1/*
2 *	Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5 *			Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 *	Fixes:
8 *		Alan Cox	:	Fixed the worst of the load
9 *					balancer bugs.
10 *		Dave Platt	:	Interrupt stacking fix.
11 *	Richard Kooijman	:	Timestamp fixes.
12 *		Alan Cox	:	Changed buffer format.
13 *		Alan Cox	:	destructor hook for AF_UNIX etc.
14 *		Linus Torvalds	:	Better skb_clone.
15 *		Alan Cox	:	Added skb_copy.
16 *		Alan Cox	:	Added all the changed routines Linus
17 *					only put in the headers
18 *		Ray VanTassle	:	Fixed --skb->lock in free
19 *		Alan Cox	:	skb_copy copy arp field
20 *		Andi Kleen	:	slabified it.
21 *		Robert Olsson	:	Removed skb_head_pool
22 *
23 *	NOTE:
24 *		The __skb_ routines should be called with interrupts
25 *	disabled, or you better be *real* sure that the operation is atomic
26 *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27 *	or via disabling bottom half handlers, etc).
28 *
29 *	This program is free software; you can redistribute it and/or
30 *	modify it under the terms of the GNU General Public License
31 *	as published by the Free Software Foundation; either version
32 *	2 of the License, or (at your option) any later version.
33 */
34
35/*
36 *	The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41#include <linux/module.h>
42#include <linux/types.h>
43#include <linux/kernel.h>
44#include <linux/kmemcheck.h>
45#include <linux/mm.h>
46#include <linux/interrupt.h>
47#include <linux/in.h>
48#include <linux/inet.h>
49#include <linux/slab.h>
50#include <linux/tcp.h>
51#include <linux/udp.h>
52#include <linux/netdevice.h>
53#ifdef CONFIG_NET_CLS_ACT
54#include <net/pkt_sched.h>
55#endif
56#include <linux/string.h>
57#include <linux/skbuff.h>
58#include <linux/splice.h>
59#include <linux/cache.h>
60#include <linux/rtnetlink.h>
61#include <linux/init.h>
62#include <linux/scatterlist.h>
63#include <linux/errqueue.h>
64#include <linux/prefetch.h>
65#include <linux/if_vlan.h>
66
67#include <net/protocol.h>
68#include <net/dst.h>
69#include <net/sock.h>
70#include <net/checksum.h>
71#include <net/ip6_checksum.h>
72#include <net/xfrm.h>
73
74#include <asm/uaccess.h>
75#include <trace/events/skb.h>
76#include <linux/highmem.h>
77#include <linux/capability.h>
78#include <linux/user_namespace.h>
79
80struct kmem_cache *skbuff_head_cache __read_mostly;
81static struct kmem_cache *skbuff_fclone_cache __read_mostly;
82int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83EXPORT_SYMBOL(sysctl_max_skb_frags);
84
85/**
86 *	skb_panic - private function for out-of-line support
87 *	@skb:	buffer
88 *	@sz:	size
89 *	@addr:	address
90 *	@msg:	skb_over_panic or skb_under_panic
91 *
92 *	Out-of-line support for skb_put() and skb_push().
93 *	Called via the wrapper skb_over_panic() or skb_under_panic().
94 *	Keep out of line to prevent kernel bloat.
95 *	__builtin_return_address is not used because it is not always reliable.
96 */
97static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98		      const char msg[])
99{
100	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101		 msg, addr, skb->len, sz, skb->head, skb->data,
102		 (unsigned long)skb->tail, (unsigned long)skb->end,
103		 skb->dev ? skb->dev->name : "<NULL>");
104	BUG();
105}
106
107static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108{
109	skb_panic(skb, sz, addr, __func__);
110}
111
112static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113{
114	skb_panic(skb, sz, addr, __func__);
115}
116
117/*
118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119 * the caller if emergency pfmemalloc reserves are being used. If it is and
120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121 * may be used. Otherwise, the packet data may be discarded until enough
122 * memory is free
123 */
124#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126
127static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128			       unsigned long ip, bool *pfmemalloc)
129{
130	void *obj;
131	bool ret_pfmemalloc = false;
132
133	/*
134	 * Try a regular allocation, when that fails and we're not entitled
135	 * to the reserves, fail.
136	 */
137	obj = kmalloc_node_track_caller(size,
138					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139					node);
140	if (obj || !(gfp_pfmemalloc_allowed(flags)))
141		goto out;
142
143	/* Try again but now we are using pfmemalloc reserves */
144	ret_pfmemalloc = true;
145	obj = kmalloc_node_track_caller(size, flags, node);
146
147out:
148	if (pfmemalloc)
149		*pfmemalloc = ret_pfmemalloc;
150
151	return obj;
152}
153
154/* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
155 *	'private' fields and also do memory statistics to find all the
156 *	[BEEP] leaks.
157 *
158 */
159
160struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
161{
162	struct sk_buff *skb;
163
164	/* Get the HEAD */
165	skb = kmem_cache_alloc_node(skbuff_head_cache,
166				    gfp_mask & ~__GFP_DMA, node);
167	if (!skb)
168		goto out;
169
170	/*
171	 * Only clear those fields we need to clear, not those that we will
172	 * actually initialise below. Hence, don't put any more fields after
173	 * the tail pointer in struct sk_buff!
174	 */
175	memset(skb, 0, offsetof(struct sk_buff, tail));
176	skb->head = NULL;
177	skb->truesize = sizeof(struct sk_buff);
178	atomic_set(&skb->users, 1);
179
180	skb->mac_header = (typeof(skb->mac_header))~0U;
181out:
182	return skb;
183}
184
185/**
186 *	__alloc_skb	-	allocate a network buffer
187 *	@size: size to allocate
188 *	@gfp_mask: allocation mask
189 *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
190 *		instead of head cache and allocate a cloned (child) skb.
191 *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
192 *		allocations in case the data is required for writeback
193 *	@node: numa node to allocate memory on
194 *
195 *	Allocate a new &sk_buff. The returned buffer has no headroom and a
196 *	tail room of at least size bytes. The object has a reference count
197 *	of one. The return is the buffer. On a failure the return is %NULL.
198 *
199 *	Buffers may only be allocated from interrupts using a @gfp_mask of
200 *	%GFP_ATOMIC.
201 */
202struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
203			    int flags, int node)
204{
205	struct kmem_cache *cache;
206	struct skb_shared_info *shinfo;
207	struct sk_buff *skb;
208	u8 *data;
209	bool pfmemalloc;
210
211	cache = (flags & SKB_ALLOC_FCLONE)
212		? skbuff_fclone_cache : skbuff_head_cache;
213
214	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
215		gfp_mask |= __GFP_MEMALLOC;
216
217	/* Get the HEAD */
218	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
219	if (!skb)
220		goto out;
221	prefetchw(skb);
222
223	/* We do our best to align skb_shared_info on a separate cache
224	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
225	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
226	 * Both skb->head and skb_shared_info are cache line aligned.
227	 */
228	size = SKB_DATA_ALIGN(size);
229	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
230	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
231	if (!data)
232		goto nodata;
233	/* kmalloc(size) might give us more room than requested.
234	 * Put skb_shared_info exactly at the end of allocated zone,
235	 * to allow max possible filling before reallocation.
236	 */
237	size = SKB_WITH_OVERHEAD(ksize(data));
238	prefetchw(data + size);
239
240	/*
241	 * Only clear those fields we need to clear, not those that we will
242	 * actually initialise below. Hence, don't put any more fields after
243	 * the tail pointer in struct sk_buff!
244	 */
245	memset(skb, 0, offsetof(struct sk_buff, tail));
246	/* Account for allocated memory : skb + skb->head */
247	skb->truesize = SKB_TRUESIZE(size);
248	skb->pfmemalloc = pfmemalloc;
249	atomic_set(&skb->users, 1);
250	skb->head = data;
251	skb->data = data;
252	skb_reset_tail_pointer(skb);
253	skb->end = skb->tail + size;
254	skb->mac_header = (typeof(skb->mac_header))~0U;
255	skb->transport_header = (typeof(skb->transport_header))~0U;
256
257	/* make sure we initialize shinfo sequentially */
258	shinfo = skb_shinfo(skb);
259	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
260	atomic_set(&shinfo->dataref, 1);
261	kmemcheck_annotate_variable(shinfo->destructor_arg);
262
263	if (flags & SKB_ALLOC_FCLONE) {
264		struct sk_buff_fclones *fclones;
265
266		fclones = container_of(skb, struct sk_buff_fclones, skb1);
267
268		kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
269		skb->fclone = SKB_FCLONE_ORIG;
270		atomic_set(&fclones->fclone_ref, 1);
271
272		fclones->skb2.fclone = SKB_FCLONE_CLONE;
273		fclones->skb2.pfmemalloc = pfmemalloc;
274	}
275out:
276	return skb;
277nodata:
278	kmem_cache_free(cache, skb);
279	skb = NULL;
280	goto out;
281}
282EXPORT_SYMBOL(__alloc_skb);
283
284/**
285 * __build_skb - build a network buffer
286 * @data: data buffer provided by caller
287 * @frag_size: size of data, or 0 if head was kmalloced
288 *
289 * Allocate a new &sk_buff. Caller provides space holding head and
290 * skb_shared_info. @data must have been allocated by kmalloc() only if
291 * @frag_size is 0, otherwise data should come from the page allocator
292 *  or vmalloc()
293 * The return is the new skb buffer.
294 * On a failure the return is %NULL, and @data is not freed.
295 * Notes :
296 *  Before IO, driver allocates only data buffer where NIC put incoming frame
297 *  Driver should add room at head (NET_SKB_PAD) and
298 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
299 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
300 *  before giving packet to stack.
301 *  RX rings only contains data buffers, not full skbs.
302 */
303struct sk_buff *__build_skb(void *data, unsigned int frag_size)
304{
305	struct skb_shared_info *shinfo;
306	struct sk_buff *skb;
307	unsigned int size = frag_size ? : ksize(data);
308
309	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
310	if (!skb)
311		return NULL;
312
313	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
314
315	memset(skb, 0, offsetof(struct sk_buff, tail));
316	skb->truesize = SKB_TRUESIZE(size);
317	atomic_set(&skb->users, 1);
318	skb->head = data;
319	skb->data = data;
320	skb_reset_tail_pointer(skb);
321	skb->end = skb->tail + size;
322	skb->mac_header = (typeof(skb->mac_header))~0U;
323	skb->transport_header = (typeof(skb->transport_header))~0U;
324
325	/* make sure we initialize shinfo sequentially */
326	shinfo = skb_shinfo(skb);
327	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
328	atomic_set(&shinfo->dataref, 1);
329	kmemcheck_annotate_variable(shinfo->destructor_arg);
330
331	return skb;
332}
333
334/* build_skb() is wrapper over __build_skb(), that specifically
335 * takes care of skb->head and skb->pfmemalloc
336 * This means that if @frag_size is not zero, then @data must be backed
337 * by a page fragment, not kmalloc() or vmalloc()
338 */
339struct sk_buff *build_skb(void *data, unsigned int frag_size)
340{
341	struct sk_buff *skb = __build_skb(data, frag_size);
342
343	if (skb && frag_size) {
344		skb->head_frag = 1;
345		if (page_is_pfmemalloc(virt_to_head_page(data)))
346			skb->pfmemalloc = 1;
347	}
348	return skb;
349}
350EXPORT_SYMBOL(build_skb);
351
352struct netdev_alloc_cache {
353	struct page_frag	frag;
354	/* we maintain a pagecount bias, so that we dont dirty cache line
355	 * containing page->_count every time we allocate a fragment.
356	 */
357	unsigned int		pagecnt_bias;
358};
359static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
360static DEFINE_PER_CPU(struct netdev_alloc_cache, napi_alloc_cache);
361
362static struct page *__page_frag_refill(struct netdev_alloc_cache *nc,
363				       gfp_t gfp_mask)
364{
365	const unsigned int order = NETDEV_FRAG_PAGE_MAX_ORDER;
366	struct page *page = NULL;
367	gfp_t gfp = gfp_mask;
368
369	if (order) {
370		gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
371			    __GFP_NOMEMALLOC;
372		page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
373		nc->frag.size = PAGE_SIZE << (page ? order : 0);
374	}
375
376	if (unlikely(!page))
377		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
378
379	nc->frag.page = page;
380
381	return page;
382}
383
384static void *__alloc_page_frag(struct netdev_alloc_cache __percpu *cache,
385			       unsigned int fragsz, gfp_t gfp_mask)
386{
387	struct netdev_alloc_cache *nc = this_cpu_ptr(cache);
388	struct page *page = nc->frag.page;
389	unsigned int size;
390	int offset;
391
392	if (unlikely(!page)) {
393refill:
394		page = __page_frag_refill(nc, gfp_mask);
395		if (!page)
396			return NULL;
397
398		/* if size can vary use frag.size else just use PAGE_SIZE */
399		size = NETDEV_FRAG_PAGE_MAX_ORDER ? nc->frag.size : PAGE_SIZE;
400
401		/* Even if we own the page, we do not use atomic_set().
402		 * This would break get_page_unless_zero() users.
403		 */
404		atomic_add(size - 1, &page->_count);
405
406		/* reset page count bias and offset to start of new frag */
407		nc->pagecnt_bias = size;
408		nc->frag.offset = size;
409	}
410
411	offset = nc->frag.offset - fragsz;
412	if (unlikely(offset < 0)) {
413		if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
414			goto refill;
415
416		/* if size can vary use frag.size else just use PAGE_SIZE */
417		size = NETDEV_FRAG_PAGE_MAX_ORDER ? nc->frag.size : PAGE_SIZE;
418
419		/* OK, page count is 0, we can safely set it */
420		atomic_set(&page->_count, size);
421
422		/* reset page count bias and offset to start of new frag */
423		nc->pagecnt_bias = size;
424		offset = size - fragsz;
425	}
426
427	nc->pagecnt_bias--;
428	nc->frag.offset = offset;
429
430	return page_address(page) + offset;
431}
432
433static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
434{
435	unsigned long flags;
436	void *data;
437
438	local_irq_save(flags);
439	data = __alloc_page_frag(&netdev_alloc_cache, fragsz, gfp_mask);
440	local_irq_restore(flags);
441	return data;
442}
443
444/**
445 * netdev_alloc_frag - allocate a page fragment
446 * @fragsz: fragment size
447 *
448 * Allocates a frag from a page for receive buffer.
449 * Uses GFP_ATOMIC allocations.
450 */
451void *netdev_alloc_frag(unsigned int fragsz)
452{
453	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
454}
455EXPORT_SYMBOL(netdev_alloc_frag);
456
457static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
458{
459	return __alloc_page_frag(&napi_alloc_cache, fragsz, gfp_mask);
460}
461
462void *napi_alloc_frag(unsigned int fragsz)
463{
464	return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
465}
466EXPORT_SYMBOL(napi_alloc_frag);
467
468/**
469 *	__alloc_rx_skb - allocate an skbuff for rx
470 *	@length: length to allocate
471 *	@gfp_mask: get_free_pages mask, passed to alloc_skb
472 *	@flags:	If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
473 *		allocations in case we have to fallback to __alloc_skb()
474 *		If SKB_ALLOC_NAPI is set, page fragment will be allocated
475 *		from napi_cache instead of netdev_cache.
476 *
477 *	Allocate a new &sk_buff and assign it a usage count of one. The
478 *	buffer has unspecified headroom built in. Users should allocate
479 *	the headroom they think they need without accounting for the
480 *	built in space. The built in space is used for optimisations.
481 *
482 *	%NULL is returned if there is no free memory.
483 */
484static struct sk_buff *__alloc_rx_skb(unsigned int length, gfp_t gfp_mask,
485				      int flags)
486{
487	struct sk_buff *skb = NULL;
488	unsigned int fragsz = SKB_DATA_ALIGN(length) +
489			      SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
490
491	if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
492		void *data;
493
494		if (sk_memalloc_socks())
495			gfp_mask |= __GFP_MEMALLOC;
496
497		data = (flags & SKB_ALLOC_NAPI) ?
498			__napi_alloc_frag(fragsz, gfp_mask) :
499			__netdev_alloc_frag(fragsz, gfp_mask);
500
501		if (likely(data)) {
502			skb = build_skb(data, fragsz);
503			if (unlikely(!skb))
504				put_page(virt_to_head_page(data));
505		}
506	} else {
507		skb = __alloc_skb(length, gfp_mask,
508				  SKB_ALLOC_RX, NUMA_NO_NODE);
509	}
510	return skb;
511}
512
513/**
514 *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
515 *	@dev: network device to receive on
516 *	@length: length to allocate
517 *	@gfp_mask: get_free_pages mask, passed to alloc_skb
518 *
519 *	Allocate a new &sk_buff and assign it a usage count of one. The
520 *	buffer has NET_SKB_PAD headroom built in. Users should allocate
521 *	the headroom they think they need without accounting for the
522 *	built in space. The built in space is used for optimisations.
