1/* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14/* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->first_page: points to the first component (0-order) page 20 * page->index (union with page->freelist): offset of the first object 21 * starting in this page. For the first page, this is 22 * always 0, so we use this field (aka freelist) to point 23 * to the first free object in zspage. 24 * page->lru: links together all component pages (except the first page) 25 * of a zspage 26 * 27 * For _first_ page only: 28 * 29 * page->private (union with page->first_page): refers to the 30 * component page after the first page 31 * If the page is first_page for huge object, it stores handle. 32 * Look at size_class->huge. 33 * page->freelist: points to the first free object in zspage. 34 * Free objects are linked together using in-place 35 * metadata. 36 * page->objects: maximum number of objects we can store in this 37 * zspage (class->zspage_order * PAGE_SIZE / class->size) 38 * page->lru: links together first pages of various zspages. 39 * Basically forming list of zspages in a fullness group. 40 * page->mapping: class index and fullness group of the zspage 41 * 42 * Usage of struct page flags: 43 * PG_private: identifies the first component page 44 * PG_private2: identifies the last component page 45 * 46 */ 47 48#ifdef CONFIG_ZSMALLOC_DEBUG 49#define DEBUG 50#endif 51 52#include <linux/module.h> 53#include <linux/kernel.h> 54#include <linux/sched.h> 55#include <linux/bitops.h> 56#include <linux/errno.h> 57#include <linux/highmem.h> 58#include <linux/string.h> 59#include <linux/slab.h> 60#include <asm/tlbflush.h> 61#include <asm/pgtable.h> 62#include <linux/cpumask.h> 63#include <linux/cpu.h> 64#include <linux/vmalloc.h> 65#include <linux/hardirq.h> 66#include <linux/spinlock.h> 67#include <linux/types.h> 68#include <linux/debugfs.h> 69#include <linux/zsmalloc.h> 70#include <linux/zpool.h> 71 72/* 73 * This must be power of 2 and greater than of equal to sizeof(link_free). 74 * These two conditions ensure that any 'struct link_free' itself doesn't 75 * span more than 1 page which avoids complex case of mapping 2 pages simply 76 * to restore link_free pointer values. 77 */ 78#define ZS_ALIGN 8 79 80/* 81 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 82 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 83 */ 84#define ZS_MAX_ZSPAGE_ORDER 2 85#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 86 87#define ZS_HANDLE_SIZE (sizeof(unsigned long)) 88 89/* 90 * Object location (<PFN>, <obj_idx>) is encoded as 91 * as single (unsigned long) handle value. 92 * 93 * Note that object index <obj_idx> is relative to system 94 * page <PFN> it is stored in, so for each sub-page belonging 95 * to a zspage, obj_idx starts with 0. 96 * 97 * This is made more complicated by various memory models and PAE. 98 */ 99 100#ifndef MAX_PHYSMEM_BITS 101#ifdef CONFIG_HIGHMEM64G 102#define MAX_PHYSMEM_BITS 36 103#else /* !CONFIG_HIGHMEM64G */ 104/* 105 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 106 * be PAGE_SHIFT 107 */ 108#define MAX_PHYSMEM_BITS BITS_PER_LONG 109#endif 110#endif 111#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT) 112 113/* 114 * Memory for allocating for handle keeps object position by 115 * encoding <page, obj_idx> and the encoded value has a room 116 * in least bit(ie, look at obj_to_location). 117 * We use the bit to synchronize between object access by 118 * user and migration. 119 */ 120#define HANDLE_PIN_BIT 0 121 122/* 123 * Head in allocated object should have OBJ_ALLOCATED_TAG 124 * to identify the object was allocated or not. 125 * It's okay to add the status bit in the least bit because 126 * header keeps handle which is 4byte-aligned address so we 127 * have room for two bit at least. 128 */ 129#define OBJ_ALLOCATED_TAG 1 130#define OBJ_TAG_BITS 1 131#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 132#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 133 134#define MAX(a, b) ((a) >= (b) ? (a) : (b)) 135/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 136#define ZS_MIN_ALLOC_SIZE \ 137 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 138/* each chunk includes extra space to keep handle */ 139#define ZS_MAX_ALLOC_SIZE PAGE_SIZE 140 141/* 142 * On systems with 4K page size, this gives 255 size classes! There is a 143 * trader-off here: 144 * - Large number of size classes is potentially wasteful as free page are 145 * spread across these classes 146 * - Small number of size classes causes large internal fragmentation 147 * - Probably its better to use specific size classes (empirically 148 * determined). NOTE: all those class sizes must be set as multiple of 149 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 150 * 151 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 152 * (reason above) 153 */ 154#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8) 155 156/* 157 * We do not maintain any list for completely empty or full pages 158 */ 159enum fullness_group { 160 ZS_ALMOST_FULL, 161 ZS_ALMOST_EMPTY, 162 _ZS_NR_FULLNESS_GROUPS, 163 164 ZS_EMPTY, 165 ZS_FULL 166}; 167 168enum zs_stat_type { 169 OBJ_ALLOCATED, 170 OBJ_USED, 171 CLASS_ALMOST_FULL, 172 CLASS_ALMOST_EMPTY, 173 NR_ZS_STAT_TYPE, 174}; 175 176#ifdef CONFIG_ZSMALLOC_STAT 177 178static struct dentry *zs_stat_root; 179 180struct zs_size_stat { 181 unsigned long objs[NR_ZS_STAT_TYPE]; 182}; 183 184#endif 185 186/* 187 * number of size_classes 188 */ 189static int zs_size_classes; 190 191/* 192 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 193 * n <= N / f, where 194 * n = number of allocated objects 195 * N = total number of objects zspage can store 196 * f = fullness_threshold_frac 197 * 198 * Similarly, we assign zspage to: 199 * ZS_ALMOST_FULL when n > N / f 200 * ZS_EMPTY when n == 0 201 * ZS_FULL when n == N 202 * 203 * (see: fix_fullness_group()) 204 */ 205static const int fullness_threshold_frac = 4; 206 207struct size_class { 208 /* 209 * Size of objects stored in this class. Must be multiple 210 * of ZS_ALIGN. 211 */ 212 int size; 213 unsigned int index; 214 215 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 216 int pages_per_zspage; 217 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 218 bool huge; 219 220#ifdef CONFIG_ZSMALLOC_STAT 221 struct zs_size_stat stats; 222#endif 223 224 spinlock_t lock; 225 226 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS]; 227}; 228 229/* 230 * Placed within free objects to form a singly linked list. 231 * For every zspage, first_page->freelist gives head of this list. 232 * 233 * This must be power of 2 and less than or equal to ZS_ALIGN 234 */ 235struct link_free { 236 union { 237 /* 238 * Position of next free chunk (encodes <PFN, obj_idx>) 239 * It's valid for non-allocated object 240 */ 241 void *next; 242 /* 243 * Handle of allocated object. 