1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/mm.h>
32#include <linux/export.h>
33#include <linux/swap.h>
34#include <linux/uio.h>
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45#include <linux/xattr.h>
46#include <linux/exportfs.h>
47#include <linux/posix_acl.h>
48#include <linux/posix_acl_xattr.h>
49#include <linux/mman.h>
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
54#include <linux/writeback.h>
55#include <linux/blkdev.h>
56#include <linux/pagevec.h>
57#include <linux/percpu_counter.h>
58#include <linux/falloc.h>
59#include <linux/splice.h>
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
64#include <linux/ctype.h>
65#include <linux/migrate.h>
66#include <linux/highmem.h>
67#include <linux/seq_file.h>
68#include <linux/magic.h>
69#include <linux/syscalls.h>
70#include <linux/fcntl.h>
71#include <uapi/linux/memfd.h>
72
73#include <asm/uaccess.h>
74#include <asm/pgtable.h>
75
76#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
77#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
78
79/* Pretend that each entry is of this size in directory's i_size */
80#define BOGO_DIRENT_SIZE 20
81
82/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
83#define SHORT_SYMLINK_LEN 128
84
85/*
86 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
87 * inode->i_private (with i_mutex making sure that it has only one user at
88 * a time): we would prefer not to enlarge the shmem inode just for that.
89 */
90struct shmem_falloc {
91	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
92	pgoff_t start;		/* start of range currently being fallocated */
93	pgoff_t next;		/* the next page offset to be fallocated */
94	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
95	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
96};
97
98/* Flag allocation requirements to shmem_getpage */
99enum sgp_type {
100	SGP_READ,	/* don't exceed i_size, don't allocate page */
101	SGP_CACHE,	/* don't exceed i_size, may allocate page */
102	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
103	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
104	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
105};
106
107#ifdef CONFIG_TMPFS
108static unsigned long shmem_default_max_blocks(void)
109{
110	return totalram_pages / 2;
111}
112
113static unsigned long shmem_default_max_inodes(void)
114{
115	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116}
117#endif
118
119static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121				struct shmem_inode_info *info, pgoff_t index);
122static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
123	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
124
125static inline int shmem_getpage(struct inode *inode, pgoff_t index,
126	struct page **pagep, enum sgp_type sgp, int *fault_type)
127{
128	return shmem_getpage_gfp(inode, index, pagep, sgp,
129			mapping_gfp_mask(inode->i_mapping), fault_type);
130}
131
132static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
133{
134	return sb->s_fs_info;
135}
136
137/*
138 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139 * for shared memory and for shared anonymous (/dev/zero) mappings
140 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141 * consistent with the pre-accounting of private mappings ...
142 */
143static inline int shmem_acct_size(unsigned long flags, loff_t size)
144{
145	return (flags & VM_NORESERVE) ?
146		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
147}
148
149static inline void shmem_unacct_size(unsigned long flags, loff_t size)
150{
151	if (!(flags & VM_NORESERVE))
152		vm_unacct_memory(VM_ACCT(size));
153}
154
155static inline int shmem_reacct_size(unsigned long flags,
156		loff_t oldsize, loff_t newsize)
157{
158	if (!(flags & VM_NORESERVE)) {
159		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
160			return security_vm_enough_memory_mm(current->mm,
161					VM_ACCT(newsize) - VM_ACCT(oldsize));
162		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
163			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
164	}
165	return 0;
166}
167
168/*
169 * ... whereas tmpfs objects are accounted incrementally as
170 * pages are allocated, in order to allow huge sparse files.
171 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
172 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
173 */
174static inline int shmem_acct_block(unsigned long flags)
175{
176	return (flags & VM_NORESERVE) ?
177		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
178}
179
180static inline void shmem_unacct_blocks(unsigned long flags, long pages)
181{
182	if (flags & VM_NORESERVE)
183		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
184}
185
186static const struct super_operations shmem_ops;
187static const struct address_space_operations shmem_aops;
188static const struct file_operations shmem_file_operations;
189static const struct inode_operations shmem_inode_operations;
190static const struct inode_operations shmem_dir_inode_operations;
191static const struct inode_operations shmem_special_inode_operations;
192static const struct vm_operations_struct shmem_vm_ops;
193
194static LIST_HEAD(shmem_swaplist);
195static DEFINE_MUTEX(shmem_swaplist_mutex);
196
197static int shmem_reserve_inode(struct super_block *sb)
198{
199	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
200	if (sbinfo->max_inodes) {
201		spin_lock(&sbinfo->stat_lock);
202		if (!sbinfo->free_inodes) {
203			spin_unlock(&sbinfo->stat_lock);
204			return -ENOSPC;
205		}
206		sbinfo->free_inodes--;
207		spin_unlock(&sbinfo->stat_lock);
208	}
209	return 0;
210}
211
212static void shmem_free_inode(struct super_block *sb)
213{
214	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
215	if (sbinfo->max_inodes) {
216		spin_lock(&sbinfo->stat_lock);
217		sbinfo->free_inodes++;
218		spin_unlock(&sbinfo->stat_lock);
219	}
220}
221
222/**
223 * shmem_recalc_inode - recalculate the block usage of an inode
224 * @inode: inode to recalc
225 *
226 * We have to calculate the free blocks since the mm can drop
227 * undirtied hole pages behind our back.
228 *
229 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
230 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
231 *
232 * It has to be called with the spinlock held.
233 */
234static void shmem_recalc_inode(struct inode *inode)
235{
236	struct shmem_inode_info *info = SHMEM_I(inode);
237	long freed;
238
239	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
240	if (freed > 0) {
241		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242		if (sbinfo->max_blocks)
243			percpu_counter_add(&sbinfo->used_blocks, -freed);
244		info->alloced -= freed;
245		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
246		shmem_unacct_blocks(info->flags, freed);
247	}
248}
249
250/*
251 * Replace item expected in radix tree by a new item, while holding tree lock.
252 */
253static int shmem_radix_tree_replace(struct address_space *mapping,
254			pgoff_t index, void *expected, void *replacement)
255{
256	void **pslot;
257	void *item;
258
259	VM_BUG_ON(!expected);
260	VM_BUG_ON(!replacement);
261	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
262	if (!pslot)
263		return -ENOENT;
264	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
265	if (item != expected)
266		return -ENOENT;
267	radix_tree_replace_slot(pslot, replacement);
268	return 0;
269}
270
271/*
272 * Sometimes, before we decide whether to proceed or to fail, we must check
273 * that an entry was not already brought back from swap by a racing thread.
274 *
275 * Checking page is not enough: by the time a SwapCache page is locked, it
276 * might be reused, and again be SwapCache, using the same swap as before.
277 */
278static bool shmem_confirm_swap(struct address_space *mapping,
279			       pgoff_t index, swp_entry_t swap)
280{
281	void *item;
282
283	rcu_read_lock();
284	item = radix_tree_lookup(&mapping->page_tree, index);
285	rcu_read_unlock();
286	return item == swp_to_radix_entry(swap);
287}
288
289/*
290 * Like add_to_page_cache_locked, but error if expected item has gone.
291 */
292static int shmem_add_to_page_cache(struct page *page,
293				   struct address_space *mapping,
294				   pgoff_t index, void *expected)
295{
296	int error;
297
298	VM_BUG_ON_PAGE(!PageLocked(page), page);
299	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
300
301	page_cache_get(page);
302	page->mapping = mapping;
303	page->index = index;
304
305	spin_lock_irq(&mapping->tree_lock);
306	if (!expected)
307		error = radix_tree_insert(&mapping->page_tree, index, page);
308	else
309		error = shmem_radix_tree_replace(mapping, index, expected,
310								 page);
311	if (!error) {
312		mapping->nrpages++;
313		__inc_zone_page_state(page, NR_FILE_PAGES);
314		__inc_zone_page_state(page, NR_SHMEM);
315		spin_unlock_irq(&mapping->tree_lock);
316	} else {
317		page->mapping = NULL;
318		spin_unlock_irq(&mapping->tree_lock);
319		page_cache_release(page);
320	}
321	return error;
322}
323
324/*
325 * Like delete_from_page_cache, but substitutes swap for page.
326 */
327static void shmem_delete_from_page_cache(struct page *page, void *radswap)
328{
329	struct address_space *mapping = page->mapping;
330	int error;
331
332	spin_lock_irq(&mapping->tree_lock);
333	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
334	page->mapping = NULL;
335	mapping->nrpages--;
336	__dec_zone_page_state(page, NR_FILE_PAGES);
337	__dec_zone_page_state(page, NR_SHMEM);
338	spin_unlock_irq(&mapping->tree_lock);
339	page_cache_release(page);
340	BUG_ON(error);
341}
342
343/*
344 * Remove swap entry from radix tree, free the swap and its page cache.
345 */
346static int shmem_free_swap(struct address_space *mapping,
347			   pgoff_t index, void *radswap)
348{
349	void *old;
350
351	spin_lock_irq(&mapping->tree_lock);
352	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
353	spin_unlock_irq(&mapping->tree_lock);
354	if (old != radswap)
355		return -ENOENT;
356	free_swap_and_cache(radix_to_swp_entry(radswap));
357	return 0;
358}
359
360/*
361 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
362 */
363void shmem_unlock_mapping(struct address_space *mapping)
364{
365	struct pagevec pvec;
366	pgoff_t indices[PAGEVEC_SIZE];
367	pgoff_t index = 0;
368
369	pagevec_init(&pvec, 0);
370	/*
371	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
372	 */
373	while (!mapping_unevictable(mapping)) {
374		/*
375		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
376		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
377		 */
378		pvec.nr = find_get_entries(mapping, index,
379					   PAGEVEC_SIZE, pvec.pages, indices);
380		if (!pvec.nr)
381			break;
382		index = indices[pvec.nr - 1] + 1;
383		pagevec_remove_exceptionals(&pvec);
384		check_move_unevictable_pages(pvec.pages, pvec.nr);
385		pagevec_release(&pvec);
386		cond_resched();
387	}
388}
389
390/*
391 * Remove range of pages and swap entries from radix tree, and free them.
