1/* flow.c: Generic flow cache.
2 *
3 * Copyright (C) 2003 Alexey N. Kuznetsov (kuznet@ms2.inr.ac.ru)
4 * Copyright (C) 2003 David S. Miller (davem@redhat.com)
5 */
6
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/list.h>
10#include <linux/jhash.h>
11#include <linux/interrupt.h>
12#include <linux/mm.h>
13#include <linux/random.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/smp.h>
17#include <linux/completion.h>
18#include <linux/percpu.h>
19#include <linux/bitops.h>
20#include <linux/notifier.h>
21#include <linux/cpu.h>
22#include <linux/cpumask.h>
23#include <linux/mutex.h>
24#include <net/flow.h>
25#include <linux/atomic.h>
26#include <linux/security.h>
27#include <net/net_namespace.h>
28
29struct flow_cache_entry {
30	union {
31		struct hlist_node	hlist;
32		struct list_head	gc_list;
33	} u;
34	struct net			*net;
35	u16				family;
36	u8				dir;
37	u32				genid;
38	struct flowi			key;
39	struct flow_cache_object	*object;
40};
41
42struct flow_flush_info {
43	struct flow_cache		*cache;
44	atomic_t			cpuleft;
45	struct completion		completion;
46};
47
48static struct kmem_cache *flow_cachep __read_mostly;
49
50#define flow_cache_hash_size(cache)	(1 << (cache)->hash_shift)
51#define FLOW_HASH_RND_PERIOD		(10 * 60 * HZ)
52
53static void flow_cache_new_hashrnd(unsigned long arg)
54{
55	struct flow_cache *fc = (void *) arg;
56	int i;
57
58	for_each_possible_cpu(i)
59		per_cpu_ptr(fc->percpu, i)->hash_rnd_recalc = 1;
60
61	fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
62	add_timer(&fc->rnd_timer);
63}
64
65static int flow_entry_valid(struct flow_cache_entry *fle,
66				struct netns_xfrm *xfrm)
67{
68	if (atomic_read(&xfrm->flow_cache_genid) != fle->genid)
69		return 0;
70	if (fle->object && !fle->object->ops->check(fle->object))
71		return 0;
72	return 1;
73}
74
75static void flow_entry_kill(struct flow_cache_entry *fle,
76				struct netns_xfrm *xfrm)
77{
78	if (fle->object)
79		fle->object->ops->delete(fle->object);
80	kmem_cache_free(flow_cachep, fle);
81}
82
83static void flow_cache_gc_task(struct work_struct *work)
84{
85	struct list_head gc_list;
86	struct flow_cache_entry *fce, *n;
87	struct netns_xfrm *xfrm = container_of(work, struct netns_xfrm,
88						flow_cache_gc_work);
89
90	INIT_LIST_HEAD(&gc_list);
91	spin_lock_bh(&xfrm->flow_cache_gc_lock);
92	list_splice_tail_init(&xfrm->flow_cache_gc_list, &gc_list);
93	spin_unlock_bh(&xfrm->flow_cache_gc_lock);
94
95	list_for_each_entry_safe(fce, n, &gc_list, u.gc_list)
96		flow_entry_kill(fce, xfrm);
97}
98
99static void flow_cache_queue_garbage(struct flow_cache_percpu *fcp,
100				     int deleted, struct list_head *gc_list,
101				     struct netns_xfrm *xfrm)
102{
103	if (deleted) {
104		fcp->hash_count -= deleted;
105		spin_lock_bh(&xfrm->flow_cache_gc_lock);
106		list_splice_tail(gc_list, &xfrm->flow_cache_gc_list);
107		spin_unlock_bh(&xfrm->flow_cache_gc_lock);
108		schedule_work(&xfrm->flow_cache_gc_work);
109	}
110}
111
112static void __flow_cache_shrink(struct flow_cache *fc,
113				struct flow_cache_percpu *fcp,
114				int shrink_to)
115{
116	struct flow_cache_entry *fle;
117	struct hlist_node *tmp;
118	LIST_HEAD(gc_list);
119	int i, deleted = 0;
120	struct netns_xfrm *xfrm = container_of(fc, struct netns_xfrm,
121						flow_cache_global);
122
123	for (i = 0; i < flow_cache_hash_size(fc); i++) {
124		int saved = 0;
125
126		hlist_for_each_entry_safe(fle, tmp,
127					  &fcp->hash_table[i], u.hlist) {
128			if (saved < shrink_to &&
129			    flow_entry_valid(fle, xfrm)) {
