1/* 2 * linux/mm/slab.c 3 * Written by Mark Hemment, 1996/97. 4 * (markhe@nextd.demon.co.uk) 5 * 6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 7 * 8 * Major cleanup, different bufctl logic, per-cpu arrays 9 * (c) 2000 Manfred Spraul 10 * 11 * Cleanup, make the head arrays unconditional, preparation for NUMA 12 * (c) 2002 Manfred Spraul 13 * 14 * An implementation of the Slab Allocator as described in outline in; 15 * UNIX Internals: The New Frontiers by Uresh Vahalia 16 * Pub: Prentice Hall ISBN 0-13-101908-2 17 * or with a little more detail in; 18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 19 * Jeff Bonwick (Sun Microsystems). 20 * Presented at: USENIX Summer 1994 Technical Conference 21 * 22 * The memory is organized in caches, one cache for each object type. 23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 24 * Each cache consists out of many slabs (they are small (usually one 25 * page long) and always contiguous), and each slab contains multiple 26 * initialized objects. 27 * 28 * This means, that your constructor is used only for newly allocated 29 * slabs and you must pass objects with the same initializations to 30 * kmem_cache_free. 31 * 32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 33 * normal). If you need a special memory type, then must create a new 34 * cache for that memory type. 35 * 36 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 37 * full slabs with 0 free objects 38 * partial slabs 39 * empty slabs with no allocated objects 40 * 41 * If partial slabs exist, then new allocations come from these slabs, 42 * otherwise from empty slabs or new slabs are allocated. 43 * 44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 46 * 47 * Each cache has a short per-cpu head array, most allocs 48 * and frees go into that array, and if that array overflows, then 1/2 49 * of the entries in the array are given back into the global cache. 50 * The head array is strictly LIFO and should improve the cache hit rates. 51 * On SMP, it additionally reduces the spinlock operations. 52 * 53 * The c_cpuarray may not be read with enabled local interrupts - 54 * it's changed with a smp_call_function(). 55 * 56 * SMP synchronization: 57 * constructors and destructors are called without any locking. 58 * Several members in struct kmem_cache and struct slab never change, they 59 * are accessed without any locking. 60 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 61 * and local interrupts are disabled so slab code is preempt-safe. 62 * The non-constant members are protected with a per-cache irq spinlock. 63 * 64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 65 * in 2000 - many ideas in the current implementation are derived from 66 * his patch. 67 * 68 * Further notes from the original documentation: 69 * 70 * 11 April '97. Started multi-threading - markhe 71 * The global cache-chain is protected by the mutex 'slab_mutex'. 72 * The sem is only needed when accessing/extending the cache-chain, which 73 * can never happen inside an interrupt (kmem_cache_create(), 74 * kmem_cache_shrink() and kmem_cache_reap()). 75 * 76 * At present, each engine can be growing a cache. This should be blocked. 77 * 78 * 15 March 2005. NUMA slab allocator. 79 * Shai Fultheim <shai@scalex86.org>. 80 * Shobhit Dayal <shobhit@calsoftinc.com> 81 * Alok N Kataria <alokk@calsoftinc.com> 82 * Christoph Lameter <christoph@lameter.com> 83 * 84 * Modified the slab allocator to be node aware on NUMA systems. 85 * Each node has its own list of partial, free and full slabs. 86 * All object allocations for a node occur from node specific slab lists. 87 */ 88 89#include <linux/slab.h> 90#include <linux/mm.h> 91#include <linux/poison.h> 92#include <linux/swap.h> 93#include <linux/cache.h> 94#include <linux/interrupt.h> 95#include <linux/init.h> 96#include <linux/compiler.h> 97#include <linux/cpuset.h> 98#include <linux/proc_fs.h> 99#include <linux/seq_file.h> 100#include <linux/notifier.h> 101#include <linux/kallsyms.h> 102#include <linux/cpu.h> 103#include <linux/sysctl.h> 104#include <linux/module.h> 105#include <linux/rcupdate.h> 106#include <linux/string.h> 107#include <linux/uaccess.h> 108#include <linux/nodemask.h> 109#include <linux/kmemleak.h> 110#include <linux/mempolicy.h> 111#include <linux/mutex.h> 112#include <linux/fault-inject.h> 113#include <linux/rtmutex.h> 114#include <linux/reciprocal_div.h> 115#include <linux/debugobjects.h> 116#include <linux/kmemcheck.h> 117#include <linux/memory.h> 118#include <linux/prefetch.h> 119 120#include <net/sock.h> 121 122#include <asm/cacheflush.h> 123#include <asm/tlbflush.h> 124#include <asm/page.h> 125 126#include <trace/events/kmem.h> 127 128#include "internal.h" 129 130#include "slab.h" 131 132/* 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 134 * 0 for faster, smaller code (especially in the critical paths). 135 * 136 * STATS - 1 to collect stats for /proc/slabinfo. 137 * 0 for faster, smaller code (especially in the critical paths). 138 * 139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 140 */ 141 142#ifdef CONFIG_DEBUG_SLAB 143#define DEBUG 1 144#define STATS 1 145#define FORCED_DEBUG 1 146#else 147#define DEBUG 0 148#define STATS 0 149#define FORCED_DEBUG 0 150#endif 151 152/* Shouldn't this be in a header file somewhere? */ 153#define BYTES_PER_WORD sizeof(void *) 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 155 156#ifndef ARCH_KMALLOC_FLAGS 157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 158#endif 159 160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 162 163#if FREELIST_BYTE_INDEX 164typedef unsigned char freelist_idx_t; 165#else 166typedef unsigned short freelist_idx_t; 167#endif 168 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 170 171/* 172 * true if a page was allocated from pfmemalloc reserves for network-based 173 * swap 174 */ 175static bool pfmemalloc_active __read_mostly; 176 177/* 178 * struct array_cache 179 * 180 * Purpose: 181 * - LIFO ordering, to hand out cache-warm objects from _alloc 182 * - reduce the number of linked list operations 183 * - reduce spinlock operations 184 * 185 * The limit is stored in the per-cpu structure to reduce the data cache 186 * footprint. 187 * 188 */ 189struct array_cache { 190 unsigned int avail; 191 unsigned int limit; 192 unsigned int batchcount; 193 unsigned int touched; 194 void *entry[]; /* 195 * Must have this definition in here for the proper 196 * alignment of array_cache. Also simplifies accessing 197 * the entries. 198 * 199 * Entries should not be directly dereferenced as 200 * entries belonging to slabs marked pfmemalloc will 201 * have the lower bits set SLAB_OBJ_PFMEMALLOC 202 */ 203}; 204 205struct alien_cache { 206 spinlock_t lock; 207 struct array_cache ac; 208}; 209 210#define SLAB_OBJ_PFMEMALLOC 1 211static inline bool is_obj_pfmemalloc(void *objp) 212{ 213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC; 214} 215 216static inline void set_obj_pfmemalloc(void **objp) 217{ 218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC); 219 return; 220} 221 222static inline void clear_obj_pfmemalloc(void **objp) 223{ 224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC); 225} 226 227/* 228 * bootstrap: The caches do not work without cpuarrays anymore, but the 229 * cpuarrays are allocated from the generic caches... 230 */ 231#define BOOT_CPUCACHE_ENTRIES 1 232struct arraycache_init { 233 struct array_cache cache; 234 void *entries[BOOT_CPUCACHE_ENTRIES]; 235}; 236 237/* 238 * Need this for bootstrapping a per node allocator. 239 */ 240#define NUM_INIT_LISTS (2 * MAX_NUMNODES) 241static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 242#define CACHE_CACHE 0 243#define SIZE_NODE (MAX_NUMNODES) 244 245static int drain_freelist(struct kmem_cache *cache, 246 struct kmem_cache_node *n, int tofree); 247static void free_block(struct kmem_cache *cachep, void **objpp, int len, 248 int node, struct list_head *list); 249static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 250static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 251static void cache_reap(struct work_struct *unused); 252 253static int slab_early_init = 1; 254 255#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 256 257static void kmem_cache_node_init(struct kmem_cache_node *parent) 258{ 259 INIT_LIST_HEAD(&parent->slabs_full); 260 INIT_LIST_HEAD(&parent->slabs_partial); 261 INIT_LIST_HEAD(&parent->slabs_free); 262 parent->shared = NULL; 263 parent->alien = NULL; 264 parent->colour_next = 0; 265 spin_lock_init(&parent->list_lock); 266 parent->free_objects = 0; 267 parent->free_touched = 0; 268} 269 270#define MAKE_LIST(cachep, listp, slab, nodeid) \ 271 do { \ 272 INIT_LIST_HEAD(listp); \ 273 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 274 } while (0) 275 276#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 277 do { \ 278 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 279 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 280 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 281 } while (0) 282 283#define CFLGS_OFF_SLAB (0x80000000UL) 284#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 285 286#define BATCHREFILL_LIMIT 16 287/* 288 * Optimization question: fewer reaps means less probability for unnessary 289 * cpucache drain/refill cycles. 290 * 291 * OTOH the cpuarrays can contain lots of objects, 292 * which could lock up otherwise freeable slabs. 293 */ 294#define REAPTIMEOUT_AC (2*HZ) 295#define REAPTIMEOUT_NODE (4*HZ) 296 297#if STATS 298#define STATS_INC_ACTIVE(x) ((x)->num_active++) 299#define STATS_DEC_ACTIVE(x) ((x)->num_active--) 300#define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 301#define STATS_INC_GROWN(x) ((x)->grown++) 302#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 303#define STATS_SET_HIGH(x) \ 304 do { \ 305 if ((x)->num_active > (x)->high_mark) \ 306 (x)->high_mark = (x)->num_active; \ 307 } while (0) 308#define STATS_INC_ERR(x) ((x)->errors++) 309#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 310#define STATS_INC_NODEFREES(x) ((x)->node_frees++) 311#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 312#define STATS_SET_FREEABLE(x, i) \ 313 do { \ 314 if ((x)->max_freeable < i) \ 315 (x)->max_freeable = i; \ 316 } while (0) 317#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 318#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 319#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 320#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 321#else 322#define STATS_INC_ACTIVE(x) do { } while (0) 323#define STATS_DEC_ACTIVE(x) do { } while (0) 324#define STATS_INC_ALLOCED(x) do { } while (0) 325#define STATS_INC_GROWN(x) do { } while (0) 326#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 327#define STATS_SET_HIGH(x) do { } while (0) 328#define STATS_INC_ERR(x) do { } while (0) 329#define STATS_INC_NODEALLOCS(x) do { } while (0) 330#define STATS_INC_NODEFREES(x) do { } while (0) 331#define STATS_INC_ACOVERFLOW(x) do { } while (0) 332#define STATS_SET_FREEABLE(x, i) do { } while (0) 333#define STATS_INC_ALLOCHIT(x) do { } while (0) 334#define STATS_INC_ALLOCMISS(x) do { } while (0) 335#define STATS_INC_FREEHIT(x) do { } while (0) 336#define STATS_INC_FREEMISS(x) do { } while (0) 337#endif 338 339#if DEBUG 340 341/* 342 * memory layout of objects: 343 * 0 : objp 344 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 345 * the end of an object is aligned with the end of the real 346 * allocation. Catches writes behind the end of the allocation. 347 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 348 * redzone word. 349 * cachep->obj_offset: The real object. 350 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 351 * cachep->size - 1* BYTES_PER_WORD: last caller address 352 * [BYTES_PER_WORD long] 353 */ 354static int obj_offset(struct kmem_cache *cachep) 355{ 356 return cachep->obj_offset; 357} 358 359static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 360{ 361 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 362 return (unsigned long long*) (objp + obj_offset(cachep) - 363 sizeof(unsigned long long)); 364} 365 366static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 367{ 368 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 369 if (cachep->flags & SLAB_STORE_USER) 370 return (unsigned long long *)(objp + cachep->size - 371 sizeof(unsigned long long) - 372 REDZONE_ALIGN); 373 return (unsigned long long *) (objp + cachep->size - 374 sizeof(unsigned long long)); 375} 376 377static void **dbg_userword(struct kmem_cache *cachep, void *objp) 378{ 379 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 380 return (void **)(objp + cachep->size - BYTES_PER_WORD); 381} 382 383#else 384 385#define obj_offset(x) 0 386#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 387#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 388#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 389 390#endif 391 392#define OBJECT_FREE (0) 393#define OBJECT_ACTIVE (1) 394 395#ifdef CONFIG_DEBUG_SLAB_LEAK 396 397static void set_obj_status(struct page *page, int idx, int val) 398{ 399 int freelist_size; 400 char *status; 401 struct kmem_cache *cachep = page->slab_cache; 402 403 freelist_size = cachep->num * sizeof(freelist_idx_t); 404 status = (char *)page->freelist + freelist_size; 405 status[idx] = val; 406} 407 408static inline unsigned int get_obj_status(struct page *page, int idx) 409{ 410 int freelist_size; 411 char *status; 412 struct kmem_cache *cachep = page->slab_cache; 413 414 freelist_size = cachep->num * sizeof(freelist_idx_t); 415 status = (char *)page->freelist + freelist_size; 416 417 return status[idx]; 418} 419 420#else 421static inline void set_obj_status(struct page *page, int idx, int val) {} 422 423#endif 424 425/* 426 * Do not go above this order unless 0 objects fit into the slab or 427 * overridden on the command line. 428 */ 429#define SLAB_MAX_ORDER_HI 1 430#define SLAB_MAX_ORDER_LO 0 431static int slab_max_order = SLAB_MAX_ORDER_LO; 432static bool slab_max_order_set __initdata; 433 434static inline struct kmem_cache *virt_to_cache(const void *obj) 435{ 436 struct page *page = virt_to_head_page(obj); 437 return page->slab_cache; 438} 439 440static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, 441 unsigned int idx) 442{ 443 return page->s_mem + cache->size * idx; 444} 445 446/* 447 * We want to avoid an expensive divide : (offset / cache->size) 448 * Using the fact that size is a constant for a particular cache, 449 * we can replace (offset / cache->size) by 450 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 451 */ 452static inline unsigned int obj_to_index(const struct kmem_cache *cache, 453 const struct page *page, void *obj) 454{ 455 u32 offset = (obj - page->s_mem); 456 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 457} 458 459/* internal cache of cache description objs */ 460static struct kmem_cache kmem_cache_boot = { 461 .batchcount = 1, 462 .limit = BOOT_CPUCACHE_ENTRIES, 463 .shared = 1, 464 .size = sizeof(struct kmem_cache), 465 .name = "kmem_cache", 466}; 467 468#define BAD_ALIEN_MAGIC 0x01020304ul 469 470static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 471 472static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 473{ 474 return this_cpu_ptr(cachep->cpu_cache); 475} 476 477static size_t calculate_freelist_size(int nr_objs, size_t align) 478{ 479 size_t freelist_size; 480 481 freelist_size = nr_objs * sizeof(freelist_idx_t); 482 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK)) 483 freelist_size += nr_objs * sizeof(char); 484 485 if (align) 486 freelist_size = ALIGN(freelist_size, align); 487 488 return freelist_size; 489} 490 491static int calculate_nr_objs(size_t slab_size, size_t buffer_size, 492 size_t idx_size, size_t align) 493{ 494 int nr_objs; 495 size_t remained_size; 496 size_t freelist_size; 497 int extra_space = 0; 498 499 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK)) 500 extra_space = sizeof(char); 501 /* 502 * Ignore padding for the initial guess. The padding 503 * is at most @align-1 bytes, and @buffer_size is at 504 * least @align. In the worst case, this result will 505 * be one greater than the number of objects that fit 506 * into the memory allocation when taking the padding 507 * into account. 