1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <asm/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 
80 struct kmem_cache *skbuff_head_cache __read_mostly;
81 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
84 
85 /**
86  *	skb_panic - private function for out-of-line support
87  *	@skb:	buffer
88  *	@sz:	size
89  *	@addr:	address
90  *	@msg:	skb_over_panic or skb_under_panic
91  *
92  *	Out-of-line support for skb_put() and skb_push().
93  *	Called via the wrapper skb_over_panic() or skb_under_panic().
94  *	Keep out of line to prevent kernel bloat.
95  *	__builtin_return_address is not used because it is not always reliable.
96  */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 		      const char msg[])
99 {
100 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 		 msg, addr, skb->len, sz, skb->head, skb->data,
102 		 (unsigned long)skb->tail, (unsigned long)skb->end,
103 		 skb->dev ? skb->dev->name : "<NULL>");
104 	BUG();
105 }
106 
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 	skb_panic(skb, sz, addr, __func__);
110 }
111 
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 /*
118  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119  * the caller if emergency pfmemalloc reserves are being used. If it is and
120  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121  * may be used. Otherwise, the packet data may be discarded until enough
122  * memory is free
123  */
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126 
__kmalloc_reserve(size_t size,gfp_t flags,int node,unsigned long ip,bool * pfmemalloc)127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 			       unsigned long ip, bool *pfmemalloc)
129 {
130 	void *obj;
131 	bool ret_pfmemalloc = false;
132 
133 	/*
134 	 * Try a regular allocation, when that fails and we're not entitled
135 	 * to the reserves, fail.
136 	 */
137 	obj = kmalloc_node_track_caller(size,
138 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 					node);
140 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 		goto out;
142 
143 	/* Try again but now we are using pfmemalloc reserves */
144 	ret_pfmemalloc = true;
145 	obj = kmalloc_node_track_caller(size, flags, node);
146 
147 out:
148 	if (pfmemalloc)
149 		*pfmemalloc = ret_pfmemalloc;
150 
151 	return obj;
152 }
153 
154 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
155  *	'private' fields and also do memory statistics to find all the
156  *	[BEEP] leaks.
157  *
158  */
159 
__alloc_skb_head(gfp_t gfp_mask,int node)160 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
161 {
162 	struct sk_buff *skb;
163 
164 	/* Get the HEAD */
165 	skb = kmem_cache_alloc_node(skbuff_head_cache,
166 				    gfp_mask & ~__GFP_DMA, node);
167 	if (!skb)
168 		goto out;
169 
170 	/*
171 	 * Only clear those fields we need to clear, not those that we will
172 	 * actually initialise below. Hence, don't put any more fields after
173 	 * the tail pointer in struct sk_buff!
174 	 */
175 	memset(skb, 0, offsetof(struct sk_buff, tail));
176 	skb->head = NULL;
177 	skb->truesize = sizeof(struct sk_buff);
178 	atomic_set(&skb->users, 1);
179 
180 	skb->mac_header = (typeof(skb->mac_header))~0U;
181 out:
182 	return skb;
183 }
184 
185 /**
186  *	__alloc_skb	-	allocate a network buffer
187  *	@size: size to allocate
188  *	@gfp_mask: allocation mask
189  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
190  *		instead of head cache and allocate a cloned (child) skb.
191  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
192  *		allocations in case the data is required for writeback
193  *	@node: numa node to allocate memory on
194  *
195  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
196  *	tail room of at least size bytes. The object has a reference count
197  *	of one. The return is the buffer. On a failure the return is %NULL.
198  *
199  *	Buffers may only be allocated from interrupts using a @gfp_mask of
200  *	%GFP_ATOMIC.
201  */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)202 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
203 			    int flags, int node)
204 {
205 	struct kmem_cache *cache;
206 	struct skb_shared_info *shinfo;
207 	struct sk_buff *skb;
208 	u8 *data;
209 	bool pfmemalloc;
210 
211 	cache = (flags & SKB_ALLOC_FCLONE)
212 		? skbuff_fclone_cache : skbuff_head_cache;
213 
214 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
215 		gfp_mask |= __GFP_MEMALLOC;
216 
217 	/* Get the HEAD */
218 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
219 	if (!skb)
220 		goto out;
221 	prefetchw(skb);
222 
223 	/* We do our best to align skb_shared_info on a separate cache
224 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
225 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
226 	 * Both skb->head and skb_shared_info are cache line aligned.
227 	 */
228 	size = SKB_DATA_ALIGN(size);
229 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
230 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
231 	if (!data)
232 		goto nodata;
233 	/* kmalloc(size) might give us more room than requested.
234 	 * Put skb_shared_info exactly at the end of allocated zone,
235 	 * to allow max possible filling before reallocation.
236 	 */
237 	size = SKB_WITH_OVERHEAD(ksize(data));
238 	prefetchw(data + size);
239 
240 	/*
241 	 * Only clear those fields we need to clear, not those that we will
242 	 * actually initialise below. Hence, don't put any more fields after
243 	 * the tail pointer in struct sk_buff!
244 	 */
245 	memset(skb, 0, offsetof(struct sk_buff, tail));
246 	/* Account for allocated memory : skb + skb->head */
247 	skb->truesize = SKB_TRUESIZE(size);
248 	skb->pfmemalloc = pfmemalloc;
249 	atomic_set(&skb->users, 1);
250 	skb->head = data;
251 	skb->data = data;
252 	skb_reset_tail_pointer(skb);
253 	skb->end = skb->tail + size;
254 	skb->mac_header = (typeof(skb->mac_header))~0U;
255 	skb->transport_header = (typeof(skb->transport_header))~0U;
256 
257 	/* make sure we initialize shinfo sequentially */
258 	shinfo = skb_shinfo(skb);
259 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
260 	atomic_set(&shinfo->dataref, 1);
261 	kmemcheck_annotate_variable(shinfo->destructor_arg);
262 
263 	if (flags & SKB_ALLOC_FCLONE) {
264 		struct sk_buff_fclones *fclones;
265 
266 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
267 
268 		kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
269 		skb->fclone = SKB_FCLONE_ORIG;
270 		atomic_set(&fclones->fclone_ref, 1);
271 
272 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
273 		fclones->skb2.pfmemalloc = pfmemalloc;
274 	}
275 out:
276 	return skb;
277 nodata:
278 	kmem_cache_free(cache, skb);
279 	skb = NULL;
280 	goto out;
281 }
282 EXPORT_SYMBOL(__alloc_skb);
283 
284 /**
285  * __build_skb - build a network buffer
286  * @data: data buffer provided by caller
287  * @frag_size: size of data, or 0 if head was kmalloced
288  *
289  * Allocate a new &sk_buff. Caller provides space holding head and
290  * skb_shared_info. @data must have been allocated by kmalloc() only if
291  * @frag_size is 0, otherwise data should come from the page allocator
292  *  or vmalloc()
293  * The return is the new skb buffer.
294  * On a failure the return is %NULL, and @data is not freed.
295  * Notes :
296  *  Before IO, driver allocates only data buffer where NIC put incoming frame
297  *  Driver should add room at head (NET_SKB_PAD) and
298  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
299  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
300  *  before giving packet to stack.
301  *  RX rings only contains data buffers, not full skbs.
302  */
__build_skb(void * data,unsigned int frag_size)303 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
304 {
305 	struct skb_shared_info *shinfo;
306 	struct sk_buff *skb;
307 	unsigned int size = frag_size ? : ksize(data);
308 
309 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
310 	if (!skb)
311 		return NULL;
312 
313 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
314 
315 	memset(skb, 0, offsetof(struct sk_buff, tail));
316 	skb->truesize = SKB_TRUESIZE(size);
317 	atomic_set(&skb->users, 1);
318 	skb->head = data;
319 	skb->data = data;
320 	skb_reset_tail_pointer(skb);
321 	skb->end = skb->tail + size;
322 	skb->mac_header = (typeof(skb->mac_header))~0U;
323 	skb->transport_header = (typeof(skb->transport_header))~0U;
324 
325 	/* make sure we initialize shinfo sequentially */
326 	shinfo = skb_shinfo(skb);
327 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
328 	atomic_set(&shinfo->dataref, 1);
329 	kmemcheck_annotate_variable(shinfo->destructor_arg);
330 
331 	return skb;
332 }
333 
334 /* build_skb() is wrapper over __build_skb(), that specifically
335  * takes care of skb->head and skb->pfmemalloc
336  * This means that if @frag_size is not zero, then @data must be backed
337  * by a page fragment, not kmalloc() or vmalloc()
338  */
build_skb(void * data,unsigned int frag_size)339 struct sk_buff *build_skb(void *data, unsigned int frag_size)
340 {
341 	struct sk_buff *skb = __build_skb(data, frag_size);
342 
343 	if (skb && frag_size) {
344 		skb->head_frag = 1;
345 		if (page_is_pfmemalloc(virt_to_head_page(data)))
346 			skb->pfmemalloc = 1;
347 	}
348 	return skb;
349 }
350 EXPORT_SYMBOL(build_skb);
351 
352 struct netdev_alloc_cache {
353 	struct page_frag	frag;
354 	/* we maintain a pagecount bias, so that we dont dirty cache line
355 	 * containing page->_count every time we allocate a fragment.
356 	 */
357 	unsigned int		pagecnt_bias;
358 };
359 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
360 static DEFINE_PER_CPU(struct netdev_alloc_cache, napi_alloc_cache);
361 
__page_frag_refill(struct netdev_alloc_cache * nc,gfp_t gfp_mask)362 static struct page *__page_frag_refill(struct netdev_alloc_cache *nc,
363 				       gfp_t gfp_mask)
364 {
365 	const unsigned int order = NETDEV_FRAG_PAGE_MAX_ORDER;
366 	struct page *page = NULL;
367 	gfp_t gfp = gfp_mask;
368 
369 	if (order) {
370 		gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
371 			    __GFP_NOMEMALLOC;
372 		page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
373 		nc->frag.size = PAGE_SIZE << (page ? order : 0);
374 	}
375 
376 	if (unlikely(!page))
377 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
378 
379 	nc->frag.page = page;
380 
381 	return page;
382 }
383 
__alloc_page_frag(struct netdev_alloc_cache __percpu * cache,unsigned int fragsz,gfp_t gfp_mask)384 static void *__alloc_page_frag(struct netdev_alloc_cache __percpu *cache,
385 			       unsigned int fragsz, gfp_t gfp_mask)
386 {
387 	struct netdev_alloc_cache *nc = this_cpu_ptr(cache);
388 	struct page *page = nc->frag.page;
389 	unsigned int size;
390 	int offset;
391 
392 	if (unlikely(!page)) {
393 refill:
394 		page = __page_frag_refill(nc, gfp_mask);
395 		if (!page)
396 			return NULL;
397 
398 		/* if size can vary use frag.size else just use PAGE_SIZE */
399 		size = NETDEV_FRAG_PAGE_MAX_ORDER ? nc->frag.size : PAGE_SIZE;
400 
401 		/* Even if we own the page, we do not use atomic_set().
402 		 * This would break get_page_unless_zero() users.
403 		 */
404 		atomic_add(size - 1, &page->_count);
405 
406 		/* reset page count bias and offset to start of new frag */
407 		nc->pagecnt_bias = size;
408 		nc->frag.offset = size;
409 	}
410 
411 	offset = nc->frag.offset - fragsz;
412 	if (unlikely(offset < 0)) {
413 		if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
414 			goto refill;
415 
416 		/* if size can vary use frag.size else just use PAGE_SIZE */
417 		size = NETDEV_FRAG_PAGE_MAX_ORDER ? nc->frag.size : PAGE_SIZE;
418 
419 		/* OK, page count is 0, we can safely set it */
420 		atomic_set(&page->_count, size);
421 
422 		/* reset page count bias and offset to start of new frag */
423 		nc->pagecnt_bias = size;
424 		offset = size - fragsz;
425 	}
426 
427 	nc->pagecnt_bias--;
428 	nc->frag.offset = offset;
429 
430 	return page_address(page) + offset;
431 }
432 
__netdev_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)433 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
434 {
435 	unsigned long flags;
436 	void *data;
437 
438 	local_irq_save(flags);
439 	data = __alloc_page_frag(&netdev_alloc_cache, fragsz, gfp_mask);
440 	local_irq_restore(flags);
441 	return data;
442 }
443 
444 /**
445  * netdev_alloc_frag - allocate a page fragment
446  * @fragsz: fragment size
447  *
448  * Allocates a frag from a page for receive buffer.
449  * Uses GFP_ATOMIC allocations.
450  */
netdev_alloc_frag(unsigned int fragsz)451 void *netdev_alloc_frag(unsigned int fragsz)
452 {
453 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
454 }
455 EXPORT_SYMBOL(netdev_alloc_frag);
456 
__napi_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)457 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
458 {
459 	return __alloc_page_frag(&napi_alloc_cache, fragsz, gfp_mask);
460 }
461 
napi_alloc_frag(unsigned int fragsz)462 void *napi_alloc_frag(unsigned int fragsz)
463 {
464 	return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
465 }
466 EXPORT_SYMBOL(napi_alloc_frag);
467 
468 /**
469  *	__alloc_rx_skb - allocate an skbuff for rx
470  *	@length: length to allocate
471  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
472  *	@flags:	If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
473  *		allocations in case we have to fallback to __alloc_skb()
474  *		If SKB_ALLOC_NAPI is set, page fragment will be allocated
475  *		from napi_cache instead of netdev_cache.
476  *
477  *	Allocate a new &sk_buff and assign it a usage count of one. The
478  *	buffer has unspecified headroom built in. Users should allocate
479  *	the headroom they think they need without accounting for the
480  *	built in space. The built in space is used for optimisations.
481  *
482  *	%NULL is returned if there is no free memory.
483  */
__alloc_rx_skb(unsigned int length,gfp_t gfp_mask,int flags)484 static struct sk_buff *__alloc_rx_skb(unsigned int length, gfp_t gfp_mask,
485 				      int flags)
486 {
487 	struct sk_buff *skb = NULL;
488 	unsigned int fragsz = SKB_DATA_ALIGN(length) +
489 			      SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
490 
491 	if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
492 		void *data;
493 
494 		if (sk_memalloc_socks())
495 			gfp_mask |= __GFP_MEMALLOC;
496 
497 		data = (flags & SKB_ALLOC_NAPI) ?
498 			__napi_alloc_frag(fragsz, gfp_mask) :
499 			__netdev_alloc_frag(fragsz, gfp_mask);
500 
501 		if (likely(data)) {
502 			skb = build_skb(data, fragsz);
503 			if (unlikely(!skb))
504 				put_page(virt_to_head_page(data));
505 		}
506 	} else {
507 		skb = __alloc_skb(length, gfp_mask,
508 				  SKB_ALLOC_RX, NUMA_NO_NODE);
509 	}
510 	return skb;
511 }
512 
513 /**
514  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
515  *	@dev: network device to receive on
516  *	@length: length to allocate
517  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
518  *
519  *	Allocate a new &sk_buff and assign it a usage count of one. The
520  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
521  *	the headroom they think they need without accounting for the
522  *	built in space. The built in space is used for optimisations.
523  *
524  *	%NULL is returned if there is no free memory.
525  */
__netdev_alloc_skb(struct net_device * dev,unsigned int length,gfp_t gfp_mask)526 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
527 				   unsigned int length, gfp_t gfp_mask)
528 {
529 	struct sk_buff *skb;
530 
531 	length += NET_SKB_PAD;
532 	skb = __alloc_rx_skb(length, gfp_mask, 0);
533 
534 	if (likely(skb)) {
535 		skb_reserve(skb, NET_SKB_PAD);
536 		skb->dev = dev;
537 	}
538 
539 	return skb;
540 }
541 EXPORT_SYMBOL(__netdev_alloc_skb);
542 
543 /**
544  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
545  *	@napi: napi instance this buffer was allocated for
546  *	@length: length to allocate
547  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
548  *
549  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
550  *	attempt to allocate the head from a special reserved region used
551  *	only for NAPI Rx allocation.  By doing this we can save several
552  *	CPU cycles by avoiding having to disable and re-enable IRQs.
553  *
554  *	%NULL is returned if there is no free memory.
