1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Generic socket support routines. Memory allocators, socket lock/release 7 * handler for protocols to use and generic option handler. 8 * 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 * 85 * 86 * This program is free software; you can redistribute it and/or 87 * modify it under the terms of the GNU General Public License 88 * as published by the Free Software Foundation; either version 89 * 2 of the License, or (at your option) any later version. 90 */ 91 92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 93 94#include <linux/capability.h> 95#include <linux/errno.h> 96#include <linux/errqueue.h> 97#include <linux/types.h> 98#include <linux/socket.h> 99#include <linux/in.h> 100#include <linux/kernel.h> 101#include <linux/module.h> 102#include <linux/proc_fs.h> 103#include <linux/seq_file.h> 104#include <linux/sched.h> 105#include <linux/timer.h> 106#include <linux/string.h> 107#include <linux/sockios.h> 108#include <linux/net.h> 109#include <linux/mm.h> 110#include <linux/slab.h> 111#include <linux/interrupt.h> 112#include <linux/poll.h> 113#include <linux/tcp.h> 114#include <linux/init.h> 115#include <linux/highmem.h> 116#include <linux/user_namespace.h> 117#include <linux/static_key.h> 118#include <linux/memcontrol.h> 119#include <linux/prefetch.h> 120 121#include <asm/uaccess.h> 122 123#include <linux/netdevice.h> 124#include <net/protocol.h> 125#include <linux/skbuff.h> 126#include <net/net_namespace.h> 127#include <net/request_sock.h> 128#include <net/sock.h> 129#include <linux/net_tstamp.h> 130#include <net/xfrm.h> 131#include <linux/ipsec.h> 132#include <net/cls_cgroup.h> 133#include <net/netprio_cgroup.h> 134 135#include <linux/filter.h> 136 137#include <trace/events/sock.h> 138 139#ifdef CONFIG_INET 140#include <net/tcp.h> 141#endif 142 143#include <net/busy_poll.h> 144 145static DEFINE_MUTEX(proto_list_mutex); 146static LIST_HEAD(proto_list); 147 148/** 149 * sk_ns_capable - General socket capability test 150 * @sk: Socket to use a capability on or through 151 * @user_ns: The user namespace of the capability to use 152 * @cap: The capability to use 153 * 154 * Test to see if the opener of the socket had when the socket was 155 * created and the current process has the capability @cap in the user 156 * namespace @user_ns. 157 */ 158bool sk_ns_capable(const struct sock *sk, 159 struct user_namespace *user_ns, int cap) 160{ 161 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 162 ns_capable(user_ns, cap); 163} 164EXPORT_SYMBOL(sk_ns_capable); 165 166/** 167 * sk_capable - Socket global capability test 168 * @sk: Socket to use a capability on or through 169 * @cap: The global capability to use 170 * 171 * Test to see if the opener of the socket had when the socket was 172 * created and the current process has the capability @cap in all user 173 * namespaces. 174 */ 175bool sk_capable(const struct sock *sk, int cap) 176{ 177 return sk_ns_capable(sk, &init_user_ns, cap); 178} 179EXPORT_SYMBOL(sk_capable); 180 181/** 182 * sk_net_capable - Network namespace socket capability test 183 * @sk: Socket to use a capability on or through 184 * @cap: The capability to use 185 * 186 * Test to see if the opener of the socket had when the socket was created 187 * and the current process has the capability @cap over the network namespace 188 * the socket is a member of. 189 */ 190bool sk_net_capable(const struct sock *sk, int cap) 191{ 192 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 193} 194EXPORT_SYMBOL(sk_net_capable); 195 196 197#ifdef CONFIG_MEMCG_KMEM 198int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 199{ 200 struct proto *proto; 201 int ret = 0; 202 203 mutex_lock(&proto_list_mutex); 204 list_for_each_entry(proto, &proto_list, node) { 205 if (proto->init_cgroup) { 206 ret = proto->init_cgroup(memcg, ss); 207 if (ret) 208 goto out; 209 } 210 } 211 212 mutex_unlock(&proto_list_mutex); 213 return ret; 214out: 215 list_for_each_entry_continue_reverse(proto, &proto_list, node) 216 if (proto->destroy_cgroup) 217 proto->destroy_cgroup(memcg); 218 mutex_unlock(&proto_list_mutex); 219 return ret; 220} 221 222void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg) 223{ 224 struct proto *proto; 225 226 mutex_lock(&proto_list_mutex); 227 list_for_each_entry_reverse(proto, &proto_list, node) 228 if (proto->destroy_cgroup) 229 proto->destroy_cgroup(memcg); 230 mutex_unlock(&proto_list_mutex); 231} 232#endif 233 234/* 235 * Each address family might have different locking rules, so we have 236 * one slock key per address family: 237 */ 238static struct lock_class_key af_family_keys[AF_MAX]; 239static struct lock_class_key af_family_slock_keys[AF_MAX]; 240 241#if defined(CONFIG_MEMCG_KMEM) 242struct static_key memcg_socket_limit_enabled; 243EXPORT_SYMBOL(memcg_socket_limit_enabled); 244#endif 245 246/* 247 * Make lock validator output more readable. (we pre-construct these 248 * strings build-time, so that runtime initialization of socket 249 * locks is fast): 250 */ 251static const char *const af_family_key_strings[AF_MAX+1] = { 252 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" , 253 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK", 254 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" , 255 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" , 256 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" , 257 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" , 258 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" , 259 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" , 260 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" , 261 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" , 262 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" , 263 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" , 264 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" , 265 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX" 266}; 267static const char *const af_family_slock_key_strings[AF_MAX+1] = { 268 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" , 269 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK", 270 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" , 271 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" , 272 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" , 273 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" , 274 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" , 275 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" , 276 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" , 277 "slock-27" , "slock-28" , "slock-AF_CAN" , 278 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" , 279 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" , 280 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" , 281 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX" 282}; 283static const char *const af_family_clock_key_strings[AF_MAX+1] = { 284 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" , 285 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK", 286 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" , 287 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" , 288 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" , 289 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" , 290 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" , 291 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" , 292 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" , 293 "clock-27" , "clock-28" , "clock-AF_CAN" , 294 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" , 295 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" , 296 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" , 297 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX" 298}; 299 300/* 301 * sk_callback_lock locking rules are per-address-family, 302 * so split the lock classes by using a per-AF key: 303 */ 304static struct lock_class_key af_callback_keys[AF_MAX]; 305 306/* Take into consideration the size of the struct sk_buff overhead in the 307 * determination of these values, since that is non-constant across 308 * platforms. This makes socket queueing behavior and performance 309 * not depend upon such differences. 310 */ 311#define _SK_MEM_PACKETS 256 312#define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 313#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 314#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 315 316/* Run time adjustable parameters. */ 317__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 318EXPORT_SYMBOL(sysctl_wmem_max); 319__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 320EXPORT_SYMBOL(sysctl_rmem_max); 321__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 322__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 323 324/* Maximal space eaten by iovec or ancillary data plus some space */ 325int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 326EXPORT_SYMBOL(sysctl_optmem_max); 327 328int sysctl_tstamp_allow_data __read_mostly = 1; 329 330struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE; 331EXPORT_SYMBOL_GPL(memalloc_socks); 332 333/** 334 * sk_set_memalloc - sets %SOCK_MEMALLOC 335 * @sk: socket to set it on 336 * 337 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 338 * It's the responsibility of the admin to adjust min_free_kbytes 339 * to meet the requirements 340 */ 341void sk_set_memalloc(struct sock *sk) 342{ 343 sock_set_flag(sk, SOCK_MEMALLOC); 344 sk->sk_allocation |= __GFP_MEMALLOC; 345 static_key_slow_inc(&memalloc_socks); 346} 347EXPORT_SYMBOL_GPL(sk_set_memalloc); 348 349void sk_clear_memalloc(struct sock *sk) 350{ 351 sock_reset_flag(sk, SOCK_MEMALLOC); 352 sk->sk_allocation &= ~__GFP_MEMALLOC; 353 static_key_slow_dec(&memalloc_socks); 354 355 /* 356 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 357 * progress of swapping. SOCK_MEMALLOC may be cleared while 358 * it has rmem allocations due to the last swapfile being deactivated 359 * but there is a risk that the socket is unusable due to exceeding 360 * the rmem limits. Reclaim the reserves and obey rmem limits again. 