1/*
2 * 	NET3	Protocol independent device support routines.
3 *
4 *		This program is free software; you can redistribute it and/or
5 *		modify it under the terms of the GNU General Public License
6 *		as published by the Free Software Foundation; either version
7 *		2 of the License, or (at your option) any later version.
8 *
9 *	Derived from the non IP parts of dev.c 1.0.19
10 * 		Authors:	Ross Biro
11 *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 *	Additional Authors:
15 *		Florian la Roche <rzsfl@rz.uni-sb.de>
16 *		Alan Cox <gw4pts@gw4pts.ampr.org>
17 *		David Hinds <dahinds@users.sourceforge.net>
18 *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 *		Adam Sulmicki <adam@cfar.umd.edu>
20 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 *	Changes:
23 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24 *              			to 2 if register_netdev gets called
25 *              			before net_dev_init & also removed a
26 *              			few lines of code in the process.
27 *		Alan Cox	:	device private ioctl copies fields back.
28 *		Alan Cox	:	Transmit queue code does relevant
29 *					stunts to keep the queue safe.
30 *		Alan Cox	:	Fixed double lock.
31 *		Alan Cox	:	Fixed promisc NULL pointer trap
32 *		????????	:	Support the full private ioctl range
33 *		Alan Cox	:	Moved ioctl permission check into
34 *					drivers
35 *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36 *		Alan Cox	:	100 backlog just doesn't cut it when
37 *					you start doing multicast video 8)
38 *		Alan Cox	:	Rewrote net_bh and list manager.
39 *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40 *		Alan Cox	:	Took out transmit every packet pass
41 *					Saved a few bytes in the ioctl handler
42 *		Alan Cox	:	Network driver sets packet type before
43 *					calling netif_rx. Saves a function
44 *					call a packet.
45 *		Alan Cox	:	Hashed net_bh()
46 *		Richard Kooijman:	Timestamp fixes.
47 *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48 *		Alan Cox	:	Device lock protection.
49 *		Alan Cox	: 	Fixed nasty side effect of device close
50 *					changes.
51 *		Rudi Cilibrasi	:	Pass the right thing to
52 *					set_mac_address()
53 *		Dave Miller	:	32bit quantity for the device lock to
54 *					make it work out on a Sparc.
55 *		Bjorn Ekwall	:	Added KERNELD hack.
56 *		Alan Cox	:	Cleaned up the backlog initialise.
57 *		Craig Metz	:	SIOCGIFCONF fix if space for under
58 *					1 device.
59 *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60 *					is no device open function.
61 *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62 *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63 *		Cyrus Durgin	:	Cleaned for KMOD
64 *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65 *					A network device unload needs to purge
66 *					the backlog queue.
67 *	Paul Rusty Russell	:	SIOCSIFNAME
68 *              Pekka Riikonen  :	Netdev boot-time settings code
69 *              Andrew Morton   :       Make unregister_netdevice wait
70 *              			indefinitely on dev->refcnt
71 * 		J Hadi Salim	:	- Backlog queue sampling
72 *				        - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/mutex.h>
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
94#include <linux/ethtool.h>
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
100#include <linux/stat.h>
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
104#include <net/xfrm.h>
105#include <linux/highmem.h>
106#include <linux/init.h>
107#include <linux/module.h>
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
111#include <net/iw_handler.h>
112#include <asm/current.h>
113#include <linux/audit.h>
114#include <linux/dmaengine.h>
115#include <linux/err.h>
116#include <linux/ctype.h>
117#include <linux/if_arp.h>
118#include <linux/if_vlan.h>
119#include <linux/ip.h>
120#include <net/ip.h>
121#include <net/mpls.h>
122#include <linux/ipv6.h>
123#include <linux/in.h>
124#include <linux/jhash.h>
125#include <linux/random.h>
126#include <trace/events/napi.h>
127#include <trace/events/net.h>
128#include <trace/events/skb.h>
129#include <linux/pci.h>
130#include <linux/inetdevice.h>
131#include <linux/cpu_rmap.h>
132#include <linux/static_key.h>
133#include <linux/hashtable.h>
134#include <linux/vmalloc.h>
135#include <linux/if_macvlan.h>
136#include <linux/errqueue.h>
137#include <linux/hrtimer.h>
138
139#include "net-sysfs.h"
140
141/* Instead of increasing this, you should create a hash table. */
142#define MAX_GRO_SKBS 8
143
144/* This should be increased if a protocol with a bigger head is added. */
145#define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147static DEFINE_SPINLOCK(ptype_lock);
148static DEFINE_SPINLOCK(offload_lock);
149struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150struct list_head ptype_all __read_mostly;	/* Taps */
151static struct list_head offload_base __read_mostly;
152
153static int netif_rx_internal(struct sk_buff *skb);
154static int call_netdevice_notifiers_info(unsigned long val,
155					 struct net_device *dev,
156					 struct netdev_notifier_info *info);
157
158/*
159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160 * semaphore.
161 *
162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
163 *
164 * Writers must hold the rtnl semaphore while they loop through the
165 * dev_base_head list, and hold dev_base_lock for writing when they do the
166 * actual updates.  This allows pure readers to access the list even
167 * while a writer is preparing to update it.
168 *
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
172 *
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
175 * semaphore held.
176 */
177DEFINE_RWLOCK(dev_base_lock);
178EXPORT_SYMBOL(dev_base_lock);
179
180/* protects napi_hash addition/deletion and napi_gen_id */
181static DEFINE_SPINLOCK(napi_hash_lock);
182
183static unsigned int napi_gen_id;
184static DEFINE_HASHTABLE(napi_hash, 8);
185
186static seqcount_t devnet_rename_seq;
187
188static inline void dev_base_seq_inc(struct net *net)
189{
190	while (++net->dev_base_seq == 0);
191}
192
193static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194{
195	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196
197	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198}
199
200static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201{
202	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203}
204
205static inline void rps_lock(struct softnet_data *sd)
206{
207#ifdef CONFIG_RPS
208	spin_lock(&sd->input_pkt_queue.lock);
209#endif
210}
211
212static inline void rps_unlock(struct softnet_data *sd)
213{
214#ifdef CONFIG_RPS
215	spin_unlock(&sd->input_pkt_queue.lock);
216#endif
217}
218
219/* Device list insertion */
220static void list_netdevice(struct net_device *dev)
221{
222	struct net *net = dev_net(dev);
223
224	ASSERT_RTNL();
225
226	write_lock_bh(&dev_base_lock);
227	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229	hlist_add_head_rcu(&dev->index_hlist,
230			   dev_index_hash(net, dev->ifindex));
231	write_unlock_bh(&dev_base_lock);
232
233	dev_base_seq_inc(net);
234}
235
236/* Device list removal
237 * caller must respect a RCU grace period before freeing/reusing dev
238 */
239static void unlist_netdevice(struct net_device *dev)
240{
241	ASSERT_RTNL();
242
243	/* Unlink dev from the device chain */
244	write_lock_bh(&dev_base_lock);
245	list_del_rcu(&dev->dev_list);
246	hlist_del_rcu(&dev->name_hlist);
247	hlist_del_rcu(&dev->index_hlist);
248	write_unlock_bh(&dev_base_lock);
249
250	dev_base_seq_inc(dev_net(dev));
251}
252
253/*
254 *	Our notifier list
255 */
256
257static RAW_NOTIFIER_HEAD(netdev_chain);
258
259/*
260 *	Device drivers call our routines to queue packets here. We empty the
261 *	queue in the local softnet handler.
262 */
263
264DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265EXPORT_PER_CPU_SYMBOL(softnet_data);
266
267#ifdef CONFIG_LOCKDEP
268/*
269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270 * according to dev->type
271 */
272static const unsigned short netdev_lock_type[] =
273	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
288
289static const char *const netdev_lock_name[] =
290	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
305
306static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308
309static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310{
311	int i;
312
313	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314		if (netdev_lock_type[i] == dev_type)
315			return i;
316	/* the last key is used by default */
317	return ARRAY_SIZE(netdev_lock_type) - 1;
318}
319
320static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321						 unsigned short dev_type)
322{
323	int i;
324
325	i = netdev_lock_pos(dev_type);
326	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327				   netdev_lock_name[i]);
328}
329
330static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331{
332	int i;
333
334	i = netdev_lock_pos(dev->type);
335	lockdep_set_class_and_name(&dev->addr_list_lock,
336				   &netdev_addr_lock_key[i],
337				   netdev_lock_name[i]);
338}
339#else
340static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341						 unsigned short dev_type)
342{
343}
344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345{
346}
347#endif
348
349/*******************************************************************************
350
351		Protocol management and registration routines
352
353*******************************************************************************/
354
355/*
356 *	Add a protocol ID to the list. Now that the input handler is
357 *	smarter we can dispense with all the messy stuff that used to be
358 *	here.
359 *
360 *	BEWARE!!! Protocol handlers, mangling input packets,
361 *	MUST BE last in hash buckets and checking protocol handlers
362 *	MUST start from promiscuous ptype_all chain in net_bh.
363 *	It is true now, do not change it.
364 *	Explanation follows: if protocol handler, mangling packet, will
365 *	be the first on list, it is not able to sense, that packet
366 *	is cloned and should be copied-on-write, so that it will
367 *	change it and subsequent readers will get broken packet.
368 *							--ANK (980803)
369 */
370
371static inline struct list_head *ptype_head(const struct packet_type *pt)
372{
373	if (pt->type == htons(ETH_P_ALL))
374		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
375	else
376		return pt->dev ? &pt->dev->ptype_specific :
377				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
378}
379
380/**
381 *	dev_add_pack - add packet handler
382 *	@pt: packet type declaration
383 *
384 *	Add a protocol handler to the networking stack. The passed &packet_type
385 *	is linked into kernel lists and may not be freed until it has been
386 *	removed from the kernel lists.
387 *
388 *	This call does not sleep therefore it can not
389 *	guarantee all CPU's that are in middle of receiving packets
390 *	will see the new packet type (until the next received packet).
391 */
392
393void dev_add_pack(struct packet_type *pt)
394{
395	struct list_head *head = ptype_head(pt);
396
397	spin_lock(&ptype_lock);
398	list_add_rcu(&pt->list, head);
399	spin_unlock(&ptype_lock);
400}
401EXPORT_SYMBOL(dev_add_pack);
402
403/**
404 *	__dev_remove_pack	 - remove packet handler
405 *	@pt: packet type declaration
406 *
407 *	Remove a protocol handler that was previously added to the kernel
408 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
409 *	from the kernel lists and can be freed or reused once this function
410 *	returns.
411 *
412 *      The packet type might still be in use by receivers
413 *	and must not be freed until after all the CPU's have gone
414 *	through a quiescent state.
415 */
416void __dev_remove_pack(struct packet_type *pt)
417{
418	struct list_head *head = ptype_head(pt);
419	struct packet_type *pt1;
420
421	spin_lock(&ptype_lock);
422
423	list_for_each_entry(pt1, head, list) {
424		if (pt == pt1) {
425			list_del_rcu(&pt->list);
426			goto out;
427		}
428	}
429
430	pr_warn("dev_remove_pack: %p not found\n", pt);
431out:
432	spin_unlock(&ptype_lock);
433}
434EXPORT_SYMBOL(__dev_remove_pack);
435
436/**
437 *	dev_remove_pack	 - remove packet handler
438 *	@pt: packet type declaration
439 *
440 *	Remove a protocol handler that was previously added to the kernel
441 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
442 *	from the kernel lists and can be freed or reused once this function
443 *	returns.
444 *
445 *	This call sleeps to guarantee that no CPU is looking at the packet
446 *	type after return.
447 */
448void dev_remove_pack(struct packet_type *pt)
449{
450	__dev_remove_pack(pt);
451
452	synchronize_net();
453}
454EXPORT_SYMBOL(dev_remove_pack);
455
456
457/**
458 *	dev_add_offload - register offload handlers
459 *	@po: protocol offload declaration
460 *
461 *	Add protocol offload handlers to the networking stack. The passed
462 *	&proto_offload is linked into kernel lists and may not be freed until
463 *	it has been removed from the kernel lists.
464 *
465 *	This call does not sleep therefore it can not
466 *	guarantee all CPU's that are in middle of receiving packets
467 *	will see the new offload handlers (until the next received packet).
468 */
469void dev_add_offload(struct packet_offload *po)
470{
471	struct list_head *head = &offload_base;
472
473	spin_lock(&offload_lock);
474	list_add_rcu(&po->list, head);
475	spin_unlock(&offload_lock);
476}
477EXPORT_SYMBOL(dev_add_offload);
478
479/**
480 *	__dev_remove_offload	 - remove offload handler
481 *	@po: packet offload declaration
482 *
483 *	Remove a protocol offload handler that was previously added to the
484 *	kernel offload handlers by dev_add_offload(). The passed &offload_type
485 *	is removed from the kernel lists and can be freed or reused once this
486 *	function returns.
487 *
488 *      The packet type might still be in use by receivers
489 *	and must not be freed until after all the CPU's have gone
490 *	through a quiescent state.
491 */
492static void __dev_remove_offload(struct packet_offload *po)
493{
494	struct list_head *head = &offload_base;
495	struct packet_offload *po1;
496
497	spin_lock(&offload_lock);
498
499	list_for_each_entry(po1, head, list) {
500		if (po == po1) {
501			list_del_rcu(&po->list);
502			goto out;
503		}
504	}
505
506	pr_warn("dev_remove_offload: %p not found\n", po);
507out:
508	spin_unlock(&offload_lock);
509}
510
511/**
512 *	dev_remove_offload	 - remove packet offload handler
513 *	@po: packet offload declaration
514 *
515 *	Remove a packet offload handler that was previously added to the kernel
516 *	offload handlers by dev_add_offload(). The passed &offload_type is
517 *	removed from the kernel lists and can be freed or reused once this
518 *	function returns.
519 *
520 *	This call sleeps to guarantee that no CPU is looking at the packet
521 *	type after return.
522 */
523void dev_remove_offload(struct packet_offload *po)
524{
525	__dev_remove_offload(po);
526
527	synchronize_net();
528}
529EXPORT_SYMBOL(dev_remove_offload);
530
531/******************************************************************************
532
533		      Device Boot-time Settings Routines
534
535*******************************************************************************/
536
537/* Boot time configuration table */
538static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
539
540/**
541 *	netdev_boot_setup_add	- add new setup entry
542 *	@name: name of the device
543 *	@map: configured settings for the device
544 *
545 *	Adds new setup entry to the dev_boot_setup list.  The function
546 *	returns 0 on error and 1 on success.  This is a generic routine to
547 *	all netdevices.
548 */
549static int netdev_boot_setup_add(char *name, struct ifmap *map)
550{
551	struct netdev_boot_setup *s;
552	int i;
553
554	s = dev_boot_setup;
555	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557			memset(s[i].name, 0, sizeof(s[i].name));
558			strlcpy(s[i].name, name, IFNAMSIZ);
559			memcpy(&s[i].map, map, sizeof(s[i].map));
560			break;
561		}
562	}
563
564	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
565}
566
567/**
568 *	netdev_boot_setup_check	- check boot time settings
569 *	@dev: the netdevice
570 *
571 * 	Check boot time settings for the device.
572 *	The found settings are set for the device to be used
573 *	later in the device probing.
574 *	Returns 0 if no settings found, 1 if they are.
575 */
576int netdev_boot_setup_check(struct net_device *dev)
577{
578	struct netdev_boot_setup *s = dev_boot_setup;
579	int i;
580
581	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
583		    !strcmp(dev->name, s[i].name)) {
584			dev->irq 	= s[i].map.irq;
585			dev->base_addr 	= s[i].map.base_addr;
586			dev->mem_start 	= s[i].map.mem_start;
587			dev->mem_end 	= s[i].map.mem_end;
588			return 1;
589		}
590	}
591	return 0;
592}
593EXPORT_SYMBOL(netdev_boot_setup_check);
594
595
596/**
597 *	netdev_boot_base	- get address from boot time settings
598 *	@prefix: prefix for network device
599 *	@unit: id for network device
600 *
601 * 	Check boot time settings for the base address of device.
602 *	The found settings are set for the device to be used
603 *	later in the device probing.
604 *	Returns 0 if no settings found.
605 */
606unsigned long netdev_boot_base(const char *prefix, int unit)
607{
608	const struct netdev_boot_setup *s = dev_boot_setup;
609	char name[IFNAMSIZ];
610	int i;
611
612	sprintf(name, "%s%d", prefix, unit);
613
614	/*
615	 * If device already registered then return base of 1
616	 * to indicate not to probe for this interface
617	 */
618	if (__dev_get_by_name(&init_net, name))
619		return 1;
620
621	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622		if (!strcmp(name, s[i].name))
623			return s[i].map.base_addr;
624	return 0;
625}
626
627/*
628 * Saves at boot time configured settings for any netdevice.
629 */
630int __init netdev_boot_setup(char *str)
631{
632	int ints[5];
633	struct ifmap map;
634
635	str = get_options(str, ARRAY_SIZE(ints), ints);
636	if (!str || !*str)
637		return 0;
638
639	/* Save settings */
640	memset(&map, 0, sizeof(map));
641	if (ints[0] > 0)
642		map.irq = ints[1];
643	if (ints[0] > 1)
644		map.base_addr = ints[2];
645	if (ints[0] > 2)
646		map.mem_start = ints[3];
647	if (ints[0] > 3)
648		map.mem_end = ints[4];
649
650	/* Add new entry to the list */
651	return netdev_boot_setup_add(str, &map);
652}
653
654__setup("netdev=", netdev_boot_setup);
655
656/*******************************************************************************
657
658			    Device Interface Subroutines
659
660*******************************************************************************/
661
662/**
663 *	dev_get_iflink	- get 'iflink' value of a interface
664 *	@dev: targeted interface
665 *
666 *	Indicates the ifindex the interface is linked to.
667 *	Physical interfaces have the same 'ifindex' and 'iflink' values.
668 */
669
670int dev_get_iflink(const struct net_device *dev)
671{
672	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
673		return dev->netdev_ops->ndo_get_iflink(dev);
674
675	return dev->ifindex;
676}
677EXPORT_SYMBOL(dev_get_iflink);
678
679/**
680 *	__dev_get_by_name	- find a device by its name
681 *	@net: the applicable net namespace
682 *	@name: name to find
683 *
684 *	Find an interface by name. Must be called under RTNL semaphore
685 *	or @dev_base_lock. If the name is found a pointer to the device
686 *	is returned. If the name is not found then %NULL is returned. The
687 *	reference counters are not incremented so the caller must be
688 *	careful with locks.
689 */
690
691struct net_device *__dev_get_by_name(struct net *net, const char *name)
692{
693	struct net_device *dev;
694	struct hlist_head *head = dev_name_hash(net, name);
695
696	hlist_for_each_entry(dev, head, name_hlist)
697		if (!strncmp(dev->name, name, IFNAMSIZ))
698			return dev;
699
700	return NULL;
701}
702EXPORT_SYMBOL(__dev_get_by_name);
703
704/**
705 *	dev_get_by_name_rcu	- find a device by its name
706 *	@net: the applicable net namespace
707 *	@name: name to find
708 *
709 *	Find an interface by name.
710 *	If the name is found a pointer to the device is returned.
711 * 	If the name is not found then %NULL is returned.
712 *	The reference counters are not incremented so the caller must be
713 *	careful with locks. The caller must hold RCU lock.
714 */
715
716struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
717{
718	struct net_device *dev;
719	struct hlist_head *head = dev_name_hash(net, name);
720
721	hlist_for_each_entry_rcu(dev, head, name_hlist)
722		if (!strncmp(dev->name, name, IFNAMSIZ))
723			return dev;
724
725	return NULL;
726}
727EXPORT_SYMBOL(dev_get_by_name_rcu);
728
729/**
730 *	dev_get_by_name		- find a device by its name
731 *	@net: the applicable net namespace
732 *	@name: name to find
733 *
734 *	Find an interface by name. This can be called from any
735 *	context and does its own locking. The returned handle has
736 *	the usage count incremented and the caller must use dev_put() to
737 *	release it when it is no longer needed. %NULL is returned if no
738 *	matching device is found.
739 */
740
741struct net_device *dev_get_by_name(struct net *net, const char *name)
742{
743	struct net_device *dev;
744
745	rcu_read_lock();
746	dev = dev_get_by_name_rcu(net, name);
747	if (dev)
748		dev_hold(dev);
749	rcu_read_unlock();
750	return dev;
751}
752EXPORT_SYMBOL(dev_get_by_name);
753
754/**
755 *	__dev_get_by_index - find a device by its ifindex
756 *	@net: the applicable net namespace
757 *	@ifindex: index of device
758 *
759 *	Search for an interface by index. Returns %NULL if the device
760 *	is not found or a pointer to the device. The device has not
761 *	had its reference counter increased so the caller must be careful
762 *	about locking. The caller must hold either the RTNL semaphore
763 *	or @dev_base_lock.
764 */
765
766struct net_device *__dev_get_by_index(struct net *net, int ifindex)
767{
768	struct net_device *dev;
769	struct hlist_head *head = dev_index_hash(net, ifindex);
770
771	hlist_for_each_entry(dev, head, index_hlist)
772		if (dev->ifindex == ifindex)
773			return dev;
774
775	return NULL;
776}
777EXPORT_SYMBOL(__dev_get_by_index);
778
779/**
780 *	dev_get_by_index_rcu - find a device by its ifindex
781 *	@net: the applicable net namespace
782 *	@ifindex: index of device
783 *
784 *	Search for an interface by index. Returns %NULL if the device
785 *	is not found or a pointer to the device. The device has not
786 *	had its reference counter increased so the caller must be careful
787 *	about locking. The caller must hold RCU lock.
788 */
789
790struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
791{
792	struct net_device *dev;
793	struct hlist_head *head = dev_index_hash(net, ifindex);
794
795	hlist_for_each_entry_rcu(dev, head, index_hlist)
796		if (dev->ifindex == ifindex)
797			return dev;
798
799	return NULL;
800}
801EXPORT_SYMBOL(dev_get_by_index_rcu);
802
803
804/**
805 *	dev_get_by_index - find a device by its ifindex
806 *	@net: the applicable net namespace
807 *	@ifindex: index of device
808 *
809 *	Search for an interface by index. Returns NULL if the device
810 *	is not found or a pointer to the device. The device returned has
811 *	had a reference added and the pointer is safe until the user calls
812 *	dev_put to indicate they have finished with it.
813 */
814
815struct net_device *dev_get_by_index(struct net *net, int ifindex)
816{
817	struct net_device *dev;
818
819	rcu_read_lock();
820	dev = dev_get_by_index_rcu(net, ifindex);
821	if (dev)
822		dev_hold(dev);
823	rcu_read_unlock();
824	return dev;
825}
826EXPORT_SYMBOL(dev_get_by_index);
827
828/**
829 *	netdev_get_name - get a netdevice name, knowing its ifindex.
830 *	@net: network namespace
831 *	@name: a pointer to the buffer where the name will be stored.
832 *	@ifindex: the ifindex of the interface to get the name from.
833 *
834 *	The use of raw_seqcount_begin() and cond_resched() before
835 *	retrying is required as we want to give the writers a chance
836 *	to complete when CONFIG_PREEMPT is not set.
837 */
838int netdev_get_name(struct net *net, char *name, int ifindex)
839{
840	struct net_device *dev;
841	unsigned int seq;
842
843retry:
844	seq = raw_seqcount_begin(&devnet_rename_seq);
845	rcu_read_lock();
846	dev = dev_get_by_index_rcu(net, ifindex);
847	if (!dev) {
848		rcu_read_unlock();
849		return -ENODEV;
850	}
851
852	strcpy(name, dev->name);
853	rcu_read_unlock();
854	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
855		cond_resched();
856		goto retry;
857	}
858
859	return 0;
860}
861
862/**
863 *	dev_getbyhwaddr_rcu - find a device by its hardware address
864 *	@net: the applicable net namespace
865 *	@type: media type of device
866 *	@ha: hardware address
867 *
868 *	Search for an interface by MAC address. Returns NULL if the device
869 *	is not found or a pointer to the device.
870 *	The caller must hold RCU or RTNL.
871 *	The returned device has not had its ref count increased
872 *	and the caller must therefore be careful about locking
873 *
874 */
875
876struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
877				       const char *ha)
878{
879	struct net_device *dev;
880
881	for_each_netdev_rcu(net, dev)
882		if (dev->type == type &&
883		    !memcmp(dev->dev_addr, ha, dev->addr_len))
884			return dev;
885
886	return NULL;
887}
888EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
889
890struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
891{
892	struct net_device *dev;
893
894	ASSERT_RTNL();
895	for_each_netdev(net, dev)
896		if (dev->type == type)
897			return dev;
898
899	return NULL;
900}
901EXPORT_SYMBOL(__dev_getfirstbyhwtype);
902
903struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
904{
905	struct net_device *dev, *ret = NULL;
906
907	rcu_read_lock();
908	for_each_netdev_rcu(net, dev)
909		if (dev->type == type) {
910			dev_hold(dev);
911			ret = dev;
912			break;
913		}
914	rcu_read_unlock();
915	return ret;
916}
917EXPORT_SYMBOL(dev_getfirstbyhwtype);
918
919/**
920 *	__dev_get_by_flags - find any device with given flags
921 *	@net: the applicable net namespace
922 *	@if_flags: IFF_* values
923 *	@mask: bitmask of bits in if_flags to check
924 *
925 *	Search for any interface with the given flags. Returns NULL if a device
926 *	is not found or a pointer to the device. Must be called inside
927 *	rtnl_lock(), and result refcount is unchanged.
928 */
929
930struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
931				      unsigned short mask)
932{
933	struct net_device *dev, *ret;
934
935	ASSERT_RTNL();
936
937	ret = NULL;
938	for_each_netdev(net, dev) {
939		if (((dev->flags ^ if_flags) & mask) == 0) {
940			ret = dev;
941			break;
942		}
943	}
944	return ret;
945}
946EXPORT_SYMBOL(__dev_get_by_flags);
947
948/**
949 *	dev_valid_name - check if name is okay for network device
950 *	@name: name string
951 *
952 *	Network device names need to be valid file names to
953 *	to allow sysfs to work.  We also disallow any kind of
954 *	whitespace.
955 */
956bool dev_valid_name(const char *name)
957{
958	if (*name == '\0')
959		return false;
960	if (strlen(name) >= IFNAMSIZ)
961		return false;
962	if (!strcmp(name, ".") || !strcmp(name, ".."))
963		return false;
964
965	while (*name) {
966		if (*name == '/' || *name == ':' || isspace(*name))
967			return false;
968		name++;
969	}
970	return true;
971}
972EXPORT_SYMBOL(dev_valid_name);
973
974/**
975 *	__dev_alloc_name - allocate a name for a device
976 *	@net: network namespace to allocate the device name in
977 *	@name: name format string
978 *	@buf:  scratch buffer and result name string
979 *
980 *	Passed a format string - eg "lt%d" it will try and find a suitable
981 *	id. It scans list of devices to build up a free map, then chooses
982 *	the first empty slot. The caller must hold the dev_base or rtnl lock
983 *	while allocating the name and adding the device in order to avoid
984 *	duplicates.
985 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
986 *	Returns the number of the unit assigned or a negative errno code.
