1/* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75#include <asm/uaccess.h> 76#include <linux/bitops.h> 77#include <linux/capability.h> 78#include <linux/cpu.h> 79#include <linux/types.h> 80#include <linux/kernel.h> 81#include <linux/hash.h> 82#include <linux/slab.h> 83#include <linux/sched.h> 84#include <linux/mutex.h> 85#include <linux/string.h> 86#include <linux/mm.h> 87#include <linux/socket.h> 88#include <linux/sockios.h> 89#include <linux/errno.h> 90#include <linux/interrupt.h> 91#include <linux/if_ether.h> 92#include <linux/netdevice.h> 93#include <linux/etherdevice.h> 94#include <linux/ethtool.h> 95#include <linux/notifier.h> 96#include <linux/skbuff.h> 97#include <net/net_namespace.h> 98#include <net/sock.h> 99#include <linux/rtnetlink.h> 100#include <linux/stat.h> 101#include <net/dst.h> 102#include <net/pkt_sched.h> 103#include <net/checksum.h> 104#include <net/xfrm.h> 105#include <linux/highmem.h> 106#include <linux/init.h> 107#include <linux/module.h> 108#include <linux/netpoll.h> 109#include <linux/rcupdate.h> 110#include <linux/delay.h> 111#include <net/iw_handler.h> 112#include <asm/current.h> 113#include <linux/audit.h> 114#include <linux/dmaengine.h> 115#include <linux/err.h> 116#include <linux/ctype.h> 117#include <linux/if_arp.h> 118#include <linux/if_vlan.h> 119#include <linux/ip.h> 120#include <net/ip.h> 121#include <net/mpls.h> 122#include <linux/ipv6.h> 123#include <linux/in.h> 124#include <linux/jhash.h> 125#include <linux/random.h> 126#include <trace/events/napi.h> 127#include <trace/events/net.h> 128#include <trace/events/skb.h> 129#include <linux/pci.h> 130#include <linux/inetdevice.h> 131#include <linux/cpu_rmap.h> 132#include <linux/static_key.h> 133#include <linux/hashtable.h> 134#include <linux/vmalloc.h> 135#include <linux/if_macvlan.h> 136#include <linux/errqueue.h> 137#include <linux/hrtimer.h> 138 139#include "net-sysfs.h" 140 141/* Instead of increasing this, you should create a hash table. */ 142#define MAX_GRO_SKBS 8 143 144/* This should be increased if a protocol with a bigger head is added. */ 145#define GRO_MAX_HEAD (MAX_HEADER + 128) 146 147static DEFINE_SPINLOCK(ptype_lock); 148static DEFINE_SPINLOCK(offload_lock); 149struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 150struct list_head ptype_all __read_mostly; /* Taps */ 151static struct list_head offload_base __read_mostly; 152 153static int netif_rx_internal(struct sk_buff *skb); 154static int call_netdevice_notifiers_info(unsigned long val, 155 struct net_device *dev, 156 struct netdev_notifier_info *info); 157 158/* 159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 160 * semaphore. 161 * 162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 163 * 164 * Writers must hold the rtnl semaphore while they loop through the 165 * dev_base_head list, and hold dev_base_lock for writing when they do the 166 * actual updates. This allows pure readers to access the list even 167 * while a writer is preparing to update it. 168 * 169 * To put it another way, dev_base_lock is held for writing only to 170 * protect against pure readers; the rtnl semaphore provides the 171 * protection against other writers. 172 * 173 * See, for example usages, register_netdevice() and 174 * unregister_netdevice(), which must be called with the rtnl 175 * semaphore held. 176 */ 177DEFINE_RWLOCK(dev_base_lock); 178EXPORT_SYMBOL(dev_base_lock); 179 180/* protects napi_hash addition/deletion and napi_gen_id */ 181static DEFINE_SPINLOCK(napi_hash_lock); 182 183static unsigned int napi_gen_id; 184static DEFINE_HASHTABLE(napi_hash, 8); 185 186static seqcount_t devnet_rename_seq; 187 188static inline void dev_base_seq_inc(struct net *net) 189{ 190 while (++net->dev_base_seq == 0); 191} 192 193static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 194{ 195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 196 197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 198} 199 200static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 201{ 202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 203} 204 205static inline void rps_lock(struct softnet_data *sd) 206{ 207#ifdef CONFIG_RPS 208 spin_lock(&sd->input_pkt_queue.lock); 209#endif 210} 211 212static inline void rps_unlock(struct softnet_data *sd) 213{ 214#ifdef CONFIG_RPS 215 spin_unlock(&sd->input_pkt_queue.lock); 216#endif 217} 218 219/* Device list insertion */ 220static void list_netdevice(struct net_device *dev) 221{ 222 struct net *net = dev_net(dev); 223 224 ASSERT_RTNL(); 225 226 write_lock_bh(&dev_base_lock); 227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 229 hlist_add_head_rcu(&dev->index_hlist, 230 dev_index_hash(net, dev->ifindex)); 231 write_unlock_bh(&dev_base_lock); 232 233 dev_base_seq_inc(net); 234} 235 236/* Device list removal 237 * caller must respect a RCU grace period before freeing/reusing dev 238 */ 239static void unlist_netdevice(struct net_device *dev) 240{ 241 ASSERT_RTNL(); 242 243 /* Unlink dev from the device chain */ 244 write_lock_bh(&dev_base_lock); 245 list_del_rcu(&dev->dev_list); 246 hlist_del_rcu(&dev->name_hlist); 247 hlist_del_rcu(&dev->index_hlist); 248 write_unlock_bh(&dev_base_lock); 249 250 dev_base_seq_inc(dev_net(dev)); 251} 252 253/* 254 * Our notifier list 255 */ 256 257static RAW_NOTIFIER_HEAD(netdev_chain); 258 259/* 260 * Device drivers call our routines to queue packets here. We empty the 261 * queue in the local softnet handler. 262 */ 263 264DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 265EXPORT_PER_CPU_SYMBOL(softnet_data); 266 267#ifdef CONFIG_LOCKDEP 268/* 269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 270 * according to dev->type 271 */ 272static const unsigned short netdev_lock_type[] = 273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 288 289static const char *const netdev_lock_name[] = 290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 305 306static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 307static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 308 309static inline unsigned short netdev_lock_pos(unsigned short dev_type) 310{ 311 int i; 312 313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 314 if (netdev_lock_type[i] == dev_type) 315 return i; 316 /* the last key is used by default */ 317 return ARRAY_SIZE(netdev_lock_type) - 1; 318} 319 320static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 321 unsigned short dev_type) 322{ 323 int i; 324 325 i = netdev_lock_pos(dev_type); 326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 327 netdev_lock_name[i]); 328} 329 330static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 331{ 332 int i; 333 334 i = netdev_lock_pos(dev->type); 335 lockdep_set_class_and_name(&dev->addr_list_lock, 336 &netdev_addr_lock_key[i], 337 netdev_lock_name[i]); 338} 339#else 340static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 341 unsigned short dev_type) 342{ 343} 344static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 345{ 346} 347#endif 348 349/******************************************************************************* 350 351 Protocol management and registration routines 352 353*******************************************************************************/ 354 355/* 356 * Add a protocol ID to the list. Now that the input handler is 357 * smarter we can dispense with all the messy stuff that used to be 358 * here. 359 * 360 * BEWARE!!! Protocol handlers, mangling input packets, 361 * MUST BE last in hash buckets and checking protocol handlers 362 * MUST start from promiscuous ptype_all chain in net_bh. 363 * It is true now, do not change it. 364 * Explanation follows: if protocol handler, mangling packet, will 365 * be the first on list, it is not able to sense, that packet 366 * is cloned and should be copied-on-write, so that it will 367 * change it and subsequent readers will get broken packet. 368 * --ANK (980803) 369 */ 370 371static inline struct list_head *ptype_head(const struct packet_type *pt) 372{ 373 if (pt->type == htons(ETH_P_ALL)) 374 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 375 else 376 return pt->dev ? &pt->dev->ptype_specific : 377 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 378} 379 380/** 381 * dev_add_pack - add packet handler 382 * @pt: packet type declaration 383 * 384 * Add a protocol handler to the networking stack. The passed &packet_type 385 * is linked into kernel lists and may not be freed until it has been 386 * removed from the kernel lists. 387 * 388 * This call does not sleep therefore it can not 389 * guarantee all CPU's that are in middle of receiving packets 390 * will see the new packet type (until the next received packet). 391 */ 392 393void dev_add_pack(struct packet_type *pt) 394{ 395 struct list_head *head = ptype_head(pt); 396 397 spin_lock(&ptype_lock); 398 list_add_rcu(&pt->list, head); 399 spin_unlock(&ptype_lock); 400} 401EXPORT_SYMBOL(dev_add_pack); 402 403/** 404 * __dev_remove_pack - remove packet handler 405 * @pt: packet type declaration 406 * 407 * Remove a protocol handler that was previously added to the kernel 408 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 409 * from the kernel lists and can be freed or reused once this function 410 * returns. 411 * 412 * The packet type might still be in use by receivers 413 * and must not be freed until after all the CPU's have gone 414 * through a quiescent state. 415 */ 416void __dev_remove_pack(struct packet_type *pt) 417{ 418 struct list_head *head = ptype_head(pt); 419 struct packet_type *pt1; 420 421 spin_lock(&ptype_lock); 422 423 list_for_each_entry(pt1, head, list) { 424 if (pt == pt1) { 425 list_del_rcu(&pt->list); 426 goto out; 427 } 428 } 429 430 pr_warn("dev_remove_pack: %p not found\n", pt); 431out: 432 spin_unlock(&ptype_lock); 433} 434EXPORT_SYMBOL(__dev_remove_pack); 435 436/** 437 * dev_remove_pack - remove packet handler 438 * @pt: packet type declaration 439 * 440 * Remove a protocol handler that was previously added to the kernel 441 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 442 * from the kernel lists and can be freed or reused once this function 443 * returns. 444 * 445 * This call sleeps to guarantee that no CPU is looking at the packet 446 * type after return. 447 */ 448void dev_remove_pack(struct packet_type *pt) 449{ 450 __dev_remove_pack(pt); 451 452 synchronize_net(); 453} 454EXPORT_SYMBOL(dev_remove_pack); 455 456 457/** 458 * dev_add_offload - register offload handlers 459 * @po: protocol offload declaration 460 * 461 * Add protocol offload handlers to the networking stack. The passed 462 * &proto_offload is linked into kernel lists and may not be freed until 463 * it has been removed from the kernel lists. 464 * 465 * This call does not sleep therefore it can not 466 * guarantee all CPU's that are in middle of receiving packets 467 * will see the new offload handlers (until the next received packet). 468 */ 469void dev_add_offload(struct packet_offload *po) 470{ 471 struct list_head *head = &offload_base; 472 473 spin_lock(&offload_lock); 474 list_add_rcu(&po->list, head); 475 spin_unlock(&offload_lock); 476} 477EXPORT_SYMBOL(dev_add_offload); 478 479/** 480 * __dev_remove_offload - remove offload handler 481 * @po: packet offload declaration 482 * 483 * Remove a protocol offload handler that was previously added to the 484 * kernel offload handlers by dev_add_offload(). The passed &offload_type 485 * is removed from the kernel lists and can be freed or reused once this 486 * function returns. 487 * 488 * The packet type might still be in use by receivers 489 * and must not be freed until after all the CPU's have gone 490 * through a quiescent state. 491 */ 492static void __dev_remove_offload(struct packet_offload *po) 493{ 494 struct list_head *head = &offload_base; 495 struct packet_offload *po1; 496 497 spin_lock(&offload_lock); 498 499 list_for_each_entry(po1, head, list) { 500 if (po == po1) { 501 list_del_rcu(&po->list); 502 goto out; 503 } 504 } 505 506 pr_warn("dev_remove_offload: %p not found\n", po); 507out: 508 spin_unlock(&offload_lock); 509} 510 511/** 512 * dev_remove_offload - remove packet offload handler 513 * @po: packet offload declaration 514 * 515 * Remove a packet offload handler that was previously added to the kernel 516 * offload handlers by dev_add_offload(). The passed &offload_type is 517 * removed from the kernel lists and can be freed or reused once this 518 * function returns. 519 * 520 * This call sleeps to guarantee that no CPU is looking at the packet 521 * type after return. 522 */ 523void dev_remove_offload(struct packet_offload *po) 524{ 525 __dev_remove_offload(po); 526 527 synchronize_net(); 528} 529EXPORT_SYMBOL(dev_remove_offload); 530 531/****************************************************************************** 532 533 Device Boot-time Settings Routines 534 535*******************************************************************************/ 536 537/* Boot time configuration table */ 538static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 539 540/** 541 * netdev_boot_setup_add - add new setup entry 542 * @name: name of the device 543 * @map: configured settings for the device 544 * 545 * Adds new setup entry to the dev_boot_setup list. The function 546 * returns 0 on error and 1 on success. This is a generic routine to 547 * all netdevices. 548 */ 549static int netdev_boot_setup_add(char *name, struct ifmap *map) 550{ 551 struct netdev_boot_setup *s; 552 int i; 553 554 s = dev_boot_setup; 555 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 556 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 557 memset(s[i].name, 0, sizeof(s[i].name)); 558 strlcpy(s[i].name, name, IFNAMSIZ); 559 memcpy(&s[i].map, map, sizeof(s[i].map)); 560 break; 561 } 562 } 563 564 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 565} 566 567/** 568 * netdev_boot_setup_check - check boot time settings 569 * @dev: the netdevice 570 * 571 * Check boot time settings for the device. 572 * The found settings are set for the device to be used 573 * later in the device probing. 574 * Returns 0 if no settings found, 1 if they are. 575 */ 576int netdev_boot_setup_check(struct net_device *dev) 577{ 578 struct netdev_boot_setup *s = dev_boot_setup; 579 int i; 580 581 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 582 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 583 !strcmp(dev->name, s[i].name)) { 584 dev->irq = s[i].map.irq; 585 dev->base_addr = s[i].map.base_addr; 586 dev->mem_start = s[i].map.mem_start; 587 dev->mem_end = s[i].map.mem_end; 588 return 1; 589 } 590 } 591 return 0; 592} 593EXPORT_SYMBOL(netdev_boot_setup_check); 594 595 596/** 597 * netdev_boot_base - get address from boot time settings 598 * @prefix: prefix for network device 599 * @unit: id for network device 600 * 601 * Check boot time settings for the base address of device. 602 * The found settings are set for the device to be used 603 * later in the device probing. 604 * Returns 0 if no settings found. 605 */ 606unsigned long netdev_boot_base(const char *prefix, int unit) 607{ 608 const struct netdev_boot_setup *s = dev_boot_setup; 609 char name[IFNAMSIZ]; 610 int i; 611 612 sprintf(name, "%s%d", prefix, unit); 613 614 /* 615 * If device already registered then return base of 1 616 * to indicate not to probe for this interface 617 */ 618 if (__dev_get_by_name(&init_net, name)) 619 return 1; 620 621 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 622 if (!strcmp(name, s[i].name)) 623 return s[i].map.base_addr; 624 return 0; 625} 626 627/* 628 * Saves at boot time configured settings for any netdevice. 629 */ 630int __init netdev_boot_setup(char *str) 631{ 632 int ints[5]; 633 struct ifmap map; 634 635 str = get_options(str, ARRAY_SIZE(ints), ints); 636 if (!str || !*str) 637 return 0; 638 639 /* Save settings */ 640 memset(&map, 0, sizeof(map)); 641 if (ints[0] > 0) 642 map.irq = ints[1]; 643 if (ints[0] > 1) 644 map.base_addr = ints[2]; 645 if (ints[0] > 2) 646 map.mem_start = ints[3]; 647 if (ints[0] > 3) 648 map.mem_end = ints[4]; 649 650 /* Add new entry to the list */ 651 return netdev_boot_setup_add(str, &map); 652} 653 654__setup("netdev=", netdev_boot_setup); 655 656/******************************************************************************* 657 658 Device Interface Subroutines 659 660*******************************************************************************/ 661 662/** 663 * dev_get_iflink - get 'iflink' value of a interface 664 * @dev: targeted interface 665 * 666 * Indicates the ifindex the interface is linked to. 667 * Physical interfaces have the same 'ifindex' and 'iflink' values. 668 */ 669 670int dev_get_iflink(const struct net_device *dev) 671{ 672 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 673 return dev->netdev_ops->ndo_get_iflink(dev); 674 675 return dev->ifindex; 676} 677EXPORT_SYMBOL(dev_get_iflink); 678 679/** 680 * __dev_get_by_name - find a device by its name 681 * @net: the applicable net namespace 682 * @name: name to find 683 * 684 * Find an interface by name. Must be called under RTNL semaphore 685 * or @dev_base_lock. If the name is found a pointer to the device 686 * is returned. If the name is not found then %NULL is returned. The 687 * reference counters are not incremented so the caller must be 688 * careful with locks. 689 */ 690 691struct net_device *__dev_get_by_name(struct net *net, const char *name) 692{ 693 struct net_device *dev; 694 struct hlist_head *head = dev_name_hash(net, name); 695 696 hlist_for_each_entry(dev, head, name_hlist) 697 if (!strncmp(dev->name, name, IFNAMSIZ)) 698 return dev; 699 700 return NULL; 701} 702EXPORT_SYMBOL(__dev_get_by_name); 703 704/** 705 * dev_get_by_name_rcu - find a device by its name 706 * @net: the applicable net namespace 707 * @name: name to find 708 * 709 * Find an interface by name. 710 * If the name is found a pointer to the device is returned. 711 * If the name is not found then %NULL is returned. 712 * The reference counters are not incremented so the caller must be 713 * careful with locks. The caller must hold RCU lock. 714 */ 715 716struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 717{ 718 struct net_device *dev; 719 struct hlist_head *head = dev_name_hash(net, name); 720 721 hlist_for_each_entry_rcu(dev, head, name_hlist) 722 if (!strncmp(dev->name, name, IFNAMSIZ)) 723 return dev; 724 725 return NULL; 726} 727EXPORT_SYMBOL(dev_get_by_name_rcu); 728 729/** 730 * dev_get_by_name - find a device by its name 731 * @net: the applicable net namespace 732 * @name: name to find 733 * 734 * Find an interface by name. This can be called from any 735 * context and does its own locking. The returned handle has 736 * the usage count incremented and the caller must use dev_put() to 737 * release it when it is no longer needed. %NULL is returned if no 738 * matching device is found. 739 */ 740 741struct net_device *dev_get_by_name(struct net *net, const char *name) 742{ 743 struct net_device *dev; 744 745 rcu_read_lock(); 746 dev = dev_get_by_name_rcu(net, name); 747 if (dev) 748 dev_hold(dev); 749 rcu_read_unlock(); 750 return dev; 751} 752EXPORT_SYMBOL(dev_get_by_name); 753 754/** 755 * __dev_get_by_index - find a device by its ifindex 756 * @net: the applicable net namespace 757 * @ifindex: index of device 758 * 759 * Search for an interface by index. Returns %NULL if the device 760 * is not found or a pointer to the device. The device has not 761 * had its reference counter increased so the caller must be careful 762 * about locking. The caller must hold either the RTNL semaphore 763 * or @dev_base_lock. 764 */ 765 766struct net_device *__dev_get_by_index(struct net *net, int ifindex) 767{ 768 struct net_device *dev; 769 struct hlist_head *head = dev_index_hash(net, ifindex); 770 771 hlist_for_each_entry(dev, head, index_hlist) 772 if (dev->ifindex == ifindex) 773 return dev; 774 775 return NULL; 776} 777EXPORT_SYMBOL(__dev_get_by_index); 778 779/** 780 * dev_get_by_index_rcu - find a device by its ifindex 781 * @net: the applicable net namespace 782 * @ifindex: index of device 783 * 784 * Search for an interface by index. Returns %NULL if the device 785 * is not found or a pointer to the device. The device has not 786 * had its reference counter increased so the caller must be careful 787 * about locking. The caller must hold RCU lock. 788 */ 789 790struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 791{ 792 struct net_device *dev; 793 struct hlist_head *head = dev_index_hash(net, ifindex); 794 795 hlist_for_each_entry_rcu(dev, head, index_hlist) 796 if (dev->ifindex == ifindex) 797 return dev; 798 799 return NULL; 800} 801EXPORT_SYMBOL(dev_get_by_index_rcu); 802 803 804/** 805 * dev_get_by_index - find a device by its ifindex 806 * @net: the applicable net namespace 807 * @ifindex: index of device 808 * 809 * Search for an interface by index. Returns NULL if the device 810 * is not found or a pointer to the device. The device returned has 811 * had a reference added and the pointer is safe until the user calls 812 * dev_put to indicate they have finished with it. 813 */ 814 815struct net_device *dev_get_by_index(struct net *net, int ifindex) 816{ 817 struct net_device *dev; 818 819 rcu_read_lock(); 820 dev = dev_get_by_index_rcu(net, ifindex); 821 if (dev) 822 dev_hold(dev); 823 rcu_read_unlock(); 824 return dev; 825} 826EXPORT_SYMBOL(dev_get_by_index); 827 828/** 829 * netdev_get_name - get a netdevice name, knowing its ifindex. 830 * @net: network namespace 831 * @name: a pointer to the buffer where the name will be stored. 832 * @ifindex: the ifindex of the interface to get the name from. 833 * 834 * The use of raw_seqcount_begin() and cond_resched() before 835 * retrying is required as we want to give the writers a chance 836 * to complete when CONFIG_PREEMPT is not set. 837 */ 838int netdev_get_name(struct net *net, char *name, int ifindex) 839{ 840 struct net_device *dev; 841 unsigned int seq; 842 843retry: 844 seq = raw_seqcount_begin(&devnet_rename_seq); 845 rcu_read_lock(); 846 dev = dev_get_by_index_rcu(net, ifindex); 847 if (!dev) { 848 rcu_read_unlock(); 849 return -ENODEV; 850 } 851 852 strcpy(name, dev->name); 853 rcu_read_unlock(); 854 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 855 cond_resched(); 856 goto retry; 857 } 858 859 return 0; 860} 861 862/** 863 * dev_getbyhwaddr_rcu - find a device by its hardware address 864 * @net: the applicable net namespace 865 * @type: media type of device 866 * @ha: hardware address 867 * 868 * Search for an interface by MAC address. Returns NULL if the device 869 * is not found or a pointer to the device. 870 * The caller must hold RCU or RTNL. 871 * The returned device has not had its ref count increased 872 * and the caller must therefore be careful about locking 873 * 874 */ 875 876struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 877 const char *ha) 878{ 879 struct net_device *dev; 880 881 for_each_netdev_rcu(net, dev) 882 if (dev->type == type && 883 !memcmp(dev->dev_addr, ha, dev->addr_len)) 884 return dev; 885 886 return NULL; 887} 888EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 889 890struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 891{ 892 struct net_device *dev; 893 894 ASSERT_RTNL(); 895 for_each_netdev(net, dev) 896 if (dev->type == type) 897 return dev; 898 899 return NULL; 900} 901EXPORT_SYMBOL(__dev_getfirstbyhwtype); 902 903struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 904{ 905 struct net_device *dev, *ret = NULL; 906 907 rcu_read_lock(); 908 for_each_netdev_rcu(net, dev) 909 if (dev->type == type) { 910 dev_hold(dev); 911 ret = dev; 912 break; 913 } 914 rcu_read_unlock(); 915 return ret; 916} 917EXPORT_SYMBOL(dev_getfirstbyhwtype); 918 919/** 920 * __dev_get_by_flags - find any device with given flags 921 * @net: the applicable net namespace 922 * @if_flags: IFF_* values 923 * @mask: bitmask of bits in if_flags to check 924 * 925 * Search for any interface with the given flags. Returns NULL if a device 926 * is not found or a pointer to the device. Must be called inside 927 * rtnl_lock(), and result refcount is unchanged. 928 */ 929 930struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 931 unsigned short mask) 932{ 933 struct net_device *dev, *ret; 934 935 ASSERT_RTNL(); 936 937 ret = NULL; 938 for_each_netdev(net, dev) { 939 if (((dev->flags ^ if_flags) & mask) == 0) { 940 ret = dev; 941 break; 942 } 943 } 944 return ret; 945} 946EXPORT_SYMBOL(__dev_get_by_flags); 947 948/** 949 * dev_valid_name - check if name is okay for network device 950 * @name: name string 951 * 952 * Network device names need to be valid file names to 953 * to allow sysfs to work. We also disallow any kind of 954 * whitespace. 955 */ 956bool dev_valid_name(const char *name) 957{ 958 if (*name == '\0') 959 return false; 960 if (strlen(name) >= IFNAMSIZ) 961 return false; 962 if (!strcmp(name, ".") || !strcmp(name, "..")) 963 return false; 964 965 while (*name) { 966 if (*name == '/' || *name == ':' || isspace(*name)) 967 return false; 968 name++; 969 } 970 return true; 971} 972EXPORT_SYMBOL(dev_valid_name); 973 974/** 975 * __dev_alloc_name - allocate a name for a device 976 * @net: network namespace to allocate the device name in 977 * @name: name format string 978 * @buf: scratch buffer and result name string 979 * 980 * Passed a format string - eg "lt%d" it will try and find a suitable 981 * id. It scans list of devices to build up a free map, then chooses 982 * the first empty slot. The caller must hold the dev_base or rtnl lock 983 * while allocating the name and adding the device in order to avoid 984 * duplicates. 985 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 986 * Returns the number of the unit assigned or a negative errno code. 987 */ 988 989static int __dev_alloc_name(struct net *net, const char *name, char *buf) 990{ 991 int i = 0; 992 const char *p; 993 const int max_netdevices = 8*PAGE_SIZE; 994 unsigned long *inuse; 995 struct net_device *d; 996 997 p = strnchr(name, IFNAMSIZ-1, '%'); 998 if (p) { 999 /* 1000 * Verify the string as this thing may have come from 1001 * the user. There must be either one "%d" and no other "%" 1002 * characters. 