392 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
393 */
394static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
395								 bool unfalloc)
396{
397	struct address_space *mapping = inode->i_mapping;
398	struct shmem_inode_info *info = SHMEM_I(inode);
399	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
400	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
401	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
402	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
403	struct pagevec pvec;
404	pgoff_t indices[PAGEVEC_SIZE];
405	long nr_swaps_freed = 0;
406	pgoff_t index;
407	int i;
408
409	if (lend == -1)
410		end = -1;	/* unsigned, so actually very big */
411
412	pagevec_init(&pvec, 0);
413	index = start;
414	while (index < end) {
415		pvec.nr = find_get_entries(mapping, index,
416			min(end - index, (pgoff_t)PAGEVEC_SIZE),
417			pvec.pages, indices);
418		if (!pvec.nr)
419			break;
420		for (i = 0; i < pagevec_count(&pvec); i++) {
421			struct page *page = pvec.pages[i];
422
423			index = indices[i];
424			if (index >= end)
425				break;
426
427			if (radix_tree_exceptional_entry(page)) {
428				if (unfalloc)
429					continue;
430				nr_swaps_freed += !shmem_free_swap(mapping,
431								index, page);
432				continue;
433			}
434
435			if (!trylock_page(page))
436				continue;
437			if (!unfalloc || !PageUptodate(page)) {
438				if (page->mapping == mapping) {
439					VM_BUG_ON_PAGE(PageWriteback(page), page);
440					truncate_inode_page(mapping, page);
441				}
442			}
443			unlock_page(page);
444		}
445		pagevec_remove_exceptionals(&pvec);
446		pagevec_release(&pvec);
447		cond_resched();
448		index++;
449	}
450
451	if (partial_start) {
452		struct page *page = NULL;
453		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
454		if (page) {
455			unsigned int top = PAGE_CACHE_SIZE;
456			if (start > end) {
457				top = partial_end;
458				partial_end = 0;
459			}
460			zero_user_segment(page, partial_start, top);
461			set_page_dirty(page);
462			unlock_page(page);
463			page_cache_release(page);
464		}
465	}
466	if (partial_end) {
467		struct page *page = NULL;
468		shmem_getpage(inode, end, &page, SGP_READ, NULL);
469		if (page) {
470			zero_user_segment(page, 0, partial_end);
471			set_page_dirty(page);
472			unlock_page(page);
473			page_cache_release(page);
474		}
475	}
476	if (start >= end)
477		return;
478
479	index = start;
480	while (index < end) {
481		cond_resched();
482
483		pvec.nr = find_get_entries(mapping, index,
484				min(end - index, (pgoff_t)PAGEVEC_SIZE),
485				pvec.pages, indices);
486		if (!pvec.nr) {
487			/* If all gone or hole-punch or unfalloc, we're done */
488			if (index == start || end != -1)
489				break;
490			/* But if truncating, restart to make sure all gone */
491			index = start;
492			continue;
493		}
494		for (i = 0; i < pagevec_count(&pvec); i++) {
495			struct page *page = pvec.pages[i];
496
497			index = indices[i];
498			if (index >= end)
499				break;
500
501			if (radix_tree_exceptional_entry(page)) {
502				if (unfalloc)
503					continue;
504				if (shmem_free_swap(mapping, index, page)) {
505					/* Swap was replaced by page: retry */
506					index--;
507					break;
508				}
509				nr_swaps_freed++;
510				continue;
511			}
512
513			lock_page(page);
514			if (!unfalloc || !PageUptodate(page)) {
515				if (page->mapping == mapping) {
516					VM_BUG_ON_PAGE(PageWriteback(page), page);
517					truncate_inode_page(mapping, page);
518				} else {
519					/* Page was replaced by swap: retry */
520					unlock_page(page);
521					index--;
522					break;
523				}
524			}
525			unlock_page(page);
526		}
527		pagevec_remove_exceptionals(&pvec);
528		pagevec_release(&pvec);
529		index++;
530	}
531
532	spin_lock(&info->lock);
533	info->swapped -= nr_swaps_freed;
534	shmem_recalc_inode(inode);
535	spin_unlock(&info->lock);
536}
537
538void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
539{
540	shmem_undo_range(inode, lstart, lend, false);
541	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
542}
543EXPORT_SYMBOL_GPL(shmem_truncate_range);
544
545static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
546{
547	struct inode *inode = d_inode(dentry);
548	struct shmem_inode_info *info = SHMEM_I(inode);
549	int error;
550
551	error = inode_change_ok(inode, attr);
552	if (error)
553		return error;
554
555	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
556		loff_t oldsize = inode->i_size;
557		loff_t newsize = attr->ia_size;
558
559		/* protected by i_mutex */
560		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
561		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
562			return -EPERM;
563
564		if (newsize != oldsize) {
565			error = shmem_reacct_size(SHMEM_I(inode)->flags,
566					oldsize, newsize);
567			if (error)
568				return error;
569			i_size_write(inode, newsize);
570			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
571		}
572		if (newsize < oldsize) {
573			loff_t holebegin = round_up(newsize, PAGE_SIZE);
574			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
575			shmem_truncate_range(inode, newsize, (loff_t)-1);
576			/* unmap again to remove racily COWed private pages */
577			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
578		}
579	}
580
581	setattr_copy(inode, attr);
582	if (attr->ia_valid & ATTR_MODE)
583		error = posix_acl_chmod(inode, inode->i_mode);
584	return error;
585}
586
587static void shmem_evict_inode(struct inode *inode)
588{
589	struct shmem_inode_info *info = SHMEM_I(inode);
590
591	if (inode->i_mapping->a_ops == &shmem_aops) {
592		shmem_unacct_size(info->flags, inode->i_size);
593		inode->i_size = 0;
594		shmem_truncate_range(inode, 0, (loff_t)-1);
595		if (!list_empty(&info->swaplist)) {
596			mutex_lock(&shmem_swaplist_mutex);
597			list_del_init(&info->swaplist);
598			mutex_unlock(&shmem_swaplist_mutex);
599		}
600	} else
601		kfree(info->symlink);
602
603	simple_xattrs_free(&info->xattrs);
604	WARN_ON(inode->i_blocks);
605	shmem_free_inode(inode->i_sb);
606	clear_inode(inode);
607}
608
609/*
610 * If swap found in inode, free it and move page from swapcache to filecache.
611 */
612static int shmem_unuse_inode(struct shmem_inode_info *info,
613			     swp_entry_t swap, struct page **pagep)
614{
615	struct address_space *mapping = info->vfs_inode.i_mapping;
616	void *radswap;
617	pgoff_t index;
618	gfp_t gfp;
619	int error = 0;
620
621	radswap = swp_to_radix_entry(swap);
622	index = radix_tree_locate_item(&mapping->page_tree, radswap);
623	if (index == -1)
624		return -EAGAIN;	/* tell shmem_unuse we found nothing */
625
626	/*
627	 * Move _head_ to start search for next from here.
628	 * But be careful: shmem_evict_inode checks list_empty without taking
629	 * mutex, and there's an instant in list_move_tail when info->swaplist
630	 * would appear empty, if it were the only one on shmem_swaplist.
631	 */
632	if (shmem_swaplist.next != &info->swaplist)
633		list_move_tail(&shmem_swaplist, &info->swaplist);
634
635	gfp = mapping_gfp_mask(mapping);
636	if (shmem_should_replace_page(*pagep, gfp)) {
637		mutex_unlock(&shmem_swaplist_mutex);
638		error = shmem_replace_page(pagep, gfp, info, index);
639		mutex_lock(&shmem_swaplist_mutex);
640		/*
641		 * We needed to drop mutex to make that restrictive page
642		 * allocation, but the inode might have been freed while we
643		 * dropped it: although a racing shmem_evict_inode() cannot
644		 * complete without emptying the radix_tree, our page lock
645		 * on this swapcache page is not enough to prevent that -
646		 * free_swap_and_cache() of our swap entry will only
647		 * trylock_page(), removing swap from radix_tree whatever.
648		 *
649		 * We must not proceed to shmem_add_to_page_cache() if the
650		 * inode has been freed, but of course we cannot rely on
651		 * inode or mapping or info to check that.  However, we can
652		 * safely check if our swap entry is still in use (and here
653		 * it can't have got reused for another page): if it's still
654		 * in use, then the inode cannot have been freed yet, and we
655		 * can safely proceed (if it's no longer in use, that tells
656		 * nothing about the inode, but we don't need to unuse swap).
657		 */
658		if (!page_swapcount(*pagep))
659			error = -ENOENT;
660	}
661
662	/*
663	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
664	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
665	 * beneath us (pagelock doesn't help until the page is in pagecache).
666	 */
667	if (!error)
668		error = shmem_add_to_page_cache(*pagep, mapping, index,
669						radswap);
670	if (error != -ENOMEM) {
671		/*
672		 * Truncation and eviction use free_swap_and_cache(), which
673		 * only does trylock page: if we raced, best clean up here.
674		 */
675		delete_from_swap_cache(*pagep);
676		set_page_dirty(*pagep);
677		if (!error) {
678			spin_lock(&info->lock);
679			info->swapped--;
680			spin_unlock(&info->lock);
681			swap_free(swap);
682		}
683	}
684	return error;
685}
686
687/*
688 * Search through swapped inodes to find and replace swap by page.
689 */
690int shmem_unuse(swp_entry_t swap, struct page *page)
691{
692	struct list_head *this, *next;
693	struct shmem_inode_info *info;
694	struct mem_cgroup *memcg;
695	int error = 0;
696
697	/*
698	 * There's a faint possibility that swap page was replaced before
699	 * caller locked it: caller will come back later with the right page.
700	 */
701	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
702		goto out;
703
704	/*
705	 * Charge page using GFP_KERNEL while we can wait, before taking
706	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
707	 * Charged back to the user (not to caller) when swap account is used.
708	 */
709	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
710	if (error)
711		goto out;
712	/* No radix_tree_preload: swap entry keeps a place for page in tree */
713	error = -EAGAIN;
714
715	mutex_lock(&shmem_swaplist_mutex);
716	list_for_each_safe(this, next, &shmem_swaplist) {
717		info = list_entry(this, struct shmem_inode_info, swaplist);
718		if (info->swapped)
719			error = shmem_unuse_inode(info, swap, &page);
720		else
721			list_del_init(&info->swaplist);
722		cond_resched();
723		if (error != -EAGAIN)
724			break;
725		/* found nothing in this: move on to search the next */
726	}
727	mutex_unlock(&shmem_swaplist_mutex);
728
729	if (error) {
730		if (error != -ENOMEM)
731			error = 0;
732		mem_cgroup_cancel_charge(page, memcg);
733	} else
734		mem_cgroup_commit_charge(page, memcg, true);
735out:
736	unlock_page(page);
737	page_cache_release(page);
738	return error;
739}
740
741/*
742 * Move the page from the page cache to the swap cache.
743 */
744static int shmem_writepage(struct page *page, struct writeback_control *wbc)
745{
746	struct shmem_inode_info *info;
747	struct address_space *mapping;
748	struct inode *inode;
749	swp_entry_t swap;
750	pgoff_t index;
751
752	BUG_ON(!PageLocked(page));
753	mapping = page->mapping;
754	index = page->index;
755	inode = mapping->host;
756	info = SHMEM_I(inode);
757	if (info->flags & VM_LOCKED)
758		goto redirty;
759	if (!total_swap_pages)
760		goto redirty;
761
762	/*
763	 * Our capabilities prevent regular writeback or sync from ever calling
764	 * shmem_writepage; but a stacking filesystem might use ->writepage of
765	 * its underlying filesystem, in which case tmpfs should write out to
766	 * swap only in response to memory pressure, and not for the writeback
767	 * threads or sync.
768	 */
769	if (!wbc->for_reclaim) {
770		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
771		goto redirty;
772	}
773
774	/*
775	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
776	 * value into swapfile.c, the only way we can correctly account for a
777	 * fallocated page arriving here is now to initialize it and write it.
778	 *
779	 * That's okay for a page already fallocated earlier, but if we have
780	 * not yet completed the fallocation, then (a) we want to keep track
781	 * of this page in case we have to undo it, and (b) it may not be a
782	 * good idea to continue anyway, once we're pushing into swap.  So
783	 * reactivate the page, and let shmem_fallocate() quit when too many.
784	 */
785	if (!PageUptodate(page)) {
786		if (inode->i_private) {
787			struct shmem_falloc *shmem_falloc;
788			spin_lock(&inode->i_lock);
789			shmem_falloc = inode->i_private;
790			if (shmem_falloc &&
791			    !shmem_falloc->waitq &&
792			    index >= shmem_falloc->start &&
793			    index < shmem_falloc->next)
794				shmem_falloc->nr_unswapped++;
795			else
796				shmem_falloc = NULL;
797			spin_unlock(&inode->i_lock);
798			if (shmem_falloc)
799				goto redirty;
800		}
801		clear_highpage(page);
802		flush_dcache_page(page);
803		SetPageUptodate(page);
804	}
805
806	swap = get_swap_page();
807	if (!swap.val)
808		goto redirty;
809
810	/*
811	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
812	 * if it's not already there.  Do it now before the page is
813	 * moved to swap cache, when its pagelock no longer protects
814	 * the inode from eviction.  But don't unlock the mutex until
815	 * we've incremented swapped, because shmem_unuse_inode() will
816	 * prune a !swapped inode from the swaplist under this mutex.
