!
5519		 *                                        --ANK(990513)
5520		 */
5521		if (!th->syn)
5522			goto discard_and_undo;
5523
5524		/* rfc793:
5525		 *   "If the SYN bit is on ...
5526		 *    are acceptable then ...
5527		 *    (our SYN has been ACKed), change the connection
5528		 *    state to ESTABLISHED..."
5529		 */
5530
5531		tcp_ecn_rcv_synack(tp, th);
5532
5533		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5534		tcp_ack(sk, skb, FLAG_SLOWPATH);
5535
5536		/* Ok.. it's good. Set up sequence numbers and
5537		 * move to established.
5538		 */
5539		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5540		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5541
5542		/* RFC1323: The window in SYN & SYN/ACK segments is
5543		 * never scaled.
5544		 */
5545		tp->snd_wnd = ntohs(th->window);
5546
5547		if (!tp->rx_opt.wscale_ok) {
5548			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5549			tp->window_clamp = min(tp->window_clamp, 65535U);
5550		}
5551
5552		if (tp->rx_opt.saw_tstamp) {
5553			tp->rx_opt.tstamp_ok	   = 1;
5554			tp->tcp_header_len =
5555				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5556			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5557			tcp_store_ts_recent(tp);
5558		} else {
5559			tp->tcp_header_len = sizeof(struct tcphdr);
5560		}
5561
5562		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5563			tcp_enable_fack(tp);
5564
5565		tcp_mtup_init(sk);
5566		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5567		tcp_initialize_rcv_mss(sk);
5568
5569		/* Remember, tcp_poll() does not lock socket!
5570		 * Change state from SYN-SENT only after copied_seq
5571		 * is initialized. */
5572		tp->copied_seq = tp->rcv_nxt;
5573
5574		smp_mb();
5575
5576		tcp_finish_connect(sk, skb);
5577
5578		if ((tp->syn_fastopen || tp->syn_data) &&
5579		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5580			return -1;
5581
5582		if (sk->sk_write_pending ||
5583		    icsk->icsk_accept_queue.rskq_defer_accept ||
5584		    icsk->icsk_ack.pingpong) {
5585			/* Save one ACK. Data will be ready after
5586			 * several ticks, if write_pending is set.
5587			 *
5588			 * It may be deleted, but with this feature tcpdumps
5589			 * look so _wonderfully_ clever, that I was not able
5590			 * to stand against the temptation 8)     --ANK
5591			 */
5592			inet_csk_schedule_ack(sk);
5593			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5594			tcp_enter_quickack_mode(sk);
5595			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5596						  TCP_DELACK_MAX, TCP_RTO_MAX);
5597
5598discard:
5599			__kfree_skb(skb);
5600			return 0;
5601		} else {
5602			tcp_send_ack(sk);
5603		}
5604		return -1;
5605	}
5606
5607	/* No ACK in the segment */
5608
5609	if (th->rst) {
5610		/* rfc793:
5611		 * "If the RST bit is set
5612		 *
5613		 *      Otherwise (no ACK) drop the segment and return."
5614		 */
5615
5616		goto discard_and_undo;
5617	}
5618
5619	/* PAWS check. */
5620	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5621	    tcp_paws_reject(&tp->rx_opt, 0))
5622		goto discard_and_undo;
5623
5624	if (th->syn) {
5625		/* We see SYN without ACK. It is attempt of
5626		 * simultaneous connect with crossed SYNs.
5627		 * Particularly, it can be connect to self.
5628		 */
5629		tcp_set_state(sk, TCP_SYN_RECV);
5630
5631		if (tp->rx_opt.saw_tstamp) {
5632			tp->rx_opt.tstamp_ok = 1;
5633			tcp_store_ts_recent(tp);
5634			tp->tcp_header_len =
5635				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5636		} else {
5637			tp->tcp_header_len = sizeof(struct tcphdr);
5638		}
5639
5640		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5641		tp->copied_seq = tp->rcv_nxt;
5642		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5643
5644		/* RFC1323: The window in SYN & SYN/ACK segments is
5645		 * never scaled.