361 */ 362 sk_mem_reclaim(sk); 363} 364EXPORT_SYMBOL_GPL(sk_clear_memalloc); 365 366int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 367{ 368 int ret; 369 unsigned long pflags = current->flags; 370 371 /* these should have been dropped before queueing */ 372 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 373 374 current->flags |= PF_MEMALLOC; 375 ret = sk->sk_backlog_rcv(sk, skb); 376 tsk_restore_flags(current, pflags, PF_MEMALLOC); 377 378 return ret; 379} 380EXPORT_SYMBOL(__sk_backlog_rcv); 381 382static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen) 383{ 384 struct timeval tv; 385 386 if (optlen < sizeof(tv)) 387 return -EINVAL; 388 if (copy_from_user(&tv, optval, sizeof(tv))) 389 return -EFAULT; 390 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 391 return -EDOM; 392 393 if (tv.tv_sec < 0) { 394 static int warned __read_mostly; 395 396 *timeo_p = 0; 397 if (warned < 10 && net_ratelimit()) { 398 warned++; 399 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 400 __func__, current->comm, task_pid_nr(current)); 401 } 402 return 0; 403 } 404 *timeo_p = MAX_SCHEDULE_TIMEOUT; 405 if (tv.tv_sec == 0 && tv.tv_usec == 0) 406 return 0; 407 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1)) 408 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ); 409 return 0; 410} 411 412static void sock_warn_obsolete_bsdism(const char *name) 413{ 414 static int warned; 415 static char warncomm[TASK_COMM_LEN]; 416 if (strcmp(warncomm, current->comm) && warned < 5) { 417 strcpy(warncomm, current->comm); 418 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n", 419 warncomm, name); 420 warned++; 421 } 422} 423 424static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 425{ 426 if (sk->sk_flags & flags) { 427 sk->sk_flags &= ~flags; 428 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 429 net_disable_timestamp(); 430 } 431} 432 433 434int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 435{ 436 int err; 437 unsigned long flags; 438 struct sk_buff_head *list = &sk->sk_receive_queue; 439 440 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 441 atomic_inc(&sk->sk_drops); 442 trace_sock_rcvqueue_full(sk, skb); 443 return -ENOMEM; 444 } 445 446 err = sk_filter(sk, skb); 447 if (err) 448 return err; 449 450 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 451 atomic_inc(&sk->sk_drops); 452 return -ENOBUFS; 453 } 454 455 skb->dev = NULL; 456 skb_set_owner_r(skb, sk); 457 458 /* we escape from rcu protected region, make sure we dont leak 459 * a norefcounted dst 460 */ 461 skb_dst_force(skb); 462 463 spin_lock_irqsave(&list->lock, flags); 464 sock_skb_set_dropcount(sk, skb); 465 __skb_queue_tail(list, skb); 466 spin_unlock_irqrestore(&list->lock, flags); 467 468 if (!sock_flag(sk, SOCK_DEAD)) 469 sk->sk_data_ready(sk); 470 return 0; 471} 472EXPORT_SYMBOL(sock_queue_rcv_skb); 473 474int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested) 475{ 476 int rc = NET_RX_SUCCESS; 477 478 if (sk_filter(sk, skb)) 479 goto discard_and_relse; 480 481 skb->dev = NULL; 482 483 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 484 atomic_inc(&sk->sk_drops); 485 goto discard_and_relse; 486 } 487 if (nested) 488 bh_lock_sock_nested(sk); 489 else 490 bh_lock_sock(sk); 491 if (!sock_owned_by_user(sk)) { 492 /* 493 * trylock + unlock semantics: 494 */ 495 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 496 497 rc = sk_backlog_rcv(sk, skb); 498 499 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 500 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 501 bh_unlock_sock(sk); 502 atomic_inc(&sk->sk_drops); 503 goto discard_and_relse; 504 } 505 506 bh_unlock_sock(sk); 507out: 508 sock_put(sk); 509 return rc; 510discard_and_relse: 511 kfree_skb(skb); 512 goto out; 513} 514EXPORT_SYMBOL(sk_receive_skb); 515 516struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 517{ 518 struct dst_entry *dst = __sk_dst_get(sk); 519 520 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 521 sk_tx_queue_clear(sk); 522 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 523 dst_release(dst); 524 return NULL; 525 } 526 527 return dst; 528} 529EXPORT_SYMBOL(__sk_dst_check); 530 531struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 532{ 533 struct dst_entry *dst = sk_dst_get(sk); 534 535 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 536 sk_dst_reset(sk); 537 dst_release(dst); 538 return NULL; 539 } 540 541 return dst; 542} 543EXPORT_SYMBOL(sk_dst_check); 544 545static int sock_setbindtodevice(struct sock *sk, char __user *optval, 546 int optlen) 547{ 548 int ret = -ENOPROTOOPT; 549#ifdef CONFIG_NETDEVICES 550 struct net *net = sock_net(sk); 551 char devname[IFNAMSIZ]; 552 int index; 553 554 /* Sorry... */ 555 ret = -EPERM; 556 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 557 goto out; 558 559 ret = -EINVAL; 560 if (optlen < 0) 561 goto out; 562 563 /* Bind this socket to a particular device like "eth0", 564 * as specified in the passed interface name. If the 565 * name is "" or the option length is zero the socket 566 * is not bound. 567 */ 568 if (optlen > IFNAMSIZ - 1) 569 optlen = IFNAMSIZ - 1; 570 memset(devname, 0, sizeof(devname)); 571 572 ret = -EFAULT; 573 if (copy_from_user(devname, optval, optlen)) 574 goto out; 575 576 index = 0; 577 if (devname[0] != '\0') { 578 struct net_device *dev; 579 580 rcu_read_lock(); 581 dev = dev_get_by_name_rcu(net, devname); 582 if (dev) 583 index = dev->ifindex; 584 rcu_read_unlock(); 585 ret = -ENODEV; 586 if (!dev) 587 goto out; 588 } 589 590 lock_sock(sk); 591 sk->sk_bound_dev_if = index; 592 sk_dst_reset(sk); 593 release_sock(sk); 594 595 ret = 0; 596 597out: 598#endif 599 600 return ret; 601} 602 603static int sock_getbindtodevice(struct sock *sk, char __user *optval, 604 int __user *optlen, int len) 605{ 606 int ret = -ENOPROTOOPT; 607#ifdef CONFIG_NETDEVICES 608 struct net *net = sock_net(sk); 609 char devname[IFNAMSIZ]; 610 611 if (sk->sk_bound_dev_if == 0) { 612 len = 0; 613 goto zero; 614 } 615 616 ret = -EINVAL; 617 if (len < IFNAMSIZ) 618 goto out; 619 620 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 621 if (ret) 622 goto out; 623 624 len = strlen(devname) + 1; 625 626 ret = -EFAULT; 627 if (copy_to_user(optval, devname, len)) 628 goto out; 629 630zero: 631 ret = -EFAULT; 632 if (put_user(len, optlen)) 633 goto out; 634 635 ret = 0; 636 637out: 638#endif 639 640 return ret; 641} 642 643static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 644{ 645 if (valbool) 646 sock_set_flag(sk, bit); 647 else 648 sock_reset_flag(sk, bit); 649} 650 651bool sk_mc_loop(struct sock *sk) 652{ 653 if (dev_recursion_level()) 654 return false; 655 if (!sk) 656 return true; 657 switch (sk->sk_family) { 658 case AF_INET: 659 return inet_sk(sk)->mc_loop; 660#if IS_ENABLED(CONFIG_IPV6) 661 case AF_INET6: 662 return inet6_sk(sk)->mc_loop; 663#endif 664 } 665 WARN_ON(1); 666 return true; 667} 668EXPORT_SYMBOL(sk_mc_loop); 669 670/* 671 * This is meant for all protocols to use and covers goings on 672 * at the socket level. Everything here is generic. 673 */ 674 675int sock_setsockopt(struct socket *sock, int level, int optname, 676 char __user *optval, unsigned int optlen) 677{ 678 struct sock *sk = sock->sk; 679 int val; 680 int valbool; 681 struct linger ling; 682 int ret = 0; 683 684 /* 685 * Options without arguments 686 */ 687 688 if (optname == SO_BINDTODEVICE) 689 return sock_setbindtodevice(sk, optval, optlen); 690 691 if (optlen < sizeof(int)) 692 return -EINVAL; 693 694 if (get_user(val, (int __user *)optval)) 695 return -EFAULT; 696 697 valbool = val ? 1 : 0; 698 699 lock_sock(sk); 700 701 switch (optname) { 702 case SO_DEBUG: 703 if (val && !capable(CAP_NET_ADMIN)) 704 ret = -EACCES; 705 else 706 sock_valbool_flag(sk, SOCK_DBG, valbool); 707 break; 708 case SO_REUSEADDR: 709 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 710 break; 711 case SO_REUSEPORT: 712 sk->sk_reuseport = valbool; 713 break; 714 case SO_TYPE: 715 case SO_PROTOCOL: 716 case SO_DOMAIN: 717 case SO_ERROR: 718 ret = -ENOPROTOOPT; 719 break; 720 case SO_DONTROUTE: 721 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 722 break; 723 case SO_BROADCAST: 724 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 725 break; 726 case SO_SNDBUF: 727 /* Don't error on this BSD doesn't and if you think 728 * about it this is right. Otherwise apps have to 729 * play 'guess the biggest size' games. RCVBUF/SNDBUF 730 * are treated in BSD as hints 731 */ 732 val = min_t(u32, val, sysctl_wmem_max); 733set_sndbuf: 734 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 735 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF); 736 /* Wake up sending tasks if we upped the value. */ 737 sk->sk_write_space(sk); 738 break; 739 740 case SO_SNDBUFFORCE: 741 if (!capable(CAP_NET_ADMIN)) { 742 ret = -EPERM; 743 break; 744 } 745 goto set_sndbuf; 746 747 case SO_RCVBUF: 748 /* Don't error on this BSD doesn't and if you think 749 * about it this is right. Otherwise apps have to 750 * play 'guess the biggest size' games. RCVBUF/SNDBUF 751 * are treated in BSD as hints 752 */ 753 val = min_t(u32, val, sysctl_rmem_max); 754set_rcvbuf: 755 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 756 /* 757 * We double it on the way in to account for 758 * "struct sk_buff" etc. overhead. Applications 759 * assume that the SO_RCVBUF setting they make will 760 * allow that much actual data to be received on that 761 * socket. 762 * 763 * Applications are unaware that "struct sk_buff" and 764 * other overheads allocate from the receive buffer 765 * during socket buffer allocation. 