508 */ 509 nr_objs = slab_size / (buffer_size + idx_size + extra_space); 510 511 /* 512 * This calculated number will be either the right 513 * amount, or one greater than what we want. 514 */ 515 remained_size = slab_size - nr_objs * buffer_size; 516 freelist_size = calculate_freelist_size(nr_objs, align); 517 if (remained_size < freelist_size) 518 nr_objs--; 519 520 return nr_objs; 521} 522 523/* 524 * Calculate the number of objects and left-over bytes for a given buffer size. 525 */ 526static void cache_estimate(unsigned long gfporder, size_t buffer_size, 527 size_t align, int flags, size_t *left_over, 528 unsigned int *num) 529{ 530 int nr_objs; 531 size_t mgmt_size; 532 size_t slab_size = PAGE_SIZE << gfporder; 533 534 /* 535 * The slab management structure can be either off the slab or 536 * on it. For the latter case, the memory allocated for a 537 * slab is used for: 538 * 539 * - One unsigned int for each object 540 * - Padding to respect alignment of @align 541 * - @buffer_size bytes for each object 542 * 543 * If the slab management structure is off the slab, then the 544 * alignment will already be calculated into the size. Because 545 * the slabs are all pages aligned, the objects will be at the 546 * correct alignment when allocated. 547 */ 548 if (flags & CFLGS_OFF_SLAB) { 549 mgmt_size = 0; 550 nr_objs = slab_size / buffer_size; 551 552 } else { 553 nr_objs = calculate_nr_objs(slab_size, buffer_size, 554 sizeof(freelist_idx_t), align); 555 mgmt_size = calculate_freelist_size(nr_objs, align); 556 } 557 *num = nr_objs; 558 *left_over = slab_size - nr_objs*buffer_size - mgmt_size; 559} 560 561#if DEBUG 562#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 563 564static void __slab_error(const char *function, struct kmem_cache *cachep, 565 char *msg) 566{ 567 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", 568 function, cachep->name, msg); 569 dump_stack(); 570 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 571} 572#endif 573 574/* 575 * By default on NUMA we use alien caches to stage the freeing of 576 * objects allocated from other nodes. This causes massive memory 577 * inefficiencies when using fake NUMA setup to split memory into a 578 * large number of small nodes, so it can be disabled on the command 579 * line 580 */ 581 582static int use_alien_caches __read_mostly = 1; 583static int __init noaliencache_setup(char *s) 584{ 585 use_alien_caches = 0; 586 return 1; 587} 588__setup("noaliencache", noaliencache_setup); 589 590static int __init slab_max_order_setup(char *str) 591{ 592 get_option(&str, &slab_max_order); 593 slab_max_order = slab_max_order < 0 ? 0 : 594 min(slab_max_order, MAX_ORDER - 1); 595 slab_max_order_set = true; 596 597 return 1; 598} 599__setup("slab_max_order=", slab_max_order_setup); 600 601#ifdef CONFIG_NUMA 602/* 603 * Special reaping functions for NUMA systems called from cache_reap(). 604 * These take care of doing round robin flushing of alien caches (containing 605 * objects freed on different nodes from which they were allocated) and the 606 * flushing of remote pcps by calling drain_node_pages. 607 */ 608static DEFINE_PER_CPU(unsigned long, slab_reap_node); 609 610static void init_reap_node(int cpu) 611{ 612 int node; 613 614 node = next_node(cpu_to_mem(cpu), node_online_map); 615 if (node == MAX_NUMNODES) 616 node = first_node(node_online_map); 617 618 per_cpu(slab_reap_node, cpu) = node; 619} 620 621static void next_reap_node(void) 622{ 623 int node = __this_cpu_read(slab_reap_node); 624 625 node = next_node(node, node_online_map); 626 if (unlikely(node >= MAX_NUMNODES)) 627 node = first_node(node_online_map); 628 __this_cpu_write(slab_reap_node, node); 629} 630 631#else 632#define init_reap_node(cpu) do { } while (0) 633#define next_reap_node(void) do { } while (0) 634#endif 635 636/* 637 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 638 * via the workqueue/eventd. 639 * Add the CPU number into the expiration time to minimize the possibility of 640 * the CPUs getting into lockstep and contending for the global cache chain 641 * lock. 642 */ 643static void start_cpu_timer(int cpu) 644{ 645 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 646 647 /* 648 * When this gets called from do_initcalls via cpucache_init(), 649 * init_workqueues() has already run, so keventd will be setup 650 * at that time. 651 */ 652 if (keventd_up() && reap_work->work.func == NULL) { 653 init_reap_node(cpu); 654 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 655 schedule_delayed_work_on(cpu, reap_work, 656 __round_jiffies_relative(HZ, cpu)); 657 } 658} 659 660static void init_arraycache(struct array_cache *ac, int limit, int batch) 661{ 662 /* 663 * The array_cache structures contain pointers to free object. 664 * However, when such objects are allocated or transferred to another 665 * cache the pointers are not cleared and they could be counted as 666 * valid references during a kmemleak scan. Therefore, kmemleak must 667 * not scan such objects. 668 */ 669 kmemleak_no_scan(ac); 670 if (ac) { 671 ac->avail = 0; 672 ac->limit = limit; 673 ac->batchcount = batch; 674 ac->touched = 0; 675 } 676} 677 678static struct array_cache *alloc_arraycache(int node, int entries, 679 int batchcount, gfp_t gfp) 680{ 681 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 682 struct array_cache *ac = NULL; 683 684 ac = kmalloc_node(memsize, gfp, node); 685 init_arraycache(ac, entries, batchcount); 686 return ac; 687} 688 689static inline bool is_slab_pfmemalloc(struct page *page) 690{ 691 return PageSlabPfmemalloc(page); 692} 693 694/* Clears pfmemalloc_active if no slabs have pfmalloc set */ 695static void recheck_pfmemalloc_active(struct kmem_cache *cachep, 696 struct array_cache *ac) 697{ 698 struct kmem_cache_node *n = get_node(cachep, numa_mem_id()); 699 struct page *page; 700 unsigned long flags; 701 702 if (!pfmemalloc_active) 703 return; 704 705 spin_lock_irqsave(&n->list_lock, flags); 706 list_for_each_entry(page, &n->slabs_full, lru) 707 if (is_slab_pfmemalloc(page)) 708 goto out; 709 710 list_for_each_entry(page, &n->slabs_partial, lru) 711 if (is_slab_pfmemalloc(page)) 712 goto out; 713 714 list_for_each_entry(page, &n->slabs_free, lru) 715 if (is_slab_pfmemalloc(page)) 716 goto out; 717 718 pfmemalloc_active = false; 719out: 720 spin_unlock_irqrestore(&n->list_lock, flags); 721} 722 723static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac, 724 gfp_t flags, bool force_refill) 725{ 726 int i; 727 void *objp = ac->entry[--ac->avail]; 728 729 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */ 730 if (unlikely(is_obj_pfmemalloc(objp))) { 731 struct kmem_cache_node *n; 732 733 if (gfp_pfmemalloc_allowed(flags)) { 734 clear_obj_pfmemalloc(&objp); 735 return objp; 736 } 737 738 /* The caller cannot use PFMEMALLOC objects, find another one */ 739 for (i = 0; i < ac->avail; i++) { 740 /* If a !PFMEMALLOC object is found, swap them */ 741 if (!is_obj_pfmemalloc(ac->entry[i])) { 742 objp = ac->entry[i]; 743 ac->entry[i] = ac->entry[ac->avail]; 744 ac->entry[ac->avail] = objp; 745 return objp; 746 } 747 } 748 749 /* 750 * If there are empty slabs on the slabs_free list and we are 751 * being forced to refill the cache, mark this one !pfmemalloc. 752 */ 753 n = get_node(cachep, numa_mem_id()); 754 if (!list_empty(&n->slabs_free) && force_refill) { 755 struct page *page = virt_to_head_page(objp); 756 ClearPageSlabPfmemalloc(page); 757 clear_obj_pfmemalloc(&objp); 758 recheck_pfmemalloc_active(cachep, ac); 759 return objp; 760 } 761 762 /* No !PFMEMALLOC objects available */ 763 ac->avail++; 764 objp = NULL; 765 } 766 767 return objp; 768} 769 770static inline void *ac_get_obj(struct kmem_cache *cachep, 771 struct array_cache *ac, gfp_t flags, bool force_refill) 772{ 773 void *objp; 774 775 if (unlikely(sk_memalloc_socks())) 776 objp = __ac_get_obj(cachep, ac, flags, force_refill); 777 else 778 objp = ac->entry[--ac->avail]; 779 780 return objp; 781} 782 783static noinline void *__ac_put_obj(struct kmem_cache *cachep, 784 struct array_cache *ac, void *objp) 785{ 786 if (unlikely(pfmemalloc_active)) { 787 /* Some pfmemalloc slabs exist, check if this is one */ 788 struct page *page = virt_to_head_page(objp); 789 if (PageSlabPfmemalloc(page)) 790 set_obj_pfmemalloc(&objp); 791 } 792 793 return objp; 794} 795 796static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac, 797 void *objp) 798{ 799 if (unlikely(sk_memalloc_socks())) 800 objp = __ac_put_obj(cachep, ac, objp); 801 802 ac->entry[ac->avail++] = objp; 803} 804 805/* 806 * Transfer objects in one arraycache to another. 807 * Locking must be handled by the caller. 808 * 809 * Return the number of entries transferred. 810 */ 811static int transfer_objects(struct array_cache *to, 812 struct array_cache *from, unsigned int max) 813{ 814 /* Figure out how many entries to transfer */ 815 int nr = min3(from->avail, max, to->limit - to->avail); 816 817 if (!nr) 818 return 0; 819 820 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 821 sizeof(void *) *nr); 822 823 from->avail -= nr; 824 to->avail += nr; 825 return nr; 826} 827 828#ifndef CONFIG_NUMA 829 830#define drain_alien_cache(cachep, alien) do { } while (0) 831#define reap_alien(cachep, n) do { } while (0) 832 833static inline struct alien_cache **alloc_alien_cache(int node, 834 int limit, gfp_t gfp) 835{ 836 return (struct alien_cache **)BAD_ALIEN_MAGIC; 837} 838 839static inline void free_alien_cache(struct alien_cache **ac_ptr) 840{ 841} 842 843static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 844{ 845 return 0; 846} 847 848static inline void *alternate_node_alloc(struct kmem_cache *cachep, 849 gfp_t flags) 850{ 851 return NULL; 852} 853 854static inline void *____cache_alloc_node(struct kmem_cache *cachep, 855 gfp_t flags, int nodeid) 856{ 857 return NULL; 858} 859 860static inline gfp_t gfp_exact_node(gfp_t flags) 861{ 862 return flags; 863} 864 865#else /* CONFIG_NUMA */ 866 867static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 868static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 869 870static struct alien_cache *__alloc_alien_cache(int node, int entries, 871 int batch, gfp_t gfp) 872{ 873 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 874 struct alien_cache *alc = NULL; 875 876 alc = kmalloc_node(memsize, gfp, node); 877 init_arraycache(&alc->ac, entries, batch); 878 spin_lock_init(&alc->lock); 879 return alc; 880} 881 882static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 883{ 884 struct alien_cache **alc_ptr; 885 size_t memsize = sizeof(void *) * nr_node_ids; 886 int i; 887 888 if (limit > 1) 889 limit = 12; 890 alc_ptr = kzalloc_node(memsize, gfp, node); 891 if (!alc_ptr) 892 return NULL; 893 894 for_each_node(i) { 895 if (i == node || !node_online(i)) 896 continue; 897 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 898 if (!alc_ptr[i]) { 899 for (i--; i >= 0; i--) 900 kfree(alc_ptr[i]); 901 kfree(alc_ptr); 902 return NULL; 903 } 904 } 905 return alc_ptr; 906} 907 908static void free_alien_cache(struct alien_cache **alc_ptr) 909{ 910 int i; 911 912 if (!alc_ptr) 913 return; 914 for_each_node(i) 915 kfree(alc_ptr[i]); 916 kfree(alc_ptr); 917} 918 919static void __drain_alien_cache(struct kmem_cache *cachep, 920 struct array_cache *ac, int node, 921 struct list_head *list) 922{ 923 struct kmem_cache_node *n = get_node(cachep, node); 924 925 if (ac->avail) { 926 spin_lock(&n->list_lock); 927 /* 928 * Stuff objects into the remote nodes shared array first. 929 * That way we could avoid the overhead of putting the objects 930 * into the free lists and getting them back later. 931 */ 932 if (n->shared) 933 transfer_objects(n->shared, ac, ac->limit); 934 935 free_block(cachep, ac->entry, ac->avail, node, list); 936 ac->avail = 0; 937 spin_unlock(&n->list_lock); 938 } 939} 940 941/* 942 * Called from cache_reap() to regularly drain alien caches round robin. 943 */ 944static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 945{ 946 int node = __this_cpu_read(slab_reap_node); 947 948 if (n->alien) { 949 struct alien_cache *alc = n->alien[node]; 950 struct array_cache *ac; 951 952 if (alc) { 953 ac = &alc->ac; 954 if (ac->avail && spin_trylock_irq(&alc->lock)) { 955 LIST_HEAD(list); 956 957 __drain_alien_cache(cachep, ac, node, &list); 958 spin_unlock_irq(&alc->lock); 959 slabs_destroy(cachep, &list); 960 } 961 } 962 } 963} 964 965static void drain_alien_cache(struct kmem_cache *cachep, 966 struct alien_cache **alien) 967{ 968 int i = 0; 969 struct alien_cache *alc; 970 struct array_cache *ac; 971 unsigned long flags; 972 973 for_each_online_node(i) { 974 alc = alien[i]; 975 if (alc) { 976 LIST_HEAD(list); 977 978 ac = &alc->ac; 979 spin_lock_irqsave(&alc->lock, flags); 980 __drain_alien_cache(cachep, ac, i, &list); 981 spin_unlock_irqrestore(&alc->lock, flags); 982 slabs_destroy(cachep, &list); 983 } 984 } 985} 986 987static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 988 int node, int page_node) 989{ 990 struct kmem_cache_node *n; 991 struct alien_cache *alien = NULL; 992 struct array_cache *ac; 993 LIST_HEAD(list); 994 995 n = get_node(cachep, node); 996 STATS_INC_NODEFREES(cachep); 997 if (n->alien && n->alien[page_node]) { 998 alien = n->alien[page_node]; 999 ac = &alien->ac; 1000 spin_lock(&alien->lock); 1001 if (unlikely(ac->avail == ac->limit)) { 1002 STATS_INC_ACOVERFLOW(cachep); 1003 __drain_alien_cache(cachep, ac, page_node, &list); 1004 } 1005 ac_put_obj(cachep, ac, objp); 1006 spin_unlock(&alien->lock); 1007 slabs_destroy(cachep, &list); 1008 } else { 1009 n = get_node(cachep, page_node); 1010 spin_lock(&n->list_lock); 1011 free_block(cachep, &objp, 1, page_node, &list); 1012 spin_unlock(&n->list_lock); 1013 slabs_destroy(cachep, &list); 1014 } 1015 return 1; 1016} 1017 1018static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 1019{ 1020 int page_node = page_to_nid(virt_to_page(objp)); 1021 int node = numa_mem_id(); 1022 /* 1023 * Make sure we are not freeing a object from another node to the array 1024 * cache on this cpu. 1025 */ 1026 if (likely(node == page_node)) 1027 return 0; 1028 1029 return __cache_free_alien(cachep, objp, node, page_node); 1030} 1031 1032/* 1033 * Construct gfp mask to allocate from a specific node but do not invoke reclaim 1034 * or warn about failures. 