1/* linux/net/ipv4/arp.c
2 *
3 * Copyright (C) 1994 by Florian  La Roche
4 *
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
8 * address).
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * Fixes:
16 *		Alan Cox	:	Removed the Ethernet assumptions in
17 *					Florian's code
18 *		Alan Cox	:	Fixed some small errors in the ARP
19 *					logic
20 *		Alan Cox	:	Allow >4K in /proc
21 *		Alan Cox	:	Make ARP add its own protocol entry
22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
24 *		Alan Cox	:	Drop data when a device is downed.
25 *		Alan Cox	:	Use init_timer().
26 *		Alan Cox	:	Double lock fixes.
27 *		Martin Seine	:	Move the arphdr structure
28 *					to if_arp.h for compatibility.
29 *					with BSD based programs.
30 *		Andrew Tridgell :       Added ARP netmask code and
31 *					re-arranged proxy handling.
32 *		Alan Cox	:	Changed to use notifiers.
33 *		Niibe Yutaka	:	Reply for this device or proxies only.
34 *		Alan Cox	:	Don't proxy across hardware types!
35 *		Jonathan Naylor :	Added support for NET/ROM.
36 *		Mike Shaver     :       RFC1122 checks.
37 *		Jonathan Naylor :	Only lookup the hardware address for
38 *					the correct hardware type.
39 *		Germano Caronni	:	Assorted subtle races.
40 *		Craig Schlenter :	Don't modify permanent entry
41 *					during arp_rcv.
42 *		Russ Nelson	:	Tidied up a few bits.
43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
44 *					eg intelligent arp probing and
45 *					generation
46 *					of host down events.
47 *		Alan Cox	:	Missing unlock in device events.
48 *		Eckes		:	ARP ioctl control errors.
49 *		Alexey Kuznetsov:	Arp free fix.
50 *		Manuel Rodriguez:	Gratuitous ARP.
51 *              Jonathan Layes  :       Added arpd support through kerneld
52 *                                      message queue (960314)
53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
54 *		Mike McLagan    :	Routing by source
55 *		Stuart Cheshire	:	Metricom and grat arp fixes
56 *					*** FOR 2.1 clean this up ***
57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
59 *					folded into the mainstream FDDI code.
60 *					Ack spit, Linus how did you allow that
61 *					one in...
62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
63 *					clean up the APFDDI & gen. FDDI bits.
64 *		Alexey Kuznetsov:	new arp state machine;
65 *					now it is in net/core/neighbour.c.
66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
68 *		Shmulik Hen:		Split arp_send to arp_create and
69 *					arp_xmit so intermediate drivers like
70 *					bonding can change the skb before
71 *					sending (e.g. insert 8021q tag).
72 *		Harald Welte	:	convert to make use of jenkins hash
73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
74 */
75
76#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
77
78#include <linux/module.h>
79#include <linux/types.h>
80#include <linux/string.h>
81#include <linux/kernel.h>
82#include <linux/capability.h>
83#include <linux/socket.h>
84#include <linux/sockios.h>
85#include <linux/errno.h>
86#include <linux/in.h>
87#include <linux/mm.h>
88#include <linux/inet.h>
89#include <linux/inetdevice.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/fddidevice.h>
93#include <linux/if_arp.h>
94#include <linux/skbuff.h>
95#include <linux/proc_fs.h>
96#include <linux/seq_file.h>
97#include <linux/stat.h>
98#include <linux/init.h>
99#include <linux/net.h>
100#include <linux/rcupdate.h>
101#include <linux/slab.h>
102#ifdef CONFIG_SYSCTL
103#include <linux/sysctl.h>
104#endif
105
106#include <net/net_namespace.h>
107#include <net/ip.h>
108#include <net/icmp.h>
109#include <net/route.h>
110#include <net/protocol.h>
111#include <net/tcp.h>
112#include <net/sock.h>
113#include <net/arp.h>
114#include <net/ax25.h>
115#include <net/netrom.h>
116
117#include <linux/uaccess.h>
118
119#include <linux/netfilter_arp.h>
120
121/*
122 *	Interface to generic neighbour cache.