244 */ 245 unsigned long handle; 246 }; 247}; 248 249struct zs_pool { 250 char *name; 251 252 struct size_class **size_class; 253 struct kmem_cache *handle_cachep; 254 255 gfp_t flags; /* allocation flags used when growing pool */ 256 atomic_long_t pages_allocated; 257 258#ifdef CONFIG_ZSMALLOC_STAT 259 struct dentry *stat_dentry; 260#endif 261}; 262 263/* 264 * A zspage's class index and fullness group 265 * are encoded in its (first)page->mapping 266 */ 267#define CLASS_IDX_BITS 28 268#define FULLNESS_BITS 4 269#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1) 270#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1) 271 272struct mapping_area { 273#ifdef CONFIG_PGTABLE_MAPPING 274 struct vm_struct *vm; /* vm area for mapping object that span pages */ 275#else 276 char *vm_buf; /* copy buffer for objects that span pages */ 277#endif 278 char *vm_addr; /* address of kmap_atomic()'ed pages */ 279 enum zs_mapmode vm_mm; /* mapping mode */ 280 bool huge; 281}; 282 283static int create_handle_cache(struct zs_pool *pool) 284{ 285 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 286 0, 0, NULL); 287 return pool->handle_cachep ? 0 : 1; 288} 289 290static void destroy_handle_cache(struct zs_pool *pool) 291{ 292 if (pool->handle_cachep) 293 kmem_cache_destroy(pool->handle_cachep); 294} 295 296static unsigned long alloc_handle(struct zs_pool *pool) 297{ 298 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 299 pool->flags & ~__GFP_HIGHMEM); 300} 301 302static void free_handle(struct zs_pool *pool, unsigned long handle) 303{ 304 kmem_cache_free(pool->handle_cachep, (void *)handle); 305} 306 307static void record_obj(unsigned long handle, unsigned long obj) 308{ 309 /* 310 * lsb of @obj represents handle lock while other bits 311 * represent object value the handle is pointing so 312 * updating shouldn't do store tearing. 313 */ 314 WRITE_ONCE(*(unsigned long *)handle, obj); 315} 316 317/* zpool driver */ 318 319#ifdef CONFIG_ZPOOL 320 321static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops) 322{ 323 return zs_create_pool(name, gfp); 324} 325 326static void zs_zpool_destroy(void *pool) 327{ 328 zs_destroy_pool(pool); 329} 330 331static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 332 unsigned long *handle) 333{ 334 *handle = zs_malloc(pool, size); 335 return *handle ? 0 : -1; 336} 337static void zs_zpool_free(void *pool, unsigned long handle) 338{ 339 zs_free(pool, handle); 340} 341 342static int zs_zpool_shrink(void *pool, unsigned int pages, 343 unsigned int *reclaimed) 344{ 345 return -EINVAL; 346} 347 348static void *zs_zpool_map(void *pool, unsigned long handle, 349 enum zpool_mapmode mm) 350{ 351 enum zs_mapmode zs_mm; 352 353 switch (mm) { 354 case ZPOOL_MM_RO: 355 zs_mm = ZS_MM_RO; 356 break; 357 case ZPOOL_MM_WO: 358 zs_mm = ZS_MM_WO; 359 break; 360 case ZPOOL_MM_RW: /* fallthru */ 361 default: 362 zs_mm = ZS_MM_RW; 363 break; 364 } 365 366 return zs_map_object(pool, handle, zs_mm); 367} 368static void zs_zpool_unmap(void *pool, unsigned long handle) 369{ 370 zs_unmap_object(pool, handle); 371} 372 373static u64 zs_zpool_total_size(void *pool) 374{ 375 return zs_get_total_pages(pool) << PAGE_SHIFT; 376} 377 378static struct zpool_driver zs_zpool_driver = { 379 .type = "zsmalloc", 380 .owner = THIS_MODULE, 381 .create = zs_zpool_create, 382 .destroy = zs_zpool_destroy, 383 .malloc = zs_zpool_malloc, 384 .free = zs_zpool_free, 385 .shrink = zs_zpool_shrink, 386 .map = zs_zpool_map, 387 .unmap = zs_zpool_unmap, 388 .total_size = zs_zpool_total_size, 389}; 390 391MODULE_ALIAS("zpool-zsmalloc"); 392#endif /* CONFIG_ZPOOL */ 393 394static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage) 395{ 396 return pages_per_zspage * PAGE_SIZE / size; 397} 398 399/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 400static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 401 402static int is_first_page(struct page *page) 403{ 404 return PagePrivate(page); 405} 406 407static int is_last_page(struct page *page) 408{ 409 return PagePrivate2(page); 410} 411 412static void get_zspage_mapping(struct page *page, unsigned int *class_idx, 413 enum fullness_group *fullness) 414{ 415 unsigned long m; 416 BUG_ON(!is_first_page(page)); 417 418 m = (unsigned long)page->mapping; 419 *fullness = m & FULLNESS_MASK; 420 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK; 421} 422 423static void set_zspage_mapping(struct page *page, unsigned int class_idx, 424 enum fullness_group fullness) 425{ 426 unsigned long m; 427 BUG_ON(!is_first_page(page)); 428 429 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) | 430 (fullness & FULLNESS_MASK); 431 page->mapping = (struct address_space *)m; 432} 433 434/* 435 * zsmalloc divides the pool into various size classes where each 436 * class maintains a list of zspages where each zspage is divided 437 * into equal sized chunks. Each allocation falls into one of these 438 * classes depending on its size. This function returns index of the 439 * size class which has chunk size big enough to hold the give size. 440 */ 441static int get_size_class_index(int size) 442{ 443 int idx = 0; 444 445 if (likely(size > ZS_MIN_ALLOC_SIZE)) 446 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 447 ZS_SIZE_CLASS_DELTA); 448 449 return min(zs_size_classes - 1, idx); 450} 451 452#ifdef CONFIG_ZSMALLOC_STAT 453 454static inline void zs_stat_inc(struct size_class *class, 455 enum zs_stat_type type, unsigned long cnt) 456{ 457 class->stats.objs[type] += cnt; 458} 459 460static inline void zs_stat_dec(struct size_class *class, 461 enum zs_stat_type type, unsigned long cnt) 462{ 463 class->stats.objs[type] -= cnt; 464} 465 466static inline unsigned long zs_stat_get(struct size_class *class, 467 enum zs_stat_type type) 468{ 469 return class->stats.objs[type]; 470} 471 472static int __init zs_stat_init(void) 473{ 474 if (!debugfs_initialized()) 475 return -ENODEV; 476 477 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 478 if (!zs_stat_root) 479 return -ENOMEM; 480 481 return 0; 482} 483 484static void __exit zs_stat_exit(void) 485{ 486 debugfs_remove_recursive(zs_stat_root); 487} 488 489static int zs_stats_size_show(struct seq_file *s, void *v) 490{ 