817	 */
818	mutex_lock(&shmem_swaplist_mutex);
819	if (list_empty(&info->swaplist))
820		list_add_tail(&info->swaplist, &shmem_swaplist);
821
822	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
823		swap_shmem_alloc(swap);
824		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
825
826		spin_lock(&info->lock);
827		info->swapped++;
828		shmem_recalc_inode(inode);
829		spin_unlock(&info->lock);
830
831		mutex_unlock(&shmem_swaplist_mutex);
832		BUG_ON(page_mapped(page));
833		swap_writepage(page, wbc);
834		return 0;
835	}
836
837	mutex_unlock(&shmem_swaplist_mutex);
838	swapcache_free(swap);
839redirty:
840	set_page_dirty(page);
841	if (wbc->for_reclaim)
842		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
843	unlock_page(page);
844	return 0;
845}
846
847#ifdef CONFIG_NUMA
848#ifdef CONFIG_TMPFS
849static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
850{
851	char buffer[64];
852
853	if (!mpol || mpol->mode == MPOL_DEFAULT)
854		return;		/* show nothing */
855
856	mpol_to_str(buffer, sizeof(buffer), mpol);
857
858	seq_printf(seq, ",mpol=%s", buffer);
859}
860
861static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
862{
863	struct mempolicy *mpol = NULL;
864	if (sbinfo->mpol) {
865		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
866		mpol = sbinfo->mpol;
867		mpol_get(mpol);
868		spin_unlock(&sbinfo->stat_lock);
869	}
870	return mpol;
871}
872#endif /* CONFIG_TMPFS */
873
874static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
875			struct shmem_inode_info *info, pgoff_t index)
876{
877	struct vm_area_struct pvma;
878	struct page *page;
879
880	/* Create a pseudo vma that just contains the policy */
881	pvma.vm_start = 0;
882	/* Bias interleave by inode number to distribute better across nodes */
883	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
884	pvma.vm_ops = NULL;
885	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
886
887	page = swapin_readahead(swap, gfp, &pvma, 0);
888
889	/* Drop reference taken by mpol_shared_policy_lookup() */
890	mpol_cond_put(pvma.vm_policy);
891
892	return page;
893}
894
895static struct page *shmem_alloc_page(gfp_t gfp,
896			struct shmem_inode_info *info, pgoff_t index)
897{
898	struct vm_area_struct pvma;
899	struct page *page;
900
901	/* Create a pseudo vma that just contains the policy */
902	pvma.vm_start = 0;
903	/* Bias interleave by inode number to distribute better across nodes */
904	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
905	pvma.vm_ops = NULL;
906	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
907
908	page = alloc_page_vma(gfp, &pvma, 0);
909
910	/* Drop reference taken by mpol_shared_policy_lookup() */
911	mpol_cond_put(pvma.vm_policy);
912
913	return page;
914}
915#else /* !CONFIG_NUMA */
916#ifdef CONFIG_TMPFS
917static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
918{
919}
920#endif /* CONFIG_TMPFS */
921
922static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
923			struct shmem_inode_info *info, pgoff_t index)
924{
925	return swapin_readahead(swap, gfp, NULL, 0);
926}
927
928static inline struct page *shmem_alloc_page(gfp_t gfp,
929			struct shmem_inode_info *info, pgoff_t index)
930{
931	return alloc_page(gfp);
932}
933#endif /* CONFIG_NUMA */
934
935#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
936static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
937{
938	return NULL;
939}
940#endif
941
942/*
943 * When a page is moved from swapcache to shmem filecache (either by the
944 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
945 * shmem_unuse_inode()), it may have been read in earlier from swap, in
946 * ignorance of the mapping it belongs to.  If that mapping has special
947 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
948 * we may need to copy to a suitable page before moving to filecache.
949 *
950 * In a future release, this may well be extended to respect cpuset and
951 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
952 * but for now it is a simple matter of zone.
953 */
954static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
955{
956	return page_zonenum(page) > gfp_zone(gfp);
957}
958
959static int shmem_replace_page(struct page **pagep, gfp_t gfp,
960				struct shmem_inode_info *info, pgoff_t index)
961{
962	struct page *oldpage, *newpage;
963	struct address_space *swap_mapping;
964	pgoff_t swap_index;
965	int error;
966
967	oldpage = *pagep;
968	swap_index = page_private(oldpage);
969	swap_mapping = page_mapping(oldpage);
970
971	/*
972	 * We have arrived here because our zones are constrained, so don't
973	 * limit chance of success by further cpuset and node constraints.
974	 */
975	gfp &= ~GFP_CONSTRAINT_MASK;
976	newpage = shmem_alloc_page(gfp, info, index);
977	if (!newpage)
978		return -ENOMEM;
979
980	page_cache_get(newpage);
981	copy_highpage(newpage, oldpage);
982	flush_dcache_page(newpage);
983
984	__set_page_locked(newpage);
985	SetPageUptodate(newpage);
986	SetPageSwapBacked(newpage);
987	set_page_private(newpage, swap_index);
988	SetPageSwapCache(newpage);
989
990	/*
991	 * Our caller will very soon move newpage out of swapcache, but it's
992	 * a nice clean interface for us to replace oldpage by newpage there.
993	 */
994	spin_lock_irq(&swap_mapping->tree_lock);
995	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
996								   newpage);
997	if (!error) {
998		__inc_zone_page_state(newpage, NR_FILE_PAGES);
999		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1000	}
1001	spin_unlock_irq(&swap_mapping->tree_lock);
1002
1003	if (unlikely(error)) {
1004		/*
1005		 * Is this possible?  I think not, now that our callers check
1006		 * both PageSwapCache and page_private after getting page lock;
1007		 * but be defensive.  Reverse old to newpage for clear and free.
1008		 */
1009		oldpage = newpage;
1010	} else {
1011		mem_cgroup_migrate(oldpage, newpage, true);
1012		lru_cache_add_anon(newpage);
1013		*pagep = newpage;
1014	}
1015
1016	ClearPageSwapCache(oldpage);
1017	set_page_private(oldpage, 0);
1018
1019	unlock_page(oldpage);
1020	page_cache_release(oldpage);
1021	page_cache_release(oldpage);
1022	return error;
1023}
1024
1025/*
1026 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1027 *
1028 * If we allocate a new one we do not mark it dirty. That's up to the
1029 * vm. If we swap it in we mark it dirty since we also free the swap
1030 * entry since a page cannot live in both the swap and page cache
1031 */
1032static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1033	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1034{
1035	struct address_space *mapping = inode->i_mapping;
1036	struct shmem_inode_info *info;
1037	struct shmem_sb_info *sbinfo;
1038	struct mem_cgroup *memcg;
1039	struct page *page;
1040	swp_entry_t swap;
1041	int error;
1042	int once = 0;
1043	int alloced = 0;
1044
1045	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1046		return -EFBIG;
1047repeat:
1048	swap.val = 0;
1049	page = find_lock_entry(mapping, index);
1050	if (radix_tree_exceptional_entry(page)) {
1051		swap = radix_to_swp_entry(page);
1052		page = NULL;
1053	}
1054
1055	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1056	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1057		error = -EINVAL;
1058		goto failed;
1059	}
1060
1061	if (page && sgp == SGP_WRITE)
1062		mark_page_accessed(page);
1063
1064	/* fallocated page? */
1065	if (page && !PageUptodate(page)) {
1066		if (sgp != SGP_READ)
1067			goto clear;
1068		unlock_page(page);
1069		page_cache_release(page);
1070		page = NULL;
1071	}
1072	if (page || (sgp == SGP_READ && !swap.val)) {
1073		*pagep = page;
1074		return 0;
1075	}
1076
1077	/*
1078	 * Fast cache lookup did not find it:
1079	 * bring it back from swap or allocate.
1080	 */
1081	info = SHMEM_I(inode);
1082	sbinfo = SHMEM_SB(inode->i_sb);
1083
1084	if (swap.val) {
1085		/* Look it up and read it in.. */
1086		page = lookup_swap_cache(swap);
1087		if (!page) {
1088			/* here we actually do the io */
1089			if (fault_type)
1090				*fault_type |= VM_FAULT_MAJOR;
1091			page = shmem_swapin(swap, gfp, info, index);
1092			if (!page) {
1093				error = -ENOMEM;
1094				goto failed;
1095			}
1096		}
1097
1098		/* We have to do this with page locked to prevent races */
1099		lock_page(page);
1100		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1101		    !shmem_confirm_swap(mapping, index, swap)) {
1102			error = -EEXIST;	/* try again */
1103			goto unlock;
1104		}
1105		if (!PageUptodate(page)) {
1106			error = -EIO;
1107			goto failed;
1108		}
1109		wait_on_page_writeback(page);
1110
1111		if (shmem_should_replace_page(page, gfp)) {
1112			error = shmem_replace_page(&page, gfp, info, index);
1113			if (error)
1114				goto failed;
1115		}
1116
1117		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1118		if (!error) {
1119			error = shmem_add_to_page_cache(page, mapping, index,
1120						swp_to_radix_entry(swap));
1121			/*
1122			 * We already confirmed swap under page lock, and make
1123			 * no memory allocation here, so usually no possibility
1124			 * of error; but free_swap_and_cache() only trylocks a
1125			 * page, so it is just possible that the entry has been
1126			 * truncated or holepunched since swap was confirmed.
1127			 * shmem_undo_range() will have done some of the
1128			 * unaccounting, now delete_from_swap_cache() will do
1129			 * the rest.
1130			 * Reset swap.val? No, leave it so "failed" goes back to
1131			 * "repeat": reading a hole and writing should succeed.
1132			 */
1133			if (error) {
1134				mem_cgroup_cancel_charge(page, memcg);
1135				delete_from_swap_cache(page);
1136			}
1137		}
1138		if (error)
1139			goto failed;
1140
1141		mem_cgroup_commit_charge(page, memcg, true);
1142
1143		spin_lock(&info->lock);
1144		info->swapped--;
1145		shmem_recalc_inode(inode);
1146		spin_unlock(&info->lock);
1147
1148		if (sgp == SGP_WRITE)
1149			mark_page_accessed(page);
1150
1151		delete_from_swap_cache(page);
1152		set_page_dirty(page);
1153		swap_free(swap);
1154
1155	} else {
1156		if (shmem_acct_block(info->flags)) {
1157			error = -ENOSPC;
1158			goto failed;
1159		}
1160		if (sbinfo->max_blocks) {
1161			if (percpu_counter_compare(&sbinfo->used_blocks,
1162						sbinfo->max_blocks) >= 0) {
1163				error = -ENOSPC;
1164				goto unacct;
1165			}
1166			percpu_counter_inc(&sbinfo->used_blocks);
1167		}
1168
1169		page = shmem_alloc_page(gfp, info, index);
1170		if (!page) {
1171			error = -ENOMEM;
1172			goto decused;
1173		}
1174
1175		__SetPageSwapBacked(page);
1176		__set_page_locked(page);
1177		if (sgp == SGP_WRITE)
1178			__SetPageReferenced(page);
1179
1180		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1181		if (error)
1182			goto decused;
1183		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1184		if (!error) {
1185			error = shmem_add_to_page_cache(page, mapping, index,
1186							NULL);
1187			radix_tree_preload_end();
1188		}
1189		if (error) {
1190			mem_cgroup_cancel_charge(page, memcg);
1191			goto decused;
1192		}
1193		mem_cgroup_commit_charge(page, memcg, false);
1194		lru_cache_add_anon(page);
1195
1196		spin_lock(&info->lock);
1197		info->alloced++;
1198		inode->i_blocks += BLOCKS_PER_PAGE;
1199		shmem_recalc_inode(inode);
1200		spin_unlock(&info->lock);
1201		alloced = true;
1202
1203		/*
1204		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1205		 */
1206		if (sgp == SGP_FALLOC)
1207			sgp = SGP_WRITE;
1208clear:
1209		/*
1210		 * Let SGP_WRITE caller clear ends if write does not fill page;
1211		 * but SGP_FALLOC on a page fallocated earlier must initialize
1212		 * it now, lest undo on failure cancel our earlier guarantee.