987 */
988
989static int __dev_alloc_name(struct net *net, const char *name, char *buf)
990{
991	int i = 0;
992	const char *p;
993	const int max_netdevices = 8*PAGE_SIZE;
994	unsigned long *inuse;
995	struct net_device *d;
996
997	p = strnchr(name, IFNAMSIZ-1, '%');
998	if (p) {
999		/*
1000		 * Verify the string as this thing may have come from
1001		 * the user.  There must be either one "%d" and no other "%"
1002		 * characters.
1003		 */
1004		if (p[1] != 'd' || strchr(p + 2, '%'))
1005			return -EINVAL;
1006
1007		/* Use one page as a bit array of possible slots */
1008		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1009		if (!inuse)
1010			return -ENOMEM;
1011
1012		for_each_netdev(net, d) {
1013			if (!sscanf(d->name, name, &i))
1014				continue;
1015			if (i < 0 || i >= max_netdevices)
1016				continue;
1017
1018			/*  avoid cases where sscanf is not exact inverse of printf */
1019			snprintf(buf, IFNAMSIZ, name, i);
1020			if (!strncmp(buf, d->name, IFNAMSIZ))
1021				set_bit(i, inuse);
1022		}
1023
1024		i = find_first_zero_bit(inuse, max_netdevices);
1025		free_page((unsigned long) inuse);
1026	}
1027
1028	if (buf != name)
1029		snprintf(buf, IFNAMSIZ, name, i);
1030	if (!__dev_get_by_name(net, buf))
1031		return i;
1032
1033	/* It is possible to run out of possible slots
1034	 * when the name is long and there isn't enough space left
1035	 * for the digits, or if all bits are used.
1036	 */
1037	return -ENFILE;
1038}
1039
1040/**
1041 *	dev_alloc_name - allocate a name for a device
1042 *	@dev: device
1043 *	@name: name format string
1044 *
1045 *	Passed a format string - eg "lt%d" it will try and find a suitable
1046 *	id. It scans list of devices to build up a free map, then chooses
1047 *	the first empty slot. The caller must hold the dev_base or rtnl lock
1048 *	while allocating the name and adding the device in order to avoid
1049 *	duplicates.
1050 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1051 *	Returns the number of the unit assigned or a negative errno code.
1052 */
1053
1054int dev_alloc_name(struct net_device *dev, const char *name)
1055{
1056	char buf[IFNAMSIZ];
1057	struct net *net;
1058	int ret;
1059
1060	BUG_ON(!dev_net(dev));
1061	net = dev_net(dev);
1062	ret = __dev_alloc_name(net, name, buf);
1063	if (ret >= 0)
1064		strlcpy(dev->name, buf, IFNAMSIZ);
1065	return ret;
1066}
1067EXPORT_SYMBOL(dev_alloc_name);
1068
1069static int dev_alloc_name_ns(struct net *net,
1070			     struct net_device *dev,
1071			     const char *name)
1072{
1073	char buf[IFNAMSIZ];
1074	int ret;
1075
1076	ret = __dev_alloc_name(net, name, buf);
1077	if (ret >= 0)
1078		strlcpy(dev->name, buf, IFNAMSIZ);
1079	return ret;
1080}
1081
1082static int dev_get_valid_name(struct net *net,
1083			      struct net_device *dev,
1084			      const char *name)
1085{
1086	BUG_ON(!net);
1087
1088	if (!dev_valid_name(name))
1089		return -EINVAL;
1090
1091	if (strchr(name, '%'))
1092		return dev_alloc_name_ns(net, dev, name);
1093	else if (__dev_get_by_name(net, name))
1094		return -EEXIST;
1095	else if (dev->name != name)
1096		strlcpy(dev->name, name, IFNAMSIZ);
1097
1098	return 0;
1099}
1100
1101/**
1102 *	dev_change_name - change name of a device
1103 *	@dev: device
1104 *	@newname: name (or format string) must be at least IFNAMSIZ
1105 *
1106 *	Change name of a device, can pass format strings "eth%d".
1107 *	for wildcarding.
1108 */
1109int dev_change_name(struct net_device *dev, const char *newname)
1110{
1111	unsigned char old_assign_type;
1112	char oldname[IFNAMSIZ];
1113	int err = 0;
1114	int ret;
1115	struct net *net;
1116
1117	ASSERT_RTNL();
1118	BUG_ON(!dev_net(dev));
1119
1120	net = dev_net(dev);
1121	if (dev->flags & IFF_UP)
1122		return -EBUSY;
1123
1124	write_seqcount_begin(&devnet_rename_seq);
1125
1126	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1127		write_seqcount_end(&devnet_rename_seq);
1128		return 0;
1129	}
1130
1131	memcpy(oldname, dev->name, IFNAMSIZ);
1132
1133	err = dev_get_valid_name(net, dev, newname);
1134	if (err < 0) {
1135		write_seqcount_end(&devnet_rename_seq);
1136		return err;
1137	}
1138
1139	if (oldname[0] && !strchr(oldname, '%'))
1140		netdev_info(dev, "renamed from %s\n", oldname);
1141
1142	old_assign_type = dev->name_assign_type;
1143	dev->name_assign_type = NET_NAME_RENAMED;
1144
1145rollback:
1146	ret = device_rename(&dev->dev, dev->name);
1147	if (ret) {
1148		memcpy(dev->name, oldname, IFNAMSIZ);
1149		dev->name_assign_type = old_assign_type;
1150		write_seqcount_end(&devnet_rename_seq);
1151		return ret;
1152	}
1153
1154	write_seqcount_end(&devnet_rename_seq);
1155
1156	netdev_adjacent_rename_links(dev, oldname);
1157
1158	write_lock_bh(&dev_base_lock);
1159	hlist_del_rcu(&dev->name_hlist);
1160	write_unlock_bh(&dev_base_lock);
1161
1162	synchronize_rcu();
1163
1164	write_lock_bh(&dev_base_lock);
1165	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1166	write_unlock_bh(&dev_base_lock);
1167
1168	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1169	ret = notifier_to_errno(ret);
1170
1171	if (ret) {
1172		/* err >= 0 after dev_alloc_name() or stores the first errno */
1173		if (err >= 0) {
1174			err = ret;
1175			write_seqcount_begin(&devnet_rename_seq);
1176			memcpy(dev->name, oldname, IFNAMSIZ);
1177			memcpy(oldname, newname, IFNAMSIZ);
1178			dev->name_assign_type = old_assign_type;
1179			old_assign_type = NET_NAME_RENAMED;
1180			goto rollback;
1181		} else {
1182			pr_err("%s: name change rollback failed: %d\n",
1183			       dev->name, ret);
1184		}
1185	}
1186
1187	return err;
1188}
1189
1190/**
1191 *	dev_set_alias - change ifalias of a device
1192 *	@dev: device
1193 *	@alias: name up to IFALIASZ
1194 *	@len: limit of bytes to copy from info
1195 *
1196 *	Set ifalias for a device,
1197 */
1198int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1199{
1200	char *new_ifalias;
1201
1202	ASSERT_RTNL();
1203
1204	if (len >= IFALIASZ)
1205		return -EINVAL;
1206
1207	if (!len) {
1208		kfree(dev->ifalias);
1209		dev->ifalias = NULL;
1210		return 0;
1211	}
1212
1213	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1214	if (!new_ifalias)
1215		return -ENOMEM;
1216	dev->ifalias = new_ifalias;
1217
1218	strlcpy(dev->ifalias, alias, len+1);
1219	return len;
1220}
1221
1222
1223/**
1224 *	netdev_features_change - device changes features
1225 *	@dev: device to cause notification
1226 *
1227 *	Called to indicate a device has changed features.
1228 */
1229void netdev_features_change(struct net_device *dev)
1230{
1231	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1232}
1233EXPORT_SYMBOL(netdev_features_change);
1234
1235/**
1236 *	netdev_state_change - device changes state
1237 *	@dev: device to cause notification
1238 *
1239 *	Called to indicate a device has changed state. This function calls
1240 *	the notifier chains for netdev_chain and sends a NEWLINK message
1241 *	to the routing socket.
1242 */
1243void netdev_state_change(struct net_device *dev)
1244{
1245	if (dev->flags & IFF_UP) {
1246		struct netdev_notifier_change_info change_info;
1247
1248		change_info.flags_changed = 0;
1249		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1250					      &change_info.info);
1251		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1252	}
1253}
1254EXPORT_SYMBOL(netdev_state_change);
1255
1256/**
1257 * 	netdev_notify_peers - notify network peers about existence of @dev
1258 * 	@dev: network device
1259 *
1260 * Generate traffic such that interested network peers are aware of
1261 * @dev, such as by generating a gratuitous ARP. This may be used when
1262 * a device wants to inform the rest of the network about some sort of
1263 * reconfiguration such as a failover event or virtual machine
1264 * migration.
1265 */
1266void netdev_notify_peers(struct net_device *dev)
1267{
1268	rtnl_lock();
1269	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1270	rtnl_unlock();
1271}
1272EXPORT_SYMBOL(netdev_notify_peers);
1273
1274static int __dev_open(struct net_device *dev)
1275{
1276	const struct net_device_ops *ops = dev->netdev_ops;
1277	int ret;
1278
1279	ASSERT_RTNL();
1280
1281	if (!netif_device_present(dev))
1282		return -ENODEV;
1283
1284	/* Block netpoll from trying to do any rx path servicing.
1285	 * If we don't do this there is a chance ndo_poll_controller
1286	 * or ndo_poll may be running while we open the device
1287	 */
1288	netpoll_poll_disable(dev);
1289
1290	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1291	ret = notifier_to_errno(ret);
1292	if (ret)
1293		return ret;
1294
1295	set_bit(__LINK_STATE_START, &dev->state);
1296
1297	if (ops->ndo_validate_addr)
1298		ret = ops->ndo_validate_addr(dev);
1299
1300	if (!ret && ops->ndo_open)
1301		ret = ops->ndo_open(dev);
1302
1303	netpoll_poll_enable(dev);
1304
1305	if (ret)
1306		clear_bit(__LINK_STATE_START, &dev->state);
1307	else {
1308		dev->flags |= IFF_UP;
1309		dev_set_rx_mode(dev);
1310		dev_activate(dev);
1311		add_device_randomness(dev->dev_addr, dev->addr_len);
1312	}
1313
1314	return ret;
1315}
1316
1317/**
1318 *	dev_open	- prepare an interface for use.
1319 *	@dev:	device to open
1320 *
1321 *	Takes a device from down to up state. The device's private open
1322 *	function is invoked and then the multicast lists are loaded. Finally
1323 *	the device is moved into the up state and a %NETDEV_UP message is
1324 *	sent to the netdev notifier chain.
1325 *
1326 *	Calling this function on an active interface is a nop. On a failure
1327 *	a negative errno code is returned.
1328 */
1329int dev_open(struct net_device *dev)
1330{
1331	int ret;
1332
1333	if (dev->flags & IFF_UP)
1334		return 0;
1335
1336	ret = __dev_open(dev);
1337	if (ret < 0)
1338		return ret;
1339
1340	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1341	call_netdevice_notifiers(NETDEV_UP, dev);
1342
1343	return ret;
1344}
1345EXPORT_SYMBOL(dev_open);
1346
1347static int __dev_close_many(struct list_head *head)
1348{
1349	struct net_device *dev;
1350
1351	ASSERT_RTNL();
1352	might_sleep();
1353
1354	list_for_each_entry(dev, head, close_list) {
1355		/* Temporarily disable netpoll until the interface is down */
1356		netpoll_poll_disable(dev);
1357
1358		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1359
1360		clear_bit(__LINK_STATE_START, &dev->state);
1361
1362		/* Synchronize to scheduled poll. We cannot touch poll list, it
1363		 * can be even on different cpu. So just clear netif_running().
1364		 *
1365		 * dev->stop() will invoke napi_disable() on all of it's
1366		 * napi_struct instances on this device.
1367		 */
1368		smp_mb__after_atomic(); /* Commit netif_running(). */
1369	}
1370
1371	dev_deactivate_many(head);
1372
1373	list_for_each_entry(dev, head, close_list) {
1374		const struct net_device_ops *ops = dev->netdev_ops;
1375
1376		/*
1377		 *	Call the device specific close. This cannot fail.
1378		 *	Only if device is UP
1379		 *
1380		 *	We allow it to be called even after a DETACH hot-plug
1381		 *	event.
1382		 */
1383		if (ops->ndo_stop)
1384			ops->ndo_stop(dev);
1385
1386		dev->flags &= ~IFF_UP;
1387		netpoll_poll_enable(dev);
1388	}
1389
1390	return 0;
1391}
1392
1393static int __dev_close(struct net_device *dev)
1394{
1395	int retval;
1396	LIST_HEAD(single);
1397
1398	list_add(&dev->close_list, &single);
1399	retval = __dev_close_many(&single);
1400	list_del(&single);
1401
1402	return retval;
1403}
1404
1405int dev_close_many(struct list_head *head, bool unlink)
1406{
1407	struct net_device *dev, *tmp;
1408
1409	/* Remove the devices that don't need to be closed */
1410	list_for_each_entry_safe(dev, tmp, head, close_list)
1411		if (!(dev->flags & IFF_UP))
1412			list_del_init(&dev->close_list);
1413
1414	__dev_close_many(head);
1415
1416	list_for_each_entry_safe(dev, tmp, head, close_list) {
1417		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1418		call_netdevice_notifiers(NETDEV_DOWN, dev);
1419		if (unlink)
1420			list_del_init(&dev->close_list);
1421	}
1422
1423	return 0;
1424}
1425EXPORT_SYMBOL(dev_close_many);
1426
1427/**
1428 *	dev_close - shutdown an interface.
1429 *	@dev: device to shutdown
1430 *
1431 *	This function moves an active device into down state. A
1432 *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1433 *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1434 *	chain.
1435 */
1436int dev_close(struct net_device *dev)
1437{
1438	if (dev->flags & IFF_UP) {
1439		LIST_HEAD(single);
1440
1441		list_add(&dev->close_list, &single);
1442		dev_close_many(&single, true);
1443		list_del(&single);
1444	}
1445	return 0;
1446}
1447EXPORT_SYMBOL(dev_close);
1448
1449
1450/**
1451 *	dev_disable_lro - disable Large Receive Offload on a device
1452 *	@dev: device
1453 *
1454 *	Disable Large Receive Offload (LRO) on a net device.  Must be
1455 *	called under RTNL.  This is needed if received packets may be
1456 *	forwarded to another interface.
1457 */
1458void dev_disable_lro(struct net_device *dev)
1459{
1460	struct net_device *lower_dev;
1461	struct list_head *iter;
1462
1463	dev->wanted_features &= ~NETIF_F_LRO;
1464	netdev_update_features(dev);
1465
1466	if (unlikely(dev->features & NETIF_F_LRO))
1467		netdev_WARN(dev, "failed to disable LRO!\n");
1468
1469	netdev_for_each_lower_dev(dev, lower_dev, iter)
1470		dev_disable_lro(lower_dev);
1471}
1472EXPORT_SYMBOL(dev_disable_lro);
1473
1474static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1475				   struct net_device *dev)
1476{
1477	struct netdev_notifier_info info;
1478
1479	netdev_notifier_info_init(&info, dev);
1480	return nb->notifier_call(nb, val, &info);
1481}
1482
1483static int dev_boot_phase = 1;
1484
1485/**
1486 *	register_netdevice_notifier - register a network notifier block
1487 *	@nb: notifier
1488 *
1489 *	Register a notifier to be called when network device events occur.
1490 *	The notifier passed is linked into the kernel structures and must
1491 *	not be reused until it has been unregistered. A negative errno code
1492 *	is returned on a failure.
1493 *
1494 * 	When registered all registration and up events are replayed
1495 *	to the new notifier to allow device to have a race free
1496 *	view of the network device list.
1497 */
1498
1499int register_netdevice_notifier(struct notifier_block *nb)
1500{
1501	struct net_device *dev;
1502	struct net_device *last;
1503	struct net *net;
1504	int err;
1505
1506	rtnl_lock();
1507	err = raw_notifier_chain_register(&netdev_chain, nb);
1508	if (err)
1509		goto unlock;
1510	if (dev_boot_phase)
1511		goto unlock;
1512	for_each_net(net) {
1513		for_each_netdev(net, dev) {
1514			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1515			err = notifier_to_errno(err);
1516			if (err)
1517				goto rollback;
1518
1519			if (!(dev->flags & IFF_UP))
1520				continue;
1521
1522			call_netdevice_notifier(nb, NETDEV_UP, dev);
1523		}
1524	}
1525
1526unlock:
1527	rtnl_unlock();
1528	return err;
1529
1530rollback:
1531	last = dev;
1532	for_each_net(net) {
1533		for_each_netdev(net, dev) {
1534			if (dev == last)
1535				goto outroll;
1536
1537			if (dev->flags & IFF_UP) {
1538				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1539							dev);
1540				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1541			}
1542			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1543		}
1544	}
1545
1546outroll:
1547	raw_notifier_chain_unregister(&netdev_chain, nb);
1548	goto unlock;
1549}
1550EXPORT_SYMBOL(register_netdevice_notifier);
1551
1552/**
1553 *	unregister_netdevice_notifier - unregister a network notifier block
1554 *	@nb: notifier
1555 *
1556 *	Unregister a notifier previously registered by
1557 *	register_netdevice_notifier(). The notifier is unlinked into the
1558 *	kernel structures and may then be reused. A negative errno code
1559 *	is returned on a failure.
1560 *
1561 * 	After unregistering unregister and down device events are synthesized
1562 *	for all devices on the device list to the removed notifier to remove
1563 *	the need for special case cleanup code.
1564 */
1565
1566int unregister_netdevice_notifier(struct notifier_block *nb)
1567{
1568	struct net_device *dev;
1569	struct net *net;
1570	int err;
1571
1572	rtnl_lock();
1573	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1574	if (err)
1575		goto unlock;
1576
1577	for_each_net(net) {
1578		for_each_netdev(net, dev) {
1579			if (dev->flags & IFF_UP) {
1580				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1581							dev);
1582				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1583			}
1584			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1585		}
1586	}
1587unlock:
1588	rtnl_unlock();
1589	return err;
1590}
1591EXPORT_SYMBOL(unregister_netdevice_notifier);
1592
1593/**
1594 *	call_netdevice_notifiers_info - call all network notifier blocks
1595 *	@val: value passed unmodified to notifier function
1596 *	@dev: net_device pointer passed unmodified to notifier function
1597 *	@info: notifier information data
1598 *
1599 *	Call all network notifier blocks.  Parameters and return value
1600 *	are as for raw_notifier_call_chain().
1601 */
1602
1603static int call_netdevice_notifiers_info(unsigned long val,
1604					 struct net_device *dev,
1605					 struct netdev_notifier_info *info)
1606{
1607	ASSERT_RTNL();
1608	netdev_notifier_info_init(info, dev);
1609	return raw_notifier_call_chain(&netdev_chain, val, info);
1610}
1611
1612/**
1613 *	call_netdevice_notifiers - call all network notifier blocks
1614 *      @val: value passed unmodified to notifier function
1615 *      @dev: net_device pointer passed unmodified to notifier function
1616 *
1617 *	Call all network notifier blocks.  Parameters and return value
1618 *	are as for raw_notifier_call_chain().
1619 */
1620
1621int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1622{
1623	struct netdev_notifier_info info;
1624
1625	return call_netdevice_notifiers_info(val, dev, &info);
1626}
1627EXPORT_SYMBOL(call_netdevice_notifiers);
1628
1629#ifdef CONFIG_NET_CLS_ACT
1630static struct static_key ingress_needed __read_mostly;
1631
1632void net_inc_ingress_queue(void)
1633{
1634	static_key_slow_inc(&ingress_needed);
1635}
1636EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1637
1638void net_dec_ingress_queue(void)
1639{
1640	static_key_slow_dec(&ingress_needed);
1641}
1642EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1643#endif
1644
1645static struct static_key netstamp_needed __read_mostly;
1646#ifdef HAVE_JUMP_LABEL
1647/* We are not allowed to call static_key_slow_dec() from irq context
1648 * If net_disable_timestamp() is called from irq context, defer the
1649 * static_key_slow_dec() calls.
1650 */
1651static atomic_t netstamp_needed_deferred;
1652#endif
1653
1654void net_enable_timestamp(void)
1655{
1656#ifdef HAVE_JUMP_LABEL
1657	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1658
1659	if (deferred) {
1660		while (--deferred)
1661			static_key_slow_dec(&netstamp_needed);
1662		return;
1663	}
1664#endif
1665	static_key_slow_inc(&netstamp_needed);
1666}
1667EXPORT_SYMBOL(net_enable_timestamp);
1668
1669void net_disable_timestamp(void)
1670{
1671#ifdef HAVE_JUMP_LABEL
1672	if (in_interrupt()) {
1673		atomic_inc(&netstamp_needed_deferred);
1674		return;
1675	}
1676#endif
1677	static_key_slow_dec(&netstamp_needed);
1678}
1679EXPORT_SYMBOL(net_disable_timestamp);
1680
1681static inline void net_timestamp_set(struct sk_buff *skb)
1682{
1683	skb->tstamp.tv64 = 0;
1684	if (static_key_false(&netstamp_needed))
1685		__net_timestamp(skb);
1686}
1687
1688#define net_timestamp_check(COND, SKB)			\
1689	if (static_key_false(&netstamp_needed)) {		\
1690		if ((COND) && !(SKB)->tstamp.tv64)	\
1691			__net_timestamp(SKB);		\
1692	}						\
1693
1694bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1695{
1696	unsigned int len;
1697
1698	if (!(dev->flags & IFF_UP))
1699		return false;
1700
1701	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1702	if (skb->len <= len)
1703		return true;
1704
1705	/* if TSO is enabled, we don't care about the length as the packet
1706	 * could be forwarded without being segmented before
1707	 */
1708	if (skb_is_gso(skb))
1709		return true;
1710
1711	return false;
1712}
1713EXPORT_SYMBOL_GPL(is_skb_forwardable);
1714
1715int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1716{
1717	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1718	    unlikely(!is_skb_forwardable(dev, skb))) {
1719		atomic_long_inc(&dev->rx_dropped);
1720		kfree_skb(skb);
1721		return NET_RX_DROP;
1722	}
1723
1724	skb_scrub_packet(skb, true);
1725	skb->priority = 0;
1726	skb->protocol = eth_type_trans(skb, dev);
1727	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1728
1729	return 0;
1730}
1731EXPORT_SYMBOL_GPL(__dev_forward_skb);
1732
1733/**
1734 * dev_forward_skb - loopback an skb to another netif
1735 *
1736 * @dev: destination network device
1737 * @skb: buffer to forward
1738 *
1739 * return values:
1740 *	NET_RX_SUCCESS	(no congestion)
1741 *	NET_RX_DROP     (packet was dropped, but freed)
1742 *
1743 * dev_forward_skb can be used for injecting an skb from the
1744 * start_xmit function of one device into the receive queue
1745 * of another device.
1746 *
1747 * The receiving device may be in another namespace, so
1748 * we have to clear all information in the skb that could
1749 * impact namespace isolation.
1750 */
1751int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1752{
1753	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1754}
1755EXPORT_SYMBOL_GPL(dev_forward_skb);
1756
1757static inline int deliver_skb(struct sk_buff *skb,
1758			      struct packet_type *pt_prev,
1759			      struct net_device *orig_dev)
1760{
1761	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1762		return -ENOMEM;
1763	atomic_inc(&skb->users);
1764	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1765}
1766
1767static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1768					  struct packet_type **pt,
1769					  struct net_device *orig_dev,
1770					  __be16 type,
1771					  struct list_head *ptype_list)
1772{
1773	struct packet_type *ptype, *pt_prev = *pt;
1774
1775	list_for_each_entry_rcu(ptype, ptype_list, list) {
1776		if (ptype->type != type)
1777			continue;
1778		if (pt_prev)
1779			deliver_skb(skb, pt_prev, orig_dev);
1780		pt_prev = ptype;
1781	}
1782	*pt = pt_prev;
1783}
1784
1785static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1786{
1787	if (!ptype->af_packet_priv || !skb->sk)
1788		return false;
1789
1790	if (ptype->id_match)
1791		return ptype->id_match(ptype, skb->sk);
1792	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1793		return true;
1794
1795	return false;
1796}
1797
1798/*
1799 *	Support routine. Sends outgoing frames to any network
1800 *	taps currently in use.
1801 */
1802
1803static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1804{
1805	struct packet_type *ptype;
1806	struct sk_buff *skb2 = NULL;
1807	struct packet_type *pt_prev = NULL;
1808	struct list_head *ptype_list = &ptype_all;
1809
1810	rcu_read_lock();
1811again:
1812	list_for_each_entry_rcu(ptype, ptype_list, list) {
1813		/* Never send packets back to the socket
1814		 * they originated from - MvS (miquels@drinkel.ow.org)
1815		 */
1816		if (skb_loop_sk(ptype, skb))
1817			continue;
1818
1819		if (pt_prev) {
1820			deliver_skb(skb2, pt_prev, skb->dev);
1821			pt_prev = ptype;
1822			continue;
1823		}
1824
1825		/* need to clone skb, done only once */
1826		skb2 = skb_clone(skb, GFP_ATOMIC);
1827		if (!skb2)
1828			goto out_unlock;
1829
1830		net_timestamp_set(skb2);
1831
1832		/* skb->nh should be correctly
1833		 * set by sender, so that the second statement is
1834		 * just protection against buggy protocols.
1835		 */
1836		skb_reset_mac_header(skb2);
1837
1838		if (skb_network_header(skb2) < skb2->data ||
1839		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1840			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1841					     ntohs(skb2->protocol),
1842					     dev->name);
1843			skb_reset_network_header(skb2);
1844		}
1845
1846		skb2->transport_header = skb2->network_header;
1847		skb2->pkt_type = PACKET_OUTGOING;
1848		pt_prev = ptype;
1849	}
1850
1851	if (ptype_list == &ptype_all) {
1852		ptype_list = &dev->ptype_all;
1853		goto again;
1854	}
1855out_unlock:
1856	if (pt_prev)
1857		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1858	rcu_read_unlock();
1859}
1860
1861/**
1862 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1863 * @dev: Network device
1864 * @txq: number of queues available
1865 *
1866 * If real_num_tx_queues is changed the tc mappings may no longer be
1867 * valid. To resolve this verify the tc mapping remains valid and if
1868 * not NULL the mapping. With no priorities mapping to this
1869 * offset/count pair it will no longer be used. In the worst case TC0
1870 * is invalid nothing can be done so disable priority mappings. If is
1871 * expected that drivers will fix this mapping if they can before
1872 * calling netif_set_real_num_tx_queues.