1035 */ 1036static inline gfp_t gfp_exact_node(gfp_t flags) 1037{ 1038 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_WAIT; 1039} 1040#endif 1041 1042/* 1043 * Allocates and initializes node for a node on each slab cache, used for 1044 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 1045 * will be allocated off-node since memory is not yet online for the new node. 1046 * When hotplugging memory or a cpu, existing node are not replaced if 1047 * already in use. 1048 * 1049 * Must hold slab_mutex. 1050 */ 1051static int init_cache_node_node(int node) 1052{ 1053 struct kmem_cache *cachep; 1054 struct kmem_cache_node *n; 1055 const size_t memsize = sizeof(struct kmem_cache_node); 1056 1057 list_for_each_entry(cachep, &slab_caches, list) { 1058 /* 1059 * Set up the kmem_cache_node for cpu before we can 1060 * begin anything. Make sure some other cpu on this 1061 * node has not already allocated this 1062 */ 1063 n = get_node(cachep, node); 1064 if (!n) { 1065 n = kmalloc_node(memsize, GFP_KERNEL, node); 1066 if (!n) 1067 return -ENOMEM; 1068 kmem_cache_node_init(n); 1069 n->next_reap = jiffies + REAPTIMEOUT_NODE + 1070 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1071 1072 /* 1073 * The kmem_cache_nodes don't come and go as CPUs 1074 * come and go. slab_mutex is sufficient 1075 * protection here. 1076 */ 1077 cachep->node[node] = n; 1078 } 1079 1080 spin_lock_irq(&n->list_lock); 1081 n->free_limit = 1082 (1 + nr_cpus_node(node)) * 1083 cachep->batchcount + cachep->num; 1084 spin_unlock_irq(&n->list_lock); 1085 } 1086 return 0; 1087} 1088 1089static inline int slabs_tofree(struct kmem_cache *cachep, 1090 struct kmem_cache_node *n) 1091{ 1092 return (n->free_objects + cachep->num - 1) / cachep->num; 1093} 1094 1095static void cpuup_canceled(long cpu) 1096{ 1097 struct kmem_cache *cachep; 1098 struct kmem_cache_node *n = NULL; 1099 int node = cpu_to_mem(cpu); 1100 const struct cpumask *mask = cpumask_of_node(node); 1101 1102 list_for_each_entry(cachep, &slab_caches, list) { 1103 struct array_cache *nc; 1104 struct array_cache *shared; 1105 struct alien_cache **alien; 1106 LIST_HEAD(list); 1107 1108 n = get_node(cachep, node); 1109 if (!n) 1110 continue; 1111 1112 spin_lock_irq(&n->list_lock); 1113 1114 /* Free limit for this kmem_cache_node */ 1115 n->free_limit -= cachep->batchcount; 1116 1117 /* cpu is dead; no one can alloc from it. */ 1118 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 1119 if (nc) { 1120 free_block(cachep, nc->entry, nc->avail, node, &list); 1121 nc->avail = 0; 1122 } 1123 1124 if (!cpumask_empty(mask)) { 1125 spin_unlock_irq(&n->list_lock); 1126 goto free_slab; 1127 } 1128 1129 shared = n->shared; 1130 if (shared) { 1131 free_block(cachep, shared->entry, 1132 shared->avail, node, &list); 1133 n->shared = NULL; 1134 } 1135 1136 alien = n->alien; 1137 n->alien = NULL; 1138 1139 spin_unlock_irq(&n->list_lock); 1140 1141 kfree(shared); 1142 if (alien) { 1143 drain_alien_cache(cachep, alien); 1144 free_alien_cache(alien); 1145 } 1146 1147free_slab: 1148 slabs_destroy(cachep, &list); 1149 } 1150 /* 1151 * In the previous loop, all the objects were freed to 1152 * the respective cache's slabs, now we can go ahead and 1153 * shrink each nodelist to its limit. 1154 */ 1155 list_for_each_entry(cachep, &slab_caches, list) { 1156 n = get_node(cachep, node); 1157 if (!n) 1158 continue; 1159 drain_freelist(cachep, n, slabs_tofree(cachep, n)); 1160 } 1161} 1162 1163static int cpuup_prepare(long cpu) 1164{ 1165 struct kmem_cache *cachep; 1166 struct kmem_cache_node *n = NULL; 1167 int node = cpu_to_mem(cpu); 1168 int err; 1169 1170 /* 1171 * We need to do this right in the beginning since 1172 * alloc_arraycache's are going to use this list. 1173 * kmalloc_node allows us to add the slab to the right 1174 * kmem_cache_node and not this cpu's kmem_cache_node 1175 */ 1176 err = init_cache_node_node(node); 1177 if (err < 0) 1178 goto bad; 1179 1180 /* 1181 * Now we can go ahead with allocating the shared arrays and 1182 * array caches 1183 */ 1184 list_for_each_entry(cachep, &slab_caches, list) { 1185 struct array_cache *shared = NULL; 1186 struct alien_cache **alien = NULL; 1187 1188 if (cachep->shared) { 1189 shared = alloc_arraycache(node, 1190 cachep->shared * cachep->batchcount, 1191 0xbaadf00d, GFP_KERNEL); 1192 if (!shared) 1193 goto bad; 1194 } 1195 if (use_alien_caches) { 1196 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL); 1197 if (!alien) { 1198 kfree(shared); 1199 goto bad; 1200 } 1201 } 1202 n = get_node(cachep, node); 1203 BUG_ON(!n); 1204 1205 spin_lock_irq(&n->list_lock); 1206 if (!n->shared) { 1207 /* 1208 * We are serialised from CPU_DEAD or 1209 * CPU_UP_CANCELLED by the cpucontrol lock 1210 */ 1211 n->shared = shared; 1212 shared = NULL; 1213 } 1214#ifdef CONFIG_NUMA 1215 if (!n->alien) { 1216 n->alien = alien; 1217 alien = NULL; 1218 } 1219#endif 1220 spin_unlock_irq(&n->list_lock); 1221 kfree(shared); 1222 free_alien_cache(alien); 1223 } 1224 1225 return 0; 1226bad: 1227 cpuup_canceled(cpu); 1228 return -ENOMEM; 1229} 1230 1231static int cpuup_callback(struct notifier_block *nfb, 1232 unsigned long action, void *hcpu) 1233{ 1234 long cpu = (long)hcpu; 1235 int err = 0; 1236 1237 switch (action) { 1238 case CPU_UP_PREPARE: 1239 case CPU_UP_PREPARE_FROZEN: 1240 mutex_lock(&slab_mutex); 1241 err = cpuup_prepare(cpu); 1242 mutex_unlock(&slab_mutex); 1243 break; 1244 case CPU_ONLINE: 1245 case CPU_ONLINE_FROZEN: 1246 start_cpu_timer(cpu); 1247 break; 1248#ifdef CONFIG_HOTPLUG_CPU 1249 case CPU_DOWN_PREPARE: 1250 case CPU_DOWN_PREPARE_FROZEN: 1251 /* 1252 * Shutdown cache reaper. Note that the slab_mutex is 1253 * held so that if cache_reap() is invoked it cannot do 1254 * anything expensive but will only modify reap_work 1255 * and reschedule the timer. 1256 */ 1257 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1258 /* Now the cache_reaper is guaranteed to be not running. */ 1259 per_cpu(slab_reap_work, cpu).work.func = NULL; 1260 break; 1261 case CPU_DOWN_FAILED: 1262 case CPU_DOWN_FAILED_FROZEN: 1263 start_cpu_timer(cpu); 1264 break; 1265 case CPU_DEAD: 1266 case CPU_DEAD_FROZEN: 1267 /* 1268 * Even if all the cpus of a node are down, we don't free the 1269 * kmem_cache_node of any cache. This to avoid a race between 1270 * cpu_down, and a kmalloc allocation from another cpu for 1271 * memory from the node of the cpu going down. The node 1272 * structure is usually allocated from kmem_cache_create() and 1273 * gets destroyed at kmem_cache_destroy(). 1274 */ 1275 /* fall through */ 1276#endif 1277 case CPU_UP_CANCELED: 1278 case CPU_UP_CANCELED_FROZEN: 1279 mutex_lock(&slab_mutex); 1280 cpuup_canceled(cpu); 1281 mutex_unlock(&slab_mutex); 1282 break; 1283 } 1284 return notifier_from_errno(err); 1285} 1286 1287static struct notifier_block cpucache_notifier = { 1288 &cpuup_callback, NULL, 0 1289}; 1290 1291#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1292/* 1293 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1294 * Returns -EBUSY if all objects cannot be drained so that the node is not 1295 * removed. 1296 * 1297 * Must hold slab_mutex. 1298 */ 1299static int __meminit drain_cache_node_node(int node) 1300{ 1301 struct kmem_cache *cachep; 1302 int ret = 0; 1303 1304 list_for_each_entry(cachep, &slab_caches, list) { 1305 struct kmem_cache_node *n; 1306 1307 n = get_node(cachep, node); 1308 if (!n) 1309 continue; 1310 1311 drain_freelist(cachep, n, slabs_tofree(cachep, n)); 1312 1313 if (!list_empty(&n->slabs_full) || 1314 !list_empty(&n->slabs_partial)) { 1315 ret = -EBUSY; 1316 break; 1317 } 1318 } 1319 return ret; 1320} 1321 1322static int __meminit slab_memory_callback(struct notifier_block *self, 1323 unsigned long action, void *arg) 1324{ 1325 struct memory_notify *mnb = arg; 1326 int ret = 0; 1327 int nid; 1328 1329 nid = mnb->status_change_nid; 1330 if (nid < 0) 1331 goto out; 1332 1333 switch (action) { 1334 case MEM_GOING_ONLINE: 1335 mutex_lock(&slab_mutex); 1336 ret = init_cache_node_node(nid); 1337 mutex_unlock(&slab_mutex); 1338 break; 1339 case MEM_GOING_OFFLINE: 1340 mutex_lock(&slab_mutex); 1341 ret = drain_cache_node_node(nid); 1342 mutex_unlock(&slab_mutex); 1343 break; 1344 case MEM_ONLINE: 1345 case MEM_OFFLINE: 1346 case MEM_CANCEL_ONLINE: 1347 case MEM_CANCEL_OFFLINE: 1348 break; 1349 } 1350out: 1351 return notifier_from_errno(ret); 1352} 1353#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1354 1355/* 1356 * swap the static kmem_cache_node with kmalloced memory 1357 */ 1358static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1359 int nodeid) 1360{ 1361 struct kmem_cache_node *ptr; 1362 1363 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1364 BUG_ON(!ptr); 1365 1366 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1367 /* 1368 * Do not assume that spinlocks can be initialized via memcpy: 1369 */ 1370 spin_lock_init(&ptr->list_lock); 1371 1372 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1373 cachep->node[nodeid] = ptr; 1374} 1375 1376/* 1377 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1378 * size of kmem_cache_node. 1379 */ 1380static void __init set_up_node(struct kmem_cache *cachep, int index) 1381{ 1382 int node; 1383 1384 for_each_online_node(node) { 1385 cachep->node[node] = &init_kmem_cache_node[index + node]; 1386 cachep->node[node]->next_reap = jiffies + 1387 REAPTIMEOUT_NODE + 1388 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1389 } 1390} 1391 1392/* 1393 * Initialisation. Called after the page allocator have been initialised and 1394 * before smp_init(). 1395 */ 1396void __init kmem_cache_init(void) 1397{ 1398 int i; 1399 1400 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) < 1401 sizeof(struct rcu_head)); 1402 kmem_cache = &kmem_cache_boot; 1403 1404 if (num_possible_nodes() == 1) 1405 use_alien_caches = 0; 1406 1407 for (i = 0; i < NUM_INIT_LISTS; i++) 1408 kmem_cache_node_init(&init_kmem_cache_node[i]); 1409 1410 /* 1411 * Fragmentation resistance on low memory - only use bigger 1412 * page orders on machines with more than 32MB of memory if 1413 * not overridden on the command line. 1414 */ 1415 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) 1416 slab_max_order = SLAB_MAX_ORDER_HI; 1417 1418 /* Bootstrap is tricky, because several objects are allocated 1419 * from caches that do not exist yet: 1420 * 1) initialize the kmem_cache cache: it contains the struct 1421 * kmem_cache structures of all caches, except kmem_cache itself: 1422 * kmem_cache is statically allocated. 1423 * Initially an __init data area is used for the head array and the 1424 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1425 * array at the end of the bootstrap. 1426 * 2) Create the first kmalloc cache. 1427 * The struct kmem_cache for the new cache is allocated normally. 1428 * An __init data area is used for the head array. 1429 * 3) Create the remaining kmalloc caches, with minimally sized 1430 * head arrays. 1431 * 4) Replace the __init data head arrays for kmem_cache and the first 1432 * kmalloc cache with kmalloc allocated arrays. 1433 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1434 * the other cache's with kmalloc allocated memory. 1435 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1436 */ 1437 1438 /* 1) create the kmem_cache */ 1439 1440 /* 1441 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1442 */ 1443 create_boot_cache(kmem_cache, "kmem_cache", 1444 offsetof(struct kmem_cache, node) + 1445 nr_node_ids * sizeof(struct kmem_cache_node *), 1446 SLAB_HWCACHE_ALIGN); 1447 list_add(&kmem_cache->list, &slab_caches); 1448 slab_state = PARTIAL; 1449 1450 /* 1451 * Initialize the caches that provide memory for the kmem_cache_node 1452 * structures first. Without this, further allocations will bug. 1453 */ 1454 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node", 1455 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS); 1456 slab_state = PARTIAL_NODE; 1457 1458 slab_early_init = 0; 1459 1460 /* 5) Replace the bootstrap kmem_cache_node */ 1461 { 1462 int nid; 1463 1464 for_each_online_node(nid) { 1465 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1466 1467 init_list(kmalloc_caches[INDEX_NODE], 1468 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1469 } 1470 } 1471 1472 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1473} 1474 1475void __init kmem_cache_init_late(void) 1476{ 1477 struct kmem_cache *cachep; 1478 1479 slab_state = UP; 1480 1481 /* 6) resize the head arrays to their final sizes */ 1482 mutex_lock(&slab_mutex); 1483 list_for_each_entry(cachep, &slab_caches, list) 1484 if (enable_cpucache(cachep, GFP_NOWAIT)) 1485 BUG(); 1486 mutex_unlock(&slab_mutex); 1487 1488 /* Done! */ 1489 slab_state = FULL; 1490 1491 /* 1492 * Register a cpu startup notifier callback that initializes 1493 * cpu_cache_get for all new cpus 1494 */ 1495 register_cpu_notifier(&cpucache_notifier); 1496 1497#ifdef CONFIG_NUMA 1498 /* 1499 * Register a memory hotplug callback that initializes and frees 1500 * node. 1501 */ 1502 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1503#endif 1504 1505 /* 1506 * The reap timers are started later, with a module init call: That part 1507 * of the kernel is not yet operational. 1508 */ 1509} 1510 1511static int __init cpucache_init(void) 1512{ 1513 int cpu; 1514 1515 /* 1516 * Register the timers that return unneeded pages to the page allocator 1517 */ 1518 for_each_online_cpu(cpu) 1519 start_cpu_timer(cpu); 1520 1521 /* Done! */ 1522 slab_state = FULL; 1523 return 0; 1524} 1525__initcall(cpucache_init); 1526 1527static noinline void 1528slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1529{ 1530#if DEBUG 1531 struct kmem_cache_node *n; 1532 struct page *page; 1533 unsigned long flags; 1534 int node; 1535 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1536 DEFAULT_RATELIMIT_BURST); 1537 1538 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1539 return; 1540 1541 printk(KERN_WARNING 1542 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n", 1543 nodeid, gfpflags); 1544 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n", 1545 cachep->name, cachep->size, cachep->gfporder); 1546 1547 for_each_kmem_cache_node(cachep, node, n) { 1548 unsigned long active_objs = 0, num_objs = 0, free_objects = 0; 1549 unsigned long active_slabs = 0, num_slabs = 0; 1550 1551 spin_lock_irqsave(&n->list_lock, flags); 1552 list_for_each_entry(page, &n->slabs_full, lru) { 1553 active_objs += cachep->num; 1554 active_slabs++; 1555 } 1556 list_for_each_entry(page, &n->slabs_partial, lru) { 1557 active_objs += page->active; 1558 active_slabs++; 1559 } 1560 list_for_each_entry(page, &n->slabs_free, lru) 1561 num_slabs++; 1562 1563 free_objects += n->free_objects; 1564 spin_unlock_irqrestore(&n->list_lock, flags); 1565 1566 num_slabs += active_slabs; 1567 num_objs = num_slabs * cachep->num; 1568 printk(KERN_WARNING 1569 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n", 1570 node, active_slabs, num_slabs, active_objs, num_objs, 1571 free_objects); 1572 } 1573#endif 1574} 1575 1576/* 1577 * Interface to system's page allocator. No need to hold the 1578 * kmem_cache_node ->list_lock. 1579 * 1580 * If we requested dmaable memory, we will get it. Even if we 1581 * did not request dmaable memory, we might get it, but that 1582 * would be relatively rare and ignorable. 