523 *
524 *	%NULL is returned if there is no free memory.
525 */
526struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
527				   unsigned int length, gfp_t gfp_mask)
528{
529	struct sk_buff *skb;
530
531	length += NET_SKB_PAD;
532	skb = __alloc_rx_skb(length, gfp_mask, 0);
533
534	if (likely(skb)) {
535		skb_reserve(skb, NET_SKB_PAD);
536		skb->dev = dev;
537	}
538
539	return skb;
540}
541EXPORT_SYMBOL(__netdev_alloc_skb);
542
543/**
544 *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
545 *	@napi: napi instance this buffer was allocated for
546 *	@length: length to allocate
547 *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
548 *
549 *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
550 *	attempt to allocate the head from a special reserved region used
551 *	only for NAPI Rx allocation.  By doing this we can save several
552 *	CPU cycles by avoiding having to disable and re-enable IRQs.
553 *
554 *	%NULL is returned if there is no free memory.
555 */
556struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
557				 unsigned int length, gfp_t gfp_mask)
558{
559	struct sk_buff *skb;
560
561	length += NET_SKB_PAD + NET_IP_ALIGN;
562	skb = __alloc_rx_skb(length, gfp_mask, SKB_ALLOC_NAPI);
563
564	if (likely(skb)) {
565		skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
566		skb->dev = napi->dev;
567	}
568
569	return skb;
570}
571EXPORT_SYMBOL(__napi_alloc_skb);
572
573void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
574		     int size, unsigned int truesize)
575{
576	skb_fill_page_desc(skb, i, page, off, size);
577	skb->len += size;
578	skb->data_len += size;
579	skb->truesize += truesize;
580}
581EXPORT_SYMBOL(skb_add_rx_frag);
582
583void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
584			  unsigned int truesize)
585{
586	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
587
588	skb_frag_size_add(frag, size);
589	skb->len += size;
590	skb->data_len += size;
591	skb->truesize += truesize;
592}
593EXPORT_SYMBOL(skb_coalesce_rx_frag);
594
595static void skb_drop_list(struct sk_buff **listp)
596{
597	kfree_skb_list(*listp);
598	*listp = NULL;
599}
600
601static inline void skb_drop_fraglist(struct sk_buff *skb)
602{
603	skb_drop_list(&skb_shinfo(skb)->frag_list);
604}
605
606static void skb_clone_fraglist(struct sk_buff *skb)
607{
608	struct sk_buff *list;
609
610	skb_walk_frags(skb, list)
611		skb_get(list);
612}
613
614static void skb_free_head(struct sk_buff *skb)
615{
616	if (skb->head_frag)
617		put_page(virt_to_head_page(skb->head));
618	else
619		kfree(skb->head);
620}
621
622static void skb_release_data(struct sk_buff *skb)
623{
624	struct skb_shared_info *shinfo = skb_shinfo(skb);
625	int i;
626
627	if (skb->cloned &&
628	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
629			      &shinfo->dataref))
630		return;
631
632	for (i = 0; i < shinfo->nr_frags; i++)
633		__skb_frag_unref(&shinfo->frags[i]);
634
635	/*
636	 * If skb buf is from userspace, we need to notify the caller
637	 * the lower device DMA has done;
638	 */
639	if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
640		struct ubuf_info *uarg;
641
642		uarg = shinfo->destructor_arg;
643		if (uarg->callback)
644			uarg->callback(uarg, true);
645	}
646
647	if (shinfo->frag_list)
648		kfree_skb_list(shinfo->frag_list);
649
650	skb_free_head(skb);
651}
652
653/*
654 *	Free an skbuff by memory without cleaning the state.
655 */
656static void kfree_skbmem(struct sk_buff *skb)
657{
658	struct sk_buff_fclones *fclones;
659
660	switch (skb->fclone) {
661	case SKB_FCLONE_UNAVAILABLE:
662		kmem_cache_free(skbuff_head_cache, skb);
663		return;
664
665	case SKB_FCLONE_ORIG:
666		fclones = container_of(skb, struct sk_buff_fclones, skb1);
667
668		/* We usually free the clone (TX completion) before original skb
669		 * This test would have no chance to be true for the clone,
670		 * while here, branch prediction will be good.
671		 */
672		if (atomic_read(&fclones->fclone_ref) == 1)
673			goto fastpath;
674		break;
675
676	default: /* SKB_FCLONE_CLONE */
677		fclones = container_of(skb, struct sk_buff_fclones, skb2);
678		break;
679	}
680	if (!atomic_dec_and_test(&fclones->fclone_ref))
681		return;
682fastpath:
683	kmem_cache_free(skbuff_fclone_cache, fclones);
684}
685
686static void skb_release_head_state(struct sk_buff *skb)
687{
688	skb_dst_drop(skb);
689#ifdef CONFIG_XFRM
690	secpath_put(skb->sp);
691#endif
692	if (skb->destructor) {
693		WARN_ON(in_irq());
694		skb->destructor(skb);
695	}
696#if IS_ENABLED(CONFIG_NF_CONNTRACK)
697	nf_conntrack_put(skb->nfct);
698#endif
699#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
700	nf_bridge_put(skb->nf_bridge);
701#endif
702}
703
704/* Free everything but the sk_buff shell. */
705static void skb_release_all(struct sk_buff *skb)
706{
707	skb_release_head_state(skb);
708	if (likely(skb->head))
709		skb_release_data(skb);
710}
711
712/**
713 *	__kfree_skb - private function
714 *	@skb: buffer
715 *
716 *	Free an sk_buff. Release anything attached to the buffer.
717 *	Clean the state. This is an internal helper function. Users should
718 *	always call kfree_skb
719 */
720
721void __kfree_skb(struct sk_buff *skb)
722{
723	skb_release_all(skb);
724	kfree_skbmem(skb);
725}
726EXPORT_SYMBOL(__kfree_skb);
727
728/**
729 *	kfree_skb - free an sk_buff
730 *	@skb: buffer to free
731 *
732 *	Drop a reference to the buffer and free it if the usage count has
733 *	hit zero.
734 */
735void kfree_skb(struct sk_buff *skb)
736{
737	if (unlikely(!skb))
738		return;
739	if (likely(atomic_read(&skb->users) == 1))
740		smp_rmb();
741	else if (likely(!atomic_dec_and_test(&skb->users)))
742		return;
743	trace_kfree_skb(skb, __builtin_return_address(0));
744	__kfree_skb(skb);
745}
746EXPORT_SYMBOL(kfree_skb);
747
748void kfree_skb_list(struct sk_buff *segs)
749{
750	while (segs) {
751		struct sk_buff *next = segs->next;
752
753		kfree_skb(segs);
754		segs = next;
755	}
756}
757EXPORT_SYMBOL(kfree_skb_list);
758
759/**
760 *	skb_tx_error - report an sk_buff xmit error
761 *	@skb: buffer that triggered an error
762 *
763 *	Report xmit error if a device callback is tracking this skb.
764 *	skb must be freed afterwards.
765 */
766void skb_tx_error(struct sk_buff *skb)
767{
768	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
769		struct ubuf_info *uarg;
770
771		uarg = skb_shinfo(skb)->destructor_arg;
772		if (uarg->callback)
773			uarg->callback(uarg, false);
774		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
775	}
776}
777EXPORT_SYMBOL(skb_tx_error);
778
779/**
780 *	consume_skb - free an skbuff
781 *	@skb: buffer to free
782 *
783 *	Drop a ref to the buffer and free it if the usage count has hit zero
784 *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
785 *	is being dropped after a failure and notes that
786 */
787void consume_skb(struct sk_buff *skb)
788{
789	if (unlikely(!skb))
790		return;
791	if (likely(atomic_read(&skb->users) == 1))
792		smp_rmb();
793	else if (likely(!atomic_dec_and_test(&skb->users)))
794		return;
795	trace_consume_skb(skb);
796	__kfree_skb(skb);
797}
798EXPORT_SYMBOL(consume_skb);
799
800/* Make sure a field is enclosed inside headers_start/headers_end section */
801#define CHECK_SKB_FIELD(field) \
802	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
803		     offsetof(struct sk_buff, headers_start));	\
804	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
805		     offsetof(struct sk_buff, headers_end));	\
806
807static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
808{
809	new->tstamp		= old->tstamp;
810	/* We do not copy old->sk */
811	new->dev		= old->dev;
812	memcpy(new->cb, old->cb, sizeof(old->cb));
813	skb_dst_copy(new, old);
814#ifdef CONFIG_XFRM
815	new->sp			= secpath_get(old->sp);
816#endif
817	__nf_copy(new, old, false);
818
819	/* Note : this field could be in headers_start/headers_end section
820	 * It is not yet because we do not want to have a 16 bit hole
821	 */
822	new->queue_mapping = old->queue_mapping;
823
824	memcpy(&new->headers_start, &old->headers_start,
825	       offsetof(struct sk_buff, headers_end) -
826	       offsetof(struct sk_buff, headers_start));
827	CHECK_SKB_FIELD(protocol);
828	CHECK_SKB_FIELD(csum);
829	CHECK_SKB_FIELD(hash);
830	CHECK_SKB_FIELD(priority);
831	CHECK_SKB_FIELD(skb_iif);
832	CHECK_SKB_FIELD(vlan_proto);
833	CHECK_SKB_FIELD(vlan_tci);
834	CHECK_SKB_FIELD(transport_header);
835	CHECK_SKB_FIELD(network_header);
836	CHECK_SKB_FIELD(mac_header);
837	CHECK_SKB_FIELD(inner_protocol);
838	CHECK_SKB_FIELD(inner_transport_header);
839	CHECK_SKB_FIELD(inner_network_header);
840	CHECK_SKB_FIELD(inner_mac_header);
841	CHECK_SKB_FIELD(mark);
842#ifdef CONFIG_NETWORK_SECMARK
843	CHECK_SKB_FIELD(secmark);
844#endif
845#ifdef CONFIG_NET_RX_BUSY_POLL
846	CHECK_SKB_FIELD(napi_id);
847#endif
848#ifdef CONFIG_XPS
849	CHECK_SKB_FIELD(sender_cpu);
850#endif
851#ifdef CONFIG_NET_SCHED
852	CHECK_SKB_FIELD(tc_index);
853#ifdef CONFIG_NET_CLS_ACT
854	CHECK_SKB_FIELD(tc_verd);
855#endif
856#endif
857
858}
859
860/*
861 * You should not add any new code to this function.  Add it to
862 * __copy_skb_header above instead.
863 */
864static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
865{
866#define C(x) n->x = skb->x
867
868	n->next = n->prev = NULL;
869	n->sk = NULL;
870	__copy_skb_header(n, skb);
871
872	C(len);
873	C(data_len);
874	C(mac_len);
875	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
876	n->cloned = 1;
877	n->nohdr = 0;
878	n->destructor = NULL;
879	C(tail);
880	C(end);
881	C(head);
882	C(head_frag);
883	C(data);
884	C(truesize);
885	atomic_set(&n->users, 1);
886
887	atomic_inc(&(skb_shinfo(skb)->dataref));
888	skb->cloned = 1;
889
890	return n;
891#undef C
892}
893
894/**
895 *	skb_morph	-	morph one skb into another
896 *	@dst: the skb to receive the contents
897 *	@src: the skb to supply the contents
898 *
899 *	This is identical to skb_clone except that the target skb is
900 *	supplied by the user.
901 *
902 *	The target skb is returned upon exit.
903 */
904struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
905{
906	skb_release_all(dst);
907	return __skb_clone(dst, src);
908}
909EXPORT_SYMBOL_GPL(skb_morph);
910
911/**
912 *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
913 *	@skb: the skb to modify
914 *	@gfp_mask: allocation priority
915 *
916 *	This must be called on SKBTX_DEV_ZEROCOPY skb.
917 *	It will copy all frags into kernel and drop the reference
918 *	to userspace pages.
919 *
920 *	If this function is called from an interrupt gfp_mask() must be
921 *	%GFP_ATOMIC.
922 *
923 *	Returns 0 on success or a negative error code on failure
924 *	to allocate kernel memory to copy to.
925 */
926int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
927{
928	int i;
929	int num_frags = skb_shinfo(skb)->nr_frags;
930	struct page *page, *head = NULL;
931	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
932
933	for (i = 0; i < num_frags; i++) {
934		u8 *vaddr;
935		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
936
937		page = alloc_page(gfp_mask);
938		if (!page) {
939			while (head) {
940				struct page *next = (struct page *)page_private(head);
941				put_page(head);
942				head = next;
943			}
944			return -ENOMEM;
945		}
946		vaddr = kmap_atomic(skb_frag_page(f));
947		memcpy(page_address(page),
948		       vaddr + f->page_offset, skb_frag_size(f));
949		kunmap_atomic(vaddr);
950		set_page_private(page, (unsigned long)head);
951		head = page;
952	}
953
954	/* skb frags release userspace buffers */
955	for (i = 0; i < num_frags; i++)
956		skb_frag_unref(skb, i);
957
958	uarg->callback(uarg, false);
959
960	/* skb frags point to kernel buffers */
961	for (i = num_frags - 1; i >= 0; i--) {
962		__skb_fill_page_desc(skb, i, head, 0,
963				     skb_shinfo(skb)->frags[i].size);
964		head = (struct page *)page_private(head);
965	}
966
967	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
968	return 0;
969}
970EXPORT_SYMBOL_GPL(skb_copy_ubufs);
971
972/**
973 *	skb_clone	-	duplicate an sk_buff
974 *	@skb: buffer to clone
975 *	@gfp_mask: allocation priority
976 *
977 *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
978 *	copies share the same packet data but not structure. The new
979 *	buffer has a reference count of 1. If the allocation fails the
980 *	function returns %NULL otherwise the new buffer is returned.
981 *
982 *	If this function is called from an interrupt gfp_mask() must be
983 *	%GFP_ATOMIC.
984 */
985
986struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
987{
988	struct sk_buff_fclones *fclones = container_of(skb,
989						       struct sk_buff_fclones,
990						       skb1);
991	struct sk_buff *n;
992
993	if (skb_orphan_frags(skb, gfp_mask))
994		return NULL;
995
996	if (skb->fclone == SKB_FCLONE_ORIG &&
997	    atomic_read(&fclones->fclone_ref) == 1) {
998		n = &fclones->skb2;
999		atomic_set(&fclones->fclone_ref, 2);
1000	} else {
1001		if (skb_pfmemalloc(skb))
1002			gfp_mask |= __GFP_MEMALLOC;
1003
1004		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1005		if (!n)
1006			return NULL;
1007
1008		kmemcheck_annotate_bitfield(n, flags1);
1009		n->fclone = SKB_FCLONE_UNAVAILABLE;
1010	}
1011
1012	return __skb_clone(n, skb);
1013}
1014EXPORT_SYMBOL(skb_clone);
1015
1016static void skb_headers_offset_update(struct sk_buff *skb, int off)
1017{
1018	/* Only adjust this if it actually is csum_start rather than csum */
1019	if (skb->ip_summed == CHECKSUM_PARTIAL)
1020		skb->csum_start += off;
1021	/* {transport,network,mac}_header and tail are relative to skb->head */
1022	skb->transport_header += off;
1023	skb->network_header   += off;
1024	if (skb_mac_header_was_set(skb))
1025		skb->mac_header += off;
1026	skb->inner_transport_header += off;
1027	skb->inner_network_header += off;
1028	skb->inner_mac_header += off;
1029}
1030
1031static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1032{
1033	__copy_skb_header(new, old);
1034
1035	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1036	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1037	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1038}
1039
1040static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1041{
1042	if (skb_pfmemalloc(skb))
1043		return SKB_ALLOC_RX;
1044	return 0;
1045}
1046
1047/**
1048 *	skb_copy	-	create private copy of an sk_buff
1049 *	@skb: buffer to copy
1050 *	@gfp_mask: allocation priority
1051 *
1052 *	Make a copy of both an &sk_buff and its data. This is used when the
1053 *	caller wishes to modify the data and needs a private copy of the
1054 *	data to alter. Returns %NULL on failure or the pointer to the buffer
1055 *	on success. The returned buffer has a reference count of 1.
1056 *
1057 *	As by-product this function converts non-linear &sk_buff to linear
1058 *	one, so that &sk_buff becomes completely private and caller is allowed
1059 *	to modify all the data of returned buffer. This means that this
1060 *	function is not recommended for use in circumstances when only
1061 *	header is going to be modified. Use pskb_copy() instead.