1873 */
1874static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1875{
1876	int i;
1877	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1878
1879	/* If TC0 is invalidated disable TC mapping */
1880	if (tc->offset + tc->count > txq) {
1881		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1882		dev->num_tc = 0;
1883		return;
1884	}
1885
1886	/* Invalidated prio to tc mappings set to TC0 */
1887	for (i = 1; i < TC_BITMASK + 1; i++) {
1888		int q = netdev_get_prio_tc_map(dev, i);
1889
1890		tc = &dev->tc_to_txq[q];
1891		if (tc->offset + tc->count > txq) {
1892			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1893				i, q);
1894			netdev_set_prio_tc_map(dev, i, 0);
1895		}
1896	}
1897}
1898
1899#ifdef CONFIG_XPS
1900static DEFINE_MUTEX(xps_map_mutex);
1901#define xmap_dereference(P)		\
1902	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1903
1904static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1905					int cpu, u16 index)
1906{
1907	struct xps_map *map = NULL;
1908	int pos;
1909
1910	if (dev_maps)
1911		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1912
1913	for (pos = 0; map && pos < map->len; pos++) {
1914		if (map->queues[pos] == index) {
1915			if (map->len > 1) {
1916				map->queues[pos] = map->queues[--map->len];
1917			} else {
1918				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1919				kfree_rcu(map, rcu);
1920				map = NULL;
1921			}
1922			break;
1923		}
1924	}
1925
1926	return map;
1927}
1928
1929static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1930{
1931	struct xps_dev_maps *dev_maps;
1932	int cpu, i;
1933	bool active = false;
1934
1935	mutex_lock(&xps_map_mutex);
1936	dev_maps = xmap_dereference(dev->xps_maps);
1937
1938	if (!dev_maps)
1939		goto out_no_maps;
1940
1941	for_each_possible_cpu(cpu) {
1942		for (i = index; i < dev->num_tx_queues; i++) {
1943			if (!remove_xps_queue(dev_maps, cpu, i))
1944				break;
1945		}
1946		if (i == dev->num_tx_queues)
1947			active = true;
1948	}
1949
1950	if (!active) {
1951		RCU_INIT_POINTER(dev->xps_maps, NULL);
1952		kfree_rcu(dev_maps, rcu);
1953	}
1954
1955	for (i = index; i < dev->num_tx_queues; i++)
1956		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1957					     NUMA_NO_NODE);
1958
1959out_no_maps:
1960	mutex_unlock(&xps_map_mutex);
1961}
1962
1963static struct xps_map *expand_xps_map(struct xps_map *map,
1964				      int cpu, u16 index)
1965{
1966	struct xps_map *new_map;
1967	int alloc_len = XPS_MIN_MAP_ALLOC;
1968	int i, pos;
1969
1970	for (pos = 0; map && pos < map->len; pos++) {
1971		if (map->queues[pos] != index)
1972			continue;
1973		return map;
1974	}
1975
1976	/* Need to add queue to this CPU's existing map */
1977	if (map) {
1978		if (pos < map->alloc_len)
1979			return map;
1980
1981		alloc_len = map->alloc_len * 2;
1982	}
1983
1984	/* Need to allocate new map to store queue on this CPU's map */
1985	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1986			       cpu_to_node(cpu));
1987	if (!new_map)
1988		return NULL;
1989
1990	for (i = 0; i < pos; i++)
1991		new_map->queues[i] = map->queues[i];
1992	new_map->alloc_len = alloc_len;
1993	new_map->len = pos;
1994
1995	return new_map;
1996}
1997
1998int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1999			u16 index)
2000{
2001	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2002	struct xps_map *map, *new_map;
2003	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2004	int cpu, numa_node_id = -2;
2005	bool active = false;
2006
2007	mutex_lock(&xps_map_mutex);
2008
2009	dev_maps = xmap_dereference(dev->xps_maps);
2010
2011	/* allocate memory for queue storage */
2012	for_each_online_cpu(cpu) {
2013		if (!cpumask_test_cpu(cpu, mask))
2014			continue;
2015
2016		if (!new_dev_maps)
2017			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2018		if (!new_dev_maps) {
2019			mutex_unlock(&xps_map_mutex);
2020			return -ENOMEM;
2021		}
2022
2023		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2024				 NULL;
2025
2026		map = expand_xps_map(map, cpu, index);
2027		if (!map)
2028			goto error;
2029
2030		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2031	}
2032
2033	if (!new_dev_maps)
2034		goto out_no_new_maps;
2035
2036	for_each_possible_cpu(cpu) {
2037		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2038			/* add queue to CPU maps */
2039			int pos = 0;
2040
2041			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2042			while ((pos < map->len) && (map->queues[pos] != index))
2043				pos++;
2044
2045			if (pos == map->len)
2046				map->queues[map->len++] = index;
2047#ifdef CONFIG_NUMA
2048			if (numa_node_id == -2)
2049				numa_node_id = cpu_to_node(cpu);
2050			else if (numa_node_id != cpu_to_node(cpu))
2051				numa_node_id = -1;
2052#endif
2053		} else if (dev_maps) {
2054			/* fill in the new device map from the old device map */
2055			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2056			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2057		}
2058
2059	}
2060
2061	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2062
2063	/* Cleanup old maps */
2064	if (dev_maps) {
2065		for_each_possible_cpu(cpu) {
2066			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2067			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2068			if (map && map != new_map)
2069				kfree_rcu(map, rcu);
2070		}
2071
2072		kfree_rcu(dev_maps, rcu);
2073	}
2074
2075	dev_maps = new_dev_maps;
2076	active = true;
2077
2078out_no_new_maps:
2079	/* update Tx queue numa node */
2080	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2081				     (numa_node_id >= 0) ? numa_node_id :
2082				     NUMA_NO_NODE);
2083
2084	if (!dev_maps)
2085		goto out_no_maps;
2086
2087	/* removes queue from unused CPUs */
2088	for_each_possible_cpu(cpu) {
2089		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2090			continue;
2091
2092		if (remove_xps_queue(dev_maps, cpu, index))
2093			active = true;
2094	}
2095
2096	/* free map if not active */
2097	if (!active) {
2098		RCU_INIT_POINTER(dev->xps_maps, NULL);
2099		kfree_rcu(dev_maps, rcu);
2100	}
2101
2102out_no_maps:
2103	mutex_unlock(&xps_map_mutex);
2104
2105	return 0;
2106error:
2107	/* remove any maps that we added */
2108	for_each_possible_cpu(cpu) {
2109		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2110		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2111				 NULL;
2112		if (new_map && new_map != map)
2113			kfree(new_map);
2114	}
2115
2116	mutex_unlock(&xps_map_mutex);
2117
2118	kfree(new_dev_maps);
2119	return -ENOMEM;
2120}
2121EXPORT_SYMBOL(netif_set_xps_queue);
2122
2123#endif
2124/*
2125 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2126 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2127 */
2128int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2129{
2130	int rc;
2131
2132	if (txq < 1 || txq > dev->num_tx_queues)
2133		return -EINVAL;
2134
2135	if (dev->reg_state == NETREG_REGISTERED ||
2136	    dev->reg_state == NETREG_UNREGISTERING) {
2137		ASSERT_RTNL();
2138
2139		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2140						  txq);
2141		if (rc)
2142			return rc;
2143
2144		if (dev->num_tc)
2145			netif_setup_tc(dev, txq);
2146
2147		if (txq < dev->real_num_tx_queues) {
2148			qdisc_reset_all_tx_gt(dev, txq);
2149#ifdef CONFIG_XPS
2150			netif_reset_xps_queues_gt(dev, txq);
2151#endif
2152		}
2153	}
2154
2155	dev->real_num_tx_queues = txq;
2156	return 0;
2157}
2158EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2159
2160#ifdef CONFIG_SYSFS
2161/**
2162 *	netif_set_real_num_rx_queues - set actual number of RX queues used
2163 *	@dev: Network device
2164 *	@rxq: Actual number of RX queues
2165 *
2166 *	This must be called either with the rtnl_lock held or before
2167 *	registration of the net device.  Returns 0 on success, or a
2168 *	negative error code.  If called before registration, it always
2169 *	succeeds.
2170 */
2171int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2172{
2173	int rc;
2174
2175	if (rxq < 1 || rxq > dev->num_rx_queues)
2176		return -EINVAL;
2177
2178	if (dev->reg_state == NETREG_REGISTERED) {
2179		ASSERT_RTNL();
2180
2181		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2182						  rxq);
2183		if (rc)
2184			return rc;
2185	}
2186
2187	dev->real_num_rx_queues = rxq;
2188	return 0;
2189}
2190EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2191#endif
2192
2193/**
2194 * netif_get_num_default_rss_queues - default number of RSS queues
2195 *
2196 * This routine should set an upper limit on the number of RSS queues
2197 * used by default by multiqueue devices.
2198 */
2199int netif_get_num_default_rss_queues(void)
2200{
2201	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2202}
2203EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2204
2205static inline void __netif_reschedule(struct Qdisc *q)
2206{
2207	struct softnet_data *sd;
2208	unsigned long flags;
2209
2210	local_irq_save(flags);
2211	sd = this_cpu_ptr(&softnet_data);
2212	q->next_sched = NULL;
2213	*sd->output_queue_tailp = q;
2214	sd->output_queue_tailp = &q->next_sched;
2215	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2216	local_irq_restore(flags);
2217}
2218
2219void __netif_schedule(struct Qdisc *q)
2220{
2221	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2222		__netif_reschedule(q);
2223}
2224EXPORT_SYMBOL(__netif_schedule);
2225
2226struct dev_kfree_skb_cb {
2227	enum skb_free_reason reason;
2228};
2229
2230static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2231{
2232	return (struct dev_kfree_skb_cb *)skb->cb;
2233}
2234
2235void netif_schedule_queue(struct netdev_queue *txq)
2236{
2237	rcu_read_lock();
2238	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2239		struct Qdisc *q = rcu_dereference(txq->qdisc);
2240
2241		__netif_schedule(q);
2242	}
2243	rcu_read_unlock();
2244}
2245EXPORT_SYMBOL(netif_schedule_queue);
2246
2247/**
2248 *	netif_wake_subqueue - allow sending packets on subqueue
2249 *	@dev: network device
2250 *	@queue_index: sub queue index
2251 *
2252 * Resume individual transmit queue of a device with multiple transmit queues.
2253 */
2254void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2255{
2256	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2257
2258	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2259		struct Qdisc *q;
2260
2261		rcu_read_lock();
2262		q = rcu_dereference(txq->qdisc);
2263		__netif_schedule(q);
2264		rcu_read_unlock();
2265	}
2266}
2267EXPORT_SYMBOL(netif_wake_subqueue);
2268
2269void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2270{
2271	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2272		struct Qdisc *q;
2273
2274		rcu_read_lock();
2275		q = rcu_dereference(dev_queue->qdisc);
2276		__netif_schedule(q);
2277		rcu_read_unlock();
2278	}
2279}
2280EXPORT_SYMBOL(netif_tx_wake_queue);
2281
2282void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2283{
2284	unsigned long flags;
2285
2286	if (likely(atomic_read(&skb->users) == 1)) {
2287		smp_rmb();
2288		atomic_set(&skb->users, 0);
2289	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2290		return;
2291	}
2292	get_kfree_skb_cb(skb)->reason = reason;
2293	local_irq_save(flags);
2294	skb->next = __this_cpu_read(softnet_data.completion_queue);
2295	__this_cpu_write(softnet_data.completion_queue, skb);
2296	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2297	local_irq_restore(flags);
2298}
2299EXPORT_SYMBOL(__dev_kfree_skb_irq);
2300
2301void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2302{
2303	if (in_irq() || irqs_disabled())
2304		__dev_kfree_skb_irq(skb, reason);
2305	else
2306		dev_kfree_skb(skb);
2307}
2308EXPORT_SYMBOL(__dev_kfree_skb_any);
2309
2310
2311/**
2312 * netif_device_detach - mark device as removed
2313 * @dev: network device
2314 *
2315 * Mark device as removed from system and therefore no longer available.
2316 */
2317void netif_device_detach(struct net_device *dev)
2318{
2319	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2320	    netif_running(dev)) {
2321		netif_tx_stop_all_queues(dev);
2322	}
2323}
2324EXPORT_SYMBOL(netif_device_detach);
2325
2326/**
2327 * netif_device_attach - mark device as attached
2328 * @dev: network device
2329 *
2330 * Mark device as attached from system and restart if needed.
2331 */
2332void netif_device_attach(struct net_device *dev)
2333{
2334	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2335	    netif_running(dev)) {
2336		netif_tx_wake_all_queues(dev);
2337		__netdev_watchdog_up(dev);
2338	}
2339}
2340EXPORT_SYMBOL(netif_device_attach);
2341
2342static void skb_warn_bad_offload(const struct sk_buff *skb)
2343{
2344	static const netdev_features_t null_features = 0;
2345	struct net_device *dev = skb->dev;
2346	const char *driver = "";
2347
2348	if (!net_ratelimit())
2349		return;
2350
2351	if (dev && dev->dev.parent)
2352		driver = dev_driver_string(dev->dev.parent);
2353
2354	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2355	     "gso_type=%d ip_summed=%d\n",
2356	     driver, dev ? &dev->features : &null_features,
2357	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2358	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2359	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2360}
2361
2362/*
2363 * Invalidate hardware checksum when packet is to be mangled, and
2364 * complete checksum manually on outgoing path.
2365 */
2366int skb_checksum_help(struct sk_buff *skb)
2367{
2368	__wsum csum;
2369	int ret = 0, offset;
2370
2371	if (skb->ip_summed == CHECKSUM_COMPLETE)
2372		goto out_set_summed;
2373
2374	if (unlikely(skb_shinfo(skb)->gso_size)) {
2375		skb_warn_bad_offload(skb);
2376		return -EINVAL;
2377	}
2378
2379	/* Before computing a checksum, we should make sure no frag could
2380	 * be modified by an external entity : checksum could be wrong.
2381	 */
2382	if (skb_has_shared_frag(skb)) {
2383		ret = __skb_linearize(skb);
2384		if (ret)
2385			goto out;
2386	}
2387
2388	offset = skb_checksum_start_offset(skb);
2389	BUG_ON(offset >= skb_headlen(skb));
2390	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2391
2392	offset += skb->csum_offset;
2393	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2394
2395	if (skb_cloned(skb) &&
2396	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2397		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2398		if (ret)
2399			goto out;
2400	}
2401
2402	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2403out_set_summed:
2404	skb->ip_summed = CHECKSUM_NONE;
2405out:
2406	return ret;
2407}
2408EXPORT_SYMBOL(skb_checksum_help);
2409
2410__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2411{
2412	__be16 type = skb->protocol;
2413
2414	/* Tunnel gso handlers can set protocol to ethernet. */
2415	if (type == htons(ETH_P_TEB)) {
2416		struct ethhdr *eth;
2417
2418		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2419			return 0;
2420
2421		eth = (struct ethhdr *)skb_mac_header(skb);
2422		type = eth->h_proto;
2423	}
2424
2425	return __vlan_get_protocol(skb, type, depth);
2426}
2427
2428/**
2429 *	skb_mac_gso_segment - mac layer segmentation handler.
2430 *	@skb: buffer to segment
2431 *	@features: features for the output path (see dev->features)
2432 */
2433struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2434				    netdev_features_t features)
2435{
2436	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2437	struct packet_offload *ptype;
2438	int vlan_depth = skb->mac_len;
2439	__be16 type = skb_network_protocol(skb, &vlan_depth);
2440
2441	if (unlikely(!type))
2442		return ERR_PTR(-EINVAL);
2443
2444	__skb_pull(skb, vlan_depth);
2445
2446	rcu_read_lock();
2447	list_for_each_entry_rcu(ptype, &offload_base, list) {
2448		if (ptype->type == type && ptype->callbacks.gso_segment) {
2449			segs = ptype->callbacks.gso_segment(skb, features);
2450			break;
2451		}
2452	}
2453	rcu_read_unlock();
2454
2455	__skb_push(skb, skb->data - skb_mac_header(skb));
2456
2457	return segs;
2458}
2459EXPORT_SYMBOL(skb_mac_gso_segment);
2460
2461
2462/* openvswitch calls this on rx path, so we need a different check.
2463 */
2464static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2465{
2466	if (tx_path)
2467		return skb->ip_summed != CHECKSUM_PARTIAL;
2468	else
2469		return skb->ip_summed == CHECKSUM_NONE;
2470}
2471
2472/**
2473 *	__skb_gso_segment - Perform segmentation on skb.
2474 *	@skb: buffer to segment
2475 *	@features: features for the output path (see dev->features)
2476 *	@tx_path: whether it is called in TX path
2477 *
2478 *	This function segments the given skb and returns a list of segments.
2479 *
2480 *	It may return NULL if the skb requires no segmentation.  This is
2481 *	only possible when GSO is used for verifying header integrity.
2482 *
2483 *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2484 */
2485struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2486				  netdev_features_t features, bool tx_path)
2487{
2488	if (unlikely(skb_needs_check(skb, tx_path))) {
2489		int err;
2490
2491		skb_warn_bad_offload(skb);
2492
2493		err = skb_cow_head(skb, 0);
2494		if (err < 0)
2495			return ERR_PTR(err);
2496	}
2497
2498	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2499		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2500
2501	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2502	SKB_GSO_CB(skb)->encap_level = 0;
2503
2504	skb_reset_mac_header(skb);
2505	skb_reset_mac_len(skb);
2506
2507	return skb_mac_gso_segment(skb, features);
2508}
2509EXPORT_SYMBOL(__skb_gso_segment);
2510
2511/* Take action when hardware reception checksum errors are detected. */
2512#ifdef CONFIG_BUG
2513void netdev_rx_csum_fault(struct net_device *dev)
2514{
2515	if (net_ratelimit()) {
2516		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2517		dump_stack();
2518	}
2519}
2520EXPORT_SYMBOL(netdev_rx_csum_fault);
2521#endif
2522
2523/* Actually, we should eliminate this check as soon as we know, that:
2524 * 1. IOMMU is present and allows to map all the memory.
2525 * 2. No high memory really exists on this machine.
2526 */
2527
2528static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2529{
2530#ifdef CONFIG_HIGHMEM
2531	int i;
2532	if (!(dev->features & NETIF_F_HIGHDMA)) {
2533		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2534			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2535			if (PageHighMem(skb_frag_page(frag)))
2536				return 1;
2537		}
2538	}
2539
2540	if (PCI_DMA_BUS_IS_PHYS) {
2541		struct device *pdev = dev->dev.parent;
2542
2543		if (!pdev)
2544			return 0;
2545		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2546			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2547			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2548			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2549				return 1;
2550		}
2551	}
2552#endif
2553	return 0;
2554}
2555
2556/* If MPLS offload request, verify we are testing hardware MPLS features
2557 * instead of standard features for the netdev.
2558 */
2559#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2560static netdev_features_t net_mpls_features(struct sk_buff *skb,
2561					   netdev_features_t features,
2562					   __be16 type)
2563{
2564	if (eth_p_mpls(type))
2565		features &= skb->dev->mpls_features;
2566
2567	return features;
2568}
2569#else
2570static netdev_features_t net_mpls_features(struct sk_buff *skb,
2571					   netdev_features_t features,
2572					   __be16 type)
2573{
2574	return features;
2575}
2576#endif
2577
2578static netdev_features_t harmonize_features(struct sk_buff *skb,
2579	netdev_features_t features)
2580{
2581	int tmp;
2582	__be16 type;
2583
2584	type = skb_network_protocol(skb, &tmp);
2585	features = net_mpls_features(skb, features, type);
2586
2587	if (skb->ip_summed != CHECKSUM_NONE &&
2588	    !can_checksum_protocol(features, type)) {
2589		features &= ~NETIF_F_ALL_CSUM;
2590	} else if (illegal_highdma(skb->dev, skb)) {
2591		features &= ~NETIF_F_SG;
2592	}
2593
2594	return features;
2595}
2596
2597netdev_features_t passthru_features_check(struct sk_buff *skb,
2598					  struct net_device *dev,
2599					  netdev_features_t features)
2600{
2601	return features;
2602}
2603EXPORT_SYMBOL(passthru_features_check);
2604
2605static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2606					     struct net_device *dev,
2607					     netdev_features_t features)
2608{
2609	return vlan_features_check(skb, features);
2610}
2611
2612netdev_features_t netif_skb_features(struct sk_buff *skb)
2613{
2614	struct net_device *dev = skb->dev;
2615	netdev_features_t features = dev->features;
2616	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2617
2618	if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2619		features &= ~NETIF_F_GSO_MASK;
2620
2621	/* If encapsulation offload request, verify we are testing
2622	 * hardware encapsulation features instead of standard
2623	 * features for the netdev
2624	 */
2625	if (skb->encapsulation)
2626		features &= dev->hw_enc_features;
2627
2628	if (skb_vlan_tagged(skb))
2629		features = netdev_intersect_features(features,
2630						     dev->vlan_features |
2631						     NETIF_F_HW_VLAN_CTAG_TX |
2632						     NETIF_F_HW_VLAN_STAG_TX);
2633
2634	if (dev->netdev_ops->ndo_features_check)
2635		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2636								features);
2637	else
2638		features &= dflt_features_check(skb, dev, features);
2639
2640	return harmonize_features(skb, features);
2641}
2642EXPORT_SYMBOL(netif_skb_features);
2643
2644static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2645		    struct netdev_queue *txq, bool more)
2646{
2647	unsigned int len;
2648	int rc;
2649
2650	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2651		dev_queue_xmit_nit(skb, dev);
2652
2653	len = skb->len;
2654	trace_net_dev_start_xmit(skb, dev);
2655	rc = netdev_start_xmit(skb, dev, txq, more);
2656	trace_net_dev_xmit(skb, rc, dev, len);
2657
2658	return rc;
2659}
2660
2661struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2662				    struct netdev_queue *txq, int *ret)
2663{
2664	struct sk_buff *skb = first;
2665	int rc = NETDEV_TX_OK;
2666
2667	while (skb) {
2668		struct sk_buff *next = skb->next;
2669
2670		skb->next = NULL;
2671		rc = xmit_one(skb, dev, txq, next != NULL);
2672		if (unlikely(!dev_xmit_complete(rc))) {
2673			skb->next = next;
2674			goto out;
2675		}
2676
2677		skb = next;
2678		if (netif_xmit_stopped(txq) && skb) {
2679			rc = NETDEV_TX_BUSY;
2680			break;
2681		}
2682	}
2683
2684out:
2685	*ret = rc;
2686	return skb;
2687}
2688
2689static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2690					  netdev_features_t features)
2691{
2692	if (skb_vlan_tag_present(skb) &&
2693	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2694		skb = __vlan_hwaccel_push_inside(skb);
2695	return skb;
2696}
2697
2698static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2699{
2700	netdev_features_t features;
2701
2702	if (skb->next)
2703		return skb;
2704
2705	features = netif_skb_features(skb);
2706	skb = validate_xmit_vlan(skb, features);
2707	if (unlikely(!skb))
2708		goto out_null;
2709
2710	if (netif_needs_gso(skb, features)) {
2711		struct sk_buff *segs;
2712
2713		segs = skb_gso_segment(skb, features);
2714		if (IS_ERR(segs)) {
2715			goto out_kfree_skb;
2716		} else if (segs) {
2717			consume_skb(skb);
2718			skb = segs;
2719		}
2720	} else {
2721		if (skb_needs_linearize(skb, features) &&
2722		    __skb_linearize(skb))
2723			goto out_kfree_skb;
2724
2725		/* If packet is not checksummed and device does not
2726		 * support checksumming for this protocol, complete
2727		 * checksumming here.
2728		 */
2729		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2730			if (skb->encapsulation)
2731				skb_set_inner_transport_header(skb,
2732							       skb_checksum_start_offset(skb));
2733			else
2734				skb_set_transport_header(skb,
2735							 skb_checksum_start_offset(skb));
2736			if (!(features & NETIF_F_ALL_CSUM) &&
2737			    skb_checksum_help(skb))
2738				goto out_kfree_skb;
2739		}
2740	}
2741
2742	return skb;
2743
2744out_kfree_skb:
2745	kfree_skb(skb);
2746out_null:
2747	return NULL;
2748}
2749
2750struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2751{
2752	struct sk_buff *next, *head = NULL, *tail;
2753
2754	for (; skb != NULL; skb = next) {
2755		next = skb->next;
2756		skb->next = NULL;
2757
2758		/* in case skb wont be segmented, point to itself */
2759		skb->prev = skb;
2760
2761		skb = validate_xmit_skb(skb, dev);
2762		if (!skb)
2763			continue;
2764
2765		if (!head)
2766			head = skb;
2767		else
2768			tail->next = skb;
2769		/* If skb was segmented, skb->prev points to
2770		 * the last segment. If not, it still contains skb.
2771		 */
2772		tail = skb->prev;
2773	}
2774	return head;
2775}
2776
2777static void qdisc_pkt_len_init(struct sk_buff *skb)
2778{
2779	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2780
2781	qdisc_skb_cb(skb)->pkt_len = skb->len;
2782
2783	/* To get more precise estimation of bytes sent on wire,
2784	 * we add to pkt_len the headers size of all segments
2785	 */
2786	if (shinfo->gso_size)  {
2787		unsigned int hdr_len;
2788		u16 gso_segs = shinfo->gso_segs;
2789
2790		/* mac layer + network layer */
2791		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2792
2793		/* + transport layer */
2794		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2795			hdr_len += tcp_hdrlen(skb);
2796		else
2797			hdr_len += sizeof(struct udphdr);
2798
2799		if (shinfo->gso_type & SKB_GSO_DODGY)
2800			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2801						shinfo->gso_size);
2802
2803		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2804	}
2805}
2806
2807static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2808				 struct net_device *dev,
2809				 struct netdev_queue *txq)
2810{
2811	spinlock_t *root_lock = qdisc_lock(q);
2812	bool contended;
2813	int rc;
2814
2815	qdisc_pkt_len_init(skb);
2816	qdisc_calculate_pkt_len(skb, q);
2817	/*
2818	 * Heuristic to force contended enqueues to serialize on a
2819	 * separate lock before trying to get qdisc main lock.
2820	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2821	 * often and dequeue packets faster.
2822	 */
2823	contended = qdisc_is_running(q);
2824	if (unlikely(contended))
2825		spin_lock(&q->busylock);
2826
2827	spin_lock(root_lock);
2828	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2829		kfree_skb(skb);
2830		rc = NET_XMIT_DROP;
2831	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2832		   qdisc_run_begin(q)) {
2833		/*
2834		 * This is a work-conserving queue; there are no old skbs
2835		 * waiting to be sent out; and the qdisc is not running -
2836		 * xmit the skb directly.
2837		 */
2838
2839		qdisc_bstats_update(q, skb);
2840
2841		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2842			if (unlikely(contended)) {
2843				spin_unlock(&q->busylock);
2844				contended = false;
2845			}
2846			__qdisc_run(q);
2847		} else
2848			qdisc_run_end(q);
2849
2850		rc = NET_XMIT_SUCCESS;
2851	} else {
2852		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2853		if (qdisc_run_begin(q)) {
2854			if (unlikely(contended)) {
2855				spin_unlock(&q->busylock);
2856				contended = false;
2857			}
2858			__qdisc_run(q);
2859		}
2860	}
2861	spin_unlock(root_lock);
2862	if (unlikely(contended))
2863		spin_unlock(&q->busylock);
2864	return rc;
2865}
2866
2867#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2868static void skb_update_prio(struct sk_buff *skb)
2869{
2870	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2871
2872	if (!skb->priority && skb->sk && map) {
2873		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2874
2875		if (prioidx < map->priomap_len)
2876			skb->priority = map->priomap[prioidx];
2877	}
2878}
2879#else
2880#define skb_update_prio(skb)
2881#endif
2882
2883DEFINE_PER_CPU(int, xmit_recursion);
2884EXPORT_SYMBOL(xmit_recursion);
2885
2886#define RECURSION_LIMIT 10
2887
2888/**
2889 *	dev_loopback_xmit - loop back @skb
2890 *	@skb: buffer to transmit
2891 */
2892int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb)
2893{
2894	skb_reset_mac_header(skb);
2895	__skb_pull(skb, skb_network_offset(skb));
2896	skb->pkt_type = PACKET_LOOPBACK;
2897	skb->ip_summed = CHECKSUM_UNNECESSARY;
2898	WARN_ON(!skb_dst(skb));
2899	skb_dst_force(skb);
2900	netif_rx_ni(skb);
2901	return 0;
2902}
2903EXPORT_SYMBOL(dev_loopback_xmit);
2904
2905/**
2906 *	__dev_queue_xmit - transmit a buffer
2907 *	@skb: buffer to transmit
2908 *	@accel_priv: private data used for L2 forwarding offload
2909 *
2910 *	Queue a buffer for transmission to a network device. The caller must
2911 *	have set the device and priority and built the buffer before calling
2912 *	this function. The function can be called from an interrupt.