555  */
__napi_alloc_skb(struct napi_struct * napi,unsigned int length,gfp_t gfp_mask)556 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
557 				 unsigned int length, gfp_t gfp_mask)
558 {
559 	struct sk_buff *skb;
560 
561 	length += NET_SKB_PAD + NET_IP_ALIGN;
562 	skb = __alloc_rx_skb(length, gfp_mask, SKB_ALLOC_NAPI);
563 
564 	if (likely(skb)) {
565 		skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
566 		skb->dev = napi->dev;
567 	}
568 
569 	return skb;
570 }
571 EXPORT_SYMBOL(__napi_alloc_skb);
572 
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)573 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
574 		     int size, unsigned int truesize)
575 {
576 	skb_fill_page_desc(skb, i, page, off, size);
577 	skb->len += size;
578 	skb->data_len += size;
579 	skb->truesize += truesize;
580 }
581 EXPORT_SYMBOL(skb_add_rx_frag);
582 
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)583 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
584 			  unsigned int truesize)
585 {
586 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
587 
588 	skb_frag_size_add(frag, size);
589 	skb->len += size;
590 	skb->data_len += size;
591 	skb->truesize += truesize;
592 }
593 EXPORT_SYMBOL(skb_coalesce_rx_frag);
594 
skb_drop_list(struct sk_buff ** listp)595 static void skb_drop_list(struct sk_buff **listp)
596 {
597 	kfree_skb_list(*listp);
598 	*listp = NULL;
599 }
600 
skb_drop_fraglist(struct sk_buff * skb)601 static inline void skb_drop_fraglist(struct sk_buff *skb)
602 {
603 	skb_drop_list(&skb_shinfo(skb)->frag_list);
604 }
605 
skb_clone_fraglist(struct sk_buff * skb)606 static void skb_clone_fraglist(struct sk_buff *skb)
607 {
608 	struct sk_buff *list;
609 
610 	skb_walk_frags(skb, list)
611 		skb_get(list);
612 }
613 
skb_free_head(struct sk_buff * skb)614 static void skb_free_head(struct sk_buff *skb)
615 {
616 	if (skb->head_frag)
617 		put_page(virt_to_head_page(skb->head));
618 	else
619 		kfree(skb->head);
620 }
621 
skb_release_data(struct sk_buff * skb)622 static void skb_release_data(struct sk_buff *skb)
623 {
624 	struct skb_shared_info *shinfo = skb_shinfo(skb);
625 	int i;
626 
627 	if (skb->cloned &&
628 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
629 			      &shinfo->dataref))
630 		return;
631 
632 	for (i = 0; i < shinfo->nr_frags; i++)
633 		__skb_frag_unref(&shinfo->frags[i]);
634 
635 	/*
636 	 * If skb buf is from userspace, we need to notify the caller
637 	 * the lower device DMA has done;
638 	 */
639 	if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
640 		struct ubuf_info *uarg;
641 
642 		uarg = shinfo->destructor_arg;
643 		if (uarg->callback)
644 			uarg->callback(uarg, true);
645 	}
646 
647 	if (shinfo->frag_list)
648 		kfree_skb_list(shinfo->frag_list);
649 
650 	skb_free_head(skb);
651 }
652 
653 /*
654  *	Free an skbuff by memory without cleaning the state.
655  */
kfree_skbmem(struct sk_buff * skb)656 static void kfree_skbmem(struct sk_buff *skb)
657 {
658 	struct sk_buff_fclones *fclones;
659 
660 	switch (skb->fclone) {
661 	case SKB_FCLONE_UNAVAILABLE:
662 		kmem_cache_free(skbuff_head_cache, skb);
663 		return;
664 
665 	case SKB_FCLONE_ORIG:
666 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
667 
668 		/* We usually free the clone (TX completion) before original skb
669 		 * This test would have no chance to be true for the clone,
670 		 * while here, branch prediction will be good.
671 		 */
672 		if (atomic_read(&fclones->fclone_ref) == 1)
673 			goto fastpath;
674 		break;
675 
676 	default: /* SKB_FCLONE_CLONE */
677 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
678 		break;
679 	}
680 	if (!atomic_dec_and_test(&fclones->fclone_ref))
681 		return;
682 fastpath:
683 	kmem_cache_free(skbuff_fclone_cache, fclones);
684 }
685 
skb_release_head_state(struct sk_buff * skb)686 static void skb_release_head_state(struct sk_buff *skb)
687 {
688 	skb_dst_drop(skb);
689 #ifdef CONFIG_XFRM
690 	secpath_put(skb->sp);
691 #endif
692 	if (skb->destructor) {
693 		WARN_ON(in_irq());
694 		skb->destructor(skb);
695 	}
696 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
697 	nf_conntrack_put(skb->nfct);
698 #endif
699 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
700 	nf_bridge_put(skb->nf_bridge);
701 #endif
702 }
703 
704 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)705 static void skb_release_all(struct sk_buff *skb)
706 {
707 	skb_release_head_state(skb);
708 	if (likely(skb->head))
709 		skb_release_data(skb);
710 }
711 
712 /**
713  *	__kfree_skb - private function
714  *	@skb: buffer
715  *
716  *	Free an sk_buff. Release anything attached to the buffer.
717  *	Clean the state. This is an internal helper function. Users should
718  *	always call kfree_skb
719  */
720 
__kfree_skb(struct sk_buff * skb)721 void __kfree_skb(struct sk_buff *skb)
722 {
723 	skb_release_all(skb);
724 	kfree_skbmem(skb);
725 }
726 EXPORT_SYMBOL(__kfree_skb);
727 
728 /**
729  *	kfree_skb - free an sk_buff
730  *	@skb: buffer to free
731  *
732  *	Drop a reference to the buffer and free it if the usage count has
733  *	hit zero.
734  */
kfree_skb(struct sk_buff * skb)735 void kfree_skb(struct sk_buff *skb)
736 {
737 	if (unlikely(!skb))
738 		return;
739 	if (likely(atomic_read(&skb->users) == 1))
740 		smp_rmb();
741 	else if (likely(!atomic_dec_and_test(&skb->users)))
742 		return;
743 	trace_kfree_skb(skb, __builtin_return_address(0));
744 	__kfree_skb(skb);
745 }
746 EXPORT_SYMBOL(kfree_skb);
747 
kfree_skb_list(struct sk_buff * segs)748 void kfree_skb_list(struct sk_buff *segs)
749 {
750 	while (segs) {
751 		struct sk_buff *next = segs->next;
752 
753 		kfree_skb(segs);
754 		segs = next;
755 	}
756 }
757 EXPORT_SYMBOL(kfree_skb_list);
758 
759 /**
760  *	skb_tx_error - report an sk_buff xmit error
761  *	@skb: buffer that triggered an error
762  *
763  *	Report xmit error if a device callback is tracking this skb.
764  *	skb must be freed afterwards.
765  */
skb_tx_error(struct sk_buff * skb)766 void skb_tx_error(struct sk_buff *skb)
767 {
768 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
769 		struct ubuf_info *uarg;
770 
771 		uarg = skb_shinfo(skb)->destructor_arg;
772 		if (uarg->callback)
773 			uarg->callback(uarg, false);
774 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
775 	}
776 }
777 EXPORT_SYMBOL(skb_tx_error);
778 
779 /**
780  *	consume_skb - free an skbuff
781  *	@skb: buffer to free
782  *
783  *	Drop a ref to the buffer and free it if the usage count has hit zero
784  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
785  *	is being dropped after a failure and notes that
786  */
consume_skb(struct sk_buff * skb)787 void consume_skb(struct sk_buff *skb)
788 {
789 	if (unlikely(!skb))
790 		return;
791 	if (likely(atomic_read(&skb->users) == 1))
792 		smp_rmb();
793 	else if (likely(!atomic_dec_and_test(&skb->users)))
794 		return;
795 	trace_consume_skb(skb);
796 	__kfree_skb(skb);
797 }
798 EXPORT_SYMBOL(consume_skb);
799 
800 /* Make sure a field is enclosed inside headers_start/headers_end section */
801 #define CHECK_SKB_FIELD(field) \
802 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
803 		     offsetof(struct sk_buff, headers_start));	\
804 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
805 		     offsetof(struct sk_buff, headers_end));	\
806 
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)807 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
808 {
809 	new->tstamp		= old->tstamp;
810 	/* We do not copy old->sk */
811 	new->dev		= old->dev;
812 	memcpy(new->cb, old->cb, sizeof(old->cb));
813 	skb_dst_copy(new, old);
814 #ifdef CONFIG_XFRM
815 	new->sp			= secpath_get(old->sp);
816 #endif
817 	__nf_copy(new, old, false);
818 
819 	/* Note : this field could be in headers_start/headers_end section
820 	 * It is not yet because we do not want to have a 16 bit hole
821 	 */
822 	new->queue_mapping = old->queue_mapping;
823 
824 	memcpy(&new->headers_start, &old->headers_start,
825 	       offsetof(struct sk_buff, headers_end) -
826 	       offsetof(struct sk_buff, headers_start));
827 	CHECK_SKB_FIELD(protocol);
828 	CHECK_SKB_FIELD(csum);
829 	CHECK_SKB_FIELD(hash);
830 	CHECK_SKB_FIELD(priority);
831 	CHECK_SKB_FIELD(skb_iif);
832 	CHECK_SKB_FIELD(vlan_proto);
833 	CHECK_SKB_FIELD(vlan_tci);
834 	CHECK_SKB_FIELD(transport_header);
835 	CHECK_SKB_FIELD(network_header);
836 	CHECK_SKB_FIELD(mac_header);
837 	CHECK_SKB_FIELD(inner_protocol);
838 	CHECK_SKB_FIELD(inner_transport_header);
839 	CHECK_SKB_FIELD(inner_network_header);
840 	CHECK_SKB_FIELD(inner_mac_header);
841 	CHECK_SKB_FIELD(mark);
842 #ifdef CONFIG_NETWORK_SECMARK
843 	CHECK_SKB_FIELD(secmark);
844 #endif
845 #ifdef CONFIG_NET_RX_BUSY_POLL
846 	CHECK_SKB_FIELD(napi_id);
847 #endif
848 #ifdef CONFIG_XPS
849 	CHECK_SKB_FIELD(sender_cpu);
850 #endif
851 #ifdef CONFIG_NET_SCHED
852 	CHECK_SKB_FIELD(tc_index);
853 #ifdef CONFIG_NET_CLS_ACT
854 	CHECK_SKB_FIELD(tc_verd);
855 #endif
856 #endif
857 
858 }
859 
860 /*
861  * You should not add any new code to this function.  Add it to
862  * __copy_skb_header above instead.
863  */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)864 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
865 {
866 #define C(x) n->x = skb->x
867 
868 	n->next = n->prev = NULL;
869 	n->sk = NULL;
870 	__copy_skb_header(n, skb);
871 
872 	C(len);
873 	C(data_len);
874 	C(mac_len);
875 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
876 	n->cloned = 1;
877 	n->nohdr = 0;
878 	n->destructor = NULL;
879 	C(tail);
880 	C(end);
881 	C(head);
882 	C(head_frag);
883 	C(data);
884 	C(truesize);
885 	atomic_set(&n->users, 1);
886 
887 	atomic_inc(&(skb_shinfo(skb)->dataref));
888 	skb->cloned = 1;
889 
890 	return n;
891 #undef C
892 }
893 
894 /**
895  *	skb_morph	-	morph one skb into another
896  *	@dst: the skb to receive the contents
897  *	@src: the skb to supply the contents
898  *
899  *	This is identical to skb_clone except that the target skb is
900  *	supplied by the user.
901  *
902  *	The target skb is returned upon exit.
903  */
skb_morph(struct sk_buff * dst,struct sk_buff * src)904 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
905 {
906 	skb_release_all(dst);
907 	return __skb_clone(dst, src);
908 }
909 EXPORT_SYMBOL_GPL(skb_morph);
910 
911 /**
912  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
913  *	@skb: the skb to modify
914  *	@gfp_mask: allocation priority
915  *
916  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
917  *	It will copy all frags into kernel and drop the reference
918  *	to userspace pages.
919  *
920  *	If this function is called from an interrupt gfp_mask() must be
921  *	%GFP_ATOMIC.
922  *
923  *	Returns 0 on success or a negative error code on failure
924  *	to allocate kernel memory to copy to.
925  */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)926 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
927 {
928 	int i;
929 	int num_frags = skb_shinfo(skb)->nr_frags;
930 	struct page *page, *head = NULL;
931 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
932 
933 	for (i = 0; i < num_frags; i++) {
934 		u8 *vaddr;
935 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
936 
937 		page = alloc_page(gfp_mask);
938 		if (!page) {
939 			while (head) {
940 				struct page *next = (struct page *)page_private(head);
941 				put_page(head);
942 				head = next;
943 			}
944 			return -ENOMEM;
945 		}
946 		vaddr = kmap_atomic(skb_frag_page(f));
947 		memcpy(page_address(page),
948 		       vaddr + f->page_offset, skb_frag_size(f));
949 		kunmap_atomic(vaddr);
950 		set_page_private(page, (unsigned long)head);
951 		head = page;
952 	}
953 
954 	/* skb frags release userspace buffers */
955 	for (i = 0; i < num_frags; i++)
956 		skb_frag_unref(skb, i);
957 
958 	uarg->callback(uarg, false);
959 
960 	/* skb frags point to kernel buffers */
961 	for (i = num_frags - 1; i >= 0; i--) {
962 		__skb_fill_page_desc(skb, i, head, 0,
963 				     skb_shinfo(skb)->frags[i].size);
964 		head = (struct page *)page_private(head);
965 	}
966 
967 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
968 	return 0;
969 }
970 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
971 
972 /**
973  *	skb_clone	-	duplicate an sk_buff
974  *	@skb: buffer to clone
975  *	@gfp_mask: allocation priority
976  *
977  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
978  *	copies share the same packet data but not structure. The new
979  *	buffer has a reference count of 1. If the allocation fails the
980  *	function returns %NULL otherwise the new buffer is returned.
981  *
982  *	If this function is called from an interrupt gfp_mask() must be
983  *	%GFP_ATOMIC.
984  */
985 
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)986 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
987 {
988 	struct sk_buff_fclones *fclones = container_of(skb,
989 						       struct sk_buff_fclones,
990 						       skb1);
991 	struct sk_buff *n;
992 
993 	if (skb_orphan_frags(skb, gfp_mask))
994 		return NULL;
995 
996 	if (skb->fclone == SKB_FCLONE_ORIG &&
997 	    atomic_read(&fclones->fclone_ref) == 1) {
998 		n = &fclones->skb2;
999 		atomic_set(&fclones->fclone_ref, 2);
1000 	} else {
1001 		if (skb_pfmemalloc(skb))
1002 			gfp_mask |= __GFP_MEMALLOC;
1003 
1004 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1005 		if (!n)
1006 			return NULL;
1007 
1008 		kmemcheck_annotate_bitfield(n, flags1);
1009 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1010 	}
1011 
1012 	return __skb_clone(n, skb);
1013 }
1014 EXPORT_SYMBOL(skb_clone);
1015 
skb_headers_offset_update(struct sk_buff * skb,int off)1016 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1017 {
1018 	/* Only adjust this if it actually is csum_start rather than csum */
1019 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1020 		skb->csum_start += off;
1021 	/* {transport,network,mac}_header and tail are relative to skb->head */
1022 	skb->transport_header += off;
1023 	skb->network_header   += off;
1024 	if (skb_mac_header_was_set(skb))
1025 		skb->mac_header += off;
1026 	skb->inner_transport_header += off;
1027 	skb->inner_network_header += off;
1028 	skb->inner_mac_header += off;
1029 }
1030 
copy_skb_header(struct sk_buff * new,const struct sk_buff * old)1031 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1032 {
1033 	__copy_skb_header(new, old);
1034 
1035 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1036 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1037 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1038 }
1039 
skb_alloc_rx_flag(const struct sk_buff * skb)1040 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1041 {
1042 	if (skb_pfmemalloc(skb))
1043 		return SKB_ALLOC_RX;
1044 	return 0;
1045 }
1046 
1047 /**
1048  *	skb_copy	-	create private copy of an sk_buff
1049  *	@skb: buffer to copy
1050  *	@gfp_mask: allocation priority
1051  *
1052  *	Make a copy of both an &sk_buff and its data. This is used when the
1053  *	caller wishes to modify the data and needs a private copy of the
1054  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1055  *	on success. The returned buffer has a reference count of 1.
1056  *
1057  *	As by-product this function converts non-linear &sk_buff to linear
1058  *	one, so that &sk_buff becomes completely private and caller is allowed
1059  *	to modify all the data of returned buffer. This means that this
1060  *	function is not recommended for use in circumstances when only
1061  *	header is going to be modified. Use pskb_copy() instead.
1062  */
1063 
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1064 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1065 {
1066 	int headerlen = skb_headroom(skb);
1067 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1068 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1069 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1070 
1071 	if (!n)
1072 		return NULL;
1073 
1074 	/* Set the data pointer */
1075 	skb_reserve(n, headerlen);
1076 	/* Set the tail pointer and length */
1077 	skb_put(n, skb->len);
1078 
1079 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1080 		BUG();
1081 
1082 	copy_skb_header(n, skb);
1083 	return n;
1084 }
1085 EXPORT_SYMBOL(skb_copy);
1086 
1087 /**
1088  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1089  *	@skb: buffer to copy
1090  *	@headroom: headroom of new skb
1091  *	@gfp_mask: allocation priority
1092  *	@fclone: if true allocate the copy of the skb from the fclone
1093  *	cache instead of the head cache; it is recommended to set this
1094  *	to true for the cases where the copy will likely be cloned
1095  *
1096  *	Make a copy of both an &sk_buff and part of its data, located
1097  *	in header. Fragmented data remain shared. This is used when
1098  *	the caller wishes to modify only header of &sk_buff and needs
1099  *	private copy of the header to alter. Returns %NULL on failure
1100  *	or the pointer to the buffer on success.
1101  *	The returned buffer has a reference count of 1.