130				saved++;
131			} else {
132				deleted++;
133				hlist_del(&fle->u.hlist);
134				list_add_tail(&fle->u.gc_list, &gc_list);
135			}
136		}
137	}
138
139	flow_cache_queue_garbage(fcp, deleted, &gc_list, xfrm);
140}
141
142static void flow_cache_shrink(struct flow_cache *fc,
143			      struct flow_cache_percpu *fcp)
144{
145	int shrink_to = fc->low_watermark / flow_cache_hash_size(fc);
146
147	__flow_cache_shrink(fc, fcp, shrink_to);
148}
149
150static void flow_new_hash_rnd(struct flow_cache *fc,
151			      struct flow_cache_percpu *fcp)
152{
153	get_random_bytes(&fcp->hash_rnd, sizeof(u32));
154	fcp->hash_rnd_recalc = 0;
155	__flow_cache_shrink(fc, fcp, 0);
156}
157
158static u32 flow_hash_code(struct flow_cache *fc,
159			  struct flow_cache_percpu *fcp,
160			  const struct flowi *key,
161			  size_t keysize)
162{
163	const u32 *k = (const u32 *) key;
164	const u32 length = keysize * sizeof(flow_compare_t) / sizeof(u32);
165
166	return jhash2(k, length, fcp->hash_rnd)
167		& (flow_cache_hash_size(fc) - 1);
168}
169
170/* I hear what you're saying, use memcmp.  But memcmp cannot make
171 * important assumptions that we can here, such as alignment.
172 */
173static int flow_key_compare(const struct flowi *key1, const struct flowi *key2,
174			    size_t keysize)
175{
176	const flow_compare_t *k1, *k1_lim, *k2;
177
178	k1 = (const flow_compare_t *) key1;
179	k1_lim = k1 + keysize;
180
181	k2 = (const flow_compare_t *) key2;
182
183	do {
184		if (*k1++ != *k2++)
185			return 1;
186	} while (k1 < k1_lim);
187
188	return 0;
189}
190
191struct flow_cache_object *
192flow_cache_lookup(struct net *net, const struct flowi *key, u16 family, u8 dir,
193		  flow_resolve_t resolver, void *ctx)
194{
195	struct flow_cache *fc = &net->xfrm.flow_cache_global;
196	struct flow_cache_percpu *fcp;
197	struct flow_cache_entry *fle, *tfle;
198	struct flow_cache_object *flo;
199	size_t keysize;
200	unsigned int hash;
201
202	local_bh_disable();
203	fcp = this_cpu_ptr(fc->percpu);
204
205	fle = NULL;
206	flo = NULL;
207
208	keysize = flow_key_size(family);
209	if (!keysize)
210		goto nocache;
211
212	/* Packet really early in init?  Making flow_cache_init a
213	 * pre-smp initcall would solve this.  --RR */
214	if (!fcp->hash_table)
215		goto nocache;
216
217	if (fcp->hash_rnd_recalc)
218		flow_new_hash_rnd(fc, fcp);
219
220	hash = flow_hash_code(fc, fcp, key, keysize);
221	hlist_for_each_entry(tfle, &fcp->hash_table[hash], u.hlist) {
222		if (tfle->net == net &&
223		    tfle->family == family &&
224		    tfle->dir == dir &&
225		    flow_key_compare(key, &tfle->key, keysize) == 0) {
226			fle = tfle;
227			break;
228		}
229	}
230
231	if (unlikely(!fle)) {
232		if (fcp->hash_count > fc->high_watermark)
233			flow_cache_shrink(fc, fcp);
234
235		fle = kmem_cache_alloc(flow_cachep, GFP_ATOMIC);
236		if (fle) {
237			fle->net = net;
238			fle->family = family;
239			fle->dir = dir;
240			memcpy(&fle->key, key, keysize * sizeof(flow_compare_t));
241			fle->object = NULL;
242			hlist_add_head(&fle->u.hlist, &fcp->hash_table[hash]);
243			fcp->hash_count++;
244		}
245	} else if (likely(fle->genid == atomic_read(&net->xfrm.flow_cache_genid))) {
246		flo = fle->object;
247		if (!flo)
248			goto ret_object;
249		flo = flo->ops->get(flo);
250		if (flo)
251			goto ret_object;
252	} else if (fle->object) {
253	        flo = fle->object;
254	        flo->ops->delete(flo);
255	        fle->object = NULL;
256	}
257
258nocache:
259	flo = NULL;
260	if (fle) {
261		flo = fle->object;