5646		 */
5647		tp->snd_wnd    = ntohs(th->window);
5648		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5649		tp->max_window = tp->snd_wnd;
5650
5651		tcp_ecn_rcv_syn(tp, th);
5652
5653		tcp_mtup_init(sk);
5654		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5655		tcp_initialize_rcv_mss(sk);
5656
5657		tcp_send_synack(sk);
5658#if 0
5659		/* Note, we could accept data and URG from this segment.
5660		 * There are no obstacles to make this (except that we must
5661		 * either change tcp_recvmsg() to prevent it from returning data
5662		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5663		 *
5664		 * However, if we ignore data in ACKless segments sometimes,
5665		 * we have no reasons to accept it sometimes.
5666		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5667		 * is not flawless. So, discard packet for sanity.
5668		 * Uncomment this return to process the data.
5669		 */
5670		return -1;
5671#else
5672		goto discard;
5673#endif
5674	}
5675	/* "fifth, if neither of the SYN or RST bits is set then
5676	 * drop the segment and return."
5677	 */
5678
5679discard_and_undo:
5680	tcp_clear_options(&tp->rx_opt);
5681	tp->rx_opt.mss_clamp = saved_clamp;
5682	goto discard;
5683
5684reset_and_undo:
5685	tcp_clear_options(&tp->rx_opt);
5686	tp->rx_opt.mss_clamp = saved_clamp;
5687	return 1;
5688}
5689
5690/*
5691 *	This function implements the receiving procedure of RFC 793 for
5692 *	all states except ESTABLISHED and TIME_WAIT.
5693 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5694 *	address independent.
5695 */
5696
5697int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5698			  const struct tcphdr *th, unsigned int len)
5699{
5700	struct tcp_sock *tp = tcp_sk(sk);
5701	struct inet_connection_sock *icsk = inet_csk(sk);
5702	struct request_sock *req;
5703	int queued = 0;
5704	bool acceptable;
5705	u32 synack_stamp;
5706
5707	tp->rx_opt.saw_tstamp = 0;
5708
5709	switch (sk->sk_state) {
5710	case TCP_CLOSE:
5711		goto discard;
5712
5713	case TCP_LISTEN:
5714		if (th->ack)
5715			return 1;
5716
5717		if (th->rst)
5718			goto discard;
5719
5720		if (th->syn) {
5721			if (th->fin)
5722				goto discard;
5723			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5724				return 1;
5725
5726			/* Now we have several options: In theory there is
5727			 * nothing else in the frame. KA9Q has an option to
5728			 * send data with the syn, BSD accepts data with the
5729			 * syn up to the [to be] advertised window and
5730			 * Solaris 2.1 gives you a protocol error. For now
5731			 * we just ignore it, that fits the spec precisely
5732			 * and avoids incompatibilities. It would be nice in
5733			 * future to drop through and process the data.
5734			 *
5735			 * Now that TTCP is starting to be used we ought to
5736			 * queue this data.
5737			 * But, this leaves one open to an easy denial of
5738			 * service attack, and SYN cookies can't defend
5739			 * against this problem. So, we drop the data
5740			 * in the interest of security over speed unless
5741			 * it's still in use.