123 */
124static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
125static bool arp_key_eq(const struct neighbour *n, const void *pkey);
126static int arp_constructor(struct neighbour *neigh);
127static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
128static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
129static void parp_redo(struct sk_buff *skb);
130
131static const struct neigh_ops arp_generic_ops = {
132	.family =		AF_INET,
133	.solicit =		arp_solicit,
134	.error_report =		arp_error_report,
135	.output =		neigh_resolve_output,
136	.connected_output =	neigh_connected_output,
137};
138
139static const struct neigh_ops arp_hh_ops = {
140	.family =		AF_INET,
141	.solicit =		arp_solicit,
142	.error_report =		arp_error_report,
143	.output =		neigh_resolve_output,
144	.connected_output =	neigh_resolve_output,
145};
146
147static const struct neigh_ops arp_direct_ops = {
148	.family =		AF_INET,
149	.output =		neigh_direct_output,
150	.connected_output =	neigh_direct_output,
151};
152
153struct neigh_table arp_tbl = {
154	.family		= AF_INET,
155	.key_len	= 4,
156	.protocol	= cpu_to_be16(ETH_P_IP),
157	.hash		= arp_hash,
158	.key_eq		= arp_key_eq,
159	.constructor	= arp_constructor,
160	.proxy_redo	= parp_redo,
161	.id		= "arp_cache",
162	.parms		= {
163		.tbl			= &arp_tbl,
164		.reachable_time		= 30 * HZ,
165		.data	= {
166			[NEIGH_VAR_MCAST_PROBES] = 3,
167			[NEIGH_VAR_UCAST_PROBES] = 3,
168			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
169			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
170			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
171			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
172			[NEIGH_VAR_QUEUE_LEN_BYTES] = 64 * 1024,
173			[NEIGH_VAR_PROXY_QLEN] = 64,
174			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
175			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
176			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
177		},
178	},
179	.gc_interval	= 30 * HZ,
180	.gc_thresh1	= 128,
181	.gc_thresh2	= 512,
182	.gc_thresh3	= 1024,
183};
184EXPORT_SYMBOL(arp_tbl);
185
186int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
187{
188	switch (dev->type) {
189	case ARPHRD_ETHER:
190	case ARPHRD_FDDI:
191	case ARPHRD_IEEE802:
192		ip_eth_mc_map(addr, haddr);
193		return 0;
194	case ARPHRD_INFINIBAND:
195		ip_ib_mc_map(addr, dev->broadcast, haddr);
196		return 0;
197	case ARPHRD_IPGRE:
198		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
199		return 0;
200	default:
201		if (dir) {
202			memcpy(haddr, dev->broadcast, dev->addr_len);
203			return 0;
204		}
205	}
206	return -EINVAL;
207}
208
209
210static u32 arp_hash(const void *pkey,
211		    const struct net_device *dev,
212		    __u32 *hash_rnd)
213{
214	return arp_hashfn(pkey, dev, hash_rnd);
215}
216
217static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
218{
219	return neigh_key_eq32(neigh, pkey);
220}
221
222static int arp_constructor(struct neighbour *neigh)
223{
224	__be32 addr = *(__be32 *)neigh->primary_key;
225	struct net_device *dev = neigh->dev;
226	struct in_device *in_dev;
227	struct neigh_parms *parms;
228
229	rcu_read_lock();
230	in_dev = __in_dev_get_rcu(dev);
231	if (!in_dev) {
232		rcu_read_unlock();
233		return -EINVAL;
234	}
235
236	neigh->type = inet_addr_type(dev_net(dev), addr);
237
238	parms = in_dev->arp_parms;
239	__neigh_parms_put(neigh->parms);
240	neigh->parms = neigh_parms_clone(parms);
241	rcu_read_unlock();
242
243	if (!dev->header_ops) {
244		neigh->nud_state = NUD_NOARP;
245		neigh->ops = &arp_direct_ops;
246		neigh->output = neigh_direct_output;
247	} else {
248		/* Good devices (checked by reading texts, but only Ethernet is
249		   tested)
250
251		   ARPHRD_ETHER: (ethernet, apfddi)
252		   ARPHRD_FDDI: (fddi)
253		   ARPHRD_IEEE802: (tr)
254		   ARPHRD_METRICOM: (strip)
255		   ARPHRD_ARCNET:
256		   etc. etc. etc.
257
258		   ARPHRD_IPDDP will also work, if author repairs it.
259		   I did not it, because this driver does not work even
260		   in old paradigm.
261		 */
262
263		if (neigh->type == RTN_MULTICAST) {
264			neigh->nud_state = NUD_NOARP;
265			arp_mc_map(addr, neigh->ha, dev, 1);
266		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
267			neigh->nud_state = NUD_NOARP;
268			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
269		} else if (neigh->type == RTN_BROADCAST ||
270			   (dev->flags & IFF_POINTOPOINT)) {
271			neigh->nud_state = NUD_NOARP;
272			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
273		}
274
275		if (dev->header_ops->cache)
276			neigh->ops = &arp_hh_ops;
277		else
278			neigh->ops = &arp_generic_ops;
279
280		if (neigh->nud_state & NUD_VALID)
281			neigh->output = neigh->ops->connected_output;
282		else
283			neigh->output = neigh->ops->output;
284	}
285	return 0;
286}
287
288static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
289{
290	dst_link_failure(skb);
291	kfree_skb(skb);
292}
293
294static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
295{
296	__be32 saddr = 0;
297	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
298	struct net_device *dev = neigh->dev;
299	__be32 target = *(__be32 *)neigh->primary_key;
300	int probes = atomic_read(&neigh->probes);
301	struct in_device *in_dev;
302
303	rcu_read_lock();
304	in_dev = __in_dev_get_rcu(dev);
305	if (!in_dev) {
306		rcu_read_unlock();
307		return;
308	}
309	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
310	default:
311	case 0:		/* By default announce any local IP */
312		if (skb && inet_addr_type(dev_net(dev),