1213		 */
1214		if (sgp != SGP_WRITE) {
1215			clear_highpage(page);
1216			flush_dcache_page(page);
1217			SetPageUptodate(page);
1218		}
1219		if (sgp == SGP_DIRTY)
1220			set_page_dirty(page);
1221	}
1222
1223	/* Perhaps the file has been truncated since we checked */
1224	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1225	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1226		error = -EINVAL;
1227		if (alloced)
1228			goto trunc;
1229		else
1230			goto failed;
1231	}
1232	*pagep = page;
1233	return 0;
1234
1235	/*
1236	 * Error recovery.
1237	 */
1238trunc:
1239	info = SHMEM_I(inode);
1240	ClearPageDirty(page);
1241	delete_from_page_cache(page);
1242	spin_lock(&info->lock);
1243	info->alloced--;
1244	inode->i_blocks -= BLOCKS_PER_PAGE;
1245	spin_unlock(&info->lock);
1246decused:
1247	sbinfo = SHMEM_SB(inode->i_sb);
1248	if (sbinfo->max_blocks)
1249		percpu_counter_add(&sbinfo->used_blocks, -1);
1250unacct:
1251	shmem_unacct_blocks(info->flags, 1);
1252failed:
1253	if (swap.val && error != -EINVAL &&
1254	    !shmem_confirm_swap(mapping, index, swap))
1255		error = -EEXIST;
1256unlock:
1257	if (page) {
1258		unlock_page(page);
1259		page_cache_release(page);
1260	}
1261	if (error == -ENOSPC && !once++) {
1262		info = SHMEM_I(inode);
1263		spin_lock(&info->lock);
1264		shmem_recalc_inode(inode);
1265		spin_unlock(&info->lock);
1266		goto repeat;
1267	}
1268	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1269		goto repeat;
1270	return error;
1271}
1272
1273static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1274{
1275	struct inode *inode = file_inode(vma->vm_file);
1276	int error;
1277	int ret = VM_FAULT_LOCKED;
1278
1279	/*
1280	 * Trinity finds that probing a hole which tmpfs is punching can
1281	 * prevent the hole-punch from ever completing: which in turn
1282	 * locks writers out with its hold on i_mutex.  So refrain from
1283	 * faulting pages into the hole while it's being punched.  Although
1284	 * shmem_undo_range() does remove the additions, it may be unable to
1285	 * keep up, as each new page needs its own unmap_mapping_range() call,
1286	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1287	 *
1288	 * It does not matter if we sometimes reach this check just before the
1289	 * hole-punch begins, so that one fault then races with the punch:
1290	 * we just need to make racing faults a rare case.
1291	 *
1292	 * The implementation below would be much simpler if we just used a
1293	 * standard mutex or completion: but we cannot take i_mutex in fault,
1294	 * and bloating every shmem inode for this unlikely case would be sad.
1295	 */
1296	if (unlikely(inode->i_private)) {
1297		struct shmem_falloc *shmem_falloc;
1298
1299		spin_lock(&inode->i_lock);
1300		shmem_falloc = inode->i_private;
1301		if (shmem_falloc &&
1302		    shmem_falloc->waitq &&
1303		    vmf->pgoff >= shmem_falloc->start &&
1304		    vmf->pgoff < shmem_falloc->next) {
1305			wait_queue_head_t *shmem_falloc_waitq;
1306			DEFINE_WAIT(shmem_fault_wait);
1307
1308			ret = VM_FAULT_NOPAGE;
1309			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1310			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1311				/* It's polite to up mmap_sem if we can */
1312				up_read(&vma->vm_mm->mmap_sem);
1313				ret = VM_FAULT_RETRY;
1314			}
1315
1316			shmem_falloc_waitq = shmem_falloc->waitq;
1317			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1318					TASK_UNINTERRUPTIBLE);
1319			spin_unlock(&inode->i_lock);
1320			schedule();
1321
1322			/*
1323			 * shmem_falloc_waitq points into the shmem_fallocate()
1324			 * stack of the hole-punching task: shmem_falloc_waitq
1325			 * is usually invalid by the time we reach here, but
1326			 * finish_wait() does not dereference it in that case;
1327			 * though i_lock needed lest racing with wake_up_all().
1328			 */
1329			spin_lock(&inode->i_lock);
1330			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1331			spin_unlock(&inode->i_lock);
1332			return ret;
1333		}
1334		spin_unlock(&inode->i_lock);
1335	}
1336
1337	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1338	if (error)
1339		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1340
1341	if (ret & VM_FAULT_MAJOR) {
1342		count_vm_event(PGMAJFAULT);
1343		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1344	}
1345	return ret;
1346}
1347
1348#ifdef CONFIG_NUMA
1349static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1350{
1351	struct inode *inode = file_inode(vma->vm_file);
1352	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1353}
1354
1355static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1356					  unsigned long addr)
1357{
1358	struct inode *inode = file_inode(vma->vm_file);
1359	pgoff_t index;
1360
1361	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1362	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1363}
1364#endif
1365
1366int shmem_lock(struct file *file, int lock, struct user_struct *user)
1367{
1368	struct inode *inode = file_inode(file);
1369	struct shmem_inode_info *info = SHMEM_I(inode);
1370	int retval = -ENOMEM;
1371
1372	spin_lock(&info->lock);
1373	if (lock && !(info->flags & VM_LOCKED)) {
1374		if (!user_shm_lock(inode->i_size, user))
1375			goto out_nomem;
1376		info->flags |= VM_LOCKED;
1377		mapping_set_unevictable(file->f_mapping);
1378	}
1379	if (!lock && (info->flags & VM_LOCKED) && user) {
1380		user_shm_unlock(inode->i_size, user);
1381		info->flags &= ~VM_LOCKED;
1382		mapping_clear_unevictable(file->f_mapping);
1383	}
1384	retval = 0;
1385
1386out_nomem:
1387	spin_unlock(&info->lock);
1388	return retval;
1389}
1390
1391static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1392{
1393	file_accessed(file);
1394	vma->vm_ops = &shmem_vm_ops;
1395	return 0;
1396}
1397
1398static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1399				     umode_t mode, dev_t dev, unsigned long flags)
1400{
1401	struct inode *inode;
1402	struct shmem_inode_info *info;
1403	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1404
1405	if (shmem_reserve_inode(sb))
1406		return NULL;
1407
1408	inode = new_inode(sb);
1409	if (inode) {
1410		inode->i_ino = get_next_ino();
1411		inode_init_owner(inode, dir, mode);
1412		inode->i_blocks = 0;
1413		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1414		inode->i_generation = get_seconds();
1415		info = SHMEM_I(inode);
1416		memset(info, 0, (char *)inode - (char *)info);
1417		spin_lock_init(&info->lock);
1418		info->seals = F_SEAL_SEAL;
1419		info->flags = flags & VM_NORESERVE;
1420		INIT_LIST_HEAD(&info->swaplist);
1421		simple_xattrs_init(&info->xattrs);
1422		cache_no_acl(inode);
1423
1424		switch (mode & S_IFMT) {
1425		default:
1426			inode->i_op = &shmem_special_inode_operations;
1427			init_special_inode(inode, mode, dev);
1428			break;
1429		case S_IFREG:
1430			inode->i_mapping->a_ops = &shmem_aops;
1431			inode->i_op = &shmem_inode_operations;
1432			inode->i_fop = &shmem_file_operations;
1433			mpol_shared_policy_init(&info->policy,
1434						 shmem_get_sbmpol(sbinfo));
1435			break;
1436		case S_IFDIR:
1437			inc_nlink(inode);
1438			/* Some things misbehave if size == 0 on a directory */
1439			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1440			inode->i_op = &shmem_dir_inode_operations;
1441			inode->i_fop = &simple_dir_operations;
1442			break;
1443		case S_IFLNK:
1444			/*
1445			 * Must not load anything in the rbtree,
1446			 * mpol_free_shared_policy will not be called.
1447			 */
1448			mpol_shared_policy_init(&info->policy, NULL);
1449			break;
1450		}
1451	} else
1452		shmem_free_inode(sb);
1453	return inode;
1454}
1455
1456bool shmem_mapping(struct address_space *mapping)
1457{
1458	if (!mapping->host)
1459		return false;
1460
1461	return mapping->host->i_sb->s_op == &shmem_ops;
1462}
1463
1464#ifdef CONFIG_TMPFS
1465static const struct inode_operations shmem_symlink_inode_operations;
1466static const struct inode_operations shmem_short_symlink_operations;
1467
1468#ifdef CONFIG_TMPFS_XATTR
1469static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1470#else
1471#define shmem_initxattrs NULL
1472#endif
1473
1474static int
1475shmem_write_begin(struct file *file, struct address_space *mapping,
1476			loff_t pos, unsigned len, unsigned flags,
1477			struct page **pagep, void **fsdata)
1478{
1479	struct inode *inode = mapping->host;
1480	struct shmem_inode_info *info = SHMEM_I(inode);
1481	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1482
1483	/* i_mutex is held by caller */
1484	if (unlikely(info->seals)) {
1485		if (info->seals & F_SEAL_WRITE)
1486			return -EPERM;
1487		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1488			return -EPERM;
1489	}
1490
1491	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1492}
1493
1494static int
1495shmem_write_end(struct file *file, struct address_space *mapping,
1496			loff_t pos, unsigned len, unsigned copied,
1497			struct page *page, void *fsdata)
1498{
1499	struct inode *inode = mapping->host;
1500
1501	if (pos + copied > inode->i_size)
1502		i_size_write(inode, pos + copied);
1503
1504	if (!PageUptodate(page)) {
1505		if (copied < PAGE_CACHE_SIZE) {
1506			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1507			zero_user_segments(page, 0, from,
1508					from + copied, PAGE_CACHE_SIZE);
1509		}
1510		SetPageUptodate(page);
1511	}
1512	set_page_dirty(page);
1513	unlock_page(page);
1514	page_cache_release(page);
1515
1516	return copied;
1517}
1518
1519static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1520{
1521	struct file *file = iocb->ki_filp;
1522	struct inode *inode = file_inode(file);
1523	struct address_space *mapping = inode->i_mapping;
1524	pgoff_t index;
1525	unsigned long offset;
1526	enum sgp_type sgp = SGP_READ;
1527	int error = 0;
1528	ssize_t retval = 0;
1529	loff_t *ppos = &iocb->ki_pos;
1530
1531	/*
1532	 * Might this read be for a stacking filesystem?  Then when reading
1533	 * holes of a sparse file, we actually need to allocate those pages,
1534	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1535	 */
1536	if (!iter_is_iovec(to))
1537		sgp = SGP_DIRTY;
1538
1539	index = *ppos >> PAGE_CACHE_SHIFT;
1540	offset = *ppos & ~PAGE_CACHE_MASK;
1541
1542	for (;;) {
1543		struct page *page = NULL;
1544		pgoff_t end_index;
1545		unsigned long nr, ret;
1546		loff_t i_size = i_size_read(inode);
1547
1548		end_index = i_size >> PAGE_CACHE_SHIFT;
1549		if (index > end_index)
1550			break;
1551		if (index == end_index) {
1552			nr = i_size & ~PAGE_CACHE_MASK;
1553			if (nr <= offset)
1554				break;
1555		}
1556
1557		error = shmem_getpage(inode, index, &page, sgp, NULL);
1558		if (error) {
1559			if (error == -EINVAL)
1560				error = 0;
1561			break;
1562		}
1563		if (page)
1564			unlock_page(page);
1565
1566		/*
1567		 * We must evaluate after, since reads (unlike writes)
1568		 * are called without i_mutex protection against truncate
1569		 */
1570		nr = PAGE_CACHE_SIZE;
1571		i_size = i_size_read(inode);
1572		end_index = i_size >> PAGE_CACHE_SHIFT;
1573		if (index == end_index) {
1574			nr = i_size & ~PAGE_CACHE_MASK;
1575			if (nr <= offset) {
1576				if (page)
1577					page_cache_release(page);
1578				break;
1579			}
1580		}
1581		nr -= offset;
1582
1583		if (page) {
1584			/*
1585			 * If users can be writing to this page using arbitrary
1586			 * virtual addresses, take care about potential aliasing
1587			 * before reading the page on the kernel side.