262		fle->object = NULL;
263	}
264	flo = resolver(net, key, family, dir, flo, ctx);
265	if (fle) {
266		fle->genid = atomic_read(&net->xfrm.flow_cache_genid);
267		if (!IS_ERR(flo))
268			fle->object = flo;
269		else
270			fle->genid--;
271	} else {
272		if (!IS_ERR_OR_NULL(flo))
273			flo->ops->delete(flo);
274	}
275ret_object:
276	local_bh_enable();
277	return flo;
278}
279EXPORT_SYMBOL(flow_cache_lookup);
280
281static void flow_cache_flush_tasklet(unsigned long data)
282{
283	struct flow_flush_info *info = (void *)data;
284	struct flow_cache *fc = info->cache;
285	struct flow_cache_percpu *fcp;
286	struct flow_cache_entry *fle;
287	struct hlist_node *tmp;
288	LIST_HEAD(gc_list);
289	int i, deleted = 0;
290	struct netns_xfrm *xfrm = container_of(fc, struct netns_xfrm,
291						flow_cache_global);
292
293	fcp = this_cpu_ptr(fc->percpu);
294	for (i = 0; i < flow_cache_hash_size(fc); i++) {
295		hlist_for_each_entry_safe(fle, tmp,
296					  &fcp->hash_table[i], u.hlist) {
297			if (flow_entry_valid(fle, xfrm))
298				continue;
299
300			deleted++;
301			hlist_del(&fle->u.hlist);
302			list_add_tail(&fle->u.gc_list, &gc_list);
303		}
304	}
305
306	flow_cache_queue_garbage(fcp, deleted, &gc_list, xfrm);
307
308	if (atomic_dec_and_test(&info->cpuleft))
309		complete(&info->completion);
310}
311
312/*
313 * Return whether a cpu needs flushing.  Conservatively, we assume
314 * the presence of any entries means the core may require flushing,
315 * since the flow_cache_ops.check() function may assume it's running
316 * on the same core as the per-cpu cache component.
317 */
318static int flow_cache_percpu_empty(struct flow_cache *fc, int cpu)
319{
320	struct flow_cache_percpu *fcp;
321	int i;
322
323	fcp = per_cpu_ptr(fc->percpu, cpu);
324	for (i = 0; i < flow_cache_hash_size(fc); i++)
325		if (!hlist_empty(&fcp->hash_table[i]))
326			return 0;
327	return 1;
328}
329
330static void flow_cache_flush_per_cpu(void *data)
331{
332	struct flow_flush_info *info = data;
333	struct tasklet_struct *tasklet;
334
335	tasklet = &this_cpu_ptr(info->cache->percpu)->flush_tasklet;
336	tasklet->data = (unsigned long)info;
337	tasklet_schedule(tasklet);
338}
339
340void flow_cache_flush(struct net *net)
341{
342	struct flow_flush_info info;
343	cpumask_var_t mask;
344	int i, self;
345
346	/* Track which cpus need flushing to avoid disturbing all cores. */
347	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
348		return;
349	cpumask_clear(mask);
350
351	/* Don't want cpus going down or up during this. */
352	get_online_cpus();
353	mutex_lock(&net->xfrm.flow_flush_sem);
354	info.cache = &net->xfrm.flow_cache_global;
355	for_each_online_cpu(i)
356		if (!flow_cache_percpu_empty(info.cache, i))
357			cpumask_set_cpu(i, mask);
358	atomic_set(&info.cpuleft, cpumask_weight(mask));
359	if (atomic_read(&info.cpuleft) == 0)
360		goto done;
361
362	init_completion(&info.completion);
363
364	local_bh_disable();
365	self = cpumask_test_and_clear_cpu(smp_processor_id(), mask);
366	on_each_cpu_mask(mask, flow_cache_flush_per_cpu, &info, 0);
367	if (self)
368		flow_cache_flush_tasklet((unsigned long)&info);
369	local_bh_enable();
370
371	wait_for_completion(&info.completion);
372
373done:
374	mutex_unlock(&net->xfrm.flow_flush_sem);
375	put_online_cpus();
376	free_cpumask_var(mask);
377}
378
379static void flow_cache_flush_task(struct work_struct *work)
380{
381	struct netns_xfrm *xfrm = container_of(work, struct netns_xfrm,
382						flow_cache_flush_work);
383	struct net *net = container_of(xfrm, struct net, xfrm);