313					  ip_hdr(skb)->saddr) == RTN_LOCAL)
314			saddr = ip_hdr(skb)->saddr;
315		break;
316	case 1:		/* Restrict announcements of saddr in same subnet */
317		if (!skb)
318			break;
319		saddr = ip_hdr(skb)->saddr;
320		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
321			/* saddr should be known to target */
322			if (inet_addr_onlink(in_dev, target, saddr))
323				break;
324		}
325		saddr = 0;
326		break;
327	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
328		break;
329	}
330	rcu_read_unlock();
331
332	if (!saddr)
333		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
334
335	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
336	if (probes < 0) {
337		if (!(neigh->nud_state & NUD_VALID))
338			pr_debug("trying to ucast probe in NUD_INVALID\n");
339		neigh_ha_snapshot(dst_ha, neigh, dev);
340		dst_hw = dst_ha;
341	} else {
342		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
343		if (probes < 0) {
344			neigh_app_ns(neigh);
345			return;
346		}
347	}
348
349	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
350		 dst_hw, dev->dev_addr, NULL);
351}
352
353static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
354{
355	struct net *net = dev_net(in_dev->dev);
356	int scope;
357
358	switch (IN_DEV_ARP_IGNORE(in_dev)) {
359	case 0:	/* Reply, the tip is already validated */
360		return 0;
361	case 1:	/* Reply only if tip is configured on the incoming interface */
362		sip = 0;
363		scope = RT_SCOPE_HOST;
364		break;
365	case 2:	/*
366		 * Reply only if tip is configured on the incoming interface
367		 * and is in same subnet as sip
368		 */
369		scope = RT_SCOPE_HOST;
370		break;
371	case 3:	/* Do not reply for scope host addresses */
372		sip = 0;
373		scope = RT_SCOPE_LINK;
374		in_dev = NULL;
375		break;
376	case 4:	/* Reserved */
377	case 5:
378	case 6:
379	case 7:
380		return 0;
381	case 8:	/* Do not reply */
382		return 1;
383	default:
384		return 0;
385	}
386	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
387}
388
389static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
390{
391	struct rtable *rt;
392	int flag = 0;
393	/*unsigned long now; */
394	struct net *net = dev_net(dev);
395
396	rt = ip_route_output(net, sip, tip, 0, 0);
397	if (IS_ERR(rt))
398		return 1;
399	if (rt->dst.dev != dev) {
400		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
401		flag = 1;
402	}
403	ip_rt_put(rt);
404	return flag;
405}
406
407/*
408 * Check if we can use proxy ARP for this path
409 */
410static inline int arp_fwd_proxy(struct in_device *in_dev,
411				struct net_device *dev,	struct rtable *rt)
412{
413	struct in_device *out_dev;
414	int imi, omi = -1;
415
416	if (rt->dst.dev == dev)
417		return 0;
418
419	if (!IN_DEV_PROXY_ARP(in_dev))
420		return 0;
421	imi = IN_DEV_MEDIUM_ID(in_dev);
422	if (imi == 0)
423		return 1;
424	if (imi == -1)
425		return 0;
426
427	/* place to check for proxy_arp for routes */
428
429	out_dev = __in_dev_get_rcu(rt->dst.dev);
430	if (out_dev)
431		omi = IN_DEV_MEDIUM_ID(out_dev);
432
433	return omi != imi && omi != -1;
434}
435
436/*
437 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
438 *
439 * RFC3069 supports proxy arp replies back to the same interface.  This
440 * is done to support (ethernet) switch features, like RFC 3069, where
441 * the individual ports are not allowed to communicate with each
442 * other, BUT they are allowed to talk to the upstream router.  As
443 * described in RFC 3069, it is possible to allow these hosts to
444 * communicate through the upstream router, by proxy_arp'ing.
445 *
446 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
447 *
448 *  This technology is known by different names:
449 *    In RFC 3069 it is called VLAN Aggregation.
450 *    Cisco and Allied Telesyn call it Private VLAN.
451 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
452 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
453 *
454 */
455static inline int arp_fwd_pvlan(struct in_device *in_dev,
456				struct net_device *dev,	struct rtable *rt,
457				__be32 sip, __be32 tip)
458{
459	/* Private VLAN is only concerned about the same ethernet segment */
460	if (rt->dst.dev != dev)
461		return 0;
462
463	/* Don't reply on self probes (often done by windowz boxes)*/
464	if (sip == tip)
465		return 0;
466
467	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
468		return 1;
469	else
470		return 0;
471}
472
473/*
474 *	Interface to link layer: send routine and receive handler.
475 */
476
477/*
478 *	Create an arp packet. If dest_hw is not set, we create a broadcast
479 *	message.
480 */
481struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
482			   struct net_device *dev, __be32 src_ip,
483			   const unsigned char *dest_hw,
484			   const unsigned char *src_hw,
485			   const unsigned char *target_hw)
486{
487	struct sk_buff *skb;
488	struct arphdr *arp;
489	unsigned char *arp_ptr;
490	int hlen = LL_RESERVED_SPACE(dev);
491	int tlen = dev->needed_tailroom;
492
493	/*
494	 *	Allocate a buffer
495	 */
496
497	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
498	if (!skb)
499		return NULL;
500
501	skb_reserve(skb, hlen);
502	skb_reset_network_header(skb);
503	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
504	skb->dev = dev;
505	skb->protocol = htons(ETH_P_ARP);
506	if (!src_hw)
507		src_hw = dev->dev_addr;
508	if (!dest_hw)
509		dest_hw = dev->broadcast;
510
511	/*
512	 *	Fill the device header for the ARP frame
513	 */
514	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
515		goto out;
516
517	/*
518	 * Fill out the arp protocol part.