1003 */ 1004 if (p[1] != 'd' || strchr(p + 2, '%')) 1005 return -EINVAL; 1006 1007 /* Use one page as a bit array of possible slots */ 1008 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1009 if (!inuse) 1010 return -ENOMEM; 1011 1012 for_each_netdev(net, d) { 1013 if (!sscanf(d->name, name, &i)) 1014 continue; 1015 if (i < 0 || i >= max_netdevices) 1016 continue; 1017 1018 /* avoid cases where sscanf is not exact inverse of printf */ 1019 snprintf(buf, IFNAMSIZ, name, i); 1020 if (!strncmp(buf, d->name, IFNAMSIZ)) 1021 set_bit(i, inuse); 1022 } 1023 1024 i = find_first_zero_bit(inuse, max_netdevices); 1025 free_page((unsigned long) inuse); 1026 } 1027 1028 if (buf != name) 1029 snprintf(buf, IFNAMSIZ, name, i); 1030 if (!__dev_get_by_name(net, buf)) 1031 return i; 1032 1033 /* It is possible to run out of possible slots 1034 * when the name is long and there isn't enough space left 1035 * for the digits, or if all bits are used. 1036 */ 1037 return -ENFILE; 1038} 1039 1040/** 1041 * dev_alloc_name - allocate a name for a device 1042 * @dev: device 1043 * @name: name format string 1044 * 1045 * Passed a format string - eg "lt%d" it will try and find a suitable 1046 * id. It scans list of devices to build up a free map, then chooses 1047 * the first empty slot. The caller must hold the dev_base or rtnl lock 1048 * while allocating the name and adding the device in order to avoid 1049 * duplicates. 1050 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1051 * Returns the number of the unit assigned or a negative errno code. 1052 */ 1053 1054int dev_alloc_name(struct net_device *dev, const char *name) 1055{ 1056 char buf[IFNAMSIZ]; 1057 struct net *net; 1058 int ret; 1059 1060 BUG_ON(!dev_net(dev)); 1061 net = dev_net(dev); 1062 ret = __dev_alloc_name(net, name, buf); 1063 if (ret >= 0) 1064 strlcpy(dev->name, buf, IFNAMSIZ); 1065 return ret; 1066} 1067EXPORT_SYMBOL(dev_alloc_name); 1068 1069static int dev_alloc_name_ns(struct net *net, 1070 struct net_device *dev, 1071 const char *name) 1072{ 1073 char buf[IFNAMSIZ]; 1074 int ret; 1075 1076 ret = __dev_alloc_name(net, name, buf); 1077 if (ret >= 0) 1078 strlcpy(dev->name, buf, IFNAMSIZ); 1079 return ret; 1080} 1081 1082static int dev_get_valid_name(struct net *net, 1083 struct net_device *dev, 1084 const char *name) 1085{ 1086 BUG_ON(!net); 1087 1088 if (!dev_valid_name(name)) 1089 return -EINVAL; 1090 1091 if (strchr(name, '%')) 1092 return dev_alloc_name_ns(net, dev, name); 1093 else if (__dev_get_by_name(net, name)) 1094 return -EEXIST; 1095 else if (dev->name != name) 1096 strlcpy(dev->name, name, IFNAMSIZ); 1097 1098 return 0; 1099} 1100 1101/** 1102 * dev_change_name - change name of a device 1103 * @dev: device 1104 * @newname: name (or format string) must be at least IFNAMSIZ 1105 * 1106 * Change name of a device, can pass format strings "eth%d". 1107 * for wildcarding. 1108 */ 1109int dev_change_name(struct net_device *dev, const char *newname) 1110{ 1111 unsigned char old_assign_type; 1112 char oldname[IFNAMSIZ]; 1113 int err = 0; 1114 int ret; 1115 struct net *net; 1116 1117 ASSERT_RTNL(); 1118 BUG_ON(!dev_net(dev)); 1119 1120 net = dev_net(dev); 1121 if (dev->flags & IFF_UP) 1122 return -EBUSY; 1123 1124 write_seqcount_begin(&devnet_rename_seq); 1125 1126 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1127 write_seqcount_end(&devnet_rename_seq); 1128 return 0; 1129 } 1130 1131 memcpy(oldname, dev->name, IFNAMSIZ); 1132 1133 err = dev_get_valid_name(net, dev, newname); 1134 if (err < 0) { 1135 write_seqcount_end(&devnet_rename_seq); 1136 return err; 1137 } 1138 1139 if (oldname[0] && !strchr(oldname, '%')) 1140 netdev_info(dev, "renamed from %s\n", oldname); 1141 1142 old_assign_type = dev->name_assign_type; 1143 dev->name_assign_type = NET_NAME_RENAMED; 1144 1145rollback: 1146 ret = device_rename(&dev->dev, dev->name); 1147 if (ret) { 1148 memcpy(dev->name, oldname, IFNAMSIZ); 1149 dev->name_assign_type = old_assign_type; 1150 write_seqcount_end(&devnet_rename_seq); 1151 return ret; 1152 } 1153 1154 write_seqcount_end(&devnet_rename_seq); 1155 1156 netdev_adjacent_rename_links(dev, oldname); 1157 1158 write_lock_bh(&dev_base_lock); 1159 hlist_del_rcu(&dev->name_hlist); 1160 write_unlock_bh(&dev_base_lock); 1161 1162 synchronize_rcu(); 1163 1164 write_lock_bh(&dev_base_lock); 1165 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1166 write_unlock_bh(&dev_base_lock); 1167 1168 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1169 ret = notifier_to_errno(ret); 1170 1171 if (ret) { 1172 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1173 if (err >= 0) { 1174 err = ret; 1175 write_seqcount_begin(&devnet_rename_seq); 1176 memcpy(dev->name, oldname, IFNAMSIZ); 1177 memcpy(oldname, newname, IFNAMSIZ); 1178 dev->name_assign_type = old_assign_type; 1179 old_assign_type = NET_NAME_RENAMED; 1180 goto rollback; 1181 } else { 1182 pr_err("%s: name change rollback failed: %d\n", 1183 dev->name, ret); 1184 } 1185 } 1186 1187 return err; 1188} 1189 1190/** 1191 * dev_set_alias - change ifalias of a device 1192 * @dev: device 1193 * @alias: name up to IFALIASZ 1194 * @len: limit of bytes to copy from info 1195 * 1196 * Set ifalias for a device, 1197 */ 1198int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1199{ 1200 char *new_ifalias; 1201 1202 ASSERT_RTNL(); 1203 1204 if (len >= IFALIASZ) 1205 return -EINVAL; 1206 1207 if (!len) { 1208 kfree(dev->ifalias); 1209 dev->ifalias = NULL; 1210 return 0; 1211 } 1212 1213 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1214 if (!new_ifalias) 1215 return -ENOMEM; 1216 dev->ifalias = new_ifalias; 1217 1218 strlcpy(dev->ifalias, alias, len+1); 1219 return len; 1220} 1221 1222 1223/** 1224 * netdev_features_change - device changes features 1225 * @dev: device to cause notification 1226 * 1227 * Called to indicate a device has changed features. 1228 */ 1229void netdev_features_change(struct net_device *dev) 1230{ 1231 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1232} 1233EXPORT_SYMBOL(netdev_features_change); 1234 1235/** 1236 * netdev_state_change - device changes state 1237 * @dev: device to cause notification 1238 * 1239 * Called to indicate a device has changed state. This function calls 1240 * the notifier chains for netdev_chain and sends a NEWLINK message 1241 * to the routing socket. 1242 */ 1243void netdev_state_change(struct net_device *dev) 1244{ 1245 if (dev->flags & IFF_UP) { 1246 struct netdev_notifier_change_info change_info; 1247 1248 change_info.flags_changed = 0; 1249 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1250 &change_info.info); 1251 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1252 } 1253} 1254EXPORT_SYMBOL(netdev_state_change); 1255 1256/** 1257 * netdev_notify_peers - notify network peers about existence of @dev 1258 * @dev: network device 1259 * 1260 * Generate traffic such that interested network peers are aware of 1261 * @dev, such as by generating a gratuitous ARP. This may be used when 1262 * a device wants to inform the rest of the network about some sort of 1263 * reconfiguration such as a failover event or virtual machine 1264 * migration. 1265 */ 1266void netdev_notify_peers(struct net_device *dev) 1267{ 1268 rtnl_lock(); 1269 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1270 rtnl_unlock(); 1271} 1272EXPORT_SYMBOL(netdev_notify_peers); 1273 1274static int __dev_open(struct net_device *dev) 1275{ 1276 const struct net_device_ops *ops = dev->netdev_ops; 1277 int ret; 1278 1279 ASSERT_RTNL(); 1280 1281 if (!netif_device_present(dev)) 1282 return -ENODEV; 1283 1284 /* Block netpoll from trying to do any rx path servicing. 1285 * If we don't do this there is a chance ndo_poll_controller 1286 * or ndo_poll may be running while we open the device 1287 */ 1288 netpoll_poll_disable(dev); 1289 1290 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1291 ret = notifier_to_errno(ret); 1292 if (ret) 1293 return ret; 1294 1295 set_bit(__LINK_STATE_START, &dev->state); 1296 1297 if (ops->ndo_validate_addr) 1298 ret = ops->ndo_validate_addr(dev); 1299 1300 if (!ret && ops->ndo_open) 1301 ret = ops->ndo_open(dev); 1302 1303 netpoll_poll_enable(dev); 1304 1305 if (ret) 1306 clear_bit(__LINK_STATE_START, &dev->state); 1307 else { 1308 dev->flags |= IFF_UP; 1309 dev_set_rx_mode(dev); 1310 dev_activate(dev); 1311 add_device_randomness(dev->dev_addr, dev->addr_len); 1312 } 1313 1314 return ret; 1315} 1316 1317/** 1318 * dev_open - prepare an interface for use. 1319 * @dev: device to open 1320 * 1321 * Takes a device from down to up state. The device's private open 1322 * function is invoked and then the multicast lists are loaded. Finally 1323 * the device is moved into the up state and a %NETDEV_UP message is 1324 * sent to the netdev notifier chain. 1325 * 1326 * Calling this function on an active interface is a nop. On a failure 1327 * a negative errno code is returned. 1328 */ 1329int dev_open(struct net_device *dev) 1330{ 1331 int ret; 1332 1333 if (dev->flags & IFF_UP) 1334 return 0; 1335 1336 ret = __dev_open(dev); 1337 if (ret < 0) 1338 return ret; 1339 1340 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1341 call_netdevice_notifiers(NETDEV_UP, dev); 1342 1343 return ret; 1344} 1345EXPORT_SYMBOL(dev_open); 1346 1347static int __dev_close_many(struct list_head *head) 1348{ 1349 struct net_device *dev; 1350 1351 ASSERT_RTNL(); 1352 might_sleep(); 1353 1354 list_for_each_entry(dev, head, close_list) { 1355 /* Temporarily disable netpoll until the interface is down */ 1356 netpoll_poll_disable(dev); 1357 1358 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1359 1360 clear_bit(__LINK_STATE_START, &dev->state); 1361 1362 /* Synchronize to scheduled poll. We cannot touch poll list, it 1363 * can be even on different cpu. So just clear netif_running(). 1364 * 1365 * dev->stop() will invoke napi_disable() on all of it's 1366 * napi_struct instances on this device. 1367 */ 1368 smp_mb__after_atomic(); /* Commit netif_running(). */ 1369 } 1370 1371 dev_deactivate_many(head); 1372 1373 list_for_each_entry(dev, head, close_list) { 1374 const struct net_device_ops *ops = dev->netdev_ops; 1375 1376 /* 1377 * Call the device specific close. This cannot fail. 1378 * Only if device is UP 1379 * 1380 * We allow it to be called even after a DETACH hot-plug 1381 * event. 1382 */ 1383 if (ops->ndo_stop) 1384 ops->ndo_stop(dev); 1385 1386 dev->flags &= ~IFF_UP; 1387 netpoll_poll_enable(dev); 1388 } 1389 1390 return 0; 1391} 1392 1393static int __dev_close(struct net_device *dev) 1394{ 1395 int retval; 1396 LIST_HEAD(single); 1397 1398 list_add(&dev->close_list, &single); 1399 retval = __dev_close_many(&single); 1400 list_del(&single); 1401 1402 return retval; 1403} 1404 1405int dev_close_many(struct list_head *head, bool unlink) 1406{ 1407 struct net_device *dev, *tmp; 1408 1409 /* Remove the devices that don't need to be closed */ 1410 list_for_each_entry_safe(dev, tmp, head, close_list) 1411 if (!(dev->flags & IFF_UP)) 1412 list_del_init(&dev->close_list); 1413 1414 __dev_close_many(head); 1415 1416 list_for_each_entry_safe(dev, tmp, head, close_list) { 1417 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1418 call_netdevice_notifiers(NETDEV_DOWN, dev); 1419 if (unlink) 1420 list_del_init(&dev->close_list); 1421 } 1422 1423 return 0; 1424} 1425EXPORT_SYMBOL(dev_close_many); 1426 1427/** 1428 * dev_close - shutdown an interface. 1429 * @dev: device to shutdown 1430 * 1431 * This function moves an active device into down state. A 1432 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1433 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1434 * chain. 1435 */ 1436int dev_close(struct net_device *dev) 1437{ 1438 if (dev->flags & IFF_UP) { 1439 LIST_HEAD(single); 1440 1441 list_add(&dev->close_list, &single); 1442 dev_close_many(&single, true); 1443 list_del(&single); 1444 } 1445 return 0; 1446} 1447EXPORT_SYMBOL(dev_close); 1448 1449 1450/** 1451 * dev_disable_lro - disable Large Receive Offload on a device 1452 * @dev: device 1453 * 1454 * Disable Large Receive Offload (LRO) on a net device. Must be 1455 * called under RTNL. This is needed if received packets may be 1456 * forwarded to another interface. 1457 */ 1458void dev_disable_lro(struct net_device *dev) 1459{ 1460 struct net_device *lower_dev; 1461 struct list_head *iter; 1462 1463 dev->wanted_features &= ~NETIF_F_LRO; 1464 netdev_update_features(dev); 1465 1466 if (unlikely(dev->features & NETIF_F_LRO)) 1467 netdev_WARN(dev, "failed to disable LRO!\n"); 1468 1469 netdev_for_each_lower_dev(dev, lower_dev, iter) 1470 dev_disable_lro(lower_dev); 1471} 1472EXPORT_SYMBOL(dev_disable_lro); 1473 1474static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1475 struct net_device *dev) 1476{ 1477 struct netdev_notifier_info info; 1478 1479 netdev_notifier_info_init(&info, dev); 1480 return nb->notifier_call(nb, val, &info); 1481} 1482 1483static int dev_boot_phase = 1; 1484 1485/** 1486 * register_netdevice_notifier - register a network notifier block 1487 * @nb: notifier 1488 * 1489 * Register a notifier to be called when network device events occur. 1490 * The notifier passed is linked into the kernel structures and must 1491 * not be reused until it has been unregistered. A negative errno code 1492 * is returned on a failure. 1493 * 1494 * When registered all registration and up events are replayed 1495 * to the new notifier to allow device to have a race free 1496 * view of the network device list. 1497 */ 1498 1499int register_netdevice_notifier(struct notifier_block *nb) 1500{ 1501 struct net_device *dev; 1502 struct net_device *last; 1503 struct net *net; 1504 int err; 1505 1506 rtnl_lock(); 1507 err = raw_notifier_chain_register(&netdev_chain, nb); 1508 if (err) 1509 goto unlock; 1510 if (dev_boot_phase) 1511 goto unlock; 1512 for_each_net(net) { 1513 for_each_netdev(net, dev) { 1514 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1515 err = notifier_to_errno(err); 1516 if (err) 1517 goto rollback; 1518 1519 if (!(dev->flags & IFF_UP)) 1520 continue; 1521 1522 call_netdevice_notifier(nb, NETDEV_UP, dev); 1523 } 1524 } 1525 1526unlock: 1527 rtnl_unlock(); 1528 return err; 1529 1530rollback: 1531 last = dev; 1532 for_each_net(net) { 1533 for_each_netdev(net, dev) { 1534 if (dev == last) 1535 goto outroll; 1536 1537 if (dev->flags & IFF_UP) { 1538 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1539 dev); 1540 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1541 } 1542 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1543 } 1544 } 1545 1546outroll: 1547 raw_notifier_chain_unregister(&netdev_chain, nb); 1548 goto unlock; 1549} 1550EXPORT_SYMBOL(register_netdevice_notifier); 1551 1552/** 1553 * unregister_netdevice_notifier - unregister a network notifier block 1554 * @nb: notifier 1555 * 1556 * Unregister a notifier previously registered by 1557 * register_netdevice_notifier(). The notifier is unlinked into the 1558 * kernel structures and may then be reused. A negative errno code 1559 * is returned on a failure. 1560 * 1561 * After unregistering unregister and down device events are synthesized 1562 * for all devices on the device list to the removed notifier to remove 1563 * the need for special case cleanup code. 1564 */ 1565 1566int unregister_netdevice_notifier(struct notifier_block *nb) 1567{ 1568 struct net_device *dev; 1569 struct net *net; 1570 int err; 1571 1572 rtnl_lock(); 1573 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1574 if (err) 1575 goto unlock; 1576 1577 for_each_net(net) { 1578 for_each_netdev(net, dev) { 1579 if (dev->flags & IFF_UP) { 1580 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1581 dev); 1582 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1583 } 1584 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1585 } 1586 } 1587unlock: 1588 rtnl_unlock(); 1589 return err; 1590} 1591EXPORT_SYMBOL(unregister_netdevice_notifier); 1592 1593/** 1594 * call_netdevice_notifiers_info - call all network notifier blocks 1595 * @val: value passed unmodified to notifier function 1596 * @dev: net_device pointer passed unmodified to notifier function 1597 * @info: notifier information data 1598 * 1599 * Call all network notifier blocks. Parameters and return value 1600 * are as for raw_notifier_call_chain(). 1601 */ 1602 1603static int call_netdevice_notifiers_info(unsigned long val, 1604 struct net_device *dev, 1605 struct netdev_notifier_info *info) 1606{ 1607 ASSERT_RTNL(); 1608 netdev_notifier_info_init(info, dev); 1609 return raw_notifier_call_chain(&netdev_chain, val, info); 1610} 1611 1612/** 1613 * call_netdevice_notifiers - call all network notifier blocks 1614 * @val: value passed unmodified to notifier function 1615 * @dev: net_device pointer passed unmodified to notifier function 1616 * 1617 * Call all network notifier blocks. Parameters and return value 1618 * are as for raw_notifier_call_chain(). 1619 */ 1620 1621int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1622{ 1623 struct netdev_notifier_info info; 1624 1625 return call_netdevice_notifiers_info(val, dev, &info); 1626} 1627EXPORT_SYMBOL(call_netdevice_notifiers); 1628 1629#ifdef CONFIG_NET_CLS_ACT 1630static struct static_key ingress_needed __read_mostly; 1631 1632void net_inc_ingress_queue(void) 1633{ 1634 static_key_slow_inc(&ingress_needed); 1635} 1636EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1637 1638void net_dec_ingress_queue(void) 1639{ 1640 static_key_slow_dec(&ingress_needed); 1641} 1642EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1643#endif 1644 1645static struct static_key netstamp_needed __read_mostly; 1646#ifdef HAVE_JUMP_LABEL 1647/* We are not allowed to call static_key_slow_dec() from irq context 1648 * If net_disable_timestamp() is called from irq context, defer the 1649 * static_key_slow_dec() calls. 1650 */ 1651static atomic_t netstamp_needed_deferred; 1652#endif 1653 1654void net_enable_timestamp(void) 1655{ 1656#ifdef HAVE_JUMP_LABEL 1657 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1658 1659 if (deferred) { 1660 while (--deferred) 1661 static_key_slow_dec(&netstamp_needed); 1662 return; 1663 } 1664#endif 1665 static_key_slow_inc(&netstamp_needed); 1666} 1667EXPORT_SYMBOL(net_enable_timestamp); 1668 1669void net_disable_timestamp(void) 1670{ 1671#ifdef HAVE_JUMP_LABEL 1672 if (in_interrupt()) { 1673 atomic_inc(&netstamp_needed_deferred); 1674 return; 1675 } 1676#endif 1677 static_key_slow_dec(&netstamp_needed); 1678} 1679EXPORT_SYMBOL(net_disable_timestamp); 1680 1681static inline void net_timestamp_set(struct sk_buff *skb) 1682{ 1683 skb->tstamp.tv64 = 0; 1684 if (static_key_false(&netstamp_needed)) 1685 __net_timestamp(skb); 1686} 1687 1688#define net_timestamp_check(COND, SKB) \ 1689 if (static_key_false(&netstamp_needed)) { \ 1690 if ((COND) && !(SKB)->tstamp.tv64) \ 1691 __net_timestamp(SKB); \ 1692 } \ 1693 1694bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb) 1695{ 1696 unsigned int len; 1697 1698 if (!(dev->flags & IFF_UP)) 1699 return false; 1700 1701 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1702 if (skb->len <= len) 1703 return true; 1704 1705 /* if TSO is enabled, we don't care about the length as the packet 1706 * could be forwarded without being segmented before 1707 */ 1708 if (skb_is_gso(skb)) 1709 return true; 1710 1711 return false; 1712} 1713EXPORT_SYMBOL_GPL(is_skb_forwardable); 1714 1715int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1716{ 1717 if (skb_orphan_frags(skb, GFP_ATOMIC) || 1718 unlikely(!is_skb_forwardable(dev, skb))) { 1719 atomic_long_inc(&dev->rx_dropped); 1720 kfree_skb(skb); 1721 return NET_RX_DROP; 1722 } 1723 1724 skb_scrub_packet(skb, true); 1725 skb->priority = 0; 1726 skb->protocol = eth_type_trans(skb, dev); 1727 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1728 1729 return 0; 1730} 1731EXPORT_SYMBOL_GPL(__dev_forward_skb); 1732 1733/** 1734 * dev_forward_skb - loopback an skb to another netif 1735 * 1736 * @dev: destination network device 1737 * @skb: buffer to forward 1738 * 1739 * return values: 1740 * NET_RX_SUCCESS (no congestion) 1741 * NET_RX_DROP (packet was dropped, but freed) 1742 * 1743 * dev_forward_skb can be used for injecting an skb from the 1744 * start_xmit function of one device into the receive queue 1745 * of another device. 1746 * 1747 * The receiving device may be in another namespace, so 1748 * we have to clear all information in the skb that could 1749 * impact namespace isolation. 1750 */ 1751int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1752{ 1753 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1754} 1755EXPORT_SYMBOL_GPL(dev_forward_skb); 1756 1757static inline int deliver_skb(struct sk_buff *skb, 1758 struct packet_type *pt_prev, 1759 struct net_device *orig_dev) 1760{ 1761 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1762 return -ENOMEM; 1763 atomic_inc(&skb->users); 1764 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1765} 1766 1767static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1768 struct packet_type **pt, 1769 struct net_device *orig_dev, 1770 __be16 type, 1771 struct list_head *ptype_list) 1772{ 1773 struct packet_type *ptype, *pt_prev = *pt; 1774 1775 list_for_each_entry_rcu(ptype, ptype_list, list) { 1776 if (ptype->type != type) 1777 continue; 1778 if (pt_prev) 1779 deliver_skb(skb, pt_prev, orig_dev); 1780 pt_prev = ptype; 1781 } 1782 *pt = pt_prev; 1783} 1784 1785static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1786{ 1787 if (!ptype->af_packet_priv || !skb->sk) 1788 return false; 1789 1790 if (ptype->id_match) 1791 return ptype->id_match(ptype, skb->sk); 1792 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1793 return true; 1794 1795 return false; 1796} 1797 1798/* 1799 * Support routine. Sends outgoing frames to any network 1800 * taps currently in use. 1801 */ 1802 1803static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1804{ 1805 struct packet_type *ptype; 1806 struct sk_buff *skb2 = NULL; 1807 struct packet_type *pt_prev = NULL; 1808 struct list_head *ptype_list = &ptype_all; 1809 1810 rcu_read_lock(); 1811again: 1812 list_for_each_entry_rcu(ptype, ptype_list, list) { 1813 /* Never send packets back to the socket 1814 * they originated from - MvS (miquels@drinkel.ow.org) 1815 */ 1816 if (skb_loop_sk(ptype, skb)) 1817 continue; 1818 1819 if (pt_prev) { 1820 deliver_skb(skb2, pt_prev, skb->dev); 1821 pt_prev = ptype; 1822 continue; 1823 } 1824 1825 /* need to clone skb, done only once */ 1826 skb2 = skb_clone(skb, GFP_ATOMIC); 1827 if (!skb2) 1828 goto out_unlock; 1829 1830 net_timestamp_set(skb2); 1831 1832 /* skb->nh should be correctly 1833 * set by sender, so that the second statement is 1834 * just protection against buggy protocols. 1835 */ 1836 skb_reset_mac_header(skb2); 1837 1838 if (skb_network_header(skb2) < skb2->data || 1839 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1840 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1841 ntohs(skb2->protocol), 1842 dev->name); 1843 skb_reset_network_header(skb2); 1844 } 1845 1846 skb2->transport_header = skb2->network_header; 1847 skb2->pkt_type = PACKET_OUTGOING; 1848 pt_prev = ptype; 1849 } 1850 1851 if (ptype_list == &ptype_all) { 1852 ptype_list = &dev->ptype_all; 1853 goto again; 1854 } 1855out_unlock: 1856 if (pt_prev) 1857 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1858 rcu_read_unlock(); 1859} 1860 1861/** 1862 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1863 * @dev: Network device 1864 * @txq: number of queues available 1865 * 1866 * If real_num_tx_queues is changed the tc mappings may no longer be 1867 * valid. To resolve this verify the tc mapping remains valid and if 1868 * not NULL the mapping. With no priorities mapping to this 1869 * offset/count pair it will no longer be used. In the worst case TC0 1870 * is invalid nothing can be done so disable priority mappings. If is 1871 * expected that drivers will fix this mapping if they can before 1872 * calling netif_set_real_num_tx_queues. 