1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 *	(c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * 	(c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
17 * or with a little more detail in;
18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 *	Jeff Bonwick (Sun Microsystems).
20 *	Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 *   full slabs with 0 free objects
38 *   partial slabs
39 *   empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 *  constructors and destructors are called without any locking.
58 *  Several members in struct kmem_cache and struct slab never change, they
59 *	are accessed without any locking.
60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 *  	and local interrupts are disabled so slab code is preempt-safe.
62 *  The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97.  Started multi-threading - markhe
71 *	The global cache-chain is protected by the mutex 'slab_mutex'.
72 *	The sem is only needed when accessing/extending the cache-chain, which
73 *	can never happen inside an interrupt (kmem_cache_create(),
74 *	kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 *	At present, each engine can be growing a cache.  This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 *	Shai Fultheim <shai@scalex86.org>.
80 *	Shobhit Dayal <shobhit@calsoftinc.com>
81 *	Alok N Kataria <alokk@calsoftinc.com>
82 *	Christoph Lameter <christoph@lameter.com>
83 *
84 *	Modified the slab allocator to be node aware on NUMA systems.
85 *	Each node has its own list of partial, free and full slabs.
86 *	All object allocations for a node occur from node specific slab lists.
87 */
88
89#include	<linux/slab.h>
90#include	<linux/mm.h>
91#include	<linux/poison.h>
92#include	<linux/swap.h>
93#include	<linux/cache.h>
94#include	<linux/interrupt.h>
95#include	<linux/init.h>
96#include	<linux/compiler.h>
97#include	<linux/cpuset.h>
98#include	<linux/proc_fs.h>
99#include	<linux/seq_file.h>
100#include	<linux/notifier.h>
101#include	<linux/kallsyms.h>
102#include	<linux/cpu.h>
103#include	<linux/sysctl.h>
104#include	<linux/module.h>
105#include	<linux/rcupdate.h>
106#include	<linux/string.h>
107#include	<linux/uaccess.h>
108#include	<linux/nodemask.h>
109#include	<linux/kmemleak.h>
110#include	<linux/mempolicy.h>
111#include	<linux/mutex.h>
112#include	<linux/fault-inject.h>
113#include	<linux/rtmutex.h>
114#include	<linux/reciprocal_div.h>
115#include	<linux/debugobjects.h>
116#include	<linux/kmemcheck.h>
117#include	<linux/memory.h>
118#include	<linux/prefetch.h>
119
120#include	<net/sock.h>
121
122#include	<asm/cacheflush.h>
123#include	<asm/tlbflush.h>
124#include	<asm/page.h>
125
126#include <trace/events/kmem.h>
127
128#include	"internal.h"
129
130#include	"slab.h"
131
132/*
133 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 *		  0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS	- 1 to collect stats for /proc/slabinfo.
137 *		  0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define	DEBUG		1
144#define	STATS		1
145#define	FORCED_DEBUG	1
146#else
147#define	DEBUG		0
148#define	STATS		0
149#define	FORCED_DEBUG	0
150#endif
151
152/* Shouldn't this be in a header file somewhere? */
153#define	BYTES_PER_WORD		sizeof(void *)
154#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171/*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175static bool pfmemalloc_active __read_mostly;
176
177/*
178 * struct array_cache
179 *
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189struct array_cache {
190	unsigned int avail;
191	unsigned int limit;
192	unsigned int batchcount;
193	unsigned int touched;
194	void *entry[];	/*
195			 * Must have this definition in here for the proper
196			 * alignment of array_cache. Also simplifies accessing
197			 * the entries.
198			 *
199			 * Entries should not be directly dereferenced as
200			 * entries belonging to slabs marked pfmemalloc will
201			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
202			 */
203};
204
205struct alien_cache {
206	spinlock_t lock;
207	struct array_cache ac;
208};
209
210#define SLAB_OBJ_PFMEMALLOC	1
211static inline bool is_obj_pfmemalloc(void *objp)
212{
213	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214}
215
216static inline void set_obj_pfmemalloc(void **objp)
217{
218	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219	return;
220}
221
222static inline void clear_obj_pfmemalloc(void **objp)
223{
224	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225}
226
227/*
228 * bootstrap: The caches do not work without cpuarrays anymore, but the
229 * cpuarrays are allocated from the generic caches...
230 */
231#define BOOT_CPUCACHE_ENTRIES	1
232struct arraycache_init {
233	struct array_cache cache;
234	void *entries[BOOT_CPUCACHE_ENTRIES];
235};
236
237/*
238 * Need this for bootstrapping a per node allocator.
239 */
240#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
241static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242#define	CACHE_CACHE 0
243#define	SIZE_NODE (MAX_NUMNODES)
244
245static int drain_freelist(struct kmem_cache *cache,
246			struct kmem_cache_node *n, int tofree);
247static void free_block(struct kmem_cache *cachep, void **objpp, int len,
248			int node, struct list_head *list);
249static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
250static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
251static void cache_reap(struct work_struct *unused);
252
253static int slab_early_init = 1;
254
255#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
256
257static void kmem_cache_node_init(struct kmem_cache_node *parent)
258{
259	INIT_LIST_HEAD(&parent->slabs_full);
260	INIT_LIST_HEAD(&parent->slabs_partial);
261	INIT_LIST_HEAD(&parent->slabs_free);
262	parent->shared = NULL;
263	parent->alien = NULL;
264	parent->colour_next = 0;
265	spin_lock_init(&parent->list_lock);
266	parent->free_objects = 0;
267	parent->free_touched = 0;
268}
269
270#define MAKE_LIST(cachep, listp, slab, nodeid)				\
271	do {								\
272		INIT_LIST_HEAD(listp);					\
273		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
274	} while (0)
275
276#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
277	do {								\
278	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
279	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
280	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
281	} while (0)
282
283#define CFLGS_OFF_SLAB		(0x80000000UL)
284#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
285
286#define BATCHREFILL_LIMIT	16
287/*
288 * Optimization question: fewer reaps means less probability for unnessary
289 * cpucache drain/refill cycles.
290 *
291 * OTOH the cpuarrays can contain lots of objects,
292 * which could lock up otherwise freeable slabs.
293 */
294#define REAPTIMEOUT_AC		(2*HZ)
295#define REAPTIMEOUT_NODE	(4*HZ)
296
297#if STATS
298#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
299#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
300#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
301#define	STATS_INC_GROWN(x)	((x)->grown++)
302#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
303#define	STATS_SET_HIGH(x)						\
304	do {								\
305		if ((x)->num_active > (x)->high_mark)			\
306			(x)->high_mark = (x)->num_active;		\
307	} while (0)
308#define	STATS_INC_ERR(x)	((x)->errors++)
309#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
310#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
311#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
312#define	STATS_SET_FREEABLE(x, i)					\
313	do {								\
314		if ((x)->max_freeable < i)				\
315			(x)->max_freeable = i;				\
316	} while (0)
317#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
318#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
319#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
320#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
321#else
322#define	STATS_INC_ACTIVE(x)	do { } while (0)
323#define	STATS_DEC_ACTIVE(x)	do { } while (0)
324#define	STATS_INC_ALLOCED(x)	do { } while (0)
325#define	STATS_INC_GROWN(x)	do { } while (0)
326#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
327#define	STATS_SET_HIGH(x)	do { } while (0)
328#define	STATS_INC_ERR(x)	do { } while (0)
329#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
330#define	STATS_INC_NODEFREES(x)	do { } while (0)
331#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
332#define	STATS_SET_FREEABLE(x, i) do { } while (0)
333#define STATS_INC_ALLOCHIT(x)	do { } while (0)
334#define STATS_INC_ALLOCMISS(x)	do { } while (0)
335#define STATS_INC_FREEHIT(x)	do { } while (0)
336#define STATS_INC_FREEMISS(x)	do { } while (0)
337#endif
338
339#if DEBUG
340
341/*
342 * memory layout of objects:
343 * 0		: objp
344 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
345 * 		the end of an object is aligned with the end of the real
346 * 		allocation. Catches writes behind the end of the allocation.
347 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
348 * 		redzone word.
349 * cachep->obj_offset: The real object.
350 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
351 * cachep->size - 1* BYTES_PER_WORD: last caller address
352 *					[BYTES_PER_WORD long]
353 */
354static int obj_offset(struct kmem_cache *cachep)
355{
356	return cachep->obj_offset;
357}
358
359static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
360{
361	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
362	return (unsigned long long*) (objp + obj_offset(cachep) -
363				      sizeof(unsigned long long));
364}
365
366static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
367{
368	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
369	if (cachep->flags & SLAB_STORE_USER)
370		return (unsigned long long *)(objp + cachep->size -
371					      sizeof(unsigned long long) -
372					      REDZONE_ALIGN);
373	return (unsigned long long *) (objp + cachep->size -
374				       sizeof(unsigned long long));
375}
376
377static void **dbg_userword(struct kmem_cache *cachep, void *objp)
378{
379	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
380	return (void **)(objp + cachep->size - BYTES_PER_WORD);
381}
382
383#else
384
385#define obj_offset(x)			0
386#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
387#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
388#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
389
390#endif
391
392#define OBJECT_FREE (0)
393#define OBJECT_ACTIVE (1)
394
395#ifdef CONFIG_DEBUG_SLAB_LEAK
396
397static void set_obj_status(struct page *page, int idx, int val)
398{
399	int freelist_size;
400	char *status;
401	struct kmem_cache *cachep = page->slab_cache;
402
403	freelist_size = cachep->num * sizeof(freelist_idx_t);
404	status = (char *)page->freelist + freelist_size;
405	status[idx] = val;
406}
407
408static inline unsigned int get_obj_status(struct page *page, int idx)
409{
410	int freelist_size;
411	char *status;
412	struct kmem_cache *cachep = page->slab_cache;
413
414	freelist_size = cachep->num * sizeof(freelist_idx_t);
415	status = (char *)page->freelist + freelist_size;
416
417	return status[idx];
418}
419
420#else
421static inline void set_obj_status(struct page *page, int idx, int val) {}
422
423#endif
424
425/*
426 * Do not go above this order unless 0 objects fit into the slab or
427 * overridden on the command line.
428 */
429#define	SLAB_MAX_ORDER_HI	1
430#define	SLAB_MAX_ORDER_LO	0
431static int slab_max_order = SLAB_MAX_ORDER_LO;
432static bool slab_max_order_set __initdata;
433
434static inline struct kmem_cache *virt_to_cache(const void *obj)
435{
436	struct page *page = virt_to_head_page(obj);
437	return page->slab_cache;
438}
439
440static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
441				 unsigned int idx)
442{
443	return page->s_mem + cache->size * idx;
444}
445
446/*
447 * We want to avoid an expensive divide : (offset / cache->size)
448 *   Using the fact that size is a constant for a particular cache,
449 *   we can replace (offset / cache->size) by
450 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
451 */
452static inline unsigned int obj_to_index(const struct kmem_cache *cache,
453					const struct page *page, void *obj)
454{
455	u32 offset = (obj - page->s_mem);
456	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
457}
458
459/* internal cache of cache description objs */
460static struct kmem_cache kmem_cache_boot = {
461	.batchcount = 1,
462	.limit = BOOT_CPUCACHE_ENTRIES,
463	.shared = 1,
464	.size = sizeof(struct kmem_cache),
465	.name = "kmem_cache",
466};
467
468#define BAD_ALIEN_MAGIC 0x01020304ul
469
470static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
471
472static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
473{
474	return this_cpu_ptr(cachep->cpu_cache);
475}
476
477static size_t calculate_freelist_size(int nr_objs, size_t align)
478{
479	size_t freelist_size;
480
481	freelist_size = nr_objs * sizeof(freelist_idx_t);
482	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
483		freelist_size += nr_objs * sizeof(char);
484
485	if (align)
486		freelist_size = ALIGN(freelist_size, align);
487
488	return freelist_size;
489}
490
491static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
492				size_t idx_size, size_t align)
493{
494	int nr_objs;
495	size_t remained_size;
496	size_t freelist_size;
497	int extra_space = 0;
498
499	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
500		extra_space = sizeof(char);
501	/*
502	 * Ignore padding for the initial guess. The padding
503	 * is at most @align-1 bytes, and @buffer_size is at
504	 * least @align. In the worst case, this result will
505	 * be one greater than the number of objects that fit
506	 * into the memory allocation when taking the padding
507	 * into account.
508	 */
509	nr_objs = slab_size / (buffer_size + idx_size + extra_space);
510
511	/*
512	 * This calculated number will be either the right
513	 * amount, or one greater than what we want.
514	 */
515	remained_size = slab_size - nr_objs * buffer_size;
516	freelist_size = calculate_freelist_size(nr_objs, align);
517	if (remained_size < freelist_size)
518		nr_objs--;
519
520	return nr_objs;
521}
522
523/*
524 * Calculate the number of objects and left-over bytes for a given buffer size.
525 */
526static void cache_estimate(unsigned long gfporder, size_t buffer_size,
527			   size_t align, int flags, size_t *left_over,
528			   unsigned int *num)
529{
530	int nr_objs;
531	size_t mgmt_size;
532	size_t slab_size = PAGE_SIZE << gfporder;
533
534	/*
535	 * The slab management structure can be either off the slab or
536	 * on it. For the latter case, the memory allocated for a
537	 * slab is used for:
538	 *
539	 * - One unsigned int for each object
540	 * - Padding to respect alignment of @align
541	 * - @buffer_size bytes for each object
542	 *
543	 * If the slab management structure is off the slab, then the
544	 * alignment will already be calculated into the size. Because
545	 * the slabs are all pages aligned, the objects will be at the
546	 * correct alignment when allocated.
547	 */
548	if (flags & CFLGS_OFF_SLAB) {
549		mgmt_size = 0;
550		nr_objs = slab_size / buffer_size;
551
552	} else {
553		nr_objs = calculate_nr_objs(slab_size, buffer_size,
554					sizeof(freelist_idx_t), align);
555		mgmt_size = calculate_freelist_size(nr_objs, align);
556	}
557	*num = nr_objs;
558	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
559}
560
561#if DEBUG
562#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
563
564static void __slab_error(const char *function, struct kmem_cache *cachep,
565			char *msg)
566{
567	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
568	       function, cachep->name, msg);
569	dump_stack();
570	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
571}
572#endif
573
574/*
575 * By default on NUMA we use alien caches to stage the freeing of
576 * objects allocated from other nodes. This causes massive memory
577 * inefficiencies when using fake NUMA setup to split memory into a
578 * large number of small nodes, so it can be disabled on the command
579 * line
580  */
581
582static int use_alien_caches __read_mostly = 1;
583static int __init noaliencache_setup(char *s)
584{
585	use_alien_caches = 0;
586	return 1;
587}
588__setup("noaliencache", noaliencache_setup);
589
590static int __init slab_max_order_setup(char *str)
591{
592	get_option(&str, &slab_max_order);
593	slab_max_order = slab_max_order < 0 ? 0 :
594				min(slab_max_order, MAX_ORDER - 1);
595	slab_max_order_set = true;
596
597	return 1;
598}
599__setup("slab_max_order=", slab_max_order_setup);
600
601#ifdef CONFIG_NUMA
602/*
603 * Special reaping functions for NUMA systems called from cache_reap().
604 * These take care of doing round robin flushing of alien caches (containing
605 * objects freed on different nodes from which they were allocated) and the
606 * flushing of remote pcps by calling drain_node_pages.