491 int i; 492 struct zs_pool *pool = s->private; 493 struct size_class *class; 494 int objs_per_zspage; 495 unsigned long class_almost_full, class_almost_empty; 496 unsigned long obj_allocated, obj_used, pages_used; 497 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 498 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 499 500 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n", 501 "class", "size", "almost_full", "almost_empty", 502 "obj_allocated", "obj_used", "pages_used", 503 "pages_per_zspage"); 504 505 for (i = 0; i < zs_size_classes; i++) { 506 class = pool->size_class[i]; 507 508 if (class->index != i) 509 continue; 510 511 spin_lock(&class->lock); 512 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 513 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 514 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 515 obj_used = zs_stat_get(class, OBJ_USED); 516 spin_unlock(&class->lock); 517 518 objs_per_zspage = get_maxobj_per_zspage(class->size, 519 class->pages_per_zspage); 520 pages_used = obj_allocated / objs_per_zspage * 521 class->pages_per_zspage; 522 523 seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n", 524 i, class->size, class_almost_full, class_almost_empty, 525 obj_allocated, obj_used, pages_used, 526 class->pages_per_zspage); 527 528 total_class_almost_full += class_almost_full; 529 total_class_almost_empty += class_almost_empty; 530 total_objs += obj_allocated; 531 total_used_objs += obj_used; 532 total_pages += pages_used; 533 } 534 535 seq_puts(s, "\n"); 536 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n", 537 "Total", "", total_class_almost_full, 538 total_class_almost_empty, total_objs, 539 total_used_objs, total_pages); 540 541 return 0; 542} 543 544static int zs_stats_size_open(struct inode *inode, struct file *file) 545{ 546 return single_open(file, zs_stats_size_show, inode->i_private); 547} 548 549static const struct file_operations zs_stat_size_ops = { 550 .open = zs_stats_size_open, 551 .read = seq_read, 552 .llseek = seq_lseek, 553 .release = single_release, 554}; 555 556static int zs_pool_stat_create(char *name, struct zs_pool *pool) 557{ 558 struct dentry *entry; 559 560 if (!zs_stat_root) 561 return -ENODEV; 562 563 entry = debugfs_create_dir(name, zs_stat_root); 564 if (!entry) { 565 pr_warn("debugfs dir <%s> creation failed\n", name); 566 return -ENOMEM; 567 } 568 pool->stat_dentry = entry; 569 570 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO, 571 pool->stat_dentry, pool, &zs_stat_size_ops); 572 if (!entry) { 573 pr_warn("%s: debugfs file entry <%s> creation failed\n", 574 name, "classes"); 575 return -ENOMEM; 576 } 577 578 return 0; 579} 580 581static void zs_pool_stat_destroy(struct zs_pool *pool) 582{ 583 debugfs_remove_recursive(pool->stat_dentry); 584} 585 586#else /* CONFIG_ZSMALLOC_STAT */ 587 588static inline void zs_stat_inc(struct size_class *class, 589 enum zs_stat_type type, unsigned long cnt) 590{ 591} 592 593static inline void zs_stat_dec(struct size_class *class, 594 enum zs_stat_type type, unsigned long cnt) 595{ 596} 597 598static inline unsigned long zs_stat_get(struct size_class *class, 599 enum zs_stat_type type) 600{ 601 return 0; 602} 603 604static int __init zs_stat_init(void) 605{ 606 return 0; 607} 608 609static void __exit zs_stat_exit(void) 610{ 611} 612 613static inline int zs_pool_stat_create(char *name, struct zs_pool *pool) 614{ 615 return 0; 616} 617 618static inline void zs_pool_stat_destroy(struct zs_pool *pool) 619{ 620} 621 622#endif 623 624 625/* 626 * For each size class, zspages are divided into different groups 627 * depending on how "full" they are. This was done so that we could 628 * easily find empty or nearly empty zspages when we try to shrink 629 * the pool (not yet implemented). This function returns fullness 630 * status of the given page. 631 */ 632static enum fullness_group get_fullness_group(struct page *page) 633{ 634 int inuse, max_objects; 635 enum fullness_group fg; 636 BUG_ON(!is_first_page(page)); 637 638 inuse = page->inuse; 639 max_objects = page->objects; 640 641 if (inuse == 0) 642 fg = ZS_EMPTY; 643 else if (inuse == max_objects) 644 fg = ZS_FULL; 645 else if (inuse <= 3 * max_objects / fullness_threshold_frac) 646 fg = ZS_ALMOST_EMPTY; 647 else 648 fg = ZS_ALMOST_FULL; 649 650 return fg; 651} 652 653/* 654 * Each size class maintains various freelists and zspages are assigned 655 * to one of these freelists based on the number of live objects they 656 * have. This functions inserts the given zspage into the freelist 657 * identified by <class, fullness_group>. 658 */ 659static void insert_zspage(struct page *page, struct size_class *class, 660 enum fullness_group fullness) 661{ 662 struct page **head; 663 664 BUG_ON(!is_first_page(page)); 665 666 if (fullness >= _ZS_NR_FULLNESS_GROUPS) 667 return; 668 669 head = &class->fullness_list[fullness]; 670 if (*head) 671 list_add_tail(&page->lru, &(*head)->lru); 672 673 *head = page; 674 zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ? 675 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1); 676} 677 678/* 679 * This function removes the given zspage from the freelist identified 680 * by <class, fullness_group>. 681 */ 682static void remove_zspage(struct page *page, struct size_class *class, 683 enum fullness_group fullness) 684{ 685 struct page **head; 686 687 BUG_ON(!is_first_page(page)); 688 689 if (fullness >= _ZS_NR_FULLNESS_GROUPS) 690 return; 691 692 head = &class->fullness_list[fullness]; 693 BUG_ON(!*head); 694 if (list_empty(&(*head)->lru)) 695 *head = NULL; 696 else if (*head == page) 697 *head = (struct page *)list_entry((*head)->lru.next, 698 struct page, lru); 699 700 list_del_init(&page->lru); 701 zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ? 702 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1); 703} 704 705/* 706 * Each size class maintains zspages in different fullness groups depending 707 * on the number of live objects they contain. When allocating or freeing 708 * objects, the fullness status of the page can change, say, from ALMOST_FULL 709 * to ALMOST_EMPTY when freeing an object. This function checks if such 710 * a status change has occurred for the given page and accordingly moves the 711 * page from the freelist of the old fullness group to that of the new 712 * fullness group. 