1588			 */
1589			if (mapping_writably_mapped(mapping))
1590				flush_dcache_page(page);
1591			/*
1592			 * Mark the page accessed if we read the beginning.
1593			 */
1594			if (!offset)
1595				mark_page_accessed(page);
1596		} else {
1597			page = ZERO_PAGE(0);
1598			page_cache_get(page);
1599		}
1600
1601		/*
1602		 * Ok, we have the page, and it's up-to-date, so
1603		 * now we can copy it to user space...
1604		 */
1605		ret = copy_page_to_iter(page, offset, nr, to);
1606		retval += ret;
1607		offset += ret;
1608		index += offset >> PAGE_CACHE_SHIFT;
1609		offset &= ~PAGE_CACHE_MASK;
1610
1611		page_cache_release(page);
1612		if (!iov_iter_count(to))
1613			break;
1614		if (ret < nr) {
1615			error = -EFAULT;
1616			break;
1617		}
1618		cond_resched();
1619	}
1620
1621	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1622	file_accessed(file);
1623	return retval ? retval : error;
1624}
1625
1626static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1627				struct pipe_inode_info *pipe, size_t len,
1628				unsigned int flags)
1629{
1630	struct address_space *mapping = in->f_mapping;
1631	struct inode *inode = mapping->host;
1632	unsigned int loff, nr_pages, req_pages;
1633	struct page *pages[PIPE_DEF_BUFFERS];
1634	struct partial_page partial[PIPE_DEF_BUFFERS];
1635	struct page *page;
1636	pgoff_t index, end_index;
1637	loff_t isize, left;
1638	int error, page_nr;
1639	struct splice_pipe_desc spd = {
1640		.pages = pages,
1641		.partial = partial,
1642		.nr_pages_max = PIPE_DEF_BUFFERS,
1643		.flags = flags,
1644		.ops = &page_cache_pipe_buf_ops,
1645		.spd_release = spd_release_page,
1646	};
1647
1648	isize = i_size_read(inode);
1649	if (unlikely(*ppos >= isize))
1650		return 0;
1651
1652	left = isize - *ppos;
1653	if (unlikely(left < len))
1654		len = left;
1655
1656	if (splice_grow_spd(pipe, &spd))
1657		return -ENOMEM;
1658
1659	index = *ppos >> PAGE_CACHE_SHIFT;
1660	loff = *ppos & ~PAGE_CACHE_MASK;
1661	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1662	nr_pages = min(req_pages, spd.nr_pages_max);
1663
1664	spd.nr_pages = find_get_pages_contig(mapping, index,
1665						nr_pages, spd.pages);
1666	index += spd.nr_pages;
1667	error = 0;
1668
1669	while (spd.nr_pages < nr_pages) {
1670		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1671		if (error)
1672			break;
1673		unlock_page(page);
1674		spd.pages[spd.nr_pages++] = page;
1675		index++;
1676	}
1677
1678	index = *ppos >> PAGE_CACHE_SHIFT;
1679	nr_pages = spd.nr_pages;
1680	spd.nr_pages = 0;
1681
1682	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1683		unsigned int this_len;
1684
1685		if (!len)
1686			break;
1687
1688		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1689		page = spd.pages[page_nr];
1690
1691		if (!PageUptodate(page) || page->mapping != mapping) {
1692			error = shmem_getpage(inode, index, &page,
1693							SGP_CACHE, NULL);
1694			if (error)
1695				break;
1696			unlock_page(page);
1697			page_cache_release(spd.pages[page_nr]);
1698			spd.pages[page_nr] = page;
1699		}
1700
1701		isize = i_size_read(inode);
1702		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1703		if (unlikely(!isize || index > end_index))
1704			break;
1705
1706		if (end_index == index) {
1707			unsigned int plen;
1708
1709			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1710			if (plen <= loff)
1711				break;
1712
1713			this_len = min(this_len, plen - loff);
1714			len = this_len;
1715		}
1716
1717		spd.partial[page_nr].offset = loff;
1718		spd.partial[page_nr].len = this_len;
1719		len -= this_len;
1720		loff = 0;
1721		spd.nr_pages++;
1722		index++;
1723	}
1724
1725	while (page_nr < nr_pages)
1726		page_cache_release(spd.pages[page_nr++]);
1727
1728	if (spd.nr_pages)
1729		error = splice_to_pipe(pipe, &spd);
1730
1731	splice_shrink_spd(&spd);
1732
1733	if (error > 0) {
1734		*ppos += error;
1735		file_accessed(in);
1736	}
1737	return error;
1738}
1739
1740/*
1741 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1742 */
1743static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1744				    pgoff_t index, pgoff_t end, int whence)
1745{
1746	struct page *page;
1747	struct pagevec pvec;
1748	pgoff_t indices[PAGEVEC_SIZE];
1749	bool done = false;
1750	int i;
1751
1752	pagevec_init(&pvec, 0);
1753	pvec.nr = 1;		/* start small: we may be there already */
1754	while (!done) {
1755		pvec.nr = find_get_entries(mapping, index,
1756					pvec.nr, pvec.pages, indices);
1757		if (!pvec.nr) {
1758			if (whence == SEEK_DATA)
1759				index = end;
1760			break;
1761		}
1762		for (i = 0; i < pvec.nr; i++, index++) {
1763			if (index < indices[i]) {
1764				if (whence == SEEK_HOLE) {
1765					done = true;
1766					break;
1767				}
1768				index = indices[i];
1769			}
1770			page = pvec.pages[i];
1771			if (page && !radix_tree_exceptional_entry(page)) {
1772				if (!PageUptodate(page))
1773					page = NULL;
1774			}
1775			if (index >= end ||
1776			    (page && whence == SEEK_DATA) ||
1777			    (!page && whence == SEEK_HOLE)) {
1778				done = true;
1779				break;
1780			}
1781		}
1782		pagevec_remove_exceptionals(&pvec);
1783		pagevec_release(&pvec);
1784		pvec.nr = PAGEVEC_SIZE;
1785		cond_resched();
1786	}
1787	return index;
1788}
1789
1790static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1791{
1792	struct address_space *mapping = file->f_mapping;
1793	struct inode *inode = mapping->host;
1794	pgoff_t start, end;
1795	loff_t new_offset;
1796
1797	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1798		return generic_file_llseek_size(file, offset, whence,
1799					MAX_LFS_FILESIZE, i_size_read(inode));
1800	mutex_lock(&inode->i_mutex);
1801	/* We're holding i_mutex so we can access i_size directly */
1802
1803	if (offset < 0)
1804		offset = -EINVAL;
1805	else if (offset >= inode->i_size)
1806		offset = -ENXIO;
1807	else {
1808		start = offset >> PAGE_CACHE_SHIFT;
1809		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1810		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1811		new_offset <<= PAGE_CACHE_SHIFT;
1812		if (new_offset > offset) {
1813			if (new_offset < inode->i_size)
1814				offset = new_offset;
1815			else if (whence == SEEK_DATA)
1816				offset = -ENXIO;
1817			else
1818				offset = inode->i_size;
1819		}
1820	}
1821
1822	if (offset >= 0)
1823		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1824	mutex_unlock(&inode->i_mutex);
1825	return offset;
1826}
1827
1828/*
1829 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1830 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1831 */
1832#define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1833#define LAST_SCAN               4       /* about 150ms max */
1834
1835static void shmem_tag_pins(struct address_space *mapping)
1836{
1837	struct radix_tree_iter iter;
1838	void **slot;
1839	pgoff_t start;
1840	struct page *page;
1841
1842	lru_add_drain();
1843	start = 0;
1844	rcu_read_lock();
1845
1846restart:
1847	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1848		page = radix_tree_deref_slot(slot);
1849		if (!page || radix_tree_exception(page)) {
1850			if (radix_tree_deref_retry(page))
1851				goto restart;
1852		} else if (page_count(page) - page_mapcount(page) > 1) {
1853			spin_lock_irq(&mapping->tree_lock);
1854			radix_tree_tag_set(&mapping->page_tree, iter.index,
1855					   SHMEM_TAG_PINNED);
1856			spin_unlock_irq(&mapping->tree_lock);
1857		}
1858
1859		if (need_resched()) {
1860			cond_resched_rcu();
1861			start = iter.index + 1;
1862			goto restart;
1863		}
1864	}
1865	rcu_read_unlock();
1866}
1867
1868/*
1869 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1870 * via get_user_pages(), drivers might have some pending I/O without any active
1871 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1872 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1873 * them to be dropped.
1874 * The caller must guarantee that no new user will acquire writable references
1875 * to those pages to avoid races.
1876 */
1877static int shmem_wait_for_pins(struct address_space *mapping)
1878{
1879	struct radix_tree_iter iter;
1880	void **slot;
1881	pgoff_t start;
1882	struct page *page;
1883	int error, scan;
1884
1885	shmem_tag_pins(mapping);
1886
1887	error = 0;
1888	for (scan = 0; scan <= LAST_SCAN; scan++) {
1889		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1890			break;
1891
1892		if (!scan)
1893			lru_add_drain_all();
1894		else if (schedule_timeout_killable((HZ << scan) / 200))
1895			scan = LAST_SCAN;
1896
1897		start = 0;
1898		rcu_read_lock();
1899restart:
1900		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1901					   start, SHMEM_TAG_PINNED) {
1902
1903			page = radix_tree_deref_slot(slot);
1904			if (radix_tree_exception(page)) {
1905				if (radix_tree_deref_retry(page))
1906					goto restart;
1907
1908				page = NULL;
1909			}
1910
1911			if (page &&
1912			    page_count(page) - page_mapcount(page) != 1) {
1913				if (scan < LAST_SCAN)
1914					goto continue_resched;
1915
1916				/*
1917				 * On the last scan, we clean up all those tags
1918				 * we inserted; but make a note that we still
1919				 * found pages pinned.