1873 */ 1874static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1875{ 1876 int i; 1877 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1878 1879 /* If TC0 is invalidated disable TC mapping */ 1880 if (tc->offset + tc->count > txq) { 1881 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1882 dev->num_tc = 0; 1883 return; 1884 } 1885 1886 /* Invalidated prio to tc mappings set to TC0 */ 1887 for (i = 1; i < TC_BITMASK + 1; i++) { 1888 int q = netdev_get_prio_tc_map(dev, i); 1889 1890 tc = &dev->tc_to_txq[q]; 1891 if (tc->offset + tc->count > txq) { 1892 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1893 i, q); 1894 netdev_set_prio_tc_map(dev, i, 0); 1895 } 1896 } 1897} 1898 1899#ifdef CONFIG_XPS 1900static DEFINE_MUTEX(xps_map_mutex); 1901#define xmap_dereference(P) \ 1902 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1903 1904static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1905 int cpu, u16 index) 1906{ 1907 struct xps_map *map = NULL; 1908 int pos; 1909 1910 if (dev_maps) 1911 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1912 1913 for (pos = 0; map && pos < map->len; pos++) { 1914 if (map->queues[pos] == index) { 1915 if (map->len > 1) { 1916 map->queues[pos] = map->queues[--map->len]; 1917 } else { 1918 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1919 kfree_rcu(map, rcu); 1920 map = NULL; 1921 } 1922 break; 1923 } 1924 } 1925 1926 return map; 1927} 1928 1929static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1930{ 1931 struct xps_dev_maps *dev_maps; 1932 int cpu, i; 1933 bool active = false; 1934 1935 mutex_lock(&xps_map_mutex); 1936 dev_maps = xmap_dereference(dev->xps_maps); 1937 1938 if (!dev_maps) 1939 goto out_no_maps; 1940 1941 for_each_possible_cpu(cpu) { 1942 for (i = index; i < dev->num_tx_queues; i++) { 1943 if (!remove_xps_queue(dev_maps, cpu, i)) 1944 break; 1945 } 1946 if (i == dev->num_tx_queues) 1947 active = true; 1948 } 1949 1950 if (!active) { 1951 RCU_INIT_POINTER(dev->xps_maps, NULL); 1952 kfree_rcu(dev_maps, rcu); 1953 } 1954 1955 for (i = index; i < dev->num_tx_queues; i++) 1956 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1957 NUMA_NO_NODE); 1958 1959out_no_maps: 1960 mutex_unlock(&xps_map_mutex); 1961} 1962 1963static struct xps_map *expand_xps_map(struct xps_map *map, 1964 int cpu, u16 index) 1965{ 1966 struct xps_map *new_map; 1967 int alloc_len = XPS_MIN_MAP_ALLOC; 1968 int i, pos; 1969 1970 for (pos = 0; map && pos < map->len; pos++) { 1971 if (map->queues[pos] != index) 1972 continue; 1973 return map; 1974 } 1975 1976 /* Need to add queue to this CPU's existing map */ 1977 if (map) { 1978 if (pos < map->alloc_len) 1979 return map; 1980 1981 alloc_len = map->alloc_len * 2; 1982 } 1983 1984 /* Need to allocate new map to store queue on this CPU's map */ 1985 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1986 cpu_to_node(cpu)); 1987 if (!new_map) 1988 return NULL; 1989 1990 for (i = 0; i < pos; i++) 1991 new_map->queues[i] = map->queues[i]; 1992 new_map->alloc_len = alloc_len; 1993 new_map->len = pos; 1994 1995 return new_map; 1996} 1997 1998int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 1999 u16 index) 2000{ 2001 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2002 struct xps_map *map, *new_map; 2003 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 2004 int cpu, numa_node_id = -2; 2005 bool active = false; 2006 2007 mutex_lock(&xps_map_mutex); 2008 2009 dev_maps = xmap_dereference(dev->xps_maps); 2010 2011 /* allocate memory for queue storage */ 2012 for_each_online_cpu(cpu) { 2013 if (!cpumask_test_cpu(cpu, mask)) 2014 continue; 2015 2016 if (!new_dev_maps) 2017 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2018 if (!new_dev_maps) { 2019 mutex_unlock(&xps_map_mutex); 2020 return -ENOMEM; 2021 } 2022 2023 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2024 NULL; 2025 2026 map = expand_xps_map(map, cpu, index); 2027 if (!map) 2028 goto error; 2029 2030 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2031 } 2032 2033 if (!new_dev_maps) 2034 goto out_no_new_maps; 2035 2036 for_each_possible_cpu(cpu) { 2037 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2038 /* add queue to CPU maps */ 2039 int pos = 0; 2040 2041 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2042 while ((pos < map->len) && (map->queues[pos] != index)) 2043 pos++; 2044 2045 if (pos == map->len) 2046 map->queues[map->len++] = index; 2047#ifdef CONFIG_NUMA 2048 if (numa_node_id == -2) 2049 numa_node_id = cpu_to_node(cpu); 2050 else if (numa_node_id != cpu_to_node(cpu)) 2051 numa_node_id = -1; 2052#endif 2053 } else if (dev_maps) { 2054 /* fill in the new device map from the old device map */ 2055 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2056 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2057 } 2058 2059 } 2060 2061 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2062 2063 /* Cleanup old maps */ 2064 if (dev_maps) { 2065 for_each_possible_cpu(cpu) { 2066 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2067 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2068 if (map && map != new_map) 2069 kfree_rcu(map, rcu); 2070 } 2071 2072 kfree_rcu(dev_maps, rcu); 2073 } 2074 2075 dev_maps = new_dev_maps; 2076 active = true; 2077 2078out_no_new_maps: 2079 /* update Tx queue numa node */ 2080 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2081 (numa_node_id >= 0) ? numa_node_id : 2082 NUMA_NO_NODE); 2083 2084 if (!dev_maps) 2085 goto out_no_maps; 2086 2087 /* removes queue from unused CPUs */ 2088 for_each_possible_cpu(cpu) { 2089 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2090 continue; 2091 2092 if (remove_xps_queue(dev_maps, cpu, index)) 2093 active = true; 2094 } 2095 2096 /* free map if not active */ 2097 if (!active) { 2098 RCU_INIT_POINTER(dev->xps_maps, NULL); 2099 kfree_rcu(dev_maps, rcu); 2100 } 2101 2102out_no_maps: 2103 mutex_unlock(&xps_map_mutex); 2104 2105 return 0; 2106error: 2107 /* remove any maps that we added */ 2108 for_each_possible_cpu(cpu) { 2109 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2110 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2111 NULL; 2112 if (new_map && new_map != map) 2113 kfree(new_map); 2114 } 2115 2116 mutex_unlock(&xps_map_mutex); 2117 2118 kfree(new_dev_maps); 2119 return -ENOMEM; 2120} 2121EXPORT_SYMBOL(netif_set_xps_queue); 2122 2123#endif 2124/* 2125 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2126 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2127 */ 2128int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2129{ 2130 int rc; 2131 2132 if (txq < 1 || txq > dev->num_tx_queues) 2133 return -EINVAL; 2134 2135 if (dev->reg_state == NETREG_REGISTERED || 2136 dev->reg_state == NETREG_UNREGISTERING) { 2137 ASSERT_RTNL(); 2138 2139 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2140 txq); 2141 if (rc) 2142 return rc; 2143 2144 if (dev->num_tc) 2145 netif_setup_tc(dev, txq); 2146 2147 if (txq < dev->real_num_tx_queues) { 2148 qdisc_reset_all_tx_gt(dev, txq); 2149#ifdef CONFIG_XPS 2150 netif_reset_xps_queues_gt(dev, txq); 2151#endif 2152 } 2153 } 2154 2155 dev->real_num_tx_queues = txq; 2156 return 0; 2157} 2158EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2159 2160#ifdef CONFIG_SYSFS 2161/** 2162 * netif_set_real_num_rx_queues - set actual number of RX queues used 2163 * @dev: Network device 2164 * @rxq: Actual number of RX queues 2165 * 2166 * This must be called either with the rtnl_lock held or before 2167 * registration of the net device. Returns 0 on success, or a 2168 * negative error code. If called before registration, it always 2169 * succeeds. 2170 */ 2171int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2172{ 2173 int rc; 2174 2175 if (rxq < 1 || rxq > dev->num_rx_queues) 2176 return -EINVAL; 2177 2178 if (dev->reg_state == NETREG_REGISTERED) { 2179 ASSERT_RTNL(); 2180 2181 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2182 rxq); 2183 if (rc) 2184 return rc; 2185 } 2186 2187 dev->real_num_rx_queues = rxq; 2188 return 0; 2189} 2190EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2191#endif 2192 2193/** 2194 * netif_get_num_default_rss_queues - default number of RSS queues 2195 * 2196 * This routine should set an upper limit on the number of RSS queues 2197 * used by default by multiqueue devices. 2198 */ 2199int netif_get_num_default_rss_queues(void) 2200{ 2201 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2202} 2203EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2204 2205static inline void __netif_reschedule(struct Qdisc *q) 2206{ 2207 struct softnet_data *sd; 2208 unsigned long flags; 2209 2210 local_irq_save(flags); 2211 sd = this_cpu_ptr(&softnet_data); 2212 q->next_sched = NULL; 2213 *sd->output_queue_tailp = q; 2214 sd->output_queue_tailp = &q->next_sched; 2215 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2216 local_irq_restore(flags); 2217} 2218 2219void __netif_schedule(struct Qdisc *q) 2220{ 2221 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2222 __netif_reschedule(q); 2223} 2224EXPORT_SYMBOL(__netif_schedule); 2225 2226struct dev_kfree_skb_cb { 2227 enum skb_free_reason reason; 2228}; 2229 2230static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2231{ 2232 return (struct dev_kfree_skb_cb *)skb->cb; 2233} 2234 2235void netif_schedule_queue(struct netdev_queue *txq) 2236{ 2237 rcu_read_lock(); 2238 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2239 struct Qdisc *q = rcu_dereference(txq->qdisc); 2240 2241 __netif_schedule(q); 2242 } 2243 rcu_read_unlock(); 2244} 2245EXPORT_SYMBOL(netif_schedule_queue); 2246 2247/** 2248 * netif_wake_subqueue - allow sending packets on subqueue 2249 * @dev: network device 2250 * @queue_index: sub queue index 2251 * 2252 * Resume individual transmit queue of a device with multiple transmit queues. 2253 */ 2254void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2255{ 2256 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2257 2258 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) { 2259 struct Qdisc *q; 2260 2261 rcu_read_lock(); 2262 q = rcu_dereference(txq->qdisc); 2263 __netif_schedule(q); 2264 rcu_read_unlock(); 2265 } 2266} 2267EXPORT_SYMBOL(netif_wake_subqueue); 2268 2269void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2270{ 2271 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2272 struct Qdisc *q; 2273 2274 rcu_read_lock(); 2275 q = rcu_dereference(dev_queue->qdisc); 2276 __netif_schedule(q); 2277 rcu_read_unlock(); 2278 } 2279} 2280EXPORT_SYMBOL(netif_tx_wake_queue); 2281 2282void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2283{ 2284 unsigned long flags; 2285 2286 if (likely(atomic_read(&skb->users) == 1)) { 2287 smp_rmb(); 2288 atomic_set(&skb->users, 0); 2289 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2290 return; 2291 } 2292 get_kfree_skb_cb(skb)->reason = reason; 2293 local_irq_save(flags); 2294 skb->next = __this_cpu_read(softnet_data.completion_queue); 2295 __this_cpu_write(softnet_data.completion_queue, skb); 2296 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2297 local_irq_restore(flags); 2298} 2299EXPORT_SYMBOL(__dev_kfree_skb_irq); 2300 2301void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2302{ 2303 if (in_irq() || irqs_disabled()) 2304 __dev_kfree_skb_irq(skb, reason); 2305 else 2306 dev_kfree_skb(skb); 2307} 2308EXPORT_SYMBOL(__dev_kfree_skb_any); 2309 2310 2311/** 2312 * netif_device_detach - mark device as removed 2313 * @dev: network device 2314 * 2315 * Mark device as removed from system and therefore no longer available. 2316 */ 2317void netif_device_detach(struct net_device *dev) 2318{ 2319 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2320 netif_running(dev)) { 2321 netif_tx_stop_all_queues(dev); 2322 } 2323} 2324EXPORT_SYMBOL(netif_device_detach); 2325 2326/** 2327 * netif_device_attach - mark device as attached 2328 * @dev: network device 2329 * 2330 * Mark device as attached from system and restart if needed. 2331 */ 2332void netif_device_attach(struct net_device *dev) 2333{ 2334 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2335 netif_running(dev)) { 2336 netif_tx_wake_all_queues(dev); 2337 __netdev_watchdog_up(dev); 2338 } 2339} 2340EXPORT_SYMBOL(netif_device_attach); 2341 2342static void skb_warn_bad_offload(const struct sk_buff *skb) 2343{ 2344 static const netdev_features_t null_features = 0; 2345 struct net_device *dev = skb->dev; 2346 const char *driver = ""; 2347 2348 if (!net_ratelimit()) 2349 return; 2350 2351 if (dev && dev->dev.parent) 2352 driver = dev_driver_string(dev->dev.parent); 2353 2354 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2355 "gso_type=%d ip_summed=%d\n", 2356 driver, dev ? &dev->features : &null_features, 2357 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2358 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2359 skb_shinfo(skb)->gso_type, skb->ip_summed); 2360} 2361 2362/* 2363 * Invalidate hardware checksum when packet is to be mangled, and 2364 * complete checksum manually on outgoing path. 2365 */ 2366int skb_checksum_help(struct sk_buff *skb) 2367{ 2368 __wsum csum; 2369 int ret = 0, offset; 2370 2371 if (skb->ip_summed == CHECKSUM_COMPLETE) 2372 goto out_set_summed; 2373 2374 if (unlikely(skb_shinfo(skb)->gso_size)) { 2375 skb_warn_bad_offload(skb); 2376 return -EINVAL; 2377 } 2378 2379 /* Before computing a checksum, we should make sure no frag could 2380 * be modified by an external entity : checksum could be wrong. 2381 */ 2382 if (skb_has_shared_frag(skb)) { 2383 ret = __skb_linearize(skb); 2384 if (ret) 2385 goto out; 2386 } 2387 2388 offset = skb_checksum_start_offset(skb); 2389 BUG_ON(offset >= skb_headlen(skb)); 2390 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2391 2392 offset += skb->csum_offset; 2393 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2394 2395 if (skb_cloned(skb) && 2396 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2397 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2398 if (ret) 2399 goto out; 2400 } 2401 2402 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2403out_set_summed: 2404 skb->ip_summed = CHECKSUM_NONE; 2405out: 2406 return ret; 2407} 2408EXPORT_SYMBOL(skb_checksum_help); 2409 2410__be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2411{ 2412 __be16 type = skb->protocol; 2413 2414 /* Tunnel gso handlers can set protocol to ethernet. */ 2415 if (type == htons(ETH_P_TEB)) { 2416 struct ethhdr *eth; 2417 2418 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2419 return 0; 2420 2421 eth = (struct ethhdr *)skb_mac_header(skb); 2422 type = eth->h_proto; 2423 } 2424 2425 return __vlan_get_protocol(skb, type, depth); 2426} 2427 2428/** 2429 * skb_mac_gso_segment - mac layer segmentation handler. 2430 * @skb: buffer to segment 2431 * @features: features for the output path (see dev->features) 2432 */ 2433struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2434 netdev_features_t features) 2435{ 2436 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2437 struct packet_offload *ptype; 2438 int vlan_depth = skb->mac_len; 2439 __be16 type = skb_network_protocol(skb, &vlan_depth); 2440 2441 if (unlikely(!type)) 2442 return ERR_PTR(-EINVAL); 2443 2444 __skb_pull(skb, vlan_depth); 2445 2446 rcu_read_lock(); 2447 list_for_each_entry_rcu(ptype, &offload_base, list) { 2448 if (ptype->type == type && ptype->callbacks.gso_segment) { 2449 segs = ptype->callbacks.gso_segment(skb, features); 2450 break; 2451 } 2452 } 2453 rcu_read_unlock(); 2454 2455 __skb_push(skb, skb->data - skb_mac_header(skb)); 2456 2457 return segs; 2458} 2459EXPORT_SYMBOL(skb_mac_gso_segment); 2460 2461 2462/* openvswitch calls this on rx path, so we need a different check. 2463 */ 2464static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2465{ 2466 if (tx_path) 2467 return skb->ip_summed != CHECKSUM_PARTIAL; 2468 else 2469 return skb->ip_summed == CHECKSUM_NONE; 2470} 2471 2472/** 2473 * __skb_gso_segment - Perform segmentation on skb. 2474 * @skb: buffer to segment 2475 * @features: features for the output path (see dev->features) 2476 * @tx_path: whether it is called in TX path 2477 * 2478 * This function segments the given skb and returns a list of segments. 2479 * 2480 * It may return NULL if the skb requires no segmentation. This is 2481 * only possible when GSO is used for verifying header integrity. 2482 * 2483 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2484 */ 2485struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2486 netdev_features_t features, bool tx_path) 2487{ 2488 if (unlikely(skb_needs_check(skb, tx_path))) { 2489 int err; 2490 2491 skb_warn_bad_offload(skb); 2492 2493 err = skb_cow_head(skb, 0); 2494 if (err < 0) 2495 return ERR_PTR(err); 2496 } 2497 2498 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2499 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2500 2501 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2502 SKB_GSO_CB(skb)->encap_level = 0; 2503 2504 skb_reset_mac_header(skb); 2505 skb_reset_mac_len(skb); 2506 2507 return skb_mac_gso_segment(skb, features); 2508} 2509EXPORT_SYMBOL(__skb_gso_segment); 2510 2511/* Take action when hardware reception checksum errors are detected. */ 2512#ifdef CONFIG_BUG 2513void netdev_rx_csum_fault(struct net_device *dev) 2514{ 2515 if (net_ratelimit()) { 2516 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2517 dump_stack(); 2518 } 2519} 2520EXPORT_SYMBOL(netdev_rx_csum_fault); 2521#endif 2522 2523/* Actually, we should eliminate this check as soon as we know, that: 2524 * 1. IOMMU is present and allows to map all the memory. 2525 * 2. No high memory really exists on this machine. 2526 */ 2527 2528static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2529{ 2530#ifdef CONFIG_HIGHMEM 2531 int i; 2532 if (!(dev->features & NETIF_F_HIGHDMA)) { 2533 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2534 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2535 if (PageHighMem(skb_frag_page(frag))) 2536 return 1; 2537 } 2538 } 2539 2540 if (PCI_DMA_BUS_IS_PHYS) { 2541 struct device *pdev = dev->dev.parent; 2542 2543 if (!pdev) 2544 return 0; 2545 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2546 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2547 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2548 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2549 return 1; 2550 } 2551 } 2552#endif 2553 return 0; 2554} 2555 2556/* If MPLS offload request, verify we are testing hardware MPLS features 2557 * instead of standard features for the netdev. 2558 */ 2559#if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2560static netdev_features_t net_mpls_features(struct sk_buff *skb, 2561 netdev_features_t features, 2562 __be16 type) 2563{ 2564 if (eth_p_mpls(type)) 2565 features &= skb->dev->mpls_features; 2566 2567 return features; 2568} 2569#else 2570static netdev_features_t net_mpls_features(struct sk_buff *skb, 2571 netdev_features_t features, 2572 __be16 type) 2573{ 2574 return features; 2575} 2576#endif 2577 2578static netdev_features_t harmonize_features(struct sk_buff *skb, 2579 netdev_features_t features) 2580{ 2581 int tmp; 2582 __be16 type; 2583 2584 type = skb_network_protocol(skb, &tmp); 2585 features = net_mpls_features(skb, features, type); 2586 2587 if (skb->ip_summed != CHECKSUM_NONE && 2588 !can_checksum_protocol(features, type)) { 2589 features &= ~NETIF_F_ALL_CSUM; 2590 } else if (illegal_highdma(skb->dev, skb)) { 2591 features &= ~NETIF_F_SG; 2592 } 2593 2594 return features; 2595} 2596 2597netdev_features_t passthru_features_check(struct sk_buff *skb, 2598 struct net_device *dev, 2599 netdev_features_t features) 2600{ 2601 return features; 2602} 2603EXPORT_SYMBOL(passthru_features_check); 2604 2605static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2606 struct net_device *dev, 2607 netdev_features_t features) 2608{ 2609 return vlan_features_check(skb, features); 2610} 2611 2612netdev_features_t netif_skb_features(struct sk_buff *skb) 2613{ 2614 struct net_device *dev = skb->dev; 2615 netdev_features_t features = dev->features; 2616 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2617 2618 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs) 2619 features &= ~NETIF_F_GSO_MASK; 2620 2621 /* If encapsulation offload request, verify we are testing 2622 * hardware encapsulation features instead of standard 2623 * features for the netdev 2624 */ 2625 if (skb->encapsulation) 2626 features &= dev->hw_enc_features; 2627 2628 if (skb_vlan_tagged(skb)) 2629 features = netdev_intersect_features(features, 2630 dev->vlan_features | 2631 NETIF_F_HW_VLAN_CTAG_TX | 2632 NETIF_F_HW_VLAN_STAG_TX); 2633 2634 if (dev->netdev_ops->ndo_features_check) 2635 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2636 features); 2637 else 2638 features &= dflt_features_check(skb, dev, features); 2639 2640 return harmonize_features(skb, features); 2641} 2642EXPORT_SYMBOL(netif_skb_features); 2643 2644static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2645 struct netdev_queue *txq, bool more) 2646{ 2647 unsigned int len; 2648 int rc; 2649 2650 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2651 dev_queue_xmit_nit(skb, dev); 2652 2653 len = skb->len; 2654 trace_net_dev_start_xmit(skb, dev); 2655 rc = netdev_start_xmit(skb, dev, txq, more); 2656 trace_net_dev_xmit(skb, rc, dev, len); 2657 2658 return rc; 2659} 2660 2661struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2662 struct netdev_queue *txq, int *ret) 2663{ 2664 struct sk_buff *skb = first; 2665 int rc = NETDEV_TX_OK; 2666 2667 while (skb) { 2668 struct sk_buff *next = skb->next; 2669 2670 skb->next = NULL; 2671 rc = xmit_one(skb, dev, txq, next != NULL); 2672 if (unlikely(!dev_xmit_complete(rc))) { 2673 skb->next = next; 2674 goto out; 2675 } 2676 2677 skb = next; 2678 if (netif_xmit_stopped(txq) && skb) { 2679 rc = NETDEV_TX_BUSY; 2680 break; 2681 } 2682 } 2683 2684out: 2685 *ret = rc; 2686 return skb; 2687} 2688 2689static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2690 netdev_features_t features) 2691{ 2692 if (skb_vlan_tag_present(skb) && 2693 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2694 skb = __vlan_hwaccel_push_inside(skb); 2695 return skb; 2696} 2697 2698static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2699{ 2700 netdev_features_t features; 2701 2702 if (skb->next) 2703 return skb; 2704 2705 features = netif_skb_features(skb); 2706 skb = validate_xmit_vlan(skb, features); 2707 if (unlikely(!skb)) 2708 goto out_null; 2709 2710 if (netif_needs_gso(skb, features)) { 2711 struct sk_buff *segs; 2712 2713 segs = skb_gso_segment(skb, features); 2714 if (IS_ERR(segs)) { 2715 goto out_kfree_skb; 2716 } else if (segs) { 2717 consume_skb(skb); 2718 skb = segs; 2719 } 2720 } else { 2721 if (skb_needs_linearize(skb, features) && 2722 __skb_linearize(skb)) 2723 goto out_kfree_skb; 2724 2725 /* If packet is not checksummed and device does not 2726 * support checksumming for this protocol, complete 2727 * checksumming here. 2728 */ 2729 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2730 if (skb->encapsulation) 2731 skb_set_inner_transport_header(skb, 2732 skb_checksum_start_offset(skb)); 2733 else 2734 skb_set_transport_header(skb, 2735 skb_checksum_start_offset(skb)); 2736 if (!(features & NETIF_F_ALL_CSUM) && 2737 skb_checksum_help(skb)) 2738 goto out_kfree_skb; 2739 } 2740 } 2741 2742 return skb; 2743 2744out_kfree_skb: 2745 kfree_skb(skb); 2746out_null: 2747 return NULL; 2748} 2749 2750struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 2751{ 2752 struct sk_buff *next, *head = NULL, *tail; 2753 2754 for (; skb != NULL; skb = next) { 2755 next = skb->next; 2756 skb->next = NULL; 2757 2758 /* in case skb wont be segmented, point to itself */ 2759 skb->prev = skb; 2760 2761 skb = validate_xmit_skb(skb, dev); 2762 if (!skb) 2763 continue; 2764 2765 if (!head) 2766 head = skb; 2767 else 2768 tail->next = skb; 2769 /* If skb was segmented, skb->prev points to 2770 * the last segment. If not, it still contains skb. 2771 */ 2772 tail = skb->prev; 2773 } 2774 return head; 2775} 2776 2777static void qdisc_pkt_len_init(struct sk_buff *skb) 2778{ 2779 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2780 2781 qdisc_skb_cb(skb)->pkt_len = skb->len; 2782 2783 /* To get more precise estimation of bytes sent on wire, 2784 * we add to pkt_len the headers size of all segments 2785 */ 2786 if (shinfo->gso_size) { 2787 unsigned int hdr_len; 2788 u16 gso_segs = shinfo->gso_segs; 2789 2790 /* mac layer + network layer */ 2791 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2792 2793 /* + transport layer */ 2794 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2795 hdr_len += tcp_hdrlen(skb); 2796 else 2797 hdr_len += sizeof(struct udphdr); 2798 2799 if (shinfo->gso_type & SKB_GSO_DODGY) 2800 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2801 shinfo->gso_size); 2802 2803 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2804 } 2805} 2806 2807static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2808 struct net_device *dev, 2809 struct netdev_queue *txq) 2810{ 2811 spinlock_t *root_lock = qdisc_lock(q); 2812 bool contended; 2813 int rc; 2814 2815 qdisc_pkt_len_init(skb); 2816 qdisc_calculate_pkt_len(skb, q); 2817 /* 2818 * Heuristic to force contended enqueues to serialize on a 2819 * separate lock before trying to get qdisc main lock. 2820 * This permits __QDISC___STATE_RUNNING owner to get the lock more 2821 * often and dequeue packets faster. 2822 */ 2823 contended = qdisc_is_running(q); 2824 if (unlikely(contended)) 2825 spin_lock(&q->busylock); 2826 2827 spin_lock(root_lock); 2828 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2829 kfree_skb(skb); 2830 rc = NET_XMIT_DROP; 2831 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2832 qdisc_run_begin(q)) { 2833 /* 2834 * This is a work-conserving queue; there are no old skbs 2835 * waiting to be sent out; and the qdisc is not running - 2836 * xmit the skb directly. 2837 */ 2838 2839 qdisc_bstats_update(q, skb); 2840 2841 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 2842 if (unlikely(contended)) { 2843 spin_unlock(&q->busylock); 2844 contended = false; 2845 } 2846 __qdisc_run(q); 2847 } else 2848 qdisc_run_end(q); 2849 2850 rc = NET_XMIT_SUCCESS; 2851 } else { 2852 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2853 if (qdisc_run_begin(q)) { 2854 if (unlikely(contended)) { 2855 spin_unlock(&q->busylock); 2856 contended = false; 2857 } 2858 __qdisc_run(q); 2859 } 2860 } 2861 spin_unlock(root_lock); 2862 if (unlikely(contended)) 2863 spin_unlock(&q->busylock); 2864 return rc; 2865} 2866 2867#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2868static void skb_update_prio(struct sk_buff *skb) 2869{ 2870 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2871 2872 if (!skb->priority && skb->sk && map) { 2873 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2874 2875 if (prioidx < map->priomap_len) 2876 skb->priority = map->priomap[prioidx]; 2877 } 2878} 2879#else 2880#define skb_update_prio(skb) 2881#endif 2882 2883DEFINE_PER_CPU(int, xmit_recursion); 2884EXPORT_SYMBOL(xmit_recursion); 2885 2886#define RECURSION_LIMIT 10 2887 2888/** 2889 * dev_loopback_xmit - loop back @skb 2890 * @skb: buffer to transmit 2891 */ 2892int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb) 2893{ 2894 skb_reset_mac_header(skb); 2895 __skb_pull(skb, skb_network_offset(skb)); 2896 skb->pkt_type = PACKET_LOOPBACK; 2897 skb->ip_summed = CHECKSUM_UNNECESSARY; 2898 WARN_ON(!skb_dst(skb)); 2899 skb_dst_force(skb); 2900 netif_rx_ni(skb); 2901 return 0; 2902} 2903EXPORT_SYMBOL(dev_loopback_xmit); 2904 2905/** 2906 * __dev_queue_xmit - transmit a buffer 2907 * @skb: buffer to transmit 2908 * @accel_priv: private data used for L2 forwarding offload 2909 * 2910 * Queue a buffer for transmission to a network device. The caller must 2911 * have set the device and priority and built the buffer before calling 2912 * this function. The function can be called from an interrupt. 