2913 *
2914 *	A negative errno code is returned on a failure. A success does not
2915 *	guarantee the frame will be transmitted as it may be dropped due
2916 *	to congestion or traffic shaping.
2917 *
2918 * -----------------------------------------------------------------------------------
2919 *      I notice this method can also return errors from the queue disciplines,
2920 *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2921 *      be positive.
2922 *
2923 *      Regardless of the return value, the skb is consumed, so it is currently
2924 *      difficult to retry a send to this method.  (You can bump the ref count
2925 *      before sending to hold a reference for retry if you are careful.)
2926 *
2927 *      When calling this method, interrupts MUST be enabled.  This is because
2928 *      the BH enable code must have IRQs enabled so that it will not deadlock.
2929 *          --BLG
2930 */
2931static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2932{
2933	struct net_device *dev = skb->dev;
2934	struct netdev_queue *txq;
2935	struct Qdisc *q;
2936	int rc = -ENOMEM;
2937
2938	skb_reset_mac_header(skb);
2939
2940	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2941		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2942
2943	/* Disable soft irqs for various locks below. Also
2944	 * stops preemption for RCU.
2945	 */
2946	rcu_read_lock_bh();
2947
2948	skb_update_prio(skb);
2949
2950	/* If device/qdisc don't need skb->dst, release it right now while
2951	 * its hot in this cpu cache.
2952	 */
2953	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2954		skb_dst_drop(skb);
2955	else
2956		skb_dst_force(skb);
2957
2958	txq = netdev_pick_tx(dev, skb, accel_priv);
2959	q = rcu_dereference_bh(txq->qdisc);
2960
2961#ifdef CONFIG_NET_CLS_ACT
2962	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2963#endif
2964	trace_net_dev_queue(skb);
2965	if (q->enqueue) {
2966		rc = __dev_xmit_skb(skb, q, dev, txq);
2967		goto out;
2968	}
2969
2970	/* The device has no queue. Common case for software devices:
2971	   loopback, all the sorts of tunnels...
2972
2973	   Really, it is unlikely that netif_tx_lock protection is necessary
2974	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2975	   counters.)
2976	   However, it is possible, that they rely on protection
2977	   made by us here.
2978
2979	   Check this and shot the lock. It is not prone from deadlocks.
2980	   Either shot noqueue qdisc, it is even simpler 8)
2981	 */
2982	if (dev->flags & IFF_UP) {
2983		int cpu = smp_processor_id(); /* ok because BHs are off */
2984
2985		if (txq->xmit_lock_owner != cpu) {
2986
2987			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2988				goto recursion_alert;
2989
2990			skb = validate_xmit_skb(skb, dev);
2991			if (!skb)
2992				goto drop;
2993
2994			HARD_TX_LOCK(dev, txq, cpu);
2995
2996			if (!netif_xmit_stopped(txq)) {
2997				__this_cpu_inc(xmit_recursion);
2998				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2999				__this_cpu_dec(xmit_recursion);
3000				if (dev_xmit_complete(rc)) {
3001					HARD_TX_UNLOCK(dev, txq);
3002					goto out;
3003				}
3004			}
3005			HARD_TX_UNLOCK(dev, txq);
3006			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3007					     dev->name);
3008		} else {
3009			/* Recursion is detected! It is possible,
3010			 * unfortunately
3011			 */
3012recursion_alert:
3013			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3014					     dev->name);
3015		}
3016	}
3017
3018	rc = -ENETDOWN;
3019drop:
3020	rcu_read_unlock_bh();
3021
3022	atomic_long_inc(&dev->tx_dropped);
3023	kfree_skb_list(skb);
3024	return rc;
3025out:
3026	rcu_read_unlock_bh();
3027	return rc;
3028}
3029
3030int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb)
3031{
3032	return __dev_queue_xmit(skb, NULL);
3033}
3034EXPORT_SYMBOL(dev_queue_xmit_sk);
3035
3036int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3037{
3038	return __dev_queue_xmit(skb, accel_priv);
3039}
3040EXPORT_SYMBOL(dev_queue_xmit_accel);
3041
3042
3043/*=======================================================================
3044			Receiver routines
3045  =======================================================================*/
3046
3047int netdev_max_backlog __read_mostly = 1000;
3048EXPORT_SYMBOL(netdev_max_backlog);
3049
3050int netdev_tstamp_prequeue __read_mostly = 1;
3051int netdev_budget __read_mostly = 300;
3052int weight_p __read_mostly = 64;            /* old backlog weight */
3053
3054/* Called with irq disabled */
3055static inline void ____napi_schedule(struct softnet_data *sd,
3056				     struct napi_struct *napi)
3057{
3058	list_add_tail(&napi->poll_list, &sd->poll_list);
3059	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3060}
3061
3062#ifdef CONFIG_RPS
3063
3064/* One global table that all flow-based protocols share. */
3065struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3066EXPORT_SYMBOL(rps_sock_flow_table);
3067u32 rps_cpu_mask __read_mostly;
3068EXPORT_SYMBOL(rps_cpu_mask);
3069
3070struct static_key rps_needed __read_mostly;
3071
3072static struct rps_dev_flow *
3073set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3074	    struct rps_dev_flow *rflow, u16 next_cpu)
3075{
3076	if (next_cpu < nr_cpu_ids) {
3077#ifdef CONFIG_RFS_ACCEL
3078		struct netdev_rx_queue *rxqueue;
3079		struct rps_dev_flow_table *flow_table;
3080		struct rps_dev_flow *old_rflow;
3081		u32 flow_id;
3082		u16 rxq_index;
3083		int rc;
3084
3085		/* Should we steer this flow to a different hardware queue? */
3086		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3087		    !(dev->features & NETIF_F_NTUPLE))
3088			goto out;
3089		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3090		if (rxq_index == skb_get_rx_queue(skb))
3091			goto out;
3092
3093		rxqueue = dev->_rx + rxq_index;
3094		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3095		if (!flow_table)
3096			goto out;
3097		flow_id = skb_get_hash(skb) & flow_table->mask;
3098		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3099							rxq_index, flow_id);
3100		if (rc < 0)
3101			goto out;
3102		old_rflow = rflow;
3103		rflow = &flow_table->flows[flow_id];
3104		rflow->filter = rc;
3105		if (old_rflow->filter == rflow->filter)
3106			old_rflow->filter = RPS_NO_FILTER;
3107	out:
3108#endif
3109		rflow->last_qtail =
3110			per_cpu(softnet_data, next_cpu).input_queue_head;
3111	}
3112
3113	rflow->cpu = next_cpu;
3114	return rflow;
3115}
3116
3117/*
3118 * get_rps_cpu is called from netif_receive_skb and returns the target
3119 * CPU from the RPS map of the receiving queue for a given skb.
3120 * rcu_read_lock must be held on entry.
3121 */
3122static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3123		       struct rps_dev_flow **rflowp)
3124{
3125	const struct rps_sock_flow_table *sock_flow_table;
3126	struct netdev_rx_queue *rxqueue = dev->_rx;
3127	struct rps_dev_flow_table *flow_table;
3128	struct rps_map *map;
3129	int cpu = -1;
3130	u32 tcpu;
3131	u32 hash;
3132
3133	if (skb_rx_queue_recorded(skb)) {
3134		u16 index = skb_get_rx_queue(skb);
3135
3136		if (unlikely(index >= dev->real_num_rx_queues)) {
3137			WARN_ONCE(dev->real_num_rx_queues > 1,
3138				  "%s received packet on queue %u, but number "
3139				  "of RX queues is %u\n",
3140				  dev->name, index, dev->real_num_rx_queues);
3141			goto done;
3142		}
3143		rxqueue += index;
3144	}
3145
3146	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3147
3148	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3149	map = rcu_dereference(rxqueue->rps_map);
3150	if (!flow_table && !map)
3151		goto done;
3152
3153	skb_reset_network_header(skb);
3154	hash = skb_get_hash(skb);
3155	if (!hash)
3156		goto done;
3157
3158	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3159	if (flow_table && sock_flow_table) {
3160		struct rps_dev_flow *rflow;
3161		u32 next_cpu;
3162		u32 ident;
3163
3164		/* First check into global flow table if there is a match */
3165		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3166		if ((ident ^ hash) & ~rps_cpu_mask)
3167			goto try_rps;
3168
3169		next_cpu = ident & rps_cpu_mask;
3170
3171		/* OK, now we know there is a match,
3172		 * we can look at the local (per receive queue) flow table
3173		 */
3174		rflow = &flow_table->flows[hash & flow_table->mask];
3175		tcpu = rflow->cpu;
3176
3177		/*
3178		 * If the desired CPU (where last recvmsg was done) is
3179		 * different from current CPU (one in the rx-queue flow
3180		 * table entry), switch if one of the following holds:
3181		 *   - Current CPU is unset (>= nr_cpu_ids).
3182		 *   - Current CPU is offline.
3183		 *   - The current CPU's queue tail has advanced beyond the
3184		 *     last packet that was enqueued using this table entry.
3185		 *     This guarantees that all previous packets for the flow
3186		 *     have been dequeued, thus preserving in order delivery.
3187		 */
3188		if (unlikely(tcpu != next_cpu) &&
3189		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3190		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3191		      rflow->last_qtail)) >= 0)) {
3192			tcpu = next_cpu;
3193			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3194		}
3195
3196		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3197			*rflowp = rflow;
3198			cpu = tcpu;
3199			goto done;
3200		}
3201	}
3202
3203try_rps:
3204
3205	if (map) {
3206		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3207		if (cpu_online(tcpu)) {
3208			cpu = tcpu;
3209			goto done;
3210		}
3211	}
3212
3213done:
3214	return cpu;
3215}
3216
3217#ifdef CONFIG_RFS_ACCEL
3218
3219/**
3220 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3221 * @dev: Device on which the filter was set
3222 * @rxq_index: RX queue index
3223 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3224 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3225 *
3226 * Drivers that implement ndo_rx_flow_steer() should periodically call
3227 * this function for each installed filter and remove the filters for
3228 * which it returns %true.
3229 */
3230bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3231			 u32 flow_id, u16 filter_id)
3232{
3233	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3234	struct rps_dev_flow_table *flow_table;
3235	struct rps_dev_flow *rflow;
3236	bool expire = true;
3237	unsigned int cpu;
3238
3239	rcu_read_lock();
3240	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3241	if (flow_table && flow_id <= flow_table->mask) {
3242		rflow = &flow_table->flows[flow_id];
3243		cpu = ACCESS_ONCE(rflow->cpu);
3244		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3245		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3246			   rflow->last_qtail) <
3247		     (int)(10 * flow_table->mask)))
3248			expire = false;
3249	}
3250	rcu_read_unlock();
3251	return expire;
3252}
3253EXPORT_SYMBOL(rps_may_expire_flow);
3254
3255#endif /* CONFIG_RFS_ACCEL */
3256
3257/* Called from hardirq (IPI) context */
3258static void rps_trigger_softirq(void *data)
3259{
3260	struct softnet_data *sd = data;
3261
3262	____napi_schedule(sd, &sd->backlog);
3263	sd->received_rps++;
3264}
3265
3266#endif /* CONFIG_RPS */
3267
3268/*
3269 * Check if this softnet_data structure is another cpu one
3270 * If yes, queue it to our IPI list and return 1
3271 * If no, return 0
3272 */
3273static int rps_ipi_queued(struct softnet_data *sd)
3274{
3275#ifdef CONFIG_RPS
3276	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3277
3278	if (sd != mysd) {
3279		sd->rps_ipi_next = mysd->rps_ipi_list;
3280		mysd->rps_ipi_list = sd;
3281
3282		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3283		return 1;
3284	}
3285#endif /* CONFIG_RPS */
3286	return 0;
3287}
3288
3289#ifdef CONFIG_NET_FLOW_LIMIT
3290int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3291#endif
3292
3293static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3294{
3295#ifdef CONFIG_NET_FLOW_LIMIT
3296	struct sd_flow_limit *fl;
3297	struct softnet_data *sd;
3298	unsigned int old_flow, new_flow;
3299
3300	if (qlen < (netdev_max_backlog >> 1))
3301		return false;
3302
3303	sd = this_cpu_ptr(&softnet_data);
3304
3305	rcu_read_lock();
3306	fl = rcu_dereference(sd->flow_limit);
3307	if (fl) {
3308		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3309		old_flow = fl->history[fl->history_head];
3310		fl->history[fl->history_head] = new_flow;
3311
3312		fl->history_head++;
3313		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3314
3315		if (likely(fl->buckets[old_flow]))
3316			fl->buckets[old_flow]--;
3317
3318		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3319			fl->count++;
3320			rcu_read_unlock();
3321			return true;
3322		}
3323	}
3324	rcu_read_unlock();
3325#endif
3326	return false;
3327}
3328
3329/*
3330 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3331 * queue (may be a remote CPU queue).
3332 */
3333static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3334			      unsigned int *qtail)
3335{
3336	struct softnet_data *sd;
3337	unsigned long flags;
3338	unsigned int qlen;
3339
3340	sd = &per_cpu(softnet_data, cpu);
3341
3342	local_irq_save(flags);
3343
3344	rps_lock(sd);
3345	if (!netif_running(skb->dev))
3346		goto drop;
3347	qlen = skb_queue_len(&sd->input_pkt_queue);
3348	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3349		if (qlen) {
3350enqueue:
3351			__skb_queue_tail(&sd->input_pkt_queue, skb);
3352			input_queue_tail_incr_save(sd, qtail);
3353			rps_unlock(sd);
3354			local_irq_restore(flags);
3355			return NET_RX_SUCCESS;
3356		}
3357
3358		/* Schedule NAPI for backlog device
3359		 * We can use non atomic operation since we own the queue lock
3360		 */
3361		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3362			if (!rps_ipi_queued(sd))
3363				____napi_schedule(sd, &sd->backlog);
3364		}
3365		goto enqueue;
3366	}
3367
3368drop:
3369	sd->dropped++;
3370	rps_unlock(sd);
3371
3372	local_irq_restore(flags);
3373
3374	atomic_long_inc(&skb->dev->rx_dropped);
3375	kfree_skb(skb);
3376	return NET_RX_DROP;
3377}
3378
3379static int netif_rx_internal(struct sk_buff *skb)
3380{
3381	int ret;
3382
3383	net_timestamp_check(netdev_tstamp_prequeue, skb);
3384
3385	trace_netif_rx(skb);
3386#ifdef CONFIG_RPS
3387	if (static_key_false(&rps_needed)) {
3388		struct rps_dev_flow voidflow, *rflow = &voidflow;
3389		int cpu;
3390
3391		preempt_disable();
3392		rcu_read_lock();
3393
3394		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3395		if (cpu < 0)
3396			cpu = smp_processor_id();
3397
3398		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3399
3400		rcu_read_unlock();
3401		preempt_enable();
3402	} else
3403#endif
3404	{
3405		unsigned int qtail;
3406		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3407		put_cpu();
3408	}
3409	return ret;
3410}
3411
3412/**
3413 *	netif_rx	-	post buffer to the network code
3414 *	@skb: buffer to post
3415 *
3416 *	This function receives a packet from a device driver and queues it for
3417 *	the upper (protocol) levels to process.  It always succeeds. The buffer
3418 *	may be dropped during processing for congestion control or by the
3419 *	protocol layers.
3420 *
3421 *	return values:
3422 *	NET_RX_SUCCESS	(no congestion)
3423 *	NET_RX_DROP     (packet was dropped)
3424 *
3425 */
3426
3427int netif_rx(struct sk_buff *skb)
3428{
3429	trace_netif_rx_entry(skb);
3430
3431	return netif_rx_internal(skb);
3432}
3433EXPORT_SYMBOL(netif_rx);
3434
3435int netif_rx_ni(struct sk_buff *skb)
3436{
3437	int err;
3438
3439	trace_netif_rx_ni_entry(skb);
3440
3441	preempt_disable();
3442	err = netif_rx_internal(skb);
3443	if (local_softirq_pending())
3444		do_softirq();
3445	preempt_enable();
3446
3447	return err;
3448}
3449EXPORT_SYMBOL(netif_rx_ni);
3450
3451static void net_tx_action(struct softirq_action *h)
3452{
3453	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3454
3455	if (sd->completion_queue) {
3456		struct sk_buff *clist;
3457
3458		local_irq_disable();
3459		clist = sd->completion_queue;
3460		sd->completion_queue = NULL;
3461		local_irq_enable();
3462
3463		while (clist) {
3464			struct sk_buff *skb = clist;
3465			clist = clist->next;
3466
3467			WARN_ON(atomic_read(&skb->users));
3468			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3469				trace_consume_skb(skb);
3470			else
3471				trace_kfree_skb(skb, net_tx_action);
3472			__kfree_skb(skb);
3473		}
3474	}
3475
3476	if (sd->output_queue) {
3477		struct Qdisc *head;
3478
3479		local_irq_disable();
3480		head = sd->output_queue;
3481		sd->output_queue = NULL;
3482		sd->output_queue_tailp = &sd->output_queue;
3483		local_irq_enable();
3484
3485		while (head) {
3486			struct Qdisc *q = head;
3487			spinlock_t *root_lock;
3488
3489			head = head->next_sched;
3490
3491			root_lock = qdisc_lock(q);
3492			if (spin_trylock(root_lock)) {
3493				smp_mb__before_atomic();
3494				clear_bit(__QDISC_STATE_SCHED,
3495					  &q->state);
3496				qdisc_run(q);
3497				spin_unlock(root_lock);
3498			} else {
3499				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3500					      &q->state)) {
3501					__netif_reschedule(q);
3502				} else {
3503					smp_mb__before_atomic();
3504					clear_bit(__QDISC_STATE_SCHED,
3505						  &q->state);
3506				}
3507			}
3508		}
3509	}
3510}
3511
3512#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3513    (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3514/* This hook is defined here for ATM LANE */
3515int (*br_fdb_test_addr_hook)(struct net_device *dev,
3516			     unsigned char *addr) __read_mostly;
3517EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3518#endif
3519
3520#ifdef CONFIG_NET_CLS_ACT
3521/* TODO: Maybe we should just force sch_ingress to be compiled in
3522 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3523 * a compare and 2 stores extra right now if we dont have it on
3524 * but have CONFIG_NET_CLS_ACT
3525 * NOTE: This doesn't stop any functionality; if you dont have
3526 * the ingress scheduler, you just can't add policies on ingress.
3527 *
3528 */
3529static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3530{
3531	struct net_device *dev = skb->dev;
3532	u32 ttl = G_TC_RTTL(skb->tc_verd);
3533	int result = TC_ACT_OK;
3534	struct Qdisc *q;
3535
3536	if (unlikely(MAX_RED_LOOP < ttl++)) {
3537		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3538				     skb->skb_iif, dev->ifindex);
3539		return TC_ACT_SHOT;
3540	}
3541
3542	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3543	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3544
3545	q = rcu_dereference(rxq->qdisc);
3546	if (q != &noop_qdisc) {
3547		spin_lock(qdisc_lock(q));
3548		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3549			result = qdisc_enqueue_root(skb, q);
3550		spin_unlock(qdisc_lock(q));
3551	}
3552
3553	return result;
3554}
3555
3556static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3557					 struct packet_type **pt_prev,
3558					 int *ret, struct net_device *orig_dev)
3559{
3560	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3561
3562	if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3563		return skb;
3564
3565	if (*pt_prev) {
3566		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3567		*pt_prev = NULL;
3568	}
3569
3570	switch (ing_filter(skb, rxq)) {
3571	case TC_ACT_SHOT:
3572	case TC_ACT_STOLEN:
3573		kfree_skb(skb);
3574		return NULL;
3575	}
3576
3577	return skb;
3578}
3579#endif
3580
3581/**
3582 *	netdev_rx_handler_register - register receive handler
3583 *	@dev: device to register a handler for
3584 *	@rx_handler: receive handler to register
3585 *	@rx_handler_data: data pointer that is used by rx handler
3586 *
3587 *	Register a receive handler for a device. This handler will then be
3588 *	called from __netif_receive_skb. A negative errno code is returned
3589 *	on a failure.
3590 *
3591 *	The caller must hold the rtnl_mutex.
3592 *
3593 *	For a general description of rx_handler, see enum rx_handler_result.
3594 */
3595int netdev_rx_handler_register(struct net_device *dev,
3596			       rx_handler_func_t *rx_handler,
3597			       void *rx_handler_data)
3598{
3599	ASSERT_RTNL();
3600
3601	if (dev->rx_handler)
3602		return -EBUSY;
3603
3604	/* Note: rx_handler_data must be set before rx_handler */
3605	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3606	rcu_assign_pointer(dev->rx_handler, rx_handler);
3607
3608	return 0;
3609}
3610EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3611
3612/**
3613 *	netdev_rx_handler_unregister - unregister receive handler
3614 *	@dev: device to unregister a handler from
3615 *
3616 *	Unregister a receive handler from a device.
3617 *
3618 *	The caller must hold the rtnl_mutex.
3619 */
3620void netdev_rx_handler_unregister(struct net_device *dev)
3621{
3622
3623	ASSERT_RTNL();
3624	RCU_INIT_POINTER(dev->rx_handler, NULL);
3625	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3626	 * section has a guarantee to see a non NULL rx_handler_data
3627	 * as well.
3628	 */
3629	synchronize_net();
3630	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3631}
3632EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3633
3634/*
3635 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3636 * the special handling of PFMEMALLOC skbs.
3637 */
3638static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3639{
3640	switch (skb->protocol) {
3641	case htons(ETH_P_ARP):
3642	case htons(ETH_P_IP):
3643	case htons(ETH_P_IPV6):
3644	case htons(ETH_P_8021Q):
3645	case htons(ETH_P_8021AD):
3646		return true;
3647	default:
3648		return false;
3649	}
3650}
3651
3652static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3653{
3654	struct packet_type *ptype, *pt_prev;
3655	rx_handler_func_t *rx_handler;
3656	struct net_device *orig_dev;
3657	bool deliver_exact = false;
3658	int ret = NET_RX_DROP;
3659	__be16 type;
3660
3661	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3662
3663	trace_netif_receive_skb(skb);
3664
3665	orig_dev = skb->dev;
3666
3667	skb_reset_network_header(skb);
3668	if (!skb_transport_header_was_set(skb))
3669		skb_reset_transport_header(skb);
3670	skb_reset_mac_len(skb);
3671
3672	pt_prev = NULL;
3673
3674another_round:
3675	skb->skb_iif = skb->dev->ifindex;
3676
3677	__this_cpu_inc(softnet_data.processed);
3678
3679	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3680	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3681		skb = skb_vlan_untag(skb);
3682		if (unlikely(!skb))
3683			goto out;
3684	}
3685
3686#ifdef CONFIG_NET_CLS_ACT
3687	if (skb->tc_verd & TC_NCLS) {
3688		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3689		goto ncls;
3690	}
3691#endif
3692
3693	if (pfmemalloc)
3694		goto skip_taps;
3695
3696	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3697		if (pt_prev)
3698			ret = deliver_skb(skb, pt_prev, orig_dev);
3699		pt_prev = ptype;
3700	}
3701
3702	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3703		if (pt_prev)
3704			ret = deliver_skb(skb, pt_prev, orig_dev);
3705		pt_prev = ptype;
3706	}
3707
3708skip_taps:
3709#ifdef CONFIG_NET_CLS_ACT
3710	if (static_key_false(&ingress_needed)) {
3711		skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3712		if (!skb)
3713			goto out;
3714	}
3715
3716	skb->tc_verd = 0;
3717ncls:
3718#endif
3719	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3720		goto drop;
3721
3722	if (skb_vlan_tag_present(skb)) {
3723		if (pt_prev) {
3724			ret = deliver_skb(skb, pt_prev, orig_dev);
3725			pt_prev = NULL;
3726		}
3727		if (vlan_do_receive(&skb))
3728			goto another_round;
3729		else if (unlikely(!skb))
3730			goto out;
3731	}
3732
3733	rx_handler = rcu_dereference(skb->dev->rx_handler);
3734	if (rx_handler) {
3735		if (pt_prev) {
3736			ret = deliver_skb(skb, pt_prev, orig_dev);
3737			pt_prev = NULL;
3738		}
3739		switch (rx_handler(&skb)) {
3740		case RX_HANDLER_CONSUMED:
3741			ret = NET_RX_SUCCESS;
3742			goto out;
3743		case RX_HANDLER_ANOTHER:
3744			goto another_round;
3745		case RX_HANDLER_EXACT:
3746			deliver_exact = true;
3747		case RX_HANDLER_PASS:
3748			break;
3749		default:
3750			BUG();
3751		}
3752	}
3753
3754	if (unlikely(skb_vlan_tag_present(skb))) {
3755		if (skb_vlan_tag_get_id(skb))
3756			skb->pkt_type = PACKET_OTHERHOST;
3757		/* Note: we might in the future use prio bits
3758		 * and set skb->priority like in vlan_do_receive()
3759		 * For the time being, just ignore Priority Code Point
3760		 */
3761		skb->vlan_tci = 0;
3762	}
3763
3764	type = skb->protocol;
3765
3766	/* deliver only exact match when indicated */
3767	if (likely(!deliver_exact)) {
3768		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3769				       &ptype_base[ntohs(type) &
3770						   PTYPE_HASH_MASK]);
3771	}
3772
3773	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3774			       &orig_dev->ptype_specific);
3775
3776	if (unlikely(skb->dev != orig_dev)) {
3777		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3778				       &skb->dev->ptype_specific);
3779	}
3780
3781	if (pt_prev) {
3782		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3783			goto drop;
3784		else
3785			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3786	} else {
3787drop:
3788		atomic_long_inc(&skb->dev->rx_dropped);
3789		kfree_skb(skb);
3790		/* Jamal, now you will not able to escape explaining
3791		 * me how you were going to use this. :-)
3792		 */
3793		ret = NET_RX_DROP;
3794	}
3795
3796out:
3797	return ret;
3798}
3799
3800static int __netif_receive_skb(struct sk_buff *skb)
3801{
3802	int ret;
3803
3804	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3805		unsigned long pflags = current->flags;
3806
3807		/*
3808		 * PFMEMALLOC skbs are special, they should
3809		 * - be delivered to SOCK_MEMALLOC sockets only
3810		 * - stay away from userspace
3811		 * - have bounded memory usage
3812		 *
3813		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3814		 * context down to all allocation sites.