713 */ 714static enum fullness_group fix_fullness_group(struct size_class *class, 715 struct page *page) 716{ 717 int class_idx; 718 enum fullness_group currfg, newfg; 719 720 BUG_ON(!is_first_page(page)); 721 722 get_zspage_mapping(page, &class_idx, &currfg); 723 newfg = get_fullness_group(page); 724 if (newfg == currfg) 725 goto out; 726 727 remove_zspage(page, class, currfg); 728 insert_zspage(page, class, newfg); 729 set_zspage_mapping(page, class_idx, newfg); 730 731out: 732 return newfg; 733} 734 735/* 736 * We have to decide on how many pages to link together 737 * to form a zspage for each size class. This is important 738 * to reduce wastage due to unusable space left at end of 739 * each zspage which is given as: 740 * wastage = Zp % class_size 741 * usage = Zp - wastage 742 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 743 * 744 * For example, for size class of 3/8 * PAGE_SIZE, we should 745 * link together 3 PAGE_SIZE sized pages to form a zspage 746 * since then we can perfectly fit in 8 such objects. 747 */ 748static int get_pages_per_zspage(int class_size) 749{ 750 int i, max_usedpc = 0; 751 /* zspage order which gives maximum used size per KB */ 752 int max_usedpc_order = 1; 753 754 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 755 int zspage_size; 756 int waste, usedpc; 757 758 zspage_size = i * PAGE_SIZE; 759 waste = zspage_size % class_size; 760 usedpc = (zspage_size - waste) * 100 / zspage_size; 761 762 if (usedpc > max_usedpc) { 763 max_usedpc = usedpc; 764 max_usedpc_order = i; 765 } 766 } 767 768 return max_usedpc_order; 769} 770 771/* 772 * A single 'zspage' is composed of many system pages which are 773 * linked together using fields in struct page. This function finds 774 * the first/head page, given any component page of a zspage. 775 */ 776static struct page *get_first_page(struct page *page) 777{ 778 if (is_first_page(page)) 779 return page; 780 else 781 return page->first_page; 782} 783 784static struct page *get_next_page(struct page *page) 785{ 786 struct page *next; 787 788 if (is_last_page(page)) 789 next = NULL; 790 else if (is_first_page(page)) 791 next = (struct page *)page_private(page); 792 else 793 next = list_entry(page->lru.next, struct page, lru); 794 795 return next; 796} 797 798/* 799 * Encode <page, obj_idx> as a single handle value. 800 * We use the least bit of handle for tagging. 801 */ 802static void *location_to_obj(struct page *page, unsigned long obj_idx) 803{ 804 unsigned long obj; 805 806 if (!page) { 807 BUG_ON(obj_idx); 808 return NULL; 809 } 810 811 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 812 obj |= ((obj_idx) & OBJ_INDEX_MASK); 813 obj <<= OBJ_TAG_BITS; 814 815 return (void *)obj; 816} 817 818/* 819 * Decode <page, obj_idx> pair from the given object handle. We adjust the 820 * decoded obj_idx back to its original value since it was adjusted in 821 * location_to_obj(). 822 */ 823static void obj_to_location(unsigned long obj, struct page **page, 824 unsigned long *obj_idx) 825{ 826 obj >>= OBJ_TAG_BITS; 827 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 828 *obj_idx = (obj & OBJ_INDEX_MASK); 829} 830 831static unsigned long handle_to_obj(unsigned long handle) 832{ 833 return *(unsigned long *)handle; 834} 835 836static unsigned long obj_to_head(struct size_class *class, struct page *page, 837 void *obj) 838{ 839 if (class->huge) { 840 VM_BUG_ON(!is_first_page(page)); 841 return *(unsigned long *)page_private(page); 842 } else 843 return *(unsigned long *)obj; 844} 845 846static unsigned long obj_idx_to_offset(struct page *page, 847 unsigned long obj_idx, int class_size) 848{ 849 unsigned long off = 0; 850 851 if (!is_first_page(page)) 852 off = page->index; 853 854 return off + obj_idx * class_size; 855} 856 857static inline int trypin_tag(unsigned long handle) 858{ 859 unsigned long *ptr = (unsigned long *)handle; 860 861 return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr); 862} 863 864static void pin_tag(unsigned long handle) 865{ 866 while (!trypin_tag(handle)); 867} 868 869static void unpin_tag(unsigned long handle) 870{ 871 unsigned long *ptr = (unsigned long *)handle; 872 873 clear_bit_unlock(HANDLE_PIN_BIT, ptr); 874} 875 876static void reset_page(struct page *page) 877{ 878 clear_bit(PG_private, &page->flags); 879 clear_bit(PG_private_2, &page->flags); 880 set_page_private(page, 0); 881 page->mapping = NULL; 882 page->freelist = NULL; 883 page_mapcount_reset(page); 884} 885 886static void free_zspage(struct page *first_page) 887{ 888 struct page *nextp, *tmp, *head_extra; 889 890 BUG_ON(!is_first_page(first_page)); 891 BUG_ON(first_page->inuse); 892 893 head_extra = (struct page *)page_private(first_page); 894 895 reset_page(first_page); 896 __free_page(first_page); 897 898 /* zspage with only 1 system page */ 899 if (!head_extra) 900 return; 901 902 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) { 903 list_del(&nextp->lru); 904 reset_page(nextp); 905 __free_page(nextp); 906 } 907 reset_page(head_extra); 908 __free_page(head_extra); 909} 910 911/* Initialize a newly allocated zspage */ 912static void init_zspage(struct page *first_page, struct size_class *class) 913{ 914 unsigned long off = 0; 915 struct page *page = first_page; 916 917 BUG_ON(!is_first_page(first_page)); 918 while (page) { 919 struct page *next_page; 920 struct link_free *link; 921 unsigned int i = 1; 922 void *vaddr; 923 924 /* 925 * page->index stores offset of first object starting 926 * in the page. For the first page, this is always 0, 927 * so we use first_page->index (aka ->freelist) to store 928 * head of corresponding zspage's freelist. 929 */ 930 if (page != first_page) 931 page->index = off; 932 933 vaddr = kmap_atomic(page); 934 link = (struct link_free *)vaddr + off / sizeof(*link); 935 936 while ((off += class->size) < PAGE_SIZE) { 937 link->next = location_to_obj(page, i++); 938 link += class->size / sizeof(*link); 939 } 940 941 /* 942 * We now come to the last (full or partial) object on this 943 * page, which must point to the first object on the next 944 * page (if present) 945 */ 946 next_page = get_next_page(page); 947 link->next = location_to_obj(next_page, 0); 948 kunmap_atomic(vaddr); 949 page = next_page; 950 off %= PAGE_SIZE; 951 } 952} 953 954/* 955 * Allocate a zspage for the given size class 956 */ 957static struct page *alloc_zspage(struct size_class *class, gfp_t flags) 958{ 959 int i, error; 960 struct page *first_page = NULL, *uninitialized_var(prev_page); 961 962 /* 963 * Allocate individual pages and link them together as: 964 * 1. first page->private = first sub-page 965 * 2. all sub-pages are linked together using page->lru 966 * 3. each sub-page is linked to the first page using page->first_page 