607 */
608static DEFINE_PER_CPU(unsigned long, slab_reap_node);
609
610static void init_reap_node(int cpu)
611{
612	int node;
613
614	node = next_node(cpu_to_mem(cpu), node_online_map);
615	if (node == MAX_NUMNODES)
616		node = first_node(node_online_map);
617
618	per_cpu(slab_reap_node, cpu) = node;
619}
620
621static void next_reap_node(void)
622{
623	int node = __this_cpu_read(slab_reap_node);
624
625	node = next_node(node, node_online_map);
626	if (unlikely(node >= MAX_NUMNODES))
627		node = first_node(node_online_map);
628	__this_cpu_write(slab_reap_node, node);
629}
630
631#else
632#define init_reap_node(cpu) do { } while (0)
633#define next_reap_node(void) do { } while (0)
634#endif
635
636/*
637 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
638 * via the workqueue/eventd.
639 * Add the CPU number into the expiration time to minimize the possibility of
640 * the CPUs getting into lockstep and contending for the global cache chain
641 * lock.
642 */
643static void start_cpu_timer(int cpu)
644{
645	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
646
647	/*
648	 * When this gets called from do_initcalls via cpucache_init(),
649	 * init_workqueues() has already run, so keventd will be setup
650	 * at that time.
651	 */
652	if (keventd_up() && reap_work->work.func == NULL) {
653		init_reap_node(cpu);
654		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
655		schedule_delayed_work_on(cpu, reap_work,
656					__round_jiffies_relative(HZ, cpu));
657	}
658}
659
660static void init_arraycache(struct array_cache *ac, int limit, int batch)
661{
662	/*
663	 * The array_cache structures contain pointers to free object.
664	 * However, when such objects are allocated or transferred to another
665	 * cache the pointers are not cleared and they could be counted as
666	 * valid references during a kmemleak scan. Therefore, kmemleak must
667	 * not scan such objects.
668	 */
669	kmemleak_no_scan(ac);
670	if (ac) {
671		ac->avail = 0;
672		ac->limit = limit;
673		ac->batchcount = batch;
674		ac->touched = 0;
675	}
676}
677
678static struct array_cache *alloc_arraycache(int node, int entries,
679					    int batchcount, gfp_t gfp)
680{
681	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
682	struct array_cache *ac = NULL;
683
684	ac = kmalloc_node(memsize, gfp, node);
685	init_arraycache(ac, entries, batchcount);
686	return ac;
687}
688
689static inline bool is_slab_pfmemalloc(struct page *page)
690{
691	return PageSlabPfmemalloc(page);
692}
693
694/* Clears pfmemalloc_active if no slabs have pfmalloc set */
695static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
696						struct array_cache *ac)
697{
698	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
699	struct page *page;
700	unsigned long flags;
701
702	if (!pfmemalloc_active)
703		return;
704
705	spin_lock_irqsave(&n->list_lock, flags);
706	list_for_each_entry(page, &n->slabs_full, lru)
707		if (is_slab_pfmemalloc(page))
708			goto out;
709
710	list_for_each_entry(page, &n->slabs_partial, lru)
711		if (is_slab_pfmemalloc(page))
712			goto out;
713
714	list_for_each_entry(page, &n->slabs_free, lru)
715		if (is_slab_pfmemalloc(page))
716			goto out;
717
718	pfmemalloc_active = false;
719out:
720	spin_unlock_irqrestore(&n->list_lock, flags);
721}
722
723static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
724						gfp_t flags, bool force_refill)
725{
726	int i;
727	void *objp = ac->entry[--ac->avail];
728
729	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
730	if (unlikely(is_obj_pfmemalloc(objp))) {
731		struct kmem_cache_node *n;
732
733		if (gfp_pfmemalloc_allowed(flags)) {
734			clear_obj_pfmemalloc(&objp);
735			return objp;
736		}
737
738		/* The caller cannot use PFMEMALLOC objects, find another one */
739		for (i = 0; i < ac->avail; i++) {
740			/* If a !PFMEMALLOC object is found, swap them */
741			if (!is_obj_pfmemalloc(ac->entry[i])) {
742				objp = ac->entry[i];
743				ac->entry[i] = ac->entry[ac->avail];
744				ac->entry[ac->avail] = objp;
745				return objp;
746			}
747		}
748
749		/*
750		 * If there are empty slabs on the slabs_free list and we are
751		 * being forced to refill the cache, mark this one !pfmemalloc.
752		 */
753		n = get_node(cachep, numa_mem_id());
754		if (!list_empty(&n->slabs_free) && force_refill) {
755			struct page *page = virt_to_head_page(objp);
756			ClearPageSlabPfmemalloc(page);
757			clear_obj_pfmemalloc(&objp);
758			recheck_pfmemalloc_active(cachep, ac);
759			return objp;
760		}
761
762		/* No !PFMEMALLOC objects available */
763		ac->avail++;
764		objp = NULL;
765	}
766
767	return objp;
768}
769
770static inline void *ac_get_obj(struct kmem_cache *cachep,
771			struct array_cache *ac, gfp_t flags, bool force_refill)
772{
773	void *objp;
774
775	if (unlikely(sk_memalloc_socks()))
776		objp = __ac_get_obj(cachep, ac, flags, force_refill);
777	else
778		objp = ac->entry[--ac->avail];
779
780	return objp;
781}
782
783static noinline void *__ac_put_obj(struct kmem_cache *cachep,
784			struct array_cache *ac, void *objp)
785{
786	if (unlikely(pfmemalloc_active)) {
787		/* Some pfmemalloc slabs exist, check if this is one */
788		struct page *page = virt_to_head_page(objp);
789		if (PageSlabPfmemalloc(page))
790			set_obj_pfmemalloc(&objp);
791	}
792
793	return objp;
794}
795
796static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
797								void *objp)
798{
799	if (unlikely(sk_memalloc_socks()))
800		objp = __ac_put_obj(cachep, ac, objp);
801
802	ac->entry[ac->avail++] = objp;
803}
804
805/*
806 * Transfer objects in one arraycache to another.
807 * Locking must be handled by the caller.
808 *
809 * Return the number of entries transferred.
810 */
811static int transfer_objects(struct array_cache *to,
812		struct array_cache *from, unsigned int max)
813{
814	/* Figure out how many entries to transfer */
815	int nr = min3(from->avail, max, to->limit - to->avail);
816
817	if (!nr)
818		return 0;
819
820	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
821			sizeof(void *) *nr);
822
823	from->avail -= nr;
824	to->avail += nr;
825	return nr;
826}
827
828#ifndef CONFIG_NUMA
829
830#define drain_alien_cache(cachep, alien) do { } while (0)
831#define reap_alien(cachep, n) do { } while (0)
832
833static inline struct alien_cache **alloc_alien_cache(int node,
834						int limit, gfp_t gfp)
835{
836	return (struct alien_cache **)BAD_ALIEN_MAGIC;
837}
838
839static inline void free_alien_cache(struct alien_cache **ac_ptr)
840{
841}
842
843static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
844{
845	return 0;
846}
847
848static inline void *alternate_node_alloc(struct kmem_cache *cachep,
849		gfp_t flags)
850{
851	return NULL;
852}
853
854static inline void *____cache_alloc_node(struct kmem_cache *cachep,
855		 gfp_t flags, int nodeid)
856{
857	return NULL;
858}
859
860static inline gfp_t gfp_exact_node(gfp_t flags)
861{
862	return flags;
863}
864
865#else	/* CONFIG_NUMA */
866
867static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
868static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
869
870static struct alien_cache *__alloc_alien_cache(int node, int entries,
871						int batch, gfp_t gfp)
872{
873	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
874	struct alien_cache *alc = NULL;
875
876	alc = kmalloc_node(memsize, gfp, node);
877	init_arraycache(&alc->ac, entries, batch);
878	spin_lock_init(&alc->lock);
879	return alc;
880}
881
882static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
883{
884	struct alien_cache **alc_ptr;
885	size_t memsize = sizeof(void *) * nr_node_ids;
886	int i;
887
888	if (limit > 1)
889		limit = 12;
890	alc_ptr = kzalloc_node(memsize, gfp, node);
891	if (!alc_ptr)
892		return NULL;
893
894	for_each_node(i) {
895		if (i == node || !node_online(i))
896			continue;
897		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
898		if (!alc_ptr[i]) {
899			for (i--; i >= 0; i--)
900				kfree(alc_ptr[i]);
901			kfree(alc_ptr);
902			return NULL;
903		}
904	}
905	return alc_ptr;
906}
907
908static void free_alien_cache(struct alien_cache **alc_ptr)
909{
910	int i;
911
912	if (!alc_ptr)
913		return;
914	for_each_node(i)
915	    kfree(alc_ptr[i]);
916	kfree(alc_ptr);
917}
918
919static void __drain_alien_cache(struct kmem_cache *cachep,
920				struct array_cache *ac, int node,
921				struct list_head *list)
922{
923	struct kmem_cache_node *n = get_node(cachep, node);
924
925	if (ac->avail) {
926		spin_lock(&n->list_lock);
927		/*
928		 * Stuff objects into the remote nodes shared array first.
929		 * That way we could avoid the overhead of putting the objects
930		 * into the free lists and getting them back later.
931		 */
932		if (n->shared)
933			transfer_objects(n->shared, ac, ac->limit);
934
935		free_block(cachep, ac->entry, ac->avail, node, list);
936		ac->avail = 0;
937		spin_unlock(&n->list_lock);
938	}
939}
940
941/*
942 * Called from cache_reap() to regularly drain alien caches round robin.
943 */
944static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
945{
946	int node = __this_cpu_read(slab_reap_node);
947
948	if (n->alien) {
949		struct alien_cache *alc = n->alien[node];
950		struct array_cache *ac;
951
952		if (alc) {
953			ac = &alc->ac;
954			if (ac->avail && spin_trylock_irq(&alc->lock)) {
955				LIST_HEAD(list);
956
957				__drain_alien_cache(cachep, ac, node, &list);
958				spin_unlock_irq(&alc->lock);
959				slabs_destroy(cachep, &list);
960			}
961		}
962	}
963}
964
965static void drain_alien_cache(struct kmem_cache *cachep,
966				struct alien_cache **alien)
967{
968	int i = 0;
969	struct alien_cache *alc;
970	struct array_cache *ac;
971	unsigned long flags;
972
973	for_each_online_node(i) {
974		alc = alien[i];
975		if (alc) {
976			LIST_HEAD(list);
977
978			ac = &alc->ac;
979			spin_lock_irqsave(&alc->lock, flags);
980			__drain_alien_cache(cachep, ac, i, &list);
981			spin_unlock_irqrestore(&alc->lock, flags);
982			slabs_destroy(cachep, &list);
983		}
984	}
985}
986
987static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
988				int node, int page_node)
989{
990	struct kmem_cache_node *n;
991	struct alien_cache *alien = NULL;
992	struct array_cache *ac;
993	LIST_HEAD(list);
994
995	n = get_node(cachep, node);
996	STATS_INC_NODEFREES(cachep);
997	if (n->alien && n->alien[page_node]) {
998		alien = n->alien[page_node];
999		ac = &alien->ac;
1000		spin_lock(&alien->lock);
1001		if (unlikely(ac->avail == ac->limit)) {
1002			STATS_INC_ACOVERFLOW(cachep);
1003			__drain_alien_cache(cachep, ac, page_node, &list);
1004		}
1005		ac_put_obj(cachep, ac, objp);
1006		spin_unlock(&alien->lock);
1007		slabs_destroy(cachep, &list);
1008	} else {
1009		n = get_node(cachep, page_node);
1010		spin_lock(&n->list_lock);
1011		free_block(cachep, &objp, 1, page_node, &list);
1012		spin_unlock(&n->list_lock);
1013		slabs_destroy(cachep, &list);
1014	}
1015	return 1;
1016}
1017
1018static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1019{
1020	int page_node = page_to_nid(virt_to_page(objp));
1021	int node = numa_mem_id();
1022	/*
1023	 * Make sure we are not freeing a object from another node to the array
1024	 * cache on this cpu.
1025	 */
1026	if (likely(node == page_node))
1027		return 0;
1028
1029	return __cache_free_alien(cachep, objp, node, page_node);
1030}
1031
1032/*
1033 * Construct gfp mask to allocate from a specific node but do not invoke reclaim
1034 * or warn about failures.
1035 */
1036static inline gfp_t gfp_exact_node(gfp_t flags)
1037{
1038	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_WAIT;
1039}
1040#endif
1041
1042/*
1043 * Allocates and initializes node for a node on each slab cache, used for
1044 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1045 * will be allocated off-node since memory is not yet online for the new node.
1046 * When hotplugging memory or a cpu, existing node are not replaced if
1047 * already in use.
1048 *
1049 * Must hold slab_mutex.
1050 */
1051static int init_cache_node_node(int node)
1052{
1053	struct kmem_cache *cachep;
1054	struct kmem_cache_node *n;
1055	const size_t memsize = sizeof(struct kmem_cache_node);
1056
1057	list_for_each_entry(cachep, &slab_caches, list) {
1058		/*
1059		 * Set up the kmem_cache_node for cpu before we can
1060		 * begin anything. Make sure some other cpu on this
1061		 * node has not already allocated this
1062		 */
1063		n = get_node(cachep, node);
1064		if (!n) {
1065			n = kmalloc_node(memsize, GFP_KERNEL, node);
1066			if (!n)
1067				return -ENOMEM;
1068			kmem_cache_node_init(n);
1069			n->next_reap = jiffies + REAPTIMEOUT_NODE +
1070			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1071
1072			/*
1073			 * The kmem_cache_nodes don't come and go as CPUs
1074			 * come and go.  slab_mutex is sufficient
1075			 * protection here.
1076			 */
1077			cachep->node[node] = n;
1078		}
1079
1080		spin_lock_irq(&n->list_lock);
1081		n->free_limit =
1082			(1 + nr_cpus_node(node)) *
1083			cachep->batchcount + cachep->num;
1084		spin_unlock_irq(&n->list_lock);
1085	}
1086	return 0;
1087}
1088
1089static inline int slabs_tofree(struct kmem_cache *cachep,
1090						struct kmem_cache_node *n)
1091{
1092	return (n->free_objects + cachep->num - 1) / cachep->num;
1093}
1094
1095static void cpuup_canceled(long cpu)
1096{
1097	struct kmem_cache *cachep;
1098	struct kmem_cache_node *n = NULL;
1099	int node = cpu_to_mem(cpu);
1100	const struct cpumask *mask = cpumask_of_node(node);
1101
1102	list_for_each_entry(cachep, &slab_caches, list) {
1103		struct array_cache *nc;
1104		struct array_cache *shared;
1105		struct alien_cache **alien;
1106		LIST_HEAD(list);
1107
1108		n = get_node(cachep, node);
1109		if (!n)
1110			continue;
1111
1112		spin_lock_irq(&n->list_lock);
1113
1114		/* Free limit for this kmem_cache_node */
1115		n->free_limit -= cachep->batchcount;
1116
1117		/* cpu is dead; no one can alloc from it. */
1118		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1119		if (nc) {
1120			free_block(cachep, nc->entry, nc->avail, node, &list);
1121			nc->avail = 0;
1122		}
1123
1124		if (!cpumask_empty(mask)) {
1125			spin_unlock_irq(&n->list_lock);
1126			goto free_slab;
1127		}
1128
1129		shared = n->shared;
1130		if (shared) {
1131			free_block(cachep, shared->entry,
1132				   shared->avail, node, &list);
1133			n->shared = NULL;
1134		}
1135
1136		alien = n->alien;
1137		n->alien = NULL;
1138
1139		spin_unlock_irq(&n->list_lock);
1140
1141		kfree(shared);
1142		if (alien) {
1143			drain_alien_cache(cachep, alien);
1144			free_alien_cache(alien);
1145		}
1146
1147free_slab:
1148		slabs_destroy(cachep, &list);
1149	}
1150	/*
1151	 * In the previous loop, all the objects were freed to
1152	 * the respective cache's slabs,  now we can go ahead and
1153	 * shrink each nodelist to its limit.