519	 *
520	 * The arp hardware type should match the device type, except for FDDI,
521	 * which (according to RFC 1390) should always equal 1 (Ethernet).
522	 */
523	/*
524	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
525	 *	DIX code for the protocol. Make these device structure fields.
526	 */
527	switch (dev->type) {
528	default:
529		arp->ar_hrd = htons(dev->type);
530		arp->ar_pro = htons(ETH_P_IP);
531		break;
532
533#if IS_ENABLED(CONFIG_AX25)
534	case ARPHRD_AX25:
535		arp->ar_hrd = htons(ARPHRD_AX25);
536		arp->ar_pro = htons(AX25_P_IP);
537		break;
538
539#if IS_ENABLED(CONFIG_NETROM)
540	case ARPHRD_NETROM:
541		arp->ar_hrd = htons(ARPHRD_NETROM);
542		arp->ar_pro = htons(AX25_P_IP);
543		break;
544#endif
545#endif
546
547#if IS_ENABLED(CONFIG_FDDI)
548	case ARPHRD_FDDI:
549		arp->ar_hrd = htons(ARPHRD_ETHER);
550		arp->ar_pro = htons(ETH_P_IP);
551		break;
552#endif
553	}
554
555	arp->ar_hln = dev->addr_len;
556	arp->ar_pln = 4;
557	arp->ar_op = htons(type);
558
559	arp_ptr = (unsigned char *)(arp + 1);
560
561	memcpy(arp_ptr, src_hw, dev->addr_len);
562	arp_ptr += dev->addr_len;
563	memcpy(arp_ptr, &src_ip, 4);
564	arp_ptr += 4;
565
566	switch (dev->type) {
567#if IS_ENABLED(CONFIG_FIREWIRE_NET)
568	case ARPHRD_IEEE1394:
569		break;
570#endif
571	default:
572		if (target_hw)
573			memcpy(arp_ptr, target_hw, dev->addr_len);
574		else
575			memset(arp_ptr, 0, dev->addr_len);
576		arp_ptr += dev->addr_len;
577	}
578	memcpy(arp_ptr, &dest_ip, 4);
579
580	return skb;
581
582out:
583	kfree_skb(skb);
584	return NULL;
585}
586EXPORT_SYMBOL(arp_create);
587
588/*
589 *	Send an arp packet.
590 */
591void arp_xmit(struct sk_buff *skb)
592{
593	/* Send it off, maybe filter it using firewalling first.  */
594	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, NULL, skb,
595		NULL, skb->dev, dev_queue_xmit_sk);
596}
597EXPORT_SYMBOL(arp_xmit);
598
599/*
600 *	Create and send an arp packet.
601 */
602void arp_send(int type, int ptype, __be32 dest_ip,
603	      struct net_device *dev, __be32 src_ip,
604	      const unsigned char *dest_hw, const unsigned char *src_hw,
605	      const unsigned char *target_hw)
606{
607	struct sk_buff *skb;
608
609	/*
610	 *	No arp on this interface.
611	 */
612
613	if (dev->flags&IFF_NOARP)
614		return;
615
616	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
617			 dest_hw, src_hw, target_hw);
618	if (!skb)
619		return;
620
621	arp_xmit(skb);
622}
623EXPORT_SYMBOL(arp_send);
624
625/*
626 *	Process an arp request.
627 */
628
629static int arp_process(struct sock *sk, struct sk_buff *skb)
630{
631	struct net_device *dev = skb->dev;
632	struct in_device *in_dev = __in_dev_get_rcu(dev);
633	struct arphdr *arp;
634	unsigned char *arp_ptr;
635	struct rtable *rt;
636	unsigned char *sha;
637	__be32 sip, tip;
638	u16 dev_type = dev->type;
639	int addr_type;
640	struct neighbour *n;
641	struct net *net = dev_net(dev);
642	bool is_garp = false;
643
644	/* arp_rcv below verifies the ARP header and verifies the device
645	 * is ARP'able.