1102  */
1103 
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1104 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1105 				   gfp_t gfp_mask, bool fclone)
1106 {
1107 	unsigned int size = skb_headlen(skb) + headroom;
1108 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1109 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1110 
1111 	if (!n)
1112 		goto out;
1113 
1114 	/* Set the data pointer */
1115 	skb_reserve(n, headroom);
1116 	/* Set the tail pointer and length */
1117 	skb_put(n, skb_headlen(skb));
1118 	/* Copy the bytes */
1119 	skb_copy_from_linear_data(skb, n->data, n->len);
1120 
1121 	n->truesize += skb->data_len;
1122 	n->data_len  = skb->data_len;
1123 	n->len	     = skb->len;
1124 
1125 	if (skb_shinfo(skb)->nr_frags) {
1126 		int i;
1127 
1128 		if (skb_orphan_frags(skb, gfp_mask)) {
1129 			kfree_skb(n);
1130 			n = NULL;
1131 			goto out;
1132 		}
1133 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1134 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1135 			skb_frag_ref(skb, i);
1136 		}
1137 		skb_shinfo(n)->nr_frags = i;
1138 	}
1139 
1140 	if (skb_has_frag_list(skb)) {
1141 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1142 		skb_clone_fraglist(n);
1143 	}
1144 
1145 	copy_skb_header(n, skb);
1146 out:
1147 	return n;
1148 }
1149 EXPORT_SYMBOL(__pskb_copy_fclone);
1150 
1151 /**
1152  *	pskb_expand_head - reallocate header of &sk_buff
1153  *	@skb: buffer to reallocate
1154  *	@nhead: room to add at head
1155  *	@ntail: room to add at tail
1156  *	@gfp_mask: allocation priority
1157  *
1158  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1159  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1160  *	reference count of 1. Returns zero in the case of success or error,
1161  *	if expansion failed. In the last case, &sk_buff is not changed.
1162  *
1163  *	All the pointers pointing into skb header may change and must be
1164  *	reloaded after call to this function.
1165  */
1166 
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1167 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1168 		     gfp_t gfp_mask)
1169 {
1170 	int i;
1171 	u8 *data;
1172 	int size = nhead + skb_end_offset(skb) + ntail;
1173 	long off;
1174 
1175 	BUG_ON(nhead < 0);
1176 
1177 	if (skb_shared(skb))
1178 		BUG();
1179 
1180 	size = SKB_DATA_ALIGN(size);
1181 
1182 	if (skb_pfmemalloc(skb))
1183 		gfp_mask |= __GFP_MEMALLOC;
1184 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1185 			       gfp_mask, NUMA_NO_NODE, NULL);
1186 	if (!data)
1187 		goto nodata;
1188 	size = SKB_WITH_OVERHEAD(ksize(data));
1189 
1190 	/* Copy only real data... and, alas, header. This should be
1191 	 * optimized for the cases when header is void.
1192 	 */
1193 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1194 
1195 	memcpy((struct skb_shared_info *)(data + size),
1196 	       skb_shinfo(skb),
1197 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1198 
1199 	/*
1200 	 * if shinfo is shared we must drop the old head gracefully, but if it
1201 	 * is not we can just drop the old head and let the existing refcount
1202 	 * be since all we did is relocate the values
1203 	 */
1204 	if (skb_cloned(skb)) {
1205 		/* copy this zero copy skb frags */
1206 		if (skb_orphan_frags(skb, gfp_mask))
1207 			goto nofrags;
1208 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1209 			skb_frag_ref(skb, i);
1210 
1211 		if (skb_has_frag_list(skb))
1212 			skb_clone_fraglist(skb);
1213 
1214 		skb_release_data(skb);
1215 	} else {
1216 		skb_free_head(skb);
1217 	}
1218 	off = (data + nhead) - skb->head;
1219 
1220 	skb->head     = data;
1221 	skb->head_frag = 0;
1222 	skb->data    += off;
1223 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1224 	skb->end      = size;
1225 	off           = nhead;
1226 #else
1227 	skb->end      = skb->head + size;
1228 #endif
1229 	skb->tail	      += off;
1230 	skb_headers_offset_update(skb, nhead);
1231 	skb->cloned   = 0;
1232 	skb->hdr_len  = 0;
1233 	skb->nohdr    = 0;
1234 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1235 	return 0;
1236 
1237 nofrags:
1238 	kfree(data);
1239 nodata:
1240 	return -ENOMEM;
1241 }
1242 EXPORT_SYMBOL(pskb_expand_head);
1243 
1244 /* Make private copy of skb with writable head and some headroom */
1245 
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1246 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1247 {
1248 	struct sk_buff *skb2;
1249 	int delta = headroom - skb_headroom(skb);
1250 
1251 	if (delta <= 0)
1252 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1253 	else {
1254 		skb2 = skb_clone(skb, GFP_ATOMIC);
1255 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1256 					     GFP_ATOMIC)) {
1257 			kfree_skb(skb2);
1258 			skb2 = NULL;
1259 		}
1260 	}
1261 	return skb2;
1262 }
1263 EXPORT_SYMBOL(skb_realloc_headroom);
1264 
1265 /**
1266  *	skb_copy_expand	-	copy and expand sk_buff
1267  *	@skb: buffer to copy
1268  *	@newheadroom: new free bytes at head
1269  *	@newtailroom: new free bytes at tail
1270  *	@gfp_mask: allocation priority
1271  *
1272  *	Make a copy of both an &sk_buff and its data and while doing so
1273  *	allocate additional space.
1274  *
1275  *	This is used when the caller wishes to modify the data and needs a
1276  *	private copy of the data to alter as well as more space for new fields.
1277  *	Returns %NULL on failure or the pointer to the buffer
1278  *	on success. The returned buffer has a reference count of 1.
1279  *
1280  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1281  *	is called from an interrupt.
1282  */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1283 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1284 				int newheadroom, int newtailroom,
1285 				gfp_t gfp_mask)
1286 {
1287 	/*
1288 	 *	Allocate the copy buffer
1289 	 */
1290 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1291 					gfp_mask, skb_alloc_rx_flag(skb),
1292 					NUMA_NO_NODE);
1293 	int oldheadroom = skb_headroom(skb);
1294 	int head_copy_len, head_copy_off;
1295 
1296 	if (!n)
1297 		return NULL;
1298 
1299 	skb_reserve(n, newheadroom);
1300 
1301 	/* Set the tail pointer and length */
1302 	skb_put(n, skb->len);
1303 
1304 	head_copy_len = oldheadroom;
1305 	head_copy_off = 0;
1306 	if (newheadroom <= head_copy_len)
1307 		head_copy_len = newheadroom;
1308 	else
1309 		head_copy_off = newheadroom - head_copy_len;
1310 
1311 	/* Copy the linear header and data. */
1312 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1313 			  skb->len + head_copy_len))
1314 		BUG();
1315 
1316 	copy_skb_header(n, skb);
1317 
1318 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1319 
1320 	return n;
1321 }
1322 EXPORT_SYMBOL(skb_copy_expand);
1323 
1324 /**
1325  *	skb_pad			-	zero pad the tail of an skb
1326  *	@skb: buffer to pad
1327  *	@pad: space to pad
1328  *
1329  *	Ensure that a buffer is followed by a padding area that is zero
1330  *	filled. Used by network drivers which may DMA or transfer data
1331  *	beyond the buffer end onto the wire.
1332  *
1333  *	May return error in out of memory cases. The skb is freed on error.
1334  */
1335 
skb_pad(struct sk_buff * skb,int pad)1336 int skb_pad(struct sk_buff *skb, int pad)
1337 {
1338 	int err;
1339 	int ntail;
1340 
1341 	/* If the skbuff is non linear tailroom is always zero.. */
1342 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1343 		memset(skb->data+skb->len, 0, pad);
1344 		return 0;
1345 	}
1346 
1347 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1348 	if (likely(skb_cloned(skb) || ntail > 0)) {
1349 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1350 		if (unlikely(err))
1351 			goto free_skb;
1352 	}
1353 
1354 	/* FIXME: The use of this function with non-linear skb's really needs
1355 	 * to be audited.
1356 	 */
1357 	err = skb_linearize(skb);
1358 	if (unlikely(err))
1359 		goto free_skb;
1360 
1361 	memset(skb->data + skb->len, 0, pad);
1362 	return 0;
1363 
1364 free_skb:
1365 	kfree_skb(skb);
1366 	return err;
1367 }
1368 EXPORT_SYMBOL(skb_pad);
1369 
1370 /**
1371  *	pskb_put - add data to the tail of a potentially fragmented buffer
1372  *	@skb: start of the buffer to use
1373  *	@tail: tail fragment of the buffer to use
1374  *	@len: amount of data to add
1375  *
1376  *	This function extends the used data area of the potentially
1377  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1378  *	@skb itself. If this would exceed the total buffer size the kernel
1379  *	will panic. A pointer to the first byte of the extra data is
1380  *	returned.
1381  */
1382 
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)1383 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1384 {
1385 	if (tail != skb) {
1386 		skb->data_len += len;
1387 		skb->len += len;
1388 	}
1389 	return skb_put(tail, len);
1390 }
1391 EXPORT_SYMBOL_GPL(pskb_put);
1392 
1393 /**
1394  *	skb_put - add data to a buffer
1395  *	@skb: buffer to use
1396  *	@len: amount of data to add
1397  *
1398  *	This function extends the used data area of the buffer. If this would
1399  *	exceed the total buffer size the kernel will panic. A pointer to the
1400  *	first byte of the extra data is returned.
1401  */
skb_put(struct sk_buff * skb,unsigned int len)1402 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1403 {
1404 	unsigned char *tmp = skb_tail_pointer(skb);
1405 	SKB_LINEAR_ASSERT(skb);
1406 	skb->tail += len;
1407 	skb->len  += len;
1408 	if (unlikely(skb->tail > skb->end))
1409 		skb_over_panic(skb, len, __builtin_return_address(0));
1410 	return tmp;
1411 }
1412 EXPORT_SYMBOL(skb_put);
1413 
1414 /**
1415  *	skb_push - add data to the start of a buffer
1416  *	@skb: buffer to use
1417  *	@len: amount of data to add
1418  *
1419  *	This function extends the used data area of the buffer at the buffer
1420  *	start. If this would exceed the total buffer headroom the kernel will
1421  *	panic. A pointer to the first byte of the extra data is returned.
1422  */
skb_push(struct sk_buff * skb,unsigned int len)1423 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1424 {
1425 	skb->data -= len;
1426 	skb->len  += len;
1427 	if (unlikely(skb->data<skb->head))
1428 		skb_under_panic(skb, len, __builtin_return_address(0));
1429 	return skb->data;
1430 }
1431 EXPORT_SYMBOL(skb_push);
1432 
1433 /**
1434  *	skb_pull - remove data from the start of a buffer
1435  *	@skb: buffer to use
1436  *	@len: amount of data to remove
1437  *
1438  *	This function removes data from the start of a buffer, returning
1439  *	the memory to the headroom. A pointer to the next data in the buffer
1440  *	is returned. Once the data has been pulled future pushes will overwrite
1441  *	the old data.
1442  */
skb_pull(struct sk_buff * skb,unsigned int len)1443 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1444 {
1445 	return skb_pull_inline(skb, len);
1446 }
1447 EXPORT_SYMBOL(skb_pull);
1448 
1449 /**
1450  *	skb_trim - remove end from a buffer
1451  *	@skb: buffer to alter
1452  *	@len: new length
1453  *
1454  *	Cut the length of a buffer down by removing data from the tail. If
1455  *	the buffer is already under the length specified it is not modified.
1456  *	The skb must be linear.
1457  */
skb_trim(struct sk_buff * skb,unsigned int len)1458 void skb_trim(struct sk_buff *skb, unsigned int len)
1459 {
1460 	if (skb->len > len)
1461 		__skb_trim(skb, len);
1462 }
1463 EXPORT_SYMBOL(skb_trim);
1464 
1465 /* Trims skb to length len. It can change skb pointers.
1466  */
1467 
___pskb_trim(struct sk_buff * skb,unsigned int len)1468 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1469 {
1470 	struct sk_buff **fragp;
1471 	struct sk_buff *frag;
1472 	int offset = skb_headlen(skb);
1473 	int nfrags = skb_shinfo(skb)->nr_frags;
1474 	int i;
1475 	int err;
1476 
1477 	if (skb_cloned(skb) &&
1478 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1479 		return err;
1480 
1481 	i = 0;
1482 	if (offset >= len)
1483 		goto drop_pages;
1484 
1485 	for (; i < nfrags; i++) {
1486 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1487 
1488 		if (end < len) {
1489 			offset = end;
1490 			continue;
1491 		}
1492 
1493 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1494 
1495 drop_pages:
1496 		skb_shinfo(skb)->nr_frags = i;
1497 
1498 		for (; i < nfrags; i++)
1499 			skb_frag_unref(skb, i);
1500 
1501 		if (skb_has_frag_list(skb))
1502 			skb_drop_fraglist(skb);
1503 		goto done;
1504 	}
1505 
1506 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1507 	     fragp = &frag->next) {
1508 		int end = offset + frag->len;
1509 
1510 		if (skb_shared(frag)) {
1511 			struct sk_buff *nfrag;
1512 
1513 			nfrag = skb_clone(frag, GFP_ATOMIC);
1514 			if (unlikely(!nfrag))
1515 				return -ENOMEM;
1516 
1517 			nfrag->next = frag->next;
1518 			consume_skb(frag);
1519 			frag = nfrag;
1520 			*fragp = frag;
1521 		}
1522 
1523 		if (end < len) {
1524 			offset = end;
1525 			continue;
1526 		}
1527 
1528 		if (end > len &&
1529 		    unlikely((err = pskb_trim(frag, len - offset))))
1530 			return err;
1531 
1532 		if (frag->next)
1533 			skb_drop_list(&frag->next);
1534 		break;
1535 	}
1536 
1537 done:
1538 	if (len > skb_headlen(skb)) {
1539 		skb->data_len -= skb->len - len;
1540 		skb->len       = len;
1541 	} else {
1542 		skb->len       = len;
1543 		skb->data_len  = 0;
1544 		skb_set_tail_pointer(skb, len);
1545 	}
1546 
1547 	return 0;
1548 }
1549 EXPORT_SYMBOL(___pskb_trim);
1550 
1551 /**
1552  *	__pskb_pull_tail - advance tail of skb header
1553  *	@skb: buffer to reallocate
1554  *	@delta: number of bytes to advance tail
1555  *
1556  *	The function makes a sense only on a fragmented &sk_buff,
1557  *	it expands header moving its tail forward and copying necessary
1558  *	data from fragmented part.
1559  *
1560  *	&sk_buff MUST have reference count of 1.
1561  *
1562  *	Returns %NULL (and &sk_buff does not change) if pull failed
1563  *	or value of new tail of skb in the case of success.
1564  *
1565  *	All the pointers pointing into skb header may change and must be
1566  *	reloaded after call to this function.
1567  */
1568 
1569 /* Moves tail of skb head forward, copying data from fragmented part,
1570  * when it is necessary.
1571  * 1. It may fail due to malloc failure.
1572  * 2. It may change skb pointers.
1573  *
1574  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1575  */
__pskb_pull_tail(struct sk_buff * skb,int delta)1576 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1577 {
1578 	/* If skb has not enough free space at tail, get new one
1579 	 * plus 128 bytes for future expansions. If we have enough
1580 	 * room at tail, reallocate without expansion only if skb is cloned.
1581 	 */
1582 	int i, k, eat = (skb->tail + delta) - skb->end;
1583 
1584 	if (eat > 0 || skb_cloned(skb)) {
1585 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1586 				     GFP_ATOMIC))
1587 			return NULL;
1588 	}
1589 
1590 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1591 		BUG();
1592 
1593 	/* Optimization: no fragments, no reasons to preestimate
1594 	 * size of pulled pages. Superb.
1595 	 */
1596 	if (!skb_has_frag_list(skb))
1597 		goto pull_pages;
1598 
1599 	/* Estimate size of pulled pages. */
1600 	eat = delta;
1601 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1602 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1603 
1604 		if (size >= eat)
1605 			goto pull_pages;
1606 		eat -= size;
1607 	}
1608 
1609 	/* If we need update frag list, we are in troubles.
1610 	 * Certainly, it possible to add an offset to skb data,
1611 	 * but taking into account that pulling is expected to
1612 	 * be very rare operation, it is worth to fight against
1613 	 * further bloating skb head and crucify ourselves here instead.
1614 	 * Pure masohism, indeed. 8)8)
1615 	 */
1616 	if (eat) {
1617 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1618 		struct sk_buff *clone = NULL;
1619 		struct sk_buff *insp = NULL;
1620 
1621 		do {
1622 			BUG_ON(!list);
1623 
1624 			if (list->len <= eat) {
1625 				/* Eaten as whole. */
1626 				eat -= list->len;
1627 				list = list->next;
1628 				insp = list;
1629 			} else {
1630 				/* Eaten partially. */
1631 
1632 				if (skb_shared(list)) {
1633 					/* Sucks! We need to fork list. :-( */
1634 					clone = skb_clone(list, GFP_ATOMIC);
1635 					if (!clone)
1636 						return NULL;
1637 					insp = list->next;
1638 					list = clone;
1639 				} else {
1640 					/* This may be pulled without
1641 					 * problems. */
1642 					insp = list;
1643 				}
1644 				if (!pskb_pull(list, eat)) {
1645 					kfree_skb(clone);
1646 					return NULL;
1647 				}
1648 				break;
1649 			}
1650 		} while (eat);
1651 
1652 		/* Free pulled out fragments. */
1653 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1654 			skb_shinfo(skb)->frag_list = list->next;
1655 			kfree_skb(list);
1656 		}
1657 		/* And insert new clone at head. */
1658 		if (clone) {
1659 			clone->next = list;
1660 			skb_shinfo(skb)->frag_list = clone;
1661 		}
1662 	}
1663 	/* Success! Now we may commit changes to skb data. */
1664 
1665 pull_pages:
1666 	eat = delta;
1667 	k = 0;
1668 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1669 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1670 
1671 		if (size <= eat) {
1672 			skb_frag_unref(skb, i);
1673 			eat -= size;
1674 		} else {
1675 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1676 			if (eat) {
1677 				skb_shinfo(skb)->frags[k].page_offset += eat;
1678 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1679 				eat = 0;
1680 			}
1681 			k++;
1682 		}
1683 	}
1684 	skb_shinfo(skb)->nr_frags = k;
1685 
1686 	skb->tail     += delta;
1687 	skb->data_len -= delta;
1688 
1689 	return skb_tail_pointer(skb);
1690 }
1691 EXPORT_SYMBOL(__pskb_pull_tail);
1692 
1693 /**
1694  *	skb_copy_bits - copy bits from skb to kernel buffer
1695  *	@skb: source skb
1696  *	@offset: offset in source
1697  *	@to: destination buffer
1698  *	@len: number of bytes to copy
1699  *
1700  *	Copy the specified number of bytes from the source skb to the
1701  *	destination buffer.