384
385	flow_cache_flush(net);
386}
387
388void flow_cache_flush_deferred(struct net *net)
389{
390	schedule_work(&net->xfrm.flow_cache_flush_work);
391}
392
393static int flow_cache_cpu_prepare(struct flow_cache *fc, int cpu)
394{
395	struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu);
396	size_t sz = sizeof(struct hlist_head) * flow_cache_hash_size(fc);
397
398	if (!fcp->hash_table) {
399		fcp->hash_table = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
400		if (!fcp->hash_table) {
401			pr_err("NET: failed to allocate flow cache sz %zu\n", sz);
402			return -ENOMEM;
403		}
404		fcp->hash_rnd_recalc = 1;
405		fcp->hash_count = 0;
406		tasklet_init(&fcp->flush_tasklet, flow_cache_flush_tasklet, 0);
407	}
408	return 0;
409}
410
411static int flow_cache_cpu(struct notifier_block *nfb,
412			  unsigned long action,
413			  void *hcpu)
414{
415	struct flow_cache *fc = container_of(nfb, struct flow_cache,
416						hotcpu_notifier);
417	int res, cpu = (unsigned long) hcpu;
418	struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu);
419
420	switch (action) {
421	case CPU_UP_PREPARE:
422	case CPU_UP_PREPARE_FROZEN:
423		res = flow_cache_cpu_prepare(fc, cpu);
424		if (res)
425			return notifier_from_errno(res);
426		break;
427	case CPU_DEAD:
428	case CPU_DEAD_FROZEN:
429		__flow_cache_shrink(fc, fcp, 0);
430		break;
431	}
432	return NOTIFY_OK;
433}
434
435int flow_cache_init(struct net *net)
436{
437	int i;
438	struct flow_cache *fc = &net->xfrm.flow_cache_global;
439
440	if (!flow_cachep)
441		flow_cachep = kmem_cache_create("flow_cache",
442						sizeof(struct flow_cache_entry),
443						0, SLAB_PANIC, NULL);
444	spin_lock_init(&net->xfrm.flow_cache_gc_lock);
445	INIT_LIST_HEAD(&net->xfrm.flow_cache_gc_list);
446	INIT_WORK(&net->xfrm.flow_cache_gc_work, flow_cache_gc_task);
447	INIT_WORK(&net->xfrm.flow_cache_flush_work, flow_cache_flush_task);
448	mutex_init(&net->xfrm.flow_flush_sem);
449
450	fc->hash_shift = 10;
451	fc->low_watermark = 2 * flow_cache_hash_size(fc);
452	fc->high_watermark = 4 * flow_cache_hash_size(fc);
453
454	fc->percpu = alloc_percpu(struct flow_cache_percpu);
455	if (!fc->percpu)
456		return -ENOMEM;
457
458	cpu_notifier_register_begin();
459
460	for_each_online_cpu(i) {
461		if (flow_cache_cpu_prepare(fc, i))
462			goto err;
463	}
464	fc->hotcpu_notifier = (struct notifier_block){
465		.notifier_call = flow_cache_cpu,
466	};
467	__register_hotcpu_notifier(&fc->hotcpu_notifier);
468
469	cpu_notifier_register_done();
470
471	setup_timer(&fc->rnd_timer, flow_cache_new_hashrnd,
472		    (unsigned long) fc);
473	fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
474	add_timer(&fc->rnd_timer);
475
476	return 0;
477
478err:
479	for_each_possible_cpu(i) {
480		struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, i);
481		kfree(fcp->hash_table);
482		fcp->hash_table = NULL;
483	}
484
485	cpu_notifier_register_done();
486
487	free_percpu(fc->percpu);
488	fc->percpu = NULL;
489
490	return -ENOMEM;
491}
492EXPORT_SYMBOL(flow_cache_init);
493
494void flow_cache_fini(struct net *net)
495{
496	int i;
497	struct flow_cache *fc = &net->xfrm.flow_cache_global;
498
499	del_timer_sync(&fc->rnd_timer);
500	unregister_hotcpu_notifier(&fc->hotcpu_notifier);
501
502	for_each_possible_cpu(i) {
503		struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, i);
504		kfree(fcp->hash_table);
505		fcp->hash_table = NULL;
506	}
507
508	free_percpu(fc->percpu);
509	fc->percpu = NULL;
510}
511EXPORT_SYMBOL(flow_cache_fini);
512