646	 */
647
648	if (!in_dev)
649		goto out;
650
651	arp = arp_hdr(skb);
652
653	switch (dev_type) {
654	default:
655		if (arp->ar_pro != htons(ETH_P_IP) ||
656		    htons(dev_type) != arp->ar_hrd)
657			goto out;
658		break;
659	case ARPHRD_ETHER:
660	case ARPHRD_FDDI:
661	case ARPHRD_IEEE802:
662		/*
663		 * ETHERNET, and Fibre Channel (which are IEEE 802
664		 * devices, according to RFC 2625) devices will accept ARP
665		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
666		 * This is the case also of FDDI, where the RFC 1390 says that
667		 * FDDI devices should accept ARP hardware of (1) Ethernet,
668		 * however, to be more robust, we'll accept both 1 (Ethernet)
669		 * or 6 (IEEE 802.2)
670		 */
671		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
672		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
673		    arp->ar_pro != htons(ETH_P_IP))
674			goto out;
675		break;
676	case ARPHRD_AX25:
677		if (arp->ar_pro != htons(AX25_P_IP) ||
678		    arp->ar_hrd != htons(ARPHRD_AX25))
679			goto out;
680		break;
681	case ARPHRD_NETROM:
682		if (arp->ar_pro != htons(AX25_P_IP) ||
683		    arp->ar_hrd != htons(ARPHRD_NETROM))
684			goto out;
685		break;
686	}
687
688	/* Understand only these message types */
689
690	if (arp->ar_op != htons(ARPOP_REPLY) &&
691	    arp->ar_op != htons(ARPOP_REQUEST))
692		goto out;
693
694/*
695 *	Extract fields
696 */
697	arp_ptr = (unsigned char *)(arp + 1);
698	sha	= arp_ptr;
699	arp_ptr += dev->addr_len;
700	memcpy(&sip, arp_ptr, 4);
701	arp_ptr += 4;
702	switch (dev_type) {
703#if IS_ENABLED(CONFIG_FIREWIRE_NET)
704	case ARPHRD_IEEE1394:
705		break;
706#endif
707	default:
708		arp_ptr += dev->addr_len;
709	}
710	memcpy(&tip, arp_ptr, 4);
711/*
712 *	Check for bad requests for 127.x.x.x and requests for multicast
713 *	addresses.  If this is one such, delete it.
714 */
715	if (ipv4_is_multicast(tip) ||
716	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
717		goto out;
718
719/*
720 *     Special case: We must set Frame Relay source Q.922 address
721 */
722	if (dev_type == ARPHRD_DLCI)
723		sha = dev->broadcast;
724
725/*
726 *  Process entry.  The idea here is we want to send a reply if it is a
727 *  request for us or if it is a request for someone else that we hold
728 *  a proxy for.  We want to add an entry to our cache if it is a reply
729 *  to us or if it is a request for our address.
730 *  (The assumption for this last is that if someone is requesting our
731 *  address, they are probably intending to talk to us, so it saves time
732 *  if we cache their address.  Their address is also probably not in
733 *  our cache, since ours is not in their cache.)
734 *
735 *  Putting this another way, we only care about replies if they are to
736 *  us, in which case we add them to the cache.  For requests, we care
737 *  about those for us and those for our proxies.  We reply to both,
738 *  and in the case of requests for us we add the requester to the arp
739 *  cache.
740 */
741
742	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
743	if (sip == 0) {
744		if (arp->ar_op == htons(ARPOP_REQUEST) &&
745		    inet_addr_type(net, tip) == RTN_LOCAL &&
746		    !arp_ignore(in_dev, sip, tip))
747			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
748				 dev->dev_addr, sha);
749		goto out;
750	}
751
752	if (arp->ar_op == htons(ARPOP_REQUEST) &&
753	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
754
755		rt = skb_rtable(skb);
756		addr_type = rt->rt_type;
757
758		if (addr_type == RTN_LOCAL) {
759			int dont_send;
760
761			dont_send = arp_ignore(in_dev, sip, tip);
762			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
763				dont_send = arp_filter(sip, tip, dev);
764			if (!dont_send) {
765				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
766				if (n) {
767					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
768						 dev, tip, sha, dev->dev_addr,
769						 sha);
770					neigh_release(n);
771				}
772			}
773			goto out;
774		} else if (IN_DEV_FORWARD(in_dev)) {
775			if (addr_type == RTN_UNICAST  &&
776			    (arp_fwd_proxy(in_dev, dev, rt) ||
777			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
778			     (rt->dst.dev != dev &&
779			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
780				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
781				if (n)
782					neigh_release(n);
783
784				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
785				    skb->pkt_type == PACKET_HOST ||
786				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
787					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
788						 dev, tip, sha, dev->dev_addr,
789						 sha);
790				} else {
791					pneigh_enqueue(&arp_tbl,
792						       in_dev->arp_parms, skb);
793					return 0;
794				}
795				goto out;
796			}
797		}
798	}
799
800	/* Update our ARP tables */
801
802	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
803
804	if (IN_DEV_ARP_ACCEPT(in_dev)) {
805		/* Unsolicited ARP is not accepted by default.
806		   It is possible, that this option should be enabled for some
807		   devices (strip is candidate)
808		 */
809		is_garp = arp->ar_op == htons(ARPOP_REQUEST) && tip == sip &&
810			  inet_addr_type(net, sip) == RTN_UNICAST;
811
812		if (!n &&
813		    ((arp->ar_op == htons(ARPOP_REPLY)  &&
814		      inet_addr_type(net, sip) == RTN_UNICAST) || is_garp))
815			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
816	}
817
818	if (n) {
819		int state = NUD_REACHABLE;
820		int override;
821
822		/* If several different ARP replies follows back-to-back,
823		   use the FIRST one. It is possible, if several proxy
824		   agents are active. Taking the first reply prevents
825		   arp trashing and chooses the fastest router.