2913 * 2914 * A negative errno code is returned on a failure. A success does not 2915 * guarantee the frame will be transmitted as it may be dropped due 2916 * to congestion or traffic shaping. 2917 * 2918 * ----------------------------------------------------------------------------------- 2919 * I notice this method can also return errors from the queue disciplines, 2920 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2921 * be positive. 2922 * 2923 * Regardless of the return value, the skb is consumed, so it is currently 2924 * difficult to retry a send to this method. (You can bump the ref count 2925 * before sending to hold a reference for retry if you are careful.) 2926 * 2927 * When calling this method, interrupts MUST be enabled. This is because 2928 * the BH enable code must have IRQs enabled so that it will not deadlock. 2929 * --BLG 2930 */ 2931static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 2932{ 2933 struct net_device *dev = skb->dev; 2934 struct netdev_queue *txq; 2935 struct Qdisc *q; 2936 int rc = -ENOMEM; 2937 2938 skb_reset_mac_header(skb); 2939 2940 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 2941 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 2942 2943 /* Disable soft irqs for various locks below. Also 2944 * stops preemption for RCU. 2945 */ 2946 rcu_read_lock_bh(); 2947 2948 skb_update_prio(skb); 2949 2950 /* If device/qdisc don't need skb->dst, release it right now while 2951 * its hot in this cpu cache. 2952 */ 2953 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2954 skb_dst_drop(skb); 2955 else 2956 skb_dst_force(skb); 2957 2958 txq = netdev_pick_tx(dev, skb, accel_priv); 2959 q = rcu_dereference_bh(txq->qdisc); 2960 2961#ifdef CONFIG_NET_CLS_ACT 2962 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2963#endif 2964 trace_net_dev_queue(skb); 2965 if (q->enqueue) { 2966 rc = __dev_xmit_skb(skb, q, dev, txq); 2967 goto out; 2968 } 2969 2970 /* The device has no queue. Common case for software devices: 2971 loopback, all the sorts of tunnels... 2972 2973 Really, it is unlikely that netif_tx_lock protection is necessary 2974 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2975 counters.) 2976 However, it is possible, that they rely on protection 2977 made by us here. 2978 2979 Check this and shot the lock. It is not prone from deadlocks. 2980 Either shot noqueue qdisc, it is even simpler 8) 2981 */ 2982 if (dev->flags & IFF_UP) { 2983 int cpu = smp_processor_id(); /* ok because BHs are off */ 2984 2985 if (txq->xmit_lock_owner != cpu) { 2986 2987 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2988 goto recursion_alert; 2989 2990 skb = validate_xmit_skb(skb, dev); 2991 if (!skb) 2992 goto drop; 2993 2994 HARD_TX_LOCK(dev, txq, cpu); 2995 2996 if (!netif_xmit_stopped(txq)) { 2997 __this_cpu_inc(xmit_recursion); 2998 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 2999 __this_cpu_dec(xmit_recursion); 3000 if (dev_xmit_complete(rc)) { 3001 HARD_TX_UNLOCK(dev, txq); 3002 goto out; 3003 } 3004 } 3005 HARD_TX_UNLOCK(dev, txq); 3006 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3007 dev->name); 3008 } else { 3009 /* Recursion is detected! It is possible, 3010 * unfortunately 3011 */ 3012recursion_alert: 3013 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3014 dev->name); 3015 } 3016 } 3017 3018 rc = -ENETDOWN; 3019drop: 3020 rcu_read_unlock_bh(); 3021 3022 atomic_long_inc(&dev->tx_dropped); 3023 kfree_skb_list(skb); 3024 return rc; 3025out: 3026 rcu_read_unlock_bh(); 3027 return rc; 3028} 3029 3030int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb) 3031{ 3032 return __dev_queue_xmit(skb, NULL); 3033} 3034EXPORT_SYMBOL(dev_queue_xmit_sk); 3035 3036int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3037{ 3038 return __dev_queue_xmit(skb, accel_priv); 3039} 3040EXPORT_SYMBOL(dev_queue_xmit_accel); 3041 3042 3043/*======================================================================= 3044 Receiver routines 3045 =======================================================================*/ 3046 3047int netdev_max_backlog __read_mostly = 1000; 3048EXPORT_SYMBOL(netdev_max_backlog); 3049 3050int netdev_tstamp_prequeue __read_mostly = 1; 3051int netdev_budget __read_mostly = 300; 3052int weight_p __read_mostly = 64; /* old backlog weight */ 3053 3054/* Called with irq disabled */ 3055static inline void ____napi_schedule(struct softnet_data *sd, 3056 struct napi_struct *napi) 3057{ 3058 list_add_tail(&napi->poll_list, &sd->poll_list); 3059 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3060} 3061 3062#ifdef CONFIG_RPS 3063 3064/* One global table that all flow-based protocols share. */ 3065struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3066EXPORT_SYMBOL(rps_sock_flow_table); 3067u32 rps_cpu_mask __read_mostly; 3068EXPORT_SYMBOL(rps_cpu_mask); 3069 3070struct static_key rps_needed __read_mostly; 3071 3072static struct rps_dev_flow * 3073set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3074 struct rps_dev_flow *rflow, u16 next_cpu) 3075{ 3076 if (next_cpu < nr_cpu_ids) { 3077#ifdef CONFIG_RFS_ACCEL 3078 struct netdev_rx_queue *rxqueue; 3079 struct rps_dev_flow_table *flow_table; 3080 struct rps_dev_flow *old_rflow; 3081 u32 flow_id; 3082 u16 rxq_index; 3083 int rc; 3084 3085 /* Should we steer this flow to a different hardware queue? */ 3086 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3087 !(dev->features & NETIF_F_NTUPLE)) 3088 goto out; 3089 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3090 if (rxq_index == skb_get_rx_queue(skb)) 3091 goto out; 3092 3093 rxqueue = dev->_rx + rxq_index; 3094 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3095 if (!flow_table) 3096 goto out; 3097 flow_id = skb_get_hash(skb) & flow_table->mask; 3098 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3099 rxq_index, flow_id); 3100 if (rc < 0) 3101 goto out; 3102 old_rflow = rflow; 3103 rflow = &flow_table->flows[flow_id]; 3104 rflow->filter = rc; 3105 if (old_rflow->filter == rflow->filter) 3106 old_rflow->filter = RPS_NO_FILTER; 3107 out: 3108#endif 3109 rflow->last_qtail = 3110 per_cpu(softnet_data, next_cpu).input_queue_head; 3111 } 3112 3113 rflow->cpu = next_cpu; 3114 return rflow; 3115} 3116 3117/* 3118 * get_rps_cpu is called from netif_receive_skb and returns the target 3119 * CPU from the RPS map of the receiving queue for a given skb. 3120 * rcu_read_lock must be held on entry. 3121 */ 3122static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3123 struct rps_dev_flow **rflowp) 3124{ 3125 const struct rps_sock_flow_table *sock_flow_table; 3126 struct netdev_rx_queue *rxqueue = dev->_rx; 3127 struct rps_dev_flow_table *flow_table; 3128 struct rps_map *map; 3129 int cpu = -1; 3130 u32 tcpu; 3131 u32 hash; 3132 3133 if (skb_rx_queue_recorded(skb)) { 3134 u16 index = skb_get_rx_queue(skb); 3135 3136 if (unlikely(index >= dev->real_num_rx_queues)) { 3137 WARN_ONCE(dev->real_num_rx_queues > 1, 3138 "%s received packet on queue %u, but number " 3139 "of RX queues is %u\n", 3140 dev->name, index, dev->real_num_rx_queues); 3141 goto done; 3142 } 3143 rxqueue += index; 3144 } 3145 3146 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3147 3148 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3149 map = rcu_dereference(rxqueue->rps_map); 3150 if (!flow_table && !map) 3151 goto done; 3152 3153 skb_reset_network_header(skb); 3154 hash = skb_get_hash(skb); 3155 if (!hash) 3156 goto done; 3157 3158 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3159 if (flow_table && sock_flow_table) { 3160 struct rps_dev_flow *rflow; 3161 u32 next_cpu; 3162 u32 ident; 3163 3164 /* First check into global flow table if there is a match */ 3165 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3166 if ((ident ^ hash) & ~rps_cpu_mask) 3167 goto try_rps; 3168 3169 next_cpu = ident & rps_cpu_mask; 3170 3171 /* OK, now we know there is a match, 3172 * we can look at the local (per receive queue) flow table 3173 */ 3174 rflow = &flow_table->flows[hash & flow_table->mask]; 3175 tcpu = rflow->cpu; 3176 3177 /* 3178 * If the desired CPU (where last recvmsg was done) is 3179 * different from current CPU (one in the rx-queue flow 3180 * table entry), switch if one of the following holds: 3181 * - Current CPU is unset (>= nr_cpu_ids). 3182 * - Current CPU is offline. 3183 * - The current CPU's queue tail has advanced beyond the 3184 * last packet that was enqueued using this table entry. 3185 * This guarantees that all previous packets for the flow 3186 * have been dequeued, thus preserving in order delivery. 3187 */ 3188 if (unlikely(tcpu != next_cpu) && 3189 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3190 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3191 rflow->last_qtail)) >= 0)) { 3192 tcpu = next_cpu; 3193 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3194 } 3195 3196 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3197 *rflowp = rflow; 3198 cpu = tcpu; 3199 goto done; 3200 } 3201 } 3202 3203try_rps: 3204 3205 if (map) { 3206 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3207 if (cpu_online(tcpu)) { 3208 cpu = tcpu; 3209 goto done; 3210 } 3211 } 3212 3213done: 3214 return cpu; 3215} 3216 3217#ifdef CONFIG_RFS_ACCEL 3218 3219/** 3220 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3221 * @dev: Device on which the filter was set 3222 * @rxq_index: RX queue index 3223 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3224 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3225 * 3226 * Drivers that implement ndo_rx_flow_steer() should periodically call 3227 * this function for each installed filter and remove the filters for 3228 * which it returns %true. 3229 */ 3230bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3231 u32 flow_id, u16 filter_id) 3232{ 3233 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3234 struct rps_dev_flow_table *flow_table; 3235 struct rps_dev_flow *rflow; 3236 bool expire = true; 3237 unsigned int cpu; 3238 3239 rcu_read_lock(); 3240 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3241 if (flow_table && flow_id <= flow_table->mask) { 3242 rflow = &flow_table->flows[flow_id]; 3243 cpu = ACCESS_ONCE(rflow->cpu); 3244 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3245 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3246 rflow->last_qtail) < 3247 (int)(10 * flow_table->mask))) 3248 expire = false; 3249 } 3250 rcu_read_unlock(); 3251 return expire; 3252} 3253EXPORT_SYMBOL(rps_may_expire_flow); 3254 3255#endif /* CONFIG_RFS_ACCEL */ 3256 3257/* Called from hardirq (IPI) context */ 3258static void rps_trigger_softirq(void *data) 3259{ 3260 struct softnet_data *sd = data; 3261 3262 ____napi_schedule(sd, &sd->backlog); 3263 sd->received_rps++; 3264} 3265 3266#endif /* CONFIG_RPS */ 3267 3268/* 3269 * Check if this softnet_data structure is another cpu one 3270 * If yes, queue it to our IPI list and return 1 3271 * If no, return 0 3272 */ 3273static int rps_ipi_queued(struct softnet_data *sd) 3274{ 3275#ifdef CONFIG_RPS 3276 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3277 3278 if (sd != mysd) { 3279 sd->rps_ipi_next = mysd->rps_ipi_list; 3280 mysd->rps_ipi_list = sd; 3281 3282 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3283 return 1; 3284 } 3285#endif /* CONFIG_RPS */ 3286 return 0; 3287} 3288 3289#ifdef CONFIG_NET_FLOW_LIMIT 3290int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3291#endif 3292 3293static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3294{ 3295#ifdef CONFIG_NET_FLOW_LIMIT 3296 struct sd_flow_limit *fl; 3297 struct softnet_data *sd; 3298 unsigned int old_flow, new_flow; 3299 3300 if (qlen < (netdev_max_backlog >> 1)) 3301 return false; 3302 3303 sd = this_cpu_ptr(&softnet_data); 3304 3305 rcu_read_lock(); 3306 fl = rcu_dereference(sd->flow_limit); 3307 if (fl) { 3308 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3309 old_flow = fl->history[fl->history_head]; 3310 fl->history[fl->history_head] = new_flow; 3311 3312 fl->history_head++; 3313 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3314 3315 if (likely(fl->buckets[old_flow])) 3316 fl->buckets[old_flow]--; 3317 3318 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3319 fl->count++; 3320 rcu_read_unlock(); 3321 return true; 3322 } 3323 } 3324 rcu_read_unlock(); 3325#endif 3326 return false; 3327} 3328 3329/* 3330 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3331 * queue (may be a remote CPU queue). 3332 */ 3333static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3334 unsigned int *qtail) 3335{ 3336 struct softnet_data *sd; 3337 unsigned long flags; 3338 unsigned int qlen; 3339 3340 sd = &per_cpu(softnet_data, cpu); 3341 3342 local_irq_save(flags); 3343 3344 rps_lock(sd); 3345 if (!netif_running(skb->dev)) 3346 goto drop; 3347 qlen = skb_queue_len(&sd->input_pkt_queue); 3348 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3349 if (qlen) { 3350enqueue: 3351 __skb_queue_tail(&sd->input_pkt_queue, skb); 3352 input_queue_tail_incr_save(sd, qtail); 3353 rps_unlock(sd); 3354 local_irq_restore(flags); 3355 return NET_RX_SUCCESS; 3356 } 3357 3358 /* Schedule NAPI for backlog device 3359 * We can use non atomic operation since we own the queue lock 3360 */ 3361 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3362 if (!rps_ipi_queued(sd)) 3363 ____napi_schedule(sd, &sd->backlog); 3364 } 3365 goto enqueue; 3366 } 3367 3368drop: 3369 sd->dropped++; 3370 rps_unlock(sd); 3371 3372 local_irq_restore(flags); 3373 3374 atomic_long_inc(&skb->dev->rx_dropped); 3375 kfree_skb(skb); 3376 return NET_RX_DROP; 3377} 3378 3379static int netif_rx_internal(struct sk_buff *skb) 3380{ 3381 int ret; 3382 3383 net_timestamp_check(netdev_tstamp_prequeue, skb); 3384 3385 trace_netif_rx(skb); 3386#ifdef CONFIG_RPS 3387 if (static_key_false(&rps_needed)) { 3388 struct rps_dev_flow voidflow, *rflow = &voidflow; 3389 int cpu; 3390 3391 preempt_disable(); 3392 rcu_read_lock(); 3393 3394 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3395 if (cpu < 0) 3396 cpu = smp_processor_id(); 3397 3398 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3399 3400 rcu_read_unlock(); 3401 preempt_enable(); 3402 } else 3403#endif 3404 { 3405 unsigned int qtail; 3406 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3407 put_cpu(); 3408 } 3409 return ret; 3410} 3411 3412/** 3413 * netif_rx - post buffer to the network code 3414 * @skb: buffer to post 3415 * 3416 * This function receives a packet from a device driver and queues it for 3417 * the upper (protocol) levels to process. It always succeeds. The buffer 3418 * may be dropped during processing for congestion control or by the 3419 * protocol layers. 3420 * 3421 * return values: 3422 * NET_RX_SUCCESS (no congestion) 3423 * NET_RX_DROP (packet was dropped) 3424 * 3425 */ 3426 3427int netif_rx(struct sk_buff *skb) 3428{ 3429 trace_netif_rx_entry(skb); 3430 3431 return netif_rx_internal(skb); 3432} 3433EXPORT_SYMBOL(netif_rx); 3434 3435int netif_rx_ni(struct sk_buff *skb) 3436{ 3437 int err; 3438 3439 trace_netif_rx_ni_entry(skb); 3440 3441 preempt_disable(); 3442 err = netif_rx_internal(skb); 3443 if (local_softirq_pending()) 3444 do_softirq(); 3445 preempt_enable(); 3446 3447 return err; 3448} 3449EXPORT_SYMBOL(netif_rx_ni); 3450 3451static void net_tx_action(struct softirq_action *h) 3452{ 3453 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3454 3455 if (sd->completion_queue) { 3456 struct sk_buff *clist; 3457 3458 local_irq_disable(); 3459 clist = sd->completion_queue; 3460 sd->completion_queue = NULL; 3461 local_irq_enable(); 3462 3463 while (clist) { 3464 struct sk_buff *skb = clist; 3465 clist = clist->next; 3466 3467 WARN_ON(atomic_read(&skb->users)); 3468 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3469 trace_consume_skb(skb); 3470 else 3471 trace_kfree_skb(skb, net_tx_action); 3472 __kfree_skb(skb); 3473 } 3474 } 3475 3476 if (sd->output_queue) { 3477 struct Qdisc *head; 3478 3479 local_irq_disable(); 3480 head = sd->output_queue; 3481 sd->output_queue = NULL; 3482 sd->output_queue_tailp = &sd->output_queue; 3483 local_irq_enable(); 3484 3485 while (head) { 3486 struct Qdisc *q = head; 3487 spinlock_t *root_lock; 3488 3489 head = head->next_sched; 3490 3491 root_lock = qdisc_lock(q); 3492 if (spin_trylock(root_lock)) { 3493 smp_mb__before_atomic(); 3494 clear_bit(__QDISC_STATE_SCHED, 3495 &q->state); 3496 qdisc_run(q); 3497 spin_unlock(root_lock); 3498 } else { 3499 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3500 &q->state)) { 3501 __netif_reschedule(q); 3502 } else { 3503 smp_mb__before_atomic(); 3504 clear_bit(__QDISC_STATE_SCHED, 3505 &q->state); 3506 } 3507 } 3508 } 3509 } 3510} 3511 3512#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3513 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3514/* This hook is defined here for ATM LANE */ 3515int (*br_fdb_test_addr_hook)(struct net_device *dev, 3516 unsigned char *addr) __read_mostly; 3517EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3518#endif 3519 3520#ifdef CONFIG_NET_CLS_ACT 3521/* TODO: Maybe we should just force sch_ingress to be compiled in 3522 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3523 * a compare and 2 stores extra right now if we dont have it on 3524 * but have CONFIG_NET_CLS_ACT 3525 * NOTE: This doesn't stop any functionality; if you dont have 3526 * the ingress scheduler, you just can't add policies on ingress. 3527 * 3528 */ 3529static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3530{ 3531 struct net_device *dev = skb->dev; 3532 u32 ttl = G_TC_RTTL(skb->tc_verd); 3533 int result = TC_ACT_OK; 3534 struct Qdisc *q; 3535 3536 if (unlikely(MAX_RED_LOOP < ttl++)) { 3537 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3538 skb->skb_iif, dev->ifindex); 3539 return TC_ACT_SHOT; 3540 } 3541 3542 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3543 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3544 3545 q = rcu_dereference(rxq->qdisc); 3546 if (q != &noop_qdisc) { 3547 spin_lock(qdisc_lock(q)); 3548 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3549 result = qdisc_enqueue_root(skb, q); 3550 spin_unlock(qdisc_lock(q)); 3551 } 3552 3553 return result; 3554} 3555 3556static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3557 struct packet_type **pt_prev, 3558 int *ret, struct net_device *orig_dev) 3559{ 3560 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3561 3562 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc) 3563 return skb; 3564 3565 if (*pt_prev) { 3566 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3567 *pt_prev = NULL; 3568 } 3569 3570 switch (ing_filter(skb, rxq)) { 3571 case TC_ACT_SHOT: 3572 case TC_ACT_STOLEN: 3573 kfree_skb(skb); 3574 return NULL; 3575 } 3576 3577 return skb; 3578} 3579#endif 3580 3581/** 3582 * netdev_rx_handler_register - register receive handler 3583 * @dev: device to register a handler for 3584 * @rx_handler: receive handler to register 3585 * @rx_handler_data: data pointer that is used by rx handler 3586 * 3587 * Register a receive handler for a device. This handler will then be 3588 * called from __netif_receive_skb. A negative errno code is returned 3589 * on a failure. 3590 * 3591 * The caller must hold the rtnl_mutex. 3592 * 3593 * For a general description of rx_handler, see enum rx_handler_result. 3594 */ 3595int netdev_rx_handler_register(struct net_device *dev, 3596 rx_handler_func_t *rx_handler, 3597 void *rx_handler_data) 3598{ 3599 ASSERT_RTNL(); 3600 3601 if (dev->rx_handler) 3602 return -EBUSY; 3603 3604 /* Note: rx_handler_data must be set before rx_handler */ 3605 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3606 rcu_assign_pointer(dev->rx_handler, rx_handler); 3607 3608 return 0; 3609} 3610EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3611 3612/** 3613 * netdev_rx_handler_unregister - unregister receive handler 3614 * @dev: device to unregister a handler from 3615 * 3616 * Unregister a receive handler from a device. 3617 * 3618 * The caller must hold the rtnl_mutex. 3619 */ 3620void netdev_rx_handler_unregister(struct net_device *dev) 3621{ 3622 3623 ASSERT_RTNL(); 3624 RCU_INIT_POINTER(dev->rx_handler, NULL); 3625 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3626 * section has a guarantee to see a non NULL rx_handler_data 3627 * as well. 3628 */ 3629 synchronize_net(); 3630 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3631} 3632EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3633 3634/* 3635 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3636 * the special handling of PFMEMALLOC skbs. 3637 */ 3638static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3639{ 3640 switch (skb->protocol) { 3641 case htons(ETH_P_ARP): 3642 case htons(ETH_P_IP): 3643 case htons(ETH_P_IPV6): 3644 case htons(ETH_P_8021Q): 3645 case htons(ETH_P_8021AD): 3646 return true; 3647 default: 3648 return false; 3649 } 3650} 3651 3652static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3653{ 3654 struct packet_type *ptype, *pt_prev; 3655 rx_handler_func_t *rx_handler; 3656 struct net_device *orig_dev; 3657 bool deliver_exact = false; 3658 int ret = NET_RX_DROP; 3659 __be16 type; 3660 3661 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3662 3663 trace_netif_receive_skb(skb); 3664 3665 orig_dev = skb->dev; 3666 3667 skb_reset_network_header(skb); 3668 if (!skb_transport_header_was_set(skb)) 3669 skb_reset_transport_header(skb); 3670 skb_reset_mac_len(skb); 3671 3672 pt_prev = NULL; 3673 3674another_round: 3675 skb->skb_iif = skb->dev->ifindex; 3676 3677 __this_cpu_inc(softnet_data.processed); 3678 3679 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3680 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3681 skb = skb_vlan_untag(skb); 3682 if (unlikely(!skb)) 3683 goto out; 3684 } 3685 3686#ifdef CONFIG_NET_CLS_ACT 3687 if (skb->tc_verd & TC_NCLS) { 3688 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3689 goto ncls; 3690 } 3691#endif 3692 3693 if (pfmemalloc) 3694 goto skip_taps; 3695 3696 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3697 if (pt_prev) 3698 ret = deliver_skb(skb, pt_prev, orig_dev); 3699 pt_prev = ptype; 3700 } 3701 3702 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 3703 if (pt_prev) 3704 ret = deliver_skb(skb, pt_prev, orig_dev); 3705 pt_prev = ptype; 3706 } 3707 3708skip_taps: 3709#ifdef CONFIG_NET_CLS_ACT 3710 if (static_key_false(&ingress_needed)) { 3711 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3712 if (!skb) 3713 goto out; 3714 } 3715 3716 skb->tc_verd = 0; 3717ncls: 3718#endif 3719 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3720 goto drop; 3721 3722 if (skb_vlan_tag_present(skb)) { 3723 if (pt_prev) { 3724 ret = deliver_skb(skb, pt_prev, orig_dev); 3725 pt_prev = NULL; 3726 } 3727 if (vlan_do_receive(&skb)) 3728 goto another_round; 3729 else if (unlikely(!skb)) 3730 goto out; 3731 } 3732 3733 rx_handler = rcu_dereference(skb->dev->rx_handler); 3734 if (rx_handler) { 3735 if (pt_prev) { 3736 ret = deliver_skb(skb, pt_prev, orig_dev); 3737 pt_prev = NULL; 3738 } 3739 switch (rx_handler(&skb)) { 3740 case RX_HANDLER_CONSUMED: 3741 ret = NET_RX_SUCCESS; 3742 goto out; 3743 case RX_HANDLER_ANOTHER: 3744 goto another_round; 3745 case RX_HANDLER_EXACT: 3746 deliver_exact = true; 3747 case RX_HANDLER_PASS: 3748 break; 3749 default: 3750 BUG(); 3751 } 3752 } 3753 3754 if (unlikely(skb_vlan_tag_present(skb))) { 3755 if (skb_vlan_tag_get_id(skb)) 3756 skb->pkt_type = PACKET_OTHERHOST; 3757 /* Note: we might in the future use prio bits 3758 * and set skb->priority like in vlan_do_receive() 3759 * For the time being, just ignore Priority Code Point 3760 */ 3761 skb->vlan_tci = 0; 3762 } 3763 3764 type = skb->protocol; 3765 3766 /* deliver only exact match when indicated */ 3767 if (likely(!deliver_exact)) { 3768 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3769 &ptype_base[ntohs(type) & 3770 PTYPE_HASH_MASK]); 3771 } 3772 3773 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3774 &orig_dev->ptype_specific); 3775 3776 if (unlikely(skb->dev != orig_dev)) { 3777 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3778 &skb->dev->ptype_specific); 3779 } 3780 3781 if (pt_prev) { 3782 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3783 goto drop; 3784 else 3785 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3786 } else { 3787drop: 3788 atomic_long_inc(&skb->dev->rx_dropped); 3789 kfree_skb(skb); 3790 /* Jamal, now you will not able to escape explaining 3791 * me how you were going to use this. :-) 3792 */ 3793 ret = NET_RX_DROP; 3794 } 3795 3796out: 3797 return ret; 3798} 3799 3800static int __netif_receive_skb(struct sk_buff *skb) 3801{ 3802 int ret; 3803 3804 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3805 unsigned long pflags = current->flags; 3806 3807 /* 3808 * PFMEMALLOC skbs are special, they should 3809 * - be delivered to SOCK_MEMALLOC sockets only 3810 * - stay away from userspace 3811 * - have bounded memory usage 3812 * 3813 * Use PF_MEMALLOC as this saves us from propagating the allocation 3814 * context down to all allocation sites. 3815 */ 3816 current->flags |= PF_MEMALLOC; 3817 ret = __netif_receive_skb_core(skb, true); 3818 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3819 } else 3820 ret = __netif_receive_skb_core(skb, false); 3821 3822 return ret; 3823} 3824 3825static int netif_receive_skb_internal(struct sk_buff *skb) 3826{ 3827 int ret; 3828 3829 net_timestamp_check(netdev_tstamp_prequeue, skb); 3830 3831 if (skb_defer_rx_timestamp(skb)) 3832 return NET_RX_SUCCESS; 3833 3834 rcu_read_lock(); 3835 3836#ifdef CONFIG_RPS 3837 if (static_key_false(&rps_needed)) { 3838 struct rps_dev_flow voidflow, *rflow = &voidflow; 3839 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 3840 3841 if (cpu >= 0) { 3842 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3843 rcu_read_unlock(); 3844 return ret; 3845 } 3846 } 3847#endif 3848 ret = __netif_receive_skb(skb); 3849 rcu_read_unlock(); 3850 return ret; 3851} 3852 3853/** 3854 * netif_receive_skb - process receive buffer from network 3855 * @skb: buffer to process 3856 * 3857 * netif_receive_skb() is the main receive data processing function. 