1154	 */
1155	list_for_each_entry(cachep, &slab_caches, list) {
1156		n = get_node(cachep, node);
1157		if (!n)
1158			continue;
1159		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1160	}
1161}
1162
1163static int cpuup_prepare(long cpu)
1164{
1165	struct kmem_cache *cachep;
1166	struct kmem_cache_node *n = NULL;
1167	int node = cpu_to_mem(cpu);
1168	int err;
1169
1170	/*
1171	 * We need to do this right in the beginning since
1172	 * alloc_arraycache's are going to use this list.
1173	 * kmalloc_node allows us to add the slab to the right
1174	 * kmem_cache_node and not this cpu's kmem_cache_node
1175	 */
1176	err = init_cache_node_node(node);
1177	if (err < 0)
1178		goto bad;
1179
1180	/*
1181	 * Now we can go ahead with allocating the shared arrays and
1182	 * array caches
1183	 */
1184	list_for_each_entry(cachep, &slab_caches, list) {
1185		struct array_cache *shared = NULL;
1186		struct alien_cache **alien = NULL;
1187
1188		if (cachep->shared) {
1189			shared = alloc_arraycache(node,
1190				cachep->shared * cachep->batchcount,
1191				0xbaadf00d, GFP_KERNEL);
1192			if (!shared)
1193				goto bad;
1194		}
1195		if (use_alien_caches) {
1196			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1197			if (!alien) {
1198				kfree(shared);
1199				goto bad;
1200			}
1201		}
1202		n = get_node(cachep, node);
1203		BUG_ON(!n);
1204
1205		spin_lock_irq(&n->list_lock);
1206		if (!n->shared) {
1207			/*
1208			 * We are serialised from CPU_DEAD or
1209			 * CPU_UP_CANCELLED by the cpucontrol lock
1210			 */
1211			n->shared = shared;
1212			shared = NULL;
1213		}
1214#ifdef CONFIG_NUMA
1215		if (!n->alien) {
1216			n->alien = alien;
1217			alien = NULL;
1218		}
1219#endif
1220		spin_unlock_irq(&n->list_lock);
1221		kfree(shared);
1222		free_alien_cache(alien);
1223	}
1224
1225	return 0;
1226bad:
1227	cpuup_canceled(cpu);
1228	return -ENOMEM;
1229}
1230
1231static int cpuup_callback(struct notifier_block *nfb,
1232				    unsigned long action, void *hcpu)
1233{
1234	long cpu = (long)hcpu;
1235	int err = 0;
1236
1237	switch (action) {
1238	case CPU_UP_PREPARE:
1239	case CPU_UP_PREPARE_FROZEN:
1240		mutex_lock(&slab_mutex);
1241		err = cpuup_prepare(cpu);
1242		mutex_unlock(&slab_mutex);
1243		break;
1244	case CPU_ONLINE:
1245	case CPU_ONLINE_FROZEN:
1246		start_cpu_timer(cpu);
1247		break;
1248#ifdef CONFIG_HOTPLUG_CPU
1249  	case CPU_DOWN_PREPARE:
1250  	case CPU_DOWN_PREPARE_FROZEN:
1251		/*
1252		 * Shutdown cache reaper. Note that the slab_mutex is
1253		 * held so that if cache_reap() is invoked it cannot do
1254		 * anything expensive but will only modify reap_work
1255		 * and reschedule the timer.
1256		*/
1257		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1258		/* Now the cache_reaper is guaranteed to be not running. */
1259		per_cpu(slab_reap_work, cpu).work.func = NULL;
1260  		break;
1261  	case CPU_DOWN_FAILED:
1262  	case CPU_DOWN_FAILED_FROZEN:
1263		start_cpu_timer(cpu);
1264  		break;
1265	case CPU_DEAD:
1266	case CPU_DEAD_FROZEN:
1267		/*
1268		 * Even if all the cpus of a node are down, we don't free the
1269		 * kmem_cache_node of any cache. This to avoid a race between
1270		 * cpu_down, and a kmalloc allocation from another cpu for
1271		 * memory from the node of the cpu going down.  The node
1272		 * structure is usually allocated from kmem_cache_create() and
1273		 * gets destroyed at kmem_cache_destroy().
1274		 */
1275		/* fall through */
1276#endif
1277	case CPU_UP_CANCELED:
1278	case CPU_UP_CANCELED_FROZEN:
1279		mutex_lock(&slab_mutex);
1280		cpuup_canceled(cpu);
1281		mutex_unlock(&slab_mutex);
1282		break;
1283	}
1284	return notifier_from_errno(err);
1285}
1286
1287static struct notifier_block cpucache_notifier = {
1288	&cpuup_callback, NULL, 0
1289};
1290
1291#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1292/*
1293 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1294 * Returns -EBUSY if all objects cannot be drained so that the node is not
1295 * removed.
1296 *
1297 * Must hold slab_mutex.
1298 */
1299static int __meminit drain_cache_node_node(int node)
1300{
1301	struct kmem_cache *cachep;
1302	int ret = 0;
1303
1304	list_for_each_entry(cachep, &slab_caches, list) {
1305		struct kmem_cache_node *n;
1306
1307		n = get_node(cachep, node);
1308		if (!n)
1309			continue;
1310
1311		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1312
1313		if (!list_empty(&n->slabs_full) ||
1314		    !list_empty(&n->slabs_partial)) {
1315			ret = -EBUSY;
1316			break;
1317		}
1318	}
1319	return ret;
1320}
1321
1322static int __meminit slab_memory_callback(struct notifier_block *self,
1323					unsigned long action, void *arg)
1324{
1325	struct memory_notify *mnb = arg;
1326	int ret = 0;
1327	int nid;
1328
1329	nid = mnb->status_change_nid;
1330	if (nid < 0)
1331		goto out;
1332
1333	switch (action) {
1334	case MEM_GOING_ONLINE:
1335		mutex_lock(&slab_mutex);
1336		ret = init_cache_node_node(nid);
1337		mutex_unlock(&slab_mutex);
1338		break;
1339	case MEM_GOING_OFFLINE:
1340		mutex_lock(&slab_mutex);
1341		ret = drain_cache_node_node(nid);
1342		mutex_unlock(&slab_mutex);
1343		break;
1344	case MEM_ONLINE:
1345	case MEM_OFFLINE:
1346	case MEM_CANCEL_ONLINE:
1347	case MEM_CANCEL_OFFLINE:
1348		break;
1349	}
1350out:
1351	return notifier_from_errno(ret);
1352}
1353#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1354
1355/*
1356 * swap the static kmem_cache_node with kmalloced memory
1357 */
1358static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1359				int nodeid)
1360{
1361	struct kmem_cache_node *ptr;
1362
1363	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1364	BUG_ON(!ptr);
1365
1366	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1367	/*
1368	 * Do not assume that spinlocks can be initialized via memcpy:
1369	 */
1370	spin_lock_init(&ptr->list_lock);
1371
1372	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1373	cachep->node[nodeid] = ptr;
1374}
1375
1376/*
1377 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1378 * size of kmem_cache_node.
1379 */
1380static void __init set_up_node(struct kmem_cache *cachep, int index)
1381{
1382	int node;
1383
1384	for_each_online_node(node) {
1385		cachep->node[node] = &init_kmem_cache_node[index + node];
1386		cachep->node[node]->next_reap = jiffies +
1387		    REAPTIMEOUT_NODE +
1388		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1389	}
1390}
1391
1392/*
1393 * Initialisation.  Called after the page allocator have been initialised and
1394 * before smp_init().
1395 */
1396void __init kmem_cache_init(void)
1397{
1398	int i;
1399
1400	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1401					sizeof(struct rcu_head));
1402	kmem_cache = &kmem_cache_boot;
1403
1404	if (num_possible_nodes() == 1)
1405		use_alien_caches = 0;
1406
1407	for (i = 0; i < NUM_INIT_LISTS; i++)
1408		kmem_cache_node_init(&init_kmem_cache_node[i]);
1409
1410	/*
1411	 * Fragmentation resistance on low memory - only use bigger
1412	 * page orders on machines with more than 32MB of memory if
1413	 * not overridden on the command line.
1414	 */
1415	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1416		slab_max_order = SLAB_MAX_ORDER_HI;
1417
1418	/* Bootstrap is tricky, because several objects are allocated
1419	 * from caches that do not exist yet:
1420	 * 1) initialize the kmem_cache cache: it contains the struct
1421	 *    kmem_cache structures of all caches, except kmem_cache itself:
1422	 *    kmem_cache is statically allocated.
1423	 *    Initially an __init data area is used for the head array and the
1424	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1425	 *    array at the end of the bootstrap.
1426	 * 2) Create the first kmalloc cache.
1427	 *    The struct kmem_cache for the new cache is allocated normally.
1428	 *    An __init data area is used for the head array.
1429	 * 3) Create the remaining kmalloc caches, with minimally sized
1430	 *    head arrays.
1431	 * 4) Replace the __init data head arrays for kmem_cache and the first
1432	 *    kmalloc cache with kmalloc allocated arrays.
1433	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1434	 *    the other cache's with kmalloc allocated memory.
1435	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1436	 */
1437
1438	/* 1) create the kmem_cache */
1439
1440	/*
1441	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1442	 */
1443	create_boot_cache(kmem_cache, "kmem_cache",
1444		offsetof(struct kmem_cache, node) +
1445				  nr_node_ids * sizeof(struct kmem_cache_node *),
1446				  SLAB_HWCACHE_ALIGN);
1447	list_add(&kmem_cache->list, &slab_caches);
1448	slab_state = PARTIAL;
1449
1450	/*
1451	 * Initialize the caches that provide memory for the  kmem_cache_node
1452	 * structures first.  Without this, further allocations will bug.
1453	 */
1454	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1455				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1456	slab_state = PARTIAL_NODE;
1457
1458	slab_early_init = 0;
1459
1460	/* 5) Replace the bootstrap kmem_cache_node */
1461	{
1462		int nid;
1463
1464		for_each_online_node(nid) {
1465			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1466
1467			init_list(kmalloc_caches[INDEX_NODE],
1468					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1469		}
1470	}
1471
1472	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1473}
1474
1475void __init kmem_cache_init_late(void)
1476{
1477	struct kmem_cache *cachep;
1478
1479	slab_state = UP;
1480
1481	/* 6) resize the head arrays to their final sizes */
1482	mutex_lock(&slab_mutex);
1483	list_for_each_entry(cachep, &slab_caches, list)
1484		if (enable_cpucache(cachep, GFP_NOWAIT))
1485			BUG();
1486	mutex_unlock(&slab_mutex);
1487
1488	/* Done! */
1489	slab_state = FULL;
1490
1491	/*
1492	 * Register a cpu startup notifier callback that initializes
1493	 * cpu_cache_get for all new cpus
1494	 */
1495	register_cpu_notifier(&cpucache_notifier);
1496
1497#ifdef CONFIG_NUMA
1498	/*
1499	 * Register a memory hotplug callback that initializes and frees
1500	 * node.
1501	 */
1502	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1503#endif
1504
1505	/*
1506	 * The reap timers are started later, with a module init call: That part
1507	 * of the kernel is not yet operational.
1508	 */
1509}
1510
1511static int __init cpucache_init(void)
1512{
1513	int cpu;
1514
1515	/*
1516	 * Register the timers that return unneeded pages to the page allocator
1517	 */
1518	for_each_online_cpu(cpu)
1519		start_cpu_timer(cpu);
1520
1521	/* Done! */
1522	slab_state = FULL;
1523	return 0;
1524}
1525__initcall(cpucache_init);
1526
1527static noinline void
1528slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1529{
1530#if DEBUG
1531	struct kmem_cache_node *n;
1532	struct page *page;
1533	unsigned long flags;
1534	int node;
1535	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1536				      DEFAULT_RATELIMIT_BURST);
1537
1538	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1539		return;
1540
1541	printk(KERN_WARNING
1542		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1543		nodeid, gfpflags);
1544	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1545		cachep->name, cachep->size, cachep->gfporder);
1546
1547	for_each_kmem_cache_node(cachep, node, n) {
1548		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1549		unsigned long active_slabs = 0, num_slabs = 0;
1550
1551		spin_lock_irqsave(&n->list_lock, flags);
1552		list_for_each_entry(page, &n->slabs_full, lru) {
1553			active_objs += cachep->num;
1554			active_slabs++;
1555		}
1556		list_for_each_entry(page, &n->slabs_partial, lru) {
1557			active_objs += page->active;
1558			active_slabs++;
1559		}
1560		list_for_each_entry(page, &n->slabs_free, lru)
1561			num_slabs++;
1562
1563		free_objects += n->free_objects;
1564		spin_unlock_irqrestore(&n->list_lock, flags);
1565
1566		num_slabs += active_slabs;
1567		num_objs = num_slabs * cachep->num;
1568		printk(KERN_WARNING
1569			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1570			node, active_slabs, num_slabs, active_objs, num_objs,
1571			free_objects);
1572	}
1573#endif
1574}
1575
1576/*
1577 * Interface to system's page allocator. No need to hold the
1578 * kmem_cache_node ->list_lock.
1579 *
1580 * If we requested dmaable memory, we will get it. Even if we
1581 * did not request dmaable memory, we might get it, but that
1582 * would be relatively rare and ignorable.
1583 */
1584static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1585								int nodeid)
1586{
1587	struct page *page;
1588	int nr_pages;
1589
1590	flags |= cachep->allocflags;
1591	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1592		flags |= __GFP_RECLAIMABLE;
1593
1594	if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1595		return NULL;
1596
1597	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1598	if (!page) {
1599		memcg_uncharge_slab(cachep, cachep->gfporder);
1600		slab_out_of_memory(cachep, flags, nodeid);
1601		return NULL;
1602	}
1603
1604	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1605	if (page_is_pfmemalloc(page))
1606		pfmemalloc_active = true;
1607
1608	nr_pages = (1 << cachep->gfporder);
1609	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1610		add_zone_page_state(page_zone(page),
1611			NR_SLAB_RECLAIMABLE, nr_pages);
1612	else
1613		add_zone_page_state(page_zone(page),
1614			NR_SLAB_UNRECLAIMABLE, nr_pages);
1615	__SetPageSlab(page);
1616	if (page_is_pfmemalloc(page))
1617		SetPageSlabPfmemalloc(page);
1618
1619	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1620		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1621
1622		if (cachep->ctor)
1623			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1624		else
1625			kmemcheck_mark_unallocated_pages(page, nr_pages);
1626	}
1627
1628	return page;
1629}
1630
1631/*
1632 * Interface to system's page release.