1920				 */
1921				error = -EBUSY;
1922			}
1923
1924			spin_lock_irq(&mapping->tree_lock);
1925			radix_tree_tag_clear(&mapping->page_tree,
1926					     iter.index, SHMEM_TAG_PINNED);
1927			spin_unlock_irq(&mapping->tree_lock);
1928continue_resched:
1929			if (need_resched()) {
1930				cond_resched_rcu();
1931				start = iter.index + 1;
1932				goto restart;
1933			}
1934		}
1935		rcu_read_unlock();
1936	}
1937
1938	return error;
1939}
1940
1941#define F_ALL_SEALS (F_SEAL_SEAL | \
1942		     F_SEAL_SHRINK | \
1943		     F_SEAL_GROW | \
1944		     F_SEAL_WRITE)
1945
1946int shmem_add_seals(struct file *file, unsigned int seals)
1947{
1948	struct inode *inode = file_inode(file);
1949	struct shmem_inode_info *info = SHMEM_I(inode);
1950	int error;
1951
1952	/*
1953	 * SEALING
1954	 * Sealing allows multiple parties to share a shmem-file but restrict
1955	 * access to a specific subset of file operations. Seals can only be
1956	 * added, but never removed. This way, mutually untrusted parties can
1957	 * share common memory regions with a well-defined policy. A malicious
1958	 * peer can thus never perform unwanted operations on a shared object.
1959	 *
1960	 * Seals are only supported on special shmem-files and always affect
1961	 * the whole underlying inode. Once a seal is set, it may prevent some
1962	 * kinds of access to the file. Currently, the following seals are
1963	 * defined:
1964	 *   SEAL_SEAL: Prevent further seals from being set on this file
1965	 *   SEAL_SHRINK: Prevent the file from shrinking
1966	 *   SEAL_GROW: Prevent the file from growing
1967	 *   SEAL_WRITE: Prevent write access to the file
1968	 *
1969	 * As we don't require any trust relationship between two parties, we
1970	 * must prevent seals from being removed. Therefore, sealing a file
1971	 * only adds a given set of seals to the file, it never touches
1972	 * existing seals. Furthermore, the "setting seals"-operation can be
1973	 * sealed itself, which basically prevents any further seal from being
1974	 * added.
1975	 *
1976	 * Semantics of sealing are only defined on volatile files. Only
1977	 * anonymous shmem files support sealing. More importantly, seals are
1978	 * never written to disk. Therefore, there's no plan to support it on
1979	 * other file types.
1980	 */
1981
1982	if (file->f_op != &shmem_file_operations)
1983		return -EINVAL;
1984	if (!(file->f_mode & FMODE_WRITE))
1985		return -EPERM;
1986	if (seals & ~(unsigned int)F_ALL_SEALS)
1987		return -EINVAL;
1988
1989	mutex_lock(&inode->i_mutex);
1990
1991	if (info->seals & F_SEAL_SEAL) {
1992		error = -EPERM;
1993		goto unlock;
1994	}
1995
1996	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
1997		error = mapping_deny_writable(file->f_mapping);
1998		if (error)
1999			goto unlock;
2000
2001		error = shmem_wait_for_pins(file->f_mapping);
2002		if (error) {
2003			mapping_allow_writable(file->f_mapping);
2004			goto unlock;
2005		}
2006	}
2007
2008	info->seals |= seals;
2009	error = 0;
2010
2011unlock:
2012	mutex_unlock(&inode->i_mutex);
2013	return error;
2014}
2015EXPORT_SYMBOL_GPL(shmem_add_seals);
2016
2017int shmem_get_seals(struct file *file)
2018{
2019	if (file->f_op != &shmem_file_operations)
2020		return -EINVAL;
2021
2022	return SHMEM_I(file_inode(file))->seals;
2023}
2024EXPORT_SYMBOL_GPL(shmem_get_seals);
2025
2026long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2027{
2028	long error;
2029
2030	switch (cmd) {
2031	case F_ADD_SEALS:
2032		/* disallow upper 32bit */
2033		if (arg > UINT_MAX)
2034			return -EINVAL;
2035
2036		error = shmem_add_seals(file, arg);
2037		break;
2038	case F_GET_SEALS:
2039		error = shmem_get_seals(file);
2040		break;
2041	default:
2042		error = -EINVAL;
2043		break;
2044	}
2045
2046	return error;
2047}
2048
2049static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2050							 loff_t len)
2051{
2052	struct inode *inode = file_inode(file);
2053	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2054	struct shmem_inode_info *info = SHMEM_I(inode);
2055	struct shmem_falloc shmem_falloc;
2056	pgoff_t start, index, end;
2057	int error;
2058
2059	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2060		return -EOPNOTSUPP;
2061
2062	mutex_lock(&inode->i_mutex);
2063
2064	if (mode & FALLOC_FL_PUNCH_HOLE) {
2065		struct address_space *mapping = file->f_mapping;
2066		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2067		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2068		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2069
2070		/* protected by i_mutex */
2071		if (info->seals & F_SEAL_WRITE) {
2072			error = -EPERM;
2073			goto out;
2074		}
2075
2076		shmem_falloc.waitq = &shmem_falloc_waitq;
2077		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2078		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2079		spin_lock(&inode->i_lock);
2080		inode->i_private = &shmem_falloc;
2081		spin_unlock(&inode->i_lock);
2082
2083		if ((u64)unmap_end > (u64)unmap_start)
2084			unmap_mapping_range(mapping, unmap_start,
2085					    1 + unmap_end - unmap_start, 0);
2086		shmem_truncate_range(inode, offset, offset + len - 1);
2087		/* No need to unmap again: hole-punching leaves COWed pages */
2088
2089		spin_lock(&inode->i_lock);
2090		inode->i_private = NULL;
2091		wake_up_all(&shmem_falloc_waitq);
2092		spin_unlock(&inode->i_lock);
2093		error = 0;
2094		goto out;
2095	}
2096
2097	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2098	error = inode_newsize_ok(inode, offset + len);
2099	if (error)
2100		goto out;
2101
2102	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2103		error = -EPERM;
2104		goto out;
2105	}
2106
2107	start = offset >> PAGE_CACHE_SHIFT;
2108	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2109	/* Try to avoid a swapstorm if len is impossible to satisfy */
2110	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2111		error = -ENOSPC;
2112		goto out;
2113	}
2114
2115	shmem_falloc.waitq = NULL;
2116	shmem_falloc.start = start;
2117	shmem_falloc.next  = start;
2118	shmem_falloc.nr_falloced = 0;
2119	shmem_falloc.nr_unswapped = 0;
2120	spin_lock(&inode->i_lock);
2121	inode->i_private = &shmem_falloc;
2122	spin_unlock(&inode->i_lock);
2123
2124	for (index = start; index < end; index++) {
2125		struct page *page;
2126
2127		/*
2128		 * Good, the fallocate(2) manpage permits EINTR: we may have
2129		 * been interrupted because we are using up too much memory.
2130		 */
2131		if (signal_pending(current))
2132			error = -EINTR;
2133		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2134			error = -ENOMEM;
2135		else
2136			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2137									NULL);
2138		if (error) {
2139			/* Remove the !PageUptodate pages we added */
2140			shmem_undo_range(inode,
2141				(loff_t)start << PAGE_CACHE_SHIFT,
2142				(loff_t)index << PAGE_CACHE_SHIFT, true);
2143			goto undone;
2144		}
2145
2146		/*
2147		 * Inform shmem_writepage() how far we have reached.
2148		 * No need for lock or barrier: we have the page lock.
2149		 */
2150		shmem_falloc.next++;
2151		if (!PageUptodate(page))
2152			shmem_falloc.nr_falloced++;
2153
2154		/*
2155		 * If !PageUptodate, leave it that way so that freeable pages
2156		 * can be recognized if we need to rollback on error later.
2157		 * But set_page_dirty so that memory pressure will swap rather
2158		 * than free the pages we are allocating (and SGP_CACHE pages
2159		 * might still be clean: we now need to mark those dirty too).
2160		 */
2161		set_page_dirty(page);
2162		unlock_page(page);
2163		page_cache_release(page);
2164		cond_resched();
2165	}
2166
2167	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2168		i_size_write(inode, offset + len);
2169	inode->i_ctime = CURRENT_TIME;
2170undone:
2171	spin_lock(&inode->i_lock);
2172	inode->i_private = NULL;
2173	spin_unlock(&inode->i_lock);
2174out:
2175	mutex_unlock(&inode->i_mutex);
2176	return error;
2177}
2178
2179static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2180{
2181	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2182
2183	buf->f_type = TMPFS_MAGIC;
2184	buf->f_bsize = PAGE_CACHE_SIZE;
2185	buf->f_namelen = NAME_MAX;
2186	if (sbinfo->max_blocks) {
2187		buf->f_blocks = sbinfo->max_blocks;
2188		buf->f_bavail =
2189		buf->f_bfree  = sbinfo->max_blocks -
2190				percpu_counter_sum(&sbinfo->used_blocks);
2191	}
2192	if (sbinfo->max_inodes) {
2193		buf->f_files = sbinfo->max_inodes;
2194		buf->f_ffree = sbinfo->free_inodes;
2195	}
2196	/* else leave those fields 0 like simple_statfs */
2197	return 0;
2198}
2199
2200/*
2201 * File creation. Allocate an inode, and we're done..
2202 */
2203static int
2204shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2205{
2206	struct inode *inode;
2207	int error = -ENOSPC;
2208
2209	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2210	if (inode) {
2211		error = simple_acl_create(dir, inode);
2212		if (error)
2213			goto out_iput;
2214		error = security_inode_init_security(inode, dir,
2215						     &dentry->d_name,
2216						     shmem_initxattrs, NULL);
2217		if (error && error != -EOPNOTSUPP)
2218			goto out_iput;
2219
2220		error = 0;
2221		dir->i_size += BOGO_DIRENT_SIZE;
2222		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2223		d_instantiate(dentry, inode);
2224		dget(dentry); /* Extra count - pin the dentry in core */
2225	}
2226	return error;
2227out_iput:
2228	iput(inode);
2229	return error;
2230}
2231
2232static int
2233shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2234{
2235	struct inode *inode;
2236	int error = -ENOSPC;
2237
2238	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2239	if (inode) {
2240		error = security_inode_init_security(inode, dir,
2241						     NULL,
2242						     shmem_initxattrs, NULL);
2243		if (error && error != -EOPNOTSUPP)
2244			goto out_iput;
2245		error = simple_acl_create(dir, inode);
2246		if (error)
2247			goto out_iput;
2248		d_tmpfile(dentry, inode);
2249	}
2250	return error;
2251out_iput:
2252	iput(inode);
2253	return error;
2254}
2255
2256static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2257{
2258	int error;
2259
2260	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2261		return error;
2262	inc_nlink(dir);
2263	return 0;
2264}
2265
2266static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2267		bool excl)
2268{
2269	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2270}
2271
2272/*
2273 * Link a file..
2274 */
2275static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2276{
2277	struct inode *inode = d_inode(old_dentry);
2278	int ret;
2279
2280	/*
2281	 * No ordinary (disk based) filesystem counts links as inodes;
2282	 * but each new link needs a new dentry, pinning lowmem, and
2283	 * tmpfs dentries cannot be pruned until they are unlinked.