1702  *
1703  *	CAUTION ! :
1704  *		If its prototype is ever changed,
1705  *		check arch/{*}/net/{*}.S files,
1706  *		since it is called from BPF assembly code.
1707  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)1708 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1709 {
1710 	int start = skb_headlen(skb);
1711 	struct sk_buff *frag_iter;
1712 	int i, copy;
1713 
1714 	if (offset > (int)skb->len - len)
1715 		goto fault;
1716 
1717 	/* Copy header. */
1718 	if ((copy = start - offset) > 0) {
1719 		if (copy > len)
1720 			copy = len;
1721 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1722 		if ((len -= copy) == 0)
1723 			return 0;
1724 		offset += copy;
1725 		to     += copy;
1726 	}
1727 
1728 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1729 		int end;
1730 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1731 
1732 		WARN_ON(start > offset + len);
1733 
1734 		end = start + skb_frag_size(f);
1735 		if ((copy = end - offset) > 0) {
1736 			u8 *vaddr;
1737 
1738 			if (copy > len)
1739 				copy = len;
1740 
1741 			vaddr = kmap_atomic(skb_frag_page(f));
1742 			memcpy(to,
1743 			       vaddr + f->page_offset + offset - start,
1744 			       copy);
1745 			kunmap_atomic(vaddr);
1746 
1747 			if ((len -= copy) == 0)
1748 				return 0;
1749 			offset += copy;
1750 			to     += copy;
1751 		}
1752 		start = end;
1753 	}
1754 
1755 	skb_walk_frags(skb, frag_iter) {
1756 		int end;
1757 
1758 		WARN_ON(start > offset + len);
1759 
1760 		end = start + frag_iter->len;
1761 		if ((copy = end - offset) > 0) {
1762 			if (copy > len)
1763 				copy = len;
1764 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1765 				goto fault;
1766 			if ((len -= copy) == 0)
1767 				return 0;
1768 			offset += copy;
1769 			to     += copy;
1770 		}
1771 		start = end;
1772 	}
1773 
1774 	if (!len)
1775 		return 0;
1776 
1777 fault:
1778 	return -EFAULT;
1779 }
1780 EXPORT_SYMBOL(skb_copy_bits);
1781 
1782 /*
1783  * Callback from splice_to_pipe(), if we need to release some pages
1784  * at the end of the spd in case we error'ed out in filling the pipe.
1785  */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)1786 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1787 {
1788 	put_page(spd->pages[i]);
1789 }
1790 
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)1791 static struct page *linear_to_page(struct page *page, unsigned int *len,
1792 				   unsigned int *offset,
1793 				   struct sock *sk)
1794 {
1795 	struct page_frag *pfrag = sk_page_frag(sk);
1796 
1797 	if (!sk_page_frag_refill(sk, pfrag))
1798 		return NULL;
1799 
1800 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1801 
1802 	memcpy(page_address(pfrag->page) + pfrag->offset,
1803 	       page_address(page) + *offset, *len);
1804 	*offset = pfrag->offset;
1805 	pfrag->offset += *len;
1806 
1807 	return pfrag->page;
1808 }
1809 
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)1810 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1811 			     struct page *page,
1812 			     unsigned int offset)
1813 {
1814 	return	spd->nr_pages &&
1815 		spd->pages[spd->nr_pages - 1] == page &&
1816 		(spd->partial[spd->nr_pages - 1].offset +
1817 		 spd->partial[spd->nr_pages - 1].len == offset);
1818 }
1819 
1820 /*
1821  * Fill page/offset/length into spd, if it can hold more pages.
1822  */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)1823 static bool spd_fill_page(struct splice_pipe_desc *spd,
1824 			  struct pipe_inode_info *pipe, struct page *page,
1825 			  unsigned int *len, unsigned int offset,
1826 			  bool linear,
1827 			  struct sock *sk)
1828 {
1829 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1830 		return true;
1831 
1832 	if (linear) {
1833 		page = linear_to_page(page, len, &offset, sk);
1834 		if (!page)
1835 			return true;
1836 	}
1837 	if (spd_can_coalesce(spd, page, offset)) {
1838 		spd->partial[spd->nr_pages - 1].len += *len;
1839 		return false;
1840 	}
1841 	get_page(page);
1842 	spd->pages[spd->nr_pages] = page;
1843 	spd->partial[spd->nr_pages].len = *len;
1844 	spd->partial[spd->nr_pages].offset = offset;
1845 	spd->nr_pages++;
1846 
1847 	return false;
1848 }
1849 
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)1850 static bool __splice_segment(struct page *page, unsigned int poff,
1851 			     unsigned int plen, unsigned int *off,
1852 			     unsigned int *len,
1853 			     struct splice_pipe_desc *spd, bool linear,
1854 			     struct sock *sk,
1855 			     struct pipe_inode_info *pipe)
1856 {
1857 	if (!*len)
1858 		return true;
1859 
1860 	/* skip this segment if already processed */
1861 	if (*off >= plen) {
1862 		*off -= plen;
1863 		return false;
1864 	}
1865 
1866 	/* ignore any bits we already processed */
1867 	poff += *off;
1868 	plen -= *off;
1869 	*off = 0;
1870 
1871 	do {
1872 		unsigned int flen = min(*len, plen);
1873 
1874 		if (spd_fill_page(spd, pipe, page, &flen, poff,
1875 				  linear, sk))
1876 			return true;
1877 		poff += flen;
1878 		plen -= flen;
1879 		*len -= flen;
1880 	} while (*len && plen);
1881 
1882 	return false;
1883 }
1884 
1885 /*
1886  * Map linear and fragment data from the skb to spd. It reports true if the
1887  * pipe is full or if we already spliced the requested length.
1888  */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)1889 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1890 			      unsigned int *offset, unsigned int *len,
1891 			      struct splice_pipe_desc *spd, struct sock *sk)
1892 {
1893 	int seg;
1894 
1895 	/* map the linear part :
1896 	 * If skb->head_frag is set, this 'linear' part is backed by a
1897 	 * fragment, and if the head is not shared with any clones then
1898 	 * we can avoid a copy since we own the head portion of this page.
1899 	 */
1900 	if (__splice_segment(virt_to_page(skb->data),
1901 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1902 			     skb_headlen(skb),
1903 			     offset, len, spd,
1904 			     skb_head_is_locked(skb),
1905 			     sk, pipe))
1906 		return true;
1907 
1908 	/*
1909 	 * then map the fragments
1910 	 */
1911 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1912 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1913 
1914 		if (__splice_segment(skb_frag_page(f),
1915 				     f->page_offset, skb_frag_size(f),
1916 				     offset, len, spd, false, sk, pipe))
1917 			return true;
1918 	}
1919 
1920 	return false;
1921 }
1922 
1923 /*
1924  * Map data from the skb to a pipe. Should handle both the linear part,
1925  * the fragments, and the frag list. It does NOT handle frag lists within
1926  * the frag list, if such a thing exists. We'd probably need to recurse to
1927  * handle that cleanly.
1928  */
skb_splice_bits(struct sk_buff * skb,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)1929 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1930 		    struct pipe_inode_info *pipe, unsigned int tlen,
1931 		    unsigned int flags)
1932 {
1933 	struct partial_page partial[MAX_SKB_FRAGS];
1934 	struct page *pages[MAX_SKB_FRAGS];
1935 	struct splice_pipe_desc spd = {
1936 		.pages = pages,
1937 		.partial = partial,
1938 		.nr_pages_max = MAX_SKB_FRAGS,
1939 		.flags = flags,
1940 		.ops = &nosteal_pipe_buf_ops,
1941 		.spd_release = sock_spd_release,
1942 	};
1943 	struct sk_buff *frag_iter;
1944 	struct sock *sk = skb->sk;
1945 	int ret = 0;
1946 
1947 	/*
1948 	 * __skb_splice_bits() only fails if the output has no room left,
1949 	 * so no point in going over the frag_list for the error case.
1950 	 */
1951 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1952 		goto done;
1953 	else if (!tlen)
1954 		goto done;
1955 
1956 	/*
1957 	 * now see if we have a frag_list to map
1958 	 */
1959 	skb_walk_frags(skb, frag_iter) {
1960 		if (!tlen)
1961 			break;
1962 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1963 			break;
1964 	}
1965 
1966 done:
1967 	if (spd.nr_pages) {
1968 		/*
1969 		 * Drop the socket lock, otherwise we have reverse
1970 		 * locking dependencies between sk_lock and i_mutex
1971 		 * here as compared to sendfile(). We enter here
1972 		 * with the socket lock held, and splice_to_pipe() will
1973 		 * grab the pipe inode lock. For sendfile() emulation,
1974 		 * we call into ->sendpage() with the i_mutex lock held
1975 		 * and networking will grab the socket lock.
1976 		 */
1977 		release_sock(sk);
1978 		ret = splice_to_pipe(pipe, &spd);
1979 		lock_sock(sk);
1980 	}
1981 
1982 	return ret;
1983 }
1984 
1985 /**
1986  *	skb_store_bits - store bits from kernel buffer to skb
1987  *	@skb: destination buffer
1988  *	@offset: offset in destination
1989  *	@from: source buffer
1990  *	@len: number of bytes to copy
1991  *
1992  *	Copy the specified number of bytes from the source buffer to the
1993  *	destination skb.  This function handles all the messy bits of
1994  *	traversing fragment lists and such.
1995  */
1996 
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)1997 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1998 {
1999 	int start = skb_headlen(skb);
2000 	struct sk_buff *frag_iter;
2001 	int i, copy;
2002 
2003 	if (offset > (int)skb->len - len)
2004 		goto fault;
2005 
2006 	if ((copy = start - offset) > 0) {
2007 		if (copy > len)
2008 			copy = len;
2009 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2010 		if ((len -= copy) == 0)
2011 			return 0;
2012 		offset += copy;
2013 		from += copy;
2014 	}
2015 
2016 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2017 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2018 		int end;
2019 
2020 		WARN_ON(start > offset + len);
2021 
2022 		end = start + skb_frag_size(frag);
2023 		if ((copy = end - offset) > 0) {
2024 			u8 *vaddr;
2025 
2026 			if (copy > len)
2027 				copy = len;
2028 
2029 			vaddr = kmap_atomic(skb_frag_page(frag));
2030 			memcpy(vaddr + frag->page_offset + offset - start,
2031 			       from, copy);
2032 			kunmap_atomic(vaddr);
2033 
2034 			if ((len -= copy) == 0)
2035 				return 0;
2036 			offset += copy;
2037 			from += copy;
2038 		}
2039 		start = end;
2040 	}
2041 
2042 	skb_walk_frags(skb, frag_iter) {
2043 		int end;
2044 
2045 		WARN_ON(start > offset + len);
2046 
2047 		end = start + frag_iter->len;
2048 		if ((copy = end - offset) > 0) {
2049 			if (copy > len)
2050 				copy = len;
2051 			if (skb_store_bits(frag_iter, offset - start,
2052 					   from, copy))
2053 				goto fault;
2054 			if ((len -= copy) == 0)
2055 				return 0;
2056 			offset += copy;
2057 			from += copy;
2058 		}
2059 		start = end;
2060 	}
2061 	if (!len)
2062 		return 0;
2063 
2064 fault:
2065 	return -EFAULT;
2066 }
2067 EXPORT_SYMBOL(skb_store_bits);
2068 
2069 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2070 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2071 		      __wsum csum, const struct skb_checksum_ops *ops)
2072 {
2073 	int start = skb_headlen(skb);
2074 	int i, copy = start - offset;
2075 	struct sk_buff *frag_iter;
2076 	int pos = 0;
2077 
2078 	/* Checksum header. */
2079 	if (copy > 0) {
2080 		if (copy > len)
2081 			copy = len;
2082 		csum = ops->update(skb->data + offset, copy, csum);
2083 		if ((len -= copy) == 0)
2084 			return csum;
2085 		offset += copy;
2086 		pos	= copy;
2087 	}
2088 
2089 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2090 		int end;
2091 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2092 
2093 		WARN_ON(start > offset + len);
2094 
2095 		end = start + skb_frag_size(frag);
2096 		if ((copy = end - offset) > 0) {
2097 			__wsum csum2;
2098 			u8 *vaddr;
2099 
2100 			if (copy > len)
2101 				copy = len;
2102 			vaddr = kmap_atomic(skb_frag_page(frag));
2103 			csum2 = ops->update(vaddr + frag->page_offset +
2104 					    offset - start, copy, 0);
2105 			kunmap_atomic(vaddr);
2106 			csum = ops->combine(csum, csum2, pos, copy);
2107 			if (!(len -= copy))
2108 				return csum;
2109 			offset += copy;
2110 			pos    += copy;
2111 		}
2112 		start = end;
2113 	}
2114 
2115 	skb_walk_frags(skb, frag_iter) {
2116 		int end;
2117 
2118 		WARN_ON(start > offset + len);
2119 
2120 		end = start + frag_iter->len;
2121 		if ((copy = end - offset) > 0) {
2122 			__wsum csum2;
2123 			if (copy > len)
2124 				copy = len;
2125 			csum2 = __skb_checksum(frag_iter, offset - start,
2126 					       copy, 0, ops);
2127 			csum = ops->combine(csum, csum2, pos, copy);
2128 			if ((len -= copy) == 0)
2129 				return csum;
2130 			offset += copy;
2131 			pos    += copy;
2132 		}
2133 		start = end;
2134 	}
2135 	BUG_ON(len);
2136 
2137 	return csum;
2138 }
2139 EXPORT_SYMBOL(__skb_checksum);
2140 
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)2141 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2142 		    int len, __wsum csum)
2143 {
2144 	const struct skb_checksum_ops ops = {
2145 		.update  = csum_partial_ext,
2146 		.combine = csum_block_add_ext,
2147 	};
2148 
2149 	return __skb_checksum(skb, offset, len, csum, &ops);
2150 }
2151 EXPORT_SYMBOL(skb_checksum);
2152 
2153 /* Both of above in one bottle. */
2154 
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len,__wsum csum)2155 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2156 				    u8 *to, int len, __wsum csum)
2157 {
2158 	int start = skb_headlen(skb);
2159 	int i, copy = start - offset;
2160 	struct sk_buff *frag_iter;
2161 	int pos = 0;
2162 
2163 	/* Copy header. */
2164 	if (copy > 0) {
2165 		if (copy > len)
2166 			copy = len;
2167 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2168 						 copy, csum);
2169 		if ((len -= copy) == 0)
2170 			return csum;
2171 		offset += copy;
2172 		to     += copy;
2173 		pos	= copy;
2174 	}
2175 
2176 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2177 		int end;
2178 
2179 		WARN_ON(start > offset + len);
2180 
2181 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2182 		if ((copy = end - offset) > 0) {
2183 			__wsum csum2;
2184 			u8 *vaddr;
2185 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2186 
2187 			if (copy > len)
2188 				copy = len;
2189 			vaddr = kmap_atomic(skb_frag_page(frag));
2190 			csum2 = csum_partial_copy_nocheck(vaddr +
2191 							  frag->page_offset +
2192 							  offset - start, to,
2193 							  copy, 0);
2194 			kunmap_atomic(vaddr);
2195 			csum = csum_block_add(csum, csum2, pos);
2196 			if (!(len -= copy))
2197 				return csum;
2198 			offset += copy;
2199 			to     += copy;
2200 			pos    += copy;
2201 		}
2202 		start = end;
2203 	}
2204 
2205 	skb_walk_frags(skb, frag_iter) {
2206 		__wsum csum2;
2207 		int end;
2208 
2209 		WARN_ON(start > offset + len);
2210 
2211 		end = start + frag_iter->len;
2212 		if ((copy = end - offset) > 0) {
2213 			if (copy > len)
2214 				copy = len;
2215 			csum2 = skb_copy_and_csum_bits(frag_iter,
2216 						       offset - start,
2217 						       to, copy, 0);
2218 			csum = csum_block_add(csum, csum2, pos);
2219 			if ((len -= copy) == 0)
2220 				return csum;
2221 			offset += copy;
2222 			to     += copy;
2223 			pos    += copy;
2224 		}
2225 		start = end;
2226 	}
2227 	BUG_ON(len);
2228 	return csum;
2229 }
2230 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2231 
2232  /**
2233  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2234  *	@from: source buffer
2235  *
2236  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2237  *	into skb_zerocopy().