826		 */
827		override = time_after(jiffies,
828				      n->updated +
829				      NEIGH_VAR(n->parms, LOCKTIME)) ||
830			   is_garp;
831
832		/* Broadcast replies and request packets
833		   do not assert neighbour reachability.
834		 */
835		if (arp->ar_op != htons(ARPOP_REPLY) ||
836		    skb->pkt_type != PACKET_HOST)
837			state = NUD_STALE;
838		neigh_update(n, sha, state,
839			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
840		neigh_release(n);
841	}
842
843out:
844	consume_skb(skb);
845	return 0;
846}
847
848static void parp_redo(struct sk_buff *skb)
849{
850	arp_process(NULL, skb);
851}
852
853
854/*
855 *	Receive an arp request from the device layer.
856 */
857
858static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
859		   struct packet_type *pt, struct net_device *orig_dev)
860{
861	const struct arphdr *arp;
862
863	/* do not tweak dropwatch on an ARP we will ignore */
864	if (dev->flags & IFF_NOARP ||
865	    skb->pkt_type == PACKET_OTHERHOST ||
866	    skb->pkt_type == PACKET_LOOPBACK)
867		goto consumeskb;
868
869	skb = skb_share_check(skb, GFP_ATOMIC);
870	if (!skb)
871		goto out_of_mem;
872
873	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
874	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
875		goto freeskb;
876
877	arp = arp_hdr(skb);
878	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
879		goto freeskb;
880
881	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
882
883	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, NULL, skb,
884		       dev, NULL, arp_process);
885
886consumeskb:
887	consume_skb(skb);
888	return 0;
889freeskb:
890	kfree_skb(skb);
891out_of_mem:
892	return 0;
893}
894
895/*
896 *	User level interface (ioctl)
897 */
898
899/*
900 *	Set (create) an ARP cache entry.
901 */
902
903static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
904{
905	if (!dev) {
906		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
907		return 0;
908	}
909	if (__in_dev_get_rtnl(dev)) {
910		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
911		return 0;
912	}
913	return -ENXIO;
914}
915
916static int arp_req_set_public(struct net *net, struct arpreq *r,
917		struct net_device *dev)
918{
919	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
920	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
921
922	if (mask && mask != htonl(0xFFFFFFFF))
923		return -EINVAL;
924	if (!dev && (r->arp_flags & ATF_COM)) {
925		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
926				      r->arp_ha.sa_data);
927		if (!dev)
928			return -ENODEV;
929	}
930	if (mask) {
931		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
932			return -ENOBUFS;
933		return 0;
934	}
935
936	return arp_req_set_proxy(net, dev, 1);
937}
938
939static int arp_req_set(struct net *net, struct arpreq *r,
940		       struct net_device *dev)
941{
942	__be32 ip;
943	struct neighbour *neigh;
944	int err;
945
946	if (r->arp_flags & ATF_PUBL)
947		return arp_req_set_public(net, r, dev);
948
949	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
950	if (r->arp_flags & ATF_PERM)
951		r->arp_flags |= ATF_COM;
952	if (!dev) {
953		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
954
955		if (IS_ERR(rt))
956			return PTR_ERR(rt);
957		dev = rt->dst.dev;
958		ip_rt_put(rt);
959		if (!dev)
960			return -EINVAL;
961	}
962	switch (dev->type) {
963#if IS_ENABLED(CONFIG_FDDI)
964	case ARPHRD_FDDI:
965		/*
966		 * According to RFC 1390, FDDI devices should accept ARP
967		 * hardware types of 1 (Ethernet).  However, to be more
968		 * robust, we'll accept hardware types of either 1 (Ethernet)
969		 * or 6 (IEEE 802.2).
970		 */
971		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
972		    r->arp_ha.sa_family != ARPHRD_ETHER &&
973		    r->arp_ha.sa_family != ARPHRD_IEEE802)
974			return -EINVAL;
975		break;
976#endif
977	default:
978		if (r->arp_ha.sa_family != dev->type)
979			return -EINVAL;
980		break;
981	}
982
983	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
984	err = PTR_ERR(neigh);
985	if (!IS_ERR(neigh)) {
986		unsigned int state = NUD_STALE;
987		if (r->arp_flags & ATF_PERM)
988			state = NUD_PERMANENT;
989		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
990				   r->arp_ha.sa_data : NULL, state,
991				   NEIGH_UPDATE_F_OVERRIDE |
992				   NEIGH_UPDATE_F_ADMIN);
993		neigh_release(neigh);
994	}
995	return err;
996}
997
998static unsigned int arp_state_to_flags(struct neighbour *neigh)
999{
1000	if (neigh->nud_state&NUD_PERMANENT)
1001		return ATF_PERM | ATF_COM;
1002	else if (neigh->nud_state&NUD_VALID)
1003		return ATF_COM;
1004	else
1005		return 0;
1006}
1007
1008/*
1009 *	Get an ARP cache entry.