3858 * It always succeeds. The buffer may be dropped during processing 3859 * for congestion control or by the protocol layers. 3860 * 3861 * This function may only be called from softirq context and interrupts 3862 * should be enabled. 3863 * 3864 * Return values (usually ignored): 3865 * NET_RX_SUCCESS: no congestion 3866 * NET_RX_DROP: packet was dropped 3867 */ 3868int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb) 3869{ 3870 trace_netif_receive_skb_entry(skb); 3871 3872 return netif_receive_skb_internal(skb); 3873} 3874EXPORT_SYMBOL(netif_receive_skb_sk); 3875 3876/* Network device is going away, flush any packets still pending 3877 * Called with irqs disabled. 3878 */ 3879static void flush_backlog(void *arg) 3880{ 3881 struct net_device *dev = arg; 3882 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3883 struct sk_buff *skb, *tmp; 3884 3885 rps_lock(sd); 3886 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3887 if (skb->dev == dev) { 3888 __skb_unlink(skb, &sd->input_pkt_queue); 3889 kfree_skb(skb); 3890 input_queue_head_incr(sd); 3891 } 3892 } 3893 rps_unlock(sd); 3894 3895 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3896 if (skb->dev == dev) { 3897 __skb_unlink(skb, &sd->process_queue); 3898 kfree_skb(skb); 3899 input_queue_head_incr(sd); 3900 } 3901 } 3902} 3903 3904static int napi_gro_complete(struct sk_buff *skb) 3905{ 3906 struct packet_offload *ptype; 3907 __be16 type = skb->protocol; 3908 struct list_head *head = &offload_base; 3909 int err = -ENOENT; 3910 3911 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3912 3913 if (NAPI_GRO_CB(skb)->count == 1) { 3914 skb_shinfo(skb)->gso_size = 0; 3915 goto out; 3916 } 3917 3918 rcu_read_lock(); 3919 list_for_each_entry_rcu(ptype, head, list) { 3920 if (ptype->type != type || !ptype->callbacks.gro_complete) 3921 continue; 3922 3923 err = ptype->callbacks.gro_complete(skb, 0); 3924 break; 3925 } 3926 rcu_read_unlock(); 3927 3928 if (err) { 3929 WARN_ON(&ptype->list == head); 3930 kfree_skb(skb); 3931 return NET_RX_SUCCESS; 3932 } 3933 3934out: 3935 return netif_receive_skb_internal(skb); 3936} 3937 3938/* napi->gro_list contains packets ordered by age. 3939 * youngest packets at the head of it. 3940 * Complete skbs in reverse order to reduce latencies. 3941 */ 3942void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3943{ 3944 struct sk_buff *skb, *prev = NULL; 3945 3946 /* scan list and build reverse chain */ 3947 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3948 skb->prev = prev; 3949 prev = skb; 3950 } 3951 3952 for (skb = prev; skb; skb = prev) { 3953 skb->next = NULL; 3954 3955 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3956 return; 3957 3958 prev = skb->prev; 3959 napi_gro_complete(skb); 3960 napi->gro_count--; 3961 } 3962 3963 napi->gro_list = NULL; 3964} 3965EXPORT_SYMBOL(napi_gro_flush); 3966 3967static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3968{ 3969 struct sk_buff *p; 3970 unsigned int maclen = skb->dev->hard_header_len; 3971 u32 hash = skb_get_hash_raw(skb); 3972 3973 for (p = napi->gro_list; p; p = p->next) { 3974 unsigned long diffs; 3975 3976 NAPI_GRO_CB(p)->flush = 0; 3977 3978 if (hash != skb_get_hash_raw(p)) { 3979 NAPI_GRO_CB(p)->same_flow = 0; 3980 continue; 3981 } 3982 3983 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3984 diffs |= p->vlan_tci ^ skb->vlan_tci; 3985 if (maclen == ETH_HLEN) 3986 diffs |= compare_ether_header(skb_mac_header(p), 3987 skb_mac_header(skb)); 3988 else if (!diffs) 3989 diffs = memcmp(skb_mac_header(p), 3990 skb_mac_header(skb), 3991 maclen); 3992 NAPI_GRO_CB(p)->same_flow = !diffs; 3993 } 3994} 3995 3996static void skb_gro_reset_offset(struct sk_buff *skb) 3997{ 3998 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3999 const skb_frag_t *frag0 = &pinfo->frags[0]; 4000 4001 NAPI_GRO_CB(skb)->data_offset = 0; 4002 NAPI_GRO_CB(skb)->frag0 = NULL; 4003 NAPI_GRO_CB(skb)->frag0_len = 0; 4004 4005 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4006 pinfo->nr_frags && 4007 !PageHighMem(skb_frag_page(frag0))) { 4008 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4009 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 4010 } 4011} 4012 4013static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4014{ 4015 struct skb_shared_info *pinfo = skb_shinfo(skb); 4016 4017 BUG_ON(skb->end - skb->tail < grow); 4018 4019 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4020 4021 skb->data_len -= grow; 4022 skb->tail += grow; 4023 4024 pinfo->frags[0].page_offset += grow; 4025 skb_frag_size_sub(&pinfo->frags[0], grow); 4026 4027 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4028 skb_frag_unref(skb, 0); 4029 memmove(pinfo->frags, pinfo->frags + 1, 4030 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4031 } 4032} 4033 4034static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4035{ 4036 struct sk_buff **pp = NULL; 4037 struct packet_offload *ptype; 4038 __be16 type = skb->protocol; 4039 struct list_head *head = &offload_base; 4040 int same_flow; 4041 enum gro_result ret; 4042 int grow; 4043 4044 if (!(skb->dev->features & NETIF_F_GRO)) 4045 goto normal; 4046 4047 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad) 4048 goto normal; 4049 4050 gro_list_prepare(napi, skb); 4051 4052 rcu_read_lock(); 4053 list_for_each_entry_rcu(ptype, head, list) { 4054 if (ptype->type != type || !ptype->callbacks.gro_receive) 4055 continue; 4056 4057 skb_set_network_header(skb, skb_gro_offset(skb)); 4058 skb_reset_mac_len(skb); 4059 NAPI_GRO_CB(skb)->same_flow = 0; 4060 NAPI_GRO_CB(skb)->flush = 0; 4061 NAPI_GRO_CB(skb)->free = 0; 4062 NAPI_GRO_CB(skb)->udp_mark = 0; 4063 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4064 4065 /* Setup for GRO checksum validation */ 4066 switch (skb->ip_summed) { 4067 case CHECKSUM_COMPLETE: 4068 NAPI_GRO_CB(skb)->csum = skb->csum; 4069 NAPI_GRO_CB(skb)->csum_valid = 1; 4070 NAPI_GRO_CB(skb)->csum_cnt = 0; 4071 break; 4072 case CHECKSUM_UNNECESSARY: 4073 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4074 NAPI_GRO_CB(skb)->csum_valid = 0; 4075 break; 4076 default: 4077 NAPI_GRO_CB(skb)->csum_cnt = 0; 4078 NAPI_GRO_CB(skb)->csum_valid = 0; 4079 } 4080 4081 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4082 break; 4083 } 4084 rcu_read_unlock(); 4085 4086 if (&ptype->list == head) 4087 goto normal; 4088 4089 same_flow = NAPI_GRO_CB(skb)->same_flow; 4090 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4091 4092 if (pp) { 4093 struct sk_buff *nskb = *pp; 4094 4095 *pp = nskb->next; 4096 nskb->next = NULL; 4097 napi_gro_complete(nskb); 4098 napi->gro_count--; 4099 } 4100 4101 if (same_flow) 4102 goto ok; 4103 4104 if (NAPI_GRO_CB(skb)->flush) 4105 goto normal; 4106 4107 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4108 struct sk_buff *nskb = napi->gro_list; 4109 4110 /* locate the end of the list to select the 'oldest' flow */ 4111 while (nskb->next) { 4112 pp = &nskb->next; 4113 nskb = *pp; 4114 } 4115 *pp = NULL; 4116 nskb->next = NULL; 4117 napi_gro_complete(nskb); 4118 } else { 4119 napi->gro_count++; 4120 } 4121 NAPI_GRO_CB(skb)->count = 1; 4122 NAPI_GRO_CB(skb)->age = jiffies; 4123 NAPI_GRO_CB(skb)->last = skb; 4124 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4125 skb->next = napi->gro_list; 4126 napi->gro_list = skb; 4127 ret = GRO_HELD; 4128 4129pull: 4130 grow = skb_gro_offset(skb) - skb_headlen(skb); 4131 if (grow > 0) 4132 gro_pull_from_frag0(skb, grow); 4133ok: 4134 return ret; 4135 4136normal: 4137 ret = GRO_NORMAL; 4138 goto pull; 4139} 4140 4141struct packet_offload *gro_find_receive_by_type(__be16 type) 4142{ 4143 struct list_head *offload_head = &offload_base; 4144 struct packet_offload *ptype; 4145 4146 list_for_each_entry_rcu(ptype, offload_head, list) { 4147 if (ptype->type != type || !ptype->callbacks.gro_receive) 4148 continue; 4149 return ptype; 4150 } 4151 return NULL; 4152} 4153EXPORT_SYMBOL(gro_find_receive_by_type); 4154 4155struct packet_offload *gro_find_complete_by_type(__be16 type) 4156{ 4157 struct list_head *offload_head = &offload_base; 4158 struct packet_offload *ptype; 4159 4160 list_for_each_entry_rcu(ptype, offload_head, list) { 4161 if (ptype->type != type || !ptype->callbacks.gro_complete) 4162 continue; 4163 return ptype; 4164 } 4165 return NULL; 4166} 4167EXPORT_SYMBOL(gro_find_complete_by_type); 4168 4169static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4170{ 4171 switch (ret) { 4172 case GRO_NORMAL: 4173 if (netif_receive_skb_internal(skb)) 4174 ret = GRO_DROP; 4175 break; 4176 4177 case GRO_DROP: 4178 kfree_skb(skb); 4179 break; 4180 4181 case GRO_MERGED_FREE: 4182 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4183 kmem_cache_free(skbuff_head_cache, skb); 4184 else 4185 __kfree_skb(skb); 4186 break; 4187 4188 case GRO_HELD: 4189 case GRO_MERGED: 4190 break; 4191 } 4192 4193 return ret; 4194} 4195 4196gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4197{ 4198 trace_napi_gro_receive_entry(skb); 4199 4200 skb_gro_reset_offset(skb); 4201 4202 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4203} 4204EXPORT_SYMBOL(napi_gro_receive); 4205 4206static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4207{ 4208 if (unlikely(skb->pfmemalloc)) { 4209 consume_skb(skb); 4210 return; 4211 } 4212 __skb_pull(skb, skb_headlen(skb)); 4213 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4214 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4215 skb->vlan_tci = 0; 4216 skb->dev = napi->dev; 4217 skb->skb_iif = 0; 4218 skb->encapsulation = 0; 4219 skb_shinfo(skb)->gso_type = 0; 4220 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4221 4222 napi->skb = skb; 4223} 4224 4225struct sk_buff *napi_get_frags(struct napi_struct *napi) 4226{ 4227 struct sk_buff *skb = napi->skb; 4228 4229 if (!skb) { 4230 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4231 napi->skb = skb; 4232 } 4233 return skb; 4234} 4235EXPORT_SYMBOL(napi_get_frags); 4236 4237static gro_result_t napi_frags_finish(struct napi_struct *napi, 4238 struct sk_buff *skb, 4239 gro_result_t ret) 4240{ 4241 switch (ret) { 4242 case GRO_NORMAL: 4243 case GRO_HELD: 4244 __skb_push(skb, ETH_HLEN); 4245 skb->protocol = eth_type_trans(skb, skb->dev); 4246 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4247 ret = GRO_DROP; 4248 break; 4249 4250 case GRO_DROP: 4251 case GRO_MERGED_FREE: 4252 napi_reuse_skb(napi, skb); 4253 break; 4254 4255 case GRO_MERGED: 4256 break; 4257 } 4258 4259 return ret; 4260} 4261 4262/* Upper GRO stack assumes network header starts at gro_offset=0 4263 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4264 * We copy ethernet header into skb->data to have a common layout. 4265 */ 4266static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4267{ 4268 struct sk_buff *skb = napi->skb; 4269 const struct ethhdr *eth; 4270 unsigned int hlen = sizeof(*eth); 4271 4272 napi->skb = NULL; 4273 4274 skb_reset_mac_header(skb); 4275 skb_gro_reset_offset(skb); 4276 4277 eth = skb_gro_header_fast(skb, 0); 4278 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4279 eth = skb_gro_header_slow(skb, hlen, 0); 4280 if (unlikely(!eth)) { 4281 napi_reuse_skb(napi, skb); 4282 return NULL; 4283 } 4284 } else { 4285 gro_pull_from_frag0(skb, hlen); 4286 NAPI_GRO_CB(skb)->frag0 += hlen; 4287 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4288 } 4289 __skb_pull(skb, hlen); 4290 4291 /* 4292 * This works because the only protocols we care about don't require 4293 * special handling. 4294 * We'll fix it up properly in napi_frags_finish() 4295 */ 4296 skb->protocol = eth->h_proto; 4297 4298 return skb; 4299} 4300 4301gro_result_t napi_gro_frags(struct napi_struct *napi) 4302{ 4303 struct sk_buff *skb = napi_frags_skb(napi); 4304 4305 if (!skb) 4306 return GRO_DROP; 4307 4308 trace_napi_gro_frags_entry(skb); 4309 4310 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4311} 4312EXPORT_SYMBOL(napi_gro_frags); 4313 4314/* Compute the checksum from gro_offset and return the folded value 4315 * after adding in any pseudo checksum. 4316 */ 4317__sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4318{ 4319 __wsum wsum; 4320 __sum16 sum; 4321 4322 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4323 4324 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4325 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4326 if (likely(!sum)) { 4327 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4328 !skb->csum_complete_sw) 4329 netdev_rx_csum_fault(skb->dev); 4330 } 4331 4332 NAPI_GRO_CB(skb)->csum = wsum; 4333 NAPI_GRO_CB(skb)->csum_valid = 1; 4334 4335 return sum; 4336} 4337EXPORT_SYMBOL(__skb_gro_checksum_complete); 4338 4339/* 4340 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4341 * Note: called with local irq disabled, but exits with local irq enabled. 4342 */ 4343static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4344{ 4345#ifdef CONFIG_RPS 4346 struct softnet_data *remsd = sd->rps_ipi_list; 4347 4348 if (remsd) { 4349 sd->rps_ipi_list = NULL; 4350 4351 local_irq_enable(); 4352 4353 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4354 while (remsd) { 4355 struct softnet_data *next = remsd->rps_ipi_next; 4356 4357 if (cpu_online(remsd->cpu)) 4358 smp_call_function_single_async(remsd->cpu, 4359 &remsd->csd); 4360 remsd = next; 4361 } 4362 } else 4363#endif 4364 local_irq_enable(); 4365} 4366 4367static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4368{ 4369#ifdef CONFIG_RPS 4370 return sd->rps_ipi_list != NULL; 4371#else 4372 return false; 4373#endif 4374} 4375 4376static int process_backlog(struct napi_struct *napi, int quota) 4377{ 4378 int work = 0; 4379 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4380 4381 /* Check if we have pending ipi, its better to send them now, 4382 * not waiting net_rx_action() end. 4383 */ 4384 if (sd_has_rps_ipi_waiting(sd)) { 4385 local_irq_disable(); 4386 net_rps_action_and_irq_enable(sd); 4387 } 4388 4389 napi->weight = weight_p; 4390 local_irq_disable(); 4391 while (1) { 4392 struct sk_buff *skb; 4393 4394 while ((skb = __skb_dequeue(&sd->process_queue))) { 4395 rcu_read_lock(); 4396 local_irq_enable(); 4397 __netif_receive_skb(skb); 4398 rcu_read_unlock(); 4399 local_irq_disable(); 4400 input_queue_head_incr(sd); 4401 if (++work >= quota) { 4402 local_irq_enable(); 4403 return work; 4404 } 4405 } 4406 4407 rps_lock(sd); 4408 if (skb_queue_empty(&sd->input_pkt_queue)) { 4409 /* 4410 * Inline a custom version of __napi_complete(). 4411 * only current cpu owns and manipulates this napi, 4412 * and NAPI_STATE_SCHED is the only possible flag set 4413 * on backlog. 4414 * We can use a plain write instead of clear_bit(), 4415 * and we dont need an smp_mb() memory barrier. 4416 */ 4417 napi->state = 0; 4418 rps_unlock(sd); 4419 4420 break; 4421 } 4422 4423 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4424 &sd->process_queue); 4425 rps_unlock(sd); 4426 } 4427 local_irq_enable(); 4428 4429 return work; 4430} 4431 4432/** 4433 * __napi_schedule - schedule for receive 4434 * @n: entry to schedule 4435 * 4436 * The entry's receive function will be scheduled to run. 4437 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4438 */ 4439void __napi_schedule(struct napi_struct *n) 4440{ 4441 unsigned long flags; 4442 4443 local_irq_save(flags); 4444 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4445 local_irq_restore(flags); 4446} 4447EXPORT_SYMBOL(__napi_schedule); 4448 4449/** 4450 * __napi_schedule_irqoff - schedule for receive 4451 * @n: entry to schedule 4452 * 4453 * Variant of __napi_schedule() assuming hard irqs are masked 4454 */ 4455void __napi_schedule_irqoff(struct napi_struct *n) 4456{ 4457 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4458} 4459EXPORT_SYMBOL(__napi_schedule_irqoff); 4460 4461void __napi_complete(struct napi_struct *n) 4462{ 4463 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4464 4465 list_del_init(&n->poll_list); 4466 smp_mb__before_atomic(); 4467 clear_bit(NAPI_STATE_SCHED, &n->state); 4468} 4469EXPORT_SYMBOL(__napi_complete); 4470 4471void napi_complete_done(struct napi_struct *n, int work_done) 4472{ 4473 unsigned long flags; 4474 4475 /* 4476 * don't let napi dequeue from the cpu poll list 4477 * just in case its running on a different cpu 4478 */ 4479 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4480 return; 4481 4482 if (n->gro_list) { 4483 unsigned long timeout = 0; 4484 4485 if (work_done) 4486 timeout = n->dev->gro_flush_timeout; 4487 4488 if (timeout) 4489 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4490 HRTIMER_MODE_REL_PINNED); 4491 else 4492 napi_gro_flush(n, false); 4493 } 4494 if (likely(list_empty(&n->poll_list))) { 4495 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state)); 4496 } else { 4497 /* If n->poll_list is not empty, we need to mask irqs */ 4498 local_irq_save(flags); 4499 __napi_complete(n); 4500 local_irq_restore(flags); 4501 } 4502} 4503EXPORT_SYMBOL(napi_complete_done); 4504 4505/* must be called under rcu_read_lock(), as we dont take a reference */ 4506struct napi_struct *napi_by_id(unsigned int napi_id) 4507{ 4508 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4509 struct napi_struct *napi; 4510 4511 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4512 if (napi->napi_id == napi_id) 4513 return napi; 4514 4515 return NULL; 4516} 4517EXPORT_SYMBOL_GPL(napi_by_id); 4518 4519void napi_hash_add(struct napi_struct *napi) 4520{ 4521 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4522 4523 spin_lock(&napi_hash_lock); 4524 4525 /* 0 is not a valid id, we also skip an id that is taken 4526 * we expect both events to be extremely rare 4527 */ 4528 napi->napi_id = 0; 4529 while (!napi->napi_id) { 4530 napi->napi_id = ++napi_gen_id; 4531 if (napi_by_id(napi->napi_id)) 4532 napi->napi_id = 0; 4533 } 4534 4535 hlist_add_head_rcu(&napi->napi_hash_node, 4536 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4537 4538 spin_unlock(&napi_hash_lock); 4539 } 4540} 4541EXPORT_SYMBOL_GPL(napi_hash_add); 4542 4543/* Warning : caller is responsible to make sure rcu grace period 4544 * is respected before freeing memory containing @napi 4545 */ 4546void napi_hash_del(struct napi_struct *napi) 4547{ 4548 spin_lock(&napi_hash_lock); 4549 4550 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4551 hlist_del_rcu(&napi->napi_hash_node); 4552 4553 spin_unlock(&napi_hash_lock); 4554} 4555EXPORT_SYMBOL_GPL(napi_hash_del); 4556 4557static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 4558{ 4559 struct napi_struct *napi; 4560 4561 napi = container_of(timer, struct napi_struct, timer); 4562 if (napi->gro_list) 4563 napi_schedule(napi); 4564 4565 return HRTIMER_NORESTART; 4566} 4567 4568void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4569 int (*poll)(struct napi_struct *, int), int weight) 4570{ 4571 INIT_LIST_HEAD(&napi->poll_list); 4572 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 4573 napi->timer.function = napi_watchdog; 4574 napi->gro_count = 0; 4575 napi->gro_list = NULL; 4576 napi->skb = NULL; 4577 napi->poll = poll; 4578 if (weight > NAPI_POLL_WEIGHT) 4579 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4580 weight, dev->name); 4581 napi->weight = weight; 4582 list_add(&napi->dev_list, &dev->napi_list); 4583 napi->dev = dev; 4584#ifdef CONFIG_NETPOLL 4585 spin_lock_init(&napi->poll_lock); 4586 napi->poll_owner = -1; 4587#endif 4588 set_bit(NAPI_STATE_SCHED, &napi->state); 4589} 4590EXPORT_SYMBOL(netif_napi_add); 4591 4592void napi_disable(struct napi_struct *n) 4593{ 4594 might_sleep(); 4595 set_bit(NAPI_STATE_DISABLE, &n->state); 4596 4597 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 4598 msleep(1); 4599 4600 hrtimer_cancel(&n->timer); 4601 4602 clear_bit(NAPI_STATE_DISABLE, &n->state); 4603} 4604EXPORT_SYMBOL(napi_disable); 4605 4606void netif_napi_del(struct napi_struct *napi) 4607{ 4608 list_del_init(&napi->dev_list); 4609 napi_free_frags(napi); 4610 4611 kfree_skb_list(napi->gro_list); 4612 napi->gro_list = NULL; 4613 napi->gro_count = 0; 4614} 4615EXPORT_SYMBOL(netif_napi_del); 4616 4617static int napi_poll(struct napi_struct *n, struct list_head *repoll) 4618{ 4619 void *have; 4620 int work, weight; 4621 4622 list_del_init(&n->poll_list); 4623 4624 have = netpoll_poll_lock(n); 4625 4626 weight = n->weight; 4627 4628 /* This NAPI_STATE_SCHED test is for avoiding a race 4629 * with netpoll's poll_napi(). Only the entity which 4630 * obtains the lock and sees NAPI_STATE_SCHED set will 4631 * actually make the ->poll() call. Therefore we avoid 4632 * accidentally calling ->poll() when NAPI is not scheduled. 4633 */ 4634 work = 0; 4635 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4636 work = n->poll(n, weight); 4637 trace_napi_poll(n); 4638 } 4639 4640 WARN_ON_ONCE(work > weight); 4641 4642 if (likely(work < weight)) 4643 goto out_unlock; 4644 4645 /* Drivers must not modify the NAPI state if they 4646 * consume the entire weight. In such cases this code 4647 * still "owns" the NAPI instance and therefore can 4648 * move the instance around on the list at-will. 4649 */ 4650 if (unlikely(napi_disable_pending(n))) { 4651 napi_complete(n); 4652 goto out_unlock; 4653 } 4654 4655 if (n->gro_list) { 4656 /* flush too old packets 4657 * If HZ < 1000, flush all packets. 4658 */ 4659 napi_gro_flush(n, HZ >= 1000); 4660 } 4661 4662 /* Some drivers may have called napi_schedule 4663 * prior to exhausting their budget. 4664 */ 4665 if (unlikely(!list_empty(&n->poll_list))) { 4666 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 4667 n->dev ? n->dev->name : "backlog"); 4668 goto out_unlock; 4669 } 4670 4671 list_add_tail(&n->poll_list, repoll); 4672 4673out_unlock: 4674 netpoll_poll_unlock(have); 4675 4676 return work; 4677} 4678 4679static void net_rx_action(struct softirq_action *h) 4680{ 4681 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4682 unsigned long time_limit = jiffies + 2; 4683 int budget = netdev_budget; 4684 LIST_HEAD(list); 4685 LIST_HEAD(repoll); 4686 4687 local_irq_disable(); 4688 list_splice_init(&sd->poll_list, &list); 4689 local_irq_enable(); 4690 4691 for (;;) { 4692 struct napi_struct *n; 4693 4694 if (list_empty(&list)) { 4695 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 4696 return; 4697 break; 4698 } 4699 4700 n = list_first_entry(&list, struct napi_struct, poll_list); 4701 budget -= napi_poll(n, &repoll); 4702 4703 /* If softirq window is exhausted then punt. 4704 * Allow this to run for 2 jiffies since which will allow 4705 * an average latency of 1.5/HZ. 4706 */ 4707 if (unlikely(budget <= 0 || 4708 time_after_eq(jiffies, time_limit))) { 4709 sd->time_squeeze++; 4710 break; 4711 } 4712 } 4713 4714 local_irq_disable(); 4715 4716 list_splice_tail_init(&sd->poll_list, &list); 4717 list_splice_tail(&repoll, &list); 4718 list_splice(&list, &sd->poll_list); 4719 if (!list_empty(&sd->poll_list)) 4720 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4721 4722 net_rps_action_and_irq_enable(sd); 4723} 4724 4725struct netdev_adjacent { 4726 struct net_device *dev; 4727 4728 /* upper master flag, there can only be one master device per list */ 4729 bool master; 4730 4731 /* counter for the number of times this device was added to us */ 4732 u16 ref_nr; 4733 4734 /* private field for the users */ 4735 void *private; 4736 4737 struct list_head list; 4738 struct rcu_head rcu; 4739}; 4740 4741static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4742 struct net_device *adj_dev, 4743 struct list_head *adj_list) 4744{ 4745 struct netdev_adjacent *adj; 4746 4747 list_for_each_entry(adj, adj_list, list) { 4748 if (adj->dev == adj_dev) 4749 return adj; 4750 } 4751 return NULL; 4752} 4753 4754/** 4755 * netdev_has_upper_dev - Check if device is linked to an upper device 4756 * @dev: device 4757 * @upper_dev: upper device to check 4758 * 4759 * Find out if a device is linked to specified upper device and return true 4760 * in case it is. Note that this checks only immediate upper device, 4761 * not through a complete stack of devices. The caller must hold the RTNL lock. 4762 */ 4763bool netdev_has_upper_dev(struct net_device *dev, 4764 struct net_device *upper_dev) 4765{ 4766 ASSERT_RTNL(); 4767 4768 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper); 4769} 4770EXPORT_SYMBOL(netdev_has_upper_dev); 4771 4772/** 4773 * netdev_has_any_upper_dev - Check if device is linked to some device 4774 * @dev: device 4775 * 4776 * Find out if a device is linked to an upper device and return true in case 4777 * it is. The caller must hold the RTNL lock. 4778 */ 4779static bool netdev_has_any_upper_dev(struct net_device *dev) 4780{ 4781 ASSERT_RTNL(); 4782 4783 return !list_empty(&dev->all_adj_list.upper); 4784} 4785 4786/** 4787 * netdev_master_upper_dev_get - Get master upper device 4788 * @dev: device 4789 * 4790 * Find a master upper device and return pointer to it or NULL in case 4791 * it's not there. The caller must hold the RTNL lock. 4792 */ 4793struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4794{ 4795 struct netdev_adjacent *upper; 4796 4797 ASSERT_RTNL(); 4798 4799 if (list_empty(&dev->adj_list.upper)) 4800 return NULL; 4801 4802 upper = list_first_entry(&dev->adj_list.upper, 4803 struct netdev_adjacent, list); 4804 if (likely(upper->master)) 4805 return upper->dev; 4806 return NULL; 4807} 4808EXPORT_SYMBOL(netdev_master_upper_dev_get); 4809 4810void *netdev_adjacent_get_private(struct list_head *adj_list) 4811{ 4812 struct netdev_adjacent *adj; 4813 4814 adj = list_entry(adj_list, struct netdev_adjacent, list); 4815 4816 return adj->private; 4817} 4818EXPORT_SYMBOL(netdev_adjacent_get_private); 4819 4820/** 4821 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 4822 * @dev: device 4823 * @iter: list_head ** of the current position 4824 * 4825 * Gets the next device from the dev's upper list, starting from iter 4826 * position. The caller must hold RCU read lock. 4827 */ 4828struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4829 struct list_head **iter) 4830{ 4831 struct netdev_adjacent *upper; 4832 4833 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4834 4835 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4836 4837 if (&upper->list == &dev->adj_list.upper) 4838 return NULL; 4839 4840 *iter = &upper->list; 4841 4842 return upper->dev; 4843} 4844EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 4845 4846/** 4847 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 4848 * @dev: device 4849 * @iter: list_head ** of the current position 4850 * 4851 * Gets the next device from the dev's upper list, starting from iter 4852 * position. The caller must hold RCU read lock. 4853 */ 4854struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4855 struct list_head **iter) 4856{ 4857 struct netdev_adjacent *upper; 4858 4859 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4860 4861 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4862 4863 if (&upper->list == &dev->all_adj_list.upper) 4864 return NULL; 4865 4866 *iter = &upper->list; 4867 4868 return upper->dev; 4869} 4870EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 4871 4872/** 4873 * netdev_lower_get_next_private - Get the next ->private from the 4874 * lower neighbour list 4875 * @dev: device 4876 * @iter: list_head ** of the current position 4877 * 4878 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4879 * list, starting from iter position. The caller must hold either hold the 4880 * RTNL lock or its own locking that guarantees that the neighbour lower 4881 * list will remain unchainged. 