2238  */
2239 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)2240 skb_zerocopy_headlen(const struct sk_buff *from)
2241 {
2242 	unsigned int hlen = 0;
2243 
2244 	if (!from->head_frag ||
2245 	    skb_headlen(from) < L1_CACHE_BYTES ||
2246 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2247 		hlen = skb_headlen(from);
2248 
2249 	if (skb_has_frag_list(from))
2250 		hlen = from->len;
2251 
2252 	return hlen;
2253 }
2254 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2255 
2256 /**
2257  *	skb_zerocopy - Zero copy skb to skb
2258  *	@to: destination buffer
2259  *	@from: source buffer
2260  *	@len: number of bytes to copy from source buffer
2261  *	@hlen: size of linear headroom in destination buffer
2262  *
2263  *	Copies up to `len` bytes from `from` to `to` by creating references
2264  *	to the frags in the source buffer.
2265  *
2266  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2267  *	headroom in the `to` buffer.
2268  *
2269  *	Return value:
2270  *	0: everything is OK
2271  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2272  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2273  */
2274 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)2275 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2276 {
2277 	int i, j = 0;
2278 	int plen = 0; /* length of skb->head fragment */
2279 	int ret;
2280 	struct page *page;
2281 	unsigned int offset;
2282 
2283 	BUG_ON(!from->head_frag && !hlen);
2284 
2285 	/* dont bother with small payloads */
2286 	if (len <= skb_tailroom(to))
2287 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2288 
2289 	if (hlen) {
2290 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2291 		if (unlikely(ret))
2292 			return ret;
2293 		len -= hlen;
2294 	} else {
2295 		plen = min_t(int, skb_headlen(from), len);
2296 		if (plen) {
2297 			page = virt_to_head_page(from->head);
2298 			offset = from->data - (unsigned char *)page_address(page);
2299 			__skb_fill_page_desc(to, 0, page, offset, plen);
2300 			get_page(page);
2301 			j = 1;
2302 			len -= plen;
2303 		}
2304 	}
2305 
2306 	to->truesize += len + plen;
2307 	to->len += len + plen;
2308 	to->data_len += len + plen;
2309 
2310 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2311 		skb_tx_error(from);
2312 		return -ENOMEM;
2313 	}
2314 
2315 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2316 		if (!len)
2317 			break;
2318 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2319 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2320 		len -= skb_shinfo(to)->frags[j].size;
2321 		skb_frag_ref(to, j);
2322 		j++;
2323 	}
2324 	skb_shinfo(to)->nr_frags = j;
2325 
2326 	return 0;
2327 }
2328 EXPORT_SYMBOL_GPL(skb_zerocopy);
2329 
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)2330 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2331 {
2332 	__wsum csum;
2333 	long csstart;
2334 
2335 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2336 		csstart = skb_checksum_start_offset(skb);
2337 	else
2338 		csstart = skb_headlen(skb);
2339 
2340 	BUG_ON(csstart > skb_headlen(skb));
2341 
2342 	skb_copy_from_linear_data(skb, to, csstart);
2343 
2344 	csum = 0;
2345 	if (csstart != skb->len)
2346 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2347 					      skb->len - csstart, 0);
2348 
2349 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2350 		long csstuff = csstart + skb->csum_offset;
2351 
2352 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2353 	}
2354 }
2355 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2356 
2357 /**
2358  *	skb_dequeue - remove from the head of the queue
2359  *	@list: list to dequeue from
2360  *
2361  *	Remove the head of the list. The list lock is taken so the function
2362  *	may be used safely with other locking list functions. The head item is
2363  *	returned or %NULL if the list is empty.
2364  */
2365 
skb_dequeue(struct sk_buff_head * list)2366 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2367 {
2368 	unsigned long flags;
2369 	struct sk_buff *result;
2370 
2371 	spin_lock_irqsave(&list->lock, flags);
2372 	result = __skb_dequeue(list);
2373 	spin_unlock_irqrestore(&list->lock, flags);
2374 	return result;
2375 }
2376 EXPORT_SYMBOL(skb_dequeue);
2377 
2378 /**
2379  *	skb_dequeue_tail - remove from the tail of the queue
2380  *	@list: list to dequeue from
2381  *
2382  *	Remove the tail of the list. The list lock is taken so the function
2383  *	may be used safely with other locking list functions. The tail item is
2384  *	returned or %NULL if the list is empty.
2385  */
skb_dequeue_tail(struct sk_buff_head * list)2386 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2387 {
2388 	unsigned long flags;
2389 	struct sk_buff *result;
2390 
2391 	spin_lock_irqsave(&list->lock, flags);
2392 	result = __skb_dequeue_tail(list);
2393 	spin_unlock_irqrestore(&list->lock, flags);
2394 	return result;
2395 }
2396 EXPORT_SYMBOL(skb_dequeue_tail);
2397 
2398 /**
2399  *	skb_queue_purge - empty a list
2400  *	@list: list to empty
2401  *
2402  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2403  *	the list and one reference dropped. This function takes the list
2404  *	lock and is atomic with respect to other list locking functions.
2405  */
skb_queue_purge(struct sk_buff_head * list)2406 void skb_queue_purge(struct sk_buff_head *list)
2407 {
2408 	struct sk_buff *skb;
2409 	while ((skb = skb_dequeue(list)) != NULL)
2410 		kfree_skb(skb);
2411 }
2412 EXPORT_SYMBOL(skb_queue_purge);
2413 
2414 /**
2415  *	skb_queue_head - queue a buffer at the list head
2416  *	@list: list to use
2417  *	@newsk: buffer to queue
2418  *
2419  *	Queue a buffer at the start of the list. This function takes the
2420  *	list lock and can be used safely with other locking &sk_buff functions
2421  *	safely.
2422  *
2423  *	A buffer cannot be placed on two lists at the same time.
2424  */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2425 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2426 {
2427 	unsigned long flags;
2428 
2429 	spin_lock_irqsave(&list->lock, flags);
2430 	__skb_queue_head(list, newsk);
2431 	spin_unlock_irqrestore(&list->lock, flags);
2432 }
2433 EXPORT_SYMBOL(skb_queue_head);
2434 
2435 /**
2436  *	skb_queue_tail - queue a buffer at the list tail
2437  *	@list: list to use
2438  *	@newsk: buffer to queue
2439  *
2440  *	Queue a buffer at the tail of the list. This function takes the
2441  *	list lock and can be used safely with other locking &sk_buff functions
2442  *	safely.
2443  *
2444  *	A buffer cannot be placed on two lists at the same time.
2445  */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2446 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2447 {
2448 	unsigned long flags;
2449 
2450 	spin_lock_irqsave(&list->lock, flags);
2451 	__skb_queue_tail(list, newsk);
2452 	spin_unlock_irqrestore(&list->lock, flags);
2453 }
2454 EXPORT_SYMBOL(skb_queue_tail);
2455 
2456 /**
2457  *	skb_unlink	-	remove a buffer from a list
2458  *	@skb: buffer to remove
2459  *	@list: list to use
2460  *
2461  *	Remove a packet from a list. The list locks are taken and this
2462  *	function is atomic with respect to other list locked calls
2463  *
2464  *	You must know what list the SKB is on.
2465  */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2466 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2467 {
2468 	unsigned long flags;
2469 
2470 	spin_lock_irqsave(&list->lock, flags);
2471 	__skb_unlink(skb, list);
2472 	spin_unlock_irqrestore(&list->lock, flags);
2473 }
2474 EXPORT_SYMBOL(skb_unlink);
2475 
2476 /**
2477  *	skb_append	-	append a buffer
2478  *	@old: buffer to insert after
2479  *	@newsk: buffer to insert
2480  *	@list: list to use
2481  *
2482  *	Place a packet after a given packet in a list. The list locks are taken
2483  *	and this function is atomic with respect to other list locked calls.
2484  *	A buffer cannot be placed on two lists at the same time.
2485  */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)2486 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2487 {
2488 	unsigned long flags;
2489 
2490 	spin_lock_irqsave(&list->lock, flags);
2491 	__skb_queue_after(list, old, newsk);
2492 	spin_unlock_irqrestore(&list->lock, flags);
2493 }
2494 EXPORT_SYMBOL(skb_append);
2495 
2496 /**
2497  *	skb_insert	-	insert a buffer
2498  *	@old: buffer to insert before
2499  *	@newsk: buffer to insert
2500  *	@list: list to use
2501  *
2502  *	Place a packet before a given packet in a list. The list locks are
2503  * 	taken and this function is atomic with respect to other list locked
2504  *	calls.
2505  *
2506  *	A buffer cannot be placed on two lists at the same time.
2507  */
skb_insert(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)2508 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2509 {
2510 	unsigned long flags;
2511 
2512 	spin_lock_irqsave(&list->lock, flags);
2513 	__skb_insert(newsk, old->prev, old, list);
2514 	spin_unlock_irqrestore(&list->lock, flags);
2515 }
2516 EXPORT_SYMBOL(skb_insert);
2517 
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)2518 static inline void skb_split_inside_header(struct sk_buff *skb,
2519 					   struct sk_buff* skb1,
2520 					   const u32 len, const int pos)
2521 {
2522 	int i;
2523 
2524 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2525 					 pos - len);
2526 	/* And move data appendix as is. */
2527 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2528 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2529 
2530 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2531 	skb_shinfo(skb)->nr_frags  = 0;
2532 	skb1->data_len		   = skb->data_len;
2533 	skb1->len		   += skb1->data_len;
2534 	skb->data_len		   = 0;
2535 	skb->len		   = len;
2536 	skb_set_tail_pointer(skb, len);
2537 }
2538 
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)2539 static inline void skb_split_no_header(struct sk_buff *skb,
2540 				       struct sk_buff* skb1,
2541 				       const u32 len, int pos)
2542 {
2543 	int i, k = 0;
2544 	const int nfrags = skb_shinfo(skb)->nr_frags;
2545 
2546 	skb_shinfo(skb)->nr_frags = 0;
2547 	skb1->len		  = skb1->data_len = skb->len - len;
2548 	skb->len		  = len;
2549 	skb->data_len		  = len - pos;
2550 
2551 	for (i = 0; i < nfrags; i++) {
2552 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2553 
2554 		if (pos + size > len) {
2555 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2556 
2557 			if (pos < len) {
2558 				/* Split frag.
2559 				 * We have two variants in this case:
2560 				 * 1. Move all the frag to the second
2561 				 *    part, if it is possible. F.e.
2562 				 *    this approach is mandatory for TUX,
2563 				 *    where splitting is expensive.
2564 				 * 2. Split is accurately. We make this.
2565 				 */
2566 				skb_frag_ref(skb, i);
2567 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2568 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2569 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2570 				skb_shinfo(skb)->nr_frags++;
2571 			}
2572 			k++;
2573 		} else
2574 			skb_shinfo(skb)->nr_frags++;
2575 		pos += size;
2576 	}
2577 	skb_shinfo(skb1)->nr_frags = k;
2578 }
2579 
2580 /**
2581  * skb_split - Split fragmented skb to two parts at length len.
2582  * @skb: the buffer to split
2583  * @skb1: the buffer to receive the second part
2584  * @len: new length for skb
2585  */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)2586 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2587 {
2588 	int pos = skb_headlen(skb);
2589 
2590 	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2591 	if (len < pos)	/* Split line is inside header. */
2592 		skb_split_inside_header(skb, skb1, len, pos);
2593 	else		/* Second chunk has no header, nothing to copy. */
2594 		skb_split_no_header(skb, skb1, len, pos);
2595 }
2596 EXPORT_SYMBOL(skb_split);
2597 
2598 /* Shifting from/to a cloned skb is a no-go.
2599  *
2600  * Caller cannot keep skb_shinfo related pointers past calling here!
2601  */
skb_prepare_for_shift(struct sk_buff * skb)2602 static int skb_prepare_for_shift(struct sk_buff *skb)
2603 {
2604 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2605 }
2606 
2607 /**
2608  * skb_shift - Shifts paged data partially from skb to another
2609  * @tgt: buffer into which tail data gets added
2610  * @skb: buffer from which the paged data comes from
2611  * @shiftlen: shift up to this many bytes
2612  *
2613  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2614  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2615  * It's up to caller to free skb if everything was shifted.
2616  *
2617  * If @tgt runs out of frags, the whole operation is aborted.
2618  *
2619  * Skb cannot include anything else but paged data while tgt is allowed
2620  * to have non-paged data as well.
2621  *
2622  * TODO: full sized shift could be optimized but that would need
2623  * specialized skb free'er to handle frags without up-to-date nr_frags.
2624  */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)2625 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2626 {
2627 	int from, to, merge, todo;
2628 	struct skb_frag_struct *fragfrom, *fragto;
2629 
2630 	BUG_ON(shiftlen > skb->len);
2631 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2632 
2633 	todo = shiftlen;
2634 	from = 0;
2635 	to = skb_shinfo(tgt)->nr_frags;
2636 	fragfrom = &skb_shinfo(skb)->frags[from];
2637 
2638 	/* Actual merge is delayed until the point when we know we can
2639 	 * commit all, so that we don't have to undo partial changes
2640 	 */
2641 	if (!to ||
2642 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2643 			      fragfrom->page_offset)) {
2644 		merge = -1;
2645 	} else {
2646 		merge = to - 1;
2647 
2648 		todo -= skb_frag_size(fragfrom);
2649 		if (todo < 0) {
2650 			if (skb_prepare_for_shift(skb) ||
2651 			    skb_prepare_for_shift(tgt))
2652 				return 0;
2653 
2654 			/* All previous frag pointers might be stale! */
2655 			fragfrom = &skb_shinfo(skb)->frags[from];
2656 			fragto = &skb_shinfo(tgt)->frags[merge];
2657 
2658 			skb_frag_size_add(fragto, shiftlen);
2659 			skb_frag_size_sub(fragfrom, shiftlen);
2660 			fragfrom->page_offset += shiftlen;
2661 
2662 			goto onlymerged;
2663 		}
2664 
2665 		from++;
2666 	}
2667 
2668 	/* Skip full, not-fitting skb to avoid expensive operations */
2669 	if ((shiftlen == skb->len) &&
2670 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2671 		return 0;
2672 
2673 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2674 		return 0;
2675 
2676 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2677 		if (to == MAX_SKB_FRAGS)
2678 			return 0;
2679 
2680 		fragfrom = &skb_shinfo(skb)->frags[from];
2681 		fragto = &skb_shinfo(tgt)->frags[to];
2682 
2683 		if (todo >= skb_frag_size(fragfrom)) {
2684 			*fragto = *fragfrom;
2685 			todo -= skb_frag_size(fragfrom);
2686 			from++;
2687 			to++;
2688 
2689 		} else {
2690 			__skb_frag_ref(fragfrom);
2691 			fragto->page = fragfrom->page;
2692 			fragto->page_offset = fragfrom->page_offset;
2693 			skb_frag_size_set(fragto, todo);
2694 
2695 			fragfrom->page_offset += todo;
2696 			skb_frag_size_sub(fragfrom, todo);
2697 			todo = 0;
2698 
2699 			to++;
2700 			break;
2701 		}
2702 	}
2703 
2704 	/* Ready to "commit" this state change to tgt */
2705 	skb_shinfo(tgt)->nr_frags = to;
2706 
2707 	if (merge >= 0) {
2708 		fragfrom = &skb_shinfo(skb)->frags[0];
2709 		fragto = &skb_shinfo(tgt)->frags[merge];
2710 
2711 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2712 		__skb_frag_unref(fragfrom);
2713 	}
2714 
2715 	/* Reposition in the original skb */
2716 	to = 0;
2717 	while (from < skb_shinfo(skb)->nr_frags)
2718 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2719 	skb_shinfo(skb)->nr_frags = to;
2720 
2721 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2722 
2723 onlymerged:
2724 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2725 	 * the other hand might need it if it needs to be resent
2726 	 */
2727 	tgt->ip_summed = CHECKSUM_PARTIAL;
2728 	skb->ip_summed = CHECKSUM_PARTIAL;
2729 
2730 	/* Yak, is it really working this way? Some helper please? */
2731 	skb->len -= shiftlen;
2732 	skb->data_len -= shiftlen;
2733 	skb->truesize -= shiftlen;
2734 	tgt->len += shiftlen;
2735 	tgt->data_len += shiftlen;
2736 	tgt->truesize += shiftlen;
2737 
2738 	return shiftlen;
2739 }
2740 
2741 /**
2742  * skb_prepare_seq_read - Prepare a sequential read of skb data
2743  * @skb: the buffer to read
2744  * @from: lower offset of data to be read
2745  * @to: upper offset of data to be read
2746  * @st: state variable
2747  *
2748  * Initializes the specified state variable. Must be called before
2749  * invoking skb_seq_read() for the first time.
2750  */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)2751 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2752 			  unsigned int to, struct skb_seq_state *st)
2753 {
2754 	st->lower_offset = from;
2755 	st->upper_offset = to;
2756 	st->root_skb = st->cur_skb = skb;
2757 	st->frag_idx = st->stepped_offset = 0;
2758 	st->frag_data = NULL;
2759 }
2760 EXPORT_SYMBOL(skb_prepare_seq_read);
2761 
2762 /**
2763  * skb_seq_read - Sequentially read skb data
2764  * @consumed: number of bytes consumed by the caller so far
2765  * @data: destination pointer for data to be returned
2766  * @st: state variable
2767  *
2768  * Reads a block of skb data at @consumed relative to the
2769  * lower offset specified to skb_prepare_seq_read(). Assigns
2770  * the head of the data block to @data and returns the length
2771  * of the block or 0 if the end of the skb data or the upper
2772  * offset has been reached.