1010 */
1011
1012static int arp_req_get(struct arpreq *r, struct net_device *dev)
1013{
1014	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1015	struct neighbour *neigh;
1016	int err = -ENXIO;
1017
1018	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1019	if (neigh) {
1020		read_lock_bh(&neigh->lock);
1021		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1022		r->arp_flags = arp_state_to_flags(neigh);
1023		read_unlock_bh(&neigh->lock);
1024		r->arp_ha.sa_family = dev->type;
1025		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1026		neigh_release(neigh);
1027		err = 0;
1028	}
1029	return err;
1030}
1031
1032static int arp_invalidate(struct net_device *dev, __be32 ip)
1033{
1034	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1035	int err = -ENXIO;
1036
1037	if (neigh) {
1038		if (neigh->nud_state & ~NUD_NOARP)
1039			err = neigh_update(neigh, NULL, NUD_FAILED,
1040					   NEIGH_UPDATE_F_OVERRIDE|
1041					   NEIGH_UPDATE_F_ADMIN);
1042		neigh_release(neigh);
1043	}
1044
1045	return err;
1046}
1047
1048static int arp_req_delete_public(struct net *net, struct arpreq *r,
1049		struct net_device *dev)
1050{
1051	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1052	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1053
1054	if (mask == htonl(0xFFFFFFFF))
1055		return pneigh_delete(&arp_tbl, net, &ip, dev);
1056
1057	if (mask)
1058		return -EINVAL;
1059
1060	return arp_req_set_proxy(net, dev, 0);
1061}
1062
1063static int arp_req_delete(struct net *net, struct arpreq *r,
1064			  struct net_device *dev)
1065{
1066	__be32 ip;
1067
1068	if (r->arp_flags & ATF_PUBL)
1069		return arp_req_delete_public(net, r, dev);
1070
1071	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1072	if (!dev) {
1073		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1074		if (IS_ERR(rt))
1075			return PTR_ERR(rt);
1076		dev = rt->dst.dev;
1077		ip_rt_put(rt);
1078		if (!dev)
1079			return -EINVAL;
1080	}
1081	return arp_invalidate(dev, ip);
1082}
1083
1084/*
1085 *	Handle an ARP layer I/O control request.
1086 */
1087
1088int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1089{
1090	int err;
1091	struct arpreq r;
1092	struct net_device *dev = NULL;
1093
1094	switch (cmd) {
1095	case SIOCDARP:
1096	case SIOCSARP:
1097		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1098			return -EPERM;
1099	case SIOCGARP:
1100		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1101		if (err)
1102			return -EFAULT;
1103		break;
1104	default:
1105		return -EINVAL;
1106	}
1107
1108	if (r.arp_pa.sa_family != AF_INET)
1109		return -EPFNOSUPPORT;
1110
1111	if (!(r.arp_flags & ATF_PUBL) &&
1112	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1113		return -EINVAL;
1114	if (!(r.arp_flags & ATF_NETMASK))
1115		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1116							   htonl(0xFFFFFFFFUL);
1117	rtnl_lock();
1118	if (r.arp_dev[0]) {
1119		err = -ENODEV;
1120		dev = __dev_get_by_name(net, r.arp_dev);
1121		if (!dev)
1122			goto out;
1123
1124		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1125		if (!r.arp_ha.sa_family)
1126			r.arp_ha.sa_family = dev->type;
1127		err = -EINVAL;
1128		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1129			goto out;
1130	} else if (cmd == SIOCGARP) {
1131		err = -ENODEV;
1132		goto out;
1133	}
1134
1135	switch (cmd) {
1136	case SIOCDARP:
1137		err = arp_req_delete(net, &r, dev);
1138		break;
1139	case SIOCSARP:
1140		err = arp_req_set(net, &r, dev);
1141		break;
1142	case SIOCGARP:
1143		err = arp_req_get(&r, dev);
1144		break;
1145	}
1146out:
1147	rtnl_unlock();
1148	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1149		err = -EFAULT;
1150	return err;
1151}
1152
1153static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1154			    void *ptr)
1155{
1156	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1157	struct netdev_notifier_change_info *change_info;
1158
1159	switch (event) {
1160	case NETDEV_CHANGEADDR:
1161		neigh_changeaddr(&arp_tbl, dev);
1162		rt_cache_flush(dev_net(dev));
1163		break;
1164	case NETDEV_CHANGE:
1165		change_info = ptr;
1166		if (change_info->flags_changed & IFF_NOARP)
1167			neigh_changeaddr(&arp_tbl, dev);
1168		break;
1169	default:
1170		break;
1171	}
1172
1173	return NOTIFY_DONE;
1174}
1175
1176static struct notifier_block arp_netdev_notifier = {
1177	.notifier_call = arp_netdev_event,
1178};
1179
1180/* Note, that it is not on notifier chain.
1181   It is necessary, that this routine was called after route cache will be
1182   flushed.
1183 */
1184void arp_ifdown(struct net_device *dev)
1185{
1186	neigh_ifdown(&arp_tbl, dev);
1187}
1188
1189
1190/*
1191 *	Called once on startup.