1633 */
1634static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1635{
1636	const unsigned long nr_freed = (1 << cachep->gfporder);
1637
1638	kmemcheck_free_shadow(page, cachep->gfporder);
1639
1640	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1641		sub_zone_page_state(page_zone(page),
1642				NR_SLAB_RECLAIMABLE, nr_freed);
1643	else
1644		sub_zone_page_state(page_zone(page),
1645				NR_SLAB_UNRECLAIMABLE, nr_freed);
1646
1647	BUG_ON(!PageSlab(page));
1648	__ClearPageSlabPfmemalloc(page);
1649	__ClearPageSlab(page);
1650	page_mapcount_reset(page);
1651	page->mapping = NULL;
1652
1653	if (current->reclaim_state)
1654		current->reclaim_state->reclaimed_slab += nr_freed;
1655	__free_pages(page, cachep->gfporder);
1656	memcg_uncharge_slab(cachep, cachep->gfporder);
1657}
1658
1659static void kmem_rcu_free(struct rcu_head *head)
1660{
1661	struct kmem_cache *cachep;
1662	struct page *page;
1663
1664	page = container_of(head, struct page, rcu_head);
1665	cachep = page->slab_cache;
1666
1667	kmem_freepages(cachep, page);
1668}
1669
1670#if DEBUG
1671
1672#ifdef CONFIG_DEBUG_PAGEALLOC
1673static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1674			    unsigned long caller)
1675{
1676	int size = cachep->object_size;
1677
1678	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1679
1680	if (size < 5 * sizeof(unsigned long))
1681		return;
1682
1683	*addr++ = 0x12345678;
1684	*addr++ = caller;
1685	*addr++ = smp_processor_id();
1686	size -= 3 * sizeof(unsigned long);
1687	{
1688		unsigned long *sptr = &caller;
1689		unsigned long svalue;
1690
1691		while (!kstack_end(sptr)) {
1692			svalue = *sptr++;
1693			if (kernel_text_address(svalue)) {
1694				*addr++ = svalue;
1695				size -= sizeof(unsigned long);
1696				if (size <= sizeof(unsigned long))
1697					break;
1698			}
1699		}
1700
1701	}
1702	*addr++ = 0x87654321;
1703}
1704#endif
1705
1706static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1707{
1708	int size = cachep->object_size;
1709	addr = &((char *)addr)[obj_offset(cachep)];
1710
1711	memset(addr, val, size);
1712	*(unsigned char *)(addr + size - 1) = POISON_END;
1713}
1714
1715static void dump_line(char *data, int offset, int limit)
1716{
1717	int i;
1718	unsigned char error = 0;
1719	int bad_count = 0;
1720
1721	printk(KERN_ERR "%03x: ", offset);
1722	for (i = 0; i < limit; i++) {
1723		if (data[offset + i] != POISON_FREE) {
1724			error = data[offset + i];
1725			bad_count++;
1726		}
1727	}
1728	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1729			&data[offset], limit, 1);
1730
1731	if (bad_count == 1) {
1732		error ^= POISON_FREE;
1733		if (!(error & (error - 1))) {
1734			printk(KERN_ERR "Single bit error detected. Probably "
1735					"bad RAM.\n");
1736#ifdef CONFIG_X86
1737			printk(KERN_ERR "Run memtest86+ or a similar memory "
1738					"test tool.\n");
1739#else
1740			printk(KERN_ERR "Run a memory test tool.\n");
1741#endif
1742		}
1743	}
1744}
1745#endif
1746
1747#if DEBUG
1748
1749static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1750{
1751	int i, size;
1752	char *realobj;
1753
1754	if (cachep->flags & SLAB_RED_ZONE) {
1755		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1756			*dbg_redzone1(cachep, objp),
1757			*dbg_redzone2(cachep, objp));
1758	}
1759
1760	if (cachep->flags & SLAB_STORE_USER) {
1761		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1762		       *dbg_userword(cachep, objp),
1763		       *dbg_userword(cachep, objp));
1764	}
1765	realobj = (char *)objp + obj_offset(cachep);
1766	size = cachep->object_size;
1767	for (i = 0; i < size && lines; i += 16, lines--) {
1768		int limit;
1769		limit = 16;
1770		if (i + limit > size)
1771			limit = size - i;
1772		dump_line(realobj, i, limit);
1773	}
1774}
1775
1776static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1777{
1778	char *realobj;
1779	int size, i;
1780	int lines = 0;
1781
1782	realobj = (char *)objp + obj_offset(cachep);
1783	size = cachep->object_size;
1784
1785	for (i = 0; i < size; i++) {
1786		char exp = POISON_FREE;
1787		if (i == size - 1)
1788			exp = POISON_END;
1789		if (realobj[i] != exp) {
1790			int limit;
1791			/* Mismatch ! */
1792			/* Print header */
1793			if (lines == 0) {
1794				printk(KERN_ERR
1795					"Slab corruption (%s): %s start=%p, len=%d\n",
1796					print_tainted(), cachep->name, realobj, size);
1797				print_objinfo(cachep, objp, 0);
1798			}
1799			/* Hexdump the affected line */
1800			i = (i / 16) * 16;
1801			limit = 16;
1802			if (i + limit > size)
1803				limit = size - i;
1804			dump_line(realobj, i, limit);
1805			i += 16;
1806			lines++;
1807			/* Limit to 5 lines */
1808			if (lines > 5)
1809				break;
1810		}
1811	}
1812	if (lines != 0) {
1813		/* Print some data about the neighboring objects, if they
1814		 * exist:
1815		 */
1816		struct page *page = virt_to_head_page(objp);
1817		unsigned int objnr;
1818
1819		objnr = obj_to_index(cachep, page, objp);
1820		if (objnr) {
1821			objp = index_to_obj(cachep, page, objnr - 1);
1822			realobj = (char *)objp + obj_offset(cachep);
1823			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1824			       realobj, size);
1825			print_objinfo(cachep, objp, 2);
1826		}
1827		if (objnr + 1 < cachep->num) {
1828			objp = index_to_obj(cachep, page, objnr + 1);
1829			realobj = (char *)objp + obj_offset(cachep);
1830			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1831			       realobj, size);
1832			print_objinfo(cachep, objp, 2);
1833		}
1834	}
1835}
1836#endif
1837
1838#if DEBUG
1839static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1840						struct page *page)
1841{
1842	int i;
1843	for (i = 0; i < cachep->num; i++) {
1844		void *objp = index_to_obj(cachep, page, i);
1845
1846		if (cachep->flags & SLAB_POISON) {
1847#ifdef CONFIG_DEBUG_PAGEALLOC
1848			if (cachep->size % PAGE_SIZE == 0 &&
1849					OFF_SLAB(cachep))
1850				kernel_map_pages(virt_to_page(objp),
1851					cachep->size / PAGE_SIZE, 1);
1852			else
1853				check_poison_obj(cachep, objp);
1854#else
1855			check_poison_obj(cachep, objp);
1856#endif
1857		}
1858		if (cachep->flags & SLAB_RED_ZONE) {
1859			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1860				slab_error(cachep, "start of a freed object "
1861					   "was overwritten");
1862			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1863				slab_error(cachep, "end of a freed object "
1864					   "was overwritten");
1865		}
1866	}
1867}
1868#else
1869static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1870						struct page *page)
1871{
1872}
1873#endif
1874
1875/**
1876 * slab_destroy - destroy and release all objects in a slab
1877 * @cachep: cache pointer being destroyed
1878 * @page: page pointer being destroyed
1879 *
1880 * Destroy all the objs in a slab page, and release the mem back to the system.
1881 * Before calling the slab page must have been unlinked from the cache. The
1882 * kmem_cache_node ->list_lock is not held/needed.
1883 */
1884static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1885{
1886	void *freelist;
1887
1888	freelist = page->freelist;
1889	slab_destroy_debugcheck(cachep, page);
1890	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1891		struct rcu_head *head;
1892
1893		/*
1894		 * RCU free overloads the RCU head over the LRU.
1895		 * slab_page has been overloeaded over the LRU,
1896		 * however it is not used from now on so that
1897		 * we can use it safely.
1898		 */
1899		head = (void *)&page->rcu_head;
1900		call_rcu(head, kmem_rcu_free);
1901
1902	} else {
1903		kmem_freepages(cachep, page);
1904	}
1905
1906	/*
1907	 * From now on, we don't use freelist
1908	 * although actual page can be freed in rcu context
1909	 */
1910	if (OFF_SLAB(cachep))
1911		kmem_cache_free(cachep->freelist_cache, freelist);
1912}
1913
1914static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1915{
1916	struct page *page, *n;
1917
1918	list_for_each_entry_safe(page, n, list, lru) {
1919		list_del(&page->lru);
1920		slab_destroy(cachep, page);
1921	}
1922}
1923
1924/**
1925 * calculate_slab_order - calculate size (page order) of slabs
1926 * @cachep: pointer to the cache that is being created
1927 * @size: size of objects to be created in this cache.
1928 * @align: required alignment for the objects.
1929 * @flags: slab allocation flags
1930 *
1931 * Also calculates the number of objects per slab.
1932 *
1933 * This could be made much more intelligent.  For now, try to avoid using
1934 * high order pages for slabs.  When the gfp() functions are more friendly
1935 * towards high-order requests, this should be changed.
1936 */
1937static size_t calculate_slab_order(struct kmem_cache *cachep,
1938			size_t size, size_t align, unsigned long flags)
1939{
1940	unsigned long offslab_limit;
1941	size_t left_over = 0;
1942	int gfporder;
1943
1944	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1945		unsigned int num;
1946		size_t remainder;
1947
1948		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1949		if (!num)
1950			continue;
1951
1952		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1953		if (num > SLAB_OBJ_MAX_NUM)
1954			break;
1955
1956		if (flags & CFLGS_OFF_SLAB) {
1957			size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1958			/*
1959			 * Max number of objs-per-slab for caches which
1960			 * use off-slab slabs. Needed to avoid a possible
1961			 * looping condition in cache_grow().
1962			 */
1963			if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
1964				freelist_size_per_obj += sizeof(char);
1965			offslab_limit = size;
1966			offslab_limit /= freelist_size_per_obj;
1967
1968 			if (num > offslab_limit)
1969				break;
1970		}
1971
1972		/* Found something acceptable - save it away */
1973		cachep->num = num;
1974		cachep->gfporder = gfporder;
1975		left_over = remainder;
1976
1977		/*
1978		 * A VFS-reclaimable slab tends to have most allocations
1979		 * as GFP_NOFS and we really don't want to have to be allocating
1980		 * higher-order pages when we are unable to shrink dcache.
1981		 */
1982		if (flags & SLAB_RECLAIM_ACCOUNT)
1983			break;
1984
1985		/*
1986		 * Large number of objects is good, but very large slabs are
1987		 * currently bad for the gfp()s.
1988		 */
1989		if (gfporder >= slab_max_order)
1990			break;
1991
1992		/*
1993		 * Acceptable internal fragmentation?
1994		 */
1995		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1996			break;
1997	}
1998	return left_over;
1999}
2000
2001static struct array_cache __percpu *alloc_kmem_cache_cpus(
2002		struct kmem_cache *cachep, int entries, int batchcount)
2003{
2004	int cpu;
2005	size_t size;
2006	struct array_cache __percpu *cpu_cache;
2007
2008	size = sizeof(void *) * entries + sizeof(struct array_cache);
2009	cpu_cache = __alloc_percpu(size, sizeof(void *));
2010
2011	if (!cpu_cache)
2012		return NULL;
2013
2014	for_each_possible_cpu(cpu) {
2015		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
2016				entries, batchcount);
2017	}
2018
2019	return cpu_cache;
2020}
2021
2022static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2023{
2024	if (slab_state >= FULL)
2025		return enable_cpucache(cachep, gfp);
2026
2027	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2028	if (!cachep->cpu_cache)
2029		return 1;
2030
2031	if (slab_state == DOWN) {
2032		/* Creation of first cache (kmem_cache). */
2033		set_up_node(kmem_cache, CACHE_CACHE);
2034	} else if (slab_state == PARTIAL) {
2035		/* For kmem_cache_node */
2036		set_up_node(cachep, SIZE_NODE);
2037	} else {
2038		int node;
2039
2040		for_each_online_node(node) {
2041			cachep->node[node] = kmalloc_node(
2042				sizeof(struct kmem_cache_node), gfp, node);
2043			BUG_ON(!cachep->node[node]);
2044			kmem_cache_node_init(cachep->node[node]);
2045		}
2046	}
2047
2048	cachep->node[numa_mem_id()]->next_reap =
2049			jiffies + REAPTIMEOUT_NODE +
2050			((unsigned long)cachep) % REAPTIMEOUT_NODE;
2051
2052	cpu_cache_get(cachep)->avail = 0;
2053	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2054	cpu_cache_get(cachep)->batchcount = 1;
2055	cpu_cache_get(cachep)->touched = 0;
2056	cachep->batchcount = 1;
2057	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2058	return 0;
2059}
2060
2061unsigned long kmem_cache_flags(unsigned long object_size,
2062	unsigned long flags, const char *name,
2063	void (*ctor)(void *))
2064{
2065	return flags;
2066}
2067
2068struct kmem_cache *
2069__kmem_cache_alias(const char *name, size_t size, size_t align,
2070		   unsigned long flags, void (*ctor)(void *))
2071{
2072	struct kmem_cache *cachep;
2073
2074	cachep = find_mergeable(size, align, flags, name, ctor);
2075	if (cachep) {
2076		cachep->refcount++;
2077
2078		/*
2079		 * Adjust the object sizes so that we clear
2080		 * the complete object on kzalloc.
2081		 */
2082		cachep->object_size = max_t(int, cachep->object_size, size);
2083	}
2084	return cachep;
2085}
2086
2087/**
2088 * __kmem_cache_create - Create a cache.
2089 * @cachep: cache management descriptor
2090 * @flags: SLAB flags
2091 *
2092 * Returns a ptr to the cache on success, NULL on failure.
2093 * Cannot be called within a int, but can be interrupted.
2094 * The @ctor is run when new pages are allocated by the cache.
2095 *
2096 * The flags are
2097 *
2098 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2099 * to catch references to uninitialised memory.
2100 *
2101 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2102 * for buffer overruns.
2103 *
2104 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2105 * cacheline.  This can be beneficial if you're counting cycles as closely
2106 * as davem.
2107 */
2108int
2109__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2110{
2111	size_t left_over, freelist_size;
2112	size_t ralign = BYTES_PER_WORD;
2113	gfp_t gfp;
2114	int err;
2115	size_t size = cachep->size;
2116
2117#if DEBUG
2118#if FORCED_DEBUG
2119	/*
2120	 * Enable redzoning and last user accounting, except for caches with
2121	 * large objects, if the increased size would increase the object size
2122	 * above the next power of two: caches with object sizes just above a
2123	 * power of two have a significant amount of internal fragmentation.
2124	 */
2125	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2126						2 * sizeof(unsigned long long)))
2127		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2128	if (!(flags & SLAB_DESTROY_BY_RCU))
2129		flags |= SLAB_POISON;
2130#endif
2131	if (flags & SLAB_DESTROY_BY_RCU)
2132		BUG_ON(flags & SLAB_POISON);
2133#endif
2134
2135	/*
2136	 * Check that size is in terms of words.  This is needed to avoid
2137	 * unaligned accesses for some archs when redzoning is used, and makes
2138	 * sure any on-slab bufctl's are also correctly aligned.
2139	 */
2140	if (size & (BYTES_PER_WORD - 1)) {
2141		size += (BYTES_PER_WORD - 1);
2142		size &= ~(BYTES_PER_WORD - 1);
2143	}
2144
2145	if (flags & SLAB_RED_ZONE) {
2146		ralign = REDZONE_ALIGN;
2147		/* If redzoning, ensure that the second redzone is suitably
2148		 * aligned, by adjusting the object size accordingly. */
2149		size += REDZONE_ALIGN - 1;
2150		size &= ~(REDZONE_ALIGN - 1);
2151	}
2152
2153	/* 3) caller mandated alignment */
2154	if (ralign < cachep->align) {
2155		ralign = cachep->align;
2156	}
2157	/* disable debug if necessary */
2158	if (ralign > __alignof__(unsigned long long))
2159		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2160	/*
2161	 * 4) Store it.