2773  *
2774  * The caller is not required to consume all of the data
2775  * returned, i.e. @consumed is typically set to the number
2776  * of bytes already consumed and the next call to
2777  * skb_seq_read() will return the remaining part of the block.
2778  *
2779  * Note 1: The size of each block of data returned can be arbitrary,
2780  *       this limitation is the cost for zerocopy sequential
2781  *       reads of potentially non linear data.
2782  *
2783  * Note 2: Fragment lists within fragments are not implemented
2784  *       at the moment, state->root_skb could be replaced with
2785  *       a stack for this purpose.
2786  */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)2787 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2788 			  struct skb_seq_state *st)
2789 {
2790 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2791 	skb_frag_t *frag;
2792 
2793 	if (unlikely(abs_offset >= st->upper_offset)) {
2794 		if (st->frag_data) {
2795 			kunmap_atomic(st->frag_data);
2796 			st->frag_data = NULL;
2797 		}
2798 		return 0;
2799 	}
2800 
2801 next_skb:
2802 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2803 
2804 	if (abs_offset < block_limit && !st->frag_data) {
2805 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2806 		return block_limit - abs_offset;
2807 	}
2808 
2809 	if (st->frag_idx == 0 && !st->frag_data)
2810 		st->stepped_offset += skb_headlen(st->cur_skb);
2811 
2812 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2813 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2814 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2815 
2816 		if (abs_offset < block_limit) {
2817 			if (!st->frag_data)
2818 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2819 
2820 			*data = (u8 *) st->frag_data + frag->page_offset +
2821 				(abs_offset - st->stepped_offset);
2822 
2823 			return block_limit - abs_offset;
2824 		}
2825 
2826 		if (st->frag_data) {
2827 			kunmap_atomic(st->frag_data);
2828 			st->frag_data = NULL;
2829 		}
2830 
2831 		st->frag_idx++;
2832 		st->stepped_offset += skb_frag_size(frag);
2833 	}
2834 
2835 	if (st->frag_data) {
2836 		kunmap_atomic(st->frag_data);
2837 		st->frag_data = NULL;
2838 	}
2839 
2840 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2841 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2842 		st->frag_idx = 0;
2843 		goto next_skb;
2844 	} else if (st->cur_skb->next) {
2845 		st->cur_skb = st->cur_skb->next;
2846 		st->frag_idx = 0;
2847 		goto next_skb;
2848 	}
2849 
2850 	return 0;
2851 }
2852 EXPORT_SYMBOL(skb_seq_read);
2853 
2854 /**
2855  * skb_abort_seq_read - Abort a sequential read of skb data
2856  * @st: state variable
2857  *
2858  * Must be called if skb_seq_read() was not called until it
2859  * returned 0.
2860  */
skb_abort_seq_read(struct skb_seq_state * st)2861 void skb_abort_seq_read(struct skb_seq_state *st)
2862 {
2863 	if (st->frag_data)
2864 		kunmap_atomic(st->frag_data);
2865 }
2866 EXPORT_SYMBOL(skb_abort_seq_read);
2867 
2868 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2869 
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)2870 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2871 					  struct ts_config *conf,
2872 					  struct ts_state *state)
2873 {
2874 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2875 }
2876 
skb_ts_finish(struct ts_config * conf,struct ts_state * state)2877 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2878 {
2879 	skb_abort_seq_read(TS_SKB_CB(state));
2880 }
2881 
2882 /**
2883  * skb_find_text - Find a text pattern in skb data
2884  * @skb: the buffer to look in
2885  * @from: search offset
2886  * @to: search limit
2887  * @config: textsearch configuration
2888  *
2889  * Finds a pattern in the skb data according to the specified
2890  * textsearch configuration. Use textsearch_next() to retrieve
2891  * subsequent occurrences of the pattern. Returns the offset
2892  * to the first occurrence or UINT_MAX if no match was found.
2893  */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)2894 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2895 			   unsigned int to, struct ts_config *config)
2896 {
2897 	struct ts_state state;
2898 	unsigned int ret;
2899 
2900 	config->get_next_block = skb_ts_get_next_block;
2901 	config->finish = skb_ts_finish;
2902 
2903 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2904 
2905 	ret = textsearch_find(config, &state);
2906 	return (ret <= to - from ? ret : UINT_MAX);
2907 }
2908 EXPORT_SYMBOL(skb_find_text);
2909 
2910 /**
2911  * skb_append_datato_frags - append the user data to a skb
2912  * @sk: sock  structure
2913  * @skb: skb structure to be appended with user data.
2914  * @getfrag: call back function to be used for getting the user data
2915  * @from: pointer to user message iov
2916  * @length: length of the iov message
2917  *
2918  * Description: This procedure append the user data in the fragment part
2919  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2920  */
skb_append_datato_frags(struct sock * sk,struct sk_buff * skb,int (* getfrag)(void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length)2921 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2922 			int (*getfrag)(void *from, char *to, int offset,
2923 					int len, int odd, struct sk_buff *skb),
2924 			void *from, int length)
2925 {
2926 	int frg_cnt = skb_shinfo(skb)->nr_frags;
2927 	int copy;
2928 	int offset = 0;
2929 	int ret;
2930 	struct page_frag *pfrag = &current->task_frag;
2931 
2932 	do {
2933 		/* Return error if we don't have space for new frag */
2934 		if (frg_cnt >= MAX_SKB_FRAGS)
2935 			return -EMSGSIZE;
2936 
2937 		if (!sk_page_frag_refill(sk, pfrag))
2938 			return -ENOMEM;
2939 
2940 		/* copy the user data to page */
2941 		copy = min_t(int, length, pfrag->size - pfrag->offset);
2942 
2943 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2944 			      offset, copy, 0, skb);
2945 		if (ret < 0)
2946 			return -EFAULT;
2947 
2948 		/* copy was successful so update the size parameters */
2949 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2950 				   copy);
2951 		frg_cnt++;
2952 		pfrag->offset += copy;
2953 		get_page(pfrag->page);
2954 
2955 		skb->truesize += copy;
2956 		atomic_add(copy, &sk->sk_wmem_alloc);
2957 		skb->len += copy;
2958 		skb->data_len += copy;
2959 		offset += copy;
2960 		length -= copy;
2961 
2962 	} while (length > 0);
2963 
2964 	return 0;
2965 }
2966 EXPORT_SYMBOL(skb_append_datato_frags);
2967 
2968 /**
2969  *	skb_pull_rcsum - pull skb and update receive checksum
2970  *	@skb: buffer to update
2971  *	@len: length of data pulled
2972  *
2973  *	This function performs an skb_pull on the packet and updates
2974  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2975  *	receive path processing instead of skb_pull unless you know
2976  *	that the checksum difference is zero (e.g., a valid IP header)
2977  *	or you are setting ip_summed to CHECKSUM_NONE.
2978  */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)2979 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2980 {
2981 	unsigned char *data = skb->data;
2982 
2983 	BUG_ON(len > skb->len);
2984 	__skb_pull(skb, len);
2985 	skb_postpull_rcsum(skb, data, len);
2986 	return skb->data;
2987 }
2988 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2989 
2990 /**
2991  *	skb_segment - Perform protocol segmentation on skb.
2992  *	@head_skb: buffer to segment
2993  *	@features: features for the output path (see dev->features)
2994  *
2995  *	This function performs segmentation on the given skb.  It returns
2996  *	a pointer to the first in a list of new skbs for the segments.
2997  *	In case of error it returns ERR_PTR(err).
2998  */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)2999 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3000 			    netdev_features_t features)
3001 {
3002 	struct sk_buff *segs = NULL;
3003 	struct sk_buff *tail = NULL;
3004 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3005 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3006 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3007 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3008 	struct sk_buff *frag_skb = head_skb;
3009 	unsigned int offset = doffset;
3010 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3011 	unsigned int headroom;
3012 	unsigned int len;
3013 	__be16 proto;
3014 	bool csum;
3015 	int sg = !!(features & NETIF_F_SG);
3016 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3017 	int err = -ENOMEM;
3018 	int i = 0;
3019 	int pos;
3020 	int dummy;
3021 
3022 	__skb_push(head_skb, doffset);
3023 	proto = skb_network_protocol(head_skb, &dummy);
3024 	if (unlikely(!proto))
3025 		return ERR_PTR(-EINVAL);
3026 
3027 	csum = !head_skb->encap_hdr_csum &&
3028 	    !!can_checksum_protocol(features, proto);
3029 
3030 	headroom = skb_headroom(head_skb);
3031 	pos = skb_headlen(head_skb);
3032 
3033 	do {
3034 		struct sk_buff *nskb;
3035 		skb_frag_t *nskb_frag;
3036 		int hsize;
3037 		int size;
3038 
3039 		len = head_skb->len - offset;
3040 		if (len > mss)
3041 			len = mss;
3042 
3043 		hsize = skb_headlen(head_skb) - offset;
3044 		if (hsize < 0)
3045 			hsize = 0;
3046 		if (hsize > len || !sg)
3047 			hsize = len;
3048 
3049 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3050 		    (skb_headlen(list_skb) == len || sg)) {
3051 			BUG_ON(skb_headlen(list_skb) > len);
3052 
3053 			i = 0;
3054 			nfrags = skb_shinfo(list_skb)->nr_frags;
3055 			frag = skb_shinfo(list_skb)->frags;
3056 			frag_skb = list_skb;
3057 			pos += skb_headlen(list_skb);
3058 
3059 			while (pos < offset + len) {
3060 				BUG_ON(i >= nfrags);
3061 
3062 				size = skb_frag_size(frag);
3063 				if (pos + size > offset + len)
3064 					break;
3065 
3066 				i++;
3067 				pos += size;
3068 				frag++;
3069 			}
3070 
3071 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3072 			list_skb = list_skb->next;
3073 
3074 			if (unlikely(!nskb))
3075 				goto err;
3076 
3077 			if (unlikely(pskb_trim(nskb, len))) {
3078 				kfree_skb(nskb);
3079 				goto err;
3080 			}
3081 
3082 			hsize = skb_end_offset(nskb);
3083 			if (skb_cow_head(nskb, doffset + headroom)) {
3084 				kfree_skb(nskb);
3085 				goto err;
3086 			}
3087 
3088 			nskb->truesize += skb_end_offset(nskb) - hsize;
3089 			skb_release_head_state(nskb);
3090 			__skb_push(nskb, doffset);
3091 		} else {
3092 			nskb = __alloc_skb(hsize + doffset + headroom,
3093 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3094 					   NUMA_NO_NODE);
3095 
3096 			if (unlikely(!nskb))
3097 				goto err;
3098 
3099 			skb_reserve(nskb, headroom);
3100 			__skb_put(nskb, doffset);
3101 		}
3102 
3103 		if (segs)
3104 			tail->next = nskb;
3105 		else
3106 			segs = nskb;
3107 		tail = nskb;
3108 
3109 		__copy_skb_header(nskb, head_skb);
3110 
3111 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3112 		skb_reset_mac_len(nskb);
3113 
3114 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3115 						 nskb->data - tnl_hlen,
3116 						 doffset + tnl_hlen);
3117 
3118 		if (nskb->len == len + doffset)
3119 			goto perform_csum_check;
3120 
3121 		if (!sg && !nskb->remcsum_offload) {
3122 			nskb->ip_summed = CHECKSUM_NONE;
3123 			nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
3124 							    skb_put(nskb, len),
3125 							    len, 0);
3126 			SKB_GSO_CB(nskb)->csum_start =
3127 			    skb_headroom(nskb) + doffset;
3128 			continue;
3129 		}
3130 
3131 		nskb_frag = skb_shinfo(nskb)->frags;
3132 
3133 		skb_copy_from_linear_data_offset(head_skb, offset,
3134 						 skb_put(nskb, hsize), hsize);
3135 
3136 		skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3137 			SKBTX_SHARED_FRAG;
3138 
3139 		while (pos < offset + len) {
3140 			if (i >= nfrags) {
3141 				BUG_ON(skb_headlen(list_skb));
3142 
3143 				i = 0;
3144 				nfrags = skb_shinfo(list_skb)->nr_frags;
3145 				frag = skb_shinfo(list_skb)->frags;
3146 				frag_skb = list_skb;
3147 
3148 				BUG_ON(!nfrags);
3149 
3150 				list_skb = list_skb->next;
3151 			}
3152 
3153 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3154 				     MAX_SKB_FRAGS)) {
3155 				net_warn_ratelimited(
3156 					"skb_segment: too many frags: %u %u\n",
3157 					pos, mss);
3158 				goto err;
3159 			}
3160 
3161 			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3162 				goto err;
3163 
3164 			*nskb_frag = *frag;
3165 			__skb_frag_ref(nskb_frag);
3166 			size = skb_frag_size(nskb_frag);
3167 
3168 			if (pos < offset) {
3169 				nskb_frag->page_offset += offset - pos;
3170 				skb_frag_size_sub(nskb_frag, offset - pos);
3171 			}
3172 
3173 			skb_shinfo(nskb)->nr_frags++;
3174 
3175 			if (pos + size <= offset + len) {
3176 				i++;
3177 				frag++;
3178 				pos += size;
3179 			} else {
3180 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3181 				goto skip_fraglist;
3182 			}
3183 
3184 			nskb_frag++;
3185 		}
3186 
3187 skip_fraglist:
3188 		nskb->data_len = len - hsize;
3189 		nskb->len += nskb->data_len;
3190 		nskb->truesize += nskb->data_len;
3191 
3192 perform_csum_check:
3193 		if (!csum && !nskb->remcsum_offload) {
3194 			nskb->csum = skb_checksum(nskb, doffset,
3195 						  nskb->len - doffset, 0);
3196 			nskb->ip_summed = CHECKSUM_NONE;
3197 			SKB_GSO_CB(nskb)->csum_start =
3198 			    skb_headroom(nskb) + doffset;
3199 		}
3200 	} while ((offset += len) < head_skb->len);
3201 
3202 	/* Some callers want to get the end of the list.
3203 	 * Put it in segs->prev to avoid walking the list.
3204 	 * (see validate_xmit_skb_list() for example)
3205 	 */
3206 	segs->prev = tail;
3207 
3208 	/* Following permits correct backpressure, for protocols
3209 	 * using skb_set_owner_w().
3210 	 * Idea is to tranfert ownership from head_skb to last segment.
3211 	 */
3212 	if (head_skb->destructor == sock_wfree) {
3213 		swap(tail->truesize, head_skb->truesize);
3214 		swap(tail->destructor, head_skb->destructor);
3215 		swap(tail->sk, head_skb->sk);
3216 	}
3217 	return segs;
3218 
3219 err:
3220 	kfree_skb_list(segs);
3221 	return ERR_PTR(err);
3222 }
3223 EXPORT_SYMBOL_GPL(skb_segment);
3224 
skb_gro_receive(struct sk_buff ** head,struct sk_buff * skb)3225 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3226 {
3227 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3228 	unsigned int offset = skb_gro_offset(skb);
3229 	unsigned int headlen = skb_headlen(skb);
3230 	unsigned int len = skb_gro_len(skb);
3231 	struct sk_buff *lp, *p = *head;
3232 	unsigned int delta_truesize;
3233 
3234 	if (unlikely(p->len + len >= 65536))
3235 		return -E2BIG;
3236 
3237 	lp = NAPI_GRO_CB(p)->last;
3238 	pinfo = skb_shinfo(lp);
3239 
3240 	if (headlen <= offset) {
3241 		skb_frag_t *frag;
3242 		skb_frag_t *frag2;
3243 		int i = skbinfo->nr_frags;
3244 		int nr_frags = pinfo->nr_frags + i;
3245 
3246 		if (nr_frags > MAX_SKB_FRAGS)
3247 			goto merge;
3248 
3249 		offset -= headlen;
3250 		pinfo->nr_frags = nr_frags;
3251 		skbinfo->nr_frags = 0;
3252 
3253 		frag = pinfo->frags + nr_frags;
3254 		frag2 = skbinfo->frags + i;
3255 		do {
3256 			*--frag = *--frag2;
3257 		} while (--i);
3258 
3259 		frag->page_offset += offset;
3260 		skb_frag_size_sub(frag, offset);
3261 
3262 		/* all fragments truesize : remove (head size + sk_buff) */
3263 		delta_truesize = skb->truesize -
3264 				 SKB_TRUESIZE(skb_end_offset(skb));
3265 
3266 		skb->truesize -= skb->data_len;
3267 		skb->len -= skb->data_len;
3268 		skb->data_len = 0;
3269 
3270 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3271 		goto done;
3272 	} else if (skb->head_frag) {
3273 		int nr_frags = pinfo->nr_frags;
3274 		skb_frag_t *frag = pinfo->frags + nr_frags;
3275 		struct page *page = virt_to_head_page(skb->head);
3276 		unsigned int first_size = headlen - offset;
3277 		unsigned int first_offset;
3278 
3279 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3280 			goto merge;
3281 
3282 		first_offset = skb->data -
3283 			       (unsigned char *)page_address(page) +
3284 			       offset;
3285 
3286 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3287 
3288 		frag->page.p	  = page;
3289 		frag->page_offset = first_offset;
3290 		skb_frag_size_set(frag, first_size);
3291 
3292 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3293 		/* We dont need to clear skbinfo->nr_frags here */
3294 
3295 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3296 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3297 		goto done;
3298 	}
3299 
3300 merge:
3301 	delta_truesize = skb->truesize;
3302 	if (offset > headlen) {
3303 		unsigned int eat = offset - headlen;
3304 
3305 		skbinfo->frags[0].page_offset += eat;
3306 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3307 		skb->data_len -= eat;
3308 		skb->len -= eat;
3309 		offset = headlen;
3310 	}
3311 
3312 	__skb_pull(skb, offset);
3313 
3314 	if (NAPI_GRO_CB(p)->last == p)
3315 		skb_shinfo(p)->frag_list = skb;
3316 	else
3317 		NAPI_GRO_CB(p)->last->next = skb;
3318 	NAPI_GRO_CB(p)->last = skb;
3319 	__skb_header_release(skb);
3320 	lp = p;
3321 
3322 done:
3323 	NAPI_GRO_CB(p)->count++;
3324 	p->data_len += len;
3325 	p->truesize += delta_truesize;
3326 	p->len += len;
3327 	if (lp != p) {
3328 		lp->data_len += len;
3329 		lp->truesize += delta_truesize;
3330 		lp->len += len;
3331 	}
3332 	NAPI_GRO_CB(skb)->same_flow = 1;
3333 	return 0;
3334 }
3335 
skb_init(void)3336 void __init skb_init(void)
3337 {
3338 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3339 					      sizeof(struct sk_buff),
3340 					      0,
3341 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3342 					      NULL);
3343 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3344 						sizeof(struct sk_buff_fclones),
3345 						0,
3346 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3347 						NULL);
3348 }
3349 
3350 /**
3351  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3352  *	@skb: Socket buffer containing the buffers to be mapped
3353  *	@sg: The scatter-gather list to map into
3354  *	@offset: The offset into the buffer's contents to start mapping
3355  *	@len: Length of buffer space to be mapped
3356  *
3357  *	Fill the specified scatter-gather list with mappings/pointers into a
3358  *	region of the buffer space attached to a socket buffer.