5742			 */
5743			kfree_skb(skb);
5744			return 0;
5745		}
5746		goto discard;
5747
5748	case TCP_SYN_SENT:
5749		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5750		if (queued >= 0)
5751			return queued;
5752
5753		/* Do step6 onward by hand. */
5754		tcp_urg(sk, skb, th);
5755		__kfree_skb(skb);
5756		tcp_data_snd_check(sk);
5757		return 0;
5758	}
5759
5760	req = tp->fastopen_rsk;
5761	if (req) {
5762		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5763		    sk->sk_state != TCP_FIN_WAIT1);
5764
5765		if (!tcp_check_req(sk, skb, req, true))
5766			goto discard;
5767	}
5768
5769	if (!th->ack && !th->rst && !th->syn)
5770		goto discard;
5771
5772	if (!tcp_validate_incoming(sk, skb, th, 0))
5773		return 0;
5774
5775	/* step 5: check the ACK field */
5776	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5777				      FLAG_UPDATE_TS_RECENT) > 0;
5778
5779	switch (sk->sk_state) {
5780	case TCP_SYN_RECV:
5781		if (!acceptable)
5782			return 1;
5783
5784		/* Once we leave TCP_SYN_RECV, we no longer need req
5785		 * so release it.
5786		 */
5787		if (req) {
5788			synack_stamp = tcp_rsk(req)->snt_synack;
5789			tp->total_retrans = req->num_retrans;
5790			reqsk_fastopen_remove(sk, req, false);
5791		} else {
5792			synack_stamp = tp->lsndtime;
5793			/* Make sure socket is routed, for correct metrics. */
5794			icsk->icsk_af_ops->rebuild_header(sk);
5795			tcp_init_congestion_control(sk);
5796
5797			tcp_mtup_init(sk);
5798			tp->copied_seq = tp->rcv_nxt;
5799			tcp_init_buffer_space(sk);
5800		}
5801		smp_mb();
5802		tcp_set_state(sk, TCP_ESTABLISHED);
5803		sk->sk_state_change(sk);
5804
5805		/* Note, that this wakeup is only for marginal crossed SYN case.
5806		 * Passively open sockets are not waked up, because
5807		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5808		 */
5809		if (sk->sk_socket)
5810			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5811
5812		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5813		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5814		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5815		tcp_synack_rtt_meas(sk, synack_stamp);
5816
5817		if (tp->rx_opt.tstamp_ok)
5818			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5819
5820		if (req) {
5821			/* Re-arm the timer because data may have been sent out.
5822			 * This is similar to the regular data transmission case
5823			 * when new data has just been ack'ed.
5824			 *
5825			 * (TFO) - we could try to be more aggressive and
5826			 * retransmitting any data sooner based on when they
5827			 * are sent out.
5828			 */
5829			tcp_rearm_rto(sk);
5830		} else
5831			tcp_init_metrics(sk);
5832
5833		tcp_update_pacing_rate(sk);
5834
5835		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5836		tp->lsndtime = tcp_time_stamp;
5837
5838		tcp_initialize_rcv_mss(sk);
5839		tcp_fast_path_on(tp);
5840		break;
5841
5842	case TCP_FIN_WAIT1: {
5843		struct dst_entry *dst;
5844		int tmo;
5845
5846		/* If we enter the TCP_FIN_WAIT1 state and we are a
5847		 * Fast Open socket and this is the first acceptable
5848		 * ACK we have received, this would have acknowledged
5849		 * our SYNACK so stop the SYNACK timer.
5850		 */
5851		if (req) {
5852			/* Return RST if ack_seq is invalid.
5853			 * Note that RFC793 only says to generate a
5854			 * DUPACK for it but for TCP Fast Open it seems
5855			 * better to treat this case like TCP_SYN_RECV
5856			 * above.
5857			 */
5858			if (!acceptable)
5859				return 1;
5860			/* We no longer need the request sock. */
5861			reqsk_fastopen_remove(sk, req, false);
5862			tcp_rearm_rto(sk);
5863		}
5864		if (tp->snd_una != tp->write_seq)
5865			break;
5866
5867		tcp_set_state(sk, TCP_FIN_WAIT2);
5868		sk->sk_shutdown |= SEND_SHUTDOWN;
5869
5870		dst = __sk_dst_get(sk);
5871		if (dst)
5872			dst_confirm(dst);
5873
5874		if (!sock_flag(sk, SOCK_DEAD)) {
5875			/* Wake up lingering close() */
5876			sk->sk_state_change(sk);
5877			break;
5878		}
5879
5880		if (tp->linger2 < 0 ||
5881		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5882		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5883			tcp_done(sk);
5884			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5885			return 1;
5886		}
5887
5888		tmo = tcp_fin_time(sk);
5889		if (tmo > TCP_TIMEWAIT_LEN) {
5890			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5891		} else if (th->fin || sock_owned_by_user(sk)) {
5892			/* Bad case. We could lose such FIN otherwise.