1583 */ 1584static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1585 int nodeid) 1586{ 1587 struct page *page; 1588 int nr_pages; 1589 1590 flags |= cachep->allocflags; 1591 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1592 flags |= __GFP_RECLAIMABLE; 1593 1594 if (memcg_charge_slab(cachep, flags, cachep->gfporder)) 1595 return NULL; 1596 1597 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); 1598 if (!page) { 1599 memcg_uncharge_slab(cachep, cachep->gfporder); 1600 slab_out_of_memory(cachep, flags, nodeid); 1601 return NULL; 1602 } 1603 1604 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1605 if (page_is_pfmemalloc(page)) 1606 pfmemalloc_active = true; 1607 1608 nr_pages = (1 << cachep->gfporder); 1609 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1610 add_zone_page_state(page_zone(page), 1611 NR_SLAB_RECLAIMABLE, nr_pages); 1612 else 1613 add_zone_page_state(page_zone(page), 1614 NR_SLAB_UNRECLAIMABLE, nr_pages); 1615 __SetPageSlab(page); 1616 if (page_is_pfmemalloc(page)) 1617 SetPageSlabPfmemalloc(page); 1618 1619 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { 1620 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); 1621 1622 if (cachep->ctor) 1623 kmemcheck_mark_uninitialized_pages(page, nr_pages); 1624 else 1625 kmemcheck_mark_unallocated_pages(page, nr_pages); 1626 } 1627 1628 return page; 1629} 1630 1631/* 1632 * Interface to system's page release. 1633 */ 1634static void kmem_freepages(struct kmem_cache *cachep, struct page *page) 1635{ 1636 const unsigned long nr_freed = (1 << cachep->gfporder); 1637 1638 kmemcheck_free_shadow(page, cachep->gfporder); 1639 1640 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1641 sub_zone_page_state(page_zone(page), 1642 NR_SLAB_RECLAIMABLE, nr_freed); 1643 else 1644 sub_zone_page_state(page_zone(page), 1645 NR_SLAB_UNRECLAIMABLE, nr_freed); 1646 1647 BUG_ON(!PageSlab(page)); 1648 __ClearPageSlabPfmemalloc(page); 1649 __ClearPageSlab(page); 1650 page_mapcount_reset(page); 1651 page->mapping = NULL; 1652 1653 if (current->reclaim_state) 1654 current->reclaim_state->reclaimed_slab += nr_freed; 1655 __free_pages(page, cachep->gfporder); 1656 memcg_uncharge_slab(cachep, cachep->gfporder); 1657} 1658 1659static void kmem_rcu_free(struct rcu_head *head) 1660{ 1661 struct kmem_cache *cachep; 1662 struct page *page; 1663 1664 page = container_of(head, struct page, rcu_head); 1665 cachep = page->slab_cache; 1666 1667 kmem_freepages(cachep, page); 1668} 1669 1670#if DEBUG 1671 1672#ifdef CONFIG_DEBUG_PAGEALLOC 1673static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1674 unsigned long caller) 1675{ 1676 int size = cachep->object_size; 1677 1678 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1679 1680 if (size < 5 * sizeof(unsigned long)) 1681 return; 1682 1683 *addr++ = 0x12345678; 1684 *addr++ = caller; 1685 *addr++ = smp_processor_id(); 1686 size -= 3 * sizeof(unsigned long); 1687 { 1688 unsigned long *sptr = &caller; 1689 unsigned long svalue; 1690 1691 while (!kstack_end(sptr)) { 1692 svalue = *sptr++; 1693 if (kernel_text_address(svalue)) { 1694 *addr++ = svalue; 1695 size -= sizeof(unsigned long); 1696 if (size <= sizeof(unsigned long)) 1697 break; 1698 } 1699 } 1700 1701 } 1702 *addr++ = 0x87654321; 1703} 1704#endif 1705 1706static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1707{ 1708 int size = cachep->object_size; 1709 addr = &((char *)addr)[obj_offset(cachep)]; 1710 1711 memset(addr, val, size); 1712 *(unsigned char *)(addr + size - 1) = POISON_END; 1713} 1714 1715static void dump_line(char *data, int offset, int limit) 1716{ 1717 int i; 1718 unsigned char error = 0; 1719 int bad_count = 0; 1720 1721 printk(KERN_ERR "%03x: ", offset); 1722 for (i = 0; i < limit; i++) { 1723 if (data[offset + i] != POISON_FREE) { 1724 error = data[offset + i]; 1725 bad_count++; 1726 } 1727 } 1728 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1729 &data[offset], limit, 1); 1730 1731 if (bad_count == 1) { 1732 error ^= POISON_FREE; 1733 if (!(error & (error - 1))) { 1734 printk(KERN_ERR "Single bit error detected. Probably " 1735 "bad RAM.\n"); 1736#ifdef CONFIG_X86 1737 printk(KERN_ERR "Run memtest86+ or a similar memory " 1738 "test tool.\n"); 1739#else 1740 printk(KERN_ERR "Run a memory test tool.\n"); 1741#endif 1742 } 1743 } 1744} 1745#endif 1746 1747#if DEBUG 1748 1749static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1750{ 1751 int i, size; 1752 char *realobj; 1753 1754 if (cachep->flags & SLAB_RED_ZONE) { 1755 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", 1756 *dbg_redzone1(cachep, objp), 1757 *dbg_redzone2(cachep, objp)); 1758 } 1759 1760 if (cachep->flags & SLAB_STORE_USER) { 1761 printk(KERN_ERR "Last user: [<%p>](%pSR)\n", 1762 *dbg_userword(cachep, objp), 1763 *dbg_userword(cachep, objp)); 1764 } 1765 realobj = (char *)objp + obj_offset(cachep); 1766 size = cachep->object_size; 1767 for (i = 0; i < size && lines; i += 16, lines--) { 1768 int limit; 1769 limit = 16; 1770 if (i + limit > size) 1771 limit = size - i; 1772 dump_line(realobj, i, limit); 1773 } 1774} 1775 1776static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1777{ 1778 char *realobj; 1779 int size, i; 1780 int lines = 0; 1781 1782 realobj = (char *)objp + obj_offset(cachep); 1783 size = cachep->object_size; 1784 1785 for (i = 0; i < size; i++) { 1786 char exp = POISON_FREE; 1787 if (i == size - 1) 1788 exp = POISON_END; 1789 if (realobj[i] != exp) { 1790 int limit; 1791 /* Mismatch ! */ 1792 /* Print header */ 1793 if (lines == 0) { 1794 printk(KERN_ERR 1795 "Slab corruption (%s): %s start=%p, len=%d\n", 1796 print_tainted(), cachep->name, realobj, size); 1797 print_objinfo(cachep, objp, 0); 1798 } 1799 /* Hexdump the affected line */ 1800 i = (i / 16) * 16; 1801 limit = 16; 1802 if (i + limit > size) 1803 limit = size - i; 1804 dump_line(realobj, i, limit); 1805 i += 16; 1806 lines++; 1807 /* Limit to 5 lines */ 1808 if (lines > 5) 1809 break; 1810 } 1811 } 1812 if (lines != 0) { 1813 /* Print some data about the neighboring objects, if they 1814 * exist: 1815 */ 1816 struct page *page = virt_to_head_page(objp); 1817 unsigned int objnr; 1818 1819 objnr = obj_to_index(cachep, page, objp); 1820 if (objnr) { 1821 objp = index_to_obj(cachep, page, objnr - 1); 1822 realobj = (char *)objp + obj_offset(cachep); 1823 printk(KERN_ERR "Prev obj: start=%p, len=%d\n", 1824 realobj, size); 1825 print_objinfo(cachep, objp, 2); 1826 } 1827 if (objnr + 1 < cachep->num) { 1828 objp = index_to_obj(cachep, page, objnr + 1); 1829 realobj = (char *)objp + obj_offset(cachep); 1830 printk(KERN_ERR "Next obj: start=%p, len=%d\n", 1831 realobj, size); 1832 print_objinfo(cachep, objp, 2); 1833 } 1834 } 1835} 1836#endif 1837 1838#if DEBUG 1839static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1840 struct page *page) 1841{ 1842 int i; 1843 for (i = 0; i < cachep->num; i++) { 1844 void *objp = index_to_obj(cachep, page, i); 1845 1846 if (cachep->flags & SLAB_POISON) { 1847#ifdef CONFIG_DEBUG_PAGEALLOC 1848 if (cachep->size % PAGE_SIZE == 0 && 1849 OFF_SLAB(cachep)) 1850 kernel_map_pages(virt_to_page(objp), 1851 cachep->size / PAGE_SIZE, 1); 1852 else 1853 check_poison_obj(cachep, objp); 1854#else 1855 check_poison_obj(cachep, objp); 1856#endif 1857 } 1858 if (cachep->flags & SLAB_RED_ZONE) { 1859 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1860 slab_error(cachep, "start of a freed object " 1861 "was overwritten"); 1862 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1863 slab_error(cachep, "end of a freed object " 1864 "was overwritten"); 1865 } 1866 } 1867} 1868#else 1869static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1870 struct page *page) 1871{ 1872} 1873#endif 1874 1875/** 1876 * slab_destroy - destroy and release all objects in a slab 1877 * @cachep: cache pointer being destroyed 1878 * @page: page pointer being destroyed 1879 * 1880 * Destroy all the objs in a slab page, and release the mem back to the system. 1881 * Before calling the slab page must have been unlinked from the cache. The 1882 * kmem_cache_node ->list_lock is not held/needed. 1883 */ 1884static void slab_destroy(struct kmem_cache *cachep, struct page *page) 1885{ 1886 void *freelist; 1887 1888 freelist = page->freelist; 1889 slab_destroy_debugcheck(cachep, page); 1890 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { 1891 struct rcu_head *head; 1892 1893 /* 1894 * RCU free overloads the RCU head over the LRU. 1895 * slab_page has been overloeaded over the LRU, 1896 * however it is not used from now on so that 1897 * we can use it safely. 1898 */ 1899 head = (void *)&page->rcu_head; 1900 call_rcu(head, kmem_rcu_free); 1901 1902 } else { 1903 kmem_freepages(cachep, page); 1904 } 1905 1906 /* 1907 * From now on, we don't use freelist 1908 * although actual page can be freed in rcu context 1909 */ 1910 if (OFF_SLAB(cachep)) 1911 kmem_cache_free(cachep->freelist_cache, freelist); 1912} 1913 1914static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1915{ 1916 struct page *page, *n; 1917 1918 list_for_each_entry_safe(page, n, list, lru) { 1919 list_del(&page->lru); 1920 slab_destroy(cachep, page); 1921 } 1922} 1923 1924/** 1925 * calculate_slab_order - calculate size (page order) of slabs 1926 * @cachep: pointer to the cache that is being created 1927 * @size: size of objects to be created in this cache. 1928 * @align: required alignment for the objects. 1929 * @flags: slab allocation flags 1930 * 1931 * Also calculates the number of objects per slab. 1932 * 1933 * This could be made much more intelligent. For now, try to avoid using 1934 * high order pages for slabs. When the gfp() functions are more friendly 1935 * towards high-order requests, this should be changed. 1936 */ 1937static size_t calculate_slab_order(struct kmem_cache *cachep, 1938 size_t size, size_t align, unsigned long flags) 1939{ 1940 unsigned long offslab_limit; 1941 size_t left_over = 0; 1942 int gfporder; 1943 1944 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1945 unsigned int num; 1946 size_t remainder; 1947 1948 cache_estimate(gfporder, size, align, flags, &remainder, &num); 1949 if (!num) 1950 continue; 1951 1952 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1953 if (num > SLAB_OBJ_MAX_NUM) 1954 break; 1955 1956 if (flags & CFLGS_OFF_SLAB) { 1957 size_t freelist_size_per_obj = sizeof(freelist_idx_t); 1958 /* 1959 * Max number of objs-per-slab for caches which 1960 * use off-slab slabs. Needed to avoid a possible 1961 * looping condition in cache_grow(). 1962 */ 1963 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK)) 1964 freelist_size_per_obj += sizeof(char); 1965 offslab_limit = size; 1966 offslab_limit /= freelist_size_per_obj; 1967 1968 if (num > offslab_limit) 1969 break; 1970 } 1971 1972 /* Found something acceptable - save it away */ 1973 cachep->num = num; 1974 cachep->gfporder = gfporder; 1975 left_over = remainder; 1976 1977 /* 1978 * A VFS-reclaimable slab tends to have most allocations 1979 * as GFP_NOFS and we really don't want to have to be allocating 1980 * higher-order pages when we are unable to shrink dcache. 1981 */ 1982 if (flags & SLAB_RECLAIM_ACCOUNT) 1983 break; 1984 1985 /* 1986 * Large number of objects is good, but very large slabs are 1987 * currently bad for the gfp()s. 1988 */ 1989 if (gfporder >= slab_max_order) 1990 break; 1991 1992 /* 1993 * Acceptable internal fragmentation? 1994 */ 1995 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1996 break; 1997 } 1998 return left_over; 1999} 2000 2001static struct array_cache __percpu *alloc_kmem_cache_cpus( 2002 struct kmem_cache *cachep, int entries, int batchcount) 2003{ 2004 int cpu; 2005 size_t size; 2006 struct array_cache __percpu *cpu_cache; 2007 2008 size = sizeof(void *) * entries + sizeof(struct array_cache); 2009 cpu_cache = __alloc_percpu(size, sizeof(void *)); 2010 2011 if (!cpu_cache) 2012 return NULL; 2013 2014 for_each_possible_cpu(cpu) { 2015 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 2016 entries, batchcount); 2017 } 2018 2019 return cpu_cache; 2020} 2021 2022static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 2023{ 2024 if (slab_state >= FULL) 2025 return enable_cpucache(cachep, gfp); 2026 2027 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 2028 if (!cachep->cpu_cache) 2029 return 1; 2030 2031 if (slab_state == DOWN) { 2032 /* Creation of first cache (kmem_cache). */ 2033 set_up_node(kmem_cache, CACHE_CACHE); 2034 } else if (slab_state == PARTIAL) { 2035 /* For kmem_cache_node */ 2036 set_up_node(cachep, SIZE_NODE); 2037 } else { 2038 int node; 2039 2040 for_each_online_node(node) { 2041 cachep->node[node] = kmalloc_node( 2042 sizeof(struct kmem_cache_node), gfp, node); 2043 BUG_ON(!cachep->node[node]); 2044 kmem_cache_node_init(cachep->node[node]); 2045 } 2046 } 2047 2048 cachep->node[numa_mem_id()]->next_reap = 2049 jiffies + REAPTIMEOUT_NODE + 2050 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 2051 2052 cpu_cache_get(cachep)->avail = 0; 2053 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 2054 cpu_cache_get(cachep)->batchcount = 1; 2055 cpu_cache_get(cachep)->touched = 0; 2056 cachep->batchcount = 1; 2057 cachep->limit = BOOT_CPUCACHE_ENTRIES; 2058 return 0; 2059} 2060 2061unsigned long kmem_cache_flags(unsigned long object_size, 2062 unsigned long flags, const char *name, 2063 void (*ctor)(void *)) 2064{ 2065 return flags; 2066} 2067 2068struct kmem_cache * 2069__kmem_cache_alias(const char *name, size_t size, size_t align, 2070 unsigned long flags, void (*ctor)(void *)) 2071{ 2072 struct kmem_cache *cachep; 2073 2074 cachep = find_mergeable(size, align, flags, name, ctor); 2075 if (cachep) { 2076 cachep->refcount++; 2077 2078 /* 2079 * Adjust the object sizes so that we clear 2080 * the complete object on kzalloc. 2081 */ 2082 cachep->object_size = max_t(int, cachep->object_size, size); 2083 } 2084 return cachep; 2085} 2086 2087/** 2088 * __kmem_cache_create - Create a cache. 2089 * @cachep: cache management descriptor 2090 * @flags: SLAB flags 2091 * 2092 * Returns a ptr to the cache on success, NULL on failure. 2093 * Cannot be called within a int, but can be interrupted. 2094 * The @ctor is run when new pages are allocated by the cache. 2095 * 2096 * The flags are 2097 * 2098 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 2099 * to catch references to uninitialised memory. 2100 * 2101 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 2102 * for buffer overruns. 2103 * 2104 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 2105 * cacheline. This can be beneficial if you're counting cycles as closely 2106 * as davem. 