2162	 */
2163	cachep->align = ralign;
2164
2165	if (slab_is_available())
2166		gfp = GFP_KERNEL;
2167	else
2168		gfp = GFP_NOWAIT;
2169
2170#if DEBUG
2171
2172	/*
2173	 * Both debugging options require word-alignment which is calculated
2174	 * into align above.
2175	 */
2176	if (flags & SLAB_RED_ZONE) {
2177		/* add space for red zone words */
2178		cachep->obj_offset += sizeof(unsigned long long);
2179		size += 2 * sizeof(unsigned long long);
2180	}
2181	if (flags & SLAB_STORE_USER) {
2182		/* user store requires one word storage behind the end of
2183		 * the real object. But if the second red zone needs to be
2184		 * aligned to 64 bits, we must allow that much space.
2185		 */
2186		if (flags & SLAB_RED_ZONE)
2187			size += REDZONE_ALIGN;
2188		else
2189			size += BYTES_PER_WORD;
2190	}
2191#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2192	/*
2193	 * To activate debug pagealloc, off-slab management is necessary
2194	 * requirement. In early phase of initialization, small sized slab
2195	 * doesn't get initialized so it would not be possible. So, we need
2196	 * to check size >= 256. It guarantees that all necessary small
2197	 * sized slab is initialized in current slab initialization sequence.
2198	 */
2199	if (!slab_early_init && size >= kmalloc_size(INDEX_NODE) &&
2200		size >= 256 && cachep->object_size > cache_line_size() &&
2201		ALIGN(size, cachep->align) < PAGE_SIZE) {
2202		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2203		size = PAGE_SIZE;
2204	}
2205#endif
2206#endif
2207
2208	/*
2209	 * Determine if the slab management is 'on' or 'off' slab.
2210	 * (bootstrapping cannot cope with offslab caches so don't do
2211	 * it too early on. Always use on-slab management when
2212	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2213	 */
2214	if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2215	    !(flags & SLAB_NOLEAKTRACE))
2216		/*
2217		 * Size is large, assume best to place the slab management obj
2218		 * off-slab (should allow better packing of objs).
2219		 */
2220		flags |= CFLGS_OFF_SLAB;
2221
2222	size = ALIGN(size, cachep->align);
2223	/*
2224	 * We should restrict the number of objects in a slab to implement
2225	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2226	 */
2227	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2228		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2229
2230	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2231
2232	if (!cachep->num)
2233		return -E2BIG;
2234
2235	freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2236
2237	/*
2238	 * If the slab has been placed off-slab, and we have enough space then
2239	 * move it on-slab. This is at the expense of any extra colouring.
2240	 */
2241	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2242		flags &= ~CFLGS_OFF_SLAB;
2243		left_over -= freelist_size;
2244	}
2245
2246	if (flags & CFLGS_OFF_SLAB) {
2247		/* really off slab. No need for manual alignment */
2248		freelist_size = calculate_freelist_size(cachep->num, 0);
2249
2250#ifdef CONFIG_PAGE_POISONING
2251		/* If we're going to use the generic kernel_map_pages()
2252		 * poisoning, then it's going to smash the contents of
2253		 * the redzone and userword anyhow, so switch them off.
2254		 */
2255		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2256			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2257#endif
2258	}
2259
2260	cachep->colour_off = cache_line_size();
2261	/* Offset must be a multiple of the alignment. */
2262	if (cachep->colour_off < cachep->align)
2263		cachep->colour_off = cachep->align;
2264	cachep->colour = left_over / cachep->colour_off;
2265	cachep->freelist_size = freelist_size;
2266	cachep->flags = flags;
2267	cachep->allocflags = __GFP_COMP;
2268	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2269		cachep->allocflags |= GFP_DMA;
2270	cachep->size = size;
2271	cachep->reciprocal_buffer_size = reciprocal_value(size);
2272
2273	if (flags & CFLGS_OFF_SLAB) {
2274		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2275		/*
2276		 * This is a possibility for one of the kmalloc_{dma,}_caches.
2277		 * But since we go off slab only for object size greater than
2278		 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2279		 * in ascending order,this should not happen at all.
2280		 * But leave a BUG_ON for some lucky dude.
2281		 */
2282		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2283	}
2284
2285	err = setup_cpu_cache(cachep, gfp);
2286	if (err) {
2287		__kmem_cache_shutdown(cachep);
2288		return err;
2289	}
2290
2291	return 0;
2292}
2293
2294#if DEBUG
2295static void check_irq_off(void)
2296{
2297	BUG_ON(!irqs_disabled());
2298}
2299
2300static void check_irq_on(void)
2301{
2302	BUG_ON(irqs_disabled());
2303}
2304
2305static void check_spinlock_acquired(struct kmem_cache *cachep)
2306{
2307#ifdef CONFIG_SMP
2308	check_irq_off();
2309	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2310#endif
2311}
2312
2313static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2314{
2315#ifdef CONFIG_SMP
2316	check_irq_off();
2317	assert_spin_locked(&get_node(cachep, node)->list_lock);
2318#endif
2319}
2320
2321#else
2322#define check_irq_off()	do { } while(0)
2323#define check_irq_on()	do { } while(0)
2324#define check_spinlock_acquired(x) do { } while(0)
2325#define check_spinlock_acquired_node(x, y) do { } while(0)
2326#endif
2327
2328static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2329			struct array_cache *ac,
2330			int force, int node);
2331
2332static void do_drain(void *arg)
2333{
2334	struct kmem_cache *cachep = arg;
2335	struct array_cache *ac;
2336	int node = numa_mem_id();
2337	struct kmem_cache_node *n;
2338	LIST_HEAD(list);
2339
2340	check_irq_off();
2341	ac = cpu_cache_get(cachep);
2342	n = get_node(cachep, node);
2343	spin_lock(&n->list_lock);
2344	free_block(cachep, ac->entry, ac->avail, node, &list);
2345	spin_unlock(&n->list_lock);
2346	slabs_destroy(cachep, &list);
2347	ac->avail = 0;
2348}
2349
2350static void drain_cpu_caches(struct kmem_cache *cachep)
2351{
2352	struct kmem_cache_node *n;
2353	int node;
2354
2355	on_each_cpu(do_drain, cachep, 1);
2356	check_irq_on();
2357	for_each_kmem_cache_node(cachep, node, n)
2358		if (n->alien)
2359			drain_alien_cache(cachep, n->alien);
2360
2361	for_each_kmem_cache_node(cachep, node, n)
2362		drain_array(cachep, n, n->shared, 1, node);
2363}
2364
2365/*
2366 * Remove slabs from the list of free slabs.
2367 * Specify the number of slabs to drain in tofree.
2368 *
2369 * Returns the actual number of slabs released.
2370 */
2371static int drain_freelist(struct kmem_cache *cache,
2372			struct kmem_cache_node *n, int tofree)
2373{
2374	struct list_head *p;
2375	int nr_freed;
2376	struct page *page;
2377
2378	nr_freed = 0;
2379	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2380
2381		spin_lock_irq(&n->list_lock);
2382		p = n->slabs_free.prev;
2383		if (p == &n->slabs_free) {
2384			spin_unlock_irq(&n->list_lock);
2385			goto out;
2386		}
2387
2388		page = list_entry(p, struct page, lru);
2389#if DEBUG
2390		BUG_ON(page->active);
2391#endif
2392		list_del(&page->lru);
2393		/*
2394		 * Safe to drop the lock. The slab is no longer linked
2395		 * to the cache.
2396		 */
2397		n->free_objects -= cache->num;
2398		spin_unlock_irq(&n->list_lock);
2399		slab_destroy(cache, page);
2400		nr_freed++;
2401	}
2402out:
2403	return nr_freed;
2404}
2405
2406int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2407{
2408	int ret = 0;
2409	int node;
2410	struct kmem_cache_node *n;
2411
2412	drain_cpu_caches(cachep);
2413
2414	check_irq_on();
2415	for_each_kmem_cache_node(cachep, node, n) {
2416		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2417
2418		ret += !list_empty(&n->slabs_full) ||
2419			!list_empty(&n->slabs_partial);
2420	}
2421	return (ret ? 1 : 0);
2422}
2423
2424int __kmem_cache_shutdown(struct kmem_cache *cachep)
2425{
2426	int i;
2427	struct kmem_cache_node *n;
2428	int rc = __kmem_cache_shrink(cachep, false);
2429
2430	if (rc)
2431		return rc;
2432
2433	free_percpu(cachep->cpu_cache);
2434
2435	/* NUMA: free the node structures */
2436	for_each_kmem_cache_node(cachep, i, n) {
2437		kfree(n->shared);
2438		free_alien_cache(n->alien);
2439		kfree(n);
2440		cachep->node[i] = NULL;
2441	}
2442	return 0;
2443}
2444
2445/*
2446 * Get the memory for a slab management obj.
2447 *
2448 * For a slab cache when the slab descriptor is off-slab, the
2449 * slab descriptor can't come from the same cache which is being created,
2450 * Because if it is the case, that means we defer the creation of
2451 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2452 * And we eventually call down to __kmem_cache_create(), which
2453 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2454 * This is a "chicken-and-egg" problem.
2455 *
2456 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2457 * which are all initialized during kmem_cache_init().
2458 */
2459static void *alloc_slabmgmt(struct kmem_cache *cachep,
2460				   struct page *page, int colour_off,
2461				   gfp_t local_flags, int nodeid)
2462{
2463	void *freelist;
2464	void *addr = page_address(page);
2465
2466	if (OFF_SLAB(cachep)) {
2467		/* Slab management obj is off-slab. */
2468		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2469					      local_flags, nodeid);
2470		if (!freelist)
2471			return NULL;
2472	} else {
2473		freelist = addr + colour_off;
2474		colour_off += cachep->freelist_size;
2475	}
2476	page->active = 0;
2477	page->s_mem = addr + colour_off;
2478	return freelist;
2479}
2480
2481static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2482{
2483	return ((freelist_idx_t *)page->freelist)[idx];
2484}
2485
2486static inline void set_free_obj(struct page *page,
2487					unsigned int idx, freelist_idx_t val)
2488{
2489	((freelist_idx_t *)(page->freelist))[idx] = val;
2490}
2491
2492static void cache_init_objs(struct kmem_cache *cachep,
2493			    struct page *page)
2494{
2495	int i;
2496
2497	for (i = 0; i < cachep->num; i++) {
2498		void *objp = index_to_obj(cachep, page, i);
2499#if DEBUG
2500		/* need to poison the objs? */
2501		if (cachep->flags & SLAB_POISON)
2502			poison_obj(cachep, objp, POISON_FREE);
2503		if (cachep->flags & SLAB_STORE_USER)
2504			*dbg_userword(cachep, objp) = NULL;
2505
2506		if (cachep->flags & SLAB_RED_ZONE) {
2507			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2508			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2509		}
2510		/*
2511		 * Constructors are not allowed to allocate memory from the same
2512		 * cache which they are a constructor for.  Otherwise, deadlock.
2513		 * They must also be threaded.
2514		 */
2515		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2516			cachep->ctor(objp + obj_offset(cachep));
2517
2518		if (cachep->flags & SLAB_RED_ZONE) {
2519			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2520				slab_error(cachep, "constructor overwrote the"
2521					   " end of an object");
2522			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2523				slab_error(cachep, "constructor overwrote the"
2524					   " start of an object");
2525		}
2526		if ((cachep->size % PAGE_SIZE) == 0 &&
2527			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2528			kernel_map_pages(virt_to_page(objp),
2529					 cachep->size / PAGE_SIZE, 0);
2530#else
2531		if (cachep->ctor)
2532			cachep->ctor(objp);
2533#endif
2534		set_obj_status(page, i, OBJECT_FREE);
2535		set_free_obj(page, i, i);
2536	}
2537}
2538
2539static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2540{
2541	if (CONFIG_ZONE_DMA_FLAG) {
2542		if (flags & GFP_DMA)
2543			BUG_ON(!(cachep->allocflags & GFP_DMA));
2544		else
2545			BUG_ON(cachep->allocflags & GFP_DMA);
2546	}
2547}
2548
2549static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2550				int nodeid)
2551{
2552	void *objp;
2553
2554	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2555	page->active++;
2556#if DEBUG
2557	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2558#endif
2559
2560	return objp;
2561}
2562
2563static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2564				void *objp, int nodeid)
2565{
2566	unsigned int objnr = obj_to_index(cachep, page, objp);
2567#if DEBUG
2568	unsigned int i;
2569
2570	/* Verify that the slab belongs to the intended node */
2571	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2572
2573	/* Verify double free bug */
2574	for (i = page->active; i < cachep->num; i++) {
2575		if (get_free_obj(page, i) == objnr) {
2576			printk(KERN_ERR "slab: double free detected in cache "
2577					"'%s', objp %p\n", cachep->name, objp);
2578			BUG();
2579		}
2580	}
2581#endif
2582	page->active--;
2583	set_free_obj(page, page->active, objnr);
2584}
2585
2586/*
2587 * Map pages beginning at addr to the given cache and slab. This is required
2588 * for the slab allocator to be able to lookup the cache and slab of a
2589 * virtual address for kfree, ksize, and slab debugging.
2590 */
2591static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2592			   void *freelist)
2593{
2594	page->slab_cache = cache;
2595	page->freelist = freelist;
2596}
2597
2598/*
2599 * Grow (by 1) the number of slabs within a cache.  This is called by
2600 * kmem_cache_alloc() when there are no active objs left in a cache.
2601 */
2602static int cache_grow(struct kmem_cache *cachep,
2603		gfp_t flags, int nodeid, struct page *page)
2604{
2605	void *freelist;
2606	size_t offset;
2607	gfp_t local_flags;
2608	struct kmem_cache_node *n;
2609
2610	/*
2611	 * Be lazy and only check for valid flags here,  keeping it out of the
2612	 * critical path in kmem_cache_alloc().
2613	 */
2614	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2615		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2616		BUG();
2617	}
2618	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2619
2620	/* Take the node list lock to change the colour_next on this node */
2621	check_irq_off();
2622	n = get_node(cachep, nodeid);
2623	spin_lock(&n->list_lock);
2624
2625	/* Get colour for the slab, and cal the next value. */
2626	offset = n->colour_next;
2627	n->colour_next++;
2628	if (n->colour_next >= cachep->colour)
2629		n->colour_next = 0;
2630	spin_unlock(&n->list_lock);
2631
2632	offset *= cachep->colour_off;
2633
2634	if (local_flags & __GFP_WAIT)
2635		local_irq_enable();
2636
2637	/*
2638	 * The test for missing atomic flag is performed here, rather than
2639	 * the more obvious place, simply to reduce the critical path length
2640	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2641	 * will eventually be caught here (where it matters).
2642	 */
2643	kmem_flagcheck(cachep, flags);
2644
2645	/*
2646	 * Get mem for the objs.  Attempt to allocate a physical page from
2647	 * 'nodeid'.