766 * 767 * And after considering the possible alternatives, 768 * returning the value we actually used in getsockopt 769 * is the most desirable behavior. 770 */ 771 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF); 772 break; 773 774 case SO_RCVBUFFORCE: 775 if (!capable(CAP_NET_ADMIN)) { 776 ret = -EPERM; 777 break; 778 } 779 goto set_rcvbuf; 780 781 case SO_KEEPALIVE: 782#ifdef CONFIG_INET 783 if (sk->sk_protocol == IPPROTO_TCP && 784 sk->sk_type == SOCK_STREAM) 785 tcp_set_keepalive(sk, valbool); 786#endif 787 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 788 break; 789 790 case SO_OOBINLINE: 791 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 792 break; 793 794 case SO_NO_CHECK: 795 sk->sk_no_check_tx = valbool; 796 break; 797 798 case SO_PRIORITY: 799 if ((val >= 0 && val <= 6) || 800 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 801 sk->sk_priority = val; 802 else 803 ret = -EPERM; 804 break; 805 806 case SO_LINGER: 807 if (optlen < sizeof(ling)) { 808 ret = -EINVAL; /* 1003.1g */ 809 break; 810 } 811 if (copy_from_user(&ling, optval, sizeof(ling))) { 812 ret = -EFAULT; 813 break; 814 } 815 if (!ling.l_onoff) 816 sock_reset_flag(sk, SOCK_LINGER); 817 else { 818#if (BITS_PER_LONG == 32) 819 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 820 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 821 else 822#endif 823 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 824 sock_set_flag(sk, SOCK_LINGER); 825 } 826 break; 827 828 case SO_BSDCOMPAT: 829 sock_warn_obsolete_bsdism("setsockopt"); 830 break; 831 832 case SO_PASSCRED: 833 if (valbool) 834 set_bit(SOCK_PASSCRED, &sock->flags); 835 else 836 clear_bit(SOCK_PASSCRED, &sock->flags); 837 break; 838 839 case SO_TIMESTAMP: 840 case SO_TIMESTAMPNS: 841 if (valbool) { 842 if (optname == SO_TIMESTAMP) 843 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 844 else 845 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 846 sock_set_flag(sk, SOCK_RCVTSTAMP); 847 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 848 } else { 849 sock_reset_flag(sk, SOCK_RCVTSTAMP); 850 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 851 } 852 break; 853 854 case SO_TIMESTAMPING: 855 if (val & ~SOF_TIMESTAMPING_MASK) { 856 ret = -EINVAL; 857 break; 858 } 859 860 if (val & SOF_TIMESTAMPING_OPT_ID && 861 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 862 if (sk->sk_protocol == IPPROTO_TCP && 863 sk->sk_type == SOCK_STREAM) { 864 if (sk->sk_state != TCP_ESTABLISHED) { 865 ret = -EINVAL; 866 break; 867 } 868 sk->sk_tskey = tcp_sk(sk)->snd_una; 869 } else { 870 sk->sk_tskey = 0; 871 } 872 } 873 sk->sk_tsflags = val; 874 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 875 sock_enable_timestamp(sk, 876 SOCK_TIMESTAMPING_RX_SOFTWARE); 877 else 878 sock_disable_timestamp(sk, 879 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 880 break; 881 882 case SO_RCVLOWAT: 883 if (val < 0) 884 val = INT_MAX; 885 sk->sk_rcvlowat = val ? : 1; 886 break; 887 888 case SO_RCVTIMEO: 889 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen); 890 break; 891 892 case SO_SNDTIMEO: 893 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen); 894 break; 895 896 case SO_ATTACH_FILTER: 897 ret = -EINVAL; 898 if (optlen == sizeof(struct sock_fprog)) { 899 struct sock_fprog fprog; 900 901 ret = -EFAULT; 902 if (copy_from_user(&fprog, optval, sizeof(fprog))) 903 break; 904 905 ret = sk_attach_filter(&fprog, sk); 906 } 907 break; 908 909 case SO_ATTACH_BPF: 910 ret = -EINVAL; 911 if (optlen == sizeof(u32)) { 912 u32 ufd; 913 914 ret = -EFAULT; 915 if (copy_from_user(&ufd, optval, sizeof(ufd))) 916 break; 917 918 ret = sk_attach_bpf(ufd, sk); 919 } 920 break; 921 922 case SO_DETACH_FILTER: 923 ret = sk_detach_filter(sk); 924 break; 925 926 case SO_LOCK_FILTER: 927 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 928 ret = -EPERM; 929 else 930 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 931 break; 932 933 case SO_PASSSEC: 934 if (valbool) 935 set_bit(SOCK_PASSSEC, &sock->flags); 936 else 937 clear_bit(SOCK_PASSSEC, &sock->flags); 938 break; 939 case SO_MARK: 940 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 941 ret = -EPERM; 942 else 943 sk->sk_mark = val; 944 break; 945 946 case SO_RXQ_OVFL: 947 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 948 break; 949 950 case SO_WIFI_STATUS: 951 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 952 break; 953 954 case SO_PEEK_OFF: 955 if (sock->ops->set_peek_off) 956 ret = sock->ops->set_peek_off(sk, val); 957 else 958 ret = -EOPNOTSUPP; 959 break; 960 961 case SO_NOFCS: 962 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 963 break; 964 965 case SO_SELECT_ERR_QUEUE: 966 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 967 break; 968 969#ifdef CONFIG_NET_RX_BUSY_POLL 970 case SO_BUSY_POLL: 971 /* allow unprivileged users to decrease the value */ 972 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 973 ret = -EPERM; 974 else { 975 if (val < 0) 976 ret = -EINVAL; 977 else 978 sk->sk_ll_usec = val; 979 } 980 break; 981#endif 982 983 case SO_MAX_PACING_RATE: 984 sk->sk_max_pacing_rate = val; 985 sk->sk_pacing_rate = min(sk->sk_pacing_rate, 986 sk->sk_max_pacing_rate); 987 break; 988 989 default: 990 ret = -ENOPROTOOPT; 991 break; 992 } 993 release_sock(sk); 994 return ret; 995} 996EXPORT_SYMBOL(sock_setsockopt); 997 998 999static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1000 struct ucred *ucred) 1001{ 1002 ucred->pid = pid_vnr(pid); 1003 ucred->uid = ucred->gid = -1; 1004 if (cred) { 1005 struct user_namespace *current_ns = current_user_ns(); 1006 1007 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1008 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1009 } 1010} 1011 1012int sock_getsockopt(struct socket *sock, int level, int optname, 1013 char __user *optval, int __user *optlen) 1014{ 1015 struct sock *sk = sock->sk; 1016 1017 union { 1018 int val; 1019 struct linger ling; 1020 struct timeval tm; 1021 } v; 1022 1023 int lv = sizeof(int); 1024 int len; 1025 1026 if (get_user(len, optlen)) 1027 return -EFAULT; 1028 if (len < 0) 1029 return -EINVAL; 1030 1031 memset(&v, 0, sizeof(v)); 1032 1033 switch (optname) { 1034 case SO_DEBUG: 1035 v.val = sock_flag(sk, SOCK_DBG); 1036 break; 1037 1038 case SO_DONTROUTE: 1039 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1040 break; 1041 1042 case SO_BROADCAST: 1043 v.val = sock_flag(sk, SOCK_BROADCAST); 1044 break; 1045 1046 case SO_SNDBUF: 1047 v.val = sk->sk_sndbuf; 1048 break; 1049 1050 case SO_RCVBUF: 1051 v.val = sk->sk_rcvbuf; 1052 break; 1053 1054 case SO_REUSEADDR: 1055 v.val = sk->sk_reuse; 1056 break; 1057 1058 case SO_REUSEPORT: 1059 v.val = sk->sk_reuseport; 1060 break; 1061 1062 case SO_KEEPALIVE: 1063 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1064 break; 1065 1066 case SO_TYPE: 1067 v.val = sk->sk_type; 1068 break; 1069 1070 case SO_PROTOCOL: 1071 v.val = sk->sk_protocol; 1072 break; 1073 1074 case SO_DOMAIN: 1075 v.val = sk->sk_family; 1076 break; 1077 1078 case SO_ERROR: 1079 v.val = -sock_error(sk); 1080 if (v.val == 0) 1081 v.val = xchg(&sk->sk_err_soft, 0); 1082 break; 1083 1084 case SO_OOBINLINE: 1085 v.val = sock_flag(sk, SOCK_URGINLINE); 1086 break; 1087 1088 case SO_NO_CHECK: 1089 v.val = sk->sk_no_check_tx; 1090 break; 1091 1092 case SO_PRIORITY: 1093 v.val = sk->sk_priority; 1094 break; 1095 1096 case SO_LINGER: 1097 lv = sizeof(v.ling); 1098 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1099 v.ling.l_linger = sk->sk_lingertime / HZ; 1100 break; 1101 1102 case SO_BSDCOMPAT: 1103 sock_warn_obsolete_bsdism("getsockopt"); 1104 break; 1105 1106 case SO_TIMESTAMP: 1107 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1108 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1109 break; 1110 1111 case SO_TIMESTAMPNS: 1112 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS); 1113 break; 1114 1115 case SO_TIMESTAMPING: 1116 v.val = sk->sk_tsflags; 1117 break; 1118 1119 case SO_RCVTIMEO: 1120 lv = sizeof(struct timeval); 1121 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) { 1122 v.tm.tv_sec = 0; 1123 v.tm.tv_usec = 0; 1124 } else { 1125 v.tm.tv_sec = sk->sk_rcvtimeo / HZ; 1126 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ; 1127 } 1128 break; 1129 1130 case SO_SNDTIMEO: 1131 lv = sizeof(struct timeval); 1132 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) { 1133 v.tm.tv_sec = 0; 1134 v.tm.tv_usec = 0; 1135 } else { 1136 v.tm.tv_sec = sk->sk_sndtimeo / HZ; 1137 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ; 1138 } 1139 break; 1140 1141 case SO_RCVLOWAT: 1142 v.val = sk->sk_rcvlowat; 1143 break; 1144 1145 case SO_SNDLOWAT: 1146 v.val = 1; 1147 break; 1148 1149 case SO_PASSCRED: 1150 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1151 break; 1152 1153 case SO_PEERCRED: 1154 { 1155 struct ucred peercred; 1156 if (len > sizeof(peercred)) 1157 len = sizeof(peercred); 1158 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1159 if (copy_to_user(optval, &peercred, len)) 1160 return -EFAULT; 1161 goto lenout; 1162 } 1163 1164 case SO_PEERNAME: 1165 { 1166 char address[128]; 1167 1168 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2)) 1169 return -ENOTCONN; 1170 if (lv < len) 1171 return -EINVAL; 1172 if (copy_to_user(optval, address, len)) 1173 return -EFAULT; 1174 goto lenout; 1175 } 1176 1177 /* Dubious BSD thing... Probably nobody even uses it, but 1178 * the UNIX standard wants it for whatever reason... -DaveM 1179 */ 1180 case SO_ACCEPTCONN: 1181 v.val = sk->sk_state == TCP_LISTEN; 1182 break; 1183 1184 case SO_PASSSEC: 1185 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1186 break; 1187 1188 case SO_PEERSEC: 1189 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1190 1191 case SO_MARK: 1192 v.val = sk->sk_mark; 1193 break; 1194 1195 case SO_RXQ_OVFL: 1196 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1197 break; 1198 1199 case SO_WIFI_STATUS: 1200 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1201 break; 1202 1203 case SO_PEEK_OFF: 1204 if (!sock->ops->set_peek_off) 1205 return -EOPNOTSUPP; 1206 1207 v.val = sk->sk_peek_off; 1208 break; 1209 case SO_NOFCS: 1210 v.val = sock_flag(sk, SOCK_NOFCS); 1211 break; 1212 1213 case SO_BINDTODEVICE: 1214 return sock_getbindtodevice(sk, optval, optlen, len); 1215 1216 case SO_GET_FILTER: 1217 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1218 if (len < 0) 1219 return len; 1220 1221 goto lenout; 1222 1223 case SO_LOCK_FILTER: 1224 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1225 break; 1226 1227 case SO_BPF_EXTENSIONS: 1228 v.val = bpf_tell_extensions(); 1229 break; 1230 1231 case SO_SELECT_ERR_QUEUE: 1232 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1233 break; 1234 1235#ifdef CONFIG_NET_RX_BUSY_POLL 1236 case SO_BUSY_POLL: 1237 v.val = sk->sk_ll_usec; 1238 break; 1239#endif 1240 1241 case SO_MAX_PACING_RATE: 1242 v.val = sk->sk_max_pacing_rate; 1243 break; 1244 1245 case SO_INCOMING_CPU: 1246 v.val = sk->sk_incoming_cpu; 1247 break; 1248 1249 default: 1250 /* We implement the SO_SNDLOWAT etc to not be settable 1251 * (1003.1g 7). 