2107 */ 2108int 2109__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) 2110{ 2111 size_t left_over, freelist_size; 2112 size_t ralign = BYTES_PER_WORD; 2113 gfp_t gfp; 2114 int err; 2115 size_t size = cachep->size; 2116 2117#if DEBUG 2118#if FORCED_DEBUG 2119 /* 2120 * Enable redzoning and last user accounting, except for caches with 2121 * large objects, if the increased size would increase the object size 2122 * above the next power of two: caches with object sizes just above a 2123 * power of two have a significant amount of internal fragmentation. 2124 */ 2125 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2126 2 * sizeof(unsigned long long))) 2127 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2128 if (!(flags & SLAB_DESTROY_BY_RCU)) 2129 flags |= SLAB_POISON; 2130#endif 2131 if (flags & SLAB_DESTROY_BY_RCU) 2132 BUG_ON(flags & SLAB_POISON); 2133#endif 2134 2135 /* 2136 * Check that size is in terms of words. This is needed to avoid 2137 * unaligned accesses for some archs when redzoning is used, and makes 2138 * sure any on-slab bufctl's are also correctly aligned. 2139 */ 2140 if (size & (BYTES_PER_WORD - 1)) { 2141 size += (BYTES_PER_WORD - 1); 2142 size &= ~(BYTES_PER_WORD - 1); 2143 } 2144 2145 if (flags & SLAB_RED_ZONE) { 2146 ralign = REDZONE_ALIGN; 2147 /* If redzoning, ensure that the second redzone is suitably 2148 * aligned, by adjusting the object size accordingly. */ 2149 size += REDZONE_ALIGN - 1; 2150 size &= ~(REDZONE_ALIGN - 1); 2151 } 2152 2153 /* 3) caller mandated alignment */ 2154 if (ralign < cachep->align) { 2155 ralign = cachep->align; 2156 } 2157 /* disable debug if necessary */ 2158 if (ralign > __alignof__(unsigned long long)) 2159 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2160 /* 2161 * 4) Store it. 2162 */ 2163 cachep->align = ralign; 2164 2165 if (slab_is_available()) 2166 gfp = GFP_KERNEL; 2167 else 2168 gfp = GFP_NOWAIT; 2169 2170#if DEBUG 2171 2172 /* 2173 * Both debugging options require word-alignment which is calculated 2174 * into align above. 2175 */ 2176 if (flags & SLAB_RED_ZONE) { 2177 /* add space for red zone words */ 2178 cachep->obj_offset += sizeof(unsigned long long); 2179 size += 2 * sizeof(unsigned long long); 2180 } 2181 if (flags & SLAB_STORE_USER) { 2182 /* user store requires one word storage behind the end of 2183 * the real object. But if the second red zone needs to be 2184 * aligned to 64 bits, we must allow that much space. 2185 */ 2186 if (flags & SLAB_RED_ZONE) 2187 size += REDZONE_ALIGN; 2188 else 2189 size += BYTES_PER_WORD; 2190 } 2191#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) 2192 /* 2193 * To activate debug pagealloc, off-slab management is necessary 2194 * requirement. In early phase of initialization, small sized slab 2195 * doesn't get initialized so it would not be possible. So, we need 2196 * to check size >= 256. It guarantees that all necessary small 2197 * sized slab is initialized in current slab initialization sequence. 2198 */ 2199 if (!slab_early_init && size >= kmalloc_size(INDEX_NODE) && 2200 size >= 256 && cachep->object_size > cache_line_size() && 2201 ALIGN(size, cachep->align) < PAGE_SIZE) { 2202 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align); 2203 size = PAGE_SIZE; 2204 } 2205#endif 2206#endif 2207 2208 /* 2209 * Determine if the slab management is 'on' or 'off' slab. 2210 * (bootstrapping cannot cope with offslab caches so don't do 2211 * it too early on. Always use on-slab management when 2212 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak) 2213 */ 2214 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init && 2215 !(flags & SLAB_NOLEAKTRACE)) 2216 /* 2217 * Size is large, assume best to place the slab management obj 2218 * off-slab (should allow better packing of objs). 2219 */ 2220 flags |= CFLGS_OFF_SLAB; 2221 2222 size = ALIGN(size, cachep->align); 2223 /* 2224 * We should restrict the number of objects in a slab to implement 2225 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 2226 */ 2227 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2228 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2229 2230 left_over = calculate_slab_order(cachep, size, cachep->align, flags); 2231 2232 if (!cachep->num) 2233 return -E2BIG; 2234 2235 freelist_size = calculate_freelist_size(cachep->num, cachep->align); 2236 2237 /* 2238 * If the slab has been placed off-slab, and we have enough space then 2239 * move it on-slab. This is at the expense of any extra colouring. 2240 */ 2241 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) { 2242 flags &= ~CFLGS_OFF_SLAB; 2243 left_over -= freelist_size; 2244 } 2245 2246 if (flags & CFLGS_OFF_SLAB) { 2247 /* really off slab. No need for manual alignment */ 2248 freelist_size = calculate_freelist_size(cachep->num, 0); 2249 2250#ifdef CONFIG_PAGE_POISONING 2251 /* If we're going to use the generic kernel_map_pages() 2252 * poisoning, then it's going to smash the contents of 2253 * the redzone and userword anyhow, so switch them off. 2254 */ 2255 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON) 2256 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2257#endif 2258 } 2259 2260 cachep->colour_off = cache_line_size(); 2261 /* Offset must be a multiple of the alignment. */ 2262 if (cachep->colour_off < cachep->align) 2263 cachep->colour_off = cachep->align; 2264 cachep->colour = left_over / cachep->colour_off; 2265 cachep->freelist_size = freelist_size; 2266 cachep->flags = flags; 2267 cachep->allocflags = __GFP_COMP; 2268 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) 2269 cachep->allocflags |= GFP_DMA; 2270 cachep->size = size; 2271 cachep->reciprocal_buffer_size = reciprocal_value(size); 2272 2273 if (flags & CFLGS_OFF_SLAB) { 2274 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u); 2275 /* 2276 * This is a possibility for one of the kmalloc_{dma,}_caches. 2277 * But since we go off slab only for object size greater than 2278 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created 2279 * in ascending order,this should not happen at all. 2280 * But leave a BUG_ON for some lucky dude. 2281 */ 2282 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache)); 2283 } 2284 2285 err = setup_cpu_cache(cachep, gfp); 2286 if (err) { 2287 __kmem_cache_shutdown(cachep); 2288 return err; 2289 } 2290 2291 return 0; 2292} 2293 2294#if DEBUG 2295static void check_irq_off(void) 2296{ 2297 BUG_ON(!irqs_disabled()); 2298} 2299 2300static void check_irq_on(void) 2301{ 2302 BUG_ON(irqs_disabled()); 2303} 2304 2305static void check_spinlock_acquired(struct kmem_cache *cachep) 2306{ 2307#ifdef CONFIG_SMP 2308 check_irq_off(); 2309 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2310#endif 2311} 2312 2313static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2314{ 2315#ifdef CONFIG_SMP 2316 check_irq_off(); 2317 assert_spin_locked(&get_node(cachep, node)->list_lock); 2318#endif 2319} 2320 2321#else 2322#define check_irq_off() do { } while(0) 2323#define check_irq_on() do { } while(0) 2324#define check_spinlock_acquired(x) do { } while(0) 2325#define check_spinlock_acquired_node(x, y) do { } while(0) 2326#endif 2327 2328static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 2329 struct array_cache *ac, 2330 int force, int node); 2331 2332static void do_drain(void *arg) 2333{ 2334 struct kmem_cache *cachep = arg; 2335 struct array_cache *ac; 2336 int node = numa_mem_id(); 2337 struct kmem_cache_node *n; 2338 LIST_HEAD(list); 2339 2340 check_irq_off(); 2341 ac = cpu_cache_get(cachep); 2342 n = get_node(cachep, node); 2343 spin_lock(&n->list_lock); 2344 free_block(cachep, ac->entry, ac->avail, node, &list); 2345 spin_unlock(&n->list_lock); 2346 slabs_destroy(cachep, &list); 2347 ac->avail = 0; 2348} 2349 2350static void drain_cpu_caches(struct kmem_cache *cachep) 2351{ 2352 struct kmem_cache_node *n; 2353 int node; 2354 2355 on_each_cpu(do_drain, cachep, 1); 2356 check_irq_on(); 2357 for_each_kmem_cache_node(cachep, node, n) 2358 if (n->alien) 2359 drain_alien_cache(cachep, n->alien); 2360 2361 for_each_kmem_cache_node(cachep, node, n) 2362 drain_array(cachep, n, n->shared, 1, node); 2363} 2364 2365/* 2366 * Remove slabs from the list of free slabs. 2367 * Specify the number of slabs to drain in tofree. 2368 * 2369 * Returns the actual number of slabs released. 2370 */ 2371static int drain_freelist(struct kmem_cache *cache, 2372 struct kmem_cache_node *n, int tofree) 2373{ 2374 struct list_head *p; 2375 int nr_freed; 2376 struct page *page; 2377 2378 nr_freed = 0; 2379 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2380 2381 spin_lock_irq(&n->list_lock); 2382 p = n->slabs_free.prev; 2383 if (p == &n->slabs_free) { 2384 spin_unlock_irq(&n->list_lock); 2385 goto out; 2386 } 2387 2388 page = list_entry(p, struct page, lru); 2389#if DEBUG 2390 BUG_ON(page->active); 2391#endif 2392 list_del(&page->lru); 2393 /* 2394 * Safe to drop the lock. The slab is no longer linked 2395 * to the cache. 2396 */ 2397 n->free_objects -= cache->num; 2398 spin_unlock_irq(&n->list_lock); 2399 slab_destroy(cache, page); 2400 nr_freed++; 2401 } 2402out: 2403 return nr_freed; 2404} 2405 2406int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate) 2407{ 2408 int ret = 0; 2409 int node; 2410 struct kmem_cache_node *n; 2411 2412 drain_cpu_caches(cachep); 2413 2414 check_irq_on(); 2415 for_each_kmem_cache_node(cachep, node, n) { 2416 drain_freelist(cachep, n, slabs_tofree(cachep, n)); 2417 2418 ret += !list_empty(&n->slabs_full) || 2419 !list_empty(&n->slabs_partial); 2420 } 2421 return (ret ? 1 : 0); 2422} 2423 2424int __kmem_cache_shutdown(struct kmem_cache *cachep) 2425{ 2426 int i; 2427 struct kmem_cache_node *n; 2428 int rc = __kmem_cache_shrink(cachep, false); 2429 2430 if (rc) 2431 return rc; 2432 2433 free_percpu(cachep->cpu_cache); 2434 2435 /* NUMA: free the node structures */ 2436 for_each_kmem_cache_node(cachep, i, n) { 2437 kfree(n->shared); 2438 free_alien_cache(n->alien); 2439 kfree(n); 2440 cachep->node[i] = NULL; 2441 } 2442 return 0; 2443} 2444 2445/* 2446 * Get the memory for a slab management obj. 2447 * 2448 * For a slab cache when the slab descriptor is off-slab, the 2449 * slab descriptor can't come from the same cache which is being created, 2450 * Because if it is the case, that means we defer the creation of 2451 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2452 * And we eventually call down to __kmem_cache_create(), which 2453 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. 2454 * This is a "chicken-and-egg" problem. 2455 * 2456 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2457 * which are all initialized during kmem_cache_init(). 2458 */ 2459static void *alloc_slabmgmt(struct kmem_cache *cachep, 2460 struct page *page, int colour_off, 2461 gfp_t local_flags, int nodeid) 2462{ 2463 void *freelist; 2464 void *addr = page_address(page); 2465 2466 if (OFF_SLAB(cachep)) { 2467 /* Slab management obj is off-slab. */ 2468 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2469 local_flags, nodeid); 2470 if (!freelist) 2471 return NULL; 2472 } else { 2473 freelist = addr + colour_off; 2474 colour_off += cachep->freelist_size; 2475 } 2476 page->active = 0; 2477 page->s_mem = addr + colour_off; 2478 return freelist; 2479} 2480 2481static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) 2482{ 2483 return ((freelist_idx_t *)page->freelist)[idx]; 2484} 2485 2486static inline void set_free_obj(struct page *page, 2487 unsigned int idx, freelist_idx_t val) 2488{ 2489 ((freelist_idx_t *)(page->freelist))[idx] = val; 2490} 2491 2492static void cache_init_objs(struct kmem_cache *cachep, 2493 struct page *page) 2494{ 2495 int i; 2496 2497 for (i = 0; i < cachep->num; i++) { 2498 void *objp = index_to_obj(cachep, page, i); 2499#if DEBUG 2500 /* need to poison the objs? */ 2501 if (cachep->flags & SLAB_POISON) 2502 poison_obj(cachep, objp, POISON_FREE); 2503 if (cachep->flags & SLAB_STORE_USER) 2504 *dbg_userword(cachep, objp) = NULL; 2505 2506 if (cachep->flags & SLAB_RED_ZONE) { 2507 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2508 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2509 } 2510 /* 2511 * Constructors are not allowed to allocate memory from the same 2512 * cache which they are a constructor for. Otherwise, deadlock. 2513 * They must also be threaded. 2514 */ 2515 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) 2516 cachep->ctor(objp + obj_offset(cachep)); 2517 2518 if (cachep->flags & SLAB_RED_ZONE) { 2519 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2520 slab_error(cachep, "constructor overwrote the" 2521 " end of an object"); 2522 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2523 slab_error(cachep, "constructor overwrote the" 2524 " start of an object"); 2525 } 2526 if ((cachep->size % PAGE_SIZE) == 0 && 2527 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) 2528 kernel_map_pages(virt_to_page(objp), 2529 cachep->size / PAGE_SIZE, 0); 2530#else 2531 if (cachep->ctor) 2532 cachep->ctor(objp); 2533#endif 2534 set_obj_status(page, i, OBJECT_FREE); 2535 set_free_obj(page, i, i); 2536 } 2537} 2538 2539static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) 2540{ 2541 if (CONFIG_ZONE_DMA_FLAG) { 2542 if (flags & GFP_DMA) 2543 BUG_ON(!(cachep->allocflags & GFP_DMA)); 2544 else 2545 BUG_ON(cachep->allocflags & GFP_DMA); 2546 } 2547} 2548 2549static void *slab_get_obj(struct kmem_cache *cachep, struct page *page, 2550 int nodeid) 2551{ 2552 void *objp; 2553 2554 objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); 2555 page->active++; 2556#if DEBUG 2557 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid); 2558#endif 2559 2560 return objp; 2561} 2562 2563static void slab_put_obj(struct kmem_cache *cachep, struct page *page, 2564 void *objp, int nodeid) 2565{ 2566 unsigned int objnr = obj_to_index(cachep, page, objp); 2567#if DEBUG 2568 unsigned int i; 2569 2570 /* Verify that the slab belongs to the intended node */ 2571 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid); 2572 2573 /* Verify double free bug */ 2574 for (i = page->active; i < cachep->num; i++) { 2575 if (get_free_obj(page, i) == objnr) { 2576 printk(KERN_ERR "slab: double free detected in cache " 2577 "'%s', objp %p\n", cachep->name, objp); 2578 BUG(); 2579 } 2580 } 2581#endif 2582 page->active--; 2583 set_free_obj(page, page->active, objnr); 2584} 2585 2586/* 2587 * Map pages beginning at addr to the given cache and slab. This is required 2588 * for the slab allocator to be able to lookup the cache and slab of a 2589 * virtual address for kfree, ksize, and slab debugging. 2590 */ 2591static void slab_map_pages(struct kmem_cache *cache, struct page *page, 2592 void *freelist) 2593{ 2594 page->slab_cache = cache; 2595 page->freelist = freelist; 2596} 2597 2598/* 2599 * Grow (by 1) the number of slabs within a cache. This is called by 2600 * kmem_cache_alloc() when there are no active objs left in a cache. 2601 */ 2602static int cache_grow(struct kmem_cache *cachep, 2603 gfp_t flags, int nodeid, struct page *page) 2604{ 2605 void *freelist; 2606 size_t offset; 2607 gfp_t local_flags; 2608 struct kmem_cache_node *n; 2609 2610 /* 2611 * Be lazy and only check for valid flags here, keeping it out of the 2612 * critical path in kmem_cache_alloc(). 