5893			 * It is not a big problem, but it looks confusing
5894			 * and not so rare event. We still can lose it now,
5895			 * if it spins in bh_lock_sock(), but it is really
5896			 * marginal case.
5897			 */
5898			inet_csk_reset_keepalive_timer(sk, tmo);
5899		} else {
5900			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5901			goto discard;
5902		}
5903		break;
5904	}
5905
5906	case TCP_CLOSING:
5907		if (tp->snd_una == tp->write_seq) {
5908			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5909			goto discard;
5910		}
5911		break;
5912
5913	case TCP_LAST_ACK:
5914		if (tp->snd_una == tp->write_seq) {
5915			tcp_update_metrics(sk);
5916			tcp_done(sk);
5917			goto discard;
5918		}
5919		break;
5920	}
5921
5922	/* step 6: check the URG bit */
5923	tcp_urg(sk, skb, th);
5924
5925	/* step 7: process the segment text */
5926	switch (sk->sk_state) {
5927	case TCP_CLOSE_WAIT:
5928	case TCP_CLOSING:
5929	case TCP_LAST_ACK:
5930		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5931			break;
5932	case TCP_FIN_WAIT1:
5933	case TCP_FIN_WAIT2:
5934		/* RFC 793 says to queue data in these states,
5935		 * RFC 1122 says we MUST send a reset.
5936		 * BSD 4.4 also does reset.
5937		 */
5938		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5939			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5940			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5941				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5942				tcp_reset(sk);
5943				return 1;
5944			}
5945		}
5946		/* Fall through */
5947	case TCP_ESTABLISHED:
5948		tcp_data_queue(sk, skb);
5949		queued = 1;
5950		break;
5951	}
5952
5953	/* tcp_data could move socket to TIME-WAIT */
5954	if (sk->sk_state != TCP_CLOSE) {
5955		tcp_data_snd_check(sk);
5956		tcp_ack_snd_check(sk);
5957	}
5958
5959	if (!queued) {
5960discard:
5961		__kfree_skb(skb);
5962	}
5963	return 0;
5964}
5965EXPORT_SYMBOL(tcp_rcv_state_process);
5966
5967static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
5968{
5969	struct inet_request_sock *ireq = inet_rsk(req);
5970
5971	if (family == AF_INET)
5972		net_dbg_ratelimited("drop open request from %pI4/%u\n",
5973				    &ireq->ir_rmt_addr, port);
5974#if IS_ENABLED(CONFIG_IPV6)
5975	else if (family == AF_INET6)
5976		net_dbg_ratelimited("drop open request from %pI6/%u\n",
5977				    &ireq->ir_v6_rmt_addr, port);
5978#endif
5979}
5980
5981/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
5982 *
5983 * If we receive a SYN packet with these bits set, it means a
5984 * network is playing bad games with TOS bits. In order to
5985 * avoid possible false congestion notifications, we disable
5986 * TCP ECN negotiation.
5987 *
5988 * Exception: tcp_ca wants ECN. This is required for DCTCP
5989 * congestion control: Linux DCTCP asserts ECT on all packets,
5990 * including SYN, which is most optimal solution; however,
5991 * others, such as FreeBSD do not.