2648	 */
2649	if (!page)
2650		page = kmem_getpages(cachep, local_flags, nodeid);
2651	if (!page)
2652		goto failed;
2653
2654	/* Get slab management. */
2655	freelist = alloc_slabmgmt(cachep, page, offset,
2656			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2657	if (!freelist)
2658		goto opps1;
2659
2660	slab_map_pages(cachep, page, freelist);
2661
2662	cache_init_objs(cachep, page);
2663
2664	if (local_flags & __GFP_WAIT)
2665		local_irq_disable();
2666	check_irq_off();
2667	spin_lock(&n->list_lock);
2668
2669	/* Make slab active. */
2670	list_add_tail(&page->lru, &(n->slabs_free));
2671	STATS_INC_GROWN(cachep);
2672	n->free_objects += cachep->num;
2673	spin_unlock(&n->list_lock);
2674	return 1;
2675opps1:
2676	kmem_freepages(cachep, page);
2677failed:
2678	if (local_flags & __GFP_WAIT)
2679		local_irq_disable();
2680	return 0;
2681}
2682
2683#if DEBUG
2684
2685/*
2686 * Perform extra freeing checks:
2687 * - detect bad pointers.
2688 * - POISON/RED_ZONE checking
2689 */
2690static void kfree_debugcheck(const void *objp)
2691{
2692	if (!virt_addr_valid(objp)) {
2693		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2694		       (unsigned long)objp);
2695		BUG();
2696	}
2697}
2698
2699static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2700{
2701	unsigned long long redzone1, redzone2;
2702
2703	redzone1 = *dbg_redzone1(cache, obj);
2704	redzone2 = *dbg_redzone2(cache, obj);
2705
2706	/*
2707	 * Redzone is ok.
2708	 */
2709	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2710		return;
2711
2712	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2713		slab_error(cache, "double free detected");
2714	else
2715		slab_error(cache, "memory outside object was overwritten");
2716
2717	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2718			obj, redzone1, redzone2);
2719}
2720
2721static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2722				   unsigned long caller)
2723{
2724	unsigned int objnr;
2725	struct page *page;
2726
2727	BUG_ON(virt_to_cache(objp) != cachep);
2728
2729	objp -= obj_offset(cachep);
2730	kfree_debugcheck(objp);
2731	page = virt_to_head_page(objp);
2732
2733	if (cachep->flags & SLAB_RED_ZONE) {
2734		verify_redzone_free(cachep, objp);
2735		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2736		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2737	}
2738	if (cachep->flags & SLAB_STORE_USER)
2739		*dbg_userword(cachep, objp) = (void *)caller;
2740
2741	objnr = obj_to_index(cachep, page, objp);
2742
2743	BUG_ON(objnr >= cachep->num);
2744	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2745
2746	set_obj_status(page, objnr, OBJECT_FREE);
2747	if (cachep->flags & SLAB_POISON) {
2748#ifdef CONFIG_DEBUG_PAGEALLOC
2749		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2750			store_stackinfo(cachep, objp, caller);
2751			kernel_map_pages(virt_to_page(objp),
2752					 cachep->size / PAGE_SIZE, 0);
2753		} else {
2754			poison_obj(cachep, objp, POISON_FREE);
2755		}
2756#else
2757		poison_obj(cachep, objp, POISON_FREE);
2758#endif
2759	}
2760	return objp;
2761}
2762
2763#else
2764#define kfree_debugcheck(x) do { } while(0)
2765#define cache_free_debugcheck(x,objp,z) (objp)
2766#endif
2767
2768static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2769							bool force_refill)
2770{
2771	int batchcount;
2772	struct kmem_cache_node *n;
2773	struct array_cache *ac;
2774	int node;
2775
2776	check_irq_off();
2777	node = numa_mem_id();
2778	if (unlikely(force_refill))
2779		goto force_grow;
2780retry:
2781	ac = cpu_cache_get(cachep);
2782	batchcount = ac->batchcount;
2783	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2784		/*
2785		 * If there was little recent activity on this cache, then
2786		 * perform only a partial refill.  Otherwise we could generate
2787		 * refill bouncing.
2788		 */
2789		batchcount = BATCHREFILL_LIMIT;
2790	}
2791	n = get_node(cachep, node);
2792
2793	BUG_ON(ac->avail > 0 || !n);
2794	spin_lock(&n->list_lock);
2795
2796	/* See if we can refill from the shared array */
2797	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2798		n->shared->touched = 1;
2799		goto alloc_done;
2800	}
2801
2802	while (batchcount > 0) {
2803		struct list_head *entry;
2804		struct page *page;
2805		/* Get slab alloc is to come from. */
2806		entry = n->slabs_partial.next;
2807		if (entry == &n->slabs_partial) {
2808			n->free_touched = 1;
2809			entry = n->slabs_free.next;
2810			if (entry == &n->slabs_free)
2811				goto must_grow;
2812		}
2813
2814		page = list_entry(entry, struct page, lru);
2815		check_spinlock_acquired(cachep);
2816
2817		/*
2818		 * The slab was either on partial or free list so
2819		 * there must be at least one object available for
2820		 * allocation.
2821		 */
2822		BUG_ON(page->active >= cachep->num);
2823
2824		while (page->active < cachep->num && batchcount--) {
2825			STATS_INC_ALLOCED(cachep);
2826			STATS_INC_ACTIVE(cachep);
2827			STATS_SET_HIGH(cachep);
2828
2829			ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2830									node));
2831		}
2832
2833		/* move slabp to correct slabp list: */
2834		list_del(&page->lru);
2835		if (page->active == cachep->num)
2836			list_add(&page->lru, &n->slabs_full);
2837		else
2838			list_add(&page->lru, &n->slabs_partial);
2839	}
2840
2841must_grow:
2842	n->free_objects -= ac->avail;
2843alloc_done:
2844	spin_unlock(&n->list_lock);
2845
2846	if (unlikely(!ac->avail)) {
2847		int x;
2848force_grow:
2849		x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2850
2851		/* cache_grow can reenable interrupts, then ac could change. */
2852		ac = cpu_cache_get(cachep);
2853		node = numa_mem_id();
2854
2855		/* no objects in sight? abort */
2856		if (!x && (ac->avail == 0 || force_refill))
2857			return NULL;
2858
2859		if (!ac->avail)		/* objects refilled by interrupt? */
2860			goto retry;
2861	}
2862	ac->touched = 1;
2863
2864	return ac_get_obj(cachep, ac, flags, force_refill);
2865}
2866
2867static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2868						gfp_t flags)
2869{
2870	might_sleep_if(flags & __GFP_WAIT);
2871#if DEBUG
2872	kmem_flagcheck(cachep, flags);
2873#endif
2874}
2875
2876#if DEBUG
2877static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2878				gfp_t flags, void *objp, unsigned long caller)
2879{
2880	struct page *page;
2881
2882	if (!objp)
2883		return objp;
2884	if (cachep->flags & SLAB_POISON) {
2885#ifdef CONFIG_DEBUG_PAGEALLOC
2886		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2887			kernel_map_pages(virt_to_page(objp),
2888					 cachep->size / PAGE_SIZE, 1);
2889		else
2890			check_poison_obj(cachep, objp);
2891#else
2892		check_poison_obj(cachep, objp);
2893#endif
2894		poison_obj(cachep, objp, POISON_INUSE);
2895	}
2896	if (cachep->flags & SLAB_STORE_USER)
2897		*dbg_userword(cachep, objp) = (void *)caller;
2898
2899	if (cachep->flags & SLAB_RED_ZONE) {
2900		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2901				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2902			slab_error(cachep, "double free, or memory outside"
2903						" object was overwritten");
2904			printk(KERN_ERR
2905				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2906				objp, *dbg_redzone1(cachep, objp),
2907				*dbg_redzone2(cachep, objp));
2908		}
2909		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2910		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2911	}
2912
2913	page = virt_to_head_page(objp);
2914	set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2915	objp += obj_offset(cachep);
2916	if (cachep->ctor && cachep->flags & SLAB_POISON)
2917		cachep->ctor(objp);
2918	if (ARCH_SLAB_MINALIGN &&
2919	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2920		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2921		       objp, (int)ARCH_SLAB_MINALIGN);
2922	}
2923	return objp;
2924}
2925#else
2926#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2927#endif
2928
2929static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2930{
2931	if (unlikely(cachep == kmem_cache))
2932		return false;
2933
2934	return should_failslab(cachep->object_size, flags, cachep->flags);
2935}
2936
2937static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2938{
2939	void *objp;
2940	struct array_cache *ac;
2941	bool force_refill = false;
2942
2943	check_irq_off();
2944
2945	ac = cpu_cache_get(cachep);
2946	if (likely(ac->avail)) {
2947		ac->touched = 1;
2948		objp = ac_get_obj(cachep, ac, flags, false);
2949
2950		/*
2951		 * Allow for the possibility all avail objects are not allowed
2952		 * by the current flags
2953		 */
2954		if (objp) {
2955			STATS_INC_ALLOCHIT(cachep);
2956			goto out;
2957		}
2958		force_refill = true;
2959	}
2960
2961	STATS_INC_ALLOCMISS(cachep);
2962	objp = cache_alloc_refill(cachep, flags, force_refill);
2963	/*
2964	 * the 'ac' may be updated by cache_alloc_refill(),
2965	 * and kmemleak_erase() requires its correct value.
2966	 */
2967	ac = cpu_cache_get(cachep);
2968
2969out:
2970	/*
2971	 * To avoid a false negative, if an object that is in one of the
2972	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2973	 * treat the array pointers as a reference to the object.
2974	 */
2975	if (objp)
2976		kmemleak_erase(&ac->entry[ac->avail]);
2977	return objp;
2978}
2979
2980#ifdef CONFIG_NUMA
2981/*
2982 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2983 *
2984 * If we are in_interrupt, then process context, including cpusets and
2985 * mempolicy, may not apply and should not be used for allocation policy.
2986 */
2987static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2988{
2989	int nid_alloc, nid_here;
2990
2991	if (in_interrupt() || (flags & __GFP_THISNODE))
2992		return NULL;
2993	nid_alloc = nid_here = numa_mem_id();
2994	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2995		nid_alloc = cpuset_slab_spread_node();
2996	else if (current->mempolicy)
2997		nid_alloc = mempolicy_slab_node();
2998	if (nid_alloc != nid_here)
2999		return ____cache_alloc_node(cachep, flags, nid_alloc);
3000	return NULL;
3001}
3002
3003/*
3004 * Fallback function if there was no memory available and no objects on a
3005 * certain node and fall back is permitted. First we scan all the
3006 * available node for available objects. If that fails then we
3007 * perform an allocation without specifying a node. This allows the page
3008 * allocator to do its reclaim / fallback magic. We then insert the
3009 * slab into the proper nodelist and then allocate from it.
3010 */
3011static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3012{
3013	struct zonelist *zonelist;
3014	gfp_t local_flags;
3015	struct zoneref *z;
3016	struct zone *zone;
3017	enum zone_type high_zoneidx = gfp_zone(flags);
3018	void *obj = NULL;
3019	int nid;
3020	unsigned int cpuset_mems_cookie;
3021
3022	if (flags & __GFP_THISNODE)
3023		return NULL;
3024
3025	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3026
3027retry_cpuset:
3028	cpuset_mems_cookie = read_mems_allowed_begin();
3029	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3030
3031retry:
3032	/*
3033	 * Look through allowed nodes for objects available
3034	 * from existing per node queues.
3035	 */
3036	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3037		nid = zone_to_nid(zone);
3038
3039		if (cpuset_zone_allowed(zone, flags) &&
3040			get_node(cache, nid) &&
3041			get_node(cache, nid)->free_objects) {
3042				obj = ____cache_alloc_node(cache,
3043					gfp_exact_node(flags), nid);
3044				if (obj)
3045					break;
3046		}
3047	}
3048
3049	if (!obj) {
3050		/*
3051		 * This allocation will be performed within the constraints
3052		 * of the current cpuset / memory policy requirements.
3053		 * We may trigger various forms of reclaim on the allowed
3054		 * set and go into memory reserves if necessary.
3055		 */
3056		struct page *page;
3057
3058		if (local_flags & __GFP_WAIT)
3059			local_irq_enable();
3060		kmem_flagcheck(cache, flags);
3061		page = kmem_getpages(cache, local_flags, numa_mem_id());
3062		if (local_flags & __GFP_WAIT)
3063			local_irq_disable();
3064		if (page) {
3065			/*
3066			 * Insert into the appropriate per node queues
3067			 */
3068			nid = page_to_nid(page);
3069			if (cache_grow(cache, flags, nid, page)) {
3070				obj = ____cache_alloc_node(cache,
3071					gfp_exact_node(flags), nid);
3072				if (!obj)
3073					/*
3074					 * Another processor may allocate the
3075					 * objects in the slab since we are
3076					 * not holding any locks.
3077					 */
3078					goto retry;
3079			} else {
3080				/* cache_grow already freed obj */
3081				obj = NULL;
3082			}
3083		}
3084	}
3085
3086	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3087		goto retry_cpuset;
3088	return obj;
3089}
3090
3091/*
3092 * A interface to enable slab creation on nodeid
3093 */
3094static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3095				int nodeid)
3096{
3097	struct list_head *entry;
3098	struct page *page;
3099	struct kmem_cache_node *n;
3100	void *obj;
3101	int x;
3102
3103	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3104	n = get_node(cachep, nodeid);
3105	BUG_ON(!n);
3106
3107retry:
3108	check_irq_off();
3109	spin_lock(&n->list_lock);
3110	entry = n->slabs_partial.next;
3111	if (entry == &n->slabs_partial) {
3112		n->free_touched = 1;
3113		entry = n->slabs_free.next;
3114		if (entry == &n->slabs_free)
3115			goto must_grow;
3116	}
3117
3118	page = list_entry(entry, struct page, lru);
3119	check_spinlock_acquired_node(cachep, nodeid);
3120
3121	STATS_INC_NODEALLOCS(cachep);
3122	STATS_INC_ACTIVE(cachep);
3123	STATS_SET_HIGH(cachep);
3124
3125	BUG_ON(page->active == cachep->num);
3126
3127	obj = slab_get_obj(cachep, page, nodeid);
3128	n->free_objects--;
3129	/* move slabp to correct slabp list: */
3130	list_del(&page->lru);
3131
3132	if (page->active == cachep->num)
3133		list_add(&page->lru, &n->slabs_full);
3134	else
3135		list_add(&page->lru, &n->slabs_partial);
3136
3137	spin_unlock(&n->list_lock);
3138	goto done;
3139
3140must_grow:
3141	spin_unlock(&n->list_lock);
3142	x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3143	if (x)
3144		goto retry;
3145
3146	return fallback_alloc(cachep, flags);
3147
3148done:
3149	return obj;
3150}
3151
3152static __always_inline void *
3153slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3154		   unsigned long caller)
3155{
3156	unsigned long save_flags;
3157	void *ptr;
3158	int slab_node = numa_mem_id();
3159
3160	flags &= gfp_allowed_mask;
3161
3162	lockdep_trace_alloc(flags);
3163
3164	if (slab_should_failslab(cachep, flags))
3165		return NULL;
3166
3167	cachep = memcg_kmem_get_cache(cachep, flags);
3168
3169	cache_alloc_debugcheck_before(cachep, flags);
3170	local_irq_save(save_flags);
3171
3172	if (nodeid == NUMA_NO_NODE)
3173		nodeid = slab_node;
3174
3175	if (unlikely(!get_node(cachep, nodeid))) {
3176		/* Node not bootstrapped yet */
3177		ptr = fallback_alloc(cachep, flags);
3178		goto out;
3179	}
3180
3181	if (nodeid == slab_node) {
3182		/*
3183		 * Use the locally cached objects if possible.
3184		 * However ____cache_alloc does not allow fallback
3185		 * to other nodes. It may fail while we still have
3186		 * objects on other nodes available.