3359  */
3360 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)3361 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3362 {
3363 	int start = skb_headlen(skb);
3364 	int i, copy = start - offset;
3365 	struct sk_buff *frag_iter;
3366 	int elt = 0;
3367 
3368 	if (copy > 0) {
3369 		if (copy > len)
3370 			copy = len;
3371 		sg_set_buf(sg, skb->data + offset, copy);
3372 		elt++;
3373 		if ((len -= copy) == 0)
3374 			return elt;
3375 		offset += copy;
3376 	}
3377 
3378 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3379 		int end;
3380 
3381 		WARN_ON(start > offset + len);
3382 
3383 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3384 		if ((copy = end - offset) > 0) {
3385 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3386 
3387 			if (copy > len)
3388 				copy = len;
3389 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3390 					frag->page_offset+offset-start);
3391 			elt++;
3392 			if (!(len -= copy))
3393 				return elt;
3394 			offset += copy;
3395 		}
3396 		start = end;
3397 	}
3398 
3399 	skb_walk_frags(skb, frag_iter) {
3400 		int end;
3401 
3402 		WARN_ON(start > offset + len);
3403 
3404 		end = start + frag_iter->len;
3405 		if ((copy = end - offset) > 0) {
3406 			if (copy > len)
3407 				copy = len;
3408 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3409 					      copy);
3410 			if ((len -= copy) == 0)
3411 				return elt;
3412 			offset += copy;
3413 		}
3414 		start = end;
3415 	}
3416 	BUG_ON(len);
3417 	return elt;
3418 }
3419 
3420 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3421  * sglist without mark the sg which contain last skb data as the end.
3422  * So the caller can mannipulate sg list as will when padding new data after
3423  * the first call without calling sg_unmark_end to expend sg list.
3424  *
3425  * Scenario to use skb_to_sgvec_nomark:
3426  * 1. sg_init_table
3427  * 2. skb_to_sgvec_nomark(payload1)
3428  * 3. skb_to_sgvec_nomark(payload2)
3429  *
3430  * This is equivalent to:
3431  * 1. sg_init_table
3432  * 2. skb_to_sgvec(payload1)
3433  * 3. sg_unmark_end
3434  * 4. skb_to_sgvec(payload2)
3435  *
3436  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3437  * is more preferable.
3438  */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)3439 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3440 			int offset, int len)
3441 {
3442 	return __skb_to_sgvec(skb, sg, offset, len);
3443 }
3444 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3445 
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)3446 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3447 {
3448 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3449 
3450 	sg_mark_end(&sg[nsg - 1]);
3451 
3452 	return nsg;
3453 }
3454 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3455 
3456 /**
3457  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3458  *	@skb: The socket buffer to check.
3459  *	@tailbits: Amount of trailing space to be added
3460  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3461  *
3462  *	Make sure that the data buffers attached to a socket buffer are
3463  *	writable. If they are not, private copies are made of the data buffers
3464  *	and the socket buffer is set to use these instead.
3465  *
3466  *	If @tailbits is given, make sure that there is space to write @tailbits
3467  *	bytes of data beyond current end of socket buffer.  @trailer will be
3468  *	set to point to the skb in which this space begins.
3469  *
3470  *	The number of scatterlist elements required to completely map the
3471  *	COW'd and extended socket buffer will be returned.
3472  */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)3473 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3474 {
3475 	int copyflag;
3476 	int elt;
3477 	struct sk_buff *skb1, **skb_p;
3478 
3479 	/* If skb is cloned or its head is paged, reallocate
3480 	 * head pulling out all the pages (pages are considered not writable
3481 	 * at the moment even if they are anonymous).
3482 	 */
3483 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3484 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3485 		return -ENOMEM;
3486 
3487 	/* Easy case. Most of packets will go this way. */
3488 	if (!skb_has_frag_list(skb)) {
3489 		/* A little of trouble, not enough of space for trailer.
3490 		 * This should not happen, when stack is tuned to generate
3491 		 * good frames. OK, on miss we reallocate and reserve even more
3492 		 * space, 128 bytes is fair. */
3493 
3494 		if (skb_tailroom(skb) < tailbits &&
3495 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3496 			return -ENOMEM;
3497 
3498 		/* Voila! */
3499 		*trailer = skb;
3500 		return 1;
3501 	}
3502 
3503 	/* Misery. We are in troubles, going to mincer fragments... */
3504 
3505 	elt = 1;
3506 	skb_p = &skb_shinfo(skb)->frag_list;
3507 	copyflag = 0;
3508 
3509 	while ((skb1 = *skb_p) != NULL) {
3510 		int ntail = 0;
3511 
3512 		/* The fragment is partially pulled by someone,
3513 		 * this can happen on input. Copy it and everything
3514 		 * after it. */
3515 
3516 		if (skb_shared(skb1))
3517 			copyflag = 1;
3518 
3519 		/* If the skb is the last, worry about trailer. */
3520 
3521 		if (skb1->next == NULL && tailbits) {
3522 			if (skb_shinfo(skb1)->nr_frags ||
3523 			    skb_has_frag_list(skb1) ||
3524 			    skb_tailroom(skb1) < tailbits)
3525 				ntail = tailbits + 128;
3526 		}
3527 
3528 		if (copyflag ||
3529 		    skb_cloned(skb1) ||
3530 		    ntail ||
3531 		    skb_shinfo(skb1)->nr_frags ||
3532 		    skb_has_frag_list(skb1)) {
3533 			struct sk_buff *skb2;
3534 
3535 			/* Fuck, we are miserable poor guys... */
3536 			if (ntail == 0)
3537 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3538 			else
3539 				skb2 = skb_copy_expand(skb1,
3540 						       skb_headroom(skb1),
3541 						       ntail,
3542 						       GFP_ATOMIC);
3543 			if (unlikely(skb2 == NULL))
3544 				return -ENOMEM;
3545 
3546 			if (skb1->sk)
3547 				skb_set_owner_w(skb2, skb1->sk);
3548 
3549 			/* Looking around. Are we still alive?
3550 			 * OK, link new skb, drop old one */
3551 
3552 			skb2->next = skb1->next;
3553 			*skb_p = skb2;
3554 			kfree_skb(skb1);
3555 			skb1 = skb2;
3556 		}
3557 		elt++;
3558 		*trailer = skb1;
3559 		skb_p = &skb1->next;
3560 	}
3561 
3562 	return elt;
3563 }
3564 EXPORT_SYMBOL_GPL(skb_cow_data);
3565 
sock_rmem_free(struct sk_buff * skb)3566 static void sock_rmem_free(struct sk_buff *skb)
3567 {
3568 	struct sock *sk = skb->sk;
3569 
3570 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3571 }
3572 
3573 /*
3574  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3575  */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)3576 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3577 {
3578 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3579 	    (unsigned int)sk->sk_rcvbuf)
3580 		return -ENOMEM;
3581 
3582 	skb_orphan(skb);
3583 	skb->sk = sk;
3584 	skb->destructor = sock_rmem_free;
3585 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3586 
3587 	/* before exiting rcu section, make sure dst is refcounted */
3588 	skb_dst_force(skb);
3589 
3590 	skb_queue_tail(&sk->sk_error_queue, skb);
3591 	if (!sock_flag(sk, SOCK_DEAD))
3592 		sk->sk_data_ready(sk);
3593 	return 0;
3594 }
3595 EXPORT_SYMBOL(sock_queue_err_skb);
3596 
sock_dequeue_err_skb(struct sock * sk)3597 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3598 {
3599 	struct sk_buff_head *q = &sk->sk_error_queue;
3600 	struct sk_buff *skb, *skb_next;
3601 	unsigned long flags;
3602 	int err = 0;
3603 
3604 	spin_lock_irqsave(&q->lock, flags);
3605 	skb = __skb_dequeue(q);
3606 	if (skb && (skb_next = skb_peek(q)))
3607 		err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3608 	spin_unlock_irqrestore(&q->lock, flags);
3609 
3610 	sk->sk_err = err;
3611 	if (err)
3612 		sk->sk_error_report(sk);
3613 
3614 	return skb;
3615 }
3616 EXPORT_SYMBOL(sock_dequeue_err_skb);
3617 
3618 /**
3619  * skb_clone_sk - create clone of skb, and take reference to socket
3620  * @skb: the skb to clone
3621  *
3622  * This function creates a clone of a buffer that holds a reference on
3623  * sk_refcnt.  Buffers created via this function are meant to be
3624  * returned using sock_queue_err_skb, or free via kfree_skb.
3625  *
3626  * When passing buffers allocated with this function to sock_queue_err_skb
3627  * it is necessary to wrap the call with sock_hold/sock_put in order to
3628  * prevent the socket from being released prior to being enqueued on
3629  * the sk_error_queue.
3630  */
skb_clone_sk(struct sk_buff * skb)3631 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3632 {
3633 	struct sock *sk = skb->sk;
3634 	struct sk_buff *clone;
3635 
3636 	if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3637 		return NULL;
3638 
3639 	clone = skb_clone(skb, GFP_ATOMIC);
3640 	if (!clone) {
3641 		sock_put(sk);
3642 		return NULL;
3643 	}
3644 
3645 	clone->sk = sk;
3646 	clone->destructor = sock_efree;
3647 
3648 	return clone;
3649 }
3650 EXPORT_SYMBOL(skb_clone_sk);
3651 
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype)3652 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3653 					struct sock *sk,
3654 					int tstype)
3655 {
3656 	struct sock_exterr_skb *serr;
3657 	int err;
3658 
3659 	serr = SKB_EXT_ERR(skb);
3660 	memset(serr, 0, sizeof(*serr));
3661 	serr->ee.ee_errno = ENOMSG;
3662 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3663 	serr->ee.ee_info = tstype;
3664 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3665 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
3666 		if (sk->sk_protocol == IPPROTO_TCP &&
3667 		    sk->sk_type == SOCK_STREAM)
3668 			serr->ee.ee_data -= sk->sk_tskey;
3669 	}
3670 
3671 	err = sock_queue_err_skb(sk, skb);
3672 
3673 	if (err)
3674 		kfree_skb(skb);
3675 }
3676 
skb_may_tx_timestamp(struct sock * sk,bool tsonly)3677 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3678 {
3679 	bool ret;
3680 
3681 	if (likely(sysctl_tstamp_allow_data || tsonly))
3682 		return true;
3683 
3684 	read_lock_bh(&sk->sk_callback_lock);
3685 	ret = sk->sk_socket && sk->sk_socket->file &&
3686 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3687 	read_unlock_bh(&sk->sk_callback_lock);
3688 	return ret;
3689 }
3690 
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)3691 void skb_complete_tx_timestamp(struct sk_buff *skb,
3692 			       struct skb_shared_hwtstamps *hwtstamps)
3693 {
3694 	struct sock *sk = skb->sk;
3695 
3696 	if (!skb_may_tx_timestamp(sk, false))
3697 		return;
3698 
3699 	/* take a reference to prevent skb_orphan() from freeing the socket */
3700 	sock_hold(sk);
3701 
3702 	*skb_hwtstamps(skb) = *hwtstamps;
3703 	__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3704 
3705 	sock_put(sk);
3706 }
3707 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3708 
__skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)3709 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3710 		     struct skb_shared_hwtstamps *hwtstamps,
3711 		     struct sock *sk, int tstype)
3712 {
3713 	struct sk_buff *skb;
3714 	bool tsonly;
3715 
3716 	if (!sk)
3717 		return;
3718 
3719 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3720 	if (!skb_may_tx_timestamp(sk, tsonly))
3721 		return;
3722 
3723 	if (tsonly)
3724 		skb = alloc_skb(0, GFP_ATOMIC);
3725 	else
3726 		skb = skb_clone(orig_skb, GFP_ATOMIC);
3727 	if (!skb)
3728 		return;
3729 
3730 	if (tsonly) {
3731 		skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3732 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3733 	}
3734 
3735 	if (hwtstamps)
3736 		*skb_hwtstamps(skb) = *hwtstamps;
3737 	else
3738 		skb->tstamp = ktime_get_real();
3739 
3740 	__skb_complete_tx_timestamp(skb, sk, tstype);
3741 }
3742 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3743 
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)3744 void skb_tstamp_tx(struct sk_buff *orig_skb,
3745 		   struct skb_shared_hwtstamps *hwtstamps)
3746 {
3747 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3748 			       SCM_TSTAMP_SND);
3749 }
3750 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3751 
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)3752 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3753 {
3754 	struct sock *sk = skb->sk;
3755 	struct sock_exterr_skb *serr;
3756 	int err;
3757 
3758 	skb->wifi_acked_valid = 1;
3759 	skb->wifi_acked = acked;
3760 
3761 	serr = SKB_EXT_ERR(skb);
3762 	memset(serr, 0, sizeof(*serr));
3763 	serr->ee.ee_errno = ENOMSG;
3764 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3765 
3766 	/* take a reference to prevent skb_orphan() from freeing the socket */
3767 	sock_hold(sk);
3768 
3769 	err = sock_queue_err_skb(sk, skb);
3770 	if (err)
3771 		kfree_skb(skb);
3772 
3773 	sock_put(sk);
3774 }
3775 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3776 
3777 /**
3778  * skb_partial_csum_set - set up and verify partial csum values for packet
3779  * @skb: the skb to set
3780  * @start: the number of bytes after skb->data to start checksumming.
3781  * @off: the offset from start to place the checksum.
3782  *
3783  * For untrusted partially-checksummed packets, we need to make sure the values
3784  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3785  *
3786  * This function checks and sets those values and skb->ip_summed: if this
3787  * returns false you should drop the packet.
3788  */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)3789 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3790 {
3791 	if (unlikely(start > skb_headlen(skb)) ||
3792 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3793 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3794 				     start, off, skb_headlen(skb));
3795 		return false;
3796 	}
3797 	skb->ip_summed = CHECKSUM_PARTIAL;
3798 	skb->csum_start = skb_headroom(skb) + start;
3799 	skb->csum_offset = off;
3800 	skb_set_transport_header(skb, start);
3801 	return true;
3802 }
3803 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3804 
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)3805 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3806 			       unsigned int max)
3807 {
3808 	if (skb_headlen(skb) >= len)
3809 		return 0;
3810 
3811 	/* If we need to pullup then pullup to the max, so we
3812 	 * won't need to do it again.
3813 	 */
3814 	if (max > skb->len)
3815 		max = skb->len;
3816 
3817 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3818 		return -ENOMEM;
3819 
3820 	if (skb_headlen(skb) < len)
3821 		return -EPROTO;
3822 
3823 	return 0;
3824 }
3825 
3826 #define MAX_TCP_HDR_LEN (15 * 4)
3827 
skb_checksum_setup_ip(struct sk_buff * skb,typeof (IPPROTO_IP)proto,unsigned int off)3828 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3829 				      typeof(IPPROTO_IP) proto,
3830 				      unsigned int off)
3831 {
3832 	switch (proto) {
3833 		int err;
3834 
3835 	case IPPROTO_TCP:
3836 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3837 					  off + MAX_TCP_HDR_LEN);
3838 		if (!err && !skb_partial_csum_set(skb, off,
3839 						  offsetof(struct tcphdr,
3840 							   check)))
3841 			err = -EPROTO;
3842 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3843 
3844 	case IPPROTO_UDP:
3845 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3846 					  off + sizeof(struct udphdr));
3847 		if (!err && !skb_partial_csum_set(skb, off,
3848 						  offsetof(struct udphdr,
3849 							   check)))
3850 			err = -EPROTO;
3851 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3852 	}
3853 
3854 	return ERR_PTR(-EPROTO);
3855 }
3856 
3857 /* This value should be large enough to cover a tagged ethernet header plus
3858  * maximally sized IP and TCP or UDP headers.