1192 */
1193
1194static struct packet_type arp_packet_type __read_mostly = {
1195	.type =	cpu_to_be16(ETH_P_ARP),
1196	.func =	arp_rcv,
1197};
1198
1199static int arp_proc_init(void);
1200
1201void __init arp_init(void)
1202{
1203	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1204
1205	dev_add_pack(&arp_packet_type);
1206	arp_proc_init();
1207#ifdef CONFIG_SYSCTL
1208	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1209#endif
1210	register_netdevice_notifier(&arp_netdev_notifier);
1211}
1212
1213#ifdef CONFIG_PROC_FS
1214#if IS_ENABLED(CONFIG_AX25)
1215
1216/* ------------------------------------------------------------------------ */
1217/*
1218 *	ax25 -> ASCII conversion
1219 */
1220static char *ax2asc2(ax25_address *a, char *buf)
1221{
1222	char c, *s;
1223	int n;
1224
1225	for (n = 0, s = buf; n < 6; n++) {
1226		c = (a->ax25_call[n] >> 1) & 0x7F;
1227
1228		if (c != ' ')
1229			*s++ = c;
1230	}
1231
1232	*s++ = '-';
1233	n = (a->ax25_call[6] >> 1) & 0x0F;
1234	if (n > 9) {
1235		*s++ = '1';
1236		n -= 10;
1237	}
1238
1239	*s++ = n + '0';
1240	*s++ = '\0';
1241
1242	if (*buf == '\0' || *buf == '-')
1243		return "*";
1244
1245	return buf;
1246}
1247#endif /* CONFIG_AX25 */
1248
1249#define HBUFFERLEN 30
1250
1251static void arp_format_neigh_entry(struct seq_file *seq,
1252				   struct neighbour *n)
1253{
1254	char hbuffer[HBUFFERLEN];
1255	int k, j;
1256	char tbuf[16];
1257	struct net_device *dev = n->dev;
1258	int hatype = dev->type;
1259
1260	read_lock(&n->lock);
1261	/* Convert hardware address to XX:XX:XX:XX ... form. */
1262#if IS_ENABLED(CONFIG_AX25)
1263	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1264		ax2asc2((ax25_address *)n->ha, hbuffer);
1265	else {
1266#endif
1267	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1268		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1269		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1270		hbuffer[k++] = ':';
1271	}
1272	if (k != 0)
1273		--k;
1274	hbuffer[k] = 0;
1275#if IS_ENABLED(CONFIG_AX25)
1276	}
1277#endif
1278	sprintf(tbuf, "%pI4", n->primary_key);
1279	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1280		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1281	read_unlock(&n->lock);
1282}
1283
1284static void arp_format_pneigh_entry(struct seq_file *seq,
1285				    struct pneigh_entry *n)
1286{
1287	struct net_device *dev = n->dev;
1288	int hatype = dev ? dev->type : 0;
1289	char tbuf[16];
1290
1291	sprintf(tbuf, "%pI4", n->key);
1292	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1293		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1294		   dev ? dev->name : "*");
1295}
1296
1297static int arp_seq_show(struct seq_file *seq, void *v)
1298{
1299	if (v == SEQ_START_TOKEN) {
1300		seq_puts(seq, "IP address       HW type     Flags       "
1301			      "HW address            Mask     Device\n");
1302	} else {
1303		struct neigh_seq_state *state = seq->private;
1304
1305		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1306			arp_format_pneigh_entry(seq, v);
1307		else
1308			arp_format_neigh_entry(seq, v);
1309	}
1310
1311	return 0;
1312}
1313
1314static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1315{
1316	/* Don't want to confuse "arp -a" w/ magic entries,
1317	 * so we tell the generic iterator to skip NUD_NOARP.
1318	 */
1319	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1320}
1321
1322/* ------------------------------------------------------------------------ */
1323
1324static const struct seq_operations arp_seq_ops = {
1325	.start	= arp_seq_start,
1326	.next	= neigh_seq_next,
1327	.stop	= neigh_seq_stop,
1328	.show	= arp_seq_show,
1329};
1330
1331static int arp_seq_open(struct inode *inode, struct file *file)
1332{
1333	return seq_open_net(inode, file, &arp_seq_ops,
1334			    sizeof(struct neigh_seq_state));
1335}
1336
1337static const struct file_operations arp_seq_fops = {
1338	.owner		= THIS_MODULE,
1339	.open           = arp_seq_open,
1340	.read           = seq_read,
1341	.llseek         = seq_lseek,
1342	.release	= seq_release_net,
1343};
1344
1345
1346static int __net_init arp_net_init(struct net *net)
1347{
1348	if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1349		return -ENOMEM;
1350	return 0;
1351}
1352
1353static void __net_exit arp_net_exit(struct net *net)
1354{
1355	remove_proc_entry("arp", net->proc_net);
1356}
1357
1358static struct pernet_operations arp_net_ops = {
1359	.init = arp_net_init,
1360	.exit = arp_net_exit,
1361};
1362
1363static int __init arp_proc_init(void)
1364{
1365	return register_pernet_subsys(&arp_net_ops);
1366}
1367
1368#else /* CONFIG_PROC_FS */
1369
1370static int __init arp_proc_init(void)
1371{
1372	return 0;
1373}
1374
1375#endif /* CONFIG_PROC_FS */
1376