1062 */
1063
1064struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1065{
1066	int headerlen = skb_headroom(skb);
1067	unsigned int size = skb_end_offset(skb) + skb->data_len;
1068	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1069					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1070
1071	if (!n)
1072		return NULL;
1073
1074	/* Set the data pointer */
1075	skb_reserve(n, headerlen);
1076	/* Set the tail pointer and length */
1077	skb_put(n, skb->len);
1078
1079	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1080		BUG();
1081
1082	copy_skb_header(n, skb);
1083	return n;
1084}
1085EXPORT_SYMBOL(skb_copy);
1086
1087/**
1088 *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1089 *	@skb: buffer to copy
1090 *	@headroom: headroom of new skb
1091 *	@gfp_mask: allocation priority
1092 *	@fclone: if true allocate the copy of the skb from the fclone
1093 *	cache instead of the head cache; it is recommended to set this
1094 *	to true for the cases where the copy will likely be cloned
1095 *
1096 *	Make a copy of both an &sk_buff and part of its data, located
1097 *	in header. Fragmented data remain shared. This is used when
1098 *	the caller wishes to modify only header of &sk_buff and needs
1099 *	private copy of the header to alter. Returns %NULL on failure
1100 *	or the pointer to the buffer on success.
1101 *	The returned buffer has a reference count of 1.
1102 */
1103
1104struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1105				   gfp_t gfp_mask, bool fclone)
1106{
1107	unsigned int size = skb_headlen(skb) + headroom;
1108	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1109	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1110
1111	if (!n)
1112		goto out;
1113
1114	/* Set the data pointer */
1115	skb_reserve(n, headroom);
1116	/* Set the tail pointer and length */
1117	skb_put(n, skb_headlen(skb));
1118	/* Copy the bytes */
1119	skb_copy_from_linear_data(skb, n->data, n->len);
1120
1121	n->truesize += skb->data_len;
1122	n->data_len  = skb->data_len;
1123	n->len	     = skb->len;
1124
1125	if (skb_shinfo(skb)->nr_frags) {
1126		int i;
1127
1128		if (skb_orphan_frags(skb, gfp_mask)) {
1129			kfree_skb(n);
1130			n = NULL;
1131			goto out;
1132		}
1133		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1134			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1135			skb_frag_ref(skb, i);
1136		}
1137		skb_shinfo(n)->nr_frags = i;
1138	}
1139
1140	if (skb_has_frag_list(skb)) {
1141		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1142		skb_clone_fraglist(n);
1143	}
1144
1145	copy_skb_header(n, skb);
1146out:
1147	return n;
1148}
1149EXPORT_SYMBOL(__pskb_copy_fclone);
1150
1151/**
1152 *	pskb_expand_head - reallocate header of &sk_buff
1153 *	@skb: buffer to reallocate
1154 *	@nhead: room to add at head
1155 *	@ntail: room to add at tail
1156 *	@gfp_mask: allocation priority
1157 *
1158 *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1159 *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1160 *	reference count of 1. Returns zero in the case of success or error,
1161 *	if expansion failed. In the last case, &sk_buff is not changed.
1162 *
1163 *	All the pointers pointing into skb header may change and must be
1164 *	reloaded after call to this function.
1165 */
1166
1167int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1168		     gfp_t gfp_mask)
1169{
1170	int i;
1171	u8 *data;
1172	int size = nhead + skb_end_offset(skb) + ntail;
1173	long off;
1174
1175	BUG_ON(nhead < 0);
1176
1177	if (skb_shared(skb))
1178		BUG();
1179
1180	size = SKB_DATA_ALIGN(size);
1181
1182	if (skb_pfmemalloc(skb))
1183		gfp_mask |= __GFP_MEMALLOC;
1184	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1185			       gfp_mask, NUMA_NO_NODE, NULL);
1186	if (!data)
1187		goto nodata;
1188	size = SKB_WITH_OVERHEAD(ksize(data));
1189
1190	/* Copy only real data... and, alas, header. This should be
1191	 * optimized for the cases when header is void.
1192	 */
1193	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1194
1195	memcpy((struct skb_shared_info *)(data + size),
1196	       skb_shinfo(skb),
1197	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1198
1199	/*
1200	 * if shinfo is shared we must drop the old head gracefully, but if it
1201	 * is not we can just drop the old head and let the existing refcount
1202	 * be since all we did is relocate the values
1203	 */
1204	if (skb_cloned(skb)) {
1205		/* copy this zero copy skb frags */
1206		if (skb_orphan_frags(skb, gfp_mask))
1207			goto nofrags;
1208		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1209			skb_frag_ref(skb, i);
1210
1211		if (skb_has_frag_list(skb))
1212			skb_clone_fraglist(skb);
1213
1214		skb_release_data(skb);
1215	} else {
1216		skb_free_head(skb);
1217	}
1218	off = (data + nhead) - skb->head;
1219
1220	skb->head     = data;
1221	skb->head_frag = 0;
1222	skb->data    += off;
1223#ifdef NET_SKBUFF_DATA_USES_OFFSET
1224	skb->end      = size;
1225	off           = nhead;
1226#else
1227	skb->end      = skb->head + size;
1228#endif
1229	skb->tail	      += off;
1230	skb_headers_offset_update(skb, nhead);
1231	skb->cloned   = 0;
1232	skb->hdr_len  = 0;
1233	skb->nohdr    = 0;
1234	atomic_set(&skb_shinfo(skb)->dataref, 1);
1235	return 0;
1236
1237nofrags:
1238	kfree(data);
1239nodata:
1240	return -ENOMEM;
1241}
1242EXPORT_SYMBOL(pskb_expand_head);
1243
1244/* Make private copy of skb with writable head and some headroom */
1245
1246struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1247{
1248	struct sk_buff *skb2;
1249	int delta = headroom - skb_headroom(skb);
1250
1251	if (delta <= 0)
1252		skb2 = pskb_copy(skb, GFP_ATOMIC);
1253	else {
1254		skb2 = skb_clone(skb, GFP_ATOMIC);
1255		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1256					     GFP_ATOMIC)) {
1257			kfree_skb(skb2);
1258			skb2 = NULL;
1259		}
1260	}
1261	return skb2;
1262}
1263EXPORT_SYMBOL(skb_realloc_headroom);
1264
1265/**
1266 *	skb_copy_expand	-	copy and expand sk_buff
1267 *	@skb: buffer to copy
1268 *	@newheadroom: new free bytes at head
1269 *	@newtailroom: new free bytes at tail
1270 *	@gfp_mask: allocation priority
1271 *
1272 *	Make a copy of both an &sk_buff and its data and while doing so
1273 *	allocate additional space.
1274 *
1275 *	This is used when the caller wishes to modify the data and needs a
1276 *	private copy of the data to alter as well as more space for new fields.
1277 *	Returns %NULL on failure or the pointer to the buffer
1278 *	on success. The returned buffer has a reference count of 1.
1279 *
1280 *	You must pass %GFP_ATOMIC as the allocation priority if this function
1281 *	is called from an interrupt.
1282 */
1283struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1284				int newheadroom, int newtailroom,
1285				gfp_t gfp_mask)
1286{
1287	/*
1288	 *	Allocate the copy buffer
1289	 */
1290	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1291					gfp_mask, skb_alloc_rx_flag(skb),
1292					NUMA_NO_NODE);
1293	int oldheadroom = skb_headroom(skb);
1294	int head_copy_len, head_copy_off;
1295
1296	if (!n)
1297		return NULL;
1298
1299	skb_reserve(n, newheadroom);
1300
1301	/* Set the tail pointer and length */
1302	skb_put(n, skb->len);
1303
1304	head_copy_len = oldheadroom;
1305	head_copy_off = 0;
1306	if (newheadroom <= head_copy_len)
1307		head_copy_len = newheadroom;
1308	else
1309		head_copy_off = newheadroom - head_copy_len;
1310
1311	/* Copy the linear header and data. */
1312	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1313			  skb->len + head_copy_len))
1314		BUG();
1315
1316	copy_skb_header(n, skb);
1317
1318	skb_headers_offset_update(n, newheadroom - oldheadroom);
1319
1320	return n;
1321}
1322EXPORT_SYMBOL(skb_copy_expand);
1323
1324/**
1325 *	skb_pad			-	zero pad the tail of an skb
1326 *	@skb: buffer to pad
1327 *	@pad: space to pad
1328 *
1329 *	Ensure that a buffer is followed by a padding area that is zero
1330 *	filled. Used by network drivers which may DMA or transfer data
1331 *	beyond the buffer end onto the wire.
1332 *
1333 *	May return error in out of memory cases. The skb is freed on error.
1334 */
1335
1336int skb_pad(struct sk_buff *skb, int pad)
1337{
1338	int err;
1339	int ntail;
1340
1341	/* If the skbuff is non linear tailroom is always zero.. */
1342	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1343		memset(skb->data+skb->len, 0, pad);
1344		return 0;
1345	}
1346
1347	ntail = skb->data_len + pad - (skb->end - skb->tail);
1348	if (likely(skb_cloned(skb) || ntail > 0)) {
1349		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1350		if (unlikely(err))
1351			goto free_skb;
1352	}
1353
1354	/* FIXME: The use of this function with non-linear skb's really needs
1355	 * to be audited.
1356	 */
1357	err = skb_linearize(skb);
1358	if (unlikely(err))
1359		goto free_skb;
1360
1361	memset(skb->data + skb->len, 0, pad);
1362	return 0;
1363
1364free_skb:
1365	kfree_skb(skb);
1366	return err;
1367}
1368EXPORT_SYMBOL(skb_pad);
1369
1370/**
1371 *	pskb_put - add data to the tail of a potentially fragmented buffer
1372 *	@skb: start of the buffer to use
1373 *	@tail: tail fragment of the buffer to use
1374 *	@len: amount of data to add
1375 *
1376 *	This function extends the used data area of the potentially
1377 *	fragmented buffer. @tail must be the last fragment of @skb -- or
1378 *	@skb itself. If this would exceed the total buffer size the kernel
1379 *	will panic. A pointer to the first byte of the extra data is
1380 *	returned.
1381 */
1382
1383unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1384{
1385	if (tail != skb) {
1386		skb->data_len += len;
1387		skb->len += len;
1388	}
1389	return skb_put(tail, len);
1390}
1391EXPORT_SYMBOL_GPL(pskb_put);
1392
1393/**
1394 *	skb_put - add data to a buffer
1395 *	@skb: buffer to use
1396 *	@len: amount of data to add
1397 *
1398 *	This function extends the used data area of the buffer. If this would
1399 *	exceed the total buffer size the kernel will panic. A pointer to the
1400 *	first byte of the extra data is returned.
1401 */
1402unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1403{
1404	unsigned char *tmp = skb_tail_pointer(skb);
1405	SKB_LINEAR_ASSERT(skb);
1406	skb->tail += len;
1407	skb->len  += len;
1408	if (unlikely(skb->tail > skb->end))
1409		skb_over_panic(skb, len, __builtin_return_address(0));
1410	return tmp;
1411}
1412EXPORT_SYMBOL(skb_put);
1413
1414/**
1415 *	skb_push - add data to the start of a buffer
1416 *	@skb: buffer to use
1417 *	@len: amount of data to add
1418 *
1419 *	This function extends the used data area of the buffer at the buffer
1420 *	start. If this would exceed the total buffer headroom the kernel will
1421 *	panic. A pointer to the first byte of the extra data is returned.
1422 */
1423unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1424{
1425	skb->data -= len;
1426	skb->len  += len;
1427	if (unlikely(skb->data<skb->head))
1428		skb_under_panic(skb, len, __builtin_return_address(0));
1429	return skb->data;
1430}
1431EXPORT_SYMBOL(skb_push);
1432
1433/**
1434 *	skb_pull - remove data from the start of a buffer
1435 *	@skb: buffer to use
1436 *	@len: amount of data to remove
1437 *
1438 *	This function removes data from the start of a buffer, returning
1439 *	the memory to the headroom. A pointer to the next data in the buffer
1440 *	is returned. Once the data has been pulled future pushes will overwrite
1441 *	the old data.
1442 */
1443unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1444{
1445	return skb_pull_inline(skb, len);
1446}
1447EXPORT_SYMBOL(skb_pull);
1448
1449/**
1450 *	skb_trim - remove end from a buffer
1451 *	@skb: buffer to alter
1452 *	@len: new length
1453 *
1454 *	Cut the length of a buffer down by removing data from the tail. If
1455 *	the buffer is already under the length specified it is not modified.
1456 *	The skb must be linear.
1457 */
1458void skb_trim(struct sk_buff *skb, unsigned int len)
1459{
1460	if (skb->len > len)
1461		__skb_trim(skb, len);
1462}
1463EXPORT_SYMBOL(skb_trim);
1464
1465/* Trims skb to length len. It can change skb pointers.
1466 */
1467
1468int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1469{
1470	struct sk_buff **fragp;
1471	struct sk_buff *frag;
1472	int offset = skb_headlen(skb);
1473	int nfrags = skb_shinfo(skb)->nr_frags;
1474	int i;
1475	int err;
1476
1477	if (skb_cloned(skb) &&
1478	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1479		return err;
1480
1481	i = 0;
1482	if (offset >= len)
1483		goto drop_pages;
1484
1485	for (; i < nfrags; i++) {
1486		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1487
1488		if (end < len) {
1489			offset = end;
1490			continue;
1491		}
1492
1493		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1494
1495drop_pages:
1496		skb_shinfo(skb)->nr_frags = i;
1497
1498		for (; i < nfrags; i++)
1499			skb_frag_unref(skb, i);
1500
1501		if (skb_has_frag_list(skb))
1502			skb_drop_fraglist(skb);
1503		goto done;
1504	}
1505
1506	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1507	     fragp = &frag->next) {
1508		int end = offset + frag->len;
1509
1510		if (skb_shared(frag)) {
1511			struct sk_buff *nfrag;
1512
1513			nfrag = skb_clone(frag, GFP_ATOMIC);
1514			if (unlikely(!nfrag))
1515				return -ENOMEM;
1516
1517			nfrag->next = frag->next;
1518			consume_skb(frag);
1519			frag = nfrag;
1520			*fragp = frag;
1521		}
1522
1523		if (end < len) {
1524			offset = end;
1525			continue;
1526		}
1527
1528		if (end > len &&
1529		    unlikely((err = pskb_trim(frag, len - offset))))
1530			return err;
1531
1532		if (frag->next)
1533			skb_drop_list(&frag->next);
1534		break;
1535	}
1536
1537done:
1538	if (len > skb_headlen(skb)) {
1539		skb->data_len -= skb->len - len;
1540		skb->len       = len;
1541	} else {
1542		skb->len       = len;
1543		skb->data_len  = 0;
1544		skb_set_tail_pointer(skb, len);
1545	}
1546
1547	return 0;
1548}
1549EXPORT_SYMBOL(___pskb_trim);
1550
1551/**
1552 *	__pskb_pull_tail - advance tail of skb header
1553 *	@skb: buffer to reallocate
1554 *	@delta: number of bytes to advance tail
1555 *
1556 *	The function makes a sense only on a fragmented &sk_buff,
1557 *	it expands header moving its tail forward and copying necessary
1558 *	data from fragmented part.
1559 *
1560 *	&sk_buff MUST have reference count of 1.
1561 *
1562 *	Returns %NULL (and &sk_buff does not change) if pull failed
1563 *	or value of new tail of skb in the case of success.
1564 *
1565 *	All the pointers pointing into skb header may change and must be
1566 *	reloaded after call to this function.
1567 */
1568
1569/* Moves tail of skb head forward, copying data from fragmented part,
1570 * when it is necessary.
1571 * 1. It may fail due to malloc failure.
1572 * 2. It may change skb pointers.
1573 *
1574 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1575 */
1576unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1577{
1578	/* If skb has not enough free space at tail, get new one
1579	 * plus 128 bytes for future expansions. If we have enough
1580	 * room at tail, reallocate without expansion only if skb is cloned.
1581	 */
1582	int i, k, eat = (skb->tail + delta) - skb->end;
1583
1584	if (eat > 0 || skb_cloned(skb)) {
1585		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1586				     GFP_ATOMIC))
1587			return NULL;
1588	}
1589
1590	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1591		BUG();
1592
1593	/* Optimization: no fragments, no reasons to preestimate
1594	 * size of pulled pages. Superb.
1595	 */
1596	if (!skb_has_frag_list(skb))
1597		goto pull_pages;
1598
1599	/* Estimate size of pulled pages. */
1600	eat = delta;
1601	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1602		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1603
1604		if (size >= eat)
1605			goto pull_pages;
1606		eat -= size;
1607	}
1608
1609	/* If we need update frag list, we are in troubles.
1610	 * Certainly, it possible to add an offset to skb data,
1611	 * but taking into account that pulling is expected to
1612	 * be very rare operation, it is worth to fight against
1613	 * further bloating skb head and crucify ourselves here instead.