3815		 */
3816		current->flags |= PF_MEMALLOC;
3817		ret = __netif_receive_skb_core(skb, true);
3818		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3819	} else
3820		ret = __netif_receive_skb_core(skb, false);
3821
3822	return ret;
3823}
3824
3825static int netif_receive_skb_internal(struct sk_buff *skb)
3826{
3827	int ret;
3828
3829	net_timestamp_check(netdev_tstamp_prequeue, skb);
3830
3831	if (skb_defer_rx_timestamp(skb))
3832		return NET_RX_SUCCESS;
3833
3834	rcu_read_lock();
3835
3836#ifdef CONFIG_RPS
3837	if (static_key_false(&rps_needed)) {
3838		struct rps_dev_flow voidflow, *rflow = &voidflow;
3839		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
3840
3841		if (cpu >= 0) {
3842			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3843			rcu_read_unlock();
3844			return ret;
3845		}
3846	}
3847#endif
3848	ret = __netif_receive_skb(skb);
3849	rcu_read_unlock();
3850	return ret;
3851}
3852
3853/**
3854 *	netif_receive_skb - process receive buffer from network
3855 *	@skb: buffer to process
3856 *
3857 *	netif_receive_skb() is the main receive data processing function.
3858 *	It always succeeds. The buffer may be dropped during processing
3859 *	for congestion control or by the protocol layers.
3860 *
3861 *	This function may only be called from softirq context and interrupts
3862 *	should be enabled.
3863 *
3864 *	Return values (usually ignored):
3865 *	NET_RX_SUCCESS: no congestion
3866 *	NET_RX_DROP: packet was dropped
3867 */
3868int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb)
3869{
3870	trace_netif_receive_skb_entry(skb);
3871
3872	return netif_receive_skb_internal(skb);
3873}
3874EXPORT_SYMBOL(netif_receive_skb_sk);
3875
3876/* Network device is going away, flush any packets still pending
3877 * Called with irqs disabled.
3878 */
3879static void flush_backlog(void *arg)
3880{
3881	struct net_device *dev = arg;
3882	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3883	struct sk_buff *skb, *tmp;
3884
3885	rps_lock(sd);
3886	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3887		if (skb->dev == dev) {
3888			__skb_unlink(skb, &sd->input_pkt_queue);
3889			kfree_skb(skb);
3890			input_queue_head_incr(sd);
3891		}
3892	}
3893	rps_unlock(sd);
3894
3895	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3896		if (skb->dev == dev) {
3897			__skb_unlink(skb, &sd->process_queue);
3898			kfree_skb(skb);
3899			input_queue_head_incr(sd);
3900		}
3901	}
3902}
3903
3904static int napi_gro_complete(struct sk_buff *skb)
3905{
3906	struct packet_offload *ptype;
3907	__be16 type = skb->protocol;
3908	struct list_head *head = &offload_base;
3909	int err = -ENOENT;
3910
3911	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3912
3913	if (NAPI_GRO_CB(skb)->count == 1) {
3914		skb_shinfo(skb)->gso_size = 0;
3915		goto out;
3916	}
3917
3918	rcu_read_lock();
3919	list_for_each_entry_rcu(ptype, head, list) {
3920		if (ptype->type != type || !ptype->callbacks.gro_complete)
3921			continue;
3922
3923		err = ptype->callbacks.gro_complete(skb, 0);
3924		break;
3925	}
3926	rcu_read_unlock();
3927
3928	if (err) {
3929		WARN_ON(&ptype->list == head);
3930		kfree_skb(skb);
3931		return NET_RX_SUCCESS;
3932	}
3933
3934out:
3935	return netif_receive_skb_internal(skb);
3936}
3937
3938/* napi->gro_list contains packets ordered by age.
3939 * youngest packets at the head of it.
3940 * Complete skbs in reverse order to reduce latencies.
3941 */
3942void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3943{
3944	struct sk_buff *skb, *prev = NULL;
3945
3946	/* scan list and build reverse chain */
3947	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3948		skb->prev = prev;
3949		prev = skb;
3950	}
3951
3952	for (skb = prev; skb; skb = prev) {
3953		skb->next = NULL;
3954
3955		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3956			return;
3957
3958		prev = skb->prev;
3959		napi_gro_complete(skb);
3960		napi->gro_count--;
3961	}
3962
3963	napi->gro_list = NULL;
3964}
3965EXPORT_SYMBOL(napi_gro_flush);
3966
3967static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3968{
3969	struct sk_buff *p;
3970	unsigned int maclen = skb->dev->hard_header_len;
3971	u32 hash = skb_get_hash_raw(skb);
3972
3973	for (p = napi->gro_list; p; p = p->next) {
3974		unsigned long diffs;
3975
3976		NAPI_GRO_CB(p)->flush = 0;
3977
3978		if (hash != skb_get_hash_raw(p)) {
3979			NAPI_GRO_CB(p)->same_flow = 0;
3980			continue;
3981		}
3982
3983		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3984		diffs |= p->vlan_tci ^ skb->vlan_tci;
3985		if (maclen == ETH_HLEN)
3986			diffs |= compare_ether_header(skb_mac_header(p),
3987						      skb_mac_header(skb));
3988		else if (!diffs)
3989			diffs = memcmp(skb_mac_header(p),
3990				       skb_mac_header(skb),
3991				       maclen);
3992		NAPI_GRO_CB(p)->same_flow = !diffs;
3993	}
3994}
3995
3996static void skb_gro_reset_offset(struct sk_buff *skb)
3997{
3998	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3999	const skb_frag_t *frag0 = &pinfo->frags[0];
4000
4001	NAPI_GRO_CB(skb)->data_offset = 0;
4002	NAPI_GRO_CB(skb)->frag0 = NULL;
4003	NAPI_GRO_CB(skb)->frag0_len = 0;
4004
4005	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4006	    pinfo->nr_frags &&
4007	    !PageHighMem(skb_frag_page(frag0))) {
4008		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4009		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4010	}
4011}
4012
4013static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4014{
4015	struct skb_shared_info *pinfo = skb_shinfo(skb);
4016
4017	BUG_ON(skb->end - skb->tail < grow);
4018
4019	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4020
4021	skb->data_len -= grow;
4022	skb->tail += grow;
4023
4024	pinfo->frags[0].page_offset += grow;
4025	skb_frag_size_sub(&pinfo->frags[0], grow);
4026
4027	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4028		skb_frag_unref(skb, 0);
4029		memmove(pinfo->frags, pinfo->frags + 1,
4030			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4031	}
4032}
4033
4034static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4035{
4036	struct sk_buff **pp = NULL;
4037	struct packet_offload *ptype;
4038	__be16 type = skb->protocol;
4039	struct list_head *head = &offload_base;
4040	int same_flow;
4041	enum gro_result ret;
4042	int grow;
4043
4044	if (!(skb->dev->features & NETIF_F_GRO))
4045		goto normal;
4046
4047	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4048		goto normal;
4049
4050	gro_list_prepare(napi, skb);
4051
4052	rcu_read_lock();
4053	list_for_each_entry_rcu(ptype, head, list) {
4054		if (ptype->type != type || !ptype->callbacks.gro_receive)
4055			continue;
4056
4057		skb_set_network_header(skb, skb_gro_offset(skb));
4058		skb_reset_mac_len(skb);
4059		NAPI_GRO_CB(skb)->same_flow = 0;
4060		NAPI_GRO_CB(skb)->flush = 0;
4061		NAPI_GRO_CB(skb)->free = 0;
4062		NAPI_GRO_CB(skb)->udp_mark = 0;
4063		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4064
4065		/* Setup for GRO checksum validation */
4066		switch (skb->ip_summed) {
4067		case CHECKSUM_COMPLETE:
4068			NAPI_GRO_CB(skb)->csum = skb->csum;
4069			NAPI_GRO_CB(skb)->csum_valid = 1;
4070			NAPI_GRO_CB(skb)->csum_cnt = 0;
4071			break;
4072		case CHECKSUM_UNNECESSARY:
4073			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4074			NAPI_GRO_CB(skb)->csum_valid = 0;
4075			break;
4076		default:
4077			NAPI_GRO_CB(skb)->csum_cnt = 0;
4078			NAPI_GRO_CB(skb)->csum_valid = 0;
4079		}
4080
4081		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4082		break;
4083	}
4084	rcu_read_unlock();
4085
4086	if (&ptype->list == head)
4087		goto normal;
4088
4089	same_flow = NAPI_GRO_CB(skb)->same_flow;
4090	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4091
4092	if (pp) {
4093		struct sk_buff *nskb = *pp;
4094
4095		*pp = nskb->next;
4096		nskb->next = NULL;
4097		napi_gro_complete(nskb);
4098		napi->gro_count--;
4099	}
4100
4101	if (same_flow)
4102		goto ok;
4103
4104	if (NAPI_GRO_CB(skb)->flush)
4105		goto normal;
4106
4107	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4108		struct sk_buff *nskb = napi->gro_list;
4109
4110		/* locate the end of the list to select the 'oldest' flow */
4111		while (nskb->next) {
4112			pp = &nskb->next;
4113			nskb = *pp;
4114		}
4115		*pp = NULL;
4116		nskb->next = NULL;
4117		napi_gro_complete(nskb);
4118	} else {
4119		napi->gro_count++;
4120	}
4121	NAPI_GRO_CB(skb)->count = 1;
4122	NAPI_GRO_CB(skb)->age = jiffies;
4123	NAPI_GRO_CB(skb)->last = skb;
4124	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4125	skb->next = napi->gro_list;
4126	napi->gro_list = skb;
4127	ret = GRO_HELD;
4128
4129pull:
4130	grow = skb_gro_offset(skb) - skb_headlen(skb);
4131	if (grow > 0)
4132		gro_pull_from_frag0(skb, grow);
4133ok:
4134	return ret;
4135
4136normal:
4137	ret = GRO_NORMAL;
4138	goto pull;
4139}
4140
4141struct packet_offload *gro_find_receive_by_type(__be16 type)
4142{
4143	struct list_head *offload_head = &offload_base;
4144	struct packet_offload *ptype;
4145
4146	list_for_each_entry_rcu(ptype, offload_head, list) {
4147		if (ptype->type != type || !ptype->callbacks.gro_receive)
4148			continue;
4149		return ptype;
4150	}
4151	return NULL;
4152}
4153EXPORT_SYMBOL(gro_find_receive_by_type);
4154
4155struct packet_offload *gro_find_complete_by_type(__be16 type)
4156{
4157	struct list_head *offload_head = &offload_base;
4158	struct packet_offload *ptype;
4159
4160	list_for_each_entry_rcu(ptype, offload_head, list) {
4161		if (ptype->type != type || !ptype->callbacks.gro_complete)
4162			continue;
4163		return ptype;
4164	}
4165	return NULL;
4166}
4167EXPORT_SYMBOL(gro_find_complete_by_type);
4168
4169static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4170{
4171	switch (ret) {
4172	case GRO_NORMAL:
4173		if (netif_receive_skb_internal(skb))
4174			ret = GRO_DROP;
4175		break;
4176
4177	case GRO_DROP:
4178		kfree_skb(skb);
4179		break;
4180
4181	case GRO_MERGED_FREE:
4182		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4183			kmem_cache_free(skbuff_head_cache, skb);
4184		else
4185			__kfree_skb(skb);
4186		break;
4187
4188	case GRO_HELD:
4189	case GRO_MERGED:
4190		break;
4191	}
4192
4193	return ret;
4194}
4195
4196gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4197{
4198	trace_napi_gro_receive_entry(skb);
4199
4200	skb_gro_reset_offset(skb);
4201
4202	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4203}
4204EXPORT_SYMBOL(napi_gro_receive);
4205
4206static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4207{
4208	if (unlikely(skb->pfmemalloc)) {
4209		consume_skb(skb);
4210		return;
4211	}
4212	__skb_pull(skb, skb_headlen(skb));
4213	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4214	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4215	skb->vlan_tci = 0;
4216	skb->dev = napi->dev;
4217	skb->skb_iif = 0;
4218	skb->encapsulation = 0;
4219	skb_shinfo(skb)->gso_type = 0;
4220	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4221
4222	napi->skb = skb;
4223}
4224
4225struct sk_buff *napi_get_frags(struct napi_struct *napi)
4226{
4227	struct sk_buff *skb = napi->skb;
4228
4229	if (!skb) {
4230		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4231		napi->skb = skb;
4232	}
4233	return skb;
4234}
4235EXPORT_SYMBOL(napi_get_frags);
4236
4237static gro_result_t napi_frags_finish(struct napi_struct *napi,
4238				      struct sk_buff *skb,
4239				      gro_result_t ret)
4240{
4241	switch (ret) {
4242	case GRO_NORMAL:
4243	case GRO_HELD:
4244		__skb_push(skb, ETH_HLEN);
4245		skb->protocol = eth_type_trans(skb, skb->dev);
4246		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4247			ret = GRO_DROP;
4248		break;
4249
4250	case GRO_DROP:
4251	case GRO_MERGED_FREE:
4252		napi_reuse_skb(napi, skb);
4253		break;
4254
4255	case GRO_MERGED:
4256		break;
4257	}
4258
4259	return ret;
4260}
4261
4262/* Upper GRO stack assumes network header starts at gro_offset=0
4263 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4264 * We copy ethernet header into skb->data to have a common layout.
4265 */
4266static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4267{
4268	struct sk_buff *skb = napi->skb;
4269	const struct ethhdr *eth;
4270	unsigned int hlen = sizeof(*eth);
4271
4272	napi->skb = NULL;
4273
4274	skb_reset_mac_header(skb);
4275	skb_gro_reset_offset(skb);
4276
4277	eth = skb_gro_header_fast(skb, 0);
4278	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4279		eth = skb_gro_header_slow(skb, hlen, 0);
4280		if (unlikely(!eth)) {
4281			napi_reuse_skb(napi, skb);
4282			return NULL;
4283		}
4284	} else {
4285		gro_pull_from_frag0(skb, hlen);
4286		NAPI_GRO_CB(skb)->frag0 += hlen;
4287		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4288	}
4289	__skb_pull(skb, hlen);
4290
4291	/*
4292	 * This works because the only protocols we care about don't require
4293	 * special handling.
4294	 * We'll fix it up properly in napi_frags_finish()
4295	 */
4296	skb->protocol = eth->h_proto;
4297
4298	return skb;
4299}
4300
4301gro_result_t napi_gro_frags(struct napi_struct *napi)
4302{
4303	struct sk_buff *skb = napi_frags_skb(napi);
4304
4305	if (!skb)
4306		return GRO_DROP;
4307
4308	trace_napi_gro_frags_entry(skb);
4309
4310	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4311}
4312EXPORT_SYMBOL(napi_gro_frags);
4313
4314/* Compute the checksum from gro_offset and return the folded value
4315 * after adding in any pseudo checksum.
4316 */
4317__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4318{
4319	__wsum wsum;
4320	__sum16 sum;
4321
4322	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4323
4324	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4325	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4326	if (likely(!sum)) {
4327		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4328		    !skb->csum_complete_sw)
4329			netdev_rx_csum_fault(skb->dev);
4330	}
4331
4332	NAPI_GRO_CB(skb)->csum = wsum;
4333	NAPI_GRO_CB(skb)->csum_valid = 1;
4334
4335	return sum;
4336}
4337EXPORT_SYMBOL(__skb_gro_checksum_complete);
4338
4339/*
4340 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4341 * Note: called with local irq disabled, but exits with local irq enabled.
4342 */
4343static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4344{
4345#ifdef CONFIG_RPS
4346	struct softnet_data *remsd = sd->rps_ipi_list;
4347
4348	if (remsd) {
4349		sd->rps_ipi_list = NULL;
4350
4351		local_irq_enable();
4352
4353		/* Send pending IPI's to kick RPS processing on remote cpus. */
4354		while (remsd) {
4355			struct softnet_data *next = remsd->rps_ipi_next;
4356
4357			if (cpu_online(remsd->cpu))
4358				smp_call_function_single_async(remsd->cpu,
4359							   &remsd->csd);
4360			remsd = next;
4361		}
4362	} else
4363#endif
4364		local_irq_enable();
4365}
4366
4367static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4368{
4369#ifdef CONFIG_RPS
4370	return sd->rps_ipi_list != NULL;
4371#else
4372	return false;
4373#endif
4374}
4375
4376static int process_backlog(struct napi_struct *napi, int quota)
4377{
4378	int work = 0;
4379	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4380
4381	/* Check if we have pending ipi, its better to send them now,
4382	 * not waiting net_rx_action() end.
4383	 */
4384	if (sd_has_rps_ipi_waiting(sd)) {
4385		local_irq_disable();
4386		net_rps_action_and_irq_enable(sd);
4387	}
4388
4389	napi->weight = weight_p;
4390	local_irq_disable();
4391	while (1) {
4392		struct sk_buff *skb;
4393
4394		while ((skb = __skb_dequeue(&sd->process_queue))) {
4395			rcu_read_lock();
4396			local_irq_enable();
4397			__netif_receive_skb(skb);
4398			rcu_read_unlock();
4399			local_irq_disable();
4400			input_queue_head_incr(sd);
4401			if (++work >= quota) {
4402				local_irq_enable();
4403				return work;
4404			}
4405		}
4406
4407		rps_lock(sd);
4408		if (skb_queue_empty(&sd->input_pkt_queue)) {
4409			/*
4410			 * Inline a custom version of __napi_complete().
4411			 * only current cpu owns and manipulates this napi,
4412			 * and NAPI_STATE_SCHED is the only possible flag set
4413			 * on backlog.
4414			 * We can use a plain write instead of clear_bit(),
4415			 * and we dont need an smp_mb() memory barrier.
4416			 */
4417			napi->state = 0;
4418			rps_unlock(sd);
4419
4420			break;
4421		}
4422
4423		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4424					   &sd->process_queue);
4425		rps_unlock(sd);
4426	}
4427	local_irq_enable();
4428
4429	return work;
4430}
4431
4432/**
4433 * __napi_schedule - schedule for receive
4434 * @n: entry to schedule
4435 *
4436 * The entry's receive function will be scheduled to run.
4437 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4438 */
4439void __napi_schedule(struct napi_struct *n)
4440{
4441	unsigned long flags;
4442
4443	local_irq_save(flags);
4444	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4445	local_irq_restore(flags);
4446}
4447EXPORT_SYMBOL(__napi_schedule);
4448
4449/**
4450 * __napi_schedule_irqoff - schedule for receive
4451 * @n: entry to schedule
4452 *
4453 * Variant of __napi_schedule() assuming hard irqs are masked
4454 */
4455void __napi_schedule_irqoff(struct napi_struct *n)
4456{
4457	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4458}
4459EXPORT_SYMBOL(__napi_schedule_irqoff);
4460
4461void __napi_complete(struct napi_struct *n)
4462{
4463	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4464
4465	list_del_init(&n->poll_list);
4466	smp_mb__before_atomic();
4467	clear_bit(NAPI_STATE_SCHED, &n->state);
4468}
4469EXPORT_SYMBOL(__napi_complete);
4470
4471void napi_complete_done(struct napi_struct *n, int work_done)
4472{
4473	unsigned long flags;
4474
4475	/*
4476	 * don't let napi dequeue from the cpu poll list
4477	 * just in case its running on a different cpu
4478	 */
4479	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4480		return;
4481
4482	if (n->gro_list) {
4483		unsigned long timeout = 0;
4484
4485		if (work_done)
4486			timeout = n->dev->gro_flush_timeout;
4487
4488		if (timeout)
4489			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4490				      HRTIMER_MODE_REL_PINNED);
4491		else
4492			napi_gro_flush(n, false);
4493	}
4494	if (likely(list_empty(&n->poll_list))) {
4495		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4496	} else {
4497		/* If n->poll_list is not empty, we need to mask irqs */
4498		local_irq_save(flags);
4499		__napi_complete(n);
4500		local_irq_restore(flags);
4501	}
4502}
4503EXPORT_SYMBOL(napi_complete_done);
4504
4505/* must be called under rcu_read_lock(), as we dont take a reference */
4506struct napi_struct *napi_by_id(unsigned int napi_id)
4507{
4508	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4509	struct napi_struct *napi;
4510
4511	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4512		if (napi->napi_id == napi_id)
4513			return napi;
4514
4515	return NULL;
4516}
4517EXPORT_SYMBOL_GPL(napi_by_id);
4518
4519void napi_hash_add(struct napi_struct *napi)
4520{
4521	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4522
4523		spin_lock(&napi_hash_lock);
4524
4525		/* 0 is not a valid id, we also skip an id that is taken
4526		 * we expect both events to be extremely rare
4527		 */
4528		napi->napi_id = 0;
4529		while (!napi->napi_id) {
4530			napi->napi_id = ++napi_gen_id;
4531			if (napi_by_id(napi->napi_id))
4532				napi->napi_id = 0;
4533		}
4534
4535		hlist_add_head_rcu(&napi->napi_hash_node,
4536			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4537
4538		spin_unlock(&napi_hash_lock);
4539	}
4540}
4541EXPORT_SYMBOL_GPL(napi_hash_add);
4542
4543/* Warning : caller is responsible to make sure rcu grace period
4544 * is respected before freeing memory containing @napi
4545 */
4546void napi_hash_del(struct napi_struct *napi)
4547{
4548	spin_lock(&napi_hash_lock);
4549
4550	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4551		hlist_del_rcu(&napi->napi_hash_node);
4552
4553	spin_unlock(&napi_hash_lock);
4554}
4555EXPORT_SYMBOL_GPL(napi_hash_del);
4556
4557static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4558{
4559	struct napi_struct *napi;
4560
4561	napi = container_of(timer, struct napi_struct, timer);
4562	if (napi->gro_list)
4563		napi_schedule(napi);
4564
4565	return HRTIMER_NORESTART;
4566}
4567
4568void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4569		    int (*poll)(struct napi_struct *, int), int weight)
4570{
4571	INIT_LIST_HEAD(&napi->poll_list);
4572	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4573	napi->timer.function = napi_watchdog;
4574	napi->gro_count = 0;
4575	napi->gro_list = NULL;
4576	napi->skb = NULL;
4577	napi->poll = poll;
4578	if (weight > NAPI_POLL_WEIGHT)
4579		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4580			    weight, dev->name);
4581	napi->weight = weight;
4582	list_add(&napi->dev_list, &dev->napi_list);
4583	napi->dev = dev;
4584#ifdef CONFIG_NETPOLL
4585	spin_lock_init(&napi->poll_lock);
4586	napi->poll_owner = -1;
4587#endif
4588	set_bit(NAPI_STATE_SCHED, &napi->state);
4589}
4590EXPORT_SYMBOL(netif_napi_add);
4591
4592void napi_disable(struct napi_struct *n)
4593{
4594	might_sleep();
4595	set_bit(NAPI_STATE_DISABLE, &n->state);
4596
4597	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4598		msleep(1);
4599
4600	hrtimer_cancel(&n->timer);
4601
4602	clear_bit(NAPI_STATE_DISABLE, &n->state);
4603}
4604EXPORT_SYMBOL(napi_disable);
4605
4606void netif_napi_del(struct napi_struct *napi)
4607{
4608	list_del_init(&napi->dev_list);
4609	napi_free_frags(napi);
4610
4611	kfree_skb_list(napi->gro_list);
4612	napi->gro_list = NULL;
4613	napi->gro_count = 0;
4614}
4615EXPORT_SYMBOL(netif_napi_del);
4616
4617static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4618{
4619	void *have;
4620	int work, weight;
4621
4622	list_del_init(&n->poll_list);
4623
4624	have = netpoll_poll_lock(n);
4625
4626	weight = n->weight;
4627
4628	/* This NAPI_STATE_SCHED test is for avoiding a race
4629	 * with netpoll's poll_napi().  Only the entity which
4630	 * obtains the lock and sees NAPI_STATE_SCHED set will
4631	 * actually make the ->poll() call.  Therefore we avoid
4632	 * accidentally calling ->poll() when NAPI is not scheduled.
4633	 */
4634	work = 0;
4635	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4636		work = n->poll(n, weight);
4637		trace_napi_poll(n);
4638	}
4639
4640	WARN_ON_ONCE(work > weight);
4641
4642	if (likely(work < weight))
4643		goto out_unlock;
4644
4645	/* Drivers must not modify the NAPI state if they
4646	 * consume the entire weight.  In such cases this code
4647	 * still "owns" the NAPI instance and therefore can
4648	 * move the instance around on the list at-will.
4649	 */
4650	if (unlikely(napi_disable_pending(n))) {
4651		napi_complete(n);
4652		goto out_unlock;
4653	}
4654
4655	if (n->gro_list) {
4656		/* flush too old packets
4657		 * If HZ < 1000, flush all packets.
4658		 */
4659		napi_gro_flush(n, HZ >= 1000);
4660	}
4661
4662	/* Some drivers may have called napi_schedule
4663	 * prior to exhausting their budget.
4664	 */
4665	if (unlikely(!list_empty(&n->poll_list))) {
4666		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4667			     n->dev ? n->dev->name : "backlog");
4668		goto out_unlock;
4669	}
4670
4671	list_add_tail(&n->poll_list, repoll);
4672
4673out_unlock:
4674	netpoll_poll_unlock(have);
4675
4676	return work;
4677}
4678
4679static void net_rx_action(struct softirq_action *h)
4680{
4681	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4682	unsigned long time_limit = jiffies + 2;
4683	int budget = netdev_budget;
4684	LIST_HEAD(list);
4685	LIST_HEAD(repoll);
4686
4687	local_irq_disable();
4688	list_splice_init(&sd->poll_list, &list);
4689	local_irq_enable();
4690
4691	for (;;) {
4692		struct napi_struct *n;
4693
4694		if (list_empty(&list)) {
4695			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4696				return;
4697			break;
4698		}
4699
4700		n = list_first_entry(&list, struct napi_struct, poll_list);
4701		budget -= napi_poll(n, &repoll);
4702
4703		/* If softirq window is exhausted then punt.
4704		 * Allow this to run for 2 jiffies since which will allow
4705		 * an average latency of 1.5/HZ.
4706		 */
4707		if (unlikely(budget <= 0 ||
4708			     time_after_eq(jiffies, time_limit))) {
4709			sd->time_squeeze++;
4710			break;
4711		}
4712	}
4713
4714	local_irq_disable();
4715
4716	list_splice_tail_init(&sd->poll_list, &list);
4717	list_splice_tail(&repoll, &list);
4718	list_splice(&list, &sd->poll_list);
4719	if (!list_empty(&sd->poll_list))
4720		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4721
4722	net_rps_action_and_irq_enable(sd);
4723}
4724
4725struct netdev_adjacent {
4726	struct net_device *dev;
4727
4728	/* upper master flag, there can only be one master device per list */
4729	bool master;
4730
4731	/* counter for the number of times this device was added to us */
4732	u16 ref_nr;
4733
4734	/* private field for the users */
4735	void *private;
4736
4737	struct list_head list;
4738	struct rcu_head rcu;
4739};
4740
4741static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4742						 struct net_device *adj_dev,
4743						 struct list_head *adj_list)
4744{
4745	struct netdev_adjacent *adj;
4746
4747	list_for_each_entry(adj, adj_list, list) {
4748		if (adj->dev == adj_dev)
4749			return adj;
4750	}
4751	return NULL;
4752}
4753
4754/**
4755 * netdev_has_upper_dev - Check if device is linked to an upper device
4756 * @dev: device
4757 * @upper_dev: upper device to check
4758 *
4759 * Find out if a device is linked to specified upper device and return true
4760 * in case it is. Note that this checks only immediate upper device,
4761 * not through a complete stack of devices. The caller must hold the RTNL lock.