2613 */ 2614 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 2615 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK); 2616 BUG(); 2617 } 2618 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2619 2620 /* Take the node list lock to change the colour_next on this node */ 2621 check_irq_off(); 2622 n = get_node(cachep, nodeid); 2623 spin_lock(&n->list_lock); 2624 2625 /* Get colour for the slab, and cal the next value. */ 2626 offset = n->colour_next; 2627 n->colour_next++; 2628 if (n->colour_next >= cachep->colour) 2629 n->colour_next = 0; 2630 spin_unlock(&n->list_lock); 2631 2632 offset *= cachep->colour_off; 2633 2634 if (local_flags & __GFP_WAIT) 2635 local_irq_enable(); 2636 2637 /* 2638 * The test for missing atomic flag is performed here, rather than 2639 * the more obvious place, simply to reduce the critical path length 2640 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they 2641 * will eventually be caught here (where it matters). 2642 */ 2643 kmem_flagcheck(cachep, flags); 2644 2645 /* 2646 * Get mem for the objs. Attempt to allocate a physical page from 2647 * 'nodeid'. 2648 */ 2649 if (!page) 2650 page = kmem_getpages(cachep, local_flags, nodeid); 2651 if (!page) 2652 goto failed; 2653 2654 /* Get slab management. */ 2655 freelist = alloc_slabmgmt(cachep, page, offset, 2656 local_flags & ~GFP_CONSTRAINT_MASK, nodeid); 2657 if (!freelist) 2658 goto opps1; 2659 2660 slab_map_pages(cachep, page, freelist); 2661 2662 cache_init_objs(cachep, page); 2663 2664 if (local_flags & __GFP_WAIT) 2665 local_irq_disable(); 2666 check_irq_off(); 2667 spin_lock(&n->list_lock); 2668 2669 /* Make slab active. */ 2670 list_add_tail(&page->lru, &(n->slabs_free)); 2671 STATS_INC_GROWN(cachep); 2672 n->free_objects += cachep->num; 2673 spin_unlock(&n->list_lock); 2674 return 1; 2675opps1: 2676 kmem_freepages(cachep, page); 2677failed: 2678 if (local_flags & __GFP_WAIT) 2679 local_irq_disable(); 2680 return 0; 2681} 2682 2683#if DEBUG 2684 2685/* 2686 * Perform extra freeing checks: 2687 * - detect bad pointers. 2688 * - POISON/RED_ZONE checking 2689 */ 2690static void kfree_debugcheck(const void *objp) 2691{ 2692 if (!virt_addr_valid(objp)) { 2693 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", 2694 (unsigned long)objp); 2695 BUG(); 2696 } 2697} 2698 2699static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2700{ 2701 unsigned long long redzone1, redzone2; 2702 2703 redzone1 = *dbg_redzone1(cache, obj); 2704 redzone2 = *dbg_redzone2(cache, obj); 2705 2706 /* 2707 * Redzone is ok. 2708 */ 2709 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2710 return; 2711 2712 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2713 slab_error(cache, "double free detected"); 2714 else 2715 slab_error(cache, "memory outside object was overwritten"); 2716 2717 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", 2718 obj, redzone1, redzone2); 2719} 2720 2721static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2722 unsigned long caller) 2723{ 2724 unsigned int objnr; 2725 struct page *page; 2726 2727 BUG_ON(virt_to_cache(objp) != cachep); 2728 2729 objp -= obj_offset(cachep); 2730 kfree_debugcheck(objp); 2731 page = virt_to_head_page(objp); 2732 2733 if (cachep->flags & SLAB_RED_ZONE) { 2734 verify_redzone_free(cachep, objp); 2735 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2736 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2737 } 2738 if (cachep->flags & SLAB_STORE_USER) 2739 *dbg_userword(cachep, objp) = (void *)caller; 2740 2741 objnr = obj_to_index(cachep, page, objp); 2742 2743 BUG_ON(objnr >= cachep->num); 2744 BUG_ON(objp != index_to_obj(cachep, page, objnr)); 2745 2746 set_obj_status(page, objnr, OBJECT_FREE); 2747 if (cachep->flags & SLAB_POISON) { 2748#ifdef CONFIG_DEBUG_PAGEALLOC 2749 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { 2750 store_stackinfo(cachep, objp, caller); 2751 kernel_map_pages(virt_to_page(objp), 2752 cachep->size / PAGE_SIZE, 0); 2753 } else { 2754 poison_obj(cachep, objp, POISON_FREE); 2755 } 2756#else 2757 poison_obj(cachep, objp, POISON_FREE); 2758#endif 2759 } 2760 return objp; 2761} 2762 2763#else 2764#define kfree_debugcheck(x) do { } while(0) 2765#define cache_free_debugcheck(x,objp,z) (objp) 2766#endif 2767 2768static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags, 2769 bool force_refill) 2770{ 2771 int batchcount; 2772 struct kmem_cache_node *n; 2773 struct array_cache *ac; 2774 int node; 2775 2776 check_irq_off(); 2777 node = numa_mem_id(); 2778 if (unlikely(force_refill)) 2779 goto force_grow; 2780retry: 2781 ac = cpu_cache_get(cachep); 2782 batchcount = ac->batchcount; 2783 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2784 /* 2785 * If there was little recent activity on this cache, then 2786 * perform only a partial refill. Otherwise we could generate 2787 * refill bouncing. 2788 */ 2789 batchcount = BATCHREFILL_LIMIT; 2790 } 2791 n = get_node(cachep, node); 2792 2793 BUG_ON(ac->avail > 0 || !n); 2794 spin_lock(&n->list_lock); 2795 2796 /* See if we can refill from the shared array */ 2797 if (n->shared && transfer_objects(ac, n->shared, batchcount)) { 2798 n->shared->touched = 1; 2799 goto alloc_done; 2800 } 2801 2802 while (batchcount > 0) { 2803 struct list_head *entry; 2804 struct page *page; 2805 /* Get slab alloc is to come from. */ 2806 entry = n->slabs_partial.next; 2807 if (entry == &n->slabs_partial) { 2808 n->free_touched = 1; 2809 entry = n->slabs_free.next; 2810 if (entry == &n->slabs_free) 2811 goto must_grow; 2812 } 2813 2814 page = list_entry(entry, struct page, lru); 2815 check_spinlock_acquired(cachep); 2816 2817 /* 2818 * The slab was either on partial or free list so 2819 * there must be at least one object available for 2820 * allocation. 2821 */ 2822 BUG_ON(page->active >= cachep->num); 2823 2824 while (page->active < cachep->num && batchcount--) { 2825 STATS_INC_ALLOCED(cachep); 2826 STATS_INC_ACTIVE(cachep); 2827 STATS_SET_HIGH(cachep); 2828 2829 ac_put_obj(cachep, ac, slab_get_obj(cachep, page, 2830 node)); 2831 } 2832 2833 /* move slabp to correct slabp list: */ 2834 list_del(&page->lru); 2835 if (page->active == cachep->num) 2836 list_add(&page->lru, &n->slabs_full); 2837 else 2838 list_add(&page->lru, &n->slabs_partial); 2839 } 2840 2841must_grow: 2842 n->free_objects -= ac->avail; 2843alloc_done: 2844 spin_unlock(&n->list_lock); 2845 2846 if (unlikely(!ac->avail)) { 2847 int x; 2848force_grow: 2849 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL); 2850 2851 /* cache_grow can reenable interrupts, then ac could change. */ 2852 ac = cpu_cache_get(cachep); 2853 node = numa_mem_id(); 2854 2855 /* no objects in sight? abort */ 2856 if (!x && (ac->avail == 0 || force_refill)) 2857 return NULL; 2858 2859 if (!ac->avail) /* objects refilled by interrupt? */ 2860 goto retry; 2861 } 2862 ac->touched = 1; 2863 2864 return ac_get_obj(cachep, ac, flags, force_refill); 2865} 2866 2867static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 2868 gfp_t flags) 2869{ 2870 might_sleep_if(flags & __GFP_WAIT); 2871#if DEBUG 2872 kmem_flagcheck(cachep, flags); 2873#endif 2874} 2875 2876#if DEBUG 2877static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 2878 gfp_t flags, void *objp, unsigned long caller) 2879{ 2880 struct page *page; 2881 2882 if (!objp) 2883 return objp; 2884 if (cachep->flags & SLAB_POISON) { 2885#ifdef CONFIG_DEBUG_PAGEALLOC 2886 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) 2887 kernel_map_pages(virt_to_page(objp), 2888 cachep->size / PAGE_SIZE, 1); 2889 else 2890 check_poison_obj(cachep, objp); 2891#else 2892 check_poison_obj(cachep, objp); 2893#endif 2894 poison_obj(cachep, objp, POISON_INUSE); 2895 } 2896 if (cachep->flags & SLAB_STORE_USER) 2897 *dbg_userword(cachep, objp) = (void *)caller; 2898 2899 if (cachep->flags & SLAB_RED_ZONE) { 2900 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 2901 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 2902 slab_error(cachep, "double free, or memory outside" 2903 " object was overwritten"); 2904 printk(KERN_ERR 2905 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 2906 objp, *dbg_redzone1(cachep, objp), 2907 *dbg_redzone2(cachep, objp)); 2908 } 2909 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 2910 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 2911 } 2912 2913 page = virt_to_head_page(objp); 2914 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE); 2915 objp += obj_offset(cachep); 2916 if (cachep->ctor && cachep->flags & SLAB_POISON) 2917 cachep->ctor(objp); 2918 if (ARCH_SLAB_MINALIGN && 2919 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 2920 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", 2921 objp, (int)ARCH_SLAB_MINALIGN); 2922 } 2923 return objp; 2924} 2925#else 2926#define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 2927#endif 2928 2929static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags) 2930{ 2931 if (unlikely(cachep == kmem_cache)) 2932 return false; 2933 2934 return should_failslab(cachep->object_size, flags, cachep->flags); 2935} 2936 2937static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 2938{ 2939 void *objp; 2940 struct array_cache *ac; 2941 bool force_refill = false; 2942 2943 check_irq_off(); 2944 2945 ac = cpu_cache_get(cachep); 2946 if (likely(ac->avail)) { 2947 ac->touched = 1; 2948 objp = ac_get_obj(cachep, ac, flags, false); 2949 2950 /* 2951 * Allow for the possibility all avail objects are not allowed 2952 * by the current flags 2953 */ 2954 if (objp) { 2955 STATS_INC_ALLOCHIT(cachep); 2956 goto out; 2957 } 2958 force_refill = true; 2959 } 2960 2961 STATS_INC_ALLOCMISS(cachep); 2962 objp = cache_alloc_refill(cachep, flags, force_refill); 2963 /* 2964 * the 'ac' may be updated by cache_alloc_refill(), 2965 * and kmemleak_erase() requires its correct value. 2966 */ 2967 ac = cpu_cache_get(cachep); 2968 2969out: 2970 /* 2971 * To avoid a false negative, if an object that is in one of the 2972 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 2973 * treat the array pointers as a reference to the object. 2974 */ 2975 if (objp) 2976 kmemleak_erase(&ac->entry[ac->avail]); 2977 return objp; 2978} 2979 2980#ifdef CONFIG_NUMA 2981/* 2982 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 2983 * 2984 * If we are in_interrupt, then process context, including cpusets and 2985 * mempolicy, may not apply and should not be used for allocation policy. 2986 */ 2987static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 2988{ 2989 int nid_alloc, nid_here; 2990 2991 if (in_interrupt() || (flags & __GFP_THISNODE)) 2992 return NULL; 2993 nid_alloc = nid_here = numa_mem_id(); 2994 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 2995 nid_alloc = cpuset_slab_spread_node(); 2996 else if (current->mempolicy) 2997 nid_alloc = mempolicy_slab_node(); 2998 if (nid_alloc != nid_here) 2999 return ____cache_alloc_node(cachep, flags, nid_alloc); 3000 return NULL; 3001} 3002 3003/* 3004 * Fallback function if there was no memory available and no objects on a 3005 * certain node and fall back is permitted. First we scan all the 3006 * available node for available objects. If that fails then we 3007 * perform an allocation without specifying a node. This allows the page 3008 * allocator to do its reclaim / fallback magic. We then insert the 3009 * slab into the proper nodelist and then allocate from it. 3010 */ 3011static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3012{ 3013 struct zonelist *zonelist; 3014 gfp_t local_flags; 3015 struct zoneref *z; 3016 struct zone *zone; 3017 enum zone_type high_zoneidx = gfp_zone(flags); 3018 void *obj = NULL; 3019 int nid; 3020 unsigned int cpuset_mems_cookie; 3021 3022 if (flags & __GFP_THISNODE) 3023 return NULL; 3024 3025 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 3026 3027retry_cpuset: 3028 cpuset_mems_cookie = read_mems_allowed_begin(); 3029 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3030 3031retry: 3032 /* 3033 * Look through allowed nodes for objects available 3034 * from existing per node queues. 3035 */ 3036 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3037 nid = zone_to_nid(zone); 3038 3039 if (cpuset_zone_allowed(zone, flags) && 3040 get_node(cache, nid) && 3041 get_node(cache, nid)->free_objects) { 3042 obj = ____cache_alloc_node(cache, 3043 gfp_exact_node(flags), nid); 3044 if (obj) 3045 break; 3046 } 3047 } 3048 3049 if (!obj) { 3050 /* 3051 * This allocation will be performed within the constraints 3052 * of the current cpuset / memory policy requirements. 3053 * We may trigger various forms of reclaim on the allowed 3054 * set and go into memory reserves if necessary. 3055 */ 3056 struct page *page; 3057 3058 if (local_flags & __GFP_WAIT) 3059 local_irq_enable(); 3060 kmem_flagcheck(cache, flags); 3061 page = kmem_getpages(cache, local_flags, numa_mem_id()); 3062 if (local_flags & __GFP_WAIT) 3063 local_irq_disable(); 3064 if (page) { 3065 /* 3066 * Insert into the appropriate per node queues 3067 */ 3068 nid = page_to_nid(page); 3069 if (cache_grow(cache, flags, nid, page)) { 3070 obj = ____cache_alloc_node(cache, 3071 gfp_exact_node(flags), nid); 3072 if (!obj) 3073 /* 3074 * Another processor may allocate the 3075 * objects in the slab since we are 3076 * not holding any locks. 3077 */ 3078 goto retry; 3079 } else { 3080 /* cache_grow already freed obj */ 3081 obj = NULL; 3082 } 3083 } 3084 } 3085 3086 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3087 goto retry_cpuset; 3088 return obj; 3089} 3090 3091/* 3092 * A interface to enable slab creation on nodeid 3093 */ 3094static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3095 int nodeid) 3096{ 3097 struct list_head *entry; 3098 struct page *page; 3099 struct kmem_cache_node *n; 3100 void *obj; 3101 int x; 3102 3103 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3104 n = get_node(cachep, nodeid); 3105 BUG_ON(!n); 3106 3107retry: 3108 check_irq_off(); 3109 spin_lock(&n->list_lock); 3110 entry = n->slabs_partial.next; 3111 if (entry == &n->slabs_partial) { 3112 n->free_touched = 1; 3113 entry = n->slabs_free.next; 3114 if (entry == &n->slabs_free) 3115 goto must_grow; 3116 } 3117 3118 page = list_entry(entry, struct page, lru); 3119 check_spinlock_acquired_node(cachep, nodeid); 3120 3121 STATS_INC_NODEALLOCS(cachep); 3122 STATS_INC_ACTIVE(cachep); 3123 STATS_SET_HIGH(cachep); 3124 3125 BUG_ON(page->active == cachep->num); 3126 3127 obj = slab_get_obj(cachep, page, nodeid); 3128 n->free_objects--; 3129 /* move slabp to correct slabp list: */ 3130 list_del(&page->lru); 3131 3132 if (page->active == cachep->num) 3133 list_add(&page->lru, &n->slabs_full); 3134 else 3135 list_add(&page->lru, &n->slabs_partial); 3136 3137 spin_unlock(&n->list_lock); 3138 goto done; 3139 3140must_grow: 3141 spin_unlock(&n->list_lock); 3142 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL); 3143 if (x) 3144 goto retry; 3145 3146 return fallback_alloc(cachep, flags); 3147 3148done: 3149 return obj; 3150} 3151 3152static __always_inline void * 3153slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3154 unsigned long caller) 3155{ 3156 unsigned long save_flags; 3157 void *ptr; 3158 int slab_node = numa_mem_id(); 3159 3160 flags &= gfp_allowed_mask; 3161 3162 lockdep_trace_alloc(flags); 3163 3164 if (slab_should_failslab(cachep, flags)) 3165 return NULL; 3166 3167 cachep = memcg_kmem_get_cache(cachep, flags); 3168 3169 cache_alloc_debugcheck_before(cachep, flags); 3170 local_irq_save(save_flags); 3171 3172 if (nodeid == NUMA_NO_NODE) 3173 nodeid = slab_node; 3174 3175 if (unlikely(!get_node(cachep, nodeid))) { 3176 /* Node not bootstrapped yet */ 3177 ptr = fallback_alloc(cachep, flags); 3178 goto out; 3179 } 3180 3181 if (nodeid == slab_node) { 3182 /* 3183 * Use the locally cached objects if possible. 