1614	 * Pure masohism, indeed. 8)8)
1615	 */
1616	if (eat) {
1617		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1618		struct sk_buff *clone = NULL;
1619		struct sk_buff *insp = NULL;
1620
1621		do {
1622			BUG_ON(!list);
1623
1624			if (list->len <= eat) {
1625				/* Eaten as whole. */
1626				eat -= list->len;
1627				list = list->next;
1628				insp = list;
1629			} else {
1630				/* Eaten partially. */
1631
1632				if (skb_shared(list)) {
1633					/* Sucks! We need to fork list. :-( */
1634					clone = skb_clone(list, GFP_ATOMIC);
1635					if (!clone)
1636						return NULL;
1637					insp = list->next;
1638					list = clone;
1639				} else {
1640					/* This may be pulled without
1641					 * problems. */
1642					insp = list;
1643				}
1644				if (!pskb_pull(list, eat)) {
1645					kfree_skb(clone);
1646					return NULL;
1647				}
1648				break;
1649			}
1650		} while (eat);
1651
1652		/* Free pulled out fragments. */
1653		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1654			skb_shinfo(skb)->frag_list = list->next;
1655			kfree_skb(list);
1656		}
1657		/* And insert new clone at head. */
1658		if (clone) {
1659			clone->next = list;
1660			skb_shinfo(skb)->frag_list = clone;
1661		}
1662	}
1663	/* Success! Now we may commit changes to skb data. */
1664
1665pull_pages:
1666	eat = delta;
1667	k = 0;
1668	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1669		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1670
1671		if (size <= eat) {
1672			skb_frag_unref(skb, i);
1673			eat -= size;
1674		} else {
1675			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1676			if (eat) {
1677				skb_shinfo(skb)->frags[k].page_offset += eat;
1678				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1679				eat = 0;
1680			}
1681			k++;
1682		}
1683	}
1684	skb_shinfo(skb)->nr_frags = k;
1685
1686	skb->tail     += delta;
1687	skb->data_len -= delta;
1688
1689	return skb_tail_pointer(skb);
1690}
1691EXPORT_SYMBOL(__pskb_pull_tail);
1692
1693/**
1694 *	skb_copy_bits - copy bits from skb to kernel buffer
1695 *	@skb: source skb
1696 *	@offset: offset in source
1697 *	@to: destination buffer
1698 *	@len: number of bytes to copy
1699 *
1700 *	Copy the specified number of bytes from the source skb to the
1701 *	destination buffer.
1702 *
1703 *	CAUTION ! :
1704 *		If its prototype is ever changed,
1705 *		check arch/{*}/net/{*}.S files,
1706 *		since it is called from BPF assembly code.
1707 */
1708int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1709{
1710	int start = skb_headlen(skb);
1711	struct sk_buff *frag_iter;
1712	int i, copy;
1713
1714	if (offset > (int)skb->len - len)
1715		goto fault;
1716
1717	/* Copy header. */
1718	if ((copy = start - offset) > 0) {
1719		if (copy > len)
1720			copy = len;
1721		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1722		if ((len -= copy) == 0)
1723			return 0;
1724		offset += copy;
1725		to     += copy;
1726	}
1727
1728	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1729		int end;
1730		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1731
1732		WARN_ON(start > offset + len);
1733
1734		end = start + skb_frag_size(f);
1735		if ((copy = end - offset) > 0) {
1736			u8 *vaddr;
1737
1738			if (copy > len)
1739				copy = len;
1740
1741			vaddr = kmap_atomic(skb_frag_page(f));
1742			memcpy(to,
1743			       vaddr + f->page_offset + offset - start,
1744			       copy);
1745			kunmap_atomic(vaddr);
1746
1747			if ((len -= copy) == 0)
1748				return 0;
1749			offset += copy;
1750			to     += copy;
1751		}
1752		start = end;
1753	}
1754
1755	skb_walk_frags(skb, frag_iter) {
1756		int end;
1757
1758		WARN_ON(start > offset + len);
1759
1760		end = start + frag_iter->len;
1761		if ((copy = end - offset) > 0) {
1762			if (copy > len)
1763				copy = len;
1764			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1765				goto fault;
1766			if ((len -= copy) == 0)
1767				return 0;
1768			offset += copy;
1769			to     += copy;
1770		}
1771		start = end;
1772	}
1773
1774	if (!len)
1775		return 0;
1776
1777fault:
1778	return -EFAULT;
1779}
1780EXPORT_SYMBOL(skb_copy_bits);
1781
1782/*
1783 * Callback from splice_to_pipe(), if we need to release some pages
1784 * at the end of the spd in case we error'ed out in filling the pipe.
1785 */
1786static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1787{
1788	put_page(spd->pages[i]);
1789}
1790
1791static struct page *linear_to_page(struct page *page, unsigned int *len,
1792				   unsigned int *offset,
1793				   struct sock *sk)
1794{
1795	struct page_frag *pfrag = sk_page_frag(sk);
1796
1797	if (!sk_page_frag_refill(sk, pfrag))
1798		return NULL;
1799
1800	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1801
1802	memcpy(page_address(pfrag->page) + pfrag->offset,
1803	       page_address(page) + *offset, *len);
1804	*offset = pfrag->offset;
1805	pfrag->offset += *len;
1806
1807	return pfrag->page;
1808}
1809
1810static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1811			     struct page *page,
1812			     unsigned int offset)
1813{
1814	return	spd->nr_pages &&
1815		spd->pages[spd->nr_pages - 1] == page &&
1816		(spd->partial[spd->nr_pages - 1].offset +
1817		 spd->partial[spd->nr_pages - 1].len == offset);
1818}
1819
1820/*
1821 * Fill page/offset/length into spd, if it can hold more pages.
1822 */
1823static bool spd_fill_page(struct splice_pipe_desc *spd,
1824			  struct pipe_inode_info *pipe, struct page *page,
1825			  unsigned int *len, unsigned int offset,
1826			  bool linear,
1827			  struct sock *sk)
1828{
1829	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1830		return true;
1831
1832	if (linear) {
1833		page = linear_to_page(page, len, &offset, sk);
1834		if (!page)
1835			return true;
1836	}
1837	if (spd_can_coalesce(spd, page, offset)) {
1838		spd->partial[spd->nr_pages - 1].len += *len;
1839		return false;
1840	}
1841	get_page(page);
1842	spd->pages[spd->nr_pages] = page;
1843	spd->partial[spd->nr_pages].len = *len;
1844	spd->partial[spd->nr_pages].offset = offset;
1845	spd->nr_pages++;
1846
1847	return false;
1848}
1849
1850static bool __splice_segment(struct page *page, unsigned int poff,
1851			     unsigned int plen, unsigned int *off,
1852			     unsigned int *len,
1853			     struct splice_pipe_desc *spd, bool linear,
1854			     struct sock *sk,
1855			     struct pipe_inode_info *pipe)
1856{
1857	if (!*len)
1858		return true;
1859
1860	/* skip this segment if already processed */
1861	if (*off >= plen) {
1862		*off -= plen;
1863		return false;
1864	}
1865
1866	/* ignore any bits we already processed */
1867	poff += *off;
1868	plen -= *off;
1869	*off = 0;
1870
1871	do {
1872		unsigned int flen = min(*len, plen);
1873
1874		if (spd_fill_page(spd, pipe, page, &flen, poff,
1875				  linear, sk))
1876			return true;
1877		poff += flen;
1878		plen -= flen;
1879		*len -= flen;
1880	} while (*len && plen);
1881
1882	return false;
1883}
1884
1885/*
1886 * Map linear and fragment data from the skb to spd. It reports true if the
1887 * pipe is full or if we already spliced the requested length.
1888 */
1889static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1890			      unsigned int *offset, unsigned int *len,
1891			      struct splice_pipe_desc *spd, struct sock *sk)
1892{
1893	int seg;
1894
1895	/* map the linear part :
1896	 * If skb->head_frag is set, this 'linear' part is backed by a
1897	 * fragment, and if the head is not shared with any clones then
1898	 * we can avoid a copy since we own the head portion of this page.
1899	 */
1900	if (__splice_segment(virt_to_page(skb->data),
1901			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1902			     skb_headlen(skb),
1903			     offset, len, spd,
1904			     skb_head_is_locked(skb),
1905			     sk, pipe))
1906		return true;
1907
1908	/*
1909	 * then map the fragments
1910	 */
1911	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1912		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1913
1914		if (__splice_segment(skb_frag_page(f),
1915				     f->page_offset, skb_frag_size(f),
1916				     offset, len, spd, false, sk, pipe))
1917			return true;
1918	}
1919
1920	return false;
1921}
1922
1923/*
1924 * Map data from the skb to a pipe. Should handle both the linear part,
1925 * the fragments, and the frag list. It does NOT handle frag lists within
1926 * the frag list, if such a thing exists. We'd probably need to recurse to
1927 * handle that cleanly.
1928 */
1929int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1930		    struct pipe_inode_info *pipe, unsigned int tlen,
1931		    unsigned int flags)
1932{
1933	struct partial_page partial[MAX_SKB_FRAGS];
1934	struct page *pages[MAX_SKB_FRAGS];
1935	struct splice_pipe_desc spd = {
1936		.pages = pages,
1937		.partial = partial,
1938		.nr_pages_max = MAX_SKB_FRAGS,
1939		.flags = flags,
1940		.ops = &nosteal_pipe_buf_ops,
1941		.spd_release = sock_spd_release,
1942	};
1943	struct sk_buff *frag_iter;
1944	struct sock *sk = skb->sk;
1945	int ret = 0;
1946
1947	/*
1948	 * __skb_splice_bits() only fails if the output has no room left,
1949	 * so no point in going over the frag_list for the error case.
1950	 */
1951	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1952		goto done;
1953	else if (!tlen)
1954		goto done;
1955
1956	/*
1957	 * now see if we have a frag_list to map
1958	 */
1959	skb_walk_frags(skb, frag_iter) {
1960		if (!tlen)
1961			break;
1962		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1963			break;
1964	}
1965
1966done:
1967	if (spd.nr_pages) {
1968		/*
1969		 * Drop the socket lock, otherwise we have reverse
1970		 * locking dependencies between sk_lock and i_mutex
1971		 * here as compared to sendfile(). We enter here
1972		 * with the socket lock held, and splice_to_pipe() will
1973		 * grab the pipe inode lock. For sendfile() emulation,
1974		 * we call into ->sendpage() with the i_mutex lock held
1975		 * and networking will grab the socket lock.
1976		 */
1977		release_sock(sk);
1978		ret = splice_to_pipe(pipe, &spd);
1979		lock_sock(sk);
1980	}
1981
1982	return ret;
1983}
1984
1985/**
1986 *	skb_store_bits - store bits from kernel buffer to skb
1987 *	@skb: destination buffer
1988 *	@offset: offset in destination
1989 *	@from: source buffer
1990 *	@len: number of bytes to copy
1991 *
1992 *	Copy the specified number of bytes from the source buffer to the
1993 *	destination skb.  This function handles all the messy bits of
1994 *	traversing fragment lists and such.
1995 */
1996
1997int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1998{
1999	int start = skb_headlen(skb);
2000	struct sk_buff *frag_iter;
2001	int i, copy;
2002
2003	if (offset > (int)skb->len - len)
2004		goto fault;
2005
2006	if ((copy = start - offset) > 0) {
2007		if (copy > len)
2008			copy = len;
2009		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2010		if ((len -= copy) == 0)
2011			return 0;
2012		offset += copy;
2013		from += copy;
2014	}
2015
2016	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2017		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2018		int end;
2019
2020		WARN_ON(start > offset + len);
2021
2022		end = start + skb_frag_size(frag);
2023		if ((copy = end - offset) > 0) {
2024			u8 *vaddr;
2025
2026			if (copy > len)
2027				copy = len;
2028
2029			vaddr = kmap_atomic(skb_frag_page(frag));
2030			memcpy(vaddr + frag->page_offset + offset - start,
2031			       from, copy);
2032			kunmap_atomic(vaddr);
2033
2034			if ((len -= copy) == 0)
2035				return 0;
2036			offset += copy;
2037			from += copy;
2038		}
2039		start = end;
2040	}
2041
2042	skb_walk_frags(skb, frag_iter) {
2043		int end;
2044
2045		WARN_ON(start > offset + len);
2046
2047		end = start + frag_iter->len;
2048		if ((copy = end - offset) > 0) {
2049			if (copy > len)
2050				copy = len;
2051			if (skb_store_bits(frag_iter, offset - start,
2052					   from, copy))
2053				goto fault;
2054			if ((len -= copy) == 0)
2055				return 0;
2056			offset += copy;
2057			from += copy;
2058		}
2059		start = end;
2060	}
2061	if (!len)
2062		return 0;
2063
2064fault:
2065	return -EFAULT;
2066}
2067EXPORT_SYMBOL(skb_store_bits);
2068
2069/* Checksum skb data. */
2070__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2071		      __wsum csum, const struct skb_checksum_ops *ops)
2072{
2073	int start = skb_headlen(skb);
2074	int i, copy = start - offset;
2075	struct sk_buff *frag_iter;
2076	int pos = 0;
2077
2078	/* Checksum header. */
2079	if (copy > 0) {
2080		if (copy > len)
2081			copy = len;
2082		csum = ops->update(skb->data + offset, copy, csum);
2083		if ((len -= copy) == 0)
2084			return csum;
2085		offset += copy;
2086		pos	= copy;
2087	}
2088
2089	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2090		int end;
2091		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2092
2093		WARN_ON(start > offset + len);
2094
2095		end = start + skb_frag_size(frag);
2096		if ((copy = end - offset) > 0) {
2097			__wsum csum2;
2098			u8 *vaddr;
2099
2100			if (copy > len)
2101				copy = len;
2102			vaddr = kmap_atomic(skb_frag_page(frag));
2103			csum2 = ops->update(vaddr + frag->page_offset +
2104					    offset - start, copy, 0);
2105			kunmap_atomic(vaddr);
2106			csum = ops->combine(csum, csum2, pos, copy);
2107			if (!(len -= copy))
2108				return csum;
2109			offset += copy;
2110			pos    += copy;
2111		}
2112		start = end;
2113	}
2114
2115	skb_walk_frags(skb, frag_iter) {
2116		int end;
2117
2118		WARN_ON(start > offset + len);
2119
2120		end = start + frag_iter->len;
2121		if ((copy = end - offset) > 0) {
2122			__wsum csum2;
2123			if (copy > len)
2124				copy = len;
2125			csum2 = __skb_checksum(frag_iter, offset - start,
2126					       copy, 0, ops);
2127			csum = ops->combine(csum, csum2, pos, copy);
2128			if ((len -= copy) == 0)
2129				return csum;
2130			offset += copy;
2131			pos    += copy;
2132		}
2133		start = end;
2134	}
2135	BUG_ON(len);
2136
2137	return csum;
2138}
2139EXPORT_SYMBOL(__skb_checksum);
2140
2141__wsum skb_checksum(const struct sk_buff *skb, int offset,
2142		    int len, __wsum csum)
2143{
2144	const struct skb_checksum_ops ops = {
2145		.update  = csum_partial_ext,
2146		.combine = csum_block_add_ext,
2147	};
2148
2149	return __skb_checksum(skb, offset, len, csum, &ops);
2150}
2151EXPORT_SYMBOL(skb_checksum);
2152
2153/* Both of above in one bottle. */
2154
2155__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2156				    u8 *to, int len, __wsum csum)
2157{
2158	int start = skb_headlen(skb);
2159	int i, copy = start - offset;
2160	struct sk_buff *frag_iter;
2161	int pos = 0;
2162
2163	/* Copy header. */
2164	if (copy > 0) {
2165		if (copy > len)
2166			copy = len;
2167		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2168						 copy, csum);
2169		if ((len -= copy) == 0)
2170			return csum;
2171		offset += copy;
2172		to     += copy;
2173		pos	= copy;
2174	}
2175
2176	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2177		int end;
2178
2179		WARN_ON(start > offset + len);
2180
2181		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2182		if ((copy = end - offset) > 0) {
2183			__wsum csum2;
2184			u8 *vaddr;
2185			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2186
2187			if (copy > len)
2188				copy = len;
2189			vaddr = kmap_atomic(skb_frag_page(frag));
2190			csum2 = csum_partial_copy_nocheck(vaddr +
2191							  frag->page_offset +
2192							  offset - start, to,
2193							  copy, 0);
2194			kunmap_atomic(vaddr);
2195			csum = csum_block_add(csum, csum2, pos);
2196			if (!(len -= copy))
2197				return csum;
2198			offset += copy;
2199			to     += copy;
2200			pos    += copy;
2201		}
2202		start = end;
2203	}
2204
2205	skb_walk_frags(skb, frag_iter) {
2206		__wsum csum2;
2207		int end;
2208
2209		WARN_ON(start > offset + len);
2210
2211		end = start + frag_iter->len;
2212		if ((copy = end - offset) > 0) {
2213			if (copy > len)
2214				copy = len;
2215			csum2 = skb_copy_and_csum_bits(frag_iter,
2216						       offset - start,
2217						       to, copy, 0);
2218			csum = csum_block_add(csum, csum2, pos);
2219			if ((len -= copy) == 0)
2220				return csum;
2221			offset += copy;
2222			to     += copy;
2223			pos    += copy;
2224		}
2225		start = end;
2226	}
2227	BUG_ON(len);
2228	return csum;
2229}
2230EXPORT_SYMBOL(skb_copy_and_csum_bits);
2231
2232 /**
2233 *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2234 *	@from: source buffer
2235 *
2236 *	Calculates the amount of linear headroom needed in the 'to' skb passed
2237 *	into skb_zerocopy().