4762 */
4763bool netdev_has_upper_dev(struct net_device *dev,
4764			  struct net_device *upper_dev)
4765{
4766	ASSERT_RTNL();
4767
4768	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4769}
4770EXPORT_SYMBOL(netdev_has_upper_dev);
4771
4772/**
4773 * netdev_has_any_upper_dev - Check if device is linked to some device
4774 * @dev: device
4775 *
4776 * Find out if a device is linked to an upper device and return true in case
4777 * it is. The caller must hold the RTNL lock.
4778 */
4779static bool netdev_has_any_upper_dev(struct net_device *dev)
4780{
4781	ASSERT_RTNL();
4782
4783	return !list_empty(&dev->all_adj_list.upper);
4784}
4785
4786/**
4787 * netdev_master_upper_dev_get - Get master upper device
4788 * @dev: device
4789 *
4790 * Find a master upper device and return pointer to it or NULL in case
4791 * it's not there. The caller must hold the RTNL lock.
4792 */
4793struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4794{
4795	struct netdev_adjacent *upper;
4796
4797	ASSERT_RTNL();
4798
4799	if (list_empty(&dev->adj_list.upper))
4800		return NULL;
4801
4802	upper = list_first_entry(&dev->adj_list.upper,
4803				 struct netdev_adjacent, list);
4804	if (likely(upper->master))
4805		return upper->dev;
4806	return NULL;
4807}
4808EXPORT_SYMBOL(netdev_master_upper_dev_get);
4809
4810void *netdev_adjacent_get_private(struct list_head *adj_list)
4811{
4812	struct netdev_adjacent *adj;
4813
4814	adj = list_entry(adj_list, struct netdev_adjacent, list);
4815
4816	return adj->private;
4817}
4818EXPORT_SYMBOL(netdev_adjacent_get_private);
4819
4820/**
4821 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4822 * @dev: device
4823 * @iter: list_head ** of the current position
4824 *
4825 * Gets the next device from the dev's upper list, starting from iter
4826 * position. The caller must hold RCU read lock.
4827 */
4828struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4829						 struct list_head **iter)
4830{
4831	struct netdev_adjacent *upper;
4832
4833	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4834
4835	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4836
4837	if (&upper->list == &dev->adj_list.upper)
4838		return NULL;
4839
4840	*iter = &upper->list;
4841
4842	return upper->dev;
4843}
4844EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4845
4846/**
4847 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4848 * @dev: device
4849 * @iter: list_head ** of the current position
4850 *
4851 * Gets the next device from the dev's upper list, starting from iter
4852 * position. The caller must hold RCU read lock.
4853 */
4854struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4855						     struct list_head **iter)
4856{
4857	struct netdev_adjacent *upper;
4858
4859	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4860
4861	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4862
4863	if (&upper->list == &dev->all_adj_list.upper)
4864		return NULL;
4865
4866	*iter = &upper->list;
4867
4868	return upper->dev;
4869}
4870EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4871
4872/**
4873 * netdev_lower_get_next_private - Get the next ->private from the
4874 *				   lower neighbour list
4875 * @dev: device
4876 * @iter: list_head ** of the current position
4877 *
4878 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4879 * list, starting from iter position. The caller must hold either hold the
4880 * RTNL lock or its own locking that guarantees that the neighbour lower
4881 * list will remain unchainged.
4882 */
4883void *netdev_lower_get_next_private(struct net_device *dev,
4884				    struct list_head **iter)
4885{
4886	struct netdev_adjacent *lower;
4887
4888	lower = list_entry(*iter, struct netdev_adjacent, list);
4889
4890	if (&lower->list == &dev->adj_list.lower)
4891		return NULL;
4892
4893	*iter = lower->list.next;
4894
4895	return lower->private;
4896}
4897EXPORT_SYMBOL(netdev_lower_get_next_private);
4898
4899/**
4900 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4901 *				       lower neighbour list, RCU
4902 *				       variant
4903 * @dev: device
4904 * @iter: list_head ** of the current position
4905 *
4906 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4907 * list, starting from iter position. The caller must hold RCU read lock.
4908 */
4909void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4910					struct list_head **iter)
4911{
4912	struct netdev_adjacent *lower;
4913
4914	WARN_ON_ONCE(!rcu_read_lock_held());
4915
4916	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4917
4918	if (&lower->list == &dev->adj_list.lower)
4919		return NULL;
4920
4921	*iter = &lower->list;
4922
4923	return lower->private;
4924}
4925EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4926
4927/**
4928 * netdev_lower_get_next - Get the next device from the lower neighbour
4929 *                         list
4930 * @dev: device
4931 * @iter: list_head ** of the current position
4932 *
4933 * Gets the next netdev_adjacent from the dev's lower neighbour
4934 * list, starting from iter position. The caller must hold RTNL lock or
4935 * its own locking that guarantees that the neighbour lower
4936 * list will remain unchainged.
4937 */
4938void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4939{
4940	struct netdev_adjacent *lower;
4941
4942	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4943
4944	if (&lower->list == &dev->adj_list.lower)
4945		return NULL;
4946
4947	*iter = &lower->list;
4948
4949	return lower->dev;
4950}
4951EXPORT_SYMBOL(netdev_lower_get_next);
4952
4953/**
4954 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4955 *				       lower neighbour list, RCU
4956 *				       variant
4957 * @dev: device
4958 *
4959 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4960 * list. The caller must hold RCU read lock.
4961 */
4962void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4963{
4964	struct netdev_adjacent *lower;
4965
4966	lower = list_first_or_null_rcu(&dev->adj_list.lower,
4967			struct netdev_adjacent, list);
4968	if (lower)
4969		return lower->private;
4970	return NULL;
4971}
4972EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4973
4974/**
4975 * netdev_master_upper_dev_get_rcu - Get master upper device
4976 * @dev: device
4977 *
4978 * Find a master upper device and return pointer to it or NULL in case
4979 * it's not there. The caller must hold the RCU read lock.
4980 */
4981struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4982{
4983	struct netdev_adjacent *upper;
4984
4985	upper = list_first_or_null_rcu(&dev->adj_list.upper,
4986				       struct netdev_adjacent, list);
4987	if (upper && likely(upper->master))
4988		return upper->dev;
4989	return NULL;
4990}
4991EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4992
4993static int netdev_adjacent_sysfs_add(struct net_device *dev,
4994			      struct net_device *adj_dev,
4995			      struct list_head *dev_list)
4996{
4997	char linkname[IFNAMSIZ+7];
4998	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4999		"upper_%s" : "lower_%s", adj_dev->name);
5000	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5001				 linkname);
5002}
5003static void netdev_adjacent_sysfs_del(struct net_device *dev,
5004			       char *name,
5005			       struct list_head *dev_list)
5006{
5007	char linkname[IFNAMSIZ+7];
5008	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5009		"upper_%s" : "lower_%s", name);
5010	sysfs_remove_link(&(dev->dev.kobj), linkname);
5011}
5012
5013static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5014						 struct net_device *adj_dev,
5015						 struct list_head *dev_list)
5016{
5017	return (dev_list == &dev->adj_list.upper ||
5018		dev_list == &dev->adj_list.lower) &&
5019		net_eq(dev_net(dev), dev_net(adj_dev));
5020}
5021
5022static int __netdev_adjacent_dev_insert(struct net_device *dev,
5023					struct net_device *adj_dev,
5024					struct list_head *dev_list,
5025					void *private, bool master)
5026{
5027	struct netdev_adjacent *adj;
5028	int ret;
5029
5030	adj = __netdev_find_adj(dev, adj_dev, dev_list);
5031
5032	if (adj) {
5033		adj->ref_nr++;
5034		return 0;
5035	}
5036
5037	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5038	if (!adj)
5039		return -ENOMEM;
5040
5041	adj->dev = adj_dev;
5042	adj->master = master;
5043	adj->ref_nr = 1;
5044	adj->private = private;
5045	dev_hold(adj_dev);
5046
5047	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5048		 adj_dev->name, dev->name, adj_dev->name);
5049
5050	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5051		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5052		if (ret)
5053			goto free_adj;
5054	}
5055
5056	/* Ensure that master link is always the first item in list. */
5057	if (master) {
5058		ret = sysfs_create_link(&(dev->dev.kobj),
5059					&(adj_dev->dev.kobj), "master");
5060		if (ret)
5061			goto remove_symlinks;
5062
5063		list_add_rcu(&adj->list, dev_list);
5064	} else {
5065		list_add_tail_rcu(&adj->list, dev_list);
5066	}
5067
5068	return 0;
5069
5070remove_symlinks:
5071	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5072		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5073free_adj:
5074	kfree(adj);
5075	dev_put(adj_dev);
5076
5077	return ret;
5078}
5079
5080static void __netdev_adjacent_dev_remove(struct net_device *dev,
5081					 struct net_device *adj_dev,
5082					 struct list_head *dev_list)
5083{
5084	struct netdev_adjacent *adj;
5085
5086	adj = __netdev_find_adj(dev, adj_dev, dev_list);
5087
5088	if (!adj) {
5089		pr_err("tried to remove device %s from %s\n",
5090		       dev->name, adj_dev->name);
5091		BUG();
5092	}
5093
5094	if (adj->ref_nr > 1) {
5095		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5096			 adj->ref_nr-1);
5097		adj->ref_nr--;
5098		return;
5099	}
5100
5101	if (adj->master)
5102		sysfs_remove_link(&(dev->dev.kobj), "master");
5103
5104	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5105		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5106
5107	list_del_rcu(&adj->list);
5108	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5109		 adj_dev->name, dev->name, adj_dev->name);
5110	dev_put(adj_dev);
5111	kfree_rcu(adj, rcu);
5112}
5113
5114static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5115					    struct net_device *upper_dev,
5116					    struct list_head *up_list,
5117					    struct list_head *down_list,
5118					    void *private, bool master)
5119{
5120	int ret;
5121
5122	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5123					   master);
5124	if (ret)
5125		return ret;
5126
5127	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5128					   false);
5129	if (ret) {
5130		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5131		return ret;
5132	}
5133
5134	return 0;
5135}
5136
5137static int __netdev_adjacent_dev_link(struct net_device *dev,
5138				      struct net_device *upper_dev)
5139{
5140	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5141						&dev->all_adj_list.upper,
5142						&upper_dev->all_adj_list.lower,
5143						NULL, false);
5144}
5145
5146static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5147					       struct net_device *upper_dev,
5148					       struct list_head *up_list,
5149					       struct list_head *down_list)
5150{
5151	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5152	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5153}
5154
5155static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5156					 struct net_device *upper_dev)
5157{
5158	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5159					   &dev->all_adj_list.upper,
5160					   &upper_dev->all_adj_list.lower);
5161}
5162
5163static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5164						struct net_device *upper_dev,
5165						void *private, bool master)
5166{
5167	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5168
5169	if (ret)
5170		return ret;
5171
5172	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5173					       &dev->adj_list.upper,
5174					       &upper_dev->adj_list.lower,
5175					       private, master);
5176	if (ret) {
5177		__netdev_adjacent_dev_unlink(dev, upper_dev);
5178		return ret;
5179	}
5180
5181	return 0;
5182}
5183
5184static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5185						   struct net_device *upper_dev)
5186{
5187	__netdev_adjacent_dev_unlink(dev, upper_dev);
5188	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5189					   &dev->adj_list.upper,
5190					   &upper_dev->adj_list.lower);
5191}
5192
5193static int __netdev_upper_dev_link(struct net_device *dev,
5194				   struct net_device *upper_dev, bool master,
5195				   void *private)
5196{
5197	struct netdev_adjacent *i, *j, *to_i, *to_j;
5198	int ret = 0;
5199
5200	ASSERT_RTNL();
5201
5202	if (dev == upper_dev)
5203		return -EBUSY;
5204
5205	/* To prevent loops, check if dev is not upper device to upper_dev. */
5206	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5207		return -EBUSY;
5208
5209	if (__netdev_find_adj(dev, upper_dev, &dev->adj_list.upper))
5210		return -EEXIST;
5211
5212	if (master && netdev_master_upper_dev_get(dev))
5213		return -EBUSY;
5214
5215	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5216						   master);
5217	if (ret)
5218		return ret;
5219
5220	/* Now that we linked these devs, make all the upper_dev's
5221	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5222	 * versa, and don't forget the devices itself. All of these
5223	 * links are non-neighbours.
5224	 */
5225	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5226		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5227			pr_debug("Interlinking %s with %s, non-neighbour\n",
5228				 i->dev->name, j->dev->name);
5229			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5230			if (ret)
5231				goto rollback_mesh;
5232		}
5233	}
5234
5235	/* add dev to every upper_dev's upper device */
5236	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5237		pr_debug("linking %s's upper device %s with %s\n",
5238			 upper_dev->name, i->dev->name, dev->name);
5239		ret = __netdev_adjacent_dev_link(dev, i->dev);
5240		if (ret)
5241			goto rollback_upper_mesh;
5242	}
5243
5244	/* add upper_dev to every dev's lower device */
5245	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5246		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5247			 i->dev->name, upper_dev->name);
5248		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5249		if (ret)
5250			goto rollback_lower_mesh;
5251	}
5252
5253	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5254	return 0;
5255
5256rollback_lower_mesh:
5257	to_i = i;
5258	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5259		if (i == to_i)
5260			break;
5261		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5262	}
5263
5264	i = NULL;
5265
5266rollback_upper_mesh:
5267	to_i = i;
5268	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5269		if (i == to_i)
5270			break;
5271		__netdev_adjacent_dev_unlink(dev, i->dev);
5272	}
5273
5274	i = j = NULL;
5275
5276rollback_mesh:
5277	to_i = i;
5278	to_j = j;
5279	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5280		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5281			if (i == to_i && j == to_j)
5282				break;
5283			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5284		}
5285		if (i == to_i)
5286			break;
5287	}
5288
5289	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5290
5291	return ret;
5292}
5293
5294/**
5295 * netdev_upper_dev_link - Add a link to the upper device
5296 * @dev: device
5297 * @upper_dev: new upper device
5298 *
5299 * Adds a link to device which is upper to this one. The caller must hold
5300 * the RTNL lock. On a failure a negative errno code is returned.
5301 * On success the reference counts are adjusted and the function
5302 * returns zero.
5303 */
5304int netdev_upper_dev_link(struct net_device *dev,
5305			  struct net_device *upper_dev)
5306{
5307	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5308}
5309EXPORT_SYMBOL(netdev_upper_dev_link);
5310
5311/**
5312 * netdev_master_upper_dev_link - Add a master link to the upper device
5313 * @dev: device
5314 * @upper_dev: new upper device
5315 *
5316 * Adds a link to device which is upper to this one. In this case, only
5317 * one master upper device can be linked, although other non-master devices
5318 * might be linked as well. The caller must hold the RTNL lock.
5319 * On a failure a negative errno code is returned. On success the reference
5320 * counts are adjusted and the function returns zero.
5321 */
5322int netdev_master_upper_dev_link(struct net_device *dev,
5323				 struct net_device *upper_dev)
5324{
5325	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5326}
5327EXPORT_SYMBOL(netdev_master_upper_dev_link);
5328
5329int netdev_master_upper_dev_link_private(struct net_device *dev,
5330					 struct net_device *upper_dev,
5331					 void *private)
5332{
5333	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5334}
5335EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5336
5337/**
5338 * netdev_upper_dev_unlink - Removes a link to upper device
5339 * @dev: device
5340 * @upper_dev: new upper device
5341 *
5342 * Removes a link to device which is upper to this one. The caller must hold
5343 * the RTNL lock.
5344 */
5345void netdev_upper_dev_unlink(struct net_device *dev,
5346			     struct net_device *upper_dev)
5347{
5348	struct netdev_adjacent *i, *j;
5349	ASSERT_RTNL();
5350
5351	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5352
5353	/* Here is the tricky part. We must remove all dev's lower
5354	 * devices from all upper_dev's upper devices and vice
5355	 * versa, to maintain the graph relationship.
5356	 */
5357	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5358		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5359			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5360
5361	/* remove also the devices itself from lower/upper device
5362	 * list
5363	 */
5364	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5365		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5366
5367	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5368		__netdev_adjacent_dev_unlink(dev, i->dev);
5369
5370	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5371}
5372EXPORT_SYMBOL(netdev_upper_dev_unlink);
5373
5374/**
5375 * netdev_bonding_info_change - Dispatch event about slave change
5376 * @dev: device
5377 * @bonding_info: info to dispatch
5378 *
5379 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5380 * The caller must hold the RTNL lock.
5381 */
5382void netdev_bonding_info_change(struct net_device *dev,
5383				struct netdev_bonding_info *bonding_info)
5384{
5385	struct netdev_notifier_bonding_info	info;
5386
5387	memcpy(&info.bonding_info, bonding_info,
5388	       sizeof(struct netdev_bonding_info));
5389	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5390				      &info.info);
5391}
5392EXPORT_SYMBOL(netdev_bonding_info_change);
5393
5394static void netdev_adjacent_add_links(struct net_device *dev)
5395{
5396	struct netdev_adjacent *iter;
5397
5398	struct net *net = dev_net(dev);
5399
5400	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5401		if (!net_eq(net,dev_net(iter->dev)))
5402			continue;
5403		netdev_adjacent_sysfs_add(iter->dev, dev,
5404					  &iter->dev->adj_list.lower);
5405		netdev_adjacent_sysfs_add(dev, iter->dev,
5406					  &dev->adj_list.upper);
5407	}
5408
5409	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5410		if (!net_eq(net,dev_net(iter->dev)))
5411			continue;
5412		netdev_adjacent_sysfs_add(iter->dev, dev,
5413					  &iter->dev->adj_list.upper);
5414		netdev_adjacent_sysfs_add(dev, iter->dev,
5415					  &dev->adj_list.lower);
5416	}
5417}
5418
5419static void netdev_adjacent_del_links(struct net_device *dev)
5420{
5421	struct netdev_adjacent *iter;
5422
5423	struct net *net = dev_net(dev);
5424
5425	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5426		if (!net_eq(net,dev_net(iter->dev)))
5427			continue;
5428		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5429					  &iter->dev->adj_list.lower);
5430		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5431					  &dev->adj_list.upper);
5432	}
5433
5434	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5435		if (!net_eq(net,dev_net(iter->dev)))
5436			continue;
5437		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5438					  &iter->dev->adj_list.upper);
5439		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5440					  &dev->adj_list.lower);
5441	}
5442}
5443
5444void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5445{
5446	struct netdev_adjacent *iter;
5447
5448	struct net *net = dev_net(dev);
5449
5450	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5451		if (!net_eq(net,dev_net(iter->dev)))
5452			continue;
5453		netdev_adjacent_sysfs_del(iter->dev, oldname,
5454					  &iter->dev->adj_list.lower);
5455		netdev_adjacent_sysfs_add(iter->dev, dev,
5456					  &iter->dev->adj_list.lower);
5457	}
5458
5459	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5460		if (!net_eq(net,dev_net(iter->dev)))
5461			continue;
5462		netdev_adjacent_sysfs_del(iter->dev, oldname,
5463					  &iter->dev->adj_list.upper);
5464		netdev_adjacent_sysfs_add(iter->dev, dev,
5465					  &iter->dev->adj_list.upper);
5466	}
5467}
5468
5469void *netdev_lower_dev_get_private(struct net_device *dev,
5470				   struct net_device *lower_dev)
5471{
5472	struct netdev_adjacent *lower;
5473
5474	if (!lower_dev)
5475		return NULL;
5476	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5477	if (!lower)
5478		return NULL;
5479
5480	return lower->private;
5481}
5482EXPORT_SYMBOL(netdev_lower_dev_get_private);
5483
5484
5485int dev_get_nest_level(struct net_device *dev,
5486		       bool (*type_check)(struct net_device *dev))
5487{
5488	struct net_device *lower = NULL;
5489	struct list_head *iter;
5490	int max_nest = -1;
5491	int nest;
5492
5493	ASSERT_RTNL();
5494
5495	netdev_for_each_lower_dev(dev, lower, iter) {
5496		nest = dev_get_nest_level(lower, type_check);
5497		if (max_nest < nest)
5498			max_nest = nest;
5499	}
5500
5501	if (type_check(dev))
5502		max_nest++;
5503
5504	return max_nest;
5505}
5506EXPORT_SYMBOL(dev_get_nest_level);
5507
5508static void dev_change_rx_flags(struct net_device *dev, int flags)
5509{
5510	const struct net_device_ops *ops = dev->netdev_ops;
5511
5512	if (ops->ndo_change_rx_flags)
5513		ops->ndo_change_rx_flags(dev, flags);
5514}
5515
5516static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5517{
5518	unsigned int old_flags = dev->flags;
5519	kuid_t uid;
5520	kgid_t gid;
5521
5522	ASSERT_RTNL();
5523
5524	dev->flags |= IFF_PROMISC;
5525	dev->promiscuity += inc;
5526	if (dev->promiscuity == 0) {
5527		/*
5528		 * Avoid overflow.
5529		 * If inc causes overflow, untouch promisc and return error.
5530		 */
5531		if (inc < 0)
5532			dev->flags &= ~IFF_PROMISC;
5533		else {
5534			dev->promiscuity -= inc;
5535			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5536				dev->name);
5537			return -EOVERFLOW;
5538		}
5539	}
5540	if (dev->flags != old_flags) {
5541		pr_info("device %s %s promiscuous mode\n",
5542			dev->name,
5543			dev->flags & IFF_PROMISC ? "entered" : "left");
5544		if (audit_enabled) {
5545			current_uid_gid(&uid, &gid);
5546			audit_log(current->audit_context, GFP_ATOMIC,
5547				AUDIT_ANOM_PROMISCUOUS,
5548				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5549				dev->name, (dev->flags & IFF_PROMISC),
5550				(old_flags & IFF_PROMISC),
5551				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5552				from_kuid(&init_user_ns, uid),
5553				from_kgid(&init_user_ns, gid),
5554				audit_get_sessionid(current));
5555		}
5556
5557		dev_change_rx_flags(dev, IFF_PROMISC);
5558	}
5559	if (notify)
5560		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5561	return 0;
5562}
5563
5564/**
5565 *	dev_set_promiscuity	- update promiscuity count on a device
5566 *	@dev: device
5567 *	@inc: modifier
5568 *
5569 *	Add or remove promiscuity from a device. While the count in the device
5570 *	remains above zero the interface remains promiscuous. Once it hits zero
5571 *	the device reverts back to normal filtering operation. A negative inc
5572 *	value is used to drop promiscuity on the device.
5573 *	Return 0 if successful or a negative errno code on error.
5574 */
5575int dev_set_promiscuity(struct net_device *dev, int inc)
5576{
5577	unsigned int old_flags = dev->flags;
5578	int err;
5579
5580	err = __dev_set_promiscuity(dev, inc, true);
5581	if (err < 0)
5582		return err;
5583	if (dev->flags != old_flags)
5584		dev_set_rx_mode(dev);
5585	return err;
5586}
5587EXPORT_SYMBOL(dev_set_promiscuity);
5588
5589static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5590{
5591	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5592
5593	ASSERT_RTNL();
5594
5595	dev->flags |= IFF_ALLMULTI;
5596	dev->allmulti += inc;
5597	if (dev->allmulti == 0) {
5598		/*
5599		 * Avoid overflow.
5600		 * If inc causes overflow, untouch allmulti and return error.
5601		 */
5602		if (inc < 0)
5603			dev->flags &= ~IFF_ALLMULTI;
5604		else {
5605			dev->allmulti -= inc;
5606			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5607				dev->name);
5608			return -EOVERFLOW;
5609		}
5610	}
5611	if (dev->flags ^ old_flags) {
5612		dev_change_rx_flags(dev, IFF_ALLMULTI);
5613		dev_set_rx_mode(dev);
5614		if (notify)
5615			__dev_notify_flags(dev, old_flags,
5616					   dev->gflags ^ old_gflags);
5617	}
5618	return 0;
5619}
5620
5621/**
5622 *	dev_set_allmulti	- update allmulti count on a device
5623 *	@dev: device
5624 *	@inc: modifier
5625 *
5626 *	Add or remove reception of all multicast frames to a device. While the
5627 *	count in the device remains above zero the interface remains listening
5628 *	to all interfaces. Once it hits zero the device reverts back to normal
5629 *	filtering operation. A negative @inc value is used to drop the counter
5630 *	when releasing a resource needing all multicasts.
5631 *	Return 0 if successful or a negative errno code on error.
5632 */
5633
5634int dev_set_allmulti(struct net_device *dev, int inc)
5635{
5636	return __dev_set_allmulti(dev, inc, true);
5637}
5638EXPORT_SYMBOL(dev_set_allmulti);
5639
5640/*
5641 *	Upload unicast and multicast address lists to device and
5642 *	configure RX filtering. When the device doesn't support unicast
5643 *	filtering it is put in promiscuous mode while unicast addresses
5644 *	are present.
5645 */
5646void __dev_set_rx_mode(struct net_device *dev)
5647{
5648	const struct net_device_ops *ops = dev->netdev_ops;
5649
5650	/* dev_open will call this function so the list will stay sane. */
5651	if (!(dev->flags&IFF_UP))
5652		return;
5653
5654	if (!netif_device_present(dev))
5655		return;
5656
5657	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5658		/* Unicast addresses changes may only happen under the rtnl,
5659		 * therefore calling __dev_set_promiscuity here is safe.
5660		 */
5661		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5662			__dev_set_promiscuity(dev, 1, false);
5663			dev->uc_promisc = true;
5664		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5665			__dev_set_promiscuity(dev, -1, false);
5666			dev->uc_promisc = false;
5667		}
5668	}
5669
5670	if (ops->ndo_set_rx_mode)
5671		ops->ndo_set_rx_mode(dev);
5672}
5673
5674void dev_set_rx_mode(struct net_device *dev)
5675{
5676	netif_addr_lock_bh(dev);
5677	__dev_set_rx_mode(dev);
5678	netif_addr_unlock_bh(dev);
5679}
5680
5681/**
5682 *	dev_get_flags - get flags reported to userspace
5683 *	@dev: device
5684 *
5685 *	Get the combination of flag bits exported through APIs to userspace.
5686 */
5687unsigned int dev_get_flags(const struct net_device *dev)
5688{
5689	unsigned int flags;
5690
5691	flags = (dev->flags & ~(IFF_PROMISC |
5692				IFF_ALLMULTI |
5693				IFF_RUNNING |
5694				IFF_LOWER_UP |
5695				IFF_DORMANT)) |
5696		(dev->gflags & (IFF_PROMISC |
5697				IFF_ALLMULTI));
5698
5699	if (netif_running(dev)) {
5700		if (netif_oper_up(dev))
5701			flags |= IFF_RUNNING;
5702		if (netif_carrier_ok(dev))
5703			flags |= IFF_LOWER_UP;
5704		if (netif_dormant(dev))
5705			flags |= IFF_DORMANT;
5706	}
5707
5708	return flags;
5709}
5710EXPORT_SYMBOL(dev_get_flags);
5711
5712int __dev_change_flags(struct net_device *dev, unsigned int flags)
5713{
5714	unsigned int old_flags = dev->flags;
5715	int ret;
5716
5717	ASSERT_RTNL();
5718
5719	/*
5720	 *	Set the flags on our device.
5721	 */
5722
5723	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5724			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5725			       IFF_AUTOMEDIA)) |
5726		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5727				    IFF_ALLMULTI));
5728
5729	/*
5730	 *	Load in the correct multicast list now the flags have changed.