3184 * However ____cache_alloc does not allow fallback 3185 * to other nodes. It may fail while we still have 3186 * objects on other nodes available. 3187 */ 3188 ptr = ____cache_alloc(cachep, flags); 3189 if (ptr) 3190 goto out; 3191 } 3192 /* ___cache_alloc_node can fall back to other nodes */ 3193 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3194 out: 3195 local_irq_restore(save_flags); 3196 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3197 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags, 3198 flags); 3199 3200 if (likely(ptr)) { 3201 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size); 3202 if (unlikely(flags & __GFP_ZERO)) 3203 memset(ptr, 0, cachep->object_size); 3204 } 3205 3206 memcg_kmem_put_cache(cachep); 3207 return ptr; 3208} 3209 3210static __always_inline void * 3211__do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3212{ 3213 void *objp; 3214 3215 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3216 objp = alternate_node_alloc(cache, flags); 3217 if (objp) 3218 goto out; 3219 } 3220 objp = ____cache_alloc(cache, flags); 3221 3222 /* 3223 * We may just have run out of memory on the local node. 3224 * ____cache_alloc_node() knows how to locate memory on other nodes 3225 */ 3226 if (!objp) 3227 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3228 3229 out: 3230 return objp; 3231} 3232#else 3233 3234static __always_inline void * 3235__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3236{ 3237 return ____cache_alloc(cachep, flags); 3238} 3239 3240#endif /* CONFIG_NUMA */ 3241 3242static __always_inline void * 3243slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3244{ 3245 unsigned long save_flags; 3246 void *objp; 3247 3248 flags &= gfp_allowed_mask; 3249 3250 lockdep_trace_alloc(flags); 3251 3252 if (slab_should_failslab(cachep, flags)) 3253 return NULL; 3254 3255 cachep = memcg_kmem_get_cache(cachep, flags); 3256 3257 cache_alloc_debugcheck_before(cachep, flags); 3258 local_irq_save(save_flags); 3259 objp = __do_cache_alloc(cachep, flags); 3260 local_irq_restore(save_flags); 3261 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3262 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags, 3263 flags); 3264 prefetchw(objp); 3265 3266 if (likely(objp)) { 3267 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size); 3268 if (unlikely(flags & __GFP_ZERO)) 3269 memset(objp, 0, cachep->object_size); 3270 } 3271 3272 memcg_kmem_put_cache(cachep); 3273 return objp; 3274} 3275 3276/* 3277 * Caller needs to acquire correct kmem_cache_node's list_lock 3278 * @list: List of detached free slabs should be freed by caller 3279 */ 3280static void free_block(struct kmem_cache *cachep, void **objpp, 3281 int nr_objects, int node, struct list_head *list) 3282{ 3283 int i; 3284 struct kmem_cache_node *n = get_node(cachep, node); 3285 3286 for (i = 0; i < nr_objects; i++) { 3287 void *objp; 3288 struct page *page; 3289 3290 clear_obj_pfmemalloc(&objpp[i]); 3291 objp = objpp[i]; 3292 3293 page = virt_to_head_page(objp); 3294 list_del(&page->lru); 3295 check_spinlock_acquired_node(cachep, node); 3296 slab_put_obj(cachep, page, objp, node); 3297 STATS_DEC_ACTIVE(cachep); 3298 n->free_objects++; 3299 3300 /* fixup slab chains */ 3301 if (page->active == 0) { 3302 if (n->free_objects > n->free_limit) { 3303 n->free_objects -= cachep->num; 3304 list_add_tail(&page->lru, list); 3305 } else { 3306 list_add(&page->lru, &n->slabs_free); 3307 } 3308 } else { 3309 /* Unconditionally move a slab to the end of the 3310 * partial list on free - maximum time for the 3311 * other objects to be freed, too. 3312 */ 3313 list_add_tail(&page->lru, &n->slabs_partial); 3314 } 3315 } 3316} 3317 3318static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3319{ 3320 int batchcount; 3321 struct kmem_cache_node *n; 3322 int node = numa_mem_id(); 3323 LIST_HEAD(list); 3324 3325 batchcount = ac->batchcount; 3326#if DEBUG 3327 BUG_ON(!batchcount || batchcount > ac->avail); 3328#endif 3329 check_irq_off(); 3330 n = get_node(cachep, node); 3331 spin_lock(&n->list_lock); 3332 if (n->shared) { 3333 struct array_cache *shared_array = n->shared; 3334 int max = shared_array->limit - shared_array->avail; 3335 if (max) { 3336 if (batchcount > max) 3337 batchcount = max; 3338 memcpy(&(shared_array->entry[shared_array->avail]), 3339 ac->entry, sizeof(void *) * batchcount); 3340 shared_array->avail += batchcount; 3341 goto free_done; 3342 } 3343 } 3344 3345 free_block(cachep, ac->entry, batchcount, node, &list); 3346free_done: 3347#if STATS 3348 { 3349 int i = 0; 3350 struct list_head *p; 3351 3352 p = n->slabs_free.next; 3353 while (p != &(n->slabs_free)) { 3354 struct page *page; 3355 3356 page = list_entry(p, struct page, lru); 3357 BUG_ON(page->active); 3358 3359 i++; 3360 p = p->next; 3361 } 3362 STATS_SET_FREEABLE(cachep, i); 3363 } 3364#endif 3365 spin_unlock(&n->list_lock); 3366 slabs_destroy(cachep, &list); 3367 ac->avail -= batchcount; 3368 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3369} 3370 3371/* 3372 * Release an obj back to its cache. If the obj has a constructed state, it must 3373 * be in this state _before_ it is released. Called with disabled ints. 3374 */ 3375static inline void __cache_free(struct kmem_cache *cachep, void *objp, 3376 unsigned long caller) 3377{ 3378 struct array_cache *ac = cpu_cache_get(cachep); 3379 3380 check_irq_off(); 3381 kmemleak_free_recursive(objp, cachep->flags); 3382 objp = cache_free_debugcheck(cachep, objp, caller); 3383 3384 kmemcheck_slab_free(cachep, objp, cachep->object_size); 3385 3386 /* 3387 * Skip calling cache_free_alien() when the platform is not numa. 3388 * This will avoid cache misses that happen while accessing slabp (which 3389 * is per page memory reference) to get nodeid. Instead use a global 3390 * variable to skip the call, which is mostly likely to be present in 3391 * the cache. 3392 */ 3393 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3394 return; 3395 3396 if (ac->avail < ac->limit) { 3397 STATS_INC_FREEHIT(cachep); 3398 } else { 3399 STATS_INC_FREEMISS(cachep); 3400 cache_flusharray(cachep, ac); 3401 } 3402 3403 ac_put_obj(cachep, ac, objp); 3404} 3405 3406/** 3407 * kmem_cache_alloc - Allocate an object 3408 * @cachep: The cache to allocate from. 3409 * @flags: See kmalloc(). 3410 * 3411 * Allocate an object from this cache. The flags are only relevant 3412 * if the cache has no available objects. 3413 */ 3414void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3415{ 3416 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3417 3418 trace_kmem_cache_alloc(_RET_IP_, ret, 3419 cachep->object_size, cachep->size, flags); 3420 3421 return ret; 3422} 3423EXPORT_SYMBOL(kmem_cache_alloc); 3424 3425#ifdef CONFIG_TRACING 3426void * 3427kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3428{ 3429 void *ret; 3430 3431 ret = slab_alloc(cachep, flags, _RET_IP_); 3432 3433 trace_kmalloc(_RET_IP_, ret, 3434 size, cachep->size, flags); 3435 return ret; 3436} 3437EXPORT_SYMBOL(kmem_cache_alloc_trace); 3438#endif 3439 3440#ifdef CONFIG_NUMA 3441/** 3442 * kmem_cache_alloc_node - Allocate an object on the specified node 3443 * @cachep: The cache to allocate from. 3444 * @flags: See kmalloc(). 3445 * @nodeid: node number of the target node. 3446 * 3447 * Identical to kmem_cache_alloc but it will allocate memory on the given 3448 * node, which can improve the performance for cpu bound structures. 3449 * 3450 * Fallback to other node is possible if __GFP_THISNODE is not set. 3451 */ 3452void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3453{ 3454 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3455 3456 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3457 cachep->object_size, cachep->size, 3458 flags, nodeid); 3459 3460 return ret; 3461} 3462EXPORT_SYMBOL(kmem_cache_alloc_node); 3463 3464#ifdef CONFIG_TRACING 3465void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3466 gfp_t flags, 3467 int nodeid, 3468 size_t size) 3469{ 3470 void *ret; 3471 3472 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3473 3474 trace_kmalloc_node(_RET_IP_, ret, 3475 size, cachep->size, 3476 flags, nodeid); 3477 return ret; 3478} 3479EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3480#endif 3481 3482static __always_inline void * 3483__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3484{ 3485 struct kmem_cache *cachep; 3486 3487 cachep = kmalloc_slab(size, flags); 3488 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3489 return cachep; 3490 return kmem_cache_alloc_node_trace(cachep, flags, node, size); 3491} 3492 3493void *__kmalloc_node(size_t size, gfp_t flags, int node) 3494{ 3495 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3496} 3497EXPORT_SYMBOL(__kmalloc_node); 3498 3499void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3500 int node, unsigned long caller) 3501{ 3502 return __do_kmalloc_node(size, flags, node, caller); 3503} 3504EXPORT_SYMBOL(__kmalloc_node_track_caller); 3505#endif /* CONFIG_NUMA */ 3506 3507/** 3508 * __do_kmalloc - allocate memory 3509 * @size: how many bytes of memory are required. 3510 * @flags: the type of memory to allocate (see kmalloc). 3511 * @caller: function caller for debug tracking of the caller 3512 */ 3513static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3514 unsigned long caller) 3515{ 3516 struct kmem_cache *cachep; 3517 void *ret; 3518 3519 cachep = kmalloc_slab(size, flags); 3520 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3521 return cachep; 3522 ret = slab_alloc(cachep, flags, caller); 3523 3524 trace_kmalloc(caller, ret, 3525 size, cachep->size, flags); 3526 3527 return ret; 3528} 3529 3530void *__kmalloc(size_t size, gfp_t flags) 3531{ 3532 return __do_kmalloc(size, flags, _RET_IP_); 3533} 3534EXPORT_SYMBOL(__kmalloc); 3535 3536void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3537{ 3538 return __do_kmalloc(size, flags, caller); 3539} 3540EXPORT_SYMBOL(__kmalloc_track_caller); 3541 3542/** 3543 * kmem_cache_free - Deallocate an object 3544 * @cachep: The cache the allocation was from. 3545 * @objp: The previously allocated object. 3546 * 3547 * Free an object which was previously allocated from this 3548 * cache. 3549 */ 3550void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3551{ 3552 unsigned long flags; 3553 cachep = cache_from_obj(cachep, objp); 3554 if (!cachep) 3555 return; 3556 3557 local_irq_save(flags); 3558 debug_check_no_locks_freed(objp, cachep->object_size); 3559 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3560 debug_check_no_obj_freed(objp, cachep->object_size); 3561 __cache_free(cachep, objp, _RET_IP_); 3562 local_irq_restore(flags); 3563 3564 trace_kmem_cache_free(_RET_IP_, objp); 3565} 3566EXPORT_SYMBOL(kmem_cache_free); 3567 3568/** 3569 * kfree - free previously allocated memory 3570 * @objp: pointer returned by kmalloc. 3571 * 3572 * If @objp is NULL, no operation is performed. 3573 * 3574 * Don't free memory not originally allocated by kmalloc() 3575 * or you will run into trouble. 3576 */ 3577void kfree(const void *objp) 3578{ 3579 struct kmem_cache *c; 3580 unsigned long flags; 3581 3582 trace_kfree(_RET_IP_, objp); 3583 3584 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3585 return; 3586 local_irq_save(flags); 3587 kfree_debugcheck(objp); 3588 c = virt_to_cache(objp); 3589 debug_check_no_locks_freed(objp, c->object_size); 3590 3591 debug_check_no_obj_freed(objp, c->object_size); 3592 __cache_free(c, (void *)objp, _RET_IP_); 3593 local_irq_restore(flags); 3594} 3595EXPORT_SYMBOL(kfree); 3596 3597/* 3598 * This initializes kmem_cache_node or resizes various caches for all nodes. 3599 */ 3600static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp) 3601{ 3602 int node; 3603 struct kmem_cache_node *n; 3604 struct array_cache *new_shared; 3605 struct alien_cache **new_alien = NULL; 3606 3607 for_each_online_node(node) { 3608 3609 if (use_alien_caches) { 3610 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 3611 if (!new_alien) 3612 goto fail; 3613 } 3614 3615 new_shared = NULL; 3616 if (cachep->shared) { 3617 new_shared = alloc_arraycache(node, 3618 cachep->shared*cachep->batchcount, 3619 0xbaadf00d, gfp); 3620 if (!new_shared) { 3621 free_alien_cache(new_alien); 3622 goto fail; 3623 } 3624 } 3625 3626 n = get_node(cachep, node); 3627 if (n) { 3628 struct array_cache *shared = n->shared; 3629 LIST_HEAD(list); 3630 3631 spin_lock_irq(&n->list_lock); 3632 3633 if (shared) 3634 free_block(cachep, shared->entry, 3635 shared->avail, node, &list); 3636 3637 n->shared = new_shared; 3638 if (!n->alien) { 3639 n->alien = new_alien; 3640 new_alien = NULL; 3641 } 3642 n->free_limit = (1 + nr_cpus_node(node)) * 3643 cachep->batchcount + cachep->num; 3644 spin_unlock_irq(&n->list_lock); 3645 slabs_destroy(cachep, &list); 3646 kfree(shared); 3647 free_alien_cache(new_alien); 3648 continue; 3649 } 3650 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 3651 if (!n) { 3652 free_alien_cache(new_alien); 3653 kfree(new_shared); 3654 goto fail; 3655 } 3656 3657 kmem_cache_node_init(n); 3658 n->next_reap = jiffies + REAPTIMEOUT_NODE + 3659 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 3660 n->shared = new_shared; 3661 n->alien = new_alien; 3662 n->free_limit = (1 + nr_cpus_node(node)) * 3663 cachep->batchcount + cachep->num; 3664 cachep->node[node] = n; 3665 } 3666 return 0; 3667 3668fail: 3669 if (!cachep->list.next) { 3670 /* Cache is not active yet. Roll back what we did */ 3671 node--; 3672 while (node >= 0) { 3673 n = get_node(cachep, node); 3674 if (n) { 3675 kfree(n->shared); 3676 free_alien_cache(n->alien); 3677 kfree(n); 3678 cachep->node[node] = NULL; 3679 } 3680 node--; 3681 } 3682 } 3683 return -ENOMEM; 3684} 3685 3686/* Always called with the slab_mutex held */ 3687static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, 3688 int batchcount, int shared, gfp_t gfp) 3689{ 3690 struct array_cache __percpu *cpu_cache, *prev; 3691 int cpu; 3692 3693 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3694 if (!cpu_cache) 3695 return -ENOMEM; 3696 3697 prev = cachep->cpu_cache; 3698 cachep->cpu_cache = cpu_cache; 3699 kick_all_cpus_sync(); 3700 3701 check_irq_on(); 3702 cachep->batchcount = batchcount; 3703 cachep->limit = limit; 3704 cachep->shared = shared; 3705 3706 if (!prev) 3707 goto alloc_node; 3708 3709 for_each_online_cpu(cpu) { 3710 LIST_HEAD(list); 3711 int node; 3712 struct kmem_cache_node *n; 3713 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3714 3715 node = cpu_to_mem(cpu); 3716 n = get_node(cachep, node); 3717 spin_lock_irq(&n->list_lock); 3718 free_block(cachep, ac->entry, ac->avail, node, &list); 3719 spin_unlock_irq(&n->list_lock); 3720 slabs_destroy(cachep, &list); 3721 } 3722 free_percpu(prev); 3723 3724alloc_node: 3725 return alloc_kmem_cache_node(cachep, gfp); 3726} 3727 3728static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3729 int batchcount, int shared, gfp_t gfp) 3730{ 3731 int ret; 3732 struct kmem_cache *c; 3733 3734 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3735 3736 if (slab_state < FULL) 3737 return ret; 3738 3739 if ((ret < 0) || !is_root_cache(cachep)) 3740 return ret; 3741 3742 lockdep_assert_held(&slab_mutex); 3743 for_each_memcg_cache(c, cachep) { 3744 /* return value determined by the root cache only */ 3745 __do_tune_cpucache(c, limit, batchcount, shared, gfp); 3746 } 3747 3748 return ret; 3749} 3750 3751/* Called with slab_mutex held always */ 3752static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3753{ 3754 int err; 3755 int limit = 0; 3756 int shared = 0; 3757 int batchcount = 0; 3758 3759 if (!is_root_cache(cachep)) { 3760 struct kmem_cache *root = memcg_root_cache(cachep); 3761 limit = root->limit; 3762 shared = root->shared; 3763 batchcount = root->batchcount; 3764 } 3765 3766 if (limit && shared && batchcount) 3767 goto skip_setup; 3768 /* 3769 * The head array serves three purposes: 3770 * - create a LIFO ordering, i.e. return objects that are cache-warm 3771 * - reduce the number of spinlock operations. 