1252 */ 1253 return -ENOPROTOOPT; 1254 } 1255 1256 if (len > lv) 1257 len = lv; 1258 if (copy_to_user(optval, &v, len)) 1259 return -EFAULT; 1260lenout: 1261 if (put_user(len, optlen)) 1262 return -EFAULT; 1263 return 0; 1264} 1265 1266/* 1267 * Initialize an sk_lock. 1268 * 1269 * (We also register the sk_lock with the lock validator.) 1270 */ 1271static inline void sock_lock_init(struct sock *sk) 1272{ 1273 sock_lock_init_class_and_name(sk, 1274 af_family_slock_key_strings[sk->sk_family], 1275 af_family_slock_keys + sk->sk_family, 1276 af_family_key_strings[sk->sk_family], 1277 af_family_keys + sk->sk_family); 1278} 1279 1280/* 1281 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1282 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1283 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1284 */ 1285static void sock_copy(struct sock *nsk, const struct sock *osk) 1286{ 1287#ifdef CONFIG_SECURITY_NETWORK 1288 void *sptr = nsk->sk_security; 1289#endif 1290 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1291 1292 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1293 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1294 1295#ifdef CONFIG_SECURITY_NETWORK 1296 nsk->sk_security = sptr; 1297 security_sk_clone(osk, nsk); 1298#endif 1299} 1300 1301void sk_prot_clear_portaddr_nulls(struct sock *sk, int size) 1302{ 1303 unsigned long nulls1, nulls2; 1304 1305 nulls1 = offsetof(struct sock, __sk_common.skc_node.next); 1306 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next); 1307 if (nulls1 > nulls2) 1308 swap(nulls1, nulls2); 1309 1310 if (nulls1 != 0) 1311 memset((char *)sk, 0, nulls1); 1312 memset((char *)sk + nulls1 + sizeof(void *), 0, 1313 nulls2 - nulls1 - sizeof(void *)); 1314 memset((char *)sk + nulls2 + sizeof(void *), 0, 1315 size - nulls2 - sizeof(void *)); 1316} 1317EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls); 1318 1319static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1320 int family) 1321{ 1322 struct sock *sk; 1323 struct kmem_cache *slab; 1324 1325 slab = prot->slab; 1326 if (slab != NULL) { 1327 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1328 if (!sk) 1329 return sk; 1330 if (priority & __GFP_ZERO) { 1331 if (prot->clear_sk) 1332 prot->clear_sk(sk, prot->obj_size); 1333 else 1334 sk_prot_clear_nulls(sk, prot->obj_size); 1335 } 1336 } else 1337 sk = kmalloc(prot->obj_size, priority); 1338 1339 if (sk != NULL) { 1340 kmemcheck_annotate_bitfield(sk, flags); 1341 1342 if (security_sk_alloc(sk, family, priority)) 1343 goto out_free; 1344 1345 if (!try_module_get(prot->owner)) 1346 goto out_free_sec; 1347 sk_tx_queue_clear(sk); 1348 } 1349 1350 return sk; 1351 1352out_free_sec: 1353 security_sk_free(sk); 1354out_free: 1355 if (slab != NULL) 1356 kmem_cache_free(slab, sk); 1357 else 1358 kfree(sk); 1359 return NULL; 1360} 1361 1362static void sk_prot_free(struct proto *prot, struct sock *sk) 1363{ 1364 struct kmem_cache *slab; 1365 struct module *owner; 1366 1367 owner = prot->owner; 1368 slab = prot->slab; 1369 1370 security_sk_free(sk); 1371 if (slab != NULL) 1372 kmem_cache_free(slab, sk); 1373 else 1374 kfree(sk); 1375 module_put(owner); 1376} 1377 1378#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1379void sock_update_netprioidx(struct sock *sk) 1380{ 1381 if (in_interrupt()) 1382 return; 1383 1384 sk->sk_cgrp_prioidx = task_netprioidx(current); 1385} 1386EXPORT_SYMBOL_GPL(sock_update_netprioidx); 1387#endif 1388 1389/** 1390 * sk_alloc - All socket objects are allocated here 1391 * @net: the applicable net namespace 1392 * @family: protocol family 1393 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1394 * @prot: struct proto associated with this new sock instance 1395 */ 1396struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1397 struct proto *prot) 1398{ 1399 struct sock *sk; 1400 1401 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1402 if (sk) { 1403 sk->sk_family = family; 1404 /* 1405 * See comment in struct sock definition to understand 1406 * why we need sk_prot_creator -acme 1407 */ 1408 sk->sk_prot = sk->sk_prot_creator = prot; 1409 sock_lock_init(sk); 1410 sock_net_set(sk, get_net(net)); 1411 atomic_set(&sk->sk_wmem_alloc, 1); 1412 1413 sock_update_classid(sk); 1414 sock_update_netprioidx(sk); 1415 } 1416 1417 return sk; 1418} 1419EXPORT_SYMBOL(sk_alloc); 1420 1421static void __sk_free(struct sock *sk) 1422{ 1423 struct sk_filter *filter; 1424 1425 if (sk->sk_destruct) 1426 sk->sk_destruct(sk); 1427 1428 filter = rcu_dereference_check(sk->sk_filter, 1429 atomic_read(&sk->sk_wmem_alloc) == 0); 1430 if (filter) { 1431 sk_filter_uncharge(sk, filter); 1432 RCU_INIT_POINTER(sk->sk_filter, NULL); 1433 } 1434 1435 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1436 1437 if (atomic_read(&sk->sk_omem_alloc)) 1438 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1439 __func__, atomic_read(&sk->sk_omem_alloc)); 1440 1441 if (sk->sk_peer_cred) 1442 put_cred(sk->sk_peer_cred); 1443 put_pid(sk->sk_peer_pid); 1444 put_net(sock_net(sk)); 1445 sk_prot_free(sk->sk_prot_creator, sk); 1446} 1447 1448void sk_free(struct sock *sk) 1449{ 1450 /* 1451 * We subtract one from sk_wmem_alloc and can know if 1452 * some packets are still in some tx queue. 1453 * If not null, sock_wfree() will call __sk_free(sk) later 1454 */ 1455 if (atomic_dec_and_test(&sk->sk_wmem_alloc)) 1456 __sk_free(sk); 1457} 1458EXPORT_SYMBOL(sk_free); 1459 1460/* 1461 * Last sock_put should drop reference to sk->sk_net. It has already 1462 * been dropped in sk_change_net. Taking reference to stopping namespace 1463 * is not an option. 1464 * Take reference to a socket to remove it from hash _alive_ and after that 1465 * destroy it in the context of init_net. 1466 */ 1467void sk_release_kernel(struct sock *sk) 1468{ 1469 if (sk == NULL || sk->sk_socket == NULL) 1470 return; 1471 1472 sock_hold(sk); 1473 sock_release(sk->sk_socket); 1474 sock_net_set(sk, get_net(&init_net)); 1475 sock_put(sk); 1476} 1477EXPORT_SYMBOL(sk_release_kernel); 1478 1479static void sk_update_clone(const struct sock *sk, struct sock *newsk) 1480{ 1481 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1482 sock_update_memcg(newsk); 1483} 1484 1485/** 1486 * sk_clone_lock - clone a socket, and lock its clone 1487 * @sk: the socket to clone 1488 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1489 * 1490 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1491 */ 1492struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1493{ 1494 struct sock *newsk; 1495 bool is_charged = true; 1496 1497 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); 1498 if (newsk != NULL) { 1499 struct sk_filter *filter; 1500 1501 sock_copy(newsk, sk); 1502 1503 /* SANITY */ 1504 get_net(sock_net(newsk)); 1505 sk_node_init(&newsk->sk_node); 1506 sock_lock_init(newsk); 1507 bh_lock_sock(newsk); 1508 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1509 newsk->sk_backlog.len = 0; 1510 1511 atomic_set(&newsk->sk_rmem_alloc, 0); 1512 /* 1513 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1514 */ 1515 atomic_set(&newsk->sk_wmem_alloc, 1); 1516 atomic_set(&newsk->sk_omem_alloc, 0); 1517 skb_queue_head_init(&newsk->sk_receive_queue); 1518 skb_queue_head_init(&newsk->sk_write_queue); 1519 1520 spin_lock_init(&newsk->sk_dst_lock); 1521 rwlock_init(&newsk->sk_callback_lock); 1522 lockdep_set_class_and_name(&newsk->sk_callback_lock, 1523 af_callback_keys + newsk->sk_family, 1524 af_family_clock_key_strings[newsk->sk_family]); 1525 1526 newsk->sk_dst_cache = NULL; 1527 newsk->sk_wmem_queued = 0; 1528 newsk->sk_forward_alloc = 0; 1529 newsk->sk_send_head = NULL; 1530 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1531 1532 sock_reset_flag(newsk, SOCK_DONE); 1533 skb_queue_head_init(&newsk->sk_error_queue); 1534 1535 filter = rcu_dereference_protected(newsk->sk_filter, 1); 1536 if (filter != NULL) 1537 /* though it's an empty new sock, the charging may fail 1538 * if sysctl_optmem_max was changed between creation of 1539 * original socket and cloning 1540 */ 1541 is_charged = sk_filter_charge(newsk, filter); 1542 1543 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk))) { 1544 /* It is still raw copy of parent, so invalidate 1545 * destructor and make plain sk_free() */ 1546 newsk->sk_destruct = NULL; 1547 bh_unlock_sock(newsk); 1548 sk_free(newsk); 1549 newsk = NULL; 1550 goto out; 1551 } 1552 1553 newsk->sk_err = 0; 1554 newsk->sk_priority = 0; 1555 newsk->sk_incoming_cpu = raw_smp_processor_id(); 1556 atomic64_set(&newsk->sk_cookie, 0); 1557 /* 1558 * Before updating sk_refcnt, we must commit prior changes to memory 1559 * (Documentation/RCU/rculist_nulls.txt for details) 1560 */ 1561 smp_wmb(); 1562 atomic_set(&newsk->sk_refcnt, 2); 1563 1564 /* 1565 * Increment the counter in the same struct proto as the master 1566 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1567 * is the same as sk->sk_prot->socks, as this field was copied 1568 * with memcpy). 