5731	 */
5732
5733	if ((old_flags ^ flags) & IFF_MULTICAST)
5734		dev_change_rx_flags(dev, IFF_MULTICAST);
5735
5736	dev_set_rx_mode(dev);
5737
5738	/*
5739	 *	Have we downed the interface. We handle IFF_UP ourselves
5740	 *	according to user attempts to set it, rather than blindly
5741	 *	setting it.
5742	 */
5743
5744	ret = 0;
5745	if ((old_flags ^ flags) & IFF_UP)
5746		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5747
5748	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5749		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5750		unsigned int old_flags = dev->flags;
5751
5752		dev->gflags ^= IFF_PROMISC;
5753
5754		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5755			if (dev->flags != old_flags)
5756				dev_set_rx_mode(dev);
5757	}
5758
5759	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5760	   is important. Some (broken) drivers set IFF_PROMISC, when
5761	   IFF_ALLMULTI is requested not asking us and not reporting.
5762	 */
5763	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5764		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5765
5766		dev->gflags ^= IFF_ALLMULTI;
5767		__dev_set_allmulti(dev, inc, false);
5768	}
5769
5770	return ret;
5771}
5772
5773void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5774			unsigned int gchanges)
5775{
5776	unsigned int changes = dev->flags ^ old_flags;
5777
5778	if (gchanges)
5779		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5780
5781	if (changes & IFF_UP) {
5782		if (dev->flags & IFF_UP)
5783			call_netdevice_notifiers(NETDEV_UP, dev);
5784		else
5785			call_netdevice_notifiers(NETDEV_DOWN, dev);
5786	}
5787
5788	if (dev->flags & IFF_UP &&
5789	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5790		struct netdev_notifier_change_info change_info;
5791
5792		change_info.flags_changed = changes;
5793		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5794					      &change_info.info);
5795	}
5796}
5797
5798/**
5799 *	dev_change_flags - change device settings
5800 *	@dev: device
5801 *	@flags: device state flags
5802 *
5803 *	Change settings on device based state flags. The flags are
5804 *	in the userspace exported format.
5805 */
5806int dev_change_flags(struct net_device *dev, unsigned int flags)
5807{
5808	int ret;
5809	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5810
5811	ret = __dev_change_flags(dev, flags);
5812	if (ret < 0)
5813		return ret;
5814
5815	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5816	__dev_notify_flags(dev, old_flags, changes);
5817	return ret;
5818}
5819EXPORT_SYMBOL(dev_change_flags);
5820
5821static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5822{
5823	const struct net_device_ops *ops = dev->netdev_ops;
5824
5825	if (ops->ndo_change_mtu)
5826		return ops->ndo_change_mtu(dev, new_mtu);
5827
5828	dev->mtu = new_mtu;
5829	return 0;
5830}
5831
5832/**
5833 *	dev_set_mtu - Change maximum transfer unit
5834 *	@dev: device
5835 *	@new_mtu: new transfer unit
5836 *
5837 *	Change the maximum transfer size of the network device.
5838 */
5839int dev_set_mtu(struct net_device *dev, int new_mtu)
5840{
5841	int err, orig_mtu;
5842
5843	if (new_mtu == dev->mtu)
5844		return 0;
5845
5846	/*	MTU must be positive.	 */
5847	if (new_mtu < 0)
5848		return -EINVAL;
5849
5850	if (!netif_device_present(dev))
5851		return -ENODEV;
5852
5853	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5854	err = notifier_to_errno(err);
5855	if (err)
5856		return err;
5857
5858	orig_mtu = dev->mtu;
5859	err = __dev_set_mtu(dev, new_mtu);
5860
5861	if (!err) {
5862		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5863		err = notifier_to_errno(err);
5864		if (err) {
5865			/* setting mtu back and notifying everyone again,
5866			 * so that they have a chance to revert changes.
5867			 */
5868			__dev_set_mtu(dev, orig_mtu);
5869			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5870		}
5871	}
5872	return err;
5873}
5874EXPORT_SYMBOL(dev_set_mtu);
5875
5876/**
5877 *	dev_set_group - Change group this device belongs to
5878 *	@dev: device
5879 *	@new_group: group this device should belong to
5880 */
5881void dev_set_group(struct net_device *dev, int new_group)
5882{
5883	dev->group = new_group;
5884}
5885EXPORT_SYMBOL(dev_set_group);
5886
5887/**
5888 *	dev_set_mac_address - Change Media Access Control Address
5889 *	@dev: device
5890 *	@sa: new address
5891 *
5892 *	Change the hardware (MAC) address of the device
5893 */
5894int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5895{
5896	const struct net_device_ops *ops = dev->netdev_ops;
5897	int err;
5898
5899	if (!ops->ndo_set_mac_address)
5900		return -EOPNOTSUPP;
5901	if (sa->sa_family != dev->type)
5902		return -EINVAL;
5903	if (!netif_device_present(dev))
5904		return -ENODEV;
5905	err = ops->ndo_set_mac_address(dev, sa);
5906	if (err)
5907		return err;
5908	dev->addr_assign_type = NET_ADDR_SET;
5909	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5910	add_device_randomness(dev->dev_addr, dev->addr_len);
5911	return 0;
5912}
5913EXPORT_SYMBOL(dev_set_mac_address);
5914
5915/**
5916 *	dev_change_carrier - Change device carrier
5917 *	@dev: device
5918 *	@new_carrier: new value
5919 *
5920 *	Change device carrier
5921 */
5922int dev_change_carrier(struct net_device *dev, bool new_carrier)
5923{
5924	const struct net_device_ops *ops = dev->netdev_ops;
5925
5926	if (!ops->ndo_change_carrier)
5927		return -EOPNOTSUPP;
5928	if (!netif_device_present(dev))
5929		return -ENODEV;
5930	return ops->ndo_change_carrier(dev, new_carrier);
5931}
5932EXPORT_SYMBOL(dev_change_carrier);
5933
5934/**
5935 *	dev_get_phys_port_id - Get device physical port ID
5936 *	@dev: device
5937 *	@ppid: port ID
5938 *
5939 *	Get device physical port ID
5940 */
5941int dev_get_phys_port_id(struct net_device *dev,
5942			 struct netdev_phys_item_id *ppid)
5943{
5944	const struct net_device_ops *ops = dev->netdev_ops;
5945
5946	if (!ops->ndo_get_phys_port_id)
5947		return -EOPNOTSUPP;
5948	return ops->ndo_get_phys_port_id(dev, ppid);
5949}
5950EXPORT_SYMBOL(dev_get_phys_port_id);
5951
5952/**
5953 *	dev_get_phys_port_name - Get device physical port name
5954 *	@dev: device
5955 *	@name: port name
5956 *
5957 *	Get device physical port name
5958 */
5959int dev_get_phys_port_name(struct net_device *dev,
5960			   char *name, size_t len)
5961{
5962	const struct net_device_ops *ops = dev->netdev_ops;
5963
5964	if (!ops->ndo_get_phys_port_name)
5965		return -EOPNOTSUPP;
5966	return ops->ndo_get_phys_port_name(dev, name, len);
5967}
5968EXPORT_SYMBOL(dev_get_phys_port_name);
5969
5970/**
5971 *	dev_new_index	-	allocate an ifindex
5972 *	@net: the applicable net namespace
5973 *
5974 *	Returns a suitable unique value for a new device interface
5975 *	number.  The caller must hold the rtnl semaphore or the
5976 *	dev_base_lock to be sure it remains unique.
5977 */
5978static int dev_new_index(struct net *net)
5979{
5980	int ifindex = net->ifindex;
5981	for (;;) {
5982		if (++ifindex <= 0)
5983			ifindex = 1;
5984		if (!__dev_get_by_index(net, ifindex))
5985			return net->ifindex = ifindex;
5986	}
5987}
5988
5989/* Delayed registration/unregisteration */
5990static LIST_HEAD(net_todo_list);
5991DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5992
5993static void net_set_todo(struct net_device *dev)
5994{
5995	list_add_tail(&dev->todo_list, &net_todo_list);
5996	dev_net(dev)->dev_unreg_count++;
5997}
5998
5999static void rollback_registered_many(struct list_head *head)
6000{
6001	struct net_device *dev, *tmp;
6002	LIST_HEAD(close_head);
6003
6004	BUG_ON(dev_boot_phase);
6005	ASSERT_RTNL();
6006
6007	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6008		/* Some devices call without registering
6009		 * for initialization unwind. Remove those
6010		 * devices and proceed with the remaining.
6011		 */
6012		if (dev->reg_state == NETREG_UNINITIALIZED) {
6013			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6014				 dev->name, dev);
6015
6016			WARN_ON(1);
6017			list_del(&dev->unreg_list);
6018			continue;
6019		}
6020		dev->dismantle = true;
6021		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6022	}
6023
6024	/* If device is running, close it first. */
6025	list_for_each_entry(dev, head, unreg_list)
6026		list_add_tail(&dev->close_list, &close_head);
6027	dev_close_many(&close_head, true);
6028
6029	list_for_each_entry(dev, head, unreg_list) {
6030		/* And unlink it from device chain. */
6031		unlist_netdevice(dev);
6032
6033		dev->reg_state = NETREG_UNREGISTERING;
6034		on_each_cpu(flush_backlog, dev, 1);
6035	}
6036
6037	synchronize_net();
6038
6039	list_for_each_entry(dev, head, unreg_list) {
6040		struct sk_buff *skb = NULL;
6041
6042		/* Shutdown queueing discipline. */
6043		dev_shutdown(dev);
6044
6045
6046		/* Notify protocols, that we are about to destroy
6047		   this device. They should clean all the things.
6048		*/
6049		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6050
6051		if (!dev->rtnl_link_ops ||
6052		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6053			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6054						     GFP_KERNEL);
6055
6056		/*
6057		 *	Flush the unicast and multicast chains
6058		 */
6059		dev_uc_flush(dev);
6060		dev_mc_flush(dev);
6061
6062		if (dev->netdev_ops->ndo_uninit)
6063			dev->netdev_ops->ndo_uninit(dev);
6064
6065		if (skb)
6066			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6067
6068		/* Notifier chain MUST detach us all upper devices. */
6069		WARN_ON(netdev_has_any_upper_dev(dev));
6070
6071		/* Remove entries from kobject tree */
6072		netdev_unregister_kobject(dev);
6073#ifdef CONFIG_XPS
6074		/* Remove XPS queueing entries */
6075		netif_reset_xps_queues_gt(dev, 0);
6076#endif
6077	}
6078
6079	synchronize_net();
6080
6081	list_for_each_entry(dev, head, unreg_list)
6082		dev_put(dev);
6083}
6084
6085static void rollback_registered(struct net_device *dev)
6086{
6087	LIST_HEAD(single);
6088
6089	list_add(&dev->unreg_list, &single);
6090	rollback_registered_many(&single);
6091	list_del(&single);
6092}
6093
6094static netdev_features_t netdev_fix_features(struct net_device *dev,
6095	netdev_features_t features)
6096{
6097	/* Fix illegal checksum combinations */
6098	if ((features & NETIF_F_HW_CSUM) &&
6099	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6100		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6101		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6102	}
6103
6104	/* TSO requires that SG is present as well. */
6105	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6106		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6107		features &= ~NETIF_F_ALL_TSO;
6108	}
6109
6110	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6111					!(features & NETIF_F_IP_CSUM)) {
6112		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6113		features &= ~NETIF_F_TSO;
6114		features &= ~NETIF_F_TSO_ECN;
6115	}
6116
6117	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6118					 !(features & NETIF_F_IPV6_CSUM)) {
6119		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6120		features &= ~NETIF_F_TSO6;
6121	}
6122
6123	/* TSO ECN requires that TSO is present as well. */
6124	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6125		features &= ~NETIF_F_TSO_ECN;
6126
6127	/* Software GSO depends on SG. */
6128	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6129		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6130		features &= ~NETIF_F_GSO;
6131	}
6132
6133	/* UFO needs SG and checksumming */
6134	if (features & NETIF_F_UFO) {
6135		/* maybe split UFO into V4 and V6? */
6136		if (!((features & NETIF_F_GEN_CSUM) ||
6137		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6138			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6139			netdev_dbg(dev,
6140				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6141			features &= ~NETIF_F_UFO;
6142		}
6143
6144		if (!(features & NETIF_F_SG)) {
6145			netdev_dbg(dev,
6146				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6147			features &= ~NETIF_F_UFO;
6148		}
6149	}
6150
6151#ifdef CONFIG_NET_RX_BUSY_POLL
6152	if (dev->netdev_ops->ndo_busy_poll)
6153		features |= NETIF_F_BUSY_POLL;
6154	else
6155#endif
6156		features &= ~NETIF_F_BUSY_POLL;
6157
6158	return features;
6159}
6160
6161int __netdev_update_features(struct net_device *dev)
6162{
6163	netdev_features_t features;
6164	int err = 0;
6165
6166	ASSERT_RTNL();
6167
6168	features = netdev_get_wanted_features(dev);
6169
6170	if (dev->netdev_ops->ndo_fix_features)
6171		features = dev->netdev_ops->ndo_fix_features(dev, features);
6172
6173	/* driver might be less strict about feature dependencies */
6174	features = netdev_fix_features(dev, features);
6175
6176	if (dev->features == features)
6177		return 0;
6178
6179	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6180		&dev->features, &features);
6181
6182	if (dev->netdev_ops->ndo_set_features)
6183		err = dev->netdev_ops->ndo_set_features(dev, features);
6184
6185	if (unlikely(err < 0)) {
6186		netdev_err(dev,
6187			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6188			err, &features, &dev->features);
6189		return -1;
6190	}
6191
6192	if (!err)
6193		dev->features = features;
6194
6195	return 1;
6196}
6197
6198/**
6199 *	netdev_update_features - recalculate device features
6200 *	@dev: the device to check
6201 *
6202 *	Recalculate dev->features set and send notifications if it
6203 *	has changed. Should be called after driver or hardware dependent
6204 *	conditions might have changed that influence the features.
6205 */
6206void netdev_update_features(struct net_device *dev)
6207{
6208	if (__netdev_update_features(dev))
6209		netdev_features_change(dev);
6210}
6211EXPORT_SYMBOL(netdev_update_features);
6212
6213/**
6214 *	netdev_change_features - recalculate device features
6215 *	@dev: the device to check
6216 *
6217 *	Recalculate dev->features set and send notifications even
6218 *	if they have not changed. Should be called instead of
6219 *	netdev_update_features() if also dev->vlan_features might
6220 *	have changed to allow the changes to be propagated to stacked
6221 *	VLAN devices.
6222 */
6223void netdev_change_features(struct net_device *dev)
6224{
6225	__netdev_update_features(dev);
6226	netdev_features_change(dev);
6227}
6228EXPORT_SYMBOL(netdev_change_features);
6229
6230/**
6231 *	netif_stacked_transfer_operstate -	transfer operstate
6232 *	@rootdev: the root or lower level device to transfer state from
6233 *	@dev: the device to transfer operstate to
6234 *
6235 *	Transfer operational state from root to device. This is normally
6236 *	called when a stacking relationship exists between the root
6237 *	device and the device(a leaf device).
6238 */
6239void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6240					struct net_device *dev)
6241{
6242	if (rootdev->operstate == IF_OPER_DORMANT)
6243		netif_dormant_on(dev);
6244	else
6245		netif_dormant_off(dev);
6246
6247	if (netif_carrier_ok(rootdev)) {
6248		if (!netif_carrier_ok(dev))
6249			netif_carrier_on(dev);
6250	} else {
6251		if (netif_carrier_ok(dev))
6252			netif_carrier_off(dev);
6253	}
6254}
6255EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6256
6257#ifdef CONFIG_SYSFS
6258static int netif_alloc_rx_queues(struct net_device *dev)
6259{
6260	unsigned int i, count = dev->num_rx_queues;
6261	struct netdev_rx_queue *rx;
6262	size_t sz = count * sizeof(*rx);
6263
6264	BUG_ON(count < 1);
6265
6266	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6267	if (!rx) {
6268		rx = vzalloc(sz);
6269		if (!rx)
6270			return -ENOMEM;
6271	}
6272	dev->_rx = rx;
6273
6274	for (i = 0; i < count; i++)
6275		rx[i].dev = dev;
6276	return 0;
6277}
6278#endif
6279
6280static void netdev_init_one_queue(struct net_device *dev,
6281				  struct netdev_queue *queue, void *_unused)
6282{
6283	/* Initialize queue lock */
6284	spin_lock_init(&queue->_xmit_lock);
6285	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6286	queue->xmit_lock_owner = -1;
6287	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6288	queue->dev = dev;
6289#ifdef CONFIG_BQL
6290	dql_init(&queue->dql, HZ);
6291#endif
6292}
6293
6294static void netif_free_tx_queues(struct net_device *dev)
6295{
6296	kvfree(dev->_tx);
6297}
6298
6299static int netif_alloc_netdev_queues(struct net_device *dev)
6300{
6301	unsigned int count = dev->num_tx_queues;
6302	struct netdev_queue *tx;
6303	size_t sz = count * sizeof(*tx);
6304
6305	if (count < 1 || count > 0xffff)
6306		return -EINVAL;
6307
6308	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6309	if (!tx) {
6310		tx = vzalloc(sz);
6311		if (!tx)
6312			return -ENOMEM;
6313	}
6314	dev->_tx = tx;
6315
6316	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6317	spin_lock_init(&dev->tx_global_lock);
6318
6319	return 0;
6320}
6321
6322/**
6323 *	register_netdevice	- register a network device
6324 *	@dev: device to register
6325 *
6326 *	Take a completed network device structure and add it to the kernel
6327 *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6328 *	chain. 0 is returned on success. A negative errno code is returned
6329 *	on a failure to set up the device, or if the name is a duplicate.
6330 *
6331 *	Callers must hold the rtnl semaphore. You may want
6332 *	register_netdev() instead of this.
6333 *
6334 *	BUGS:
6335 *	The locking appears insufficient to guarantee two parallel registers
6336 *	will not get the same name.
6337 */
6338
6339int register_netdevice(struct net_device *dev)
6340{
6341	int ret;
6342	struct net *net = dev_net(dev);
6343
6344	BUG_ON(dev_boot_phase);
6345	ASSERT_RTNL();
6346
6347	might_sleep();
6348
6349	/* When net_device's are persistent, this will be fatal. */
6350	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6351	BUG_ON(!net);
6352
6353	spin_lock_init(&dev->addr_list_lock);
6354	netdev_set_addr_lockdep_class(dev);
6355
6356	ret = dev_get_valid_name(net, dev, dev->name);
6357	if (ret < 0)
6358		goto out;
6359
6360	/* Init, if this function is available */
6361	if (dev->netdev_ops->ndo_init) {
6362		ret = dev->netdev_ops->ndo_init(dev);
6363		if (ret) {
6364			if (ret > 0)
6365				ret = -EIO;
6366			goto out;
6367		}
6368	}
6369
6370	if (((dev->hw_features | dev->features) &
6371	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6372	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6373	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6374		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6375		ret = -EINVAL;
6376		goto err_uninit;
6377	}
6378
6379	ret = -EBUSY;
6380	if (!dev->ifindex)
6381		dev->ifindex = dev_new_index(net);
6382	else if (__dev_get_by_index(net, dev->ifindex))
6383		goto err_uninit;
6384
6385	/* Transfer changeable features to wanted_features and enable
6386	 * software offloads (GSO and GRO).
6387	 */
6388	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6389	dev->features |= NETIF_F_SOFT_FEATURES;
6390	dev->wanted_features = dev->features & dev->hw_features;
6391
6392	if (!(dev->flags & IFF_LOOPBACK)) {
6393		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6394	}
6395
6396	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6397	 */
6398	dev->vlan_features |= NETIF_F_HIGHDMA;
6399
6400	/* Make NETIF_F_SG inheritable to tunnel devices.
6401	 */
6402	dev->hw_enc_features |= NETIF_F_SG;
6403
6404	/* Make NETIF_F_SG inheritable to MPLS.
6405	 */
6406	dev->mpls_features |= NETIF_F_SG;
6407
6408	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6409	ret = notifier_to_errno(ret);
6410	if (ret)
6411		goto err_uninit;
6412
6413	ret = netdev_register_kobject(dev);
6414	if (ret)
6415		goto err_uninit;
6416	dev->reg_state = NETREG_REGISTERED;
6417
6418	__netdev_update_features(dev);
6419
6420	/*
6421	 *	Default initial state at registry is that the
6422	 *	device is present.
6423	 */
6424
6425	set_bit(__LINK_STATE_PRESENT, &dev->state);
6426
6427	linkwatch_init_dev(dev);
6428
6429	dev_init_scheduler(dev);
6430	dev_hold(dev);
6431	list_netdevice(dev);
6432	add_device_randomness(dev->dev_addr, dev->addr_len);
6433
6434	/* If the device has permanent device address, driver should
6435	 * set dev_addr and also addr_assign_type should be set to
6436	 * NET_ADDR_PERM (default value).
6437	 */
6438	if (dev->addr_assign_type == NET_ADDR_PERM)
6439		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6440
6441	/* Notify protocols, that a new device appeared. */
6442	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6443	ret = notifier_to_errno(ret);
6444	if (ret) {
6445		rollback_registered(dev);
6446		dev->reg_state = NETREG_UNREGISTERED;
6447	}
6448	/*
6449	 *	Prevent userspace races by waiting until the network
6450	 *	device is fully setup before sending notifications.
6451	 */
6452	if (!dev->rtnl_link_ops ||
6453	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6454		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6455
6456out:
6457	return ret;
6458
6459err_uninit:
6460	if (dev->netdev_ops->ndo_uninit)
6461		dev->netdev_ops->ndo_uninit(dev);
6462	goto out;
6463}
6464EXPORT_SYMBOL(register_netdevice);
6465
6466/**
6467 *	init_dummy_netdev	- init a dummy network device for NAPI
6468 *	@dev: device to init
6469 *
6470 *	This takes a network device structure and initialize the minimum
6471 *	amount of fields so it can be used to schedule NAPI polls without
6472 *	registering a full blown interface. This is to be used by drivers
6473 *	that need to tie several hardware interfaces to a single NAPI
6474 *	poll scheduler due to HW limitations.
6475 */
6476int init_dummy_netdev(struct net_device *dev)
6477{
6478	/* Clear everything. Note we don't initialize spinlocks
6479	 * are they aren't supposed to be taken by any of the
6480	 * NAPI code and this dummy netdev is supposed to be
6481	 * only ever used for NAPI polls
6482	 */
6483	memset(dev, 0, sizeof(struct net_device));
6484
6485	/* make sure we BUG if trying to hit standard
6486	 * register/unregister code path
6487	 */
6488	dev->reg_state = NETREG_DUMMY;
6489
6490	/* NAPI wants this */
6491	INIT_LIST_HEAD(&dev->napi_list);
6492
6493	/* a dummy interface is started by default */
6494	set_bit(__LINK_STATE_PRESENT, &dev->state);
6495	set_bit(__LINK_STATE_START, &dev->state);
6496
6497	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6498	 * because users of this 'device' dont need to change
6499	 * its refcount.
6500	 */
6501
6502	return 0;
6503}
6504EXPORT_SYMBOL_GPL(init_dummy_netdev);
6505
6506
6507/**
6508 *	register_netdev	- register a network device
6509 *	@dev: device to register
6510 *
6511 *	Take a completed network device structure and add it to the kernel
6512 *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6513 *	chain. 0 is returned on success. A negative errno code is returned
6514 *	on a failure to set up the device, or if the name is a duplicate.
6515 *
6516 *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6517 *	and expands the device name if you passed a format string to
6518 *	alloc_netdev.
6519 */
6520int register_netdev(struct net_device *dev)
6521{
6522	int err;
6523
6524	rtnl_lock();
6525	err = register_netdevice(dev);
6526	rtnl_unlock();
6527	return err;
6528}
6529EXPORT_SYMBOL(register_netdev);
6530
6531int netdev_refcnt_read(const struct net_device *dev)
6532{
6533	int i, refcnt = 0;
6534
6535	for_each_possible_cpu(i)
6536		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6537	return refcnt;
6538}
6539EXPORT_SYMBOL(netdev_refcnt_read);
6540
6541/**
6542 * netdev_wait_allrefs - wait until all references are gone.
6543 * @dev: target net_device
6544 *
6545 * This is called when unregistering network devices.
6546 *
6547 * Any protocol or device that holds a reference should register
6548 * for netdevice notification, and cleanup and put back the
6549 * reference if they receive an UNREGISTER event.
6550 * We can get stuck here if buggy protocols don't correctly
6551 * call dev_put.
6552 */
6553static void netdev_wait_allrefs(struct net_device *dev)
6554{
6555	unsigned long rebroadcast_time, warning_time;
6556	int refcnt;
6557
6558	linkwatch_forget_dev(dev);
6559
6560	rebroadcast_time = warning_time = jiffies;
6561	refcnt = netdev_refcnt_read(dev);
6562
6563	while (refcnt != 0) {
6564		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6565			rtnl_lock();
6566
6567			/* Rebroadcast unregister notification */
6568			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6569
6570			__rtnl_unlock();
6571			rcu_barrier();
6572			rtnl_lock();
6573
6574			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6575			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6576				     &dev->state)) {
6577				/* We must not have linkwatch events
6578				 * pending on unregister. If this
6579				 * happens, we simply run the queue
6580				 * unscheduled, resulting in a noop
6581				 * for this device.
6582				 */
6583				linkwatch_run_queue();
6584			}
6585
6586			__rtnl_unlock();
6587
6588			rebroadcast_time = jiffies;
6589		}
6590
6591		msleep(250);
6592
6593		refcnt = netdev_refcnt_read(dev);
6594
6595		if (time_after(jiffies, warning_time + 10 * HZ)) {
6596			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6597				 dev->name, refcnt);
6598			warning_time = jiffies;
6599		}
6600	}
6601}
6602
6603/* The sequence is:
6604 *
6605 *	rtnl_lock();
6606 *	...
6607 *	register_netdevice(x1);
6608 *	register_netdevice(x2);
6609 *	...
6610 *	unregister_netdevice(y1);
6611 *	unregister_netdevice(y2);
6612 *      ...
6613 *	rtnl_unlock();
6614 *	free_netdev(y1);
6615 *	free_netdev(y2);
6616 *
6617 * We are invoked by rtnl_unlock().
6618 * This allows us to deal with problems:
6619 * 1) We can delete sysfs objects which invoke hotplug
6620 *    without deadlocking with linkwatch via keventd.
6621 * 2) Since we run with the RTNL semaphore not held, we can sleep
6622 *    safely in order to wait for the netdev refcnt to drop to zero.
6623 *
6624 * We must not return until all unregister events added during
6625 * the interval the lock was held have been completed.