5992 */
5993static void tcp_ecn_create_request(struct request_sock *req,
5994				   const struct sk_buff *skb,
5995				   const struct sock *listen_sk,
5996				   const struct dst_entry *dst)
5997{
5998	const struct tcphdr *th = tcp_hdr(skb);
5999	const struct net *net = sock_net(listen_sk);
6000	bool th_ecn = th->ece && th->cwr;
6001	bool ect, ecn_ok;
6002
6003	if (!th_ecn)
6004		return;
6005
6006	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6007	ecn_ok = net->ipv4.sysctl_tcp_ecn || dst_feature(dst, RTAX_FEATURE_ECN);
6008
6009	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk))
6010		inet_rsk(req)->ecn_ok = 1;
6011}
6012
6013static void tcp_openreq_init(struct request_sock *req,
6014			     const struct tcp_options_received *rx_opt,
6015			     struct sk_buff *skb, const struct sock *sk)
6016{
6017	struct inet_request_sock *ireq = inet_rsk(req);
6018
6019	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6020	req->cookie_ts = 0;
6021	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6022	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6023	tcp_rsk(req)->snt_synack = tcp_time_stamp;
6024	tcp_rsk(req)->last_oow_ack_time = 0;
6025	req->mss = rx_opt->mss_clamp;
6026	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6027	ireq->tstamp_ok = rx_opt->tstamp_ok;
6028	ireq->sack_ok = rx_opt->sack_ok;
6029	ireq->snd_wscale = rx_opt->snd_wscale;
6030	ireq->wscale_ok = rx_opt->wscale_ok;
6031	ireq->acked = 0;
6032	ireq->ecn_ok = 0;
6033	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6034	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6035	ireq->ir_mark = inet_request_mark(sk, skb);
6036}
6037
6038struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6039				      struct sock *sk_listener)
6040{
6041	struct request_sock *req = reqsk_alloc(ops, sk_listener);
6042
6043	if (req) {
6044		struct inet_request_sock *ireq = inet_rsk(req);
6045
6046		kmemcheck_annotate_bitfield(ireq, flags);
6047		ireq->opt = NULL;
6048		atomic64_set(&ireq->ir_cookie, 0);
6049		ireq->ireq_state = TCP_NEW_SYN_RECV;
6050		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6051		ireq->ireq_family = sk_listener->sk_family;
6052	}
6053
6054	return req;
6055}
6056EXPORT_SYMBOL(inet_reqsk_alloc);
6057
6058/*
6059 * Return true if a syncookie should be sent
6060 */
6061static bool tcp_syn_flood_action(struct sock *sk,
6062				 const struct sk_buff *skb,
6063				 const char *proto)
6064{
6065	const char *msg = "Dropping request";
6066	bool want_cookie = false;
6067	struct listen_sock *lopt;
6068
6069#ifdef CONFIG_SYN_COOKIES
6070	if (sysctl_tcp_syncookies) {
6071		msg = "Sending cookies";
6072		want_cookie = true;
6073		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6074	} else
6075#endif
6076		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6077
6078	lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
6079	if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
6080		lopt->synflood_warned = 1;
6081		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6082			proto, ntohs(tcp_hdr(skb)->dest), msg);
6083	}
6084	return want_cookie;
6085}
6086
6087int tcp_conn_request(struct request_sock_ops *rsk_ops,
6088		     const struct tcp_request_sock_ops *af_ops,
6089		     struct sock *sk, struct sk_buff *skb)
6090{
6091	struct tcp_options_received tmp_opt;
6092	struct request_sock *req;
6093	struct tcp_sock *tp = tcp_sk(sk);
6094	struct dst_entry *dst = NULL;
6095	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6096	bool want_cookie = false, fastopen;
6097	struct flowi fl;
6098	struct tcp_fastopen_cookie foc = { .len = -1 };
6099	int err;
6100
6101
6102	/* TW buckets are converted to open requests without
6103	 * limitations, they conserve resources and peer is
6104	 * evidently real one.
6105	 */
6106	if ((sysctl_tcp_syncookies == 2 ||
6107	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6108		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6109		if (!want_cookie)
6110			goto drop;
6111	}
6112
6113
6114	/* Accept backlog is full. If we have already queued enough
6115	 * of warm entries in syn queue, drop request. It is better than
6116	 * clogging syn queue with openreqs with exponentially increasing
6117	 * timeout.