3859  */
3860 #define MAX_IP_HDR_LEN 128
3861 
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)3862 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3863 {
3864 	unsigned int off;
3865 	bool fragment;
3866 	__sum16 *csum;
3867 	int err;
3868 
3869 	fragment = false;
3870 
3871 	err = skb_maybe_pull_tail(skb,
3872 				  sizeof(struct iphdr),
3873 				  MAX_IP_HDR_LEN);
3874 	if (err < 0)
3875 		goto out;
3876 
3877 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3878 		fragment = true;
3879 
3880 	off = ip_hdrlen(skb);
3881 
3882 	err = -EPROTO;
3883 
3884 	if (fragment)
3885 		goto out;
3886 
3887 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3888 	if (IS_ERR(csum))
3889 		return PTR_ERR(csum);
3890 
3891 	if (recalculate)
3892 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3893 					   ip_hdr(skb)->daddr,
3894 					   skb->len - off,
3895 					   ip_hdr(skb)->protocol, 0);
3896 	err = 0;
3897 
3898 out:
3899 	return err;
3900 }
3901 
3902 /* This value should be large enough to cover a tagged ethernet header plus
3903  * an IPv6 header, all options, and a maximal TCP or UDP header.
3904  */
3905 #define MAX_IPV6_HDR_LEN 256
3906 
3907 #define OPT_HDR(type, skb, off) \
3908 	(type *)(skb_network_header(skb) + (off))
3909 
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)3910 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3911 {
3912 	int err;
3913 	u8 nexthdr;
3914 	unsigned int off;
3915 	unsigned int len;
3916 	bool fragment;
3917 	bool done;
3918 	__sum16 *csum;
3919 
3920 	fragment = false;
3921 	done = false;
3922 
3923 	off = sizeof(struct ipv6hdr);
3924 
3925 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3926 	if (err < 0)
3927 		goto out;
3928 
3929 	nexthdr = ipv6_hdr(skb)->nexthdr;
3930 
3931 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3932 	while (off <= len && !done) {
3933 		switch (nexthdr) {
3934 		case IPPROTO_DSTOPTS:
3935 		case IPPROTO_HOPOPTS:
3936 		case IPPROTO_ROUTING: {
3937 			struct ipv6_opt_hdr *hp;
3938 
3939 			err = skb_maybe_pull_tail(skb,
3940 						  off +
3941 						  sizeof(struct ipv6_opt_hdr),
3942 						  MAX_IPV6_HDR_LEN);
3943 			if (err < 0)
3944 				goto out;
3945 
3946 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3947 			nexthdr = hp->nexthdr;
3948 			off += ipv6_optlen(hp);
3949 			break;
3950 		}
3951 		case IPPROTO_AH: {
3952 			struct ip_auth_hdr *hp;
3953 
3954 			err = skb_maybe_pull_tail(skb,
3955 						  off +
3956 						  sizeof(struct ip_auth_hdr),
3957 						  MAX_IPV6_HDR_LEN);
3958 			if (err < 0)
3959 				goto out;
3960 
3961 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3962 			nexthdr = hp->nexthdr;
3963 			off += ipv6_authlen(hp);
3964 			break;
3965 		}
3966 		case IPPROTO_FRAGMENT: {
3967 			struct frag_hdr *hp;
3968 
3969 			err = skb_maybe_pull_tail(skb,
3970 						  off +
3971 						  sizeof(struct frag_hdr),
3972 						  MAX_IPV6_HDR_LEN);
3973 			if (err < 0)
3974 				goto out;
3975 
3976 			hp = OPT_HDR(struct frag_hdr, skb, off);
3977 
3978 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
3979 				fragment = true;
3980 
3981 			nexthdr = hp->nexthdr;
3982 			off += sizeof(struct frag_hdr);
3983 			break;
3984 		}
3985 		default:
3986 			done = true;
3987 			break;
3988 		}
3989 	}
3990 
3991 	err = -EPROTO;
3992 
3993 	if (!done || fragment)
3994 		goto out;
3995 
3996 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
3997 	if (IS_ERR(csum))
3998 		return PTR_ERR(csum);
3999 
4000 	if (recalculate)
4001 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4002 					 &ipv6_hdr(skb)->daddr,
4003 					 skb->len - off, nexthdr, 0);
4004 	err = 0;
4005 
4006 out:
4007 	return err;
4008 }
4009 
4010 /**
4011  * skb_checksum_setup - set up partial checksum offset
4012  * @skb: the skb to set up
4013  * @recalculate: if true the pseudo-header checksum will be recalculated
4014  */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)4015 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4016 {
4017 	int err;
4018 
4019 	switch (skb->protocol) {
4020 	case htons(ETH_P_IP):
4021 		err = skb_checksum_setup_ipv4(skb, recalculate);
4022 		break;
4023 
4024 	case htons(ETH_P_IPV6):
4025 		err = skb_checksum_setup_ipv6(skb, recalculate);
4026 		break;
4027 
4028 	default:
4029 		err = -EPROTO;
4030 		break;
4031 	}
4032 
4033 	return err;
4034 }
4035 EXPORT_SYMBOL(skb_checksum_setup);
4036 
__skb_warn_lro_forwarding(const struct sk_buff * skb)4037 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4038 {
4039 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4040 			     skb->dev->name);
4041 }
4042 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4043 
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)4044 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4045 {
4046 	if (head_stolen) {
4047 		skb_release_head_state(skb);
4048 		kmem_cache_free(skbuff_head_cache, skb);
4049 	} else {
4050 		__kfree_skb(skb);
4051 	}
4052 }
4053 EXPORT_SYMBOL(kfree_skb_partial);
4054 
4055 /**
4056  * skb_try_coalesce - try to merge skb to prior one
4057  * @to: prior buffer
4058  * @from: buffer to add
4059  * @fragstolen: pointer to boolean
4060  * @delta_truesize: how much more was allocated than was requested
4061  */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)4062 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4063 		      bool *fragstolen, int *delta_truesize)
4064 {
4065 	int i, delta, len = from->len;
4066 
4067 	*fragstolen = false;
4068 
4069 	if (skb_cloned(to))
4070 		return false;
4071 
4072 	if (len <= skb_tailroom(to)) {
4073 		if (len)
4074 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4075 		*delta_truesize = 0;
4076 		return true;
4077 	}
4078 
4079 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
4080 		return false;
4081 
4082 	if (skb_headlen(from) != 0) {
4083 		struct page *page;
4084 		unsigned int offset;
4085 
4086 		if (skb_shinfo(to)->nr_frags +
4087 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4088 			return false;
4089 
4090 		if (skb_head_is_locked(from))
4091 			return false;
4092 
4093 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4094 
4095 		page = virt_to_head_page(from->head);
4096 		offset = from->data - (unsigned char *)page_address(page);
4097 
4098 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4099 				   page, offset, skb_headlen(from));
4100 		*fragstolen = true;
4101 	} else {
4102 		if (skb_shinfo(to)->nr_frags +
4103 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4104 			return false;
4105 
4106 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4107 	}
4108 
4109 	WARN_ON_ONCE(delta < len);
4110 
4111 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4112 	       skb_shinfo(from)->frags,
4113 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4114 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4115 
4116 	if (!skb_cloned(from))
4117 		skb_shinfo(from)->nr_frags = 0;
4118 
4119 	/* if the skb is not cloned this does nothing
4120 	 * since we set nr_frags to 0.
4121 	 */
4122 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4123 		skb_frag_ref(from, i);
4124 
4125 	to->truesize += delta;
4126 	to->len += len;
4127 	to->data_len += len;
4128 
4129 	*delta_truesize = delta;
4130 	return true;
4131 }
4132 EXPORT_SYMBOL(skb_try_coalesce);
4133 
4134 /**
4135  * skb_scrub_packet - scrub an skb
4136  *
4137  * @skb: buffer to clean
4138  * @xnet: packet is crossing netns
4139  *
4140  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4141  * into/from a tunnel. Some information have to be cleared during these
4142  * operations.
4143  * skb_scrub_packet can also be used to clean a skb before injecting it in
4144  * another namespace (@xnet == true). We have to clear all information in the
4145  * skb that could impact namespace isolation.
4146  */
skb_scrub_packet(struct sk_buff * skb,bool xnet)4147 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4148 {
4149 	skb->tstamp.tv64 = 0;
4150 	skb->pkt_type = PACKET_HOST;
4151 	skb->skb_iif = 0;
4152 	skb->ignore_df = 0;
4153 	skb_dst_drop(skb);
4154 	skb_sender_cpu_clear(skb);
4155 	secpath_reset(skb);
4156 	nf_reset(skb);
4157 	nf_reset_trace(skb);
4158 
4159 	if (!xnet)
4160 		return;
4161 
4162 	skb_orphan(skb);
4163 	skb->mark = 0;
4164 }
4165 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4166 
4167 /**
4168  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4169  *
4170  * @skb: GSO skb
4171  *
4172  * skb_gso_transport_seglen is used to determine the real size of the
4173  * individual segments, including Layer4 headers (TCP/UDP).
4174  *
4175  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4176  */
skb_gso_transport_seglen(const struct sk_buff * skb)4177 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4178 {
4179 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4180 	unsigned int thlen = 0;
4181 
4182 	if (skb->encapsulation) {
4183 		thlen = skb_inner_transport_header(skb) -
4184 			skb_transport_header(skb);
4185 
4186 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4187 			thlen += inner_tcp_hdrlen(skb);
4188 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4189 		thlen = tcp_hdrlen(skb);
4190 	}
4191 	/* UFO sets gso_size to the size of the fragmentation
4192 	 * payload, i.e. the size of the L4 (UDP) header is already
4193 	 * accounted for.
4194 	 */
4195 	return thlen + shinfo->gso_size;
4196 }
4197 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4198 
skb_reorder_vlan_header(struct sk_buff * skb)4199 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4200 {
4201 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4202 		kfree_skb(skb);
4203 		return NULL;
4204 	}
4205 
4206 	memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4207 		2 * ETH_ALEN);
4208 	skb->mac_header += VLAN_HLEN;
4209 	return skb;
4210 }
4211 
skb_vlan_untag(struct sk_buff * skb)4212 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4213 {
4214 	struct vlan_hdr *vhdr;
4215 	u16 vlan_tci;
4216 
4217 	if (unlikely(skb_vlan_tag_present(skb))) {
4218 		/* vlan_tci is already set-up so leave this for another time */
4219 		return skb;
4220 	}
4221 
4222 	skb = skb_share_check(skb, GFP_ATOMIC);
4223 	if (unlikely(!skb))
4224 		goto err_free;
4225 
4226 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4227 		goto err_free;
4228 
4229 	vhdr = (struct vlan_hdr *)skb->data;
4230 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
4231 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4232 
4233 	skb_pull_rcsum(skb, VLAN_HLEN);
4234 	vlan_set_encap_proto(skb, vhdr);
4235 
4236 	skb = skb_reorder_vlan_header(skb);
4237 	if (unlikely(!skb))
4238 		goto err_free;
4239 
4240 	skb_reset_network_header(skb);
4241 	skb_reset_transport_header(skb);
4242 	skb_reset_mac_len(skb);
4243 
4244 	return skb;
4245 
4246 err_free:
4247 	kfree_skb(skb);
4248 	return NULL;
4249 }
4250 EXPORT_SYMBOL(skb_vlan_untag);
4251 
skb_ensure_writable(struct sk_buff * skb,int write_len)4252 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4253 {
4254 	if (!pskb_may_pull(skb, write_len))
4255 		return -ENOMEM;
4256 
4257 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4258 		return 0;
4259 
4260 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4261 }
4262 EXPORT_SYMBOL(skb_ensure_writable);
4263 
4264 /* remove VLAN header from packet and update csum accordingly. */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)4265 static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4266 {
4267 	struct vlan_hdr *vhdr;
4268 	unsigned int offset = skb->data - skb_mac_header(skb);
4269 	int err;
4270 
4271 	__skb_push(skb, offset);
4272 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4273 	if (unlikely(err))
4274 		goto pull;
4275 
4276 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4277 
4278 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4279 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
4280 
4281 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4282 	__skb_pull(skb, VLAN_HLEN);
4283 
4284 	vlan_set_encap_proto(skb, vhdr);
4285 	skb->mac_header += VLAN_HLEN;
4286 
4287 	if (skb_network_offset(skb) < ETH_HLEN)
4288 		skb_set_network_header(skb, ETH_HLEN);
4289 
4290 	skb_reset_mac_len(skb);
4291 pull:
4292 	__skb_pull(skb, offset);
4293 
4294 	return err;
4295 }
4296 
skb_vlan_pop(struct sk_buff * skb)4297 int skb_vlan_pop(struct sk_buff *skb)
4298 {
4299 	u16 vlan_tci;
4300 	__be16 vlan_proto;
4301 	int err;
4302 
4303 	if (likely(skb_vlan_tag_present(skb))) {
4304 		skb->vlan_tci = 0;
4305 	} else {
4306 		if (unlikely((skb->protocol != htons(ETH_P_8021Q) &&
4307 			      skb->protocol != htons(ETH_P_8021AD)) ||
4308 			     skb->len < VLAN_ETH_HLEN))
4309 			return 0;
4310 
4311 		err = __skb_vlan_pop(skb, &vlan_tci);
4312 		if (err)
4313 			return err;
4314 	}
4315 	/* move next vlan tag to hw accel tag */
4316 	if (likely((skb->protocol != htons(ETH_P_8021Q) &&
4317 		    skb->protocol != htons(ETH_P_8021AD)) ||
4318 		   skb->len < VLAN_ETH_HLEN))
4319 		return 0;
4320 
4321 	vlan_proto = skb->protocol;
4322 	err = __skb_vlan_pop(skb, &vlan_tci);
4323 	if (unlikely(err))
4324 		return err;
4325 
4326 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4327 	return 0;
4328 }
4329 EXPORT_SYMBOL(skb_vlan_pop);
4330 
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)4331 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4332 {
4333 	if (skb_vlan_tag_present(skb)) {
4334 		unsigned int offset = skb->data - skb_mac_header(skb);
4335 		int err;
4336 
4337 		/* __vlan_insert_tag expect skb->data pointing to mac header.
4338 		 * So change skb->data before calling it and change back to
4339 		 * original position later
4340 		 */
4341 		__skb_push(skb, offset);
4342 		err = __vlan_insert_tag(skb, skb->vlan_proto,
4343 					skb_vlan_tag_get(skb));
4344 		if (err)
4345 			return err;
4346 		skb->protocol = skb->vlan_proto;
4347 		skb->mac_len += VLAN_HLEN;
4348 		__skb_pull(skb, offset);
4349 
4350 		if (skb->ip_summed == CHECKSUM_COMPLETE)
4351 			skb->csum = csum_add(skb->csum, csum_partial(skb->data
4352 					+ (2 * ETH_ALEN), VLAN_HLEN, 0));
4353 	}
4354 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4355 	return 0;
4356 }
4357 EXPORT_SYMBOL(skb_vlan_push);
4358 
4359 /**
4360  * alloc_skb_with_frags - allocate skb with page frags
4361  *
4362  * @header_len: size of linear part
4363  * @data_len: needed length in frags
4364  * @max_page_order: max page order desired.
4365  * @errcode: pointer to error code if any
4366  * @gfp_mask: allocation mask
4367  *
4368  * This can be used to allocate a paged skb, given a maximal order for frags.
4369  */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)4370 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4371 				     unsigned long data_len,
4372 				     int max_page_order,
4373 				     int *errcode,
4374 				     gfp_t gfp_mask)
4375 {
4376 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4377 	unsigned long chunk;
4378 	struct sk_buff *skb;
4379 	struct page *page;
4380 	gfp_t gfp_head;
4381 	int i;
4382 
4383 	*errcode = -EMSGSIZE;
4384 	/* Note this test could be relaxed, if we succeed to allocate
4385 	 * high order pages...
4386 	 */
4387 	if (npages > MAX_SKB_FRAGS)
4388 		return NULL;
4389 
4390 	gfp_head = gfp_mask;
4391 	if (gfp_head & __GFP_WAIT)
4392 		gfp_head |= __GFP_REPEAT;
4393 
4394 	*errcode = -ENOBUFS;
4395 	skb = alloc_skb(header_len, gfp_head);
4396 	if (!skb)
4397 		return NULL;
4398 
4399 	skb->truesize += npages << PAGE_SHIFT;
4400 
4401 	for (i = 0; npages > 0; i++) {
4402 		int order = max_page_order;
4403 
4404 		while (order) {
4405 			if (npages >= 1 << order) {
4406 				page = alloc_pages((gfp_mask & ~__GFP_WAIT) |
4407 						   __GFP_COMP |
4408 						   __GFP_NOWARN |
4409 						   __GFP_NORETRY,
4410 						   order);
4411 				if (page)
4412 					goto fill_page;
4413 				/* Do not retry other high order allocations */
4414 				order = 1;
4415 				max_page_order = 0;
4416 			}
4417 			order--;
4418 		}
4419 		page = alloc_page(gfp_mask);
4420 		if (!page)
4421 			goto failure;
4422 fill_page:
4423 		chunk = min_t(unsigned long, data_len,
4424 			      PAGE_SIZE << order);
4425 		skb_fill_page_desc(skb, i, page, 0, chunk);
4426 		data_len -= chunk;
4427 		npages -= 1 << order;
4428 	}
4429 	return skb;
4430 
4431 failure:
4432 	kfree_skb(skb);
4433 	return NULL;
4434 }
4435 EXPORT_SYMBOL(alloc_skb_with_frags);
4436