4882 */ 4883void *netdev_lower_get_next_private(struct net_device *dev, 4884 struct list_head **iter) 4885{ 4886 struct netdev_adjacent *lower; 4887 4888 lower = list_entry(*iter, struct netdev_adjacent, list); 4889 4890 if (&lower->list == &dev->adj_list.lower) 4891 return NULL; 4892 4893 *iter = lower->list.next; 4894 4895 return lower->private; 4896} 4897EXPORT_SYMBOL(netdev_lower_get_next_private); 4898 4899/** 4900 * netdev_lower_get_next_private_rcu - Get the next ->private from the 4901 * lower neighbour list, RCU 4902 * variant 4903 * @dev: device 4904 * @iter: list_head ** of the current position 4905 * 4906 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4907 * list, starting from iter position. The caller must hold RCU read lock. 4908 */ 4909void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4910 struct list_head **iter) 4911{ 4912 struct netdev_adjacent *lower; 4913 4914 WARN_ON_ONCE(!rcu_read_lock_held()); 4915 4916 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4917 4918 if (&lower->list == &dev->adj_list.lower) 4919 return NULL; 4920 4921 *iter = &lower->list; 4922 4923 return lower->private; 4924} 4925EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 4926 4927/** 4928 * netdev_lower_get_next - Get the next device from the lower neighbour 4929 * list 4930 * @dev: device 4931 * @iter: list_head ** of the current position 4932 * 4933 * Gets the next netdev_adjacent from the dev's lower neighbour 4934 * list, starting from iter position. The caller must hold RTNL lock or 4935 * its own locking that guarantees that the neighbour lower 4936 * list will remain unchainged. 4937 */ 4938void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 4939{ 4940 struct netdev_adjacent *lower; 4941 4942 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 4943 4944 if (&lower->list == &dev->adj_list.lower) 4945 return NULL; 4946 4947 *iter = &lower->list; 4948 4949 return lower->dev; 4950} 4951EXPORT_SYMBOL(netdev_lower_get_next); 4952 4953/** 4954 * netdev_lower_get_first_private_rcu - Get the first ->private from the 4955 * lower neighbour list, RCU 4956 * variant 4957 * @dev: device 4958 * 4959 * Gets the first netdev_adjacent->private from the dev's lower neighbour 4960 * list. The caller must hold RCU read lock. 4961 */ 4962void *netdev_lower_get_first_private_rcu(struct net_device *dev) 4963{ 4964 struct netdev_adjacent *lower; 4965 4966 lower = list_first_or_null_rcu(&dev->adj_list.lower, 4967 struct netdev_adjacent, list); 4968 if (lower) 4969 return lower->private; 4970 return NULL; 4971} 4972EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 4973 4974/** 4975 * netdev_master_upper_dev_get_rcu - Get master upper device 4976 * @dev: device 4977 * 4978 * Find a master upper device and return pointer to it or NULL in case 4979 * it's not there. The caller must hold the RCU read lock. 4980 */ 4981struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4982{ 4983 struct netdev_adjacent *upper; 4984 4985 upper = list_first_or_null_rcu(&dev->adj_list.upper, 4986 struct netdev_adjacent, list); 4987 if (upper && likely(upper->master)) 4988 return upper->dev; 4989 return NULL; 4990} 4991EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4992 4993static int netdev_adjacent_sysfs_add(struct net_device *dev, 4994 struct net_device *adj_dev, 4995 struct list_head *dev_list) 4996{ 4997 char linkname[IFNAMSIZ+7]; 4998 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4999 "upper_%s" : "lower_%s", adj_dev->name); 5000 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 5001 linkname); 5002} 5003static void netdev_adjacent_sysfs_del(struct net_device *dev, 5004 char *name, 5005 struct list_head *dev_list) 5006{ 5007 char linkname[IFNAMSIZ+7]; 5008 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5009 "upper_%s" : "lower_%s", name); 5010 sysfs_remove_link(&(dev->dev.kobj), linkname); 5011} 5012 5013static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 5014 struct net_device *adj_dev, 5015 struct list_head *dev_list) 5016{ 5017 return (dev_list == &dev->adj_list.upper || 5018 dev_list == &dev->adj_list.lower) && 5019 net_eq(dev_net(dev), dev_net(adj_dev)); 5020} 5021 5022static int __netdev_adjacent_dev_insert(struct net_device *dev, 5023 struct net_device *adj_dev, 5024 struct list_head *dev_list, 5025 void *private, bool master) 5026{ 5027 struct netdev_adjacent *adj; 5028 int ret; 5029 5030 adj = __netdev_find_adj(dev, adj_dev, dev_list); 5031 5032 if (adj) { 5033 adj->ref_nr++; 5034 return 0; 5035 } 5036 5037 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 5038 if (!adj) 5039 return -ENOMEM; 5040 5041 adj->dev = adj_dev; 5042 adj->master = master; 5043 adj->ref_nr = 1; 5044 adj->private = private; 5045 dev_hold(adj_dev); 5046 5047 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 5048 adj_dev->name, dev->name, adj_dev->name); 5049 5050 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5051 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5052 if (ret) 5053 goto free_adj; 5054 } 5055 5056 /* Ensure that master link is always the first item in list. */ 5057 if (master) { 5058 ret = sysfs_create_link(&(dev->dev.kobj), 5059 &(adj_dev->dev.kobj), "master"); 5060 if (ret) 5061 goto remove_symlinks; 5062 5063 list_add_rcu(&adj->list, dev_list); 5064 } else { 5065 list_add_tail_rcu(&adj->list, dev_list); 5066 } 5067 5068 return 0; 5069 5070remove_symlinks: 5071 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5072 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5073free_adj: 5074 kfree(adj); 5075 dev_put(adj_dev); 5076 5077 return ret; 5078} 5079 5080static void __netdev_adjacent_dev_remove(struct net_device *dev, 5081 struct net_device *adj_dev, 5082 struct list_head *dev_list) 5083{ 5084 struct netdev_adjacent *adj; 5085 5086 adj = __netdev_find_adj(dev, adj_dev, dev_list); 5087 5088 if (!adj) { 5089 pr_err("tried to remove device %s from %s\n", 5090 dev->name, adj_dev->name); 5091 BUG(); 5092 } 5093 5094 if (adj->ref_nr > 1) { 5095 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 5096 adj->ref_nr-1); 5097 adj->ref_nr--; 5098 return; 5099 } 5100 5101 if (adj->master) 5102 sysfs_remove_link(&(dev->dev.kobj), "master"); 5103 5104 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5105 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5106 5107 list_del_rcu(&adj->list); 5108 pr_debug("dev_put for %s, because link removed from %s to %s\n", 5109 adj_dev->name, dev->name, adj_dev->name); 5110 dev_put(adj_dev); 5111 kfree_rcu(adj, rcu); 5112} 5113 5114static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5115 struct net_device *upper_dev, 5116 struct list_head *up_list, 5117 struct list_head *down_list, 5118 void *private, bool master) 5119{ 5120 int ret; 5121 5122 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 5123 master); 5124 if (ret) 5125 return ret; 5126 5127 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 5128 false); 5129 if (ret) { 5130 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5131 return ret; 5132 } 5133 5134 return 0; 5135} 5136 5137static int __netdev_adjacent_dev_link(struct net_device *dev, 5138 struct net_device *upper_dev) 5139{ 5140 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5141 &dev->all_adj_list.upper, 5142 &upper_dev->all_adj_list.lower, 5143 NULL, false); 5144} 5145 5146static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5147 struct net_device *upper_dev, 5148 struct list_head *up_list, 5149 struct list_head *down_list) 5150{ 5151 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5152 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 5153} 5154 5155static void __netdev_adjacent_dev_unlink(struct net_device *dev, 5156 struct net_device *upper_dev) 5157{ 5158 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5159 &dev->all_adj_list.upper, 5160 &upper_dev->all_adj_list.lower); 5161} 5162 5163static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5164 struct net_device *upper_dev, 5165 void *private, bool master) 5166{ 5167 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 5168 5169 if (ret) 5170 return ret; 5171 5172 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 5173 &dev->adj_list.upper, 5174 &upper_dev->adj_list.lower, 5175 private, master); 5176 if (ret) { 5177 __netdev_adjacent_dev_unlink(dev, upper_dev); 5178 return ret; 5179 } 5180 5181 return 0; 5182} 5183 5184static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5185 struct net_device *upper_dev) 5186{ 5187 __netdev_adjacent_dev_unlink(dev, upper_dev); 5188 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5189 &dev->adj_list.upper, 5190 &upper_dev->adj_list.lower); 5191} 5192 5193static int __netdev_upper_dev_link(struct net_device *dev, 5194 struct net_device *upper_dev, bool master, 5195 void *private) 5196{ 5197 struct netdev_adjacent *i, *j, *to_i, *to_j; 5198 int ret = 0; 5199 5200 ASSERT_RTNL(); 5201 5202 if (dev == upper_dev) 5203 return -EBUSY; 5204 5205 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5206 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper)) 5207 return -EBUSY; 5208 5209 if (__netdev_find_adj(dev, upper_dev, &dev->adj_list.upper)) 5210 return -EEXIST; 5211 5212 if (master && netdev_master_upper_dev_get(dev)) 5213 return -EBUSY; 5214 5215 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 5216 master); 5217 if (ret) 5218 return ret; 5219 5220 /* Now that we linked these devs, make all the upper_dev's 5221 * all_adj_list.upper visible to every dev's all_adj_list.lower an 5222 * versa, and don't forget the devices itself. All of these 5223 * links are non-neighbours. 5224 */ 5225 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5226 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5227 pr_debug("Interlinking %s with %s, non-neighbour\n", 5228 i->dev->name, j->dev->name); 5229 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 5230 if (ret) 5231 goto rollback_mesh; 5232 } 5233 } 5234 5235 /* add dev to every upper_dev's upper device */ 5236 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5237 pr_debug("linking %s's upper device %s with %s\n", 5238 upper_dev->name, i->dev->name, dev->name); 5239 ret = __netdev_adjacent_dev_link(dev, i->dev); 5240 if (ret) 5241 goto rollback_upper_mesh; 5242 } 5243 5244 /* add upper_dev to every dev's lower device */ 5245 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5246 pr_debug("linking %s's lower device %s with %s\n", dev->name, 5247 i->dev->name, upper_dev->name); 5248 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 5249 if (ret) 5250 goto rollback_lower_mesh; 5251 } 5252 5253 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5254 return 0; 5255 5256rollback_lower_mesh: 5257 to_i = i; 5258 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5259 if (i == to_i) 5260 break; 5261 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5262 } 5263 5264 i = NULL; 5265 5266rollback_upper_mesh: 5267 to_i = i; 5268 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5269 if (i == to_i) 5270 break; 5271 __netdev_adjacent_dev_unlink(dev, i->dev); 5272 } 5273 5274 i = j = NULL; 5275 5276rollback_mesh: 5277 to_i = i; 5278 to_j = j; 5279 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5280 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5281 if (i == to_i && j == to_j) 5282 break; 5283 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5284 } 5285 if (i == to_i) 5286 break; 5287 } 5288 5289 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5290 5291 return ret; 5292} 5293 5294/** 5295 * netdev_upper_dev_link - Add a link to the upper device 5296 * @dev: device 5297 * @upper_dev: new upper device 5298 * 5299 * Adds a link to device which is upper to this one. The caller must hold 5300 * the RTNL lock. On a failure a negative errno code is returned. 5301 * On success the reference counts are adjusted and the function 5302 * returns zero. 5303 */ 5304int netdev_upper_dev_link(struct net_device *dev, 5305 struct net_device *upper_dev) 5306{ 5307 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 5308} 5309EXPORT_SYMBOL(netdev_upper_dev_link); 5310 5311/** 5312 * netdev_master_upper_dev_link - Add a master link to the upper device 5313 * @dev: device 5314 * @upper_dev: new upper device 5315 * 5316 * Adds a link to device which is upper to this one. In this case, only 5317 * one master upper device can be linked, although other non-master devices 5318 * might be linked as well. The caller must hold the RTNL lock. 5319 * On a failure a negative errno code is returned. On success the reference 5320 * counts are adjusted and the function returns zero. 5321 */ 5322int netdev_master_upper_dev_link(struct net_device *dev, 5323 struct net_device *upper_dev) 5324{ 5325 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 5326} 5327EXPORT_SYMBOL(netdev_master_upper_dev_link); 5328 5329int netdev_master_upper_dev_link_private(struct net_device *dev, 5330 struct net_device *upper_dev, 5331 void *private) 5332{ 5333 return __netdev_upper_dev_link(dev, upper_dev, true, private); 5334} 5335EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 5336 5337/** 5338 * netdev_upper_dev_unlink - Removes a link to upper device 5339 * @dev: device 5340 * @upper_dev: new upper device 5341 * 5342 * Removes a link to device which is upper to this one. The caller must hold 5343 * the RTNL lock. 5344 */ 5345void netdev_upper_dev_unlink(struct net_device *dev, 5346 struct net_device *upper_dev) 5347{ 5348 struct netdev_adjacent *i, *j; 5349 ASSERT_RTNL(); 5350 5351 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5352 5353 /* Here is the tricky part. We must remove all dev's lower 5354 * devices from all upper_dev's upper devices and vice 5355 * versa, to maintain the graph relationship. 5356 */ 5357 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5358 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5359 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5360 5361 /* remove also the devices itself from lower/upper device 5362 * list 5363 */ 5364 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5365 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5366 5367 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5368 __netdev_adjacent_dev_unlink(dev, i->dev); 5369 5370 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5371} 5372EXPORT_SYMBOL(netdev_upper_dev_unlink); 5373 5374/** 5375 * netdev_bonding_info_change - Dispatch event about slave change 5376 * @dev: device 5377 * @bonding_info: info to dispatch 5378 * 5379 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 5380 * The caller must hold the RTNL lock. 5381 */ 5382void netdev_bonding_info_change(struct net_device *dev, 5383 struct netdev_bonding_info *bonding_info) 5384{ 5385 struct netdev_notifier_bonding_info info; 5386 5387 memcpy(&info.bonding_info, bonding_info, 5388 sizeof(struct netdev_bonding_info)); 5389 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 5390 &info.info); 5391} 5392EXPORT_SYMBOL(netdev_bonding_info_change); 5393 5394static void netdev_adjacent_add_links(struct net_device *dev) 5395{ 5396 struct netdev_adjacent *iter; 5397 5398 struct net *net = dev_net(dev); 5399 5400 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5401 if (!net_eq(net,dev_net(iter->dev))) 5402 continue; 5403 netdev_adjacent_sysfs_add(iter->dev, dev, 5404 &iter->dev->adj_list.lower); 5405 netdev_adjacent_sysfs_add(dev, iter->dev, 5406 &dev->adj_list.upper); 5407 } 5408 5409 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5410 if (!net_eq(net,dev_net(iter->dev))) 5411 continue; 5412 netdev_adjacent_sysfs_add(iter->dev, dev, 5413 &iter->dev->adj_list.upper); 5414 netdev_adjacent_sysfs_add(dev, iter->dev, 5415 &dev->adj_list.lower); 5416 } 5417} 5418 5419static void netdev_adjacent_del_links(struct net_device *dev) 5420{ 5421 struct netdev_adjacent *iter; 5422 5423 struct net *net = dev_net(dev); 5424 5425 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5426 if (!net_eq(net,dev_net(iter->dev))) 5427 continue; 5428 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5429 &iter->dev->adj_list.lower); 5430 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5431 &dev->adj_list.upper); 5432 } 5433 5434 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5435 if (!net_eq(net,dev_net(iter->dev))) 5436 continue; 5437 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5438 &iter->dev->adj_list.upper); 5439 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5440 &dev->adj_list.lower); 5441 } 5442} 5443 5444void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5445{ 5446 struct netdev_adjacent *iter; 5447 5448 struct net *net = dev_net(dev); 5449 5450 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5451 if (!net_eq(net,dev_net(iter->dev))) 5452 continue; 5453 netdev_adjacent_sysfs_del(iter->dev, oldname, 5454 &iter->dev->adj_list.lower); 5455 netdev_adjacent_sysfs_add(iter->dev, dev, 5456 &iter->dev->adj_list.lower); 5457 } 5458 5459 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5460 if (!net_eq(net,dev_net(iter->dev))) 5461 continue; 5462 netdev_adjacent_sysfs_del(iter->dev, oldname, 5463 &iter->dev->adj_list.upper); 5464 netdev_adjacent_sysfs_add(iter->dev, dev, 5465 &iter->dev->adj_list.upper); 5466 } 5467} 5468 5469void *netdev_lower_dev_get_private(struct net_device *dev, 5470 struct net_device *lower_dev) 5471{ 5472 struct netdev_adjacent *lower; 5473 5474 if (!lower_dev) 5475 return NULL; 5476 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower); 5477 if (!lower) 5478 return NULL; 5479 5480 return lower->private; 5481} 5482EXPORT_SYMBOL(netdev_lower_dev_get_private); 5483 5484 5485int dev_get_nest_level(struct net_device *dev, 5486 bool (*type_check)(struct net_device *dev)) 5487{ 5488 struct net_device *lower = NULL; 5489 struct list_head *iter; 5490 int max_nest = -1; 5491 int nest; 5492 5493 ASSERT_RTNL(); 5494 5495 netdev_for_each_lower_dev(dev, lower, iter) { 5496 nest = dev_get_nest_level(lower, type_check); 5497 if (max_nest < nest) 5498 max_nest = nest; 5499 } 5500 5501 if (type_check(dev)) 5502 max_nest++; 5503 5504 return max_nest; 5505} 5506EXPORT_SYMBOL(dev_get_nest_level); 5507 5508static void dev_change_rx_flags(struct net_device *dev, int flags) 5509{ 5510 const struct net_device_ops *ops = dev->netdev_ops; 5511 5512 if (ops->ndo_change_rx_flags) 5513 ops->ndo_change_rx_flags(dev, flags); 5514} 5515 5516static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5517{ 5518 unsigned int old_flags = dev->flags; 5519 kuid_t uid; 5520 kgid_t gid; 5521 5522 ASSERT_RTNL(); 5523 5524 dev->flags |= IFF_PROMISC; 5525 dev->promiscuity += inc; 5526 if (dev->promiscuity == 0) { 5527 /* 5528 * Avoid overflow. 5529 * If inc causes overflow, untouch promisc and return error. 5530 */ 5531 if (inc < 0) 5532 dev->flags &= ~IFF_PROMISC; 5533 else { 5534 dev->promiscuity -= inc; 5535 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5536 dev->name); 5537 return -EOVERFLOW; 5538 } 5539 } 5540 if (dev->flags != old_flags) { 5541 pr_info("device %s %s promiscuous mode\n", 5542 dev->name, 5543 dev->flags & IFF_PROMISC ? "entered" : "left"); 5544 if (audit_enabled) { 5545 current_uid_gid(&uid, &gid); 5546 audit_log(current->audit_context, GFP_ATOMIC, 5547 AUDIT_ANOM_PROMISCUOUS, 5548 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5549 dev->name, (dev->flags & IFF_PROMISC), 5550 (old_flags & IFF_PROMISC), 5551 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5552 from_kuid(&init_user_ns, uid), 5553 from_kgid(&init_user_ns, gid), 5554 audit_get_sessionid(current)); 5555 } 5556 5557 dev_change_rx_flags(dev, IFF_PROMISC); 5558 } 5559 if (notify) 5560 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5561 return 0; 5562} 5563 5564/** 5565 * dev_set_promiscuity - update promiscuity count on a device 5566 * @dev: device 5567 * @inc: modifier 5568 * 5569 * Add or remove promiscuity from a device. While the count in the device 5570 * remains above zero the interface remains promiscuous. Once it hits zero 5571 * the device reverts back to normal filtering operation. A negative inc 5572 * value is used to drop promiscuity on the device. 5573 * Return 0 if successful or a negative errno code on error. 5574 */ 5575int dev_set_promiscuity(struct net_device *dev, int inc) 5576{ 5577 unsigned int old_flags = dev->flags; 5578 int err; 5579 5580 err = __dev_set_promiscuity(dev, inc, true); 5581 if (err < 0) 5582 return err; 5583 if (dev->flags != old_flags) 5584 dev_set_rx_mode(dev); 5585 return err; 5586} 5587EXPORT_SYMBOL(dev_set_promiscuity); 5588 5589static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5590{ 5591 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5592 5593 ASSERT_RTNL(); 5594 5595 dev->flags |= IFF_ALLMULTI; 5596 dev->allmulti += inc; 5597 if (dev->allmulti == 0) { 5598 /* 5599 * Avoid overflow. 5600 * If inc causes overflow, untouch allmulti and return error. 5601 */ 5602 if (inc < 0) 5603 dev->flags &= ~IFF_ALLMULTI; 5604 else { 5605 dev->allmulti -= inc; 5606 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5607 dev->name); 5608 return -EOVERFLOW; 5609 } 5610 } 5611 if (dev->flags ^ old_flags) { 5612 dev_change_rx_flags(dev, IFF_ALLMULTI); 5613 dev_set_rx_mode(dev); 5614 if (notify) 5615 __dev_notify_flags(dev, old_flags, 5616 dev->gflags ^ old_gflags); 5617 } 5618 return 0; 5619} 5620 5621/** 5622 * dev_set_allmulti - update allmulti count on a device 5623 * @dev: device 5624 * @inc: modifier 5625 * 5626 * Add or remove reception of all multicast frames to a device. While the 5627 * count in the device remains above zero the interface remains listening 5628 * to all interfaces. Once it hits zero the device reverts back to normal 5629 * filtering operation. A negative @inc value is used to drop the counter 5630 * when releasing a resource needing all multicasts. 5631 * Return 0 if successful or a negative errno code on error. 5632 */ 5633 5634int dev_set_allmulti(struct net_device *dev, int inc) 5635{ 5636 return __dev_set_allmulti(dev, inc, true); 5637} 5638EXPORT_SYMBOL(dev_set_allmulti); 5639 5640/* 5641 * Upload unicast and multicast address lists to device and 5642 * configure RX filtering. When the device doesn't support unicast 5643 * filtering it is put in promiscuous mode while unicast addresses 5644 * are present. 5645 */ 5646void __dev_set_rx_mode(struct net_device *dev) 5647{ 5648 const struct net_device_ops *ops = dev->netdev_ops; 5649 5650 /* dev_open will call this function so the list will stay sane. */ 5651 if (!(dev->flags&IFF_UP)) 5652 return; 5653 5654 if (!netif_device_present(dev)) 5655 return; 5656 5657 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5658 /* Unicast addresses changes may only happen under the rtnl, 5659 * therefore calling __dev_set_promiscuity here is safe. 5660 */ 5661 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5662 __dev_set_promiscuity(dev, 1, false); 5663 dev->uc_promisc = true; 5664 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5665 __dev_set_promiscuity(dev, -1, false); 5666 dev->uc_promisc = false; 5667 } 5668 } 5669 5670 if (ops->ndo_set_rx_mode) 5671 ops->ndo_set_rx_mode(dev); 5672} 5673 5674void dev_set_rx_mode(struct net_device *dev) 5675{ 5676 netif_addr_lock_bh(dev); 5677 __dev_set_rx_mode(dev); 5678 netif_addr_unlock_bh(dev); 5679} 5680 5681/** 5682 * dev_get_flags - get flags reported to userspace 5683 * @dev: device 5684 * 5685 * Get the combination of flag bits exported through APIs to userspace. 5686 */ 5687unsigned int dev_get_flags(const struct net_device *dev) 5688{ 5689 unsigned int flags; 5690 5691 flags = (dev->flags & ~(IFF_PROMISC | 5692 IFF_ALLMULTI | 5693 IFF_RUNNING | 5694 IFF_LOWER_UP | 5695 IFF_DORMANT)) | 5696 (dev->gflags & (IFF_PROMISC | 5697 IFF_ALLMULTI)); 5698 5699 if (netif_running(dev)) { 5700 if (netif_oper_up(dev)) 5701 flags |= IFF_RUNNING; 5702 if (netif_carrier_ok(dev)) 5703 flags |= IFF_LOWER_UP; 5704 if (netif_dormant(dev)) 5705 flags |= IFF_DORMANT; 5706 } 5707 5708 return flags; 5709} 5710EXPORT_SYMBOL(dev_get_flags); 5711 5712int __dev_change_flags(struct net_device *dev, unsigned int flags) 5713{ 5714 unsigned int old_flags = dev->flags; 5715 int ret; 5716 5717 ASSERT_RTNL(); 5718 5719 /* 5720 * Set the flags on our device. 