2238 */
2239unsigned int
2240skb_zerocopy_headlen(const struct sk_buff *from)
2241{
2242	unsigned int hlen = 0;
2243
2244	if (!from->head_frag ||
2245	    skb_headlen(from) < L1_CACHE_BYTES ||
2246	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2247		hlen = skb_headlen(from);
2248
2249	if (skb_has_frag_list(from))
2250		hlen = from->len;
2251
2252	return hlen;
2253}
2254EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2255
2256/**
2257 *	skb_zerocopy - Zero copy skb to skb
2258 *	@to: destination buffer
2259 *	@from: source buffer
2260 *	@len: number of bytes to copy from source buffer
2261 *	@hlen: size of linear headroom in destination buffer
2262 *
2263 *	Copies up to `len` bytes from `from` to `to` by creating references
2264 *	to the frags in the source buffer.
2265 *
2266 *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2267 *	headroom in the `to` buffer.
2268 *
2269 *	Return value:
2270 *	0: everything is OK
2271 *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2272 *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2273 */
2274int
2275skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2276{
2277	int i, j = 0;
2278	int plen = 0; /* length of skb->head fragment */
2279	int ret;
2280	struct page *page;
2281	unsigned int offset;
2282
2283	BUG_ON(!from->head_frag && !hlen);
2284
2285	/* dont bother with small payloads */
2286	if (len <= skb_tailroom(to))
2287		return skb_copy_bits(from, 0, skb_put(to, len), len);
2288
2289	if (hlen) {
2290		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2291		if (unlikely(ret))
2292			return ret;
2293		len -= hlen;
2294	} else {
2295		plen = min_t(int, skb_headlen(from), len);
2296		if (plen) {
2297			page = virt_to_head_page(from->head);
2298			offset = from->data - (unsigned char *)page_address(page);
2299			__skb_fill_page_desc(to, 0, page, offset, plen);
2300			get_page(page);
2301			j = 1;
2302			len -= plen;
2303		}
2304	}
2305
2306	to->truesize += len + plen;
2307	to->len += len + plen;
2308	to->data_len += len + plen;
2309
2310	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2311		skb_tx_error(from);
2312		return -ENOMEM;
2313	}
2314
2315	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2316		if (!len)
2317			break;
2318		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2319		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2320		len -= skb_shinfo(to)->frags[j].size;
2321		skb_frag_ref(to, j);
2322		j++;
2323	}
2324	skb_shinfo(to)->nr_frags = j;
2325
2326	return 0;
2327}
2328EXPORT_SYMBOL_GPL(skb_zerocopy);
2329
2330void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2331{
2332	__wsum csum;
2333	long csstart;
2334
2335	if (skb->ip_summed == CHECKSUM_PARTIAL)
2336		csstart = skb_checksum_start_offset(skb);
2337	else
2338		csstart = skb_headlen(skb);
2339
2340	BUG_ON(csstart > skb_headlen(skb));
2341
2342	skb_copy_from_linear_data(skb, to, csstart);
2343
2344	csum = 0;
2345	if (csstart != skb->len)
2346		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2347					      skb->len - csstart, 0);
2348
2349	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2350		long csstuff = csstart + skb->csum_offset;
2351
2352		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2353	}
2354}
2355EXPORT_SYMBOL(skb_copy_and_csum_dev);
2356
2357/**
2358 *	skb_dequeue - remove from the head of the queue
2359 *	@list: list to dequeue from
2360 *
2361 *	Remove the head of the list. The list lock is taken so the function
2362 *	may be used safely with other locking list functions. The head item is
2363 *	returned or %NULL if the list is empty.
2364 */
2365
2366struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2367{
2368	unsigned long flags;
2369	struct sk_buff *result;
2370
2371	spin_lock_irqsave(&list->lock, flags);
2372	result = __skb_dequeue(list);
2373	spin_unlock_irqrestore(&list->lock, flags);
2374	return result;
2375}
2376EXPORT_SYMBOL(skb_dequeue);
2377
2378/**
2379 *	skb_dequeue_tail - remove from the tail of the queue
2380 *	@list: list to dequeue from
2381 *
2382 *	Remove the tail of the list. The list lock is taken so the function
2383 *	may be used safely with other locking list functions. The tail item is
2384 *	returned or %NULL if the list is empty.
2385 */
2386struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2387{
2388	unsigned long flags;
2389	struct sk_buff *result;
2390
2391	spin_lock_irqsave(&list->lock, flags);
2392	result = __skb_dequeue_tail(list);
2393	spin_unlock_irqrestore(&list->lock, flags);
2394	return result;
2395}
2396EXPORT_SYMBOL(skb_dequeue_tail);
2397
2398/**
2399 *	skb_queue_purge - empty a list
2400 *	@list: list to empty
2401 *
2402 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2403 *	the list and one reference dropped. This function takes the list
2404 *	lock and is atomic with respect to other list locking functions.
2405 */
2406void skb_queue_purge(struct sk_buff_head *list)
2407{
2408	struct sk_buff *skb;
2409	while ((skb = skb_dequeue(list)) != NULL)
2410		kfree_skb(skb);
2411}
2412EXPORT_SYMBOL(skb_queue_purge);
2413
2414/**
2415 *	skb_queue_head - queue a buffer at the list head
2416 *	@list: list to use
2417 *	@newsk: buffer to queue
2418 *
2419 *	Queue a buffer at the start of the list. This function takes the
2420 *	list lock and can be used safely with other locking &sk_buff functions
2421 *	safely.
2422 *
2423 *	A buffer cannot be placed on two lists at the same time.
2424 */
2425void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2426{
2427	unsigned long flags;
2428
2429	spin_lock_irqsave(&list->lock, flags);
2430	__skb_queue_head(list, newsk);
2431	spin_unlock_irqrestore(&list->lock, flags);
2432}
2433EXPORT_SYMBOL(skb_queue_head);
2434
2435/**
2436 *	skb_queue_tail - queue a buffer at the list tail
2437 *	@list: list to use
2438 *	@newsk: buffer to queue
2439 *
2440 *	Queue a buffer at the tail of the list. This function takes the
2441 *	list lock and can be used safely with other locking &sk_buff functions
2442 *	safely.
2443 *
2444 *	A buffer cannot be placed on two lists at the same time.
2445 */
2446void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2447{
2448	unsigned long flags;
2449
2450	spin_lock_irqsave(&list->lock, flags);
2451	__skb_queue_tail(list, newsk);
2452	spin_unlock_irqrestore(&list->lock, flags);
2453}
2454EXPORT_SYMBOL(skb_queue_tail);
2455
2456/**
2457 *	skb_unlink	-	remove a buffer from a list
2458 *	@skb: buffer to remove
2459 *	@list: list to use
2460 *
2461 *	Remove a packet from a list. The list locks are taken and this
2462 *	function is atomic with respect to other list locked calls
2463 *
2464 *	You must know what list the SKB is on.
2465 */
2466void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2467{
2468	unsigned long flags;
2469
2470	spin_lock_irqsave(&list->lock, flags);
2471	__skb_unlink(skb, list);
2472	spin_unlock_irqrestore(&list->lock, flags);
2473}
2474EXPORT_SYMBOL(skb_unlink);
2475
2476/**
2477 *	skb_append	-	append a buffer
2478 *	@old: buffer to insert after
2479 *	@newsk: buffer to insert
2480 *	@list: list to use
2481 *
2482 *	Place a packet after a given packet in a list. The list locks are taken
2483 *	and this function is atomic with respect to other list locked calls.
2484 *	A buffer cannot be placed on two lists at the same time.
2485 */
2486void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2487{
2488	unsigned long flags;
2489
2490	spin_lock_irqsave(&list->lock, flags);
2491	__skb_queue_after(list, old, newsk);
2492	spin_unlock_irqrestore(&list->lock, flags);
2493}
2494EXPORT_SYMBOL(skb_append);
2495
2496/**
2497 *	skb_insert	-	insert a buffer
2498 *	@old: buffer to insert before
2499 *	@newsk: buffer to insert
2500 *	@list: list to use
2501 *
2502 *	Place a packet before a given packet in a list. The list locks are
2503 * 	taken and this function is atomic with respect to other list locked
2504 *	calls.
2505 *
2506 *	A buffer cannot be placed on two lists at the same time.
2507 */
2508void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2509{
2510	unsigned long flags;
2511
2512	spin_lock_irqsave(&list->lock, flags);
2513	__skb_insert(newsk, old->prev, old, list);
2514	spin_unlock_irqrestore(&list->lock, flags);
2515}
2516EXPORT_SYMBOL(skb_insert);
2517
2518static inline void skb_split_inside_header(struct sk_buff *skb,
2519					   struct sk_buff* skb1,
2520					   const u32 len, const int pos)
2521{
2522	int i;
2523
2524	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2525					 pos - len);
2526	/* And move data appendix as is. */
2527	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2528		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2529
2530	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2531	skb_shinfo(skb)->nr_frags  = 0;
2532	skb1->data_len		   = skb->data_len;
2533	skb1->len		   += skb1->data_len;
2534	skb->data_len		   = 0;
2535	skb->len		   = len;
2536	skb_set_tail_pointer(skb, len);
2537}
2538
2539static inline void skb_split_no_header(struct sk_buff *skb,
2540				       struct sk_buff* skb1,
2541				       const u32 len, int pos)
2542{
2543	int i, k = 0;
2544	const int nfrags = skb_shinfo(skb)->nr_frags;
2545
2546	skb_shinfo(skb)->nr_frags = 0;
2547	skb1->len		  = skb1->data_len = skb->len - len;
2548	skb->len		  = len;
2549	skb->data_len		  = len - pos;
2550
2551	for (i = 0; i < nfrags; i++) {
2552		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2553
2554		if (pos + size > len) {
2555			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2556
2557			if (pos < len) {
2558				/* Split frag.
2559				 * We have two variants in this case:
2560				 * 1. Move all the frag to the second
2561				 *    part, if it is possible. F.e.
2562				 *    this approach is mandatory for TUX,
2563				 *    where splitting is expensive.
2564				 * 2. Split is accurately. We make this.
2565				 */
2566				skb_frag_ref(skb, i);
2567				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2568				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2569				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2570				skb_shinfo(skb)->nr_frags++;
2571			}
2572			k++;
2573		} else
2574			skb_shinfo(skb)->nr_frags++;
2575		pos += size;
2576	}
2577	skb_shinfo(skb1)->nr_frags = k;
2578}
2579
2580/**
2581 * skb_split - Split fragmented skb to two parts at length len.
2582 * @skb: the buffer to split
2583 * @skb1: the buffer to receive the second part
2584 * @len: new length for skb
2585 */
2586void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2587{
2588	int pos = skb_headlen(skb);
2589
2590	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2591	if (len < pos)	/* Split line is inside header. */
2592		skb_split_inside_header(skb, skb1, len, pos);
2593	else		/* Second chunk has no header, nothing to copy. */
2594		skb_split_no_header(skb, skb1, len, pos);
2595}
2596EXPORT_SYMBOL(skb_split);
2597
2598/* Shifting from/to a cloned skb is a no-go.
2599 *
2600 * Caller cannot keep skb_shinfo related pointers past calling here!
2601 */
2602static int skb_prepare_for_shift(struct sk_buff *skb)
2603{
2604	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2605}
2606
2607/**
2608 * skb_shift - Shifts paged data partially from skb to another
2609 * @tgt: buffer into which tail data gets added
2610 * @skb: buffer from which the paged data comes from
2611 * @shiftlen: shift up to this many bytes
2612 *
2613 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2614 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2615 * It's up to caller to free skb if everything was shifted.
2616 *
2617 * If @tgt runs out of frags, the whole operation is aborted.
2618 *
2619 * Skb cannot include anything else but paged data while tgt is allowed
2620 * to have non-paged data as well.
2621 *
2622 * TODO: full sized shift could be optimized but that would need
2623 * specialized skb free'er to handle frags without up-to-date nr_frags.
2624 */
2625int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2626{
2627	int from, to, merge, todo;
2628	struct skb_frag_struct *fragfrom, *fragto;
2629
2630	BUG_ON(shiftlen > skb->len);
2631	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2632
2633	todo = shiftlen;
2634	from = 0;
2635	to = skb_shinfo(tgt)->nr_frags;
2636	fragfrom = &skb_shinfo(skb)->frags[from];
2637
2638	/* Actual merge is delayed until the point when we know we can
2639	 * commit all, so that we don't have to undo partial changes
2640	 */
2641	if (!to ||
2642	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2643			      fragfrom->page_offset)) {
2644		merge = -1;
2645	} else {
2646		merge = to - 1;
2647
2648		todo -= skb_frag_size(fragfrom);
2649		if (todo < 0) {
2650			if (skb_prepare_for_shift(skb) ||
2651			    skb_prepare_for_shift(tgt))
2652				return 0;
2653
2654			/* All previous frag pointers might be stale! */
2655			fragfrom = &skb_shinfo(skb)->frags[from];
2656			fragto = &skb_shinfo(tgt)->frags[merge];
2657
2658			skb_frag_size_add(fragto, shiftlen);
2659			skb_frag_size_sub(fragfrom, shiftlen);
2660			fragfrom->page_offset += shiftlen;
2661
2662			goto onlymerged;
2663		}
2664
2665		from++;
2666	}
2667
2668	/* Skip full, not-fitting skb to avoid expensive operations */
2669	if ((shiftlen == skb->len) &&
2670	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2671		return 0;
2672
2673	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2674		return 0;
2675
2676	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2677		if (to == MAX_SKB_FRAGS)
2678			return 0;
2679
2680		fragfrom = &skb_shinfo(skb)->frags[from];
2681		fragto = &skb_shinfo(tgt)->frags[to];
2682
2683		if (todo >= skb_frag_size(fragfrom)) {
2684			*fragto = *fragfrom;
2685			todo -= skb_frag_size(fragfrom);
2686			from++;
2687			to++;
2688
2689		} else {
2690			__skb_frag_ref(fragfrom);
2691			fragto->page = fragfrom->page;
2692			fragto->page_offset = fragfrom->page_offset;
2693			skb_frag_size_set(fragto, todo);
2694
2695			fragfrom->page_offset += todo;
2696			skb_frag_size_sub(fragfrom, todo);
2697			todo = 0;
2698
2699			to++;
2700			break;
2701		}
2702	}
2703
2704	/* Ready to "commit" this state change to tgt */
2705	skb_shinfo(tgt)->nr_frags = to;
2706
2707	if (merge >= 0) {
2708		fragfrom = &skb_shinfo(skb)->frags[0];
2709		fragto = &skb_shinfo(tgt)->frags[merge];
2710
2711		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2712		__skb_frag_unref(fragfrom);
2713	}
2714
2715	/* Reposition in the original skb */
2716	to = 0;
2717	while (from < skb_shinfo(skb)->nr_frags)
2718		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2719	skb_shinfo(skb)->nr_frags = to;
2720
2721	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2722
2723onlymerged:
2724	/* Most likely the tgt won't ever need its checksum anymore, skb on
2725	 * the other hand might need it if it needs to be resent
2726	 */
2727	tgt->ip_summed = CHECKSUM_PARTIAL;
2728	skb->ip_summed = CHECKSUM_PARTIAL;
2729
2730	/* Yak, is it really working this way? Some helper please? */
2731	skb->len -= shiftlen;
2732	skb->data_len -= shiftlen;
2733	skb->truesize -= shiftlen;
2734	tgt->len += shiftlen;
2735	tgt->data_len += shiftlen;
2736	tgt->truesize += shiftlen;
2737
2738	return shiftlen;
2739}
2740
2741/**
2742 * skb_prepare_seq_read - Prepare a sequential read of skb data
2743 * @skb: the buffer to read
2744 * @from: lower offset of data to be read
2745 * @to: upper offset of data to be read
2746 * @st: state variable
2747 *
2748 * Initializes the specified state variable. Must be called before
2749 * invoking skb_seq_read() for the first time.