1569 * 1570 * This _changes_ the previous behaviour, where 1571 * tcp_create_openreq_child always was incrementing the 1572 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1573 * to be taken into account in all callers. -acme 1574 */ 1575 sk_refcnt_debug_inc(newsk); 1576 sk_set_socket(newsk, NULL); 1577 newsk->sk_wq = NULL; 1578 1579 sk_update_clone(sk, newsk); 1580 1581 if (newsk->sk_prot->sockets_allocated) 1582 sk_sockets_allocated_inc(newsk); 1583 1584 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 1585 net_enable_timestamp(); 1586 } 1587out: 1588 return newsk; 1589} 1590EXPORT_SYMBOL_GPL(sk_clone_lock); 1591 1592void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1593{ 1594 __sk_dst_set(sk, dst); 1595 sk->sk_route_caps = dst->dev->features; 1596 if (sk->sk_route_caps & NETIF_F_GSO) 1597 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1598 sk->sk_route_caps &= ~sk->sk_route_nocaps; 1599 if (sk_can_gso(sk)) { 1600 if (dst->header_len) { 1601 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1602 } else { 1603 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1604 sk->sk_gso_max_size = dst->dev->gso_max_size; 1605 sk->sk_gso_max_segs = dst->dev->gso_max_segs; 1606 } 1607 } 1608} 1609EXPORT_SYMBOL_GPL(sk_setup_caps); 1610 1611/* 1612 * Simple resource managers for sockets. 1613 */ 1614 1615 1616/* 1617 * Write buffer destructor automatically called from kfree_skb. 1618 */ 1619void sock_wfree(struct sk_buff *skb) 1620{ 1621 struct sock *sk = skb->sk; 1622 unsigned int len = skb->truesize; 1623 1624 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 1625 /* 1626 * Keep a reference on sk_wmem_alloc, this will be released 1627 * after sk_write_space() call 1628 */ 1629 atomic_sub(len - 1, &sk->sk_wmem_alloc); 1630 sk->sk_write_space(sk); 1631 len = 1; 1632 } 1633 /* 1634 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 1635 * could not do because of in-flight packets 1636 */ 1637 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc)) 1638 __sk_free(sk); 1639} 1640EXPORT_SYMBOL(sock_wfree); 1641 1642void skb_orphan_partial(struct sk_buff *skb) 1643{ 1644 /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc, 1645 * so we do not completely orphan skb, but transfert all 1646 * accounted bytes but one, to avoid unexpected reorders. 1647 */ 1648 if (skb->destructor == sock_wfree 1649#ifdef CONFIG_INET 1650 || skb->destructor == tcp_wfree 1651#endif 1652 ) { 1653 atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc); 1654 skb->truesize = 1; 1655 } else { 1656 skb_orphan(skb); 1657 } 1658} 1659EXPORT_SYMBOL(skb_orphan_partial); 1660 1661/* 1662 * Read buffer destructor automatically called from kfree_skb. 1663 */ 1664void sock_rfree(struct sk_buff *skb) 1665{ 1666 struct sock *sk = skb->sk; 1667 unsigned int len = skb->truesize; 1668 1669 atomic_sub(len, &sk->sk_rmem_alloc); 1670 sk_mem_uncharge(sk, len); 1671} 1672EXPORT_SYMBOL(sock_rfree); 1673 1674/* 1675 * Buffer destructor for skbs that are not used directly in read or write 1676 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 1677 */ 1678void sock_efree(struct sk_buff *skb) 1679{ 1680 sock_put(skb->sk); 1681} 1682EXPORT_SYMBOL(sock_efree); 1683 1684kuid_t sock_i_uid(struct sock *sk) 1685{ 1686 kuid_t uid; 1687 1688 read_lock_bh(&sk->sk_callback_lock); 1689 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 1690 read_unlock_bh(&sk->sk_callback_lock); 1691 return uid; 1692} 1693EXPORT_SYMBOL(sock_i_uid); 1694 1695unsigned long sock_i_ino(struct sock *sk) 1696{ 1697 unsigned long ino; 1698 1699 read_lock_bh(&sk->sk_callback_lock); 1700 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 1701 read_unlock_bh(&sk->sk_callback_lock); 1702 return ino; 1703} 1704EXPORT_SYMBOL(sock_i_ino); 1705 1706/* 1707 * Allocate a skb from the socket's send buffer. 1708 */ 1709struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1710 gfp_t priority) 1711{ 1712 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 1713 struct sk_buff *skb = alloc_skb(size, priority); 1714 if (skb) { 1715 skb_set_owner_w(skb, sk); 1716 return skb; 1717 } 1718 } 1719 return NULL; 1720} 1721EXPORT_SYMBOL(sock_wmalloc); 1722 1723/* 1724 * Allocate a memory block from the socket's option memory buffer. 1725 */ 1726void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 1727{ 1728 if ((unsigned int)size <= sysctl_optmem_max && 1729 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 1730 void *mem; 1731 /* First do the add, to avoid the race if kmalloc 1732 * might sleep. 1733 */ 1734 atomic_add(size, &sk->sk_omem_alloc); 1735 mem = kmalloc(size, priority); 1736 if (mem) 1737 return mem; 1738 atomic_sub(size, &sk->sk_omem_alloc); 1739 } 1740 return NULL; 1741} 1742EXPORT_SYMBOL(sock_kmalloc); 1743 1744/* Free an option memory block. Note, we actually want the inline 1745 * here as this allows gcc to detect the nullify and fold away the 1746 * condition entirely. 1747 */ 1748static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 1749 const bool nullify) 1750{ 1751 if (WARN_ON_ONCE(!mem)) 1752 return; 1753 if (nullify) 1754 kzfree(mem); 1755 else 1756 kfree(mem); 1757 atomic_sub(size, &sk->sk_omem_alloc); 1758} 1759 1760void sock_kfree_s(struct sock *sk, void *mem, int size) 1761{ 1762 __sock_kfree_s(sk, mem, size, false); 1763} 1764EXPORT_SYMBOL(sock_kfree_s); 1765 1766void sock_kzfree_s(struct sock *sk, void *mem, int size) 1767{ 1768 __sock_kfree_s(sk, mem, size, true); 1769} 1770EXPORT_SYMBOL(sock_kzfree_s); 1771 1772/* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 1773 I think, these locks should be removed for datagram sockets. 1774 */ 1775static long sock_wait_for_wmem(struct sock *sk, long timeo) 1776{ 1777 DEFINE_WAIT(wait); 1778 1779 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1780 for (;;) { 1781 if (!timeo) 1782 break; 1783 if (signal_pending(current)) 1784 break; 1785 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1786 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1787 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 1788 break; 1789 if (sk->sk_shutdown & SEND_SHUTDOWN) 1790 break; 1791 if (sk->sk_err) 1792 break; 1793 timeo = schedule_timeout(timeo); 1794 } 1795 finish_wait(sk_sleep(sk), &wait); 1796 return timeo; 1797} 1798 1799 1800/* 1801 * Generic send/receive buffer handlers 1802 */ 1803 1804struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1805 unsigned long data_len, int noblock, 1806 int *errcode, int max_page_order) 1807{ 1808 struct sk_buff *skb; 1809 long timeo; 1810 int err; 1811 1812 timeo = sock_sndtimeo(sk, noblock); 1813 for (;;) { 1814 err = sock_error(sk); 1815 if (err != 0) 1816 goto failure; 1817 1818 err = -EPIPE; 1819 if (sk->sk_shutdown & SEND_SHUTDOWN) 1820 goto failure; 1821 1822 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf) 1823 break; 1824 1825 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1826 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1827 err = -EAGAIN; 1828 if (!timeo) 1829 goto failure; 1830 if (signal_pending(current)) 1831 goto interrupted; 1832 timeo = sock_wait_for_wmem(sk, timeo); 1833 } 1834 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 1835 errcode, sk->sk_allocation); 1836 if (skb) 1837 skb_set_owner_w(skb, sk); 1838 return skb; 1839 1840interrupted: 1841 err = sock_intr_errno(timeo); 1842failure: 1843 *errcode = err; 1844 return NULL; 1845} 1846EXPORT_SYMBOL(sock_alloc_send_pskb); 1847 1848struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1849 int noblock, int *errcode) 1850{ 1851 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 1852} 1853EXPORT_SYMBOL(sock_alloc_send_skb); 1854 1855/* On 32bit arches, an skb frag is limited to 2^15 */ 1856#define SKB_FRAG_PAGE_ORDER get_order(32768) 1857 1858/** 1859 * skb_page_frag_refill - check that a page_frag contains enough room 1860 * @sz: minimum size of the fragment we want to get 1861 * @pfrag: pointer to page_frag 1862 * @gfp: priority for memory allocation 1863 * 1864 * Note: While this allocator tries to use high order pages, there is 1865 * no guarantee that allocations succeed. Therefore, @sz MUST be 1866 * less or equal than PAGE_SIZE. 1867 */ 1868bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 1869{ 1870 if (pfrag->page) { 1871 if (atomic_read(&pfrag->page->_count) == 1) { 1872 pfrag->offset = 0; 1873 return true; 1874 } 1875 if (pfrag->offset + sz <= pfrag->size) 1876 return true; 1877 put_page(pfrag->page); 1878 } 1879 1880 pfrag->offset = 0; 1881 if (SKB_FRAG_PAGE_ORDER) { 1882 pfrag->page = alloc_pages((gfp & ~__GFP_WAIT) | __GFP_COMP | 1883 __GFP_NOWARN | __GFP_NORETRY, 1884 SKB_FRAG_PAGE_ORDER); 1885 if (likely(pfrag->page)) { 1886 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 1887 return true; 1888 } 1889 } 1890 pfrag->page = alloc_page(gfp); 1891 if (likely(pfrag->page)) { 1892 pfrag->size = PAGE_SIZE; 1893 return true; 1894 } 1895 return false; 1896} 1897EXPORT_SYMBOL(skb_page_frag_refill); 1898 1899bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1900{ 1901 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 1902 return true; 1903 1904 sk_enter_memory_pressure(sk); 1905 sk_stream_moderate_sndbuf(sk); 1906 return false; 1907} 1908EXPORT_SYMBOL(sk_page_frag_refill); 1909 1910static void __lock_sock(struct sock *sk) 1911 __releases(&sk->sk_lock.slock) 1912 __acquires(&sk->sk_lock.slock) 1913{ 1914 DEFINE_WAIT(wait); 1915 1916 for (;;) { 1917 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 1918 TASK_UNINTERRUPTIBLE); 1919 spin_unlock_bh(&sk->sk_lock.slock); 1920 schedule(); 1921 spin_lock_bh(&sk->sk_lock.slock); 1922 if (!sock_owned_by_user(sk)) 1923 break; 1924 } 1925 finish_wait(&sk->sk_lock.wq, &wait); 1926} 1927 1928static void __release_sock(struct sock *sk) 1929 __releases(&sk->sk_lock.slock) 1930 __acquires(&sk->sk_lock.slock) 1931{ 1932 struct sk_buff *skb = sk->sk_backlog.head; 1933 1934 do { 1935 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 1936 bh_unlock_sock(sk); 1937 1938 do { 1939 struct sk_buff *next = skb->next; 1940 1941 prefetch(next); 1942 WARN_ON_ONCE(skb_dst_is_noref(skb)); 1943 skb->next = NULL; 1944 sk_backlog_rcv(sk, skb); 1945 1946 /* 1947 * We are in process context here with softirqs 1948 * disabled, use cond_resched_softirq() to preempt. 