6118	 */
6119	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6120		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6121		goto drop;
6122	}
6123
6124	req = inet_reqsk_alloc(rsk_ops, sk);
6125	if (!req)
6126		goto drop;
6127
6128	tcp_rsk(req)->af_specific = af_ops;
6129
6130	tcp_clear_options(&tmp_opt);
6131	tmp_opt.mss_clamp = af_ops->mss_clamp;
6132	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6133	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6134
6135	if (want_cookie && !tmp_opt.saw_tstamp)
6136		tcp_clear_options(&tmp_opt);
6137
6138	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6139	tcp_openreq_init(req, &tmp_opt, skb, sk);
6140
6141	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6142	inet_rsk(req)->ir_iif = sk->sk_bound_dev_if;
6143
6144	af_ops->init_req(req, sk, skb);
6145
6146	if (security_inet_conn_request(sk, skb, req))
6147		goto drop_and_free;
6148
6149	if (!want_cookie && !isn) {
6150		/* VJ's idea. We save last timestamp seen
6151		 * from the destination in peer table, when entering
6152		 * state TIME-WAIT, and check against it before
6153		 * accepting new connection request.
6154		 *
6155		 * If "isn" is not zero, this request hit alive
6156		 * timewait bucket, so that all the necessary checks
6157		 * are made in the function processing timewait state.
6158		 */
6159		if (tcp_death_row.sysctl_tw_recycle) {
6160			bool strict;
6161
6162			dst = af_ops->route_req(sk, &fl, req, &strict);
6163
6164			if (dst && strict &&
6165			    !tcp_peer_is_proven(req, dst, true,
6166						tmp_opt.saw_tstamp)) {
6167				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6168				goto drop_and_release;
6169			}
6170		}
6171		/* Kill the following clause, if you dislike this way. */
6172		else if (!sysctl_tcp_syncookies &&
6173			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6174			  (sysctl_max_syn_backlog >> 2)) &&
6175			 !tcp_peer_is_proven(req, dst, false,
6176					     tmp_opt.saw_tstamp)) {
6177			/* Without syncookies last quarter of
6178			 * backlog is filled with destinations,
6179			 * proven to be alive.
6180			 * It means that we continue to communicate
6181			 * to destinations, already remembered
6182			 * to the moment of synflood.
6183			 */
6184			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6185				    rsk_ops->family);
6186			goto drop_and_release;
6187		}
6188
6189		isn = af_ops->init_seq(skb);
6190	}
6191	if (!dst) {
6192		dst = af_ops->route_req(sk, &fl, req, NULL);
6193		if (!dst)
6194			goto drop_and_free;
6195	}
6196
6197	tcp_ecn_create_request(req, skb, sk, dst);
6198
6199	if (want_cookie) {
6200		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6201		req->cookie_ts = tmp_opt.tstamp_ok;
6202		if (!tmp_opt.tstamp_ok)
6203			inet_rsk(req)->ecn_ok = 0;
6204	}
6205
6206	tcp_rsk(req)->snt_isn = isn;
6207	tcp_openreq_init_rwin(req, sk, dst);
6208	fastopen = !want_cookie &&
6209		   tcp_try_fastopen(sk, skb, req, &foc, dst);
6210	err = af_ops->send_synack(sk, dst, &fl, req,
6211				  skb_get_queue_mapping(skb), &foc);
6212	if (!fastopen) {
6213		if (err || want_cookie)
6214			goto drop_and_free;
6215
6216		tcp_rsk(req)->tfo_listener = false;
6217		af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6218	}
6219
6220	return 0;
6221
6222drop_and_release:
6223	dst_release(dst);
6224drop_and_free:
6225	reqsk_free(req);
6226drop:
6227	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6228	return 0;
6229}
6230EXPORT_SYMBOL(tcp_conn_request);
6231