2750 */
2751void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2752			  unsigned int to, struct skb_seq_state *st)
2753{
2754	st->lower_offset = from;
2755	st->upper_offset = to;
2756	st->root_skb = st->cur_skb = skb;
2757	st->frag_idx = st->stepped_offset = 0;
2758	st->frag_data = NULL;
2759}
2760EXPORT_SYMBOL(skb_prepare_seq_read);
2761
2762/**
2763 * skb_seq_read - Sequentially read skb data
2764 * @consumed: number of bytes consumed by the caller so far
2765 * @data: destination pointer for data to be returned
2766 * @st: state variable
2767 *
2768 * Reads a block of skb data at @consumed relative to the
2769 * lower offset specified to skb_prepare_seq_read(). Assigns
2770 * the head of the data block to @data and returns the length
2771 * of the block or 0 if the end of the skb data or the upper
2772 * offset has been reached.
2773 *
2774 * The caller is not required to consume all of the data
2775 * returned, i.e. @consumed is typically set to the number
2776 * of bytes already consumed and the next call to
2777 * skb_seq_read() will return the remaining part of the block.
2778 *
2779 * Note 1: The size of each block of data returned can be arbitrary,
2780 *       this limitation is the cost for zerocopy sequential
2781 *       reads of potentially non linear data.
2782 *
2783 * Note 2: Fragment lists within fragments are not implemented
2784 *       at the moment, state->root_skb could be replaced with
2785 *       a stack for this purpose.
2786 */
2787unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2788			  struct skb_seq_state *st)
2789{
2790	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2791	skb_frag_t *frag;
2792
2793	if (unlikely(abs_offset >= st->upper_offset)) {
2794		if (st->frag_data) {
2795			kunmap_atomic(st->frag_data);
2796			st->frag_data = NULL;
2797		}
2798		return 0;
2799	}
2800
2801next_skb:
2802	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2803
2804	if (abs_offset < block_limit && !st->frag_data) {
2805		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2806		return block_limit - abs_offset;
2807	}
2808
2809	if (st->frag_idx == 0 && !st->frag_data)
2810		st->stepped_offset += skb_headlen(st->cur_skb);
2811
2812	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2813		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2814		block_limit = skb_frag_size(frag) + st->stepped_offset;
2815
2816		if (abs_offset < block_limit) {
2817			if (!st->frag_data)
2818				st->frag_data = kmap_atomic(skb_frag_page(frag));
2819
2820			*data = (u8 *) st->frag_data + frag->page_offset +
2821				(abs_offset - st->stepped_offset);
2822
2823			return block_limit - abs_offset;
2824		}
2825
2826		if (st->frag_data) {
2827			kunmap_atomic(st->frag_data);
2828			st->frag_data = NULL;
2829		}
2830
2831		st->frag_idx++;
2832		st->stepped_offset += skb_frag_size(frag);
2833	}
2834
2835	if (st->frag_data) {
2836		kunmap_atomic(st->frag_data);
2837		st->frag_data = NULL;
2838	}
2839
2840	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2841		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2842		st->frag_idx = 0;
2843		goto next_skb;
2844	} else if (st->cur_skb->next) {
2845		st->cur_skb = st->cur_skb->next;
2846		st->frag_idx = 0;
2847		goto next_skb;
2848	}
2849
2850	return 0;
2851}
2852EXPORT_SYMBOL(skb_seq_read);
2853
2854/**
2855 * skb_abort_seq_read - Abort a sequential read of skb data
2856 * @st: state variable
2857 *
2858 * Must be called if skb_seq_read() was not called until it
2859 * returned 0.
2860 */
2861void skb_abort_seq_read(struct skb_seq_state *st)
2862{
2863	if (st->frag_data)
2864		kunmap_atomic(st->frag_data);
2865}
2866EXPORT_SYMBOL(skb_abort_seq_read);
2867
2868#define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2869
2870static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2871					  struct ts_config *conf,
2872					  struct ts_state *state)
2873{
2874	return skb_seq_read(offset, text, TS_SKB_CB(state));
2875}
2876
2877static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2878{
2879	skb_abort_seq_read(TS_SKB_CB(state));
2880}
2881
2882/**
2883 * skb_find_text - Find a text pattern in skb data
2884 * @skb: the buffer to look in
2885 * @from: search offset
2886 * @to: search limit
2887 * @config: textsearch configuration
2888 *
2889 * Finds a pattern in the skb data according to the specified
2890 * textsearch configuration. Use textsearch_next() to retrieve
2891 * subsequent occurrences of the pattern. Returns the offset
2892 * to the first occurrence or UINT_MAX if no match was found.
2893 */
2894unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2895			   unsigned int to, struct ts_config *config)
2896{
2897	struct ts_state state;
2898	unsigned int ret;
2899
2900	config->get_next_block = skb_ts_get_next_block;
2901	config->finish = skb_ts_finish;
2902
2903	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2904
2905	ret = textsearch_find(config, &state);
2906	return (ret <= to - from ? ret : UINT_MAX);
2907}
2908EXPORT_SYMBOL(skb_find_text);
2909
2910/**
2911 * skb_append_datato_frags - append the user data to a skb
2912 * @sk: sock  structure
2913 * @skb: skb structure to be appended with user data.
2914 * @getfrag: call back function to be used for getting the user data
2915 * @from: pointer to user message iov
2916 * @length: length of the iov message
2917 *
2918 * Description: This procedure append the user data in the fragment part
2919 * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2920 */
2921int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2922			int (*getfrag)(void *from, char *to, int offset,
2923					int len, int odd, struct sk_buff *skb),
2924			void *from, int length)
2925{
2926	int frg_cnt = skb_shinfo(skb)->nr_frags;
2927	int copy;
2928	int offset = 0;
2929	int ret;
2930	struct page_frag *pfrag = &current->task_frag;
2931
2932	do {
2933		/* Return error if we don't have space for new frag */
2934		if (frg_cnt >= MAX_SKB_FRAGS)
2935			return -EMSGSIZE;
2936
2937		if (!sk_page_frag_refill(sk, pfrag))
2938			return -ENOMEM;
2939
2940		/* copy the user data to page */
2941		copy = min_t(int, length, pfrag->size - pfrag->offset);
2942
2943		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2944			      offset, copy, 0, skb);
2945		if (ret < 0)
2946			return -EFAULT;
2947
2948		/* copy was successful so update the size parameters */
2949		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2950				   copy);
2951		frg_cnt++;
2952		pfrag->offset += copy;
2953		get_page(pfrag->page);
2954
2955		skb->truesize += copy;
2956		atomic_add(copy, &sk->sk_wmem_alloc);
2957		skb->len += copy;
2958		skb->data_len += copy;
2959		offset += copy;
2960		length -= copy;
2961
2962	} while (length > 0);
2963
2964	return 0;
2965}
2966EXPORT_SYMBOL(skb_append_datato_frags);
2967
2968/**
2969 *	skb_pull_rcsum - pull skb and update receive checksum
2970 *	@skb: buffer to update
2971 *	@len: length of data pulled
2972 *
2973 *	This function performs an skb_pull on the packet and updates
2974 *	the CHECKSUM_COMPLETE checksum.  It should be used on
2975 *	receive path processing instead of skb_pull unless you know
2976 *	that the checksum difference is zero (e.g., a valid IP header)
2977 *	or you are setting ip_summed to CHECKSUM_NONE.
2978 */
2979unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2980{
2981	unsigned char *data = skb->data;
2982
2983	BUG_ON(len > skb->len);
2984	__skb_pull(skb, len);
2985	skb_postpull_rcsum(skb, data, len);
2986	return skb->data;
2987}
2988EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2989
2990/**
2991 *	skb_segment - Perform protocol segmentation on skb.
2992 *	@head_skb: buffer to segment
2993 *	@features: features for the output path (see dev->features)
2994 *
2995 *	This function performs segmentation on the given skb.  It returns
2996 *	a pointer to the first in a list of new skbs for the segments.
2997 *	In case of error it returns ERR_PTR(err).
2998 */
2999struct sk_buff *skb_segment(struct sk_buff *head_skb,
3000			    netdev_features_t features)
3001{
3002	struct sk_buff *segs = NULL;
3003	struct sk_buff *tail = NULL;
3004	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3005	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3006	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3007	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3008	struct sk_buff *frag_skb = head_skb;
3009	unsigned int offset = doffset;
3010	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3011	unsigned int headroom;
3012	unsigned int len;
3013	__be16 proto;
3014	bool csum;
3015	int sg = !!(features & NETIF_F_SG);
3016	int nfrags = skb_shinfo(head_skb)->nr_frags;
3017	int err = -ENOMEM;
3018	int i = 0;
3019	int pos;
3020	int dummy;
3021
3022	__skb_push(head_skb, doffset);
3023	proto = skb_network_protocol(head_skb, &dummy);
3024	if (unlikely(!proto))
3025		return ERR_PTR(-EINVAL);
3026
3027	csum = !head_skb->encap_hdr_csum &&
3028	    !!can_checksum_protocol(features, proto);
3029
3030	headroom = skb_headroom(head_skb);
3031	pos = skb_headlen(head_skb);
3032
3033	do {
3034		struct sk_buff *nskb;
3035		skb_frag_t *nskb_frag;
3036		int hsize;
3037		int size;
3038
3039		len = head_skb->len - offset;
3040		if (len > mss)
3041			len = mss;
3042
3043		hsize = skb_headlen(head_skb) - offset;
3044		if (hsize < 0)
3045			hsize = 0;
3046		if (hsize > len || !sg)
3047			hsize = len;
3048
3049		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3050		    (skb_headlen(list_skb) == len || sg)) {
3051			BUG_ON(skb_headlen(list_skb) > len);
3052
3053			i = 0;
3054			nfrags = skb_shinfo(list_skb)->nr_frags;
3055			frag = skb_shinfo(list_skb)->frags;
3056			frag_skb = list_skb;
3057			pos += skb_headlen(list_skb);
3058
3059			while (pos < offset + len) {
3060				BUG_ON(i >= nfrags);
3061
3062				size = skb_frag_size(frag);
3063				if (pos + size > offset + len)
3064					break;
3065
3066				i++;
3067				pos += size;
3068				frag++;
3069			}
3070
3071			nskb = skb_clone(list_skb, GFP_ATOMIC);
3072			list_skb = list_skb->next;
3073
3074			if (unlikely(!nskb))
3075				goto err;
3076
3077			if (unlikely(pskb_trim(nskb, len))) {
3078				kfree_skb(nskb);
3079				goto err;
3080			}
3081
3082			hsize = skb_end_offset(nskb);
3083			if (skb_cow_head(nskb, doffset + headroom)) {
3084				kfree_skb(nskb);
3085				goto err;
3086			}
3087
3088			nskb->truesize += skb_end_offset(nskb) - hsize;
3089			skb_release_head_state(nskb);
3090			__skb_push(nskb, doffset);
3091		} else {
3092			nskb = __alloc_skb(hsize + doffset + headroom,
3093					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3094					   NUMA_NO_NODE);
3095
3096			if (unlikely(!nskb))
3097				goto err;
3098
3099			skb_reserve(nskb, headroom);
3100			__skb_put(nskb, doffset);
3101		}
3102
3103		if (segs)
3104			tail->next = nskb;
3105		else
3106			segs = nskb;
3107		tail = nskb;
3108
3109		__copy_skb_header(nskb, head_skb);
3110
3111		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3112		skb_reset_mac_len(nskb);
3113
3114		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3115						 nskb->data - tnl_hlen,
3116						 doffset + tnl_hlen);
3117
3118		if (nskb->len == len + doffset)
3119			goto perform_csum_check;
3120
3121		if (!sg && !nskb->remcsum_offload) {
3122			nskb->ip_summed = CHECKSUM_NONE;
3123			nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
3124							    skb_put(nskb, len),
3125							    len, 0);
3126			SKB_GSO_CB(nskb)->csum_start =
3127			    skb_headroom(nskb) + doffset;
3128			continue;
3129		}
3130
3131		nskb_frag = skb_shinfo(nskb)->frags;
3132
3133		skb_copy_from_linear_data_offset(head_skb, offset,
3134						 skb_put(nskb, hsize), hsize);
3135
3136		skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3137			SKBTX_SHARED_FRAG;
3138
3139		while (pos < offset + len) {
3140			if (i >= nfrags) {
3141				BUG_ON(skb_headlen(list_skb));
3142
3143				i = 0;
3144				nfrags = skb_shinfo(list_skb)->nr_frags;
3145				frag = skb_shinfo(list_skb)->frags;
3146				frag_skb = list_skb;
3147
3148				BUG_ON(!nfrags);
3149
3150				list_skb = list_skb->next;
3151			}
3152
3153			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3154				     MAX_SKB_FRAGS)) {
3155				net_warn_ratelimited(
3156					"skb_segment: too many frags: %u %u\n",
3157					pos, mss);
3158				goto err;
3159			}
3160
3161			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3162				goto err;
3163
3164			*nskb_frag = *frag;
3165			__skb_frag_ref(nskb_frag);
3166			size = skb_frag_size(nskb_frag);
3167
3168			if (pos < offset) {
3169				nskb_frag->page_offset += offset - pos;
3170				skb_frag_size_sub(nskb_frag, offset - pos);
3171			}
3172
3173			skb_shinfo(nskb)->nr_frags++;
3174
3175			if (pos + size <= offset + len) {
3176				i++;
3177				frag++;
3178				pos += size;
3179			} else {
3180				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3181				goto skip_fraglist;
3182			}
3183
3184			nskb_frag++;
3185		}
3186
3187skip_fraglist:
3188		nskb->data_len = len - hsize;
3189		nskb->len += nskb->data_len;
3190		nskb->truesize += nskb->data_len;
3191
3192perform_csum_check:
3193		if (!csum && !nskb->remcsum_offload) {
3194			nskb->csum = skb_checksum(nskb, doffset,
3195						  nskb->len - doffset, 0);
3196			nskb->ip_summed = CHECKSUM_NONE;
3197			SKB_GSO_CB(nskb)->csum_start =
3198			    skb_headroom(nskb) + doffset;
3199		}
3200	} while ((offset += len) < head_skb->len);
3201
3202	/* Some callers want to get the end of the list.
3203	 * Put it in segs->prev to avoid walking the list.
3204	 * (see validate_xmit_skb_list() for example)
3205	 */
3206	segs->prev = tail;
3207
3208	/* Following permits correct backpressure, for protocols
3209	 * using skb_set_owner_w().
3210	 * Idea is to tranfert ownership from head_skb to last segment.