967 * 968 * For each size class, First/Head pages are linked together using 969 * page->lru. Also, we set PG_private to identify the first page 970 * (i.e. no other sub-page has this flag set) and PG_private_2 to 971 * identify the last page. 972 */ 973 error = -ENOMEM; 974 for (i = 0; i < class->pages_per_zspage; i++) { 975 struct page *page; 976 977 page = alloc_page(flags); 978 if (!page) 979 goto cleanup; 980 981 INIT_LIST_HEAD(&page->lru); 982 if (i == 0) { /* first page */ 983 SetPagePrivate(page); 984 set_page_private(page, 0); 985 first_page = page; 986 first_page->inuse = 0; 987 } 988 if (i == 1) 989 set_page_private(first_page, (unsigned long)page); 990 if (i >= 1) 991 page->first_page = first_page; 992 if (i >= 2) 993 list_add(&page->lru, &prev_page->lru); 994 if (i == class->pages_per_zspage - 1) /* last page */ 995 SetPagePrivate2(page); 996 prev_page = page; 997 } 998 999 init_zspage(first_page, class); 1000 1001 first_page->freelist = location_to_obj(first_page, 0); 1002 /* Maximum number of objects we can store in this zspage */ 1003 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size; 1004 1005 error = 0; /* Success */ 1006 1007cleanup: 1008 if (unlikely(error) && first_page) { 1009 free_zspage(first_page); 1010 first_page = NULL; 1011 } 1012 1013 return first_page; 1014} 1015 1016static struct page *find_get_zspage(struct size_class *class) 1017{ 1018 int i; 1019 struct page *page; 1020 1021 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) { 1022 page = class->fullness_list[i]; 1023 if (page) 1024 break; 1025 } 1026 1027 return page; 1028} 1029 1030#ifdef CONFIG_PGTABLE_MAPPING 1031static inline int __zs_cpu_up(struct mapping_area *area) 1032{ 1033 /* 1034 * Make sure we don't leak memory if a cpu UP notification 1035 * and zs_init() race and both call zs_cpu_up() on the same cpu 1036 */ 1037 if (area->vm) 1038 return 0; 1039 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); 1040 if (!area->vm) 1041 return -ENOMEM; 1042 return 0; 1043} 1044 1045static inline void __zs_cpu_down(struct mapping_area *area) 1046{ 1047 if (area->vm) 1048 free_vm_area(area->vm); 1049 area->vm = NULL; 1050} 1051 1052static inline void *__zs_map_object(struct mapping_area *area, 1053 struct page *pages[2], int off, int size) 1054{ 1055 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); 1056 area->vm_addr = area->vm->addr; 1057 return area->vm_addr + off; 1058} 1059 1060static inline void __zs_unmap_object(struct mapping_area *area, 1061 struct page *pages[2], int off, int size) 1062{ 1063 unsigned long addr = (unsigned long)area->vm_addr; 1064 1065 unmap_kernel_range(addr, PAGE_SIZE * 2); 1066} 1067 1068#else /* CONFIG_PGTABLE_MAPPING */ 1069 1070static inline int __zs_cpu_up(struct mapping_area *area) 1071{ 1072 /* 1073 * Make sure we don't leak memory if a cpu UP notification 1074 * and zs_init() race and both call zs_cpu_up() on the same cpu 1075 */ 1076 if (area->vm_buf) 1077 return 0; 1078 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1079 if (!area->vm_buf) 1080 return -ENOMEM; 1081 return 0; 1082} 1083 1084static inline void __zs_cpu_down(struct mapping_area *area) 1085{ 1086 kfree(area->vm_buf); 1087 area->vm_buf = NULL; 1088} 1089 1090static void *__zs_map_object(struct mapping_area *area, 1091 struct page *pages[2], int off, int size) 1092{ 1093 int sizes[2]; 1094 void *addr; 1095 char *buf = area->vm_buf; 1096 1097 /* disable page faults to match kmap_atomic() return conditions */ 1098 pagefault_disable(); 1099 1100 /* no read fastpath */ 1101 if (area->vm_mm == ZS_MM_WO) 1102 goto out; 1103 1104 sizes[0] = PAGE_SIZE - off; 1105 sizes[1] = size - sizes[0]; 1106 1107 /* copy object to per-cpu buffer */ 1108 addr = kmap_atomic(pages[0]); 1109 memcpy(buf, addr + off, sizes[0]); 1110 kunmap_atomic(addr); 1111 addr = kmap_atomic(pages[1]); 1112 memcpy(buf + sizes[0], addr, sizes[1]); 1113 kunmap_atomic(addr); 1114out: 1115 return area->vm_buf; 1116} 1117 1118static void __zs_unmap_object(struct mapping_area *area, 1119 struct page *pages[2], int off, int size) 1120{ 1121 int sizes[2]; 1122 void *addr; 1123 char *buf; 1124 1125 /* no write fastpath */ 1126 if (area->vm_mm == ZS_MM_RO) 1127 goto out; 1128 1129 buf = area->vm_buf; 1130 if (!area->huge) { 1131 buf = buf + ZS_HANDLE_SIZE; 1132 size -= ZS_HANDLE_SIZE; 1133 off += ZS_HANDLE_SIZE; 1134 } 1135 1136 sizes[0] = PAGE_SIZE - off; 1137 sizes[1] = size - sizes[0]; 1138 1139 /* copy per-cpu buffer to object */ 1140 addr = kmap_atomic(pages[0]); 1141 memcpy(addr + off, buf, sizes[0]); 1142 kunmap_atomic(addr); 1143 addr = kmap_atomic(pages[1]); 1144 memcpy(addr, buf + sizes[0], sizes[1]); 1145 kunmap_atomic(addr); 1146 1147out: 1148 /* enable page faults to match kunmap_atomic() return conditions */ 1149 pagefault_enable(); 1150} 1151 1152#endif /* CONFIG_PGTABLE_MAPPING */ 1153 1154static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action, 1155 void *pcpu) 1156{ 1157 int ret, cpu = (long)pcpu; 1158 struct mapping_area *area; 1159 1160 switch (action) { 1161 case CPU_UP_PREPARE: 1162 area = &per_cpu(zs_map_area, cpu); 1163 ret = __zs_cpu_up(area); 1164 if (ret) 1165 return notifier_from_errno(ret); 1166 break; 1167 case CPU_DEAD: 1168 case CPU_UP_CANCELED: 1169 area = &per_cpu(zs_map_area, cpu); 1170 __zs_cpu_down(area); 1171 break; 1172 } 1173 1174 return NOTIFY_OK; 1175} 1176 1177static struct notifier_block zs_cpu_nb = { 1178 .notifier_call = zs_cpu_notifier 1179}; 1180 1181static int zs_register_cpu_notifier(void) 1182{ 1183 int cpu, uninitialized_var(ret); 1184 1185 cpu_notifier_register_begin(); 1186 1187 __register_cpu_notifier(&zs_cpu_nb); 1188 for_each_online_cpu(cpu) { 1189 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu); 1190 if (notifier_to_errno(ret)) 1191 break; 1192 } 1193 1194 cpu_notifier_register_done(); 1195 return notifier_to_errno(ret); 1196} 1197 1198static void zs_unregister_cpu_notifier(void) 1199{ 1200 int cpu; 1201 1202 cpu_notifier_register_begin(); 1203 1204 for_each_online_cpu(cpu) 1205 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu); 1206 __unregister_cpu_notifier(&zs_cpu_nb); 1207 1208 cpu_notifier_register_done(); 1209} 1210 1211static void init_zs_size_classes(void) 1212{ 1213 int nr; 1214 1215 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1; 1216 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA) 1217 nr += 1; 1218 1219 zs_size_classes = nr; 1220} 1221 1222static bool can_merge(struct size_class *prev, int size, int pages_per_zspage) 1223{ 1224 if (prev->pages_per_zspage != pages_per_zspage) 1225 return false; 1226 1227 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage) 1228 != get_maxobj_per_zspage(size, pages_per_zspage)) 1229 return false; 1230 1231 return true; 1232} 1233 1234static bool zspage_full(struct page *page) 1235{ 1236 BUG_ON(!is_first_page(page)); 1237 1238 return page->inuse == page->objects; 1239} 1240 1241unsigned long zs_get_total_pages(struct zs_pool *pool) 1242{ 1243 return atomic_long_read(&pool->pages_allocated); 1244} 1245EXPORT_SYMBOL_GPL(zs_get_total_pages); 1246 1247/** 1248 * zs_map_object - get address of allocated object from handle. 