6626 */
6627void netdev_run_todo(void)
6628{
6629	struct list_head list;
6630
6631	/* Snapshot list, allow later requests */
6632	list_replace_init(&net_todo_list, &list);
6633
6634	__rtnl_unlock();
6635
6636
6637	/* Wait for rcu callbacks to finish before next phase */
6638	if (!list_empty(&list))
6639		rcu_barrier();
6640
6641	while (!list_empty(&list)) {
6642		struct net_device *dev
6643			= list_first_entry(&list, struct net_device, todo_list);
6644		list_del(&dev->todo_list);
6645
6646		rtnl_lock();
6647		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6648		__rtnl_unlock();
6649
6650		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6651			pr_err("network todo '%s' but state %d\n",
6652			       dev->name, dev->reg_state);
6653			dump_stack();
6654			continue;
6655		}
6656
6657		dev->reg_state = NETREG_UNREGISTERED;
6658
6659		netdev_wait_allrefs(dev);
6660
6661		/* paranoia */
6662		BUG_ON(netdev_refcnt_read(dev));
6663		BUG_ON(!list_empty(&dev->ptype_all));
6664		BUG_ON(!list_empty(&dev->ptype_specific));
6665		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6666		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6667		WARN_ON(dev->dn_ptr);
6668
6669		if (dev->destructor)
6670			dev->destructor(dev);
6671
6672		/* Report a network device has been unregistered */
6673		rtnl_lock();
6674		dev_net(dev)->dev_unreg_count--;
6675		__rtnl_unlock();
6676		wake_up(&netdev_unregistering_wq);
6677
6678		/* Free network device */
6679		kobject_put(&dev->dev.kobj);
6680	}
6681}
6682
6683/* Convert net_device_stats to rtnl_link_stats64.  They have the same
6684 * fields in the same order, with only the type differing.
6685 */
6686void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6687			     const struct net_device_stats *netdev_stats)
6688{
6689#if BITS_PER_LONG == 64
6690	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6691	memcpy(stats64, netdev_stats, sizeof(*stats64));
6692#else
6693	size_t i, n = sizeof(*stats64) / sizeof(u64);
6694	const unsigned long *src = (const unsigned long *)netdev_stats;
6695	u64 *dst = (u64 *)stats64;
6696
6697	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6698		     sizeof(*stats64) / sizeof(u64));
6699	for (i = 0; i < n; i++)
6700		dst[i] = src[i];
6701#endif
6702}
6703EXPORT_SYMBOL(netdev_stats_to_stats64);
6704
6705/**
6706 *	dev_get_stats	- get network device statistics
6707 *	@dev: device to get statistics from
6708 *	@storage: place to store stats
6709 *
6710 *	Get network statistics from device. Return @storage.
6711 *	The device driver may provide its own method by setting
6712 *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6713 *	otherwise the internal statistics structure is used.
6714 */
6715struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6716					struct rtnl_link_stats64 *storage)
6717{
6718	const struct net_device_ops *ops = dev->netdev_ops;
6719
6720	if (ops->ndo_get_stats64) {
6721		memset(storage, 0, sizeof(*storage));
6722		ops->ndo_get_stats64(dev, storage);
6723	} else if (ops->ndo_get_stats) {
6724		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6725	} else {
6726		netdev_stats_to_stats64(storage, &dev->stats);
6727	}
6728	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6729	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6730	return storage;
6731}
6732EXPORT_SYMBOL(dev_get_stats);
6733
6734struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6735{
6736	struct netdev_queue *queue = dev_ingress_queue(dev);
6737
6738#ifdef CONFIG_NET_CLS_ACT
6739	if (queue)
6740		return queue;
6741	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6742	if (!queue)
6743		return NULL;
6744	netdev_init_one_queue(dev, queue, NULL);
6745	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6746	queue->qdisc_sleeping = &noop_qdisc;
6747	rcu_assign_pointer(dev->ingress_queue, queue);
6748#endif
6749	return queue;
6750}
6751
6752static const struct ethtool_ops default_ethtool_ops;
6753
6754void netdev_set_default_ethtool_ops(struct net_device *dev,
6755				    const struct ethtool_ops *ops)
6756{
6757	if (dev->ethtool_ops == &default_ethtool_ops)
6758		dev->ethtool_ops = ops;
6759}
6760EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6761
6762void netdev_freemem(struct net_device *dev)
6763{
6764	char *addr = (char *)dev - dev->padded;
6765
6766	kvfree(addr);
6767}
6768
6769/**
6770 *	alloc_netdev_mqs - allocate network device
6771 *	@sizeof_priv:		size of private data to allocate space for
6772 *	@name:			device name format string
6773 *	@name_assign_type: 	origin of device name
6774 *	@setup:			callback to initialize device
6775 *	@txqs:			the number of TX subqueues to allocate
6776 *	@rxqs:			the number of RX subqueues to allocate
6777 *
6778 *	Allocates a struct net_device with private data area for driver use
6779 *	and performs basic initialization.  Also allocates subqueue structs
6780 *	for each queue on the device.
6781 */
6782struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6783		unsigned char name_assign_type,
6784		void (*setup)(struct net_device *),
6785		unsigned int txqs, unsigned int rxqs)
6786{
6787	struct net_device *dev;
6788	size_t alloc_size;
6789	struct net_device *p;
6790
6791	BUG_ON(strlen(name) >= sizeof(dev->name));
6792
6793	if (txqs < 1) {
6794		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6795		return NULL;
6796	}
6797
6798#ifdef CONFIG_SYSFS
6799	if (rxqs < 1) {
6800		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6801		return NULL;
6802	}
6803#endif
6804
6805	alloc_size = sizeof(struct net_device);
6806	if (sizeof_priv) {
6807		/* ensure 32-byte alignment of private area */
6808		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6809		alloc_size += sizeof_priv;
6810	}
6811	/* ensure 32-byte alignment of whole construct */
6812	alloc_size += NETDEV_ALIGN - 1;
6813
6814	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6815	if (!p)
6816		p = vzalloc(alloc_size);
6817	if (!p)
6818		return NULL;
6819
6820	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6821	dev->padded = (char *)dev - (char *)p;
6822
6823	dev->pcpu_refcnt = alloc_percpu(int);
6824	if (!dev->pcpu_refcnt)
6825		goto free_dev;
6826
6827	if (dev_addr_init(dev))
6828		goto free_pcpu;
6829
6830	dev_mc_init(dev);
6831	dev_uc_init(dev);
6832
6833	dev_net_set(dev, &init_net);
6834
6835	dev->gso_max_size = GSO_MAX_SIZE;
6836	dev->gso_max_segs = GSO_MAX_SEGS;
6837	dev->gso_min_segs = 0;
6838
6839	INIT_LIST_HEAD(&dev->napi_list);
6840	INIT_LIST_HEAD(&dev->unreg_list);
6841	INIT_LIST_HEAD(&dev->close_list);
6842	INIT_LIST_HEAD(&dev->link_watch_list);
6843	INIT_LIST_HEAD(&dev->adj_list.upper);
6844	INIT_LIST_HEAD(&dev->adj_list.lower);
6845	INIT_LIST_HEAD(&dev->all_adj_list.upper);
6846	INIT_LIST_HEAD(&dev->all_adj_list.lower);
6847	INIT_LIST_HEAD(&dev->ptype_all);
6848	INIT_LIST_HEAD(&dev->ptype_specific);
6849	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6850	setup(dev);
6851
6852	dev->num_tx_queues = txqs;
6853	dev->real_num_tx_queues = txqs;
6854	if (netif_alloc_netdev_queues(dev))
6855		goto free_all;
6856
6857#ifdef CONFIG_SYSFS
6858	dev->num_rx_queues = rxqs;
6859	dev->real_num_rx_queues = rxqs;
6860	if (netif_alloc_rx_queues(dev))
6861		goto free_all;
6862#endif
6863
6864	strcpy(dev->name, name);
6865	dev->name_assign_type = name_assign_type;
6866	dev->group = INIT_NETDEV_GROUP;
6867	if (!dev->ethtool_ops)
6868		dev->ethtool_ops = &default_ethtool_ops;
6869	return dev;
6870
6871free_all:
6872	free_netdev(dev);
6873	return NULL;
6874
6875free_pcpu:
6876	free_percpu(dev->pcpu_refcnt);
6877free_dev:
6878	netdev_freemem(dev);
6879	return NULL;
6880}
6881EXPORT_SYMBOL(alloc_netdev_mqs);
6882
6883/**
6884 *	free_netdev - free network device
6885 *	@dev: device
6886 *
6887 *	This function does the last stage of destroying an allocated device
6888 * 	interface. The reference to the device object is released.
6889 *	If this is the last reference then it will be freed.
6890 */
6891void free_netdev(struct net_device *dev)
6892{
6893	struct napi_struct *p, *n;
6894
6895	netif_free_tx_queues(dev);
6896#ifdef CONFIG_SYSFS
6897	kvfree(dev->_rx);
6898#endif
6899
6900	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6901
6902	/* Flush device addresses */
6903	dev_addr_flush(dev);
6904
6905	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6906		netif_napi_del(p);
6907
6908	free_percpu(dev->pcpu_refcnt);
6909	dev->pcpu_refcnt = NULL;
6910
6911	/*  Compatibility with error handling in drivers */
6912	if (dev->reg_state == NETREG_UNINITIALIZED) {
6913		netdev_freemem(dev);
6914		return;
6915	}
6916
6917	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6918	dev->reg_state = NETREG_RELEASED;
6919
6920	/* will free via device release */
6921	put_device(&dev->dev);
6922}
6923EXPORT_SYMBOL(free_netdev);
6924
6925/**
6926 *	synchronize_net -  Synchronize with packet receive processing
6927 *
6928 *	Wait for packets currently being received to be done.
6929 *	Does not block later packets from starting.
6930 */
6931void synchronize_net(void)
6932{
6933	might_sleep();
6934	if (rtnl_is_locked())
6935		synchronize_rcu_expedited();
6936	else
6937		synchronize_rcu();
6938}
6939EXPORT_SYMBOL(synchronize_net);
6940
6941/**
6942 *	unregister_netdevice_queue - remove device from the kernel
6943 *	@dev: device
6944 *	@head: list
6945 *
6946 *	This function shuts down a device interface and removes it
6947 *	from the kernel tables.
6948 *	If head not NULL, device is queued to be unregistered later.
6949 *
6950 *	Callers must hold the rtnl semaphore.  You may want
6951 *	unregister_netdev() instead of this.
6952 */
6953
6954void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6955{
6956	ASSERT_RTNL();
6957
6958	if (head) {
6959		list_move_tail(&dev->unreg_list, head);
6960	} else {
6961		rollback_registered(dev);
6962		/* Finish processing unregister after unlock */
6963		net_set_todo(dev);
6964	}
6965}
6966EXPORT_SYMBOL(unregister_netdevice_queue);
6967
6968/**
6969 *	unregister_netdevice_many - unregister many devices
6970 *	@head: list of devices
6971 *
6972 *  Note: As most callers use a stack allocated list_head,
6973 *  we force a list_del() to make sure stack wont be corrupted later.
6974 */
6975void unregister_netdevice_many(struct list_head *head)
6976{
6977	struct net_device *dev;
6978
6979	if (!list_empty(head)) {
6980		rollback_registered_many(head);
6981		list_for_each_entry(dev, head, unreg_list)
6982			net_set_todo(dev);
6983		list_del(head);
6984	}
6985}
6986EXPORT_SYMBOL(unregister_netdevice_many);
6987
6988/**
6989 *	unregister_netdev - remove device from the kernel
6990 *	@dev: device
6991 *
6992 *	This function shuts down a device interface and removes it
6993 *	from the kernel tables.
6994 *
6995 *	This is just a wrapper for unregister_netdevice that takes
6996 *	the rtnl semaphore.  In general you want to use this and not
6997 *	unregister_netdevice.
6998 */
6999void unregister_netdev(struct net_device *dev)
7000{
7001	rtnl_lock();
7002	unregister_netdevice(dev);
7003	rtnl_unlock();
7004}
7005EXPORT_SYMBOL(unregister_netdev);
7006
7007/**
7008 *	dev_change_net_namespace - move device to different nethost namespace
7009 *	@dev: device
7010 *	@net: network namespace
7011 *	@pat: If not NULL name pattern to try if the current device name
7012 *	      is already taken in the destination network namespace.
7013 *
7014 *	This function shuts down a device interface and moves it
7015 *	to a new network namespace. On success 0 is returned, on
7016 *	a failure a netagive errno code is returned.
7017 *
7018 *	Callers must hold the rtnl semaphore.
7019 */
7020
7021int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7022{
7023	int err;
7024
7025	ASSERT_RTNL();
7026
7027	/* Don't allow namespace local devices to be moved. */
7028	err = -EINVAL;
7029	if (dev->features & NETIF_F_NETNS_LOCAL)
7030		goto out;
7031
7032	/* Ensure the device has been registrered */
7033	if (dev->reg_state != NETREG_REGISTERED)
7034		goto out;
7035
7036	/* Get out if there is nothing todo */
7037	err = 0;
7038	if (net_eq(dev_net(dev), net))
7039		goto out;
7040
7041	/* Pick the destination device name, and ensure
7042	 * we can use it in the destination network namespace.
7043	 */
7044	err = -EEXIST;
7045	if (__dev_get_by_name(net, dev->name)) {
7046		/* We get here if we can't use the current device name */
7047		if (!pat)
7048			goto out;
7049		if (dev_get_valid_name(net, dev, pat) < 0)
7050			goto out;
7051	}
7052
7053	/*
7054	 * And now a mini version of register_netdevice unregister_netdevice.
7055	 */
7056
7057	/* If device is running close it first. */
7058	dev_close(dev);
7059
7060	/* And unlink it from device chain */
7061	err = -ENODEV;
7062	unlist_netdevice(dev);
7063
7064	synchronize_net();
7065
7066	/* Shutdown queueing discipline. */
7067	dev_shutdown(dev);
7068
7069	/* Notify protocols, that we are about to destroy
7070	   this device. They should clean all the things.
7071
7072	   Note that dev->reg_state stays at NETREG_REGISTERED.
7073	   This is wanted because this way 8021q and macvlan know
7074	   the device is just moving and can keep their slaves up.
7075	*/
7076	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7077	rcu_barrier();
7078	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7079	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7080
7081	/*
7082	 *	Flush the unicast and multicast chains
7083	 */
7084	dev_uc_flush(dev);
7085	dev_mc_flush(dev);
7086
7087	/* Send a netdev-removed uevent to the old namespace */
7088	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7089	netdev_adjacent_del_links(dev);
7090
7091	/* Actually switch the network namespace */
7092	dev_net_set(dev, net);
7093
7094	/* If there is an ifindex conflict assign a new one */
7095	if (__dev_get_by_index(net, dev->ifindex))
7096		dev->ifindex = dev_new_index(net);
7097
7098	/* Send a netdev-add uevent to the new namespace */
7099	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7100	netdev_adjacent_add_links(dev);
7101
7102	/* Fixup kobjects */
7103	err = device_rename(&dev->dev, dev->name);
7104	WARN_ON(err);
7105
7106	/* Add the device back in the hashes */
7107	list_netdevice(dev);
7108
7109	/* Notify protocols, that a new device appeared. */
7110	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7111
7112	/*
7113	 *	Prevent userspace races by waiting until the network
7114	 *	device is fully setup before sending notifications.
7115	 */
7116	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7117
7118	synchronize_net();
7119	err = 0;
7120out:
7121	return err;
7122}
7123EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7124
7125static int dev_cpu_callback(struct notifier_block *nfb,
7126			    unsigned long action,
7127			    void *ocpu)
7128{
7129	struct sk_buff **list_skb;
7130	struct sk_buff *skb;
7131	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7132	struct softnet_data *sd, *oldsd;
7133
7134	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7135		return NOTIFY_OK;
7136
7137	local_irq_disable();
7138	cpu = smp_processor_id();
7139	sd = &per_cpu(softnet_data, cpu);
7140	oldsd = &per_cpu(softnet_data, oldcpu);
7141
7142	/* Find end of our completion_queue. */
7143	list_skb = &sd->completion_queue;
7144	while (*list_skb)
7145		list_skb = &(*list_skb)->next;
7146	/* Append completion queue from offline CPU. */
7147	*list_skb = oldsd->completion_queue;
7148	oldsd->completion_queue = NULL;
7149
7150	/* Append output queue from offline CPU. */
7151	if (oldsd->output_queue) {
7152		*sd->output_queue_tailp = oldsd->output_queue;
7153		sd->output_queue_tailp = oldsd->output_queue_tailp;
7154		oldsd->output_queue = NULL;
7155		oldsd->output_queue_tailp = &oldsd->output_queue;
7156	}
7157	/* Append NAPI poll list from offline CPU, with one exception :
7158	 * process_backlog() must be called by cpu owning percpu backlog.
7159	 * We properly handle process_queue & input_pkt_queue later.
7160	 */
7161	while (!list_empty(&oldsd->poll_list)) {
7162		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7163							    struct napi_struct,
7164							    poll_list);
7165
7166		list_del_init(&napi->poll_list);
7167		if (napi->poll == process_backlog)
7168			napi->state = 0;
7169		else
7170			____napi_schedule(sd, napi);
7171	}
7172
7173	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7174	local_irq_enable();
7175
7176	/* Process offline CPU's input_pkt_queue */
7177	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7178		netif_rx_ni(skb);
7179		input_queue_head_incr(oldsd);
7180	}
7181	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7182		netif_rx_ni(skb);
7183		input_queue_head_incr(oldsd);
7184	}
7185
7186	return NOTIFY_OK;
7187}
7188
7189
7190/**
7191 *	netdev_increment_features - increment feature set by one
7192 *	@all: current feature set
7193 *	@one: new feature set
7194 *	@mask: mask feature set
7195 *
7196 *	Computes a new feature set after adding a device with feature set
7197 *	@one to the master device with current feature set @all.  Will not
7198 *	enable anything that is off in @mask. Returns the new feature set.
7199 */
7200netdev_features_t netdev_increment_features(netdev_features_t all,
7201	netdev_features_t one, netdev_features_t mask)
7202{
7203	if (mask & NETIF_F_GEN_CSUM)
7204		mask |= NETIF_F_ALL_CSUM;
7205	mask |= NETIF_F_VLAN_CHALLENGED;
7206
7207	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7208	all &= one | ~NETIF_F_ALL_FOR_ALL;
7209
7210	/* If one device supports hw checksumming, set for all. */
7211	if (all & NETIF_F_GEN_CSUM)
7212		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7213
7214	return all;
7215}
7216EXPORT_SYMBOL(netdev_increment_features);
7217
7218static struct hlist_head * __net_init netdev_create_hash(void)
7219{
7220	int i;
7221	struct hlist_head *hash;
7222
7223	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7224	if (hash != NULL)
7225		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7226			INIT_HLIST_HEAD(&hash[i]);
7227
7228	return hash;
7229}
7230
7231/* Initialize per network namespace state */
7232static int __net_init netdev_init(struct net *net)
7233{
7234	if (net != &init_net)
7235		INIT_LIST_HEAD(&net->dev_base_head);
7236
7237	net->dev_name_head = netdev_create_hash();
7238	if (net->dev_name_head == NULL)
7239		goto err_name;
7240
7241	net->dev_index_head = netdev_create_hash();
7242	if (net->dev_index_head == NULL)
7243		goto err_idx;
7244
7245	return 0;
7246
7247err_idx:
7248	kfree(net->dev_name_head);
7249err_name:
7250	return -ENOMEM;
7251}
7252
7253/**
7254 *	netdev_drivername - network driver for the device
7255 *	@dev: network device
7256 *
7257 *	Determine network driver for device.
7258 */
7259const char *netdev_drivername(const struct net_device *dev)
7260{
7261	const struct device_driver *driver;
7262	const struct device *parent;
7263	const char *empty = "";
7264
7265	parent = dev->dev.parent;
7266	if (!parent)
7267		return empty;
7268
7269	driver = parent->driver;
7270	if (driver && driver->name)
7271		return driver->name;
7272	return empty;
7273}
7274
7275static void __netdev_printk(const char *level, const struct net_device *dev,
7276			    struct va_format *vaf)
7277{
7278	if (dev && dev->dev.parent) {
7279		dev_printk_emit(level[1] - '0',
7280				dev->dev.parent,
7281				"%s %s %s%s: %pV",
7282				dev_driver_string(dev->dev.parent),
7283				dev_name(dev->dev.parent),
7284				netdev_name(dev), netdev_reg_state(dev),
7285				vaf);
7286	} else if (dev) {
7287		printk("%s%s%s: %pV",
7288		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7289	} else {
7290		printk("%s(NULL net_device): %pV", level, vaf);
7291	}
7292}
7293
7294void netdev_printk(const char *level, const struct net_device *dev,
7295		   const char *format, ...)
7296{
7297	struct va_format vaf;
7298	va_list args;
7299
7300	va_start(args, format);
7301
7302	vaf.fmt = format;
7303	vaf.va = &args;
7304
7305	__netdev_printk(level, dev, &vaf);
7306
7307	va_end(args);
7308}
7309EXPORT_SYMBOL(netdev_printk);
7310
7311#define define_netdev_printk_level(func, level)			\
7312void func(const struct net_device *dev, const char *fmt, ...)	\
7313{								\
7314	struct va_format vaf;					\
7315	va_list args;						\
7316								\
7317	va_start(args, fmt);					\
7318								\
7319	vaf.fmt = fmt;						\
7320	vaf.va = &args;						\
7321								\
7322	__netdev_printk(level, dev, &vaf);			\
7323								\
7324	va_end(args);						\
7325}								\
7326EXPORT_SYMBOL(func);
7327
7328define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7329define_netdev_printk_level(netdev_alert, KERN_ALERT);
7330define_netdev_printk_level(netdev_crit, KERN_CRIT);
7331define_netdev_printk_level(netdev_err, KERN_ERR);
7332define_netdev_printk_level(netdev_warn, KERN_WARNING);
7333define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7334define_netdev_printk_level(netdev_info, KERN_INFO);
7335
7336static void __net_exit netdev_exit(struct net *net)
7337{
7338	kfree(net->dev_name_head);
7339	kfree(net->dev_index_head);
7340}
7341
7342static struct pernet_operations __net_initdata netdev_net_ops = {
7343	.init = netdev_init,
7344	.exit = netdev_exit,
7345};
7346
7347static void __net_exit default_device_exit(struct net *net)
7348{
7349	struct net_device *dev, *aux;
7350	/*
7351	 * Push all migratable network devices back to the
7352	 * initial network namespace
7353	 */
7354	rtnl_lock();
7355	for_each_netdev_safe(net, dev, aux) {
7356		int err;
7357		char fb_name[IFNAMSIZ];
7358
7359		/* Ignore unmoveable devices (i.e. loopback) */
7360		if (dev->features & NETIF_F_NETNS_LOCAL)
7361			continue;
7362
7363		/* Leave virtual devices for the generic cleanup */
7364		if (dev->rtnl_link_ops)
7365			continue;
7366
7367		/* Push remaining network devices to init_net */
7368		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7369		err = dev_change_net_namespace(dev, &init_net, fb_name);
7370		if (err) {
7371			pr_emerg("%s: failed to move %s to init_net: %d\n",
7372				 __func__, dev->name, err);
7373			BUG();
7374		}
7375	}
7376	rtnl_unlock();
7377}
7378
7379static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7380{
7381	/* Return with the rtnl_lock held when there are no network
7382	 * devices unregistering in any network namespace in net_list.
7383	 */
7384	struct net *net;
7385	bool unregistering;
7386	DEFINE_WAIT_FUNC(wait, woken_wake_function);
7387
7388	add_wait_queue(&netdev_unregistering_wq, &wait);
7389	for (;;) {
7390		unregistering = false;
7391		rtnl_lock();
7392		list_for_each_entry(net, net_list, exit_list) {
7393			if (net->dev_unreg_count > 0) {
7394				unregistering = true;
7395				break;
7396			}
7397		}
7398		if (!unregistering)
7399			break;
7400		__rtnl_unlock();
7401
7402		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7403	}
7404	remove_wait_queue(&netdev_unregistering_wq, &wait);
7405}
7406
7407static void __net_exit default_device_exit_batch(struct list_head *net_list)
7408{
7409	/* At exit all network devices most be removed from a network
7410	 * namespace.  Do this in the reverse order of registration.
7411	 * Do this across as many network namespaces as possible to
7412	 * improve batching efficiency.
7413	 */
7414	struct net_device *dev;
7415	struct net *net;
7416	LIST_HEAD(dev_kill_list);
7417
7418	/* To prevent network device cleanup code from dereferencing
7419	 * loopback devices or network devices that have been freed
7420	 * wait here for all pending unregistrations to complete,
7421	 * before unregistring the loopback device and allowing the
7422	 * network namespace be freed.
7423	 *
7424	 * The netdev todo list containing all network devices
7425	 * unregistrations that happen in default_device_exit_batch
7426	 * will run in the rtnl_unlock() at the end of
7427	 * default_device_exit_batch.
7428	 */
7429	rtnl_lock_unregistering(net_list);
7430	list_for_each_entry(net, net_list, exit_list) {
7431		for_each_netdev_reverse(net, dev) {
7432			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7433				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7434			else
7435				unregister_netdevice_queue(dev, &dev_kill_list);
7436		}
7437	}
7438	unregister_netdevice_many(&dev_kill_list);
7439	rtnl_unlock();
7440}
7441
7442static struct pernet_operations __net_initdata default_device_ops = {
7443	.exit = default_device_exit,
7444	.exit_batch = default_device_exit_batch,
7445};
7446
7447/*
7448 *	Initialize the DEV module. At boot time this walks the device list and
7449 *	unhooks any devices that fail to initialise (normally hardware not
7450 *	present) and leaves us with a valid list of present and active devices.
7451 *
7452 */
7453
7454/*
7455 *       This is called single threaded during boot, so no need
7456 *       to take the rtnl semaphore.
7457 */
7458static int __init net_dev_init(void)
7459{
7460	int i, rc = -ENOMEM;
7461
7462	BUG_ON(!dev_boot_phase);
7463
7464	if (dev_proc_init())
7465		goto out;
7466
7467	if (netdev_kobject_init())
7468		goto out;
7469
7470	INIT_LIST_HEAD(&ptype_all);
7471	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7472		INIT_LIST_HEAD(&ptype_base[i]);
7473
7474	INIT_LIST_HEAD(&offload_base);
7475
7476	if (register_pernet_subsys(&netdev_net_ops))
7477		goto out;
7478
7479	/*
7480	 *	Initialise the packet receive queues.
7481	 */
7482
7483	for_each_possible_cpu(i) {
7484		struct softnet_data *sd = &per_cpu(softnet_data, i);
7485
7486		skb_queue_head_init(&sd->input_pkt_queue);
7487		skb_queue_head_init(&sd->process_queue);
7488		INIT_LIST_HEAD(&sd->poll_list);
7489		sd->output_queue_tailp = &sd->output_queue;
7490#ifdef CONFIG_RPS
7491		sd->csd.func = rps_trigger_softirq;
7492		sd->csd.info = sd;
7493		sd->cpu = i;
7494#endif
7495
7496		sd->backlog.poll = process_backlog;
7497		sd->backlog.weight = weight_p;
7498	}
7499
7500	dev_boot_phase = 0;
7501
7502	/* The loopback device is special if any other network devices
7503	 * is present in a network namespace the loopback device must
7504	 * be present. Since we now dynamically allocate and free the
7505	 * loopback device ensure this invariant is maintained by
7506	 * keeping the loopback device as the first device on the
7507	 * list of network devices.  Ensuring the loopback devices
7508	 * is the first device that appears and the last network device
7509	 * that disappears.
7510	 */
7511	if (register_pernet_device(&loopback_net_ops))
7512		goto out;
7513
7514	if (register_pernet_device(&default_device_ops))
7515		goto out;
7516
7517	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7518	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7519
7520	hotcpu_notifier(dev_cpu_callback, 0);
7521	dst_init();
7522	rc = 0;
7523out:
7524	return rc;
7525}
7526
7527subsys_initcall(net_dev_init);
7528