3211	 */
3212	if (head_skb->destructor == sock_wfree) {
3213		swap(tail->truesize, head_skb->truesize);
3214		swap(tail->destructor, head_skb->destructor);
3215		swap(tail->sk, head_skb->sk);
3216	}
3217	return segs;
3218
3219err:
3220	kfree_skb_list(segs);
3221	return ERR_PTR(err);
3222}
3223EXPORT_SYMBOL_GPL(skb_segment);
3224
3225int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3226{
3227	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3228	unsigned int offset = skb_gro_offset(skb);
3229	unsigned int headlen = skb_headlen(skb);
3230	unsigned int len = skb_gro_len(skb);
3231	struct sk_buff *lp, *p = *head;
3232	unsigned int delta_truesize;
3233
3234	if (unlikely(p->len + len >= 65536))
3235		return -E2BIG;
3236
3237	lp = NAPI_GRO_CB(p)->last;
3238	pinfo = skb_shinfo(lp);
3239
3240	if (headlen <= offset) {
3241		skb_frag_t *frag;
3242		skb_frag_t *frag2;
3243		int i = skbinfo->nr_frags;
3244		int nr_frags = pinfo->nr_frags + i;
3245
3246		if (nr_frags > MAX_SKB_FRAGS)
3247			goto merge;
3248
3249		offset -= headlen;
3250		pinfo->nr_frags = nr_frags;
3251		skbinfo->nr_frags = 0;
3252
3253		frag = pinfo->frags + nr_frags;
3254		frag2 = skbinfo->frags + i;
3255		do {
3256			*--frag = *--frag2;
3257		} while (--i);
3258
3259		frag->page_offset += offset;
3260		skb_frag_size_sub(frag, offset);
3261
3262		/* all fragments truesize : remove (head size + sk_buff) */
3263		delta_truesize = skb->truesize -
3264				 SKB_TRUESIZE(skb_end_offset(skb));
3265
3266		skb->truesize -= skb->data_len;
3267		skb->len -= skb->data_len;
3268		skb->data_len = 0;
3269
3270		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3271		goto done;
3272	} else if (skb->head_frag) {
3273		int nr_frags = pinfo->nr_frags;
3274		skb_frag_t *frag = pinfo->frags + nr_frags;
3275		struct page *page = virt_to_head_page(skb->head);
3276		unsigned int first_size = headlen - offset;
3277		unsigned int first_offset;
3278
3279		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3280			goto merge;
3281
3282		first_offset = skb->data -
3283			       (unsigned char *)page_address(page) +
3284			       offset;
3285
3286		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3287
3288		frag->page.p	  = page;
3289		frag->page_offset = first_offset;
3290		skb_frag_size_set(frag, first_size);
3291
3292		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3293		/* We dont need to clear skbinfo->nr_frags here */
3294
3295		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3296		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3297		goto done;
3298	}
3299
3300merge:
3301	delta_truesize = skb->truesize;
3302	if (offset > headlen) {
3303		unsigned int eat = offset - headlen;
3304
3305		skbinfo->frags[0].page_offset += eat;
3306		skb_frag_size_sub(&skbinfo->frags[0], eat);
3307		skb->data_len -= eat;
3308		skb->len -= eat;
3309		offset = headlen;
3310	}
3311
3312	__skb_pull(skb, offset);
3313
3314	if (NAPI_GRO_CB(p)->last == p)
3315		skb_shinfo(p)->frag_list = skb;
3316	else
3317		NAPI_GRO_CB(p)->last->next = skb;
3318	NAPI_GRO_CB(p)->last = skb;
3319	__skb_header_release(skb);
3320	lp = p;
3321
3322done:
3323	NAPI_GRO_CB(p)->count++;
3324	p->data_len += len;
3325	p->truesize += delta_truesize;
3326	p->len += len;
3327	if (lp != p) {
3328		lp->data_len += len;
3329		lp->truesize += delta_truesize;
3330		lp->len += len;
3331	}
3332	NAPI_GRO_CB(skb)->same_flow = 1;
3333	return 0;
3334}
3335
3336void __init skb_init(void)
3337{
3338	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3339					      sizeof(struct sk_buff),
3340					      0,
3341					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3342					      NULL);
3343	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3344						sizeof(struct sk_buff_fclones),
3345						0,
3346						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3347						NULL);
3348}
3349
3350/**
3351 *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3352 *	@skb: Socket buffer containing the buffers to be mapped
3353 *	@sg: The scatter-gather list to map into
3354 *	@offset: The offset into the buffer's contents to start mapping
3355 *	@len: Length of buffer space to be mapped
3356 *
3357 *	Fill the specified scatter-gather list with mappings/pointers into a
3358 *	region of the buffer space attached to a socket buffer.
3359 */
3360static int
3361__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3362{
3363	int start = skb_headlen(skb);
3364	int i, copy = start - offset;
3365	struct sk_buff *frag_iter;
3366	int elt = 0;
3367
3368	if (copy > 0) {
3369		if (copy > len)
3370			copy = len;
3371		sg_set_buf(sg, skb->data + offset, copy);
3372		elt++;
3373		if ((len -= copy) == 0)
3374			return elt;
3375		offset += copy;
3376	}
3377
3378	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3379		int end;
3380
3381		WARN_ON(start > offset + len);
3382
3383		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3384		if ((copy = end - offset) > 0) {
3385			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3386
3387			if (copy > len)
3388				copy = len;
3389			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3390					frag->page_offset+offset-start);
3391			elt++;
3392			if (!(len -= copy))
3393				return elt;
3394			offset += copy;
3395		}
3396		start = end;
3397	}
3398
3399	skb_walk_frags(skb, frag_iter) {
3400		int end;
3401
3402		WARN_ON(start > offset + len);
3403
3404		end = start + frag_iter->len;
3405		if ((copy = end - offset) > 0) {
3406			if (copy > len)
3407				copy = len;
3408			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3409					      copy);
3410			if ((len -= copy) == 0)
3411				return elt;
3412			offset += copy;
3413		}
3414		start = end;
3415	}
3416	BUG_ON(len);
3417	return elt;
3418}
3419
3420/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3421 * sglist without mark the sg which contain last skb data as the end.
3422 * So the caller can mannipulate sg list as will when padding new data after
3423 * the first call without calling sg_unmark_end to expend sg list.
3424 *
3425 * Scenario to use skb_to_sgvec_nomark:
3426 * 1. sg_init_table
3427 * 2. skb_to_sgvec_nomark(payload1)
3428 * 3. skb_to_sgvec_nomark(payload2)
3429 *
3430 * This is equivalent to:
3431 * 1. sg_init_table
3432 * 2. skb_to_sgvec(payload1)
3433 * 3. sg_unmark_end
3434 * 4. skb_to_sgvec(payload2)
3435 *
3436 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3437 * is more preferable.
3438 */
3439int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3440			int offset, int len)
3441{
3442	return __skb_to_sgvec(skb, sg, offset, len);
3443}
3444EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3445
3446int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3447{
3448	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3449
3450	sg_mark_end(&sg[nsg - 1]);
3451
3452	return nsg;
3453}
3454EXPORT_SYMBOL_GPL(skb_to_sgvec);
3455
3456/**
3457 *	skb_cow_data - Check that a socket buffer's data buffers are writable
3458 *	@skb: The socket buffer to check.
3459 *	@tailbits: Amount of trailing space to be added
3460 *	@trailer: Returned pointer to the skb where the @tailbits space begins
3461 *
3462 *	Make sure that the data buffers attached to a socket buffer are
3463 *	writable. If they are not, private copies are made of the data buffers
3464 *	and the socket buffer is set to use these instead.
3465 *
3466 *	If @tailbits is given, make sure that there is space to write @tailbits
3467 *	bytes of data beyond current end of socket buffer.  @trailer will be
3468 *	set to point to the skb in which this space begins.
3469 *
3470 *	The number of scatterlist elements required to completely map the
3471 *	COW'd and extended socket buffer will be returned.
3472 */
3473int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3474{
3475	int copyflag;
3476	int elt;
3477	struct sk_buff *skb1, **skb_p;
3478
3479	/* If skb is cloned or its head is paged, reallocate
3480	 * head pulling out all the pages (pages are considered not writable
3481	 * at the moment even if they are anonymous).
3482	 */
3483	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3484	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3485		return -ENOMEM;
3486
3487	/* Easy case. Most of packets will go this way. */
3488	if (!skb_has_frag_list(skb)) {
3489		/* A little of trouble, not enough of space for trailer.
3490		 * This should not happen, when stack is tuned to generate
3491		 * good frames. OK, on miss we reallocate and reserve even more
3492		 * space, 128 bytes is fair. */
3493
3494		if (skb_tailroom(skb) < tailbits &&
3495		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3496			return -ENOMEM;
3497
3498		/* Voila! */
3499		*trailer = skb;
3500		return 1;
3501	}
3502
3503	/* Misery. We are in troubles, going to mincer fragments... */
3504
3505	elt = 1;
3506	skb_p = &skb_shinfo(skb)->frag_list;
3507	copyflag = 0;
3508
3509	while ((skb1 = *skb_p) != NULL) {
3510		int ntail = 0;
3511
3512		/* The fragment is partially pulled by someone,
3513		 * this can happen on input. Copy it and everything
3514		 * after it. */
3515
3516		if (skb_shared(skb1))
3517			copyflag = 1;
3518
3519		/* If the skb is the last, worry about trailer. */
3520
3521		if (skb1->next == NULL && tailbits) {
3522			if (skb_shinfo(skb1)->nr_frags ||
3523			    skb_has_frag_list(skb1) ||
3524			    skb_tailroom(skb1) < tailbits)
3525				ntail = tailbits + 128;
3526		}
3527
3528		if (copyflag ||
3529		    skb_cloned(skb1) ||
3530		    ntail ||
3531		    skb_shinfo(skb1)->nr_frags ||
3532		    skb_has_frag_list(skb1)) {
3533			struct sk_buff *skb2;
3534
3535			/* Fuck, we are miserable poor guys... */
3536			if (ntail == 0)
3537				skb2 = skb_copy(skb1, GFP_ATOMIC);
3538			else
3539				skb2 = skb_copy_expand(skb1,
3540						       skb_headroom(skb1),
3541						       ntail,
3542						       GFP_ATOMIC);
3543			if (unlikely(skb2 == NULL))
3544				return -ENOMEM;
3545
3546			if (skb1->sk)
3547				skb_set_owner_w(skb2, skb1->sk);
3548
3549			/* Looking around. Are we still alive?
3550			 * OK, link new skb, drop old one */
3551
3552			skb2->next = skb1->next;
3553			*skb_p = skb2;
3554			kfree_skb(skb1);
3555			skb1 = skb2;
3556		}
3557		elt++;
3558		*trailer = skb1;
3559		skb_p = &skb1->next;
3560	}
3561
3562	return elt;
3563}
3564EXPORT_SYMBOL_GPL(skb_cow_data);
3565
3566static void sock_rmem_free(struct sk_buff *skb)
3567{
3568	struct sock *sk = skb->sk;
3569
3570	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3571}
3572
3573/*
3574 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3575 */
3576int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3577{
3578	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3579	    (unsigned int)sk->sk_rcvbuf)
3580		return -ENOMEM;
3581
3582	skb_orphan(skb);
3583	skb->sk = sk;
3584	skb->destructor = sock_rmem_free;
3585	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3586
3587	/* before exiting rcu section, make sure dst is refcounted */
3588	skb_dst_force(skb);
3589
3590	skb_queue_tail(&sk->sk_error_queue, skb);
3591	if (!sock_flag(sk, SOCK_DEAD))
3592		sk->sk_data_ready(sk);
3593	return 0;
3594}
3595EXPORT_SYMBOL(sock_queue_err_skb);
3596
3597struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3598{
3599	struct sk_buff_head *q = &sk->sk_error_queue;
3600	struct sk_buff *skb, *skb_next;
3601	unsigned long flags;
3602	int err = 0;
3603
3604	spin_lock_irqsave(&q->lock, flags);
3605	skb = __skb_dequeue(q);
3606	if (skb && (skb_next = skb_peek(q)))
3607		err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3608	spin_unlock_irqrestore(&q->lock, flags);
3609
3610	sk->sk_err = err;
3611	if (err)
3612		sk->sk_error_report(sk);
3613
3614	return skb;
3615}
3616EXPORT_SYMBOL(sock_dequeue_err_skb);
3617
3618/**
3619 * skb_clone_sk - create clone of skb, and take reference to socket
3620 * @skb: the skb to clone
3621 *
3622 * This function creates a clone of a buffer that holds a reference on
3623 * sk_refcnt.  Buffers created via this function are meant to be
3624 * returned using sock_queue_err_skb, or free via kfree_skb.
3625 *
3626 * When passing buffers allocated with this function to sock_queue_err_skb
3627 * it is necessary to wrap the call with sock_hold/sock_put in order to
3628 * prevent the socket from being released prior to being enqueued on
3629 * the sk_error_queue.
3630 */
3631struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3632{
3633	struct sock *sk = skb->sk;
3634	struct sk_buff *clone;
3635
3636	if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3637		return NULL;
3638
3639	clone = skb_clone(skb, GFP_ATOMIC);
3640	if (!clone) {
3641		sock_put(sk);
3642		return NULL;
3643	}
3644
3645	clone->sk = sk;
3646	clone->destructor = sock_efree;
3647
3648	return clone;
3649}
3650EXPORT_SYMBOL(skb_clone_sk);
3651
3652static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3653					struct sock *sk,
3654					int tstype)
3655{
3656	struct sock_exterr_skb *serr;
3657	int err;
3658
3659	serr = SKB_EXT_ERR(skb);
3660	memset(serr, 0, sizeof(*serr));
3661	serr->ee.ee_errno = ENOMSG;
3662	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3663	serr->ee.ee_info = tstype;
3664	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3665		serr->ee.ee_data = skb_shinfo(skb)->tskey;
3666		if (sk->sk_protocol == IPPROTO_TCP &&
3667		    sk->sk_type == SOCK_STREAM)
3668			serr->ee.ee_data -= sk->sk_tskey;
3669	}
3670
3671	err = sock_queue_err_skb(sk, skb);
3672
3673	if (err)
3674		kfree_skb(skb);
3675}
3676
3677static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3678{
3679	bool ret;
3680
3681	if (likely(sysctl_tstamp_allow_data || tsonly))
3682		return true;
3683
3684	read_lock_bh(&sk->sk_callback_lock);
3685	ret = sk->sk_socket && sk->sk_socket->file &&
3686	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3687	read_unlock_bh(&sk->sk_callback_lock);
3688	return ret;
3689}
3690
3691void skb_complete_tx_timestamp(struct sk_buff *skb,
3692			       struct skb_shared_hwtstamps *hwtstamps)
3693{
3694	struct sock *sk = skb->sk;
3695
3696	if (!skb_may_tx_timestamp(sk, false))
3697		return;
3698
3699	/* take a reference to prevent skb_orphan() from freeing the socket */
3700	sock_hold(sk);
3701
3702	*skb_hwtstamps(skb) = *hwtstamps;
3703	__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3704
3705	sock_put(sk);
3706}
3707EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3708
3709void __skb_tstamp_tx(struct sk_buff *orig_skb,
3710		     struct skb_shared_hwtstamps *hwtstamps,
3711		     struct sock *sk, int tstype)
3712{
3713	struct sk_buff *skb;
3714	bool tsonly;
3715
3716	if (!sk)
3717		return;
3718
3719	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3720	if (!skb_may_tx_timestamp(sk, tsonly))
3721		return;
3722
3723	if (tsonly)
3724		skb = alloc_skb(0, GFP_ATOMIC);
3725	else
3726		skb = skb_clone(orig_skb, GFP_ATOMIC);
3727	if (!skb)
3728		return;
3729
3730	if (tsonly) {
3731		skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3732		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3733	}
3734
3735	if (hwtstamps)
3736		*skb_hwtstamps(skb) = *hwtstamps;
3737	else
3738		skb->tstamp = ktime_get_real();
3739
3740	__skb_complete_tx_timestamp(skb, sk, tstype);
3741}
3742EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3743
3744void skb_tstamp_tx(struct sk_buff *orig_skb,
3745		   struct skb_shared_hwtstamps *hwtstamps)
3746{
3747	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3748			       SCM_TSTAMP_SND);
3749}
3750EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3751
3752void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3753{
3754	struct sock *sk = skb->sk;
3755	struct sock_exterr_skb *serr;
3756	int err;
3757
3758	skb->wifi_acked_valid = 1;
3759	skb->wifi_acked = acked;
3760
3761	serr = SKB_EXT_ERR(skb);
3762	memset(serr, 0, sizeof(*serr));
3763	serr->ee.ee_errno = ENOMSG;
3764	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3765
3766	/* take a reference to prevent skb_orphan() from freeing the socket */
3767	sock_hold(sk);
3768
3769	err = sock_queue_err_skb(sk, skb);
3770	if (err)
3771		kfree_skb(skb);
3772
3773	sock_put(sk);
3774}
3775EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3776
3777/**
3778 * skb_partial_csum_set - set up and verify partial csum values for packet
3779 * @skb: the skb to set
3780 * @start: the number of bytes after skb->data to start checksumming.
3781 * @off: the offset from start to place the checksum.
3782 *
3783 * For untrusted partially-checksummed packets, we need to make sure the values
3784 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3785 *
3786 * This function checks and sets those values and skb->ip_summed: if this
3787 * returns false you should drop the packet.
3788 */
3789bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3790{
3791	if (unlikely(start > skb_headlen(skb)) ||
3792	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3793		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3794				     start, off, skb_headlen(skb));
3795		return false;
3796	}
3797	skb->ip_summed = CHECKSUM_PARTIAL;
3798	skb->csum_start = skb_headroom(skb) + start;
3799	skb->csum_offset = off;
3800	skb_set_transport_header(skb, start);
3801	return true;
3802}
3803EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3804
3805static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3806			       unsigned int max)
3807{
3808	if (skb_headlen(skb) >= len)
3809		return 0;
3810
3811	/* If we need to pullup then pullup to the max, so we
3812	 * won't need to do it again.
3813	 */
3814	if (max > skb->len)
3815		max = skb->len;
3816
3817	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3818		return -ENOMEM;
3819
3820	if (skb_headlen(skb) < len)
3821		return -EPROTO;
3822
3823	return 0;
3824}
3825
3826#define MAX_TCP_HDR_LEN (15 * 4)
3827
3828static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3829				      typeof(IPPROTO_IP) proto,
3830				      unsigned int off)
3831{
3832	switch (proto) {
3833		int err;
3834
3835	case IPPROTO_TCP:
3836		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3837					  off + MAX_TCP_HDR_LEN);
3838		if (!err && !skb_partial_csum_set(skb, off,
3839						  offsetof(struct tcphdr,
3840							   check)))
3841			err = -EPROTO;
3842		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3843
3844	case IPPROTO_UDP:
3845		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3846					  off + sizeof(struct udphdr));
3847		if (!err && !skb_partial_csum_set(skb, off,
3848						  offsetof(struct udphdr,
3849							   check)))
3850			err = -EPROTO;
3851		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3852	}
3853
3854	return ERR_PTR(-EPROTO);
3855}
3856
3857/* This value should be large enough to cover a tagged ethernet header plus
3858 * maximally sized IP and TCP or UDP headers.