3187		 */
3188		ptr = ____cache_alloc(cachep, flags);
3189		if (ptr)
3190			goto out;
3191	}
3192	/* ___cache_alloc_node can fall back to other nodes */
3193	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3194  out:
3195	local_irq_restore(save_flags);
3196	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3197	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3198				 flags);
3199
3200	if (likely(ptr)) {
3201		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3202		if (unlikely(flags & __GFP_ZERO))
3203			memset(ptr, 0, cachep->object_size);
3204	}
3205
3206	memcg_kmem_put_cache(cachep);
3207	return ptr;
3208}
3209
3210static __always_inline void *
3211__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3212{
3213	void *objp;
3214
3215	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3216		objp = alternate_node_alloc(cache, flags);
3217		if (objp)
3218			goto out;
3219	}
3220	objp = ____cache_alloc(cache, flags);
3221
3222	/*
3223	 * We may just have run out of memory on the local node.
3224	 * ____cache_alloc_node() knows how to locate memory on other nodes
3225	 */
3226	if (!objp)
3227		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3228
3229  out:
3230	return objp;
3231}
3232#else
3233
3234static __always_inline void *
3235__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3236{
3237	return ____cache_alloc(cachep, flags);
3238}
3239
3240#endif /* CONFIG_NUMA */
3241
3242static __always_inline void *
3243slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3244{
3245	unsigned long save_flags;
3246	void *objp;
3247
3248	flags &= gfp_allowed_mask;
3249
3250	lockdep_trace_alloc(flags);
3251
3252	if (slab_should_failslab(cachep, flags))
3253		return NULL;
3254
3255	cachep = memcg_kmem_get_cache(cachep, flags);
3256
3257	cache_alloc_debugcheck_before(cachep, flags);
3258	local_irq_save(save_flags);
3259	objp = __do_cache_alloc(cachep, flags);
3260	local_irq_restore(save_flags);
3261	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3262	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3263				 flags);
3264	prefetchw(objp);
3265
3266	if (likely(objp)) {
3267		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3268		if (unlikely(flags & __GFP_ZERO))
3269			memset(objp, 0, cachep->object_size);
3270	}
3271
3272	memcg_kmem_put_cache(cachep);
3273	return objp;
3274}
3275
3276/*
3277 * Caller needs to acquire correct kmem_cache_node's list_lock
3278 * @list: List of detached free slabs should be freed by caller
3279 */
3280static void free_block(struct kmem_cache *cachep, void **objpp,
3281			int nr_objects, int node, struct list_head *list)
3282{
3283	int i;
3284	struct kmem_cache_node *n = get_node(cachep, node);
3285
3286	for (i = 0; i < nr_objects; i++) {
3287		void *objp;
3288		struct page *page;
3289
3290		clear_obj_pfmemalloc(&objpp[i]);
3291		objp = objpp[i];
3292
3293		page = virt_to_head_page(objp);
3294		list_del(&page->lru);
3295		check_spinlock_acquired_node(cachep, node);
3296		slab_put_obj(cachep, page, objp, node);
3297		STATS_DEC_ACTIVE(cachep);
3298		n->free_objects++;
3299
3300		/* fixup slab chains */
3301		if (page->active == 0) {
3302			if (n->free_objects > n->free_limit) {
3303				n->free_objects -= cachep->num;
3304				list_add_tail(&page->lru, list);
3305			} else {
3306				list_add(&page->lru, &n->slabs_free);
3307			}
3308		} else {
3309			/* Unconditionally move a slab to the end of the
3310			 * partial list on free - maximum time for the
3311			 * other objects to be freed, too.
3312			 */
3313			list_add_tail(&page->lru, &n->slabs_partial);
3314		}
3315	}
3316}
3317
3318static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3319{
3320	int batchcount;
3321	struct kmem_cache_node *n;
3322	int node = numa_mem_id();
3323	LIST_HEAD(list);
3324
3325	batchcount = ac->batchcount;
3326#if DEBUG
3327	BUG_ON(!batchcount || batchcount > ac->avail);
3328#endif
3329	check_irq_off();
3330	n = get_node(cachep, node);
3331	spin_lock(&n->list_lock);
3332	if (n->shared) {
3333		struct array_cache *shared_array = n->shared;
3334		int max = shared_array->limit - shared_array->avail;
3335		if (max) {
3336			if (batchcount > max)
3337				batchcount = max;
3338			memcpy(&(shared_array->entry[shared_array->avail]),
3339			       ac->entry, sizeof(void *) * batchcount);
3340			shared_array->avail += batchcount;
3341			goto free_done;
3342		}
3343	}
3344
3345	free_block(cachep, ac->entry, batchcount, node, &list);
3346free_done:
3347#if STATS
3348	{
3349		int i = 0;
3350		struct list_head *p;
3351
3352		p = n->slabs_free.next;
3353		while (p != &(n->slabs_free)) {
3354			struct page *page;
3355
3356			page = list_entry(p, struct page, lru);
3357			BUG_ON(page->active);
3358
3359			i++;
3360			p = p->next;
3361		}
3362		STATS_SET_FREEABLE(cachep, i);
3363	}
3364#endif
3365	spin_unlock(&n->list_lock);
3366	slabs_destroy(cachep, &list);
3367	ac->avail -= batchcount;
3368	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3369}
3370
3371/*
3372 * Release an obj back to its cache. If the obj has a constructed state, it must
3373 * be in this state _before_ it is released.  Called with disabled ints.
3374 */
3375static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3376				unsigned long caller)
3377{
3378	struct array_cache *ac = cpu_cache_get(cachep);
3379
3380	check_irq_off();
3381	kmemleak_free_recursive(objp, cachep->flags);
3382	objp = cache_free_debugcheck(cachep, objp, caller);
3383
3384	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3385
3386	/*
3387	 * Skip calling cache_free_alien() when the platform is not numa.
3388	 * This will avoid cache misses that happen while accessing slabp (which
3389	 * is per page memory  reference) to get nodeid. Instead use a global
3390	 * variable to skip the call, which is mostly likely to be present in
3391	 * the cache.
3392	 */
3393	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3394		return;
3395
3396	if (ac->avail < ac->limit) {
3397		STATS_INC_FREEHIT(cachep);
3398	} else {
3399		STATS_INC_FREEMISS(cachep);
3400		cache_flusharray(cachep, ac);
3401	}
3402
3403	ac_put_obj(cachep, ac, objp);
3404}
3405
3406/**
3407 * kmem_cache_alloc - Allocate an object
3408 * @cachep: The cache to allocate from.
3409 * @flags: See kmalloc().
3410 *
3411 * Allocate an object from this cache.  The flags are only relevant
3412 * if the cache has no available objects.
3413 */
3414void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3415{
3416	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3417
3418	trace_kmem_cache_alloc(_RET_IP_, ret,
3419			       cachep->object_size, cachep->size, flags);
3420
3421	return ret;
3422}
3423EXPORT_SYMBOL(kmem_cache_alloc);
3424
3425#ifdef CONFIG_TRACING
3426void *
3427kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3428{
3429	void *ret;
3430
3431	ret = slab_alloc(cachep, flags, _RET_IP_);
3432
3433	trace_kmalloc(_RET_IP_, ret,
3434		      size, cachep->size, flags);
3435	return ret;
3436}
3437EXPORT_SYMBOL(kmem_cache_alloc_trace);
3438#endif
3439
3440#ifdef CONFIG_NUMA
3441/**
3442 * kmem_cache_alloc_node - Allocate an object on the specified node
3443 * @cachep: The cache to allocate from.
3444 * @flags: See kmalloc().
3445 * @nodeid: node number of the target node.
3446 *
3447 * Identical to kmem_cache_alloc but it will allocate memory on the given
3448 * node, which can improve the performance for cpu bound structures.
3449 *
3450 * Fallback to other node is possible if __GFP_THISNODE is not set.
3451 */
3452void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3453{
3454	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3455
3456	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3457				    cachep->object_size, cachep->size,
3458				    flags, nodeid);
3459
3460	return ret;
3461}
3462EXPORT_SYMBOL(kmem_cache_alloc_node);
3463
3464#ifdef CONFIG_TRACING
3465void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3466				  gfp_t flags,
3467				  int nodeid,
3468				  size_t size)
3469{
3470	void *ret;
3471
3472	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3473
3474	trace_kmalloc_node(_RET_IP_, ret,
3475			   size, cachep->size,
3476			   flags, nodeid);
3477	return ret;
3478}
3479EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3480#endif
3481
3482static __always_inline void *
3483__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3484{
3485	struct kmem_cache *cachep;
3486
3487	cachep = kmalloc_slab(size, flags);
3488	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3489		return cachep;
3490	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3491}
3492
3493void *__kmalloc_node(size_t size, gfp_t flags, int node)
3494{
3495	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3496}
3497EXPORT_SYMBOL(__kmalloc_node);
3498
3499void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3500		int node, unsigned long caller)
3501{
3502	return __do_kmalloc_node(size, flags, node, caller);
3503}
3504EXPORT_SYMBOL(__kmalloc_node_track_caller);
3505#endif /* CONFIG_NUMA */
3506
3507/**
3508 * __do_kmalloc - allocate memory
3509 * @size: how many bytes of memory are required.
3510 * @flags: the type of memory to allocate (see kmalloc).
3511 * @caller: function caller for debug tracking of the caller
3512 */
3513static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3514					  unsigned long caller)
3515{
3516	struct kmem_cache *cachep;
3517	void *ret;
3518
3519	cachep = kmalloc_slab(size, flags);
3520	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3521		return cachep;
3522	ret = slab_alloc(cachep, flags, caller);
3523
3524	trace_kmalloc(caller, ret,
3525		      size, cachep->size, flags);
3526
3527	return ret;
3528}
3529
3530void *__kmalloc(size_t size, gfp_t flags)
3531{
3532	return __do_kmalloc(size, flags, _RET_IP_);
3533}
3534EXPORT_SYMBOL(__kmalloc);
3535
3536void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3537{
3538	return __do_kmalloc(size, flags, caller);
3539}
3540EXPORT_SYMBOL(__kmalloc_track_caller);
3541
3542/**
3543 * kmem_cache_free - Deallocate an object
3544 * @cachep: The cache the allocation was from.
3545 * @objp: The previously allocated object.
3546 *
3547 * Free an object which was previously allocated from this
3548 * cache.
3549 */
3550void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3551{
3552	unsigned long flags;
3553	cachep = cache_from_obj(cachep, objp);
3554	if (!cachep)
3555		return;
3556
3557	local_irq_save(flags);
3558	debug_check_no_locks_freed(objp, cachep->object_size);
3559	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3560		debug_check_no_obj_freed(objp, cachep->object_size);
3561	__cache_free(cachep, objp, _RET_IP_);
3562	local_irq_restore(flags);
3563
3564	trace_kmem_cache_free(_RET_IP_, objp);
3565}
3566EXPORT_SYMBOL(kmem_cache_free);
3567
3568/**
3569 * kfree - free previously allocated memory
3570 * @objp: pointer returned by kmalloc.
3571 *
3572 * If @objp is NULL, no operation is performed.
3573 *
3574 * Don't free memory not originally allocated by kmalloc()
3575 * or you will run into trouble.
3576 */
3577void kfree(const void *objp)
3578{
3579	struct kmem_cache *c;
3580	unsigned long flags;
3581
3582	trace_kfree(_RET_IP_, objp);
3583
3584	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3585		return;
3586	local_irq_save(flags);
3587	kfree_debugcheck(objp);
3588	c = virt_to_cache(objp);
3589	debug_check_no_locks_freed(objp, c->object_size);
3590
3591	debug_check_no_obj_freed(objp, c->object_size);
3592	__cache_free(c, (void *)objp, _RET_IP_);
3593	local_irq_restore(flags);
3594}
3595EXPORT_SYMBOL(kfree);
3596
3597/*
3598 * This initializes kmem_cache_node or resizes various caches for all nodes.
3599 */
3600static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3601{
3602	int node;
3603	struct kmem_cache_node *n;
3604	struct array_cache *new_shared;
3605	struct alien_cache **new_alien = NULL;
3606
3607	for_each_online_node(node) {
3608
3609		if (use_alien_caches) {
3610			new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3611			if (!new_alien)
3612				goto fail;
3613		}
3614
3615		new_shared = NULL;
3616		if (cachep->shared) {
3617			new_shared = alloc_arraycache(node,
3618				cachep->shared*cachep->batchcount,
3619					0xbaadf00d, gfp);
3620			if (!new_shared) {
3621				free_alien_cache(new_alien);
3622				goto fail;
3623			}
3624		}
3625
3626		n = get_node(cachep, node);
3627		if (n) {
3628			struct array_cache *shared = n->shared;
3629			LIST_HEAD(list);
3630
3631			spin_lock_irq(&n->list_lock);
3632
3633			if (shared)
3634				free_block(cachep, shared->entry,
3635						shared->avail, node, &list);
3636
3637			n->shared = new_shared;
3638			if (!n->alien) {
3639				n->alien = new_alien;
3640				new_alien = NULL;
3641			}
3642			n->free_limit = (1 + nr_cpus_node(node)) *
3643					cachep->batchcount + cachep->num;
3644			spin_unlock_irq(&n->list_lock);
3645			slabs_destroy(cachep, &list);
3646			kfree(shared);
3647			free_alien_cache(new_alien);
3648			continue;
3649		}
3650		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3651		if (!n) {
3652			free_alien_cache(new_alien);
3653			kfree(new_shared);
3654			goto fail;
3655		}
3656
3657		kmem_cache_node_init(n);
3658		n->next_reap = jiffies + REAPTIMEOUT_NODE +
3659				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3660		n->shared = new_shared;
3661		n->alien = new_alien;
3662		n->free_limit = (1 + nr_cpus_node(node)) *
3663					cachep->batchcount + cachep->num;
3664		cachep->node[node] = n;
3665	}
3666	return 0;
3667
3668fail:
3669	if (!cachep->list.next) {
3670		/* Cache is not active yet. Roll back what we did */
3671		node--;
3672		while (node >= 0) {
3673			n = get_node(cachep, node);
3674			if (n) {
3675				kfree(n->shared);
3676				free_alien_cache(n->alien);
3677				kfree(n);
3678				cachep->node[node] = NULL;
3679			}
3680			node--;
3681		}
3682	}
3683	return -ENOMEM;
3684}
3685
3686/* Always called with the slab_mutex held */
3687static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3688				int batchcount, int shared, gfp_t gfp)
3689{
3690	struct array_cache __percpu *cpu_cache, *prev;
3691	int cpu;
3692
3693	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3694	if (!cpu_cache)
3695		return -ENOMEM;
3696
3697	prev = cachep->cpu_cache;
3698	cachep->cpu_cache = cpu_cache;
3699	kick_all_cpus_sync();
3700
3701	check_irq_on();
3702	cachep->batchcount = batchcount;
3703	cachep->limit = limit;
3704	cachep->shared = shared;
3705
3706	if (!prev)
3707		goto alloc_node;
3708
3709	for_each_online_cpu(cpu) {
3710		LIST_HEAD(list);
3711		int node;
3712		struct kmem_cache_node *n;
3713		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3714
3715		node = cpu_to_mem(cpu);
3716		n = get_node(cachep, node);
3717		spin_lock_irq(&n->list_lock);
3718		free_block(cachep, ac->entry, ac->avail, node, &list);
3719		spin_unlock_irq(&n->list_lock);
3720		slabs_destroy(cachep, &list);
3721	}
3722	free_percpu(prev);
3723
3724alloc_node:
3725	return alloc_kmem_cache_node(cachep, gfp);
3726}
3727
3728static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3729				int batchcount, int shared, gfp_t gfp)
3730{
3731	int ret;
3732	struct kmem_cache *c;
3733
3734	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3735
3736	if (slab_state < FULL)
3737		return ret;
3738
3739	if ((ret < 0) || !is_root_cache(cachep))
3740		return ret;
3741
3742	lockdep_assert_held(&slab_mutex);
3743	for_each_memcg_cache(c, cachep) {
3744		/* return value determined by the root cache only */
3745		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3746	}
3747
3748	return ret;
3749}
3750
3751/* Called with slab_mutex held always */
3752static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3753{
3754	int err;
3755	int limit = 0;
3756	int shared = 0;
3757	int batchcount = 0;
3758
3759	if (!is_root_cache(cachep)) {
3760		struct kmem_cache *root = memcg_root_cache(cachep);
3761		limit = root->limit;
3762		shared = root->shared;
3763		batchcount = root->batchcount;
3764	}
3765
3766	if (limit && shared && batchcount)
3767		goto skip_setup;
3768	/*
3769	 * The head array serves three purposes:
3770	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3771	 * - reduce the number of spinlock operations.