1249 * @pool: pool from which the object was allocated 1250 * @handle: handle returned from zs_malloc 1251 * 1252 * Before using an object allocated from zs_malloc, it must be mapped using 1253 * this function. When done with the object, it must be unmapped using 1254 * zs_unmap_object. 1255 * 1256 * Only one object can be mapped per cpu at a time. There is no protection 1257 * against nested mappings. 1258 * 1259 * This function returns with preemption and page faults disabled. 1260 */ 1261void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1262 enum zs_mapmode mm) 1263{ 1264 struct page *page; 1265 unsigned long obj, obj_idx, off; 1266 1267 unsigned int class_idx; 1268 enum fullness_group fg; 1269 struct size_class *class; 1270 struct mapping_area *area; 1271 struct page *pages[2]; 1272 void *ret; 1273 1274 BUG_ON(!handle); 1275 1276 /* 1277 * Because we use per-cpu mapping areas shared among the 1278 * pools/users, we can't allow mapping in interrupt context 1279 * because it can corrupt another users mappings. 1280 */ 1281 BUG_ON(in_interrupt()); 1282 1283 /* From now on, migration cannot move the object */ 1284 pin_tag(handle); 1285 1286 obj = handle_to_obj(handle); 1287 obj_to_location(obj, &page, &obj_idx); 1288 get_zspage_mapping(get_first_page(page), &class_idx, &fg); 1289 class = pool->size_class[class_idx]; 1290 off = obj_idx_to_offset(page, obj_idx, class->size); 1291 1292 area = &get_cpu_var(zs_map_area); 1293 area->vm_mm = mm; 1294 if (off + class->size <= PAGE_SIZE) { 1295 /* this object is contained entirely within a page */ 1296 area->vm_addr = kmap_atomic(page); 1297 ret = area->vm_addr + off; 1298 goto out; 1299 } 1300 1301 /* this object spans two pages */ 1302 pages[0] = page; 1303 pages[1] = get_next_page(page); 1304 BUG_ON(!pages[1]); 1305 1306 ret = __zs_map_object(area, pages, off, class->size); 1307out: 1308 if (!class->huge) 1309 ret += ZS_HANDLE_SIZE; 1310 1311 return ret; 1312} 1313EXPORT_SYMBOL_GPL(zs_map_object); 1314 1315void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1316{ 1317 struct page *page; 1318 unsigned long obj, obj_idx, off; 1319 1320 unsigned int class_idx; 1321 enum fullness_group fg; 1322 struct size_class *class; 1323 struct mapping_area *area; 1324 1325 BUG_ON(!handle); 1326 1327 obj = handle_to_obj(handle); 1328 obj_to_location(obj, &page, &obj_idx); 1329 get_zspage_mapping(get_first_page(page), &class_idx, &fg); 1330 class = pool->size_class[class_idx]; 1331 off = obj_idx_to_offset(page, obj_idx, class->size); 1332 1333 area = this_cpu_ptr(&zs_map_area); 1334 if (off + class->size <= PAGE_SIZE) 1335 kunmap_atomic(area->vm_addr); 1336 else { 1337 struct page *pages[2]; 1338 1339 pages[0] = page; 1340 pages[1] = get_next_page(page); 1341 BUG_ON(!pages[1]); 1342 1343 __zs_unmap_object(area, pages, off, class->size); 1344 } 1345 put_cpu_var(zs_map_area); 1346 unpin_tag(handle); 1347} 1348EXPORT_SYMBOL_GPL(zs_unmap_object); 1349 1350static unsigned long obj_malloc(struct page *first_page, 1351 struct size_class *class, unsigned long handle) 1352{ 1353 unsigned long obj; 1354 struct link_free *link; 1355 1356 struct page *m_page; 1357 unsigned long m_objidx, m_offset; 1358 void *vaddr; 1359 1360 handle |= OBJ_ALLOCATED_TAG; 1361 obj = (unsigned long)first_page->freelist; 1362 obj_to_location(obj, &m_page, &m_objidx); 1363 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size); 1364 1365 vaddr = kmap_atomic(m_page); 1366 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1367 first_page->freelist = link->next; 1368 if (!class->huge) 1369 /* record handle in the header of allocated chunk */ 1370 link->handle = handle; 1371 else 1372 /* record handle in first_page->private */ 1373 set_page_private(first_page, handle); 1374 kunmap_atomic(vaddr); 1375 first_page->inuse++; 1376 zs_stat_inc(class, OBJ_USED, 1); 1377 1378 return obj; 1379} 1380 1381 1382/** 1383 * zs_malloc - Allocate block of given size from pool. 1384 * @pool: pool to allocate from 1385 * @size: size of block to allocate 1386 * 1387 * On success, handle to the allocated object is returned, 1388 * otherwise 0. 1389 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1390 */ 1391unsigned long zs_malloc(struct zs_pool *pool, size_t size) 1392{ 1393 unsigned long handle, obj; 1394 struct size_class *class; 1395 struct page *first_page; 1396 1397 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1398 return 0; 1399 1400 handle = alloc_handle(pool); 1401 if (!handle) 1402 return 0; 1403 1404 /* extra space in chunk to keep the handle */ 1405 size += ZS_HANDLE_SIZE; 1406 class = pool->size_class[get_size_class_index(size)]; 1407 1408 spin_lock(&class->lock); 1409 first_page = find_get_zspage(class); 1410 1411 if (!first_page) { 1412 spin_unlock(&class->lock); 1413 first_page = alloc_zspage(class, pool->flags); 1414 if (unlikely(!first_page)) { 1415 free_handle(pool, handle); 1416 return 0; 1417 } 1418 1419 set_zspage_mapping(first_page, class->index, ZS_EMPTY); 1420 atomic_long_add(class->pages_per_zspage, 1421 &pool->pages_allocated); 1422 1423 spin_lock(&class->lock); 1424 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage( 1425 class->size, class->pages_per_zspage)); 1426 } 1427 1428 obj = obj_malloc(first_page, class, handle); 1429 /* Now move the zspage to another fullness group, if required */ 1430 fix_fullness_group(class, first_page); 1431 record_obj(handle, obj); 1432 spin_unlock(&class->lock); 1433 1434 return handle; 1435} 1436EXPORT_SYMBOL_GPL(zs_malloc); 1437 1438static void obj_free(struct zs_pool *pool, struct size_class *class, 1439 unsigned long obj) 1440{ 1441 struct link_free *link; 1442 struct page *first_page, *f_page; 1443 unsigned long f_objidx, f_offset; 1444 void *vaddr; 1445 int class_idx; 1446 enum fullness_group fullness; 1447 1448 BUG_ON(!obj); 1449 1450 obj &= ~OBJ_ALLOCATED_TAG; 1451 obj_to_location(obj, &f_page, &f_objidx); 1452 first_page = get_first_page(f_page); 