3772 * - reduce the number of linked list operations on the slab and 3773 * bufctl chains: array operations are cheaper. 3774 * The numbers are guessed, we should auto-tune as described by 3775 * Bonwick. 3776 */ 3777 if (cachep->size > 131072) 3778 limit = 1; 3779 else if (cachep->size > PAGE_SIZE) 3780 limit = 8; 3781 else if (cachep->size > 1024) 3782 limit = 24; 3783 else if (cachep->size > 256) 3784 limit = 54; 3785 else 3786 limit = 120; 3787 3788 /* 3789 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3790 * allocation behaviour: Most allocs on one cpu, most free operations 3791 * on another cpu. For these cases, an efficient object passing between 3792 * cpus is necessary. This is provided by a shared array. The array 3793 * replaces Bonwick's magazine layer. 3794 * On uniprocessor, it's functionally equivalent (but less efficient) 3795 * to a larger limit. Thus disabled by default. 3796 */ 3797 shared = 0; 3798 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3799 shared = 8; 3800 3801#if DEBUG 3802 /* 3803 * With debugging enabled, large batchcount lead to excessively long 3804 * periods with disabled local interrupts. Limit the batchcount 3805 */ 3806 if (limit > 32) 3807 limit = 32; 3808#endif 3809 batchcount = (limit + 1) / 2; 3810skip_setup: 3811 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3812 if (err) 3813 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", 3814 cachep->name, -err); 3815 return err; 3816} 3817 3818/* 3819 * Drain an array if it contains any elements taking the node lock only if 3820 * necessary. Note that the node listlock also protects the array_cache 3821 * if drain_array() is used on the shared array. 3822 */ 3823static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 3824 struct array_cache *ac, int force, int node) 3825{ 3826 LIST_HEAD(list); 3827 int tofree; 3828 3829 if (!ac || !ac->avail) 3830 return; 3831 if (ac->touched && !force) { 3832 ac->touched = 0; 3833 } else { 3834 spin_lock_irq(&n->list_lock); 3835 if (ac->avail) { 3836 tofree = force ? ac->avail : (ac->limit + 4) / 5; 3837 if (tofree > ac->avail) 3838 tofree = (ac->avail + 1) / 2; 3839 free_block(cachep, ac->entry, tofree, node, &list); 3840 ac->avail -= tofree; 3841 memmove(ac->entry, &(ac->entry[tofree]), 3842 sizeof(void *) * ac->avail); 3843 } 3844 spin_unlock_irq(&n->list_lock); 3845 slabs_destroy(cachep, &list); 3846 } 3847} 3848 3849/** 3850 * cache_reap - Reclaim memory from caches. 3851 * @w: work descriptor 3852 * 3853 * Called from workqueue/eventd every few seconds. 3854 * Purpose: 3855 * - clear the per-cpu caches for this CPU. 3856 * - return freeable pages to the main free memory pool. 3857 * 3858 * If we cannot acquire the cache chain mutex then just give up - we'll try 3859 * again on the next iteration. 3860 */ 3861static void cache_reap(struct work_struct *w) 3862{ 3863 struct kmem_cache *searchp; 3864 struct kmem_cache_node *n; 3865 int node = numa_mem_id(); 3866 struct delayed_work *work = to_delayed_work(w); 3867 3868 if (!mutex_trylock(&slab_mutex)) 3869 /* Give up. Setup the next iteration. */ 3870 goto out; 3871 3872 list_for_each_entry(searchp, &slab_caches, list) { 3873 check_irq_on(); 3874 3875 /* 3876 * We only take the node lock if absolutely necessary and we 3877 * have established with reasonable certainty that 3878 * we can do some work if the lock was obtained. 3879 */ 3880 n = get_node(searchp, node); 3881 3882 reap_alien(searchp, n); 3883 3884 drain_array(searchp, n, cpu_cache_get(searchp), 0, node); 3885 3886 /* 3887 * These are racy checks but it does not matter 3888 * if we skip one check or scan twice. 3889 */ 3890 if (time_after(n->next_reap, jiffies)) 3891 goto next; 3892 3893 n->next_reap = jiffies + REAPTIMEOUT_NODE; 3894 3895 drain_array(searchp, n, n->shared, 0, node); 3896 3897 if (n->free_touched) 3898 n->free_touched = 0; 3899 else { 3900 int freed; 3901 3902 freed = drain_freelist(searchp, n, (n->free_limit + 3903 5 * searchp->num - 1) / (5 * searchp->num)); 3904 STATS_ADD_REAPED(searchp, freed); 3905 } 3906next: 3907 cond_resched(); 3908 } 3909 check_irq_on(); 3910 mutex_unlock(&slab_mutex); 3911 next_reap_node(); 3912out: 3913 /* Set up the next iteration */ 3914 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC)); 3915} 3916 3917#ifdef CONFIG_SLABINFO 3918void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 3919{ 3920 struct page *page; 3921 unsigned long active_objs; 3922 unsigned long num_objs; 3923 unsigned long active_slabs = 0; 3924 unsigned long num_slabs, free_objects = 0, shared_avail = 0; 3925 const char *name; 3926 char *error = NULL; 3927 int node; 3928 struct kmem_cache_node *n; 3929 3930 active_objs = 0; 3931 num_slabs = 0; 3932 for_each_kmem_cache_node(cachep, node, n) { 3933 3934 check_irq_on(); 3935 spin_lock_irq(&n->list_lock); 3936 3937 list_for_each_entry(page, &n->slabs_full, lru) { 3938 if (page->active != cachep->num && !error) 3939 error = "slabs_full accounting error"; 3940 active_objs += cachep->num; 3941 active_slabs++; 3942 } 3943 list_for_each_entry(page, &n->slabs_partial, lru) { 3944 if (page->active == cachep->num && !error) 3945 error = "slabs_partial accounting error"; 3946 if (!page->active && !error) 3947 error = "slabs_partial accounting error"; 3948 active_objs += page->active; 3949 active_slabs++; 3950 } 3951 list_for_each_entry(page, &n->slabs_free, lru) { 3952 if (page->active && !error) 3953 error = "slabs_free accounting error"; 3954 num_slabs++; 3955 } 3956 free_objects += n->free_objects; 3957 if (n->shared) 3958 shared_avail += n->shared->avail; 3959 3960 spin_unlock_irq(&n->list_lock); 3961 } 3962 num_slabs += active_slabs; 3963 num_objs = num_slabs * cachep->num; 3964 if (num_objs - active_objs != free_objects && !error) 3965 error = "free_objects accounting error"; 3966 3967 name = cachep->name; 3968 if (error) 3969 printk(KERN_ERR "slab: cache %s error: %s\n", name, error); 3970 3971 sinfo->active_objs = active_objs; 3972 sinfo->num_objs = num_objs; 3973 sinfo->active_slabs = active_slabs; 3974 sinfo->num_slabs = num_slabs; 3975 sinfo->shared_avail = shared_avail; 3976 sinfo->limit = cachep->limit; 3977 sinfo->batchcount = cachep->batchcount; 3978 sinfo->shared = cachep->shared; 3979 sinfo->objects_per_slab = cachep->num; 3980 sinfo->cache_order = cachep->gfporder; 3981} 3982 3983void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 3984{ 3985#if STATS 3986 { /* node stats */ 3987 unsigned long high = cachep->high_mark; 3988 unsigned long allocs = cachep->num_allocations; 3989 unsigned long grown = cachep->grown; 3990 unsigned long reaped = cachep->reaped; 3991 unsigned long errors = cachep->errors; 3992 unsigned long max_freeable = cachep->max_freeable; 3993 unsigned long node_allocs = cachep->node_allocs; 3994 unsigned long node_frees = cachep->node_frees; 3995 unsigned long overflows = cachep->node_overflow; 3996 3997 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu " 3998 "%4lu %4lu %4lu %4lu %4lu", 3999 allocs, high, grown, 4000 reaped, errors, max_freeable, node_allocs, 4001 node_frees, overflows); 4002 } 4003 /* cpu stats */ 4004 { 4005 unsigned long allochit = atomic_read(&cachep->allochit); 4006 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4007 unsigned long freehit = atomic_read(&cachep->freehit); 4008 unsigned long freemiss = atomic_read(&cachep->freemiss); 4009 4010 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4011 allochit, allocmiss, freehit, freemiss); 4012 } 4013#endif 4014} 4015 4016#define MAX_SLABINFO_WRITE 128 4017/** 4018 * slabinfo_write - Tuning for the slab allocator 4019 * @file: unused 4020 * @buffer: user buffer 4021 * @count: data length 4022 * @ppos: unused 4023 */ 4024ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4025 size_t count, loff_t *ppos) 4026{ 4027 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4028 int limit, batchcount, shared, res; 4029 struct kmem_cache *cachep; 4030 4031 if (count > MAX_SLABINFO_WRITE) 4032 return -EINVAL; 4033 if (copy_from_user(&kbuf, buffer, count)) 4034 return -EFAULT; 4035 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4036 4037 tmp = strchr(kbuf, ' '); 4038 if (!tmp) 4039 return -EINVAL; 4040 *tmp = '\0'; 4041 tmp++; 4042 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4043 return -EINVAL; 4044 4045 /* Find the cache in the chain of caches. */ 4046 mutex_lock(&slab_mutex); 4047 res = -EINVAL; 4048 list_for_each_entry(cachep, &slab_caches, list) { 4049 if (!strcmp(cachep->name, kbuf)) { 4050 if (limit < 1 || batchcount < 1 || 4051 batchcount > limit || shared < 0) { 4052 res = 0; 4053 } else { 4054 res = do_tune_cpucache(cachep, limit, 4055 batchcount, shared, 4056 GFP_KERNEL); 4057 } 4058 break; 4059 } 4060 } 4061 mutex_unlock(&slab_mutex); 4062 if (res >= 0) 4063 res = count; 4064 return res; 4065} 4066 4067#ifdef CONFIG_DEBUG_SLAB_LEAK 4068 4069static inline int add_caller(unsigned long *n, unsigned long v) 4070{ 4071 unsigned long *p; 4072 int l; 4073 if (!v) 4074 return 1; 4075 l = n[1]; 4076 p = n + 2; 4077 while (l) { 4078 int i = l/2; 4079 unsigned long *q = p + 2 * i; 4080 if (*q == v) { 4081 q[1]++; 4082 return 1; 4083 } 4084 if (*q > v) { 4085 l = i; 4086 } else { 4087 p = q + 2; 4088 l -= i + 1; 4089 } 4090 } 4091 if (++n[1] == n[0]) 4092 return 0; 4093 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4094 p[0] = v; 4095 p[1] = 1; 4096 return 1; 4097} 4098 4099static void handle_slab(unsigned long *n, struct kmem_cache *c, 4100 struct page *page) 4101{ 4102 void *p; 4103 int i; 4104 4105 if (n[0] == n[1]) 4106 return; 4107 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) { 4108 if (get_obj_status(page, i) != OBJECT_ACTIVE) 4109 continue; 4110 4111 if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) 4112 return; 4113 } 4114} 4115 4116static void show_symbol(struct seq_file *m, unsigned long address) 4117{ 4118#ifdef CONFIG_KALLSYMS 4119 unsigned long offset, size; 4120 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4121 4122 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4123 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4124 if (modname[0]) 4125 seq_printf(m, " [%s]", modname); 4126 return; 4127 } 4128#endif 4129 seq_printf(m, "%p", (void *)address); 4130} 4131 4132static int leaks_show(struct seq_file *m, void *p) 4133{ 4134 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); 4135 struct page *page; 4136 struct kmem_cache_node *n; 4137 const char *name; 4138 unsigned long *x = m->private; 4139 int node; 4140 int i; 4141 4142 if (!(cachep->flags & SLAB_STORE_USER)) 4143 return 0; 4144 if (!(cachep->flags & SLAB_RED_ZONE)) 4145 return 0; 4146 4147 /* OK, we can do it */ 4148 4149 x[1] = 0; 4150 4151 for_each_kmem_cache_node(cachep, node, n) { 4152 4153 check_irq_on(); 4154 spin_lock_irq(&n->list_lock); 4155 4156 list_for_each_entry(page, &n->slabs_full, lru) 4157 handle_slab(x, cachep, page); 4158 list_for_each_entry(page, &n->slabs_partial, lru) 4159 handle_slab(x, cachep, page); 4160 spin_unlock_irq(&n->list_lock); 4161 } 4162 name = cachep->name; 4163 if (x[0] == x[1]) { 4164 /* Increase the buffer size */ 4165 mutex_unlock(&slab_mutex); 4166 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4167 if (!m->private) { 4168 /* Too bad, we are really out */ 4169 m->private = x; 4170 mutex_lock(&slab_mutex); 4171 return -ENOMEM; 4172 } 4173 *(unsigned long *)m->private = x[0] * 2; 4174 kfree(x); 4175 mutex_lock(&slab_mutex); 4176 /* Now make sure this entry will be retried */ 4177 m->count = m->size; 4178 return 0; 4179 } 4180 for (i = 0; i < x[1]; i++) { 4181 seq_printf(m, "%s: %lu ", name, x[2*i+3]); 4182 show_symbol(m, x[2*i+2]); 4183 seq_putc(m, '\n'); 4184 } 4185 4186 return 0; 4187} 4188 4189static const struct seq_operations slabstats_op = { 4190 .start = slab_start, 4191 .next = slab_next, 4192 .stop = slab_stop, 4193 .show = leaks_show, 4194}; 4195 4196static int slabstats_open(struct inode *inode, struct file *file) 4197{ 4198 unsigned long *n; 4199 4200 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE); 4201 if (!n) 4202 return -ENOMEM; 4203 4204 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4205 4206 return 0; 4207} 4208 4209static const struct file_operations proc_slabstats_operations = { 4210 .open = slabstats_open, 4211 .read = seq_read, 4212 .llseek = seq_lseek, 4213 .release = seq_release_private, 4214}; 4215#endif 4216 4217static int __init slab_proc_init(void) 4218{ 4219#ifdef CONFIG_DEBUG_SLAB_LEAK 4220 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4221#endif 4222 return 0; 4223} 4224module_init(slab_proc_init); 4225#endif 4226 4227/** 4228 * ksize - get the actual amount of memory allocated for a given object 4229 * @objp: Pointer to the object 4230 * 4231 * kmalloc may internally round up allocations and return more memory 4232 * than requested. ksize() can be used to determine the actual amount of 4233 * memory allocated. The caller may use this additional memory, even though 4234 * a smaller amount of memory was initially specified with the kmalloc call. 4235 * The caller must guarantee that objp points to a valid object previously 4236 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4237 * must not be freed during the duration of the call. 4238 */ 4239size_t ksize(const void *objp) 4240{ 4241 BUG_ON(!objp); 4242 if (unlikely(objp == ZERO_SIZE_PTR)) 4243 return 0; 4244 4245 return virt_to_cache(objp)->object_size; 4246} 4247EXPORT_SYMBOL(ksize); 4248