5721 */ 5722 5723 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5724 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5725 IFF_AUTOMEDIA)) | 5726 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5727 IFF_ALLMULTI)); 5728 5729 /* 5730 * Load in the correct multicast list now the flags have changed. 5731 */ 5732 5733 if ((old_flags ^ flags) & IFF_MULTICAST) 5734 dev_change_rx_flags(dev, IFF_MULTICAST); 5735 5736 dev_set_rx_mode(dev); 5737 5738 /* 5739 * Have we downed the interface. We handle IFF_UP ourselves 5740 * according to user attempts to set it, rather than blindly 5741 * setting it. 5742 */ 5743 5744 ret = 0; 5745 if ((old_flags ^ flags) & IFF_UP) 5746 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5747 5748 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5749 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5750 unsigned int old_flags = dev->flags; 5751 5752 dev->gflags ^= IFF_PROMISC; 5753 5754 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5755 if (dev->flags != old_flags) 5756 dev_set_rx_mode(dev); 5757 } 5758 5759 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5760 is important. Some (broken) drivers set IFF_PROMISC, when 5761 IFF_ALLMULTI is requested not asking us and not reporting. 5762 */ 5763 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5764 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5765 5766 dev->gflags ^= IFF_ALLMULTI; 5767 __dev_set_allmulti(dev, inc, false); 5768 } 5769 5770 return ret; 5771} 5772 5773void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5774 unsigned int gchanges) 5775{ 5776 unsigned int changes = dev->flags ^ old_flags; 5777 5778 if (gchanges) 5779 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5780 5781 if (changes & IFF_UP) { 5782 if (dev->flags & IFF_UP) 5783 call_netdevice_notifiers(NETDEV_UP, dev); 5784 else 5785 call_netdevice_notifiers(NETDEV_DOWN, dev); 5786 } 5787 5788 if (dev->flags & IFF_UP && 5789 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5790 struct netdev_notifier_change_info change_info; 5791 5792 change_info.flags_changed = changes; 5793 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5794 &change_info.info); 5795 } 5796} 5797 5798/** 5799 * dev_change_flags - change device settings 5800 * @dev: device 5801 * @flags: device state flags 5802 * 5803 * Change settings on device based state flags. The flags are 5804 * in the userspace exported format. 5805 */ 5806int dev_change_flags(struct net_device *dev, unsigned int flags) 5807{ 5808 int ret; 5809 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5810 5811 ret = __dev_change_flags(dev, flags); 5812 if (ret < 0) 5813 return ret; 5814 5815 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5816 __dev_notify_flags(dev, old_flags, changes); 5817 return ret; 5818} 5819EXPORT_SYMBOL(dev_change_flags); 5820 5821static int __dev_set_mtu(struct net_device *dev, int new_mtu) 5822{ 5823 const struct net_device_ops *ops = dev->netdev_ops; 5824 5825 if (ops->ndo_change_mtu) 5826 return ops->ndo_change_mtu(dev, new_mtu); 5827 5828 dev->mtu = new_mtu; 5829 return 0; 5830} 5831 5832/** 5833 * dev_set_mtu - Change maximum transfer unit 5834 * @dev: device 5835 * @new_mtu: new transfer unit 5836 * 5837 * Change the maximum transfer size of the network device. 5838 */ 5839int dev_set_mtu(struct net_device *dev, int new_mtu) 5840{ 5841 int err, orig_mtu; 5842 5843 if (new_mtu == dev->mtu) 5844 return 0; 5845 5846 /* MTU must be positive. */ 5847 if (new_mtu < 0) 5848 return -EINVAL; 5849 5850 if (!netif_device_present(dev)) 5851 return -ENODEV; 5852 5853 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 5854 err = notifier_to_errno(err); 5855 if (err) 5856 return err; 5857 5858 orig_mtu = dev->mtu; 5859 err = __dev_set_mtu(dev, new_mtu); 5860 5861 if (!err) { 5862 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5863 err = notifier_to_errno(err); 5864 if (err) { 5865 /* setting mtu back and notifying everyone again, 5866 * so that they have a chance to revert changes. 5867 */ 5868 __dev_set_mtu(dev, orig_mtu); 5869 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5870 } 5871 } 5872 return err; 5873} 5874EXPORT_SYMBOL(dev_set_mtu); 5875 5876/** 5877 * dev_set_group - Change group this device belongs to 5878 * @dev: device 5879 * @new_group: group this device should belong to 5880 */ 5881void dev_set_group(struct net_device *dev, int new_group) 5882{ 5883 dev->group = new_group; 5884} 5885EXPORT_SYMBOL(dev_set_group); 5886 5887/** 5888 * dev_set_mac_address - Change Media Access Control Address 5889 * @dev: device 5890 * @sa: new address 5891 * 5892 * Change the hardware (MAC) address of the device 5893 */ 5894int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 5895{ 5896 const struct net_device_ops *ops = dev->netdev_ops; 5897 int err; 5898 5899 if (!ops->ndo_set_mac_address) 5900 return -EOPNOTSUPP; 5901 if (sa->sa_family != dev->type) 5902 return -EINVAL; 5903 if (!netif_device_present(dev)) 5904 return -ENODEV; 5905 err = ops->ndo_set_mac_address(dev, sa); 5906 if (err) 5907 return err; 5908 dev->addr_assign_type = NET_ADDR_SET; 5909 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5910 add_device_randomness(dev->dev_addr, dev->addr_len); 5911 return 0; 5912} 5913EXPORT_SYMBOL(dev_set_mac_address); 5914 5915/** 5916 * dev_change_carrier - Change device carrier 5917 * @dev: device 5918 * @new_carrier: new value 5919 * 5920 * Change device carrier 5921 */ 5922int dev_change_carrier(struct net_device *dev, bool new_carrier) 5923{ 5924 const struct net_device_ops *ops = dev->netdev_ops; 5925 5926 if (!ops->ndo_change_carrier) 5927 return -EOPNOTSUPP; 5928 if (!netif_device_present(dev)) 5929 return -ENODEV; 5930 return ops->ndo_change_carrier(dev, new_carrier); 5931} 5932EXPORT_SYMBOL(dev_change_carrier); 5933 5934/** 5935 * dev_get_phys_port_id - Get device physical port ID 5936 * @dev: device 5937 * @ppid: port ID 5938 * 5939 * Get device physical port ID 5940 */ 5941int dev_get_phys_port_id(struct net_device *dev, 5942 struct netdev_phys_item_id *ppid) 5943{ 5944 const struct net_device_ops *ops = dev->netdev_ops; 5945 5946 if (!ops->ndo_get_phys_port_id) 5947 return -EOPNOTSUPP; 5948 return ops->ndo_get_phys_port_id(dev, ppid); 5949} 5950EXPORT_SYMBOL(dev_get_phys_port_id); 5951 5952/** 5953 * dev_get_phys_port_name - Get device physical port name 5954 * @dev: device 5955 * @name: port name 5956 * 5957 * Get device physical port name 5958 */ 5959int dev_get_phys_port_name(struct net_device *dev, 5960 char *name, size_t len) 5961{ 5962 const struct net_device_ops *ops = dev->netdev_ops; 5963 5964 if (!ops->ndo_get_phys_port_name) 5965 return -EOPNOTSUPP; 5966 return ops->ndo_get_phys_port_name(dev, name, len); 5967} 5968EXPORT_SYMBOL(dev_get_phys_port_name); 5969 5970/** 5971 * dev_new_index - allocate an ifindex 5972 * @net: the applicable net namespace 5973 * 5974 * Returns a suitable unique value for a new device interface 5975 * number. The caller must hold the rtnl semaphore or the 5976 * dev_base_lock to be sure it remains unique. 5977 */ 5978static int dev_new_index(struct net *net) 5979{ 5980 int ifindex = net->ifindex; 5981 for (;;) { 5982 if (++ifindex <= 0) 5983 ifindex = 1; 5984 if (!__dev_get_by_index(net, ifindex)) 5985 return net->ifindex = ifindex; 5986 } 5987} 5988 5989/* Delayed registration/unregisteration */ 5990static LIST_HEAD(net_todo_list); 5991DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 5992 5993static void net_set_todo(struct net_device *dev) 5994{ 5995 list_add_tail(&dev->todo_list, &net_todo_list); 5996 dev_net(dev)->dev_unreg_count++; 5997} 5998 5999static void rollback_registered_many(struct list_head *head) 6000{ 6001 struct net_device *dev, *tmp; 6002 LIST_HEAD(close_head); 6003 6004 BUG_ON(dev_boot_phase); 6005 ASSERT_RTNL(); 6006 6007 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 6008 /* Some devices call without registering 6009 * for initialization unwind. Remove those 6010 * devices and proceed with the remaining. 6011 */ 6012 if (dev->reg_state == NETREG_UNINITIALIZED) { 6013 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 6014 dev->name, dev); 6015 6016 WARN_ON(1); 6017 list_del(&dev->unreg_list); 6018 continue; 6019 } 6020 dev->dismantle = true; 6021 BUG_ON(dev->reg_state != NETREG_REGISTERED); 6022 } 6023 6024 /* If device is running, close it first. */ 6025 list_for_each_entry(dev, head, unreg_list) 6026 list_add_tail(&dev->close_list, &close_head); 6027 dev_close_many(&close_head, true); 6028 6029 list_for_each_entry(dev, head, unreg_list) { 6030 /* And unlink it from device chain. */ 6031 unlist_netdevice(dev); 6032 6033 dev->reg_state = NETREG_UNREGISTERING; 6034 on_each_cpu(flush_backlog, dev, 1); 6035 } 6036 6037 synchronize_net(); 6038 6039 list_for_each_entry(dev, head, unreg_list) { 6040 struct sk_buff *skb = NULL; 6041 6042 /* Shutdown queueing discipline. */ 6043 dev_shutdown(dev); 6044 6045 6046 /* Notify protocols, that we are about to destroy 6047 this device. They should clean all the things. 6048 */ 6049 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6050 6051 if (!dev->rtnl_link_ops || 6052 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6053 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 6054 GFP_KERNEL); 6055 6056 /* 6057 * Flush the unicast and multicast chains 6058 */ 6059 dev_uc_flush(dev); 6060 dev_mc_flush(dev); 6061 6062 if (dev->netdev_ops->ndo_uninit) 6063 dev->netdev_ops->ndo_uninit(dev); 6064 6065 if (skb) 6066 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 6067 6068 /* Notifier chain MUST detach us all upper devices. */ 6069 WARN_ON(netdev_has_any_upper_dev(dev)); 6070 6071 /* Remove entries from kobject tree */ 6072 netdev_unregister_kobject(dev); 6073#ifdef CONFIG_XPS 6074 /* Remove XPS queueing entries */ 6075 netif_reset_xps_queues_gt(dev, 0); 6076#endif 6077 } 6078 6079 synchronize_net(); 6080 6081 list_for_each_entry(dev, head, unreg_list) 6082 dev_put(dev); 6083} 6084 6085static void rollback_registered(struct net_device *dev) 6086{ 6087 LIST_HEAD(single); 6088 6089 list_add(&dev->unreg_list, &single); 6090 rollback_registered_many(&single); 6091 list_del(&single); 6092} 6093 6094static netdev_features_t netdev_fix_features(struct net_device *dev, 6095 netdev_features_t features) 6096{ 6097 /* Fix illegal checksum combinations */ 6098 if ((features & NETIF_F_HW_CSUM) && 6099 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6100 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 6101 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 6102 } 6103 6104 /* TSO requires that SG is present as well. */ 6105 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 6106 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 6107 features &= ~NETIF_F_ALL_TSO; 6108 } 6109 6110 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 6111 !(features & NETIF_F_IP_CSUM)) { 6112 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 6113 features &= ~NETIF_F_TSO; 6114 features &= ~NETIF_F_TSO_ECN; 6115 } 6116 6117 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6118 !(features & NETIF_F_IPV6_CSUM)) { 6119 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6120 features &= ~NETIF_F_TSO6; 6121 } 6122 6123 /* TSO ECN requires that TSO is present as well. */ 6124 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6125 features &= ~NETIF_F_TSO_ECN; 6126 6127 /* Software GSO depends on SG. */ 6128 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6129 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6130 features &= ~NETIF_F_GSO; 6131 } 6132 6133 /* UFO needs SG and checksumming */ 6134 if (features & NETIF_F_UFO) { 6135 /* maybe split UFO into V4 and V6? */ 6136 if (!((features & NETIF_F_GEN_CSUM) || 6137 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 6138 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6139 netdev_dbg(dev, 6140 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6141 features &= ~NETIF_F_UFO; 6142 } 6143 6144 if (!(features & NETIF_F_SG)) { 6145 netdev_dbg(dev, 6146 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6147 features &= ~NETIF_F_UFO; 6148 } 6149 } 6150 6151#ifdef CONFIG_NET_RX_BUSY_POLL 6152 if (dev->netdev_ops->ndo_busy_poll) 6153 features |= NETIF_F_BUSY_POLL; 6154 else 6155#endif 6156 features &= ~NETIF_F_BUSY_POLL; 6157 6158 return features; 6159} 6160 6161int __netdev_update_features(struct net_device *dev) 6162{ 6163 netdev_features_t features; 6164 int err = 0; 6165 6166 ASSERT_RTNL(); 6167 6168 features = netdev_get_wanted_features(dev); 6169 6170 if (dev->netdev_ops->ndo_fix_features) 6171 features = dev->netdev_ops->ndo_fix_features(dev, features); 6172 6173 /* driver might be less strict about feature dependencies */ 6174 features = netdev_fix_features(dev, features); 6175 6176 if (dev->features == features) 6177 return 0; 6178 6179 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 6180 &dev->features, &features); 6181 6182 if (dev->netdev_ops->ndo_set_features) 6183 err = dev->netdev_ops->ndo_set_features(dev, features); 6184 6185 if (unlikely(err < 0)) { 6186 netdev_err(dev, 6187 "set_features() failed (%d); wanted %pNF, left %pNF\n", 6188 err, &features, &dev->features); 6189 return -1; 6190 } 6191 6192 if (!err) 6193 dev->features = features; 6194 6195 return 1; 6196} 6197 6198/** 6199 * netdev_update_features - recalculate device features 6200 * @dev: the device to check 6201 * 6202 * Recalculate dev->features set and send notifications if it 6203 * has changed. Should be called after driver or hardware dependent 6204 * conditions might have changed that influence the features. 6205 */ 6206void netdev_update_features(struct net_device *dev) 6207{ 6208 if (__netdev_update_features(dev)) 6209 netdev_features_change(dev); 6210} 6211EXPORT_SYMBOL(netdev_update_features); 6212 6213/** 6214 * netdev_change_features - recalculate device features 6215 * @dev: the device to check 6216 * 6217 * Recalculate dev->features set and send notifications even 6218 * if they have not changed. Should be called instead of 6219 * netdev_update_features() if also dev->vlan_features might 6220 * have changed to allow the changes to be propagated to stacked 6221 * VLAN devices. 6222 */ 6223void netdev_change_features(struct net_device *dev) 6224{ 6225 __netdev_update_features(dev); 6226 netdev_features_change(dev); 6227} 6228EXPORT_SYMBOL(netdev_change_features); 6229 6230/** 6231 * netif_stacked_transfer_operstate - transfer operstate 6232 * @rootdev: the root or lower level device to transfer state from 6233 * @dev: the device to transfer operstate to 6234 * 6235 * Transfer operational state from root to device. This is normally 6236 * called when a stacking relationship exists between the root 6237 * device and the device(a leaf device). 6238 */ 6239void netif_stacked_transfer_operstate(const struct net_device *rootdev, 6240 struct net_device *dev) 6241{ 6242 if (rootdev->operstate == IF_OPER_DORMANT) 6243 netif_dormant_on(dev); 6244 else 6245 netif_dormant_off(dev); 6246 6247 if (netif_carrier_ok(rootdev)) { 6248 if (!netif_carrier_ok(dev)) 6249 netif_carrier_on(dev); 6250 } else { 6251 if (netif_carrier_ok(dev)) 6252 netif_carrier_off(dev); 6253 } 6254} 6255EXPORT_SYMBOL(netif_stacked_transfer_operstate); 6256 6257#ifdef CONFIG_SYSFS 6258static int netif_alloc_rx_queues(struct net_device *dev) 6259{ 6260 unsigned int i, count = dev->num_rx_queues; 6261 struct netdev_rx_queue *rx; 6262 size_t sz = count * sizeof(*rx); 6263 6264 BUG_ON(count < 1); 6265 6266 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6267 if (!rx) { 6268 rx = vzalloc(sz); 6269 if (!rx) 6270 return -ENOMEM; 6271 } 6272 dev->_rx = rx; 6273 6274 for (i = 0; i < count; i++) 6275 rx[i].dev = dev; 6276 return 0; 6277} 6278#endif 6279 6280static void netdev_init_one_queue(struct net_device *dev, 6281 struct netdev_queue *queue, void *_unused) 6282{ 6283 /* Initialize queue lock */ 6284 spin_lock_init(&queue->_xmit_lock); 6285 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 6286 queue->xmit_lock_owner = -1; 6287 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 6288 queue->dev = dev; 6289#ifdef CONFIG_BQL 6290 dql_init(&queue->dql, HZ); 6291#endif 6292} 6293 6294static void netif_free_tx_queues(struct net_device *dev) 6295{ 6296 kvfree(dev->_tx); 6297} 6298 6299static int netif_alloc_netdev_queues(struct net_device *dev) 6300{ 6301 unsigned int count = dev->num_tx_queues; 6302 struct netdev_queue *tx; 6303 size_t sz = count * sizeof(*tx); 6304 6305 if (count < 1 || count > 0xffff) 6306 return -EINVAL; 6307 6308 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6309 if (!tx) { 6310 tx = vzalloc(sz); 6311 if (!tx) 6312 return -ENOMEM; 6313 } 6314 dev->_tx = tx; 6315 6316 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 6317 spin_lock_init(&dev->tx_global_lock); 6318 6319 return 0; 6320} 6321 6322/** 6323 * register_netdevice - register a network device 6324 * @dev: device to register 6325 * 6326 * Take a completed network device structure and add it to the kernel 6327 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6328 * chain. 0 is returned on success. A negative errno code is returned 6329 * on a failure to set up the device, or if the name is a duplicate. 6330 * 6331 * Callers must hold the rtnl semaphore. You may want 6332 * register_netdev() instead of this. 6333 * 6334 * BUGS: 6335 * The locking appears insufficient to guarantee two parallel registers 6336 * will not get the same name. 6337 */ 6338 6339int register_netdevice(struct net_device *dev) 6340{ 6341 int ret; 6342 struct net *net = dev_net(dev); 6343 6344 BUG_ON(dev_boot_phase); 6345 ASSERT_RTNL(); 6346 6347 might_sleep(); 6348 6349 /* When net_device's are persistent, this will be fatal. */ 6350 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 6351 BUG_ON(!net); 6352 6353 spin_lock_init(&dev->addr_list_lock); 6354 netdev_set_addr_lockdep_class(dev); 6355 6356 ret = dev_get_valid_name(net, dev, dev->name); 6357 if (ret < 0) 6358 goto out; 6359 6360 /* Init, if this function is available */ 6361 if (dev->netdev_ops->ndo_init) { 6362 ret = dev->netdev_ops->ndo_init(dev); 6363 if (ret) { 6364 if (ret > 0) 6365 ret = -EIO; 6366 goto out; 6367 } 6368 } 6369 6370 if (((dev->hw_features | dev->features) & 6371 NETIF_F_HW_VLAN_CTAG_FILTER) && 6372 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 6373 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 6374 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 6375 ret = -EINVAL; 6376 goto err_uninit; 6377 } 6378 6379 ret = -EBUSY; 6380 if (!dev->ifindex) 6381 dev->ifindex = dev_new_index(net); 6382 else if (__dev_get_by_index(net, dev->ifindex)) 6383 goto err_uninit; 6384 6385 /* Transfer changeable features to wanted_features and enable 6386 * software offloads (GSO and GRO). 6387 */ 6388 dev->hw_features |= NETIF_F_SOFT_FEATURES; 6389 dev->features |= NETIF_F_SOFT_FEATURES; 6390 dev->wanted_features = dev->features & dev->hw_features; 6391 6392 if (!(dev->flags & IFF_LOOPBACK)) { 6393 dev->hw_features |= NETIF_F_NOCACHE_COPY; 6394 } 6395 6396 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 6397 */ 6398 dev->vlan_features |= NETIF_F_HIGHDMA; 6399 6400 /* Make NETIF_F_SG inheritable to tunnel devices. 6401 */ 6402 dev->hw_enc_features |= NETIF_F_SG; 6403 6404 /* Make NETIF_F_SG inheritable to MPLS. 6405 */ 6406 dev->mpls_features |= NETIF_F_SG; 6407 6408 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 6409 ret = notifier_to_errno(ret); 6410 if (ret) 6411 goto err_uninit; 6412 6413 ret = netdev_register_kobject(dev); 6414 if (ret) 6415 goto err_uninit; 6416 dev->reg_state = NETREG_REGISTERED; 6417 6418 __netdev_update_features(dev); 6419 6420 /* 6421 * Default initial state at registry is that the 6422 * device is present. 6423 */ 6424 6425 set_bit(__LINK_STATE_PRESENT, &dev->state); 6426 6427 linkwatch_init_dev(dev); 6428 6429 dev_init_scheduler(dev); 6430 dev_hold(dev); 6431 list_netdevice(dev); 6432 add_device_randomness(dev->dev_addr, dev->addr_len); 6433 6434 /* If the device has permanent device address, driver should 6435 * set dev_addr and also addr_assign_type should be set to 6436 * NET_ADDR_PERM (default value). 6437 */ 6438 if (dev->addr_assign_type == NET_ADDR_PERM) 6439 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 6440 6441 /* Notify protocols, that a new device appeared. */ 6442 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 6443 ret = notifier_to_errno(ret); 6444 if (ret) { 6445 rollback_registered(dev); 6446 dev->reg_state = NETREG_UNREGISTERED; 6447 } 6448 /* 6449 * Prevent userspace races by waiting until the network 6450 * device is fully setup before sending notifications. 6451 */ 6452 if (!dev->rtnl_link_ops || 6453 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6454 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6455 6456out: 6457 return ret; 6458 6459err_uninit: 6460 if (dev->netdev_ops->ndo_uninit) 6461 dev->netdev_ops->ndo_uninit(dev); 6462 goto out; 6463} 6464EXPORT_SYMBOL(register_netdevice); 6465 6466/** 6467 * init_dummy_netdev - init a dummy network device for NAPI 6468 * @dev: device to init 6469 * 6470 * This takes a network device structure and initialize the minimum 6471 * amount of fields so it can be used to schedule NAPI polls without 6472 * registering a full blown interface. This is to be used by drivers 6473 * that need to tie several hardware interfaces to a single NAPI 6474 * poll scheduler due to HW limitations. 6475 */ 6476int init_dummy_netdev(struct net_device *dev) 6477{ 6478 /* Clear everything. Note we don't initialize spinlocks 6479 * are they aren't supposed to be taken by any of the 6480 * NAPI code and this dummy netdev is supposed to be 6481 * only ever used for NAPI polls 6482 */ 6483 memset(dev, 0, sizeof(struct net_device)); 6484 6485 /* make sure we BUG if trying to hit standard 6486 * register/unregister code path 6487 */ 6488 dev->reg_state = NETREG_DUMMY; 6489 6490 /* NAPI wants this */ 6491 INIT_LIST_HEAD(&dev->napi_list); 6492 6493 /* a dummy interface is started by default */ 6494 set_bit(__LINK_STATE_PRESENT, &dev->state); 6495 set_bit(__LINK_STATE_START, &dev->state); 6496 6497 /* Note : We dont allocate pcpu_refcnt for dummy devices, 6498 * because users of this 'device' dont need to change 6499 * its refcount. 6500 */ 6501 6502 return 0; 6503} 6504EXPORT_SYMBOL_GPL(init_dummy_netdev); 6505 6506 6507/** 6508 * register_netdev - register a network device 6509 * @dev: device to register 6510 * 6511 * Take a completed network device structure and add it to the kernel 6512 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6513 * chain. 0 is returned on success. A negative errno code is returned 6514 * on a failure to set up the device, or if the name is a duplicate. 6515 * 6516 * This is a wrapper around register_netdevice that takes the rtnl semaphore 6517 * and expands the device name if you passed a format string to 6518 * alloc_netdev. 6519 */ 6520int register_netdev(struct net_device *dev) 6521{ 6522 int err; 6523 6524 rtnl_lock(); 6525 err = register_netdevice(dev); 6526 rtnl_unlock(); 6527 return err; 6528} 6529EXPORT_SYMBOL(register_netdev); 6530 6531int netdev_refcnt_read(const struct net_device *dev) 6532{ 6533 int i, refcnt = 0; 6534 6535 for_each_possible_cpu(i) 6536 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 6537 return refcnt; 6538} 6539EXPORT_SYMBOL(netdev_refcnt_read); 6540 6541/** 6542 * netdev_wait_allrefs - wait until all references are gone. 6543 * @dev: target net_device 6544 * 6545 * This is called when unregistering network devices. 6546 * 6547 * Any protocol or device that holds a reference should register 6548 * for netdevice notification, and cleanup and put back the 6549 * reference if they receive an UNREGISTER event. 6550 * We can get stuck here if buggy protocols don't correctly 6551 * call dev_put. 6552 */ 6553static void netdev_wait_allrefs(struct net_device *dev) 6554{ 6555 unsigned long rebroadcast_time, warning_time; 6556 int refcnt; 6557 6558 linkwatch_forget_dev(dev); 6559 6560 rebroadcast_time = warning_time = jiffies; 6561 refcnt = netdev_refcnt_read(dev); 6562 6563 while (refcnt != 0) { 6564 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6565 rtnl_lock(); 6566 6567 /* Rebroadcast unregister notification */ 6568 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6569 6570 __rtnl_unlock(); 6571 rcu_barrier(); 6572 rtnl_lock(); 6573 6574 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6575 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6576 &dev->state)) { 6577 /* We must not have linkwatch events 6578 * pending on unregister. If this 6579 * happens, we simply run the queue 6580 * unscheduled, resulting in a noop 6581 * for this device. 6582 */ 6583 linkwatch_run_queue(); 6584 } 6585 6586 __rtnl_unlock(); 6587 6588 rebroadcast_time = jiffies; 6589 } 6590 6591 msleep(250); 6592 6593 refcnt = netdev_refcnt_read(dev); 6594 6595 if (time_after(jiffies, warning_time + 10 * HZ)) { 6596 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6597 dev->name, refcnt); 6598 warning_time = jiffies; 6599 } 6600 } 6601} 6602 6603/* The sequence is: 6604 * 6605 * rtnl_lock(); 6606 * ... 6607 * register_netdevice(x1); 6608 * register_netdevice(x2); 6609 * ... 6610 * unregister_netdevice(y1); 6611 * unregister_netdevice(y2); 6612 * ... 6613 * rtnl_unlock(); 6614 * free_netdev(y1); 6615 * free_netdev(y2); 6616 * 6617 * We are invoked by rtnl_unlock(). 6618 * This allows us to deal with problems: 6619 * 1) We can delete sysfs objects which invoke hotplug 6620 * without deadlocking with linkwatch via keventd. 6621 * 2) Since we run with the RTNL semaphore not held, we can sleep 6622 * safely in order to wait for the netdev refcnt to drop to zero. 6623 * 6624 * We must not return until all unregister events added during 6625 * the interval the lock was held have been completed. 