2284	 */
2285	ret = shmem_reserve_inode(inode->i_sb);
2286	if (ret)
2287		goto out;
2288
2289	dir->i_size += BOGO_DIRENT_SIZE;
2290	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2291	inc_nlink(inode);
2292	ihold(inode);	/* New dentry reference */
2293	dget(dentry);		/* Extra pinning count for the created dentry */
2294	d_instantiate(dentry, inode);
2295out:
2296	return ret;
2297}
2298
2299static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2300{
2301	struct inode *inode = d_inode(dentry);
2302
2303	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2304		shmem_free_inode(inode->i_sb);
2305
2306	dir->i_size -= BOGO_DIRENT_SIZE;
2307	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2308	drop_nlink(inode);
2309	dput(dentry);	/* Undo the count from "create" - this does all the work */
2310	return 0;
2311}
2312
2313static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2314{
2315	if (!simple_empty(dentry))
2316		return -ENOTEMPTY;
2317
2318	drop_nlink(d_inode(dentry));
2319	drop_nlink(dir);
2320	return shmem_unlink(dir, dentry);
2321}
2322
2323static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2324{
2325	bool old_is_dir = d_is_dir(old_dentry);
2326	bool new_is_dir = d_is_dir(new_dentry);
2327
2328	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2329		if (old_is_dir) {
2330			drop_nlink(old_dir);
2331			inc_nlink(new_dir);
2332		} else {
2333			drop_nlink(new_dir);
2334			inc_nlink(old_dir);
2335		}
2336	}
2337	old_dir->i_ctime = old_dir->i_mtime =
2338	new_dir->i_ctime = new_dir->i_mtime =
2339	d_inode(old_dentry)->i_ctime =
2340	d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2341
2342	return 0;
2343}
2344
2345static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2346{
2347	struct dentry *whiteout;
2348	int error;
2349
2350	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2351	if (!whiteout)
2352		return -ENOMEM;
2353
2354	error = shmem_mknod(old_dir, whiteout,
2355			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2356	dput(whiteout);
2357	if (error)
2358		return error;
2359
2360	/*
2361	 * Cheat and hash the whiteout while the old dentry is still in
2362	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2363	 *
2364	 * d_lookup() will consistently find one of them at this point,
2365	 * not sure which one, but that isn't even important.
2366	 */
2367	d_rehash(whiteout);
2368	return 0;
2369}
2370
2371/*
2372 * The VFS layer already does all the dentry stuff for rename,
2373 * we just have to decrement the usage count for the target if
2374 * it exists so that the VFS layer correctly free's it when it
2375 * gets overwritten.
2376 */
2377static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2378{
2379	struct inode *inode = d_inode(old_dentry);
2380	int they_are_dirs = S_ISDIR(inode->i_mode);
2381
2382	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2383		return -EINVAL;
2384
2385	if (flags & RENAME_EXCHANGE)
2386		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2387
2388	if (!simple_empty(new_dentry))
2389		return -ENOTEMPTY;
2390
2391	if (flags & RENAME_WHITEOUT) {
2392		int error;
2393
2394		error = shmem_whiteout(old_dir, old_dentry);
2395		if (error)
2396			return error;
2397	}
2398
2399	if (d_really_is_positive(new_dentry)) {
2400		(void) shmem_unlink(new_dir, new_dentry);
2401		if (they_are_dirs) {
2402			drop_nlink(d_inode(new_dentry));
2403			drop_nlink(old_dir);
2404		}
2405	} else if (they_are_dirs) {
2406		drop_nlink(old_dir);
2407		inc_nlink(new_dir);
2408	}
2409
2410	old_dir->i_size -= BOGO_DIRENT_SIZE;
2411	new_dir->i_size += BOGO_DIRENT_SIZE;
2412	old_dir->i_ctime = old_dir->i_mtime =
2413	new_dir->i_ctime = new_dir->i_mtime =
2414	inode->i_ctime = CURRENT_TIME;
2415	return 0;
2416}
2417
2418static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2419{
2420	int error;
2421	int len;
2422	struct inode *inode;
2423	struct page *page;
2424	char *kaddr;
2425	struct shmem_inode_info *info;
2426
2427	len = strlen(symname) + 1;
2428	if (len > PAGE_CACHE_SIZE)
2429		return -ENAMETOOLONG;
2430
2431	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2432	if (!inode)
2433		return -ENOSPC;
2434
2435	error = security_inode_init_security(inode, dir, &dentry->d_name,
2436					     shmem_initxattrs, NULL);
2437	if (error) {
2438		if (error != -EOPNOTSUPP) {
2439			iput(inode);
2440			return error;
2441		}
2442		error = 0;
2443	}
2444
2445	info = SHMEM_I(inode);
2446	inode->i_size = len-1;
2447	if (len <= SHORT_SYMLINK_LEN) {
2448		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2449		if (!info->symlink) {
2450			iput(inode);
2451			return -ENOMEM;
2452		}
2453		inode->i_op = &shmem_short_symlink_operations;
2454	} else {
2455		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2456		if (error) {
2457			iput(inode);
2458			return error;
2459		}
2460		inode->i_mapping->a_ops = &shmem_aops;
2461		inode->i_op = &shmem_symlink_inode_operations;
2462		kaddr = kmap_atomic(page);
2463		memcpy(kaddr, symname, len);
2464		kunmap_atomic(kaddr);
2465		SetPageUptodate(page);
2466		set_page_dirty(page);
2467		unlock_page(page);
2468		page_cache_release(page);
2469	}
2470	dir->i_size += BOGO_DIRENT_SIZE;
2471	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2472	d_instantiate(dentry, inode);
2473	dget(dentry);
2474	return 0;
2475}
2476
2477static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2478{
2479	nd_set_link(nd, SHMEM_I(d_inode(dentry))->symlink);
2480	return NULL;
2481}
2482
2483static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2484{
2485	struct page *page = NULL;
2486	int error = shmem_getpage(d_inode(dentry), 0, &page, SGP_READ, NULL);
2487	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2488	if (page)
2489		unlock_page(page);
2490	return page;
2491}
2492
2493static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2494{
2495	if (!IS_ERR(nd_get_link(nd))) {
2496		struct page *page = cookie;
2497		kunmap(page);
2498		mark_page_accessed(page);
2499		page_cache_release(page);
2500	}
2501}
2502
2503#ifdef CONFIG_TMPFS_XATTR
2504/*
2505 * Superblocks without xattr inode operations may get some security.* xattr
2506 * support from the LSM "for free". As soon as we have any other xattrs
2507 * like ACLs, we also need to implement the security.* handlers at
2508 * filesystem level, though.
2509 */
2510
2511/*
2512 * Callback for security_inode_init_security() for acquiring xattrs.
2513 */
2514static int shmem_initxattrs(struct inode *inode,
2515			    const struct xattr *xattr_array,
2516			    void *fs_info)
2517{
2518	struct shmem_inode_info *info = SHMEM_I(inode);
2519	const struct xattr *xattr;
2520	struct simple_xattr *new_xattr;
2521	size_t len;
2522
2523	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2524		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2525		if (!new_xattr)
2526			return -ENOMEM;
2527
2528		len = strlen(xattr->name) + 1;
2529		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2530					  GFP_KERNEL);
2531		if (!new_xattr->name) {
2532			kfree(new_xattr);
2533			return -ENOMEM;
2534		}
2535
2536		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2537		       XATTR_SECURITY_PREFIX_LEN);
2538		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2539		       xattr->name, len);
2540
2541		simple_xattr_list_add(&info->xattrs, new_xattr);
2542	}
2543
2544	return 0;
2545}
2546
2547static const struct xattr_handler *shmem_xattr_handlers[] = {
2548#ifdef CONFIG_TMPFS_POSIX_ACL
2549	&posix_acl_access_xattr_handler,
2550	&posix_acl_default_xattr_handler,
2551#endif
2552	NULL
2553};
2554
2555static int shmem_xattr_validate(const char *name)
2556{
2557	struct { const char *prefix; size_t len; } arr[] = {
2558		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2559		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2560	};
2561	int i;
2562
2563	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2564		size_t preflen = arr[i].len;
2565		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2566			if (!name[preflen])
2567				return -EINVAL;
2568			return 0;
2569		}
2570	}
2571	return -EOPNOTSUPP;
2572}
2573
2574static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2575			      void *buffer, size_t size)
2576{
2577	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2578	int err;
2579
2580	/*
2581	 * If this is a request for a synthetic attribute in the system.*
2582	 * namespace use the generic infrastructure to resolve a handler
2583	 * for it via sb->s_xattr.
2584	 */
2585	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2586		return generic_getxattr(dentry, name, buffer, size);
2587
2588	err = shmem_xattr_validate(name);
2589	if (err)
2590		return err;
2591
2592	return simple_xattr_get(&info->xattrs, name, buffer, size);
2593}
2594
2595static int shmem_setxattr(struct dentry *dentry, const char *name,
2596			  const void *value, size_t size, int flags)
2597{
2598	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2599	int err;
2600
2601	/*
2602	 * If this is a request for a synthetic attribute in the system.*
2603	 * namespace use the generic infrastructure to resolve a handler
2604	 * for it via sb->s_xattr.
2605	 */
2606	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2607		return generic_setxattr(dentry, name, value, size, flags);
2608
2609	err = shmem_xattr_validate(name);
2610	if (err)
2611		return err;
2612
2613	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2614}
2615
2616static int shmem_removexattr(struct dentry *dentry, const char *name)
2617{
2618	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2619	int err;
2620
2621	/*
2622	 * If this is a request for a synthetic attribute in the system.*
2623	 * namespace use the generic infrastructure to resolve a handler
2624	 * for it via sb->s_xattr.