1453 1454 get_zspage_mapping(first_page, &class_idx, &fullness); 1455 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size); 1456 1457 vaddr = kmap_atomic(f_page); 1458 1459 /* Insert this object in containing zspage's freelist */ 1460 link = (struct link_free *)(vaddr + f_offset); 1461 link->next = first_page->freelist; 1462 if (class->huge) 1463 set_page_private(first_page, 0); 1464 kunmap_atomic(vaddr); 1465 first_page->freelist = (void *)obj; 1466 first_page->inuse--; 1467 zs_stat_dec(class, OBJ_USED, 1); 1468} 1469 1470void zs_free(struct zs_pool *pool, unsigned long handle) 1471{ 1472 struct page *first_page, *f_page; 1473 unsigned long obj, f_objidx; 1474 int class_idx; 1475 struct size_class *class; 1476 enum fullness_group fullness; 1477 1478 if (unlikely(!handle)) 1479 return; 1480 1481 pin_tag(handle); 1482 obj = handle_to_obj(handle); 1483 obj_to_location(obj, &f_page, &f_objidx); 1484 first_page = get_first_page(f_page); 1485 1486 get_zspage_mapping(first_page, &class_idx, &fullness); 1487 class = pool->size_class[class_idx]; 1488 1489 spin_lock(&class->lock); 1490 obj_free(pool, class, obj); 1491 fullness = fix_fullness_group(class, first_page); 1492 if (fullness == ZS_EMPTY) { 1493 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage( 1494 class->size, class->pages_per_zspage)); 1495 atomic_long_sub(class->pages_per_zspage, 1496 &pool->pages_allocated); 1497 free_zspage(first_page); 1498 } 1499 spin_unlock(&class->lock); 1500 unpin_tag(handle); 1501 1502 free_handle(pool, handle); 1503} 1504EXPORT_SYMBOL_GPL(zs_free); 1505 1506static void zs_object_copy(unsigned long src, unsigned long dst, 1507 struct size_class *class) 1508{ 1509 struct page *s_page, *d_page; 1510 unsigned long s_objidx, d_objidx; 1511 unsigned long s_off, d_off; 1512 void *s_addr, *d_addr; 1513 int s_size, d_size, size; 1514 int written = 0; 1515 1516 s_size = d_size = class->size; 1517 1518 obj_to_location(src, &s_page, &s_objidx); 1519 obj_to_location(dst, &d_page, &d_objidx); 1520 1521 s_off = obj_idx_to_offset(s_page, s_objidx, class->size); 1522 d_off = obj_idx_to_offset(d_page, d_objidx, class->size); 1523 1524 if (s_off + class->size > PAGE_SIZE) 1525 s_size = PAGE_SIZE - s_off; 1526 1527 if (d_off + class->size > PAGE_SIZE) 1528 d_size = PAGE_SIZE - d_off; 1529 1530 s_addr = kmap_atomic(s_page); 1531 d_addr = kmap_atomic(d_page); 1532 1533 while (1) { 1534 size = min(s_size, d_size); 1535 memcpy(d_addr + d_off, s_addr + s_off, size); 1536 written += size; 1537 1538 if (written == class->size) 1539 break; 1540 1541 s_off += size; 1542 s_size -= size; 1543 d_off += size; 1544 d_size -= size; 1545 1546 if (s_off >= PAGE_SIZE) { 1547 kunmap_atomic(d_addr); 1548 kunmap_atomic(s_addr); 1549 s_page = get_next_page(s_page); 1550 BUG_ON(!s_page); 1551 s_addr = kmap_atomic(s_page); 1552 d_addr = kmap_atomic(d_page); 1553 s_size = class->size - written; 1554 s_off = 0; 1555 } 1556 1557 if (d_off >= PAGE_SIZE) { 1558 kunmap_atomic(d_addr); 1559 d_page = get_next_page(d_page); 1560 BUG_ON(!d_page); 1561 d_addr = kmap_atomic(d_page); 1562 d_size = class->size - written; 1563 d_off = 0; 1564 } 1565 } 1566 1567 kunmap_atomic(d_addr); 1568 kunmap_atomic(s_addr); 1569} 1570 1571/* 1572 * Find alloced object in zspage from index object and 1573 * return handle. 1574 */ 1575static unsigned long find_alloced_obj(struct page *page, int index, 1576 struct size_class *class) 1577{ 1578 unsigned long head; 1579 int offset = 0; 1580 unsigned long handle = 0; 1581 void *addr = kmap_atomic(page); 1582 1583 if (!is_first_page(page)) 1584 offset = page->index; 1585 offset += class->size * index; 1586 1587 while (offset < PAGE_SIZE) { 1588 head = obj_to_head(class, page, addr + offset); 1589 if (head & OBJ_ALLOCATED_TAG) { 1590 handle = head & ~OBJ_ALLOCATED_TAG; 1591 if (trypin_tag(handle)) 1592 break; 1593 handle = 0; 1594 } 1595 1596 offset += class->size; 1597 index++; 1598 } 1599 1600 kunmap_atomic(addr); 1601 return handle; 1602} 1603 1604struct zs_compact_control { 1605 /* Source page for migration which could be a subpage of zspage. */ 1606 struct page *s_page; 1607 /* Destination page for migration which should be a first page 1608 * of zspage. */ 1609 struct page *d_page; 1610 /* Starting object index within @s_page which used for live object 1611 * in the subpage. */ 1612 int index; 1613 /* how many of objects are migrated */ 1614 int nr_migrated; 1615}; 1616 1617static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1618 struct zs_compact_control *cc) 1619{ 1620 unsigned long used_obj, free_obj; 1621 unsigned long handle; 1622 struct page *s_page = cc->s_page; 1623 struct page *d_page = cc->d_page; 1624 unsigned long index = cc->index; 1625 int nr_migrated = 0; 1626 int ret = 0; 1627 1628 while (1) { 1629 handle = find_alloced_obj(s_page, index, class); 1630 if (!handle) { 1631 s_page = get_next_page(s_page); 1632 if (!s_page) 1633 break; 1634 index = 0; 1635 continue; 1636 } 1637 1638 /* Stop if there is no more space */ 1639 if (zspage_full(d_page)) { 1640 unpin_tag(handle); 1641 ret = -ENOMEM; 1642 break; 1643 } 1644 1645 used_obj = handle_to_obj(handle); 1646 free_obj = obj_malloc(d_page, class, handle); 1647 zs_object_copy(used_obj, free_obj, class); 1648 index++; 1649 /* 1650 * record_obj updates handle's value to free_obj and it will 1651 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which 1652 * breaks synchronization using pin_tag(e,g, zs_free) so 1653 * let's keep the lock bit. 1654 */ 1655 free_obj |= BIT(HANDLE_PIN_BIT); 1656 record_obj(handle, free_obj); 1657 unpin_tag(handle); 1658 obj_free(pool, class, used_obj); 1659 nr_migrated++; 1660 } 1661 1662 /* Remember last position in this iteration */ 1663 cc->s_page = s_page; 1664 cc->index = index; 1665 cc->nr_migrated = nr_migrated; 1666 1667 return ret; 1668} 1669 1670static struct page *alloc_target_page(struct size_class *class) 1671{ 1672 int i; 1673 struct page *page; 1674 1675 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) { 1676 page = class->fullness_list[i]; 1677 if (page) { 1678 remove_zspage(page, class, i); 1679 break; 1680 } 1681 } 1682 1683 return page; 1684} 1685 1686static void putback_zspage(struct zs_pool *pool, struct size_class *class, 1687 struct page *first_page) 1688{ 1689 enum fullness_group fullness; 1690 1691 BUG_ON(!is_first_page(first_page)); 1692 1693 fullness = get_fullness_group(first_page); 1694 insert_zspage(first_page, class, fullness); 1695 set_zspage_mapping(first_page, class->index, fullness); 1696 1697 if (fullness == ZS_EMPTY) { 1698 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage( 1699 class->size, class->pages_per_zspage)); 1700 atomic_long_sub(class->pages_per_zspage, 1701 &pool->pages_allocated); 1702 1703 free_zspage(first_page); 1704 } 1705} 1706 1707static struct page *isolate_source_page(struct size_class *class) 1708{ 1709 struct page *page; 1710 1711 page = class->fullness_list[ZS_ALMOST_EMPTY]; 1712 if (page) 1713 remove_zspage(page, class, ZS_ALMOST_EMPTY); 1714 1715 return page; 1716} 1717 1718static unsigned long __zs_compact(struct zs_pool *pool, 1719 struct size_class *class) 1720{ 1721 int nr_to_migrate; 1722 struct zs_compact_control cc; 1723 struct page *src_page; 1724 struct page *dst_page = NULL; 1725 unsigned long nr_total_migrated = 0; 1726 1727 spin_lock(&class->lock); 1728 while ((src_page = isolate_source_page(class))) { 1729 1730 BUG_ON(!is_first_page(src_page)); 1731 1732 /* The goal is to migrate all live objects in source page */ 1733 nr_to_migrate = src_page->inuse; 1734 cc.index = 0; 1735 cc.s_page = src_page; 1736 1737 while ((dst_page = alloc_target_page(class))) { 1738 cc.d_page = dst_page; 1739 /* 1740 * If there is no more space in dst_page, try to 1741 * allocate another zspage. 1742 */ 1743 if (!migrate_zspage(pool, class, &cc)) 1744 break; 1745 1746 putback_zspage(pool, class, dst_page); 1747 nr_total_migrated += cc.nr_migrated; 1748 nr_to_migrate -= cc.nr_migrated; 1749 } 1750 1751 /* Stop if we couldn't find slot */ 1752 if (dst_page == NULL) 1753 break; 1754 1755 putback_zspage(pool, class, dst_page); 1756 putback_zspage(pool, class, src_page); 1757 spin_unlock(&class->lock); 1758 nr_total_migrated += cc.nr_migrated; 1759 cond_resched(); 1760 spin_lock(&class->lock); 1761 } 1762 1763 if (src_page) 1764 putback_zspage(pool, class, src_page); 1765 1766 spin_unlock(&class->lock); 1767 1768 return nr_total_migrated; 1769} 1770 1771unsigned long zs_compact(struct zs_pool *pool) 1772{ 1773 int i; 1774 unsigned long nr_migrated = 0; 1775 struct size_class *class; 1776 1777 for (i = zs_size_classes - 1; i >= 0; i--) { 1778 class = pool->size_class[i]; 1779 if (!class) 1780 continue; 1781 if (class->index != i) 1782 continue; 1783 nr_migrated += __zs_compact(pool, class); 1784 } 1785 1786 return nr_migrated; 1787} 1788EXPORT_SYMBOL_GPL(zs_compact); 1789 1790/** 1791 * zs_create_pool - Creates an allocation pool to work from. 1792 * @flags: allocation flags used to allocate pool metadata 1793 * 1794 * This function must be called before anything when using 1795 * the zsmalloc allocator. 1796 * 1797 * On success, a pointer to the newly created pool is returned, 1798 * otherwise NULL. 1799 */ 1800struct zs_pool *zs_create_pool(char *name, gfp_t flags) 1801{ 1802 int i; 1803 struct zs_pool *pool; 1804 struct size_class *prev_class = NULL; 1805 1806 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 1807 if (!pool) 1808 return NULL; 1809 1810 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *), 1811 GFP_KERNEL); 1812 if (!pool->size_class) { 1813 kfree(pool); 1814 return NULL; 1815 } 1816 1817 pool->name = kstrdup(name, GFP_KERNEL); 1818 if (!pool->name) 1819 goto err; 1820 1821 if (create_handle_cache(pool)) 1822 goto err; 1823 1824 /* 1825 * Iterate reversly, because, size of size_class that we want to use 1826 * for merging should be larger or equal to current size. 1827 */ 1828 for (i = zs_size_classes - 1; i >= 0; i--) { 1829 int size; 1830 int pages_per_zspage; 1831 struct size_class *class; 1832 1833 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 1834 if (size > ZS_MAX_ALLOC_SIZE) 1835 size = ZS_MAX_ALLOC_SIZE; 1836 pages_per_zspage = get_pages_per_zspage(size); 1837 1838 /* 1839 * size_class is used for normal zsmalloc operation such 1840 * as alloc/free for that size. Although it is natural that we 1841 * have one size_class for each size, there is a chance that we 1842 * can get more memory utilization if we use one size_class for 1843 * many different sizes whose size_class have same 1844 * characteristics. So, we makes size_class point to 1845 * previous size_class if possible. 1846 */ 1847 if (prev_class) { 1848 if (can_merge(prev_class, size, pages_per_zspage)) { 1849 pool->size_class[i] = prev_class; 1850 continue; 1851 } 1852 } 1853 1854 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 1855 if (!class) 1856 goto err; 1857 1858 class->size = size; 1859 class->index = i; 1860 class->pages_per_zspage = pages_per_zspage; 1861 if (pages_per_zspage == 1 && 1862 get_maxobj_per_zspage(size, pages_per_zspage) == 1) 1863 class->huge = true; 1864 spin_lock_init(&class->lock); 1865 pool->size_class[i] = class; 1866 1867 prev_class = class; 1868 } 1869 1870 pool->flags = flags; 1871 1872 if (zs_pool_stat_create(name, pool)) 1873 goto err; 1874 1875 return pool; 1876 1877err: 1878 zs_destroy_pool(pool); 1879 return NULL; 1880} 1881EXPORT_SYMBOL_GPL(zs_create_pool); 1882 1883void zs_destroy_pool(struct zs_pool *pool) 1884{ 1885 int i; 1886 1887 zs_pool_stat_destroy(pool); 1888 1889 for (i = 0; i < zs_size_classes; i++) { 1890 int fg; 1891 struct size_class *class = pool->size_class[i]; 1892 1893 if (!class) 1894 continue; 1895 1896 if (class->index != i) 1897 continue; 1898 1899 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) { 1900 if (class->fullness_list[fg]) { 1901 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 1902 class->size, fg); 1903 } 1904 } 1905 kfree(class); 1906 } 1907 1908 destroy_handle_cache(pool); 1909 kfree(pool->size_class); 1910 kfree(pool->name); 1911 kfree(pool); 1912} 1913EXPORT_SYMBOL_GPL(zs_destroy_pool); 1914 1915static int __init zs_init(void) 1916{ 1917 int ret = zs_register_cpu_notifier(); 1918 1919 if (ret) 1920 goto notifier_fail; 1921 1922 init_zs_size_classes(); 1923 1924#ifdef CONFIG_ZPOOL 1925 zpool_register_driver(&zs_zpool_driver); 1926#endif 1927 1928 ret = zs_stat_init(); 1929 if (ret) { 1930 pr_err("zs stat initialization failed\n"); 1931 goto stat_fail; 1932 } 1933 return 0; 1934 1935stat_fail: 1936#ifdef CONFIG_ZPOOL 1937 zpool_unregister_driver(&zs_zpool_driver); 1938#endif 1939notifier_fail: 1940 zs_unregister_cpu_notifier(); 1941 1942 return ret; 1943} 1944 1945static void __exit zs_exit(void) 1946{ 1947#ifdef CONFIG_ZPOOL 1948 zpool_unregister_driver(&zs_zpool_driver); 1949#endif 1950 zs_unregister_cpu_notifier(); 1951 1952 zs_stat_exit(); 1953} 1954 1955module_init(zs_init); 1956module_exit(zs_exit); 1957 1958MODULE_LICENSE("Dual BSD/GPL"); 1959MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 1960