6626 */ 6627void netdev_run_todo(void) 6628{ 6629 struct list_head list; 6630 6631 /* Snapshot list, allow later requests */ 6632 list_replace_init(&net_todo_list, &list); 6633 6634 __rtnl_unlock(); 6635 6636 6637 /* Wait for rcu callbacks to finish before next phase */ 6638 if (!list_empty(&list)) 6639 rcu_barrier(); 6640 6641 while (!list_empty(&list)) { 6642 struct net_device *dev 6643 = list_first_entry(&list, struct net_device, todo_list); 6644 list_del(&dev->todo_list); 6645 6646 rtnl_lock(); 6647 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6648 __rtnl_unlock(); 6649 6650 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6651 pr_err("network todo '%s' but state %d\n", 6652 dev->name, dev->reg_state); 6653 dump_stack(); 6654 continue; 6655 } 6656 6657 dev->reg_state = NETREG_UNREGISTERED; 6658 6659 netdev_wait_allrefs(dev); 6660 6661 /* paranoia */ 6662 BUG_ON(netdev_refcnt_read(dev)); 6663 BUG_ON(!list_empty(&dev->ptype_all)); 6664 BUG_ON(!list_empty(&dev->ptype_specific)); 6665 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6666 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6667 WARN_ON(dev->dn_ptr); 6668 6669 if (dev->destructor) 6670 dev->destructor(dev); 6671 6672 /* Report a network device has been unregistered */ 6673 rtnl_lock(); 6674 dev_net(dev)->dev_unreg_count--; 6675 __rtnl_unlock(); 6676 wake_up(&netdev_unregistering_wq); 6677 6678 /* Free network device */ 6679 kobject_put(&dev->dev.kobj); 6680 } 6681} 6682 6683/* Convert net_device_stats to rtnl_link_stats64. They have the same 6684 * fields in the same order, with only the type differing. 6685 */ 6686void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6687 const struct net_device_stats *netdev_stats) 6688{ 6689#if BITS_PER_LONG == 64 6690 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6691 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6692#else 6693 size_t i, n = sizeof(*stats64) / sizeof(u64); 6694 const unsigned long *src = (const unsigned long *)netdev_stats; 6695 u64 *dst = (u64 *)stats64; 6696 6697 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6698 sizeof(*stats64) / sizeof(u64)); 6699 for (i = 0; i < n; i++) 6700 dst[i] = src[i]; 6701#endif 6702} 6703EXPORT_SYMBOL(netdev_stats_to_stats64); 6704 6705/** 6706 * dev_get_stats - get network device statistics 6707 * @dev: device to get statistics from 6708 * @storage: place to store stats 6709 * 6710 * Get network statistics from device. Return @storage. 6711 * The device driver may provide its own method by setting 6712 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6713 * otherwise the internal statistics structure is used. 6714 */ 6715struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6716 struct rtnl_link_stats64 *storage) 6717{ 6718 const struct net_device_ops *ops = dev->netdev_ops; 6719 6720 if (ops->ndo_get_stats64) { 6721 memset(storage, 0, sizeof(*storage)); 6722 ops->ndo_get_stats64(dev, storage); 6723 } else if (ops->ndo_get_stats) { 6724 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6725 } else { 6726 netdev_stats_to_stats64(storage, &dev->stats); 6727 } 6728 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6729 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 6730 return storage; 6731} 6732EXPORT_SYMBOL(dev_get_stats); 6733 6734struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6735{ 6736 struct netdev_queue *queue = dev_ingress_queue(dev); 6737 6738#ifdef CONFIG_NET_CLS_ACT 6739 if (queue) 6740 return queue; 6741 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6742 if (!queue) 6743 return NULL; 6744 netdev_init_one_queue(dev, queue, NULL); 6745 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 6746 queue->qdisc_sleeping = &noop_qdisc; 6747 rcu_assign_pointer(dev->ingress_queue, queue); 6748#endif 6749 return queue; 6750} 6751 6752static const struct ethtool_ops default_ethtool_ops; 6753 6754void netdev_set_default_ethtool_ops(struct net_device *dev, 6755 const struct ethtool_ops *ops) 6756{ 6757 if (dev->ethtool_ops == &default_ethtool_ops) 6758 dev->ethtool_ops = ops; 6759} 6760EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6761 6762void netdev_freemem(struct net_device *dev) 6763{ 6764 char *addr = (char *)dev - dev->padded; 6765 6766 kvfree(addr); 6767} 6768 6769/** 6770 * alloc_netdev_mqs - allocate network device 6771 * @sizeof_priv: size of private data to allocate space for 6772 * @name: device name format string 6773 * @name_assign_type: origin of device name 6774 * @setup: callback to initialize device 6775 * @txqs: the number of TX subqueues to allocate 6776 * @rxqs: the number of RX subqueues to allocate 6777 * 6778 * Allocates a struct net_device with private data area for driver use 6779 * and performs basic initialization. Also allocates subqueue structs 6780 * for each queue on the device. 6781 */ 6782struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6783 unsigned char name_assign_type, 6784 void (*setup)(struct net_device *), 6785 unsigned int txqs, unsigned int rxqs) 6786{ 6787 struct net_device *dev; 6788 size_t alloc_size; 6789 struct net_device *p; 6790 6791 BUG_ON(strlen(name) >= sizeof(dev->name)); 6792 6793 if (txqs < 1) { 6794 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6795 return NULL; 6796 } 6797 6798#ifdef CONFIG_SYSFS 6799 if (rxqs < 1) { 6800 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6801 return NULL; 6802 } 6803#endif 6804 6805 alloc_size = sizeof(struct net_device); 6806 if (sizeof_priv) { 6807 /* ensure 32-byte alignment of private area */ 6808 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6809 alloc_size += sizeof_priv; 6810 } 6811 /* ensure 32-byte alignment of whole construct */ 6812 alloc_size += NETDEV_ALIGN - 1; 6813 6814 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6815 if (!p) 6816 p = vzalloc(alloc_size); 6817 if (!p) 6818 return NULL; 6819 6820 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6821 dev->padded = (char *)dev - (char *)p; 6822 6823 dev->pcpu_refcnt = alloc_percpu(int); 6824 if (!dev->pcpu_refcnt) 6825 goto free_dev; 6826 6827 if (dev_addr_init(dev)) 6828 goto free_pcpu; 6829 6830 dev_mc_init(dev); 6831 dev_uc_init(dev); 6832 6833 dev_net_set(dev, &init_net); 6834 6835 dev->gso_max_size = GSO_MAX_SIZE; 6836 dev->gso_max_segs = GSO_MAX_SEGS; 6837 dev->gso_min_segs = 0; 6838 6839 INIT_LIST_HEAD(&dev->napi_list); 6840 INIT_LIST_HEAD(&dev->unreg_list); 6841 INIT_LIST_HEAD(&dev->close_list); 6842 INIT_LIST_HEAD(&dev->link_watch_list); 6843 INIT_LIST_HEAD(&dev->adj_list.upper); 6844 INIT_LIST_HEAD(&dev->adj_list.lower); 6845 INIT_LIST_HEAD(&dev->all_adj_list.upper); 6846 INIT_LIST_HEAD(&dev->all_adj_list.lower); 6847 INIT_LIST_HEAD(&dev->ptype_all); 6848 INIT_LIST_HEAD(&dev->ptype_specific); 6849 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 6850 setup(dev); 6851 6852 dev->num_tx_queues = txqs; 6853 dev->real_num_tx_queues = txqs; 6854 if (netif_alloc_netdev_queues(dev)) 6855 goto free_all; 6856 6857#ifdef CONFIG_SYSFS 6858 dev->num_rx_queues = rxqs; 6859 dev->real_num_rx_queues = rxqs; 6860 if (netif_alloc_rx_queues(dev)) 6861 goto free_all; 6862#endif 6863 6864 strcpy(dev->name, name); 6865 dev->name_assign_type = name_assign_type; 6866 dev->group = INIT_NETDEV_GROUP; 6867 if (!dev->ethtool_ops) 6868 dev->ethtool_ops = &default_ethtool_ops; 6869 return dev; 6870 6871free_all: 6872 free_netdev(dev); 6873 return NULL; 6874 6875free_pcpu: 6876 free_percpu(dev->pcpu_refcnt); 6877free_dev: 6878 netdev_freemem(dev); 6879 return NULL; 6880} 6881EXPORT_SYMBOL(alloc_netdev_mqs); 6882 6883/** 6884 * free_netdev - free network device 6885 * @dev: device 6886 * 6887 * This function does the last stage of destroying an allocated device 6888 * interface. The reference to the device object is released. 6889 * If this is the last reference then it will be freed. 6890 */ 6891void free_netdev(struct net_device *dev) 6892{ 6893 struct napi_struct *p, *n; 6894 6895 netif_free_tx_queues(dev); 6896#ifdef CONFIG_SYSFS 6897 kvfree(dev->_rx); 6898#endif 6899 6900 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6901 6902 /* Flush device addresses */ 6903 dev_addr_flush(dev); 6904 6905 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6906 netif_napi_del(p); 6907 6908 free_percpu(dev->pcpu_refcnt); 6909 dev->pcpu_refcnt = NULL; 6910 6911 /* Compatibility with error handling in drivers */ 6912 if (dev->reg_state == NETREG_UNINITIALIZED) { 6913 netdev_freemem(dev); 6914 return; 6915 } 6916 6917 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6918 dev->reg_state = NETREG_RELEASED; 6919 6920 /* will free via device release */ 6921 put_device(&dev->dev); 6922} 6923EXPORT_SYMBOL(free_netdev); 6924 6925/** 6926 * synchronize_net - Synchronize with packet receive processing 6927 * 6928 * Wait for packets currently being received to be done. 6929 * Does not block later packets from starting. 6930 */ 6931void synchronize_net(void) 6932{ 6933 might_sleep(); 6934 if (rtnl_is_locked()) 6935 synchronize_rcu_expedited(); 6936 else 6937 synchronize_rcu(); 6938} 6939EXPORT_SYMBOL(synchronize_net); 6940 6941/** 6942 * unregister_netdevice_queue - remove device from the kernel 6943 * @dev: device 6944 * @head: list 6945 * 6946 * This function shuts down a device interface and removes it 6947 * from the kernel tables. 6948 * If head not NULL, device is queued to be unregistered later. 6949 * 6950 * Callers must hold the rtnl semaphore. You may want 6951 * unregister_netdev() instead of this. 6952 */ 6953 6954void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6955{ 6956 ASSERT_RTNL(); 6957 6958 if (head) { 6959 list_move_tail(&dev->unreg_list, head); 6960 } else { 6961 rollback_registered(dev); 6962 /* Finish processing unregister after unlock */ 6963 net_set_todo(dev); 6964 } 6965} 6966EXPORT_SYMBOL(unregister_netdevice_queue); 6967 6968/** 6969 * unregister_netdevice_many - unregister many devices 6970 * @head: list of devices 6971 * 6972 * Note: As most callers use a stack allocated list_head, 6973 * we force a list_del() to make sure stack wont be corrupted later. 6974 */ 6975void unregister_netdevice_many(struct list_head *head) 6976{ 6977 struct net_device *dev; 6978 6979 if (!list_empty(head)) { 6980 rollback_registered_many(head); 6981 list_for_each_entry(dev, head, unreg_list) 6982 net_set_todo(dev); 6983 list_del(head); 6984 } 6985} 6986EXPORT_SYMBOL(unregister_netdevice_many); 6987 6988/** 6989 * unregister_netdev - remove device from the kernel 6990 * @dev: device 6991 * 6992 * This function shuts down a device interface and removes it 6993 * from the kernel tables. 6994 * 6995 * This is just a wrapper for unregister_netdevice that takes 6996 * the rtnl semaphore. In general you want to use this and not 6997 * unregister_netdevice. 6998 */ 6999void unregister_netdev(struct net_device *dev) 7000{ 7001 rtnl_lock(); 7002 unregister_netdevice(dev); 7003 rtnl_unlock(); 7004} 7005EXPORT_SYMBOL(unregister_netdev); 7006 7007/** 7008 * dev_change_net_namespace - move device to different nethost namespace 7009 * @dev: device 7010 * @net: network namespace 7011 * @pat: If not NULL name pattern to try if the current device name 7012 * is already taken in the destination network namespace. 7013 * 7014 * This function shuts down a device interface and moves it 7015 * to a new network namespace. On success 0 is returned, on 7016 * a failure a netagive errno code is returned. 7017 * 7018 * Callers must hold the rtnl semaphore. 7019 */ 7020 7021int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 7022{ 7023 int err; 7024 7025 ASSERT_RTNL(); 7026 7027 /* Don't allow namespace local devices to be moved. */ 7028 err = -EINVAL; 7029 if (dev->features & NETIF_F_NETNS_LOCAL) 7030 goto out; 7031 7032 /* Ensure the device has been registrered */ 7033 if (dev->reg_state != NETREG_REGISTERED) 7034 goto out; 7035 7036 /* Get out if there is nothing todo */ 7037 err = 0; 7038 if (net_eq(dev_net(dev), net)) 7039 goto out; 7040 7041 /* Pick the destination device name, and ensure 7042 * we can use it in the destination network namespace. 7043 */ 7044 err = -EEXIST; 7045 if (__dev_get_by_name(net, dev->name)) { 7046 /* We get here if we can't use the current device name */ 7047 if (!pat) 7048 goto out; 7049 if (dev_get_valid_name(net, dev, pat) < 0) 7050 goto out; 7051 } 7052 7053 /* 7054 * And now a mini version of register_netdevice unregister_netdevice. 7055 */ 7056 7057 /* If device is running close it first. */ 7058 dev_close(dev); 7059 7060 /* And unlink it from device chain */ 7061 err = -ENODEV; 7062 unlist_netdevice(dev); 7063 7064 synchronize_net(); 7065 7066 /* Shutdown queueing discipline. */ 7067 dev_shutdown(dev); 7068 7069 /* Notify protocols, that we are about to destroy 7070 this device. They should clean all the things. 7071 7072 Note that dev->reg_state stays at NETREG_REGISTERED. 7073 This is wanted because this way 8021q and macvlan know 7074 the device is just moving and can keep their slaves up. 7075 */ 7076 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7077 rcu_barrier(); 7078 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7079 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 7080 7081 /* 7082 * Flush the unicast and multicast chains 7083 */ 7084 dev_uc_flush(dev); 7085 dev_mc_flush(dev); 7086 7087 /* Send a netdev-removed uevent to the old namespace */ 7088 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 7089 netdev_adjacent_del_links(dev); 7090 7091 /* Actually switch the network namespace */ 7092 dev_net_set(dev, net); 7093 7094 /* If there is an ifindex conflict assign a new one */ 7095 if (__dev_get_by_index(net, dev->ifindex)) 7096 dev->ifindex = dev_new_index(net); 7097 7098 /* Send a netdev-add uevent to the new namespace */ 7099 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 7100 netdev_adjacent_add_links(dev); 7101 7102 /* Fixup kobjects */ 7103 err = device_rename(&dev->dev, dev->name); 7104 WARN_ON(err); 7105 7106 /* Add the device back in the hashes */ 7107 list_netdevice(dev); 7108 7109 /* Notify protocols, that a new device appeared. */ 7110 call_netdevice_notifiers(NETDEV_REGISTER, dev); 7111 7112 /* 7113 * Prevent userspace races by waiting until the network 7114 * device is fully setup before sending notifications. 7115 */ 7116 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7117 7118 synchronize_net(); 7119 err = 0; 7120out: 7121 return err; 7122} 7123EXPORT_SYMBOL_GPL(dev_change_net_namespace); 7124 7125static int dev_cpu_callback(struct notifier_block *nfb, 7126 unsigned long action, 7127 void *ocpu) 7128{ 7129 struct sk_buff **list_skb; 7130 struct sk_buff *skb; 7131 unsigned int cpu, oldcpu = (unsigned long)ocpu; 7132 struct softnet_data *sd, *oldsd; 7133 7134 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 7135 return NOTIFY_OK; 7136 7137 local_irq_disable(); 7138 cpu = smp_processor_id(); 7139 sd = &per_cpu(softnet_data, cpu); 7140 oldsd = &per_cpu(softnet_data, oldcpu); 7141 7142 /* Find end of our completion_queue. */ 7143 list_skb = &sd->completion_queue; 7144 while (*list_skb) 7145 list_skb = &(*list_skb)->next; 7146 /* Append completion queue from offline CPU. */ 7147 *list_skb = oldsd->completion_queue; 7148 oldsd->completion_queue = NULL; 7149 7150 /* Append output queue from offline CPU. */ 7151 if (oldsd->output_queue) { 7152 *sd->output_queue_tailp = oldsd->output_queue; 7153 sd->output_queue_tailp = oldsd->output_queue_tailp; 7154 oldsd->output_queue = NULL; 7155 oldsd->output_queue_tailp = &oldsd->output_queue; 7156 } 7157 /* Append NAPI poll list from offline CPU, with one exception : 7158 * process_backlog() must be called by cpu owning percpu backlog. 7159 * We properly handle process_queue & input_pkt_queue later. 7160 */ 7161 while (!list_empty(&oldsd->poll_list)) { 7162 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 7163 struct napi_struct, 7164 poll_list); 7165 7166 list_del_init(&napi->poll_list); 7167 if (napi->poll == process_backlog) 7168 napi->state = 0; 7169 else 7170 ____napi_schedule(sd, napi); 7171 } 7172 7173 raise_softirq_irqoff(NET_TX_SOFTIRQ); 7174 local_irq_enable(); 7175 7176 /* Process offline CPU's input_pkt_queue */ 7177 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 7178 netif_rx_ni(skb); 7179 input_queue_head_incr(oldsd); 7180 } 7181 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 7182 netif_rx_ni(skb); 7183 input_queue_head_incr(oldsd); 7184 } 7185 7186 return NOTIFY_OK; 7187} 7188 7189 7190/** 7191 * netdev_increment_features - increment feature set by one 7192 * @all: current feature set 7193 * @one: new feature set 7194 * @mask: mask feature set 7195 * 7196 * Computes a new feature set after adding a device with feature set 7197 * @one to the master device with current feature set @all. Will not 7198 * enable anything that is off in @mask. Returns the new feature set. 7199 */ 7200netdev_features_t netdev_increment_features(netdev_features_t all, 7201 netdev_features_t one, netdev_features_t mask) 7202{ 7203 if (mask & NETIF_F_GEN_CSUM) 7204 mask |= NETIF_F_ALL_CSUM; 7205 mask |= NETIF_F_VLAN_CHALLENGED; 7206 7207 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 7208 all &= one | ~NETIF_F_ALL_FOR_ALL; 7209 7210 /* If one device supports hw checksumming, set for all. */ 7211 if (all & NETIF_F_GEN_CSUM) 7212 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 7213 7214 return all; 7215} 7216EXPORT_SYMBOL(netdev_increment_features); 7217 7218static struct hlist_head * __net_init netdev_create_hash(void) 7219{ 7220 int i; 7221 struct hlist_head *hash; 7222 7223 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 7224 if (hash != NULL) 7225 for (i = 0; i < NETDEV_HASHENTRIES; i++) 7226 INIT_HLIST_HEAD(&hash[i]); 7227 7228 return hash; 7229} 7230 7231/* Initialize per network namespace state */ 7232static int __net_init netdev_init(struct net *net) 7233{ 7234 if (net != &init_net) 7235 INIT_LIST_HEAD(&net->dev_base_head); 7236 7237 net->dev_name_head = netdev_create_hash(); 7238 if (net->dev_name_head == NULL) 7239 goto err_name; 7240 7241 net->dev_index_head = netdev_create_hash(); 7242 if (net->dev_index_head == NULL) 7243 goto err_idx; 7244 7245 return 0; 7246 7247err_idx: 7248 kfree(net->dev_name_head); 7249err_name: 7250 return -ENOMEM; 7251} 7252 7253/** 7254 * netdev_drivername - network driver for the device 7255 * @dev: network device 7256 * 7257 * Determine network driver for device. 7258 */ 7259const char *netdev_drivername(const struct net_device *dev) 7260{ 7261 const struct device_driver *driver; 7262 const struct device *parent; 7263 const char *empty = ""; 7264 7265 parent = dev->dev.parent; 7266 if (!parent) 7267 return empty; 7268 7269 driver = parent->driver; 7270 if (driver && driver->name) 7271 return driver->name; 7272 return empty; 7273} 7274 7275static void __netdev_printk(const char *level, const struct net_device *dev, 7276 struct va_format *vaf) 7277{ 7278 if (dev && dev->dev.parent) { 7279 dev_printk_emit(level[1] - '0', 7280 dev->dev.parent, 7281 "%s %s %s%s: %pV", 7282 dev_driver_string(dev->dev.parent), 7283 dev_name(dev->dev.parent), 7284 netdev_name(dev), netdev_reg_state(dev), 7285 vaf); 7286 } else if (dev) { 7287 printk("%s%s%s: %pV", 7288 level, netdev_name(dev), netdev_reg_state(dev), vaf); 7289 } else { 7290 printk("%s(NULL net_device): %pV", level, vaf); 7291 } 7292} 7293 7294void netdev_printk(const char *level, const struct net_device *dev, 7295 const char *format, ...) 7296{ 7297 struct va_format vaf; 7298 va_list args; 7299 7300 va_start(args, format); 7301 7302 vaf.fmt = format; 7303 vaf.va = &args; 7304 7305 __netdev_printk(level, dev, &vaf); 7306 7307 va_end(args); 7308} 7309EXPORT_SYMBOL(netdev_printk); 7310 7311#define define_netdev_printk_level(func, level) \ 7312void func(const struct net_device *dev, const char *fmt, ...) \ 7313{ \ 7314 struct va_format vaf; \ 7315 va_list args; \ 7316 \ 7317 va_start(args, fmt); \ 7318 \ 7319 vaf.fmt = fmt; \ 7320 vaf.va = &args; \ 7321 \ 7322 __netdev_printk(level, dev, &vaf); \ 7323 \ 7324 va_end(args); \ 7325} \ 7326EXPORT_SYMBOL(func); 7327 7328define_netdev_printk_level(netdev_emerg, KERN_EMERG); 7329define_netdev_printk_level(netdev_alert, KERN_ALERT); 7330define_netdev_printk_level(netdev_crit, KERN_CRIT); 7331define_netdev_printk_level(netdev_err, KERN_ERR); 7332define_netdev_printk_level(netdev_warn, KERN_WARNING); 7333define_netdev_printk_level(netdev_notice, KERN_NOTICE); 7334define_netdev_printk_level(netdev_info, KERN_INFO); 7335 7336static void __net_exit netdev_exit(struct net *net) 7337{ 7338 kfree(net->dev_name_head); 7339 kfree(net->dev_index_head); 7340} 7341 7342static struct pernet_operations __net_initdata netdev_net_ops = { 7343 .init = netdev_init, 7344 .exit = netdev_exit, 7345}; 7346 7347static void __net_exit default_device_exit(struct net *net) 7348{ 7349 struct net_device *dev, *aux; 7350 /* 7351 * Push all migratable network devices back to the 7352 * initial network namespace 7353 */ 7354 rtnl_lock(); 7355 for_each_netdev_safe(net, dev, aux) { 7356 int err; 7357 char fb_name[IFNAMSIZ]; 7358 7359 /* Ignore unmoveable devices (i.e. loopback) */ 7360 if (dev->features & NETIF_F_NETNS_LOCAL) 7361 continue; 7362 7363 /* Leave virtual devices for the generic cleanup */ 7364 if (dev->rtnl_link_ops) 7365 continue; 7366 7367 /* Push remaining network devices to init_net */ 7368 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 7369 err = dev_change_net_namespace(dev, &init_net, fb_name); 7370 if (err) { 7371 pr_emerg("%s: failed to move %s to init_net: %d\n", 7372 __func__, dev->name, err); 7373 BUG(); 7374 } 7375 } 7376 rtnl_unlock(); 7377} 7378 7379static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 7380{ 7381 /* Return with the rtnl_lock held when there are no network 7382 * devices unregistering in any network namespace in net_list. 7383 */ 7384 struct net *net; 7385 bool unregistering; 7386 DEFINE_WAIT_FUNC(wait, woken_wake_function); 7387 7388 add_wait_queue(&netdev_unregistering_wq, &wait); 7389 for (;;) { 7390 unregistering = false; 7391 rtnl_lock(); 7392 list_for_each_entry(net, net_list, exit_list) { 7393 if (net->dev_unreg_count > 0) { 7394 unregistering = true; 7395 break; 7396 } 7397 } 7398 if (!unregistering) 7399 break; 7400 __rtnl_unlock(); 7401 7402 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 7403 } 7404 remove_wait_queue(&netdev_unregistering_wq, &wait); 7405} 7406 7407static void __net_exit default_device_exit_batch(struct list_head *net_list) 7408{ 7409 /* At exit all network devices most be removed from a network 7410 * namespace. Do this in the reverse order of registration. 7411 * Do this across as many network namespaces as possible to 7412 * improve batching efficiency. 7413 */ 7414 struct net_device *dev; 7415 struct net *net; 7416 LIST_HEAD(dev_kill_list); 7417 7418 /* To prevent network device cleanup code from dereferencing 7419 * loopback devices or network devices that have been freed 7420 * wait here for all pending unregistrations to complete, 7421 * before unregistring the loopback device and allowing the 7422 * network namespace be freed. 7423 * 7424 * The netdev todo list containing all network devices 7425 * unregistrations that happen in default_device_exit_batch 7426 * will run in the rtnl_unlock() at the end of 7427 * default_device_exit_batch. 7428 */ 7429 rtnl_lock_unregistering(net_list); 7430 list_for_each_entry(net, net_list, exit_list) { 7431 for_each_netdev_reverse(net, dev) { 7432 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 7433 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 7434 else 7435 unregister_netdevice_queue(dev, &dev_kill_list); 7436 } 7437 } 7438 unregister_netdevice_many(&dev_kill_list); 7439 rtnl_unlock(); 7440} 7441 7442static struct pernet_operations __net_initdata default_device_ops = { 7443 .exit = default_device_exit, 7444 .exit_batch = default_device_exit_batch, 7445}; 7446 7447/* 7448 * Initialize the DEV module. At boot time this walks the device list and 7449 * unhooks any devices that fail to initialise (normally hardware not 7450 * present) and leaves us with a valid list of present and active devices. 7451 * 7452 */ 7453 7454/* 7455 * This is called single threaded during boot, so no need 7456 * to take the rtnl semaphore. 7457 */ 7458static int __init net_dev_init(void) 7459{ 7460 int i, rc = -ENOMEM; 7461 7462 BUG_ON(!dev_boot_phase); 7463 7464 if (dev_proc_init()) 7465 goto out; 7466 7467 if (netdev_kobject_init()) 7468 goto out; 7469 7470 INIT_LIST_HEAD(&ptype_all); 7471 for (i = 0; i < PTYPE_HASH_SIZE; i++) 7472 INIT_LIST_HEAD(&ptype_base[i]); 7473 7474 INIT_LIST_HEAD(&offload_base); 7475 7476 if (register_pernet_subsys(&netdev_net_ops)) 7477 goto out; 7478 7479 /* 7480 * Initialise the packet receive queues. 7481 */ 7482 7483 for_each_possible_cpu(i) { 7484 struct softnet_data *sd = &per_cpu(softnet_data, i); 7485 7486 skb_queue_head_init(&sd->input_pkt_queue); 7487 skb_queue_head_init(&sd->process_queue); 7488 INIT_LIST_HEAD(&sd->poll_list); 7489 sd->output_queue_tailp = &sd->output_queue; 7490#ifdef CONFIG_RPS 7491 sd->csd.func = rps_trigger_softirq; 7492 sd->csd.info = sd; 7493 sd->cpu = i; 7494#endif 7495 7496 sd->backlog.poll = process_backlog; 7497 sd->backlog.weight = weight_p; 7498 } 7499 7500 dev_boot_phase = 0; 7501 7502 /* The loopback device is special if any other network devices 7503 * is present in a network namespace the loopback device must 7504 * be present. Since we now dynamically allocate and free the 7505 * loopback device ensure this invariant is maintained by 7506 * keeping the loopback device as the first device on the 7507 * list of network devices. Ensuring the loopback devices 7508 * is the first device that appears and the last network device 7509 * that disappears. 7510 */ 7511 if (register_pernet_device(&loopback_net_ops)) 7512 goto out; 7513 7514 if (register_pernet_device(&default_device_ops)) 7515 goto out; 7516 7517 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 7518 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 7519 7520 hotcpu_notifier(dev_cpu_callback, 0); 7521 dst_init(); 7522 rc = 0; 7523out: 7524 return rc; 7525} 7526 7527subsys_initcall(net_dev_init); 7528