1949 * This is safe to do because we've taken the backlog 1950 * queue private: 1951 */ 1952 cond_resched_softirq(); 1953 1954 skb = next; 1955 } while (skb != NULL); 1956 1957 bh_lock_sock(sk); 1958 } while ((skb = sk->sk_backlog.head) != NULL); 1959 1960 /* 1961 * Doing the zeroing here guarantee we can not loop forever 1962 * while a wild producer attempts to flood us. 1963 */ 1964 sk->sk_backlog.len = 0; 1965} 1966 1967/** 1968 * sk_wait_data - wait for data to arrive at sk_receive_queue 1969 * @sk: sock to wait on 1970 * @timeo: for how long 1971 * 1972 * Now socket state including sk->sk_err is changed only under lock, 1973 * hence we may omit checks after joining wait queue. 1974 * We check receive queue before schedule() only as optimization; 1975 * it is very likely that release_sock() added new data. 1976 */ 1977int sk_wait_data(struct sock *sk, long *timeo) 1978{ 1979 int rc; 1980 DEFINE_WAIT(wait); 1981 1982 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1983 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); 1984 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue)); 1985 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); 1986 finish_wait(sk_sleep(sk), &wait); 1987 return rc; 1988} 1989EXPORT_SYMBOL(sk_wait_data); 1990 1991/** 1992 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 1993 * @sk: socket 1994 * @size: memory size to allocate 1995 * @kind: allocation type 1996 * 1997 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 1998 * rmem allocation. This function assumes that protocols which have 1999 * memory_pressure use sk_wmem_queued as write buffer accounting. 2000 */ 2001int __sk_mem_schedule(struct sock *sk, int size, int kind) 2002{ 2003 struct proto *prot = sk->sk_prot; 2004 int amt = sk_mem_pages(size); 2005 long allocated; 2006 int parent_status = UNDER_LIMIT; 2007 2008 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 2009 2010 allocated = sk_memory_allocated_add(sk, amt, &parent_status); 2011 2012 /* Under limit. */ 2013 if (parent_status == UNDER_LIMIT && 2014 allocated <= sk_prot_mem_limits(sk, 0)) { 2015 sk_leave_memory_pressure(sk); 2016 return 1; 2017 } 2018 2019 /* Under pressure. (we or our parents) */ 2020 if ((parent_status > SOFT_LIMIT) || 2021 allocated > sk_prot_mem_limits(sk, 1)) 2022 sk_enter_memory_pressure(sk); 2023 2024 /* Over hard limit (we or our parents) */ 2025 if ((parent_status == OVER_LIMIT) || 2026 (allocated > sk_prot_mem_limits(sk, 2))) 2027 goto suppress_allocation; 2028 2029 /* guarantee minimum buffer size under pressure */ 2030 if (kind == SK_MEM_RECV) { 2031 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0]) 2032 return 1; 2033 2034 } else { /* SK_MEM_SEND */ 2035 if (sk->sk_type == SOCK_STREAM) { 2036 if (sk->sk_wmem_queued < prot->sysctl_wmem[0]) 2037 return 1; 2038 } else if (atomic_read(&sk->sk_wmem_alloc) < 2039 prot->sysctl_wmem[0]) 2040 return 1; 2041 } 2042 2043 if (sk_has_memory_pressure(sk)) { 2044 int alloc; 2045 2046 if (!sk_under_memory_pressure(sk)) 2047 return 1; 2048 alloc = sk_sockets_allocated_read_positive(sk); 2049 if (sk_prot_mem_limits(sk, 2) > alloc * 2050 sk_mem_pages(sk->sk_wmem_queued + 2051 atomic_read(&sk->sk_rmem_alloc) + 2052 sk->sk_forward_alloc)) 2053 return 1; 2054 } 2055 2056suppress_allocation: 2057 2058 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2059 sk_stream_moderate_sndbuf(sk); 2060 2061 /* Fail only if socket is _under_ its sndbuf. 2062 * In this case we cannot block, so that we have to fail. 2063 */ 2064 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 2065 return 1; 2066 } 2067 2068 trace_sock_exceed_buf_limit(sk, prot, allocated); 2069 2070 /* Alas. Undo changes. */ 2071 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM; 2072 2073 sk_memory_allocated_sub(sk, amt); 2074 2075 return 0; 2076} 2077EXPORT_SYMBOL(__sk_mem_schedule); 2078 2079/** 2080 * __sk_reclaim - reclaim memory_allocated 2081 * @sk: socket 2082 */ 2083void __sk_mem_reclaim(struct sock *sk) 2084{ 2085 sk_memory_allocated_sub(sk, 2086 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT); 2087 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1; 2088 2089 if (sk_under_memory_pressure(sk) && 2090 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2091 sk_leave_memory_pressure(sk); 2092} 2093EXPORT_SYMBOL(__sk_mem_reclaim); 2094 2095 2096/* 2097 * Set of default routines for initialising struct proto_ops when 2098 * the protocol does not support a particular function. In certain 2099 * cases where it makes no sense for a protocol to have a "do nothing" 2100 * function, some default processing is provided. 2101 */ 2102 2103int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2104{ 2105 return -EOPNOTSUPP; 2106} 2107EXPORT_SYMBOL(sock_no_bind); 2108 2109int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2110 int len, int flags) 2111{ 2112 return -EOPNOTSUPP; 2113} 2114EXPORT_SYMBOL(sock_no_connect); 2115 2116int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2117{ 2118 return -EOPNOTSUPP; 2119} 2120EXPORT_SYMBOL(sock_no_socketpair); 2121 2122int sock_no_accept(struct socket *sock, struct socket *newsock, int flags) 2123{ 2124 return -EOPNOTSUPP; 2125} 2126EXPORT_SYMBOL(sock_no_accept); 2127 2128int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2129 int *len, int peer) 2130{ 2131 return -EOPNOTSUPP; 2132} 2133EXPORT_SYMBOL(sock_no_getname); 2134 2135unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt) 2136{ 2137 return 0; 2138} 2139EXPORT_SYMBOL(sock_no_poll); 2140 2141int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2142{ 2143 return -EOPNOTSUPP; 2144} 2145EXPORT_SYMBOL(sock_no_ioctl); 2146 2147int sock_no_listen(struct socket *sock, int backlog) 2148{ 2149 return -EOPNOTSUPP; 2150} 2151EXPORT_SYMBOL(sock_no_listen); 2152 2153int sock_no_shutdown(struct socket *sock, int how) 2154{ 2155 return -EOPNOTSUPP; 2156} 2157EXPORT_SYMBOL(sock_no_shutdown); 2158 2159int sock_no_setsockopt(struct socket *sock, int level, int optname, 2160 char __user *optval, unsigned int optlen) 2161{ 2162 return -EOPNOTSUPP; 2163} 2164EXPORT_SYMBOL(sock_no_setsockopt); 2165 2166int sock_no_getsockopt(struct socket *sock, int level, int optname, 2167 char __user *optval, int __user *optlen) 2168{ 2169 return -EOPNOTSUPP; 2170} 2171EXPORT_SYMBOL(sock_no_getsockopt); 2172 2173int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2174{ 2175 return -EOPNOTSUPP; 2176} 2177EXPORT_SYMBOL(sock_no_sendmsg); 2178 2179int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2180 int flags) 2181{ 2182 return -EOPNOTSUPP; 2183} 2184EXPORT_SYMBOL(sock_no_recvmsg); 2185 2186int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2187{ 2188 /* Mirror missing mmap method error code */ 2189 return -ENODEV; 2190} 2191EXPORT_SYMBOL(sock_no_mmap); 2192 2193ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2194{ 2195 ssize_t res; 2196 struct msghdr msg = {.msg_flags = flags}; 2197 struct kvec iov; 2198 char *kaddr = kmap(page); 2199 iov.iov_base = kaddr + offset; 2200 iov.iov_len = size; 2201 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2202 kunmap(page); 2203 return res; 2204} 2205EXPORT_SYMBOL(sock_no_sendpage); 2206 2207/* 2208 * Default Socket Callbacks 2209 */ 2210 2211static void sock_def_wakeup(struct sock *sk) 2212{ 2213 struct socket_wq *wq; 2214 2215 rcu_read_lock(); 2216 wq = rcu_dereference(sk->sk_wq); 2217 if (wq_has_sleeper(wq)) 2218 wake_up_interruptible_all(&wq->wait); 2219 rcu_read_unlock(); 2220} 2221 2222static void sock_def_error_report(struct sock *sk) 2223{ 2224 struct socket_wq *wq; 2225 2226 rcu_read_lock(); 2227 wq = rcu_dereference(sk->sk_wq); 2228 if (wq_has_sleeper(wq)) 2229 wake_up_interruptible_poll(&wq->wait, POLLERR); 2230 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 2231 rcu_read_unlock(); 2232} 2233 2234static void sock_def_readable(struct sock *sk) 2235{ 2236 struct socket_wq *wq; 2237 2238 rcu_read_lock(); 2239 wq = rcu_dereference(sk->sk_wq); 2240 if (wq_has_sleeper(wq)) 2241 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI | 2242 POLLRDNORM | POLLRDBAND); 2243 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 2244 rcu_read_unlock(); 2245} 2246 2247static void sock_def_write_space(struct sock *sk) 2248{ 2249 struct socket_wq *wq; 2250 2251 rcu_read_lock(); 2252 2253 /* Do not wake up a writer until he can make "significant" 2254 * progress. --DaveM 2255 */ 2256 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 2257 wq = rcu_dereference(sk->sk_wq); 2258 if (wq_has_sleeper(wq)) 2259 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT | 2260 POLLWRNORM | POLLWRBAND); 2261 2262 /* Should agree with poll, otherwise some programs break */ 2263 if (sock_writeable(sk)) 2264 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 2265 } 2266 2267 rcu_read_unlock(); 2268} 2269 2270static void sock_def_destruct(struct sock *sk) 2271{ 2272 kfree(sk->sk_protinfo); 2273} 2274 2275void sk_send_sigurg(struct