3859 */
3860#define MAX_IP_HDR_LEN 128
3861
3862static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3863{
3864	unsigned int off;
3865	bool fragment;
3866	__sum16 *csum;
3867	int err;
3868
3869	fragment = false;
3870
3871	err = skb_maybe_pull_tail(skb,
3872				  sizeof(struct iphdr),
3873				  MAX_IP_HDR_LEN);
3874	if (err < 0)
3875		goto out;
3876
3877	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3878		fragment = true;
3879
3880	off = ip_hdrlen(skb);
3881
3882	err = -EPROTO;
3883
3884	if (fragment)
3885		goto out;
3886
3887	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3888	if (IS_ERR(csum))
3889		return PTR_ERR(csum);
3890
3891	if (recalculate)
3892		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3893					   ip_hdr(skb)->daddr,
3894					   skb->len - off,
3895					   ip_hdr(skb)->protocol, 0);
3896	err = 0;
3897
3898out:
3899	return err;
3900}
3901
3902/* This value should be large enough to cover a tagged ethernet header plus
3903 * an IPv6 header, all options, and a maximal TCP or UDP header.
3904 */
3905#define MAX_IPV6_HDR_LEN 256
3906
3907#define OPT_HDR(type, skb, off) \
3908	(type *)(skb_network_header(skb) + (off))
3909
3910static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3911{
3912	int err;
3913	u8 nexthdr;
3914	unsigned int off;
3915	unsigned int len;
3916	bool fragment;
3917	bool done;
3918	__sum16 *csum;
3919
3920	fragment = false;
3921	done = false;
3922
3923	off = sizeof(struct ipv6hdr);
3924
3925	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3926	if (err < 0)
3927		goto out;
3928
3929	nexthdr = ipv6_hdr(skb)->nexthdr;
3930
3931	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3932	while (off <= len && !done) {
3933		switch (nexthdr) {
3934		case IPPROTO_DSTOPTS:
3935		case IPPROTO_HOPOPTS:
3936		case IPPROTO_ROUTING: {
3937			struct ipv6_opt_hdr *hp;
3938
3939			err = skb_maybe_pull_tail(skb,
3940						  off +
3941						  sizeof(struct ipv6_opt_hdr),
3942						  MAX_IPV6_HDR_LEN);
3943			if (err < 0)
3944				goto out;
3945
3946			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3947			nexthdr = hp->nexthdr;
3948			off += ipv6_optlen(hp);
3949			break;
3950		}
3951		case IPPROTO_AH: {
3952			struct ip_auth_hdr *hp;
3953
3954			err = skb_maybe_pull_tail(skb,
3955						  off +
3956						  sizeof(struct ip_auth_hdr),
3957						  MAX_IPV6_HDR_LEN);
3958			if (err < 0)
3959				goto out;
3960
3961			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3962			nexthdr = hp->nexthdr;
3963			off += ipv6_authlen(hp);
3964			break;
3965		}
3966		case IPPROTO_FRAGMENT: {
3967			struct frag_hdr *hp;
3968
3969			err = skb_maybe_pull_tail(skb,
3970						  off +
3971						  sizeof(struct frag_hdr),
3972						  MAX_IPV6_HDR_LEN);
3973			if (err < 0)
3974				goto out;
3975
3976			hp = OPT_HDR(struct frag_hdr, skb, off);
3977
3978			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
3979				fragment = true;
3980
3981			nexthdr = hp->nexthdr;
3982			off += sizeof(struct frag_hdr);
3983			break;
3984		}
3985		default:
3986			done = true;
3987			break;
3988		}
3989	}
3990
3991	err = -EPROTO;
3992
3993	if (!done || fragment)
3994		goto out;
3995
3996	csum = skb_checksum_setup_ip(skb, nexthdr, off);
3997	if (IS_ERR(csum))
3998		return PTR_ERR(csum);
3999
4000	if (recalculate)
4001		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4002					 &ipv6_hdr(skb)->daddr,
4003					 skb->len - off, nexthdr, 0);
4004	err = 0;
4005
4006out:
4007	return err;
4008}
4009
4010/**
4011 * skb_checksum_setup - set up partial checksum offset
4012 * @skb: the skb to set up
4013 * @recalculate: if true the pseudo-header checksum will be recalculated
4014 */
4015int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4016{
4017	int err;
4018
4019	switch (skb->protocol) {
4020	case htons(ETH_P_IP):
4021		err = skb_checksum_setup_ipv4(skb, recalculate);
4022		break;
4023
4024	case htons(ETH_P_IPV6):
4025		err = skb_checksum_setup_ipv6(skb, recalculate);
4026		break;
4027
4028	default:
4029		err = -EPROTO;
4030		break;
4031	}
4032
4033	return err;
4034}
4035EXPORT_SYMBOL(skb_checksum_setup);
4036
4037void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4038{
4039	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4040			     skb->dev->name);
4041}
4042EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4043
4044void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4045{
4046	if (head_stolen) {
4047		skb_release_head_state(skb);
4048		kmem_cache_free(skbuff_head_cache, skb);
4049	} else {
4050		__kfree_skb(skb);
4051	}
4052}
4053EXPORT_SYMBOL(kfree_skb_partial);
4054
4055/**
4056 * skb_try_coalesce - try to merge skb to prior one
4057 * @to: prior buffer
4058 * @from: buffer to add
4059 * @fragstolen: pointer to boolean
4060 * @delta_truesize: how much more was allocated than was requested
4061 */
4062bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4063		      bool *fragstolen, int *delta_truesize)
4064{
4065	int i, delta, len = from->len;
4066
4067	*fragstolen = false;
4068
4069	if (skb_cloned(to))
4070		return false;
4071
4072	if (len <= skb_tailroom(to)) {
4073		if (len)
4074			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4075		*delta_truesize = 0;
4076		return true;
4077	}
4078
4079	if (skb_has_frag_list(to) || skb_has_frag_list(from))
4080		return false;
4081
4082	if (skb_headlen(from) != 0) {
4083		struct page *page;
4084		unsigned int offset;
4085
4086		if (skb_shinfo(to)->nr_frags +
4087		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4088			return false;
4089
4090		if (skb_head_is_locked(from))
4091			return false;
4092
4093		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4094
4095		page = virt_to_head_page(from->head);
4096		offset = from->data - (unsigned char *)page_address(page);
4097
4098		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4099				   page, offset, skb_headlen(from));
4100		*fragstolen = true;
4101	} else {
4102		if (skb_shinfo(to)->nr_frags +
4103		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4104			return false;
4105
4106		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4107	}
4108
4109	WARN_ON_ONCE(delta < len);
4110
4111	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4112	       skb_shinfo(from)->frags,
4113	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4114	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4115
4116	if (!skb_cloned(from))
4117		skb_shinfo(from)->nr_frags = 0;
4118
4119	/* if the skb is not cloned this does nothing
4120	 * since we set nr_frags to 0.
4121	 */
4122	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4123		skb_frag_ref(from, i);
4124
4125	to->truesize += delta;
4126	to->len += len;
4127	to->data_len += len;
4128
4129	*delta_truesize = delta;
4130	return true;
4131}
4132EXPORT_SYMBOL(skb_try_coalesce);
4133
4134/**
4135 * skb_scrub_packet - scrub an skb
4136 *
4137 * @skb: buffer to clean
4138 * @xnet: packet is crossing netns
4139 *
4140 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4141 * into/from a tunnel. Some information have to be cleared during these
4142 * operations.
4143 * skb_scrub_packet can also be used to clean a skb before injecting it in
4144 * another namespace (@xnet == true). We have to clear all information in the
4145 * skb that could impact namespace isolation.
4146 */
4147void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4148{
4149	skb->tstamp.tv64 = 0;
4150	skb->pkt_type = PACKET_HOST;
4151	skb->skb_iif = 0;
4152	skb->ignore_df = 0;
4153	skb_dst_drop(skb);
4154	skb_sender_cpu_clear(skb);
4155	secpath_reset(skb);
4156	nf_reset(skb);
4157	nf_reset_trace(skb);
4158
4159	if (!xnet)
4160		return;
4161
4162	skb_orphan(skb);
4163	skb->mark = 0;
4164}
4165EXPORT_SYMBOL_GPL(skb_scrub_packet);
4166
4167/**
4168 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4169 *
4170 * @skb: GSO skb
4171 *
4172 * skb_gso_transport_seglen is used to determine the real size of the
4173 * individual segments, including Layer4 headers (TCP/UDP).
4174 *
4175 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4176 */
4177unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4178{
4179	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4180	unsigned int thlen = 0;
4181
4182	if (skb->encapsulation) {
4183		thlen = skb_inner_transport_header(skb) -
4184			skb_transport_header(skb);
4185
4186		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4187			thlen += inner_tcp_hdrlen(skb);
4188	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4189		thlen = tcp_hdrlen(skb);
4190	}
4191	/* UFO sets gso_size to the size of the fragmentation
4192	 * payload, i.e. the size of the L4 (UDP) header is already
4193	 * accounted for.
4194	 */
4195	return thlen + shinfo->gso_size;
4196}
4197EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4198
4199static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4200{
4201	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4202		kfree_skb(skb);
4203		return NULL;
4204	}
4205
4206	memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4207		2 * ETH_ALEN);
4208	skb->mac_header += VLAN_HLEN;
4209	return skb;
4210}
4211
4212struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4213{
4214	struct vlan_hdr *vhdr;
4215	u16 vlan_tci;
4216
4217	if (unlikely(skb_vlan_tag_present(skb))) {
4218		/* vlan_tci is already set-up so leave this for another time */
4219		return skb;
4220	}
4221
4222	skb = skb_share_check(skb, GFP_ATOMIC);
4223	if (unlikely(!skb))
4224		goto err_free;
4225
4226	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4227		goto err_free;
4228
4229	vhdr = (struct vlan_hdr *)skb->data;
4230	vlan_tci = ntohs(vhdr->h_vlan_TCI);
4231	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4232
4233	skb_pull_rcsum(skb, VLAN_HLEN);
4234	vlan_set_encap_proto(skb, vhdr);
4235
4236	skb = skb_reorder_vlan_header(skb);
4237	if (unlikely(!skb))
4238		goto err_free;
4239
4240	skb_reset_network_header(skb);
4241	skb_reset_transport_header(skb);
4242	skb_reset_mac_len(skb);
4243
4244	return skb;
4245
4246err_free:
4247	kfree_skb(skb);
4248	return NULL;
4249}
4250EXPORT_SYMBOL(skb_vlan_untag);
4251
4252int skb_ensure_writable(struct sk_buff *skb, int write_len)
4253{
4254	if (!pskb_may_pull(skb, write_len))
4255		return -ENOMEM;
4256
4257	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4258		return 0;
4259
4260	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4261}
4262EXPORT_SYMBOL(skb_ensure_writable);
4263
4264/* remove VLAN header from packet and update csum accordingly. */
4265static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4266{
4267	struct vlan_hdr *vhdr;
4268	unsigned int offset = skb->data - skb_mac_header(skb);
4269	int err;
4270
4271	__skb_push(skb, offset);
4272	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4273	if (unlikely(err))
4274		goto pull;
4275
4276	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4277
4278	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4279	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
4280
4281	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4282	__skb_pull(skb, VLAN_HLEN);
4283
4284	vlan_set_encap_proto(skb, vhdr);
4285	skb->mac_header += VLAN_HLEN;
4286
4287	if (skb_network_offset(skb) < ETH_HLEN)
4288		skb_set_network_header(skb, ETH_HLEN);
4289
4290	skb_reset_mac_len(skb);
4291pull:
4292	__skb_pull(skb, offset);
4293
4294	return err;
4295}
4296
4297int skb_vlan_pop(struct sk_buff *skb)
4298{
4299	u16 vlan_tci;
4300	__be16 vlan_proto;
4301	int err;
4302
4303	if (likely(skb_vlan_tag_present(skb))) {
4304		skb->vlan_tci = 0;
4305	} else {
4306		if (unlikely((skb->protocol != htons(ETH_P_8021Q) &&
4307			      skb->protocol != htons(ETH_P_8021AD)) ||
4308			     skb->len < VLAN_ETH_HLEN))
4309			return 0;
4310
4311		err = __skb_vlan_pop(skb, &vlan_tci);
4312		if (err)
4313			return err;
4314	}
4315	/* move next vlan tag to hw accel tag */
4316	if (likely((skb->protocol != htons(ETH_P_8021Q) &&
4317		    skb->protocol != htons(ETH_P_8021AD)) ||
4318		   skb->len < VLAN_ETH_HLEN))
4319		return 0;
4320
4321	vlan_proto = skb->protocol;
4322	err = __skb_vlan_pop(skb, &vlan_tci);
4323	if (unlikely(err))
4324		return err;
4325
4326	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4327	return 0;
4328}
4329EXPORT_SYMBOL(skb_vlan_pop);
4330
4331int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4332{
4333	if (skb_vlan_tag_present(skb)) {
4334		unsigned int offset = skb->data - skb_mac_header(skb);
4335		int err;
4336
4337		/* __vlan_insert_tag expect skb->data pointing to mac header.
4338		 * So change skb->data before calling it and change back to
4339		 * original position later
4340		 */
4341		__skb_push(skb, offset);
4342		err = __vlan_insert_tag(skb, skb->vlan_proto,
4343					skb_vlan_tag_get(skb));
4344		if (err)
4345			return err;
4346		skb->protocol = skb->vlan_proto;
4347		skb->mac_len += VLAN_HLEN;
4348		__skb_pull(skb, offset);
4349
4350		if (skb->ip_summed == CHECKSUM_COMPLETE)
4351			skb->csum = csum_add(skb->csum, csum_partial(skb->data
4352					+ (2 * ETH_ALEN), VLAN_HLEN, 0));
4353	}
4354	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4355	return 0;
4356}
4357EXPORT_SYMBOL(skb_vlan_push);
4358
4359/**
4360 * alloc_skb_with_frags - allocate skb with page frags
4361 *
4362 * @header_len: size of linear part
4363 * @data_len: needed length in frags
4364 * @max_page_order: max page order desired.
4365 * @errcode: pointer to error code if any
4366 * @gfp_mask: allocation mask
4367 *
4368 * This can be used to allocate a paged skb, given a maximal order for frags.
4369 */
4370struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4371				     unsigned long data_len,
4372				     int max_page_order,
4373				     int *errcode,
4374				     gfp_t gfp_mask)
4375{
4376	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4377	unsigned long chunk;
4378	struct sk_buff *skb;
4379	struct page *page;
4380	gfp_t gfp_head;
4381	int i;
4382
4383	*errcode = -EMSGSIZE;
4384	/* Note this test could be relaxed, if we succeed to allocate
4385	 * high order pages...
4386	 */
4387	if (npages > MAX_SKB_FRAGS)
4388		return NULL;
4389
4390	gfp_head = gfp_mask;
4391	if (gfp_head & __GFP_WAIT)
4392		gfp_head |= __GFP_REPEAT;
4393
4394	*errcode = -ENOBUFS;
4395	skb = alloc_skb(header_len, gfp_head);
4396	if (!skb)
4397		return NULL;
4398
4399	skb->truesize += npages << PAGE_SHIFT;
4400
4401	for (i = 0; npages > 0; i++) {
4402		int order = max_page_order;
4403
4404		while (order) {
4405			if (npages >= 1 << order) {
4406				page = alloc_pages((gfp_mask & ~__GFP_WAIT) |
4407						   __GFP_COMP |
4408						   __GFP_NOWARN |
4409						   __GFP_NORETRY,
4410						   order);
4411				if (page)
4412					goto fill_page;
4413				/* Do not retry other high order allocations */
4414				order = 1;
4415				max_page_order = 0;
4416			}
4417			order--;
4418		}
4419		page = alloc_page(gfp_mask);
4420		if (!page)
4421			goto failure;
4422fill_page:
4423		chunk = min_t(unsigned long, data_len,
4424			      PAGE_SIZE << order);
4425		skb_fill_page_desc(skb, i, page, 0, chunk);
4426		data_len -= chunk;
4427		npages -= 1 << order;
4428	}
4429	return skb;
4430
4431failure:
4432	kfree_skb(skb);
4433	return NULL;
4434}
4435EXPORT_SYMBOL(alloc_skb_with_frags);
4436