3772	 * - reduce the number of linked list operations on the slab and
3773	 *   bufctl chains: array operations are cheaper.
3774	 * The numbers are guessed, we should auto-tune as described by
3775	 * Bonwick.
3776	 */
3777	if (cachep->size > 131072)
3778		limit = 1;
3779	else if (cachep->size > PAGE_SIZE)
3780		limit = 8;
3781	else if (cachep->size > 1024)
3782		limit = 24;
3783	else if (cachep->size > 256)
3784		limit = 54;
3785	else
3786		limit = 120;
3787
3788	/*
3789	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3790	 * allocation behaviour: Most allocs on one cpu, most free operations
3791	 * on another cpu. For these cases, an efficient object passing between
3792	 * cpus is necessary. This is provided by a shared array. The array
3793	 * replaces Bonwick's magazine layer.
3794	 * On uniprocessor, it's functionally equivalent (but less efficient)
3795	 * to a larger limit. Thus disabled by default.
3796	 */
3797	shared = 0;
3798	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3799		shared = 8;
3800
3801#if DEBUG
3802	/*
3803	 * With debugging enabled, large batchcount lead to excessively long
3804	 * periods with disabled local interrupts. Limit the batchcount
3805	 */
3806	if (limit > 32)
3807		limit = 32;
3808#endif
3809	batchcount = (limit + 1) / 2;
3810skip_setup:
3811	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3812	if (err)
3813		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3814		       cachep->name, -err);
3815	return err;
3816}
3817
3818/*
3819 * Drain an array if it contains any elements taking the node lock only if
3820 * necessary. Note that the node listlock also protects the array_cache
3821 * if drain_array() is used on the shared array.
3822 */
3823static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3824			 struct array_cache *ac, int force, int node)
3825{
3826	LIST_HEAD(list);
3827	int tofree;
3828
3829	if (!ac || !ac->avail)
3830		return;
3831	if (ac->touched && !force) {
3832		ac->touched = 0;
3833	} else {
3834		spin_lock_irq(&n->list_lock);
3835		if (ac->avail) {
3836			tofree = force ? ac->avail : (ac->limit + 4) / 5;
3837			if (tofree > ac->avail)
3838				tofree = (ac->avail + 1) / 2;
3839			free_block(cachep, ac->entry, tofree, node, &list);
3840			ac->avail -= tofree;
3841			memmove(ac->entry, &(ac->entry[tofree]),
3842				sizeof(void *) * ac->avail);
3843		}
3844		spin_unlock_irq(&n->list_lock);
3845		slabs_destroy(cachep, &list);
3846	}
3847}
3848
3849/**
3850 * cache_reap - Reclaim memory from caches.
3851 * @w: work descriptor
3852 *
3853 * Called from workqueue/eventd every few seconds.
3854 * Purpose:
3855 * - clear the per-cpu caches for this CPU.
3856 * - return freeable pages to the main free memory pool.
3857 *
3858 * If we cannot acquire the cache chain mutex then just give up - we'll try
3859 * again on the next iteration.
3860 */
3861static void cache_reap(struct work_struct *w)
3862{
3863	struct kmem_cache *searchp;
3864	struct kmem_cache_node *n;
3865	int node = numa_mem_id();
3866	struct delayed_work *work = to_delayed_work(w);
3867
3868	if (!mutex_trylock(&slab_mutex))
3869		/* Give up. Setup the next iteration. */
3870		goto out;
3871
3872	list_for_each_entry(searchp, &slab_caches, list) {
3873		check_irq_on();
3874
3875		/*
3876		 * We only take the node lock if absolutely necessary and we
3877		 * have established with reasonable certainty that
3878		 * we can do some work if the lock was obtained.
3879		 */
3880		n = get_node(searchp, node);
3881
3882		reap_alien(searchp, n);
3883
3884		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3885
3886		/*
3887		 * These are racy checks but it does not matter
3888		 * if we skip one check or scan twice.
3889		 */
3890		if (time_after(n->next_reap, jiffies))
3891			goto next;
3892
3893		n->next_reap = jiffies + REAPTIMEOUT_NODE;
3894
3895		drain_array(searchp, n, n->shared, 0, node);
3896
3897		if (n->free_touched)
3898			n->free_touched = 0;
3899		else {
3900			int freed;
3901
3902			freed = drain_freelist(searchp, n, (n->free_limit +
3903				5 * searchp->num - 1) / (5 * searchp->num));
3904			STATS_ADD_REAPED(searchp, freed);
3905		}
3906next:
3907		cond_resched();
3908	}
3909	check_irq_on();
3910	mutex_unlock(&slab_mutex);
3911	next_reap_node();
3912out:
3913	/* Set up the next iteration */
3914	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3915}
3916
3917#ifdef CONFIG_SLABINFO
3918void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3919{
3920	struct page *page;
3921	unsigned long active_objs;
3922	unsigned long num_objs;
3923	unsigned long active_slabs = 0;
3924	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3925	const char *name;
3926	char *error = NULL;
3927	int node;
3928	struct kmem_cache_node *n;
3929
3930	active_objs = 0;
3931	num_slabs = 0;
3932	for_each_kmem_cache_node(cachep, node, n) {
3933
3934		check_irq_on();
3935		spin_lock_irq(&n->list_lock);
3936
3937		list_for_each_entry(page, &n->slabs_full, lru) {
3938			if (page->active != cachep->num && !error)
3939				error = "slabs_full accounting error";
3940			active_objs += cachep->num;
3941			active_slabs++;
3942		}
3943		list_for_each_entry(page, &n->slabs_partial, lru) {
3944			if (page->active == cachep->num && !error)
3945				error = "slabs_partial accounting error";
3946			if (!page->active && !error)
3947				error = "slabs_partial accounting error";
3948			active_objs += page->active;
3949			active_slabs++;
3950		}
3951		list_for_each_entry(page, &n->slabs_free, lru) {
3952			if (page->active && !error)
3953				error = "slabs_free accounting error";
3954			num_slabs++;
3955		}
3956		free_objects += n->free_objects;
3957		if (n->shared)
3958			shared_avail += n->shared->avail;
3959
3960		spin_unlock_irq(&n->list_lock);
3961	}
3962	num_slabs += active_slabs;
3963	num_objs = num_slabs * cachep->num;
3964	if (num_objs - active_objs != free_objects && !error)
3965		error = "free_objects accounting error";
3966
3967	name = cachep->name;
3968	if (error)
3969		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3970
3971	sinfo->active_objs = active_objs;
3972	sinfo->num_objs = num_objs;
3973	sinfo->active_slabs = active_slabs;
3974	sinfo->num_slabs = num_slabs;
3975	sinfo->shared_avail = shared_avail;
3976	sinfo->limit = cachep->limit;
3977	sinfo->batchcount = cachep->batchcount;
3978	sinfo->shared = cachep->shared;
3979	sinfo->objects_per_slab = cachep->num;
3980	sinfo->cache_order = cachep->gfporder;
3981}
3982
3983void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3984{
3985#if STATS
3986	{			/* node stats */
3987		unsigned long high = cachep->high_mark;
3988		unsigned long allocs = cachep->num_allocations;
3989		unsigned long grown = cachep->grown;
3990		unsigned long reaped = cachep->reaped;
3991		unsigned long errors = cachep->errors;
3992		unsigned long max_freeable = cachep->max_freeable;
3993		unsigned long node_allocs = cachep->node_allocs;
3994		unsigned long node_frees = cachep->node_frees;
3995		unsigned long overflows = cachep->node_overflow;
3996
3997		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
3998			   "%4lu %4lu %4lu %4lu %4lu",
3999			   allocs, high, grown,
4000			   reaped, errors, max_freeable, node_allocs,
4001			   node_frees, overflows);
4002	}
4003	/* cpu stats */
4004	{
4005		unsigned long allochit = atomic_read(&cachep->allochit);
4006		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4007		unsigned long freehit = atomic_read(&cachep->freehit);
4008		unsigned long freemiss = atomic_read(&cachep->freemiss);
4009
4010		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4011			   allochit, allocmiss, freehit, freemiss);
4012	}
4013#endif
4014}
4015
4016#define MAX_SLABINFO_WRITE 128
4017/**
4018 * slabinfo_write - Tuning for the slab allocator
4019 * @file: unused
4020 * @buffer: user buffer
4021 * @count: data length
4022 * @ppos: unused
4023 */
4024ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4025		       size_t count, loff_t *ppos)
4026{
4027	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4028	int limit, batchcount, shared, res;
4029	struct kmem_cache *cachep;
4030
4031	if (count > MAX_SLABINFO_WRITE)
4032		return -EINVAL;
4033	if (copy_from_user(&kbuf, buffer, count))
4034		return -EFAULT;
4035	kbuf[MAX_SLABINFO_WRITE] = '\0';
4036
4037	tmp = strchr(kbuf, ' ');
4038	if (!tmp)
4039		return -EINVAL;
4040	*tmp = '\0';
4041	tmp++;
4042	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4043		return -EINVAL;
4044
4045	/* Find the cache in the chain of caches. */
4046	mutex_lock(&slab_mutex);
4047	res = -EINVAL;
4048	list_for_each_entry(cachep, &slab_caches, list) {
4049		if (!strcmp(cachep->name, kbuf)) {
4050			if (limit < 1 || batchcount < 1 ||
4051					batchcount > limit || shared < 0) {
4052				res = 0;
4053			} else {
4054				res = do_tune_cpucache(cachep, limit,
4055						       batchcount, shared,
4056						       GFP_KERNEL);
4057			}
4058			break;
4059		}
4060	}
4061	mutex_unlock(&slab_mutex);
4062	if (res >= 0)
4063		res = count;
4064	return res;
4065}
4066
4067#ifdef CONFIG_DEBUG_SLAB_LEAK
4068
4069static inline int add_caller(unsigned long *n, unsigned long v)
4070{
4071	unsigned long *p;
4072	int l;
4073	if (!v)
4074		return 1;
4075	l = n[1];
4076	p = n + 2;
4077	while (l) {
4078		int i = l/2;
4079		unsigned long *q = p + 2 * i;
4080		if (*q == v) {
4081			q[1]++;
4082			return 1;
4083		}
4084		if (*q > v) {
4085			l = i;
4086		} else {
4087			p = q + 2;
4088			l -= i + 1;
4089		}
4090	}
4091	if (++n[1] == n[0])
4092		return 0;
4093	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4094	p[0] = v;
4095	p[1] = 1;
4096	return 1;
4097}
4098
4099static void handle_slab(unsigned long *n, struct kmem_cache *c,
4100						struct page *page)
4101{
4102	void *p;
4103	int i;
4104
4105	if (n[0] == n[1])
4106		return;
4107	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4108		if (get_obj_status(page, i) != OBJECT_ACTIVE)
4109			continue;
4110
4111		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4112			return;
4113	}
4114}
4115
4116static void show_symbol(struct seq_file *m, unsigned long address)
4117{
4118#ifdef CONFIG_KALLSYMS
4119	unsigned long offset, size;
4120	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4121
4122	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4123		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4124		if (modname[0])
4125			seq_printf(m, " [%s]", modname);
4126		return;
4127	}
4128#endif
4129	seq_printf(m, "%p", (void *)address);
4130}
4131
4132static int leaks_show(struct seq_file *m, void *p)
4133{
4134	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4135	struct page *page;
4136	struct kmem_cache_node *n;
4137	const char *name;
4138	unsigned long *x = m->private;
4139	int node;
4140	int i;
4141
4142	if (!(cachep->flags & SLAB_STORE_USER))
4143		return 0;
4144	if (!(cachep->flags & SLAB_RED_ZONE))
4145		return 0;
4146
4147	/* OK, we can do it */
4148
4149	x[1] = 0;
4150
4151	for_each_kmem_cache_node(cachep, node, n) {
4152
4153		check_irq_on();
4154		spin_lock_irq(&n->list_lock);
4155
4156		list_for_each_entry(page, &n->slabs_full, lru)
4157			handle_slab(x, cachep, page);
4158		list_for_each_entry(page, &n->slabs_partial, lru)
4159			handle_slab(x, cachep, page);
4160		spin_unlock_irq(&n->list_lock);
4161	}
4162	name = cachep->name;
4163	if (x[0] == x[1]) {
4164		/* Increase the buffer size */
4165		mutex_unlock(&slab_mutex);
4166		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4167		if (!m->private) {
4168			/* Too bad, we are really out */
4169			m->private = x;
4170			mutex_lock(&slab_mutex);
4171			return -ENOMEM;
4172		}
4173		*(unsigned long *)m->private = x[0] * 2;
4174		kfree(x);
4175		mutex_lock(&slab_mutex);
4176		/* Now make sure this entry will be retried */
4177		m->count = m->size;
4178		return 0;
4179	}
4180	for (i = 0; i < x[1]; i++) {
4181		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4182		show_symbol(m, x[2*i+2]);
4183		seq_putc(m, '\n');
4184	}
4185
4186	return 0;
4187}
4188
4189static const struct seq_operations slabstats_op = {
4190	.start = slab_start,
4191	.next = slab_next,
4192	.stop = slab_stop,
4193	.show = leaks_show,
4194};
4195
4196static int slabstats_open(struct inode *inode, struct file *file)
4197{
4198	unsigned long *n;
4199
4200	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4201	if (!n)
4202		return -ENOMEM;
4203
4204	*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4205
4206	return 0;
4207}
4208
4209static const struct file_operations proc_slabstats_operations = {
4210	.open		= slabstats_open,
4211	.read		= seq_read,
4212	.llseek		= seq_lseek,
4213	.release	= seq_release_private,
4214};
4215#endif
4216
4217static int __init slab_proc_init(void)
4218{
4219#ifdef CONFIG_DEBUG_SLAB_LEAK
4220	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4221#endif
4222	return 0;
4223}
4224module_init(slab_proc_init);
4225#endif
4226
4227/**
4228 * ksize - get the actual amount of memory allocated for a given object
4229 * @objp: Pointer to the object
4230 *
4231 * kmalloc may internally round up allocations and return more memory
4232 * than requested. ksize() can be used to determine the actual amount of
4233 * memory allocated. The caller may use this additional memory, even though
4234 * a smaller amount of memory was initially specified with the kmalloc call.
4235 * The caller must guarantee that objp points to a valid object previously
4236 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4237 * must not be freed during the duration of the call.
4238 */
4239size_t ksize(const void *objp)
4240{
4241	BUG_ON(!objp);
4242	if (unlikely(objp == ZERO_SIZE_PTR))
4243		return 0;
4244
4245	return virt_to_cache(objp)->object_size;
4246}
4247EXPORT_SYMBOL(ksize);
4248