sock *sk) 2276{ 2277 if (sk->sk_socket && sk->sk_socket->file) 2278 if (send_sigurg(&sk->sk_socket->file->f_owner)) 2279 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 2280} 2281EXPORT_SYMBOL(sk_send_sigurg); 2282 2283void sk_reset_timer(struct sock *sk, struct timer_list* timer, 2284 unsigned long expires) 2285{ 2286 if (!mod_timer(timer, expires)) 2287 sock_hold(sk); 2288} 2289EXPORT_SYMBOL(sk_reset_timer); 2290 2291void sk_stop_timer(struct sock *sk, struct timer_list* timer) 2292{ 2293 if (del_timer(timer)) 2294 __sock_put(sk); 2295} 2296EXPORT_SYMBOL(sk_stop_timer); 2297 2298void sock_init_data(struct socket *sock, struct sock *sk) 2299{ 2300 skb_queue_head_init(&sk->sk_receive_queue); 2301 skb_queue_head_init(&sk->sk_write_queue); 2302 skb_queue_head_init(&sk->sk_error_queue); 2303 2304 sk->sk_send_head = NULL; 2305 2306 init_timer(&sk->sk_timer); 2307 2308 sk->sk_allocation = GFP_KERNEL; 2309 sk->sk_rcvbuf = sysctl_rmem_default; 2310 sk->sk_sndbuf = sysctl_wmem_default; 2311 sk->sk_state = TCP_CLOSE; 2312 sk_set_socket(sk, sock); 2313 2314 sock_set_flag(sk, SOCK_ZAPPED); 2315 2316 if (sock) { 2317 sk->sk_type = sock->type; 2318 sk->sk_wq = sock->wq; 2319 sock->sk = sk; 2320 } else 2321 sk->sk_wq = NULL; 2322 2323 spin_lock_init(&sk->sk_dst_lock); 2324 rwlock_init(&sk->sk_callback_lock); 2325 lockdep_set_class_and_name(&sk->sk_callback_lock, 2326 af_callback_keys + sk->sk_family, 2327 af_family_clock_key_strings[sk->sk_family]); 2328 2329 sk->sk_state_change = sock_def_wakeup; 2330 sk->sk_data_ready = sock_def_readable; 2331 sk->sk_write_space = sock_def_write_space; 2332 sk->sk_error_report = sock_def_error_report; 2333 sk->sk_destruct = sock_def_destruct; 2334 2335 sk->sk_frag.page = NULL; 2336 sk->sk_frag.offset = 0; 2337 sk->sk_peek_off = -1; 2338 2339 sk->sk_peer_pid = NULL; 2340 sk->sk_peer_cred = NULL; 2341 sk->sk_write_pending = 0; 2342 sk->sk_rcvlowat = 1; 2343 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 2344 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 2345 2346 sk->sk_stamp = ktime_set(-1L, 0); 2347 2348#ifdef CONFIG_NET_RX_BUSY_POLL 2349 sk->sk_napi_id = 0; 2350 sk->sk_ll_usec = sysctl_net_busy_read; 2351#endif 2352 2353 sk->sk_max_pacing_rate = ~0U; 2354 sk->sk_pacing_rate = ~0U; 2355 /* 2356 * Before updating sk_refcnt, we must commit prior changes to memory 2357 * (Documentation/RCU/rculist_nulls.txt for details) 2358 */ 2359 smp_wmb(); 2360 atomic_set(&sk->sk_refcnt, 1); 2361 atomic_set(&sk->sk_drops, 0); 2362} 2363EXPORT_SYMBOL(sock_init_data); 2364 2365void lock_sock_nested(struct sock *sk, int subclass) 2366{ 2367 might_sleep(); 2368 spin_lock_bh(&sk->sk_lock.slock); 2369 if (sk->sk_lock.owned) 2370 __lock_sock(sk); 2371 sk->sk_lock.owned = 1; 2372 spin_unlock(&sk->sk_lock.slock); 2373 /* 2374 * The sk_lock has mutex_lock() semantics here: 2375 */ 2376 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 2377 local_bh_enable(); 2378} 2379EXPORT_SYMBOL(lock_sock_nested); 2380 2381void release_sock(struct sock *sk) 2382{ 2383 /* 2384 * The sk_lock has mutex_unlock() semantics: 2385 */ 2386 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 2387 2388 spin_lock_bh(&sk->sk_lock.slock); 2389 if (sk->sk_backlog.tail) 2390 __release_sock(sk); 2391 2392 /* Warning : release_cb() might need to release sk ownership, 2393 * ie call sock_release_ownership(sk) before us. 2394 */ 2395 if (sk->sk_prot->release_cb) 2396 sk->sk_prot->release_cb(sk); 2397 2398 sock_release_ownership(sk); 2399 if (waitqueue_active(&sk->sk_lock.wq)) 2400 wake_up(&sk->sk_lock.wq); 2401 spin_unlock_bh(&sk->sk_lock.slock); 2402} 2403EXPORT_SYMBOL(release_sock); 2404 2405/** 2406 * lock_sock_fast - fast version of lock_sock 2407 * @sk: socket 2408 * 2409 * This version should be used for very small section, where process wont block 2410 * return false if fast path is taken 2411 * sk_lock.slock locked, owned = 0, BH disabled 2412 * return true if slow path is taken 2413 * sk_lock.slock unlocked, owned = 1, BH enabled 2414 */ 2415bool lock_sock_fast(struct sock *sk) 2416{ 2417 might_sleep(); 2418 spin_lock_bh(&sk->sk_lock.slock); 2419 2420 if (!sk->sk_lock.owned) 2421 /* 2422 * Note : We must disable BH 2423 */ 2424 return false; 2425 2426 __lock_sock(sk); 2427 sk->sk_lock.owned = 1; 2428 spin_unlock(&sk->sk_lock.slock); 2429 /* 2430 * The sk_lock has mutex_lock() semantics here: 2431 */ 2432 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 2433 local_bh_enable(); 2434 return true; 2435} 2436EXPORT_SYMBOL(lock_sock_fast); 2437 2438int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp) 2439{ 2440 struct timeval tv; 2441 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2442 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2443 tv = ktime_to_timeval(sk->sk_stamp); 2444 if (tv.tv_sec == -1) 2445 return -ENOENT; 2446 if (tv.tv_sec == 0) { 2447 sk->sk_stamp = ktime_get_real(); 2448 tv = ktime_to_timeval(sk->sk_stamp); 2449 } 2450 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0; 2451} 2452EXPORT_SYMBOL(sock_get_timestamp); 2453 2454int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp) 2455{ 2456 struct timespec ts; 2457 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2458 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2459 ts = ktime_to_timespec(sk->sk_stamp); 2460 if (ts.tv_sec == -1) 2461 return -ENOENT; 2462 if (ts.tv_sec == 0) { 2463 sk->sk_stamp = ktime_get_real(); 2464 ts = ktime_to_timespec(sk->sk_stamp); 2465 } 2466 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0; 2467} 2468EXPORT_SYMBOL(sock_get_timestampns); 2469 2470void sock_enable_timestamp(struct sock *sk, int flag) 2471{ 2472 if (!sock_flag(sk, flag)) { 2473 unsigned long previous_flags = sk->sk_flags; 2474 2475 sock_set_flag(sk, flag); 2476 /* 2477 * we just set one of the two flags which require net 2478 * time stamping, but time stamping might have been on 2479 * already because of the other one 2480 */ 2481 if (!(previous_flags & SK_FLAGS_TIMESTAMP)) 2482 net_enable_timestamp(); 2483 } 2484} 2485 2486int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 2487 int level, int type) 2488{ 2489 struct sock_exterr_skb *serr; 2490 struct sk_buff *skb; 2491 int copied, err; 2492 2493 err = -EAGAIN; 2494 skb = sock_dequeue_err_skb(sk); 2495 if (skb == NULL) 2496 goto out; 2497 2498 copied = skb->len; 2499 if (copied > len) { 2500 msg->msg_flags |= MSG_TRUNC; 2501 copied = len; 2502 } 2503 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2504 if (err) 2505 goto out_free_skb; 2506 2507 sock_recv_timestamp(msg, sk, skb); 2508 2509 serr = SKB_EXT_ERR(skb); 2510 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 2511 2512 msg->msg_flags |= MSG_ERRQUEUE; 2513 err = copied; 2514 2515out_free_skb: 2516 kfree_skb(skb); 2517out: 2518 return err; 2519} 2520EXPORT_SYMBOL(sock_recv_errqueue); 2521 2522/* 2523 * Get a socket option on an socket. 2524 * 2525 * FIX: POSIX 1003.1g is very ambiguous here. It states that 2526 * asynchronous errors should be reported by getsockopt. We assume 2527 * this means if you specify SO_ERROR (otherwise whats the point of it). 2528 */ 2529int sock_common_getsockopt(struct socket *sock, int level, int optname, 2530 char __user *optval, int __user *optlen) 2531{ 2532 struct sock *sk = sock->sk; 2533 2534 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2535} 2536EXPORT_SYMBOL(sock_common_getsockopt); 2537 2538#ifdef CONFIG_COMPAT 2539int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 2540 char __user *optval, int __user *optlen) 2541{ 2542 struct sock *sk = sock->sk; 2543 2544 if (sk->sk_prot->compat_getsockopt != NULL) 2545 return sk->sk_prot->compat_getsockopt(sk, level, optname, 2546 optval, optlen); 2547 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2548} 2549EXPORT_SYMBOL(compat_sock_common_getsockopt); 2550#endif 2551 2552int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 2553 int flags) 2554{ 2555 struct sock *sk = sock->sk; 2556 int addr_len = 0; 2557 int err; 2558 2559 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 2560 flags & ~MSG_DONTWAIT, &addr_len); 2561 if (err >= 0) 2562 msg->msg_namelen = addr_len; 2563 return err; 2564} 2565EXPORT_SYMBOL(sock_common_recvmsg); 2566 2567/* 2568 * Set socket options on an inet socket. 2569 */ 2570int sock_common_setsockopt(struct socket *sock, int level, int optname, 2571 char __user *optval, unsigned int optlen) 2572{ 2573 struct sock *sk = sock->sk; 2574 2575 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2576} 2577EXPORT_SYMBOL(sock_common_setsockopt); 2578 2579#ifdef CONFIG_COMPAT 2580int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 2581 char __user *optval, unsigned int optlen) 2582{ 2583 struct sock *sk = sock->sk; 2584 2585 if (sk->sk_prot->compat_setsockopt != NULL) 2586 return sk->sk_prot->compat_setsockopt(sk, level, optname, 2587 optval, optlen); 2588 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2589} 2590EXPORT_SYMBOL(compat_sock_common_setsockopt); 2591#endif 2592 2593void sk_common_release(struct sock *sk) 2594{ 2595 if (sk->sk_prot->destroy) 2596 sk->sk_prot->destroy(sk); 2597 2598 /* 2599 * Observation: when sock_common_release is called, processes have 2600 * no access to socket. But net still has. 2601 * Step one, detach it from networking: 2602 * 2603 * A. Remove from hash tables. 2604 */ 2605 2606 sk->sk_prot->unhash(sk); 2607 2608 /* 2609 * In this point socket cannot receive new packets, but it is possible 2610 * that some packets are in flight because some CPU runs receiver and 2611 * did hash table lookup before we unhashed socket. They will achieve 2612 * receive queue and will be purged by socket destructor. 2613 * 2614 * Also we still have packets pending on receive queue and probably, 2615 * our own packets waiting in device queues. sock_destroy will drain 2616 * receive queue, but transmitted packets will delay socket destruction 2617 * until the last reference will be released. 2618 */ 2619 2620 sock_orphan(sk); 2621 2622 xfrm_sk_free_policy(sk); 2623 2624 sk_refcnt_debug_release(sk); 2625 2626 if (sk->sk_frag.page) { 2627 put_page(sk->sk_frag.page); 2628 sk->sk_frag.page = NULL; 2629 } 2630 2631 sock_put(sk); 2632} 2633EXPORT_SYMBOL(sk_common_release); 2634 2635#ifdef CONFIG_PROC_FS 2636#define PROTO_INUSE_NR 64 /* should be enough for the first time */ 2637struct prot_inuse { 2638 int val[PROTO_INUSE_NR]; 2639}; 2640 2641static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 2642 2643#ifdef CONFIG_NET_NS 2644void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 2645{ 2646 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val); 2647} 2648EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 2649 2650int sock_prot_inuse_get(struct net *net, struct proto *prot) 2651{ 2652 int cpu, idx = prot->inuse_idx; 2653 int res = 0; 2654 2655 for_each_possible_cpu(cpu) 2656 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx]; 2657 2658 return res >= 0 ? res : 0; 2659} 2660EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 2661 2662static int __net_init sock_inuse_init_net(struct net *net) 2663{ 2664 net->core.inuse = alloc_percpu(struct prot_inuse); 2665 return net->core.inuse ? 0 : -ENOMEM; 2666} 2667 2668static void __net_exit sock_inuse_exit_net(struct net *net) 2669{ 2670 free_percpu(net->core.inuse); 2671} 2672 2673static struct pernet_operations net_inuse_ops = { 2674 .init = sock_inuse_init_net, 2675 .exit = sock_inuse_exit_net, 2676}; 2677 2678static __init int net_inuse_init(void) 2679{ 2680 if (register_pernet_subsys(&net_inuse_ops)) 2681 panic("Cannot initialize net inuse counters"); 2682 2683 return 0; 2684} 2685 2686core_initcall(net_inuse_init); 2687#else 2688static DEFINE_PER_CPU(struct prot_inuse, prot_inuse); 2689 2690void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 2691{ 2692 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val); 2693} 2694EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 2695 2696int sock_prot_inuse_get(struct net *net, struct proto *prot) 2697{ 2698 int cpu, idx = prot->inuse_idx; 2699 int res = 0; 2700 2701 for_each_possible_cpu(cpu) 2702 res += per_cpu(prot_inuse, cpu).val[idx]; 2703 2704 return res >= 0 ? res : 0; 2705} 2706EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 2707#endif 2708 2709static void assign_proto_idx(struct proto *prot) 2710{ 2711 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 2712 2713 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 2714 pr_err("PROTO_INUSE_NR exhausted\n"); 2715 return; 2716 } 2717 2718 set_bit(prot->inuse_idx, proto_inuse_idx); 2719} 2720 2721static void release_proto_idx(struct proto *prot) 2722{ 2723 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 2724 clear_bit(prot->inuse_idx, proto_inuse_idx); 2725} 2726#else 2727static inline void assign_proto_idx(struct proto *prot) 2728{ 2729} 2730 2731static inline void release_proto_idx(struct proto *prot) 2732{ 2733} 2734#endif 2735 2736static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 2737{ 2738 if (!rsk_prot) 2739 return; 2740 kfree(rsk_prot->slab_name); 2741 rsk_prot->slab_name = NULL; 2742 if (rsk_prot->slab) { 2743 kmem_cache_destroy(rsk_prot->slab); 2744 rsk_prot->slab = NULL; 2745 } 2746} 2747 2748static int req_prot_init(const struct proto *prot) 2749{ 2750 struct request_sock_ops *rsk_prot = prot->rsk_prot; 2751 2752 if (!rsk_prot) 2753 return 0; 2754 2755 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 2756 prot->name); 2757 if (!rsk_prot->slab_name) 2758 return -ENOMEM; 2759 2760 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 2761 rsk_prot->obj_size, 0, 2762 0, NULL); 2763 2764 if (!rsk_prot->slab) { 2765 pr_crit("%s: Can't create request sock SLAB cache!\n", 2766 prot->name); 2767 return -ENOMEM; 2768 } 2769 return 0; 2770} 2771 2772int proto_register(struct proto *prot, int alloc_slab) 2773{ 2774 if (alloc_slab) { 2775 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0, 2776 SLAB_HWCACHE_ALIGN | prot->slab_flags, 2777 NULL); 2778 2779 if (prot->slab == NULL) { 2780 pr_crit("%s: Can't create sock SLAB cache!\n", 2781 prot->name); 2782 goto out; 2783 } 2784 2785 if (req_prot_init(prot)) 2786 goto out_free_request_sock_slab; 2787 2788 if (prot->twsk_prot != NULL) { 2789 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 2790 2791 if (prot->twsk_prot->twsk_slab_name == NULL) 2792 goto out_free_request_sock_slab; 2793 2794 prot->twsk_prot->twsk_slab = 2795 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 2796 prot->twsk_prot->twsk_obj_size, 2797 0, 2798 prot->slab_flags, 2799 NULL); 2800 if (prot->twsk_prot->twsk_slab == NULL) 2801 goto out_free_timewait_sock_slab_name; 2802 } 2803 } 2804 2805 mutex_lock(&proto_list_mutex); 2806 list_add(&prot->node, &proto_list); 2807 assign_proto_idx(prot); 2808 mutex_unlock(&proto_list_mutex); 2809 return 0; 2810 2811out_free_timewait_sock_slab_name: 2812 kfree(prot->twsk_prot->twsk_slab_name); 2813out_free_request_sock_slab: 2814 req_prot_cleanup(prot->rsk_prot); 2815 2816 kmem_cache_destroy(prot->slab); 2817 prot->slab = NULL; 2818out: 2819 return -ENOBUFS; 2820} 2821EXPORT_SYMBOL(proto_register); 2822 2823void proto_unregister(struct proto *prot) 2824{ 2825 mutex_lock(&proto_list_mutex); 2826 release_proto_idx(prot); 2827 list_del(&prot->node); 2828 mutex_unlock(&proto_list_mutex); 2829 2830 if (prot->slab != NULL) { 2831 kmem_cache_destroy(prot->slab); 2832 prot->slab = NULL; 2833 } 2834 2835 req_prot_cleanup(prot->rsk_prot); 2836 2837 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 2838 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 2839 kfree(prot->twsk_prot->twsk_slab_name); 2840 prot->twsk_prot->twsk_slab = NULL; 2841 } 2842} 2843EXPORT_SYMBOL(proto_unregister); 2844 2845#ifdef CONFIG_PROC_FS 2846static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 2847 __acquires(proto_list_mutex) 2848{ 2849 mutex_lock(&proto_list_mutex); 2850 return seq_list_start_head(&proto_list, *pos); 2851} 2852 2853static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2854{ 2855 return seq_list_next(v, &proto_list, pos); 2856} 2857 2858static void proto_seq_stop(struct seq_file *seq, void *v) 2859 __releases(proto_list_mutex) 2860{ 2861 mutex_unlock(&proto_list_mutex); 2862} 2863 2864static char proto_method_implemented(const void *method) 2865{ 2866 return method == NULL ? 'n' : 'y'; 2867} 2868static long sock_prot_memory_allocated(struct proto *proto) 2869{ 2870 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 2871} 2872 2873static char *sock_prot_memory_pressure(struct proto *proto) 2874{ 2875 return proto->memory_pressure != NULL ? 2876 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 2877} 2878 2879static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 2880{ 2881 2882 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 2883 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 2884 proto->name, 2885 proto->obj_size, 2886 sock_prot_inuse_get(seq_file_net(seq), proto), 2887 sock_prot_memory_allocated(proto), 2888 sock_prot_memory_pressure(proto), 2889 proto->max_header, 2890 proto->slab == NULL ? "no" : "yes", 2891 module_name(proto->owner), 2892 proto_method_implemented(proto->close), 2893 proto_method_implemented(proto->connect), 2894 proto_method_implemented(proto->disconnect), 2895 proto_method_implemented(proto->accept), 2896 proto_method_implemented(proto->ioctl), 2897 proto_method_implemented(proto->init), 2898 proto_method_implemented(proto->destroy), 2899 proto_method_implemented(proto->shutdown), 2900 proto_method_implemented(proto->setsockopt), 2901 proto_method_implemented(proto->getsockopt), 2902 proto_method_implemented(proto->sendmsg), 2903 proto_method_implemented(proto->recvmsg), 2904 proto_method_implemented(proto->sendpage), 2905 proto_method_implemented(proto->bind), 2906 proto_method_implemented(proto->backlog_rcv), 2907 proto_method_implemented(proto->hash), 2908 proto_method_implemented(proto->unhash), 2909 proto_method_implemented(proto->get_port), 2910 proto_method_implemented(proto->enter_memory_pressure)); 2911} 2912 2913static int proto_seq_show(struct seq_file *seq, void *v) 2914{ 2915 if (v == &proto_list) 2916 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 2917 "protocol", 2918 "size", 2919 "sockets", 2920 "memory", 2921 "press", 2922 "maxhdr", 2923 "slab", 2924 "module", 2925 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 2926 else 2927 proto_seq_printf(seq, list_entry(v, struct proto, node)); 2928 return 0; 2929} 2930 2931static const struct seq_operations proto_seq_ops = { 2932 .start = proto_seq_start, 2933 .next = proto_seq_next, 2934 .stop = proto_seq_stop, 2935 .show = proto_seq_show, 2936}; 2937 2938static int proto_seq_open(struct inode *inode, struct file *file) 2939{ 2940 return seq_open_net(inode, file, &proto_seq_ops, 2941 sizeof(struct seq_net_private)); 2942} 2943 2944static const struct file_operations proto_seq_fops = { 2945 .owner = THIS_MODULE, 2946 .open = proto_seq_open, 2947 .read = seq_read, 2948 .llseek = seq_lseek, 2949 .release = seq_release_net, 2950}; 2951 2952static __net_init int proto_init_net(struct net *net) 2953{ 2954 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops)) 2955 return -ENOMEM; 2956 2957 return 0; 2958} 2959 2960static __net_exit void proto_exit_net(struct net *net) 2961{ 2962 remove_proc_entry("protocols", net->proc_net); 2963} 2964 2965 2966static __net_initdata struct pernet_operations proto_net_ops = { 2967 .init = proto_init_net, 2968 .exit = proto_exit_net, 2969}; 2970 2971static int __init proto_init(void) 2972{ 2973 return register_pernet_subsys(&proto_net_ops); 2974} 2975 2976subsys_initcall(proto_init); 2977 2978#endif /* PROC_FS */ 2979