2625	 */
2626	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2627		return generic_removexattr(dentry, name);
2628
2629	err = shmem_xattr_validate(name);
2630	if (err)
2631		return err;
2632
2633	return simple_xattr_remove(&info->xattrs, name);
2634}
2635
2636static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2637{
2638	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2639	return simple_xattr_list(&info->xattrs, buffer, size);
2640}
2641#endif /* CONFIG_TMPFS_XATTR */
2642
2643static const struct inode_operations shmem_short_symlink_operations = {
2644	.readlink	= generic_readlink,
2645	.follow_link	= shmem_follow_short_symlink,
2646#ifdef CONFIG_TMPFS_XATTR
2647	.setxattr	= shmem_setxattr,
2648	.getxattr	= shmem_getxattr,
2649	.listxattr	= shmem_listxattr,
2650	.removexattr	= shmem_removexattr,
2651#endif
2652};
2653
2654static const struct inode_operations shmem_symlink_inode_operations = {
2655	.readlink	= generic_readlink,
2656	.follow_link	= shmem_follow_link,
2657	.put_link	= shmem_put_link,
2658#ifdef CONFIG_TMPFS_XATTR
2659	.setxattr	= shmem_setxattr,
2660	.getxattr	= shmem_getxattr,
2661	.listxattr	= shmem_listxattr,
2662	.removexattr	= shmem_removexattr,
2663#endif
2664};
2665
2666static struct dentry *shmem_get_parent(struct dentry *child)
2667{
2668	return ERR_PTR(-ESTALE);
2669}
2670
2671static int shmem_match(struct inode *ino, void *vfh)
2672{
2673	__u32 *fh = vfh;
2674	__u64 inum = fh[2];
2675	inum = (inum << 32) | fh[1];
2676	return ino->i_ino == inum && fh[0] == ino->i_generation;
2677}
2678
2679static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2680		struct fid *fid, int fh_len, int fh_type)
2681{
2682	struct inode *inode;
2683	struct dentry *dentry = NULL;
2684	u64 inum;
2685
2686	if (fh_len < 3)
2687		return NULL;
2688
2689	inum = fid->raw[2];
2690	inum = (inum << 32) | fid->raw[1];
2691
2692	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2693			shmem_match, fid->raw);
2694	if (inode) {
2695		dentry = d_find_alias(inode);
2696		iput(inode);
2697	}
2698
2699	return dentry;
2700}
2701
2702static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2703				struct inode *parent)
2704{
2705	if (*len < 3) {
2706		*len = 3;
2707		return FILEID_INVALID;
2708	}
2709
2710	if (inode_unhashed(inode)) {
2711		/* Unfortunately insert_inode_hash is not idempotent,
2712		 * so as we hash inodes here rather than at creation
2713		 * time, we need a lock to ensure we only try
2714		 * to do it once
2715		 */
2716		static DEFINE_SPINLOCK(lock);
2717		spin_lock(&lock);
2718		if (inode_unhashed(inode))
2719			__insert_inode_hash(inode,
2720					    inode->i_ino + inode->i_generation);
2721		spin_unlock(&lock);
2722	}
2723
2724	fh[0] = inode->i_generation;
2725	fh[1] = inode->i_ino;
2726	fh[2] = ((__u64)inode->i_ino) >> 32;
2727
2728	*len = 3;
2729	return 1;
2730}
2731
2732static const struct export_operations shmem_export_ops = {
2733	.get_parent     = shmem_get_parent,
2734	.encode_fh      = shmem_encode_fh,
2735	.fh_to_dentry	= shmem_fh_to_dentry,
2736};
2737
2738static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2739			       bool remount)
2740{
2741	char *this_char, *value, *rest;
2742	struct mempolicy *mpol = NULL;
2743	uid_t uid;
2744	gid_t gid;
2745
2746	while (options != NULL) {
2747		this_char = options;
2748		for (;;) {
2749			/*
2750			 * NUL-terminate this option: unfortunately,
2751			 * mount options form a comma-separated list,
2752			 * but mpol's nodelist may also contain commas.
2753			 */
2754			options = strchr(options, ',');
2755			if (options == NULL)
2756				break;
2757			options++;
2758			if (!isdigit(*options)) {
2759				options[-1] = '\0';
2760				break;
2761			}
2762		}
2763		if (!*this_char)
2764			continue;
2765		if ((value = strchr(this_char,'=')) != NULL) {
2766			*value++ = 0;
2767		} else {
2768			printk(KERN_ERR
2769			    "tmpfs: No value for mount option '%s'\n",
2770			    this_char);
2771			goto error;
2772		}
2773
2774		if (!strcmp(this_char,"size")) {
2775			unsigned long long size;
2776			size = memparse(value,&rest);
2777			if (*rest == '%') {
2778				size <<= PAGE_SHIFT;
2779				size *= totalram_pages;
2780				do_div(size, 100);
2781				rest++;
2782			}
2783			if (*rest)
2784				goto bad_val;
2785			sbinfo->max_blocks =
2786				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2787		} else if (!strcmp(this_char,"nr_blocks")) {
2788			sbinfo->max_blocks = memparse(value, &rest);
2789			if (*rest)
2790				goto bad_val;
2791		} else if (!strcmp(this_char,"nr_inodes")) {
2792			sbinfo->max_inodes = memparse(value, &rest);
2793			if (*rest)
2794				goto bad_val;
2795		} else if (!strcmp(this_char,"mode")) {
2796			if (remount)
2797				continue;
2798			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2799			if (*rest)
2800				goto bad_val;
2801		} else if (!strcmp(this_char,"uid")) {
2802			if (remount)
2803				continue;
2804			uid = simple_strtoul(value, &rest, 0);
2805			if (*rest)
2806				goto bad_val;
2807			sbinfo->uid = make_kuid(current_user_ns(), uid);
2808			if (!uid_valid(sbinfo->uid))
2809				goto bad_val;
2810		} else if (!strcmp(this_char,"gid")) {
2811			if (remount)
2812				continue;
2813			gid = simple_strtoul(value, &rest, 0);
2814			if (*rest)
2815				goto bad_val;
2816			sbinfo->gid = make_kgid(current_user_ns(), gid);
2817			if (!gid_valid(sbinfo->gid))
2818				goto bad_val;
2819		} else if (!strcmp(this_char,"mpol")) {
2820			mpol_put(mpol);
2821			mpol = NULL;
2822			if (mpol_parse_str(value, &mpol))
2823				goto bad_val;
2824		} else {
2825			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2826			       this_char);
2827			goto error;
2828		}
2829	}
2830	sbinfo->mpol = mpol;
2831	return 0;
2832
2833bad_val:
2834	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2835	       value, this_char);
2836error:
2837	mpol_put(mpol);
2838	return 1;
2839
2840}
2841
2842static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2843{
2844	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2845	struct shmem_sb_info config = *sbinfo;
2846	unsigned long inodes;
2847	int error = -EINVAL;
2848
2849	config.mpol = NULL;
2850	if (shmem_parse_options(data, &config, true))
2851		return error;
2852
2853	spin_lock(&sbinfo->stat_lock);
2854	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2855	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2856		goto out;
2857	if (config.max_inodes < inodes)
2858		goto out;
2859	/*
2860	 * Those tests disallow limited->unlimited while any are in use;
2861	 * but we must separately disallow unlimited->limited, because
2862	 * in that case we have no record of how much is already in use.
2863	 */
2864	if (config.max_blocks && !sbinfo->max_blocks)
2865		goto out;
2866	if (config.max_inodes && !sbinfo->max_inodes)
2867		goto out;
2868
2869	error = 0;
2870	sbinfo->max_blocks  = config.max_blocks;
2871	sbinfo->max_inodes  = config.max_inodes;
2872	sbinfo->free_inodes = config.max_inodes - inodes;
2873
2874	/*
2875	 * Preserve previous mempolicy unless mpol remount option was specified.
2876	 */
2877	if (config.mpol) {
2878		mpol_put(sbinfo->mpol);
2879		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2880	}
2881out:
2882	spin_unlock(&sbinfo->stat_lock);
2883	return error;
2884}
2885
2886static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2887{
2888	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2889
2890	if (sbinfo->max_blocks != shmem_default_max_blocks())
2891		seq_printf(seq, ",size=%luk",
2892			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2893	if (sbinfo->max_inodes != shmem_default_max_inodes())
2894		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2895	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2896		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2897	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2898		seq_printf(seq, ",uid=%u",
2899				from_kuid_munged(&init_user_ns, sbinfo->uid));
2900	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2901		seq_printf(seq, ",gid=%u",
2902				from_kgid_munged(&init_user_ns, sbinfo->gid));
2903	shmem_show_mpol(seq, sbinfo->mpol);
2904	return 0;
2905}
2906
2907#define MFD_NAME_PREFIX "memfd:"
2908#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2909#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2910
2911#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2912
2913SYSCALL_DEFINE2(memfd_create,
2914		const char __user *, uname,
2915		unsigned int, flags)
2916{
2917	struct shmem_inode_info *info;
2918	struct file *file;
2919	int fd, error;
2920	char *name;
2921	long len;
2922
2923	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2924		return -EINVAL;
2925
2926	/* length includes terminating zero */
2927	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2928	if (len <= 0)
2929		return -EFAULT;
2930	if (len > MFD_NAME_MAX_LEN + 1)
2931		return -EINVAL;
2932
2933	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2934	if (!name)
2935		return -ENOMEM;
2936
2937	strcpy(name, MFD_NAME_PREFIX);
2938	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2939		error = -EFAULT;
2940		goto err_name;
2941	}
2942
2943	/* terminating-zero may have changed after strnlen_user() returned */
2944	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2945		error = -EFAULT;
2946		goto err_name;
2947	}
2948
2949	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2950	if (fd < 0) {
2951		error = fd;
2952		goto err_name;
2953	}
2954
2955	file = shmem_file_setup(name, 0, VM_NORESERVE);
2956	if (IS_ERR(file)) {
2957		error = PTR_ERR(file);
2958		goto err_fd;
2959	}
2960	info = SHMEM_I(file_inode(file));
2961	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2962	file->f_flags |= O_RDWR | O_LARGEFILE;
2963	if (flags & MFD_ALLOW_SEALING)
2964		info->seals &= ~F_SEAL_SEAL;
2965
2966	fd_install(fd, file);
2967	kfree(name);
2968	return fd;
2969
2970err_fd:
2971	put_unused_fd(fd);
2972err_name:
2973	kfree(name);
2974	return error;
2975}
2976
2977#endif /* CONFIG_TMPFS */
2978
2979static void shmem_put_super(struct super_block *sb)
2980{
2981	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2982
2983	percpu_counter_destroy(&sbinfo->used_blocks);
2984	mpol_put(sbinfo->mpol);
2985	kfree(sbinfo);
2986	sb->s_fs_info = NULL;
2987}
2988
2989int shmem_fill_super(struct super_block *sb, void *data, int silent)
2990{
2991	struct inode *inode;
2992	struct shmem_sb_info *sbinfo;
2993	int err = -ENOMEM;
2994
2995	/* Round up to L1_CACHE_BYTES to resist false sharing */
2996	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2997				L1_CACHE_BYTES), GFP_KERNEL);
2998	if (!sbinfo)
2999		return -ENOMEM;
3000
3001	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3002	sbinfo->uid = current_fsuid();
3003	sbinfo->gid = current_fsgid();
3004	sb->s_fs_info = sbinfo;
3005
3006#ifdef CONFIG_TMPFS
3007	/*
3008	 * Per default we only allow half of the physical ram per
3009	 * tmpfs instance, limiting inodes to one per page of lowmem;
3010	 * but the internal instance is left unlimited.
3011	 */
3012	if (!(sb->s_flags & MS_KERNMOUNT)) {
3013		sbinfo->max_blocks = shmem_default_max_blocks();
3014		sbinfo->max_inodes = shmem_default_max_inodes();
3015		if (shmem_parse_options(data, sbinfo, false)) {
3016			err = -EINVAL;
3017			goto failed;
3018		}
3019	} else {
3020		sb->s_flags |= MS_NOUSER;
3021	}
3022	sb->s_export_op = &shmem_export_ops;
3023	sb->s_flags |= MS_NOSEC;
3024#else
3025	sb->s_flags |= MS_NOUSER;
3026#endif
3027
3028	spin_lock_init(&sbinfo->stat_lock);
3029	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3030		goto failed;
3031	sbinfo->free_inodes = sbinfo->max_inodes;
3032
3033	sb->s_maxbytes = MAX_LFS_FILESIZE;
3034	sb->s_blocksize = PAGE_CACHE_SIZE;
3035	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3036	sb->s_magic = TMPFS_MAGIC;
3037	sb->s_op = &shmem_ops;
3038	sb->s_time_gran = 1;
3039#ifdef CONFIG_TMPFS_XATTR
3040	sb->s_xattr = shmem_xattr_handlers;
3041#endif
3042#ifdef CONFIG_TMPFS_POSIX_ACL
3043	sb->s_flags |= MS_POSIXACL;
3044#endif
3045
3046	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3047	if (!inode)
3048		goto failed;
3049	inode->i_uid = sbinfo->uid;
3050	inode->i_gid = sbinfo->gid;
3051	sb->s_root = d_make_root(inode);
3052	if (!sb->s_root)
3053		goto failed;
3054	return 0;
3055
3056failed:
3057	shmem_put_super(sb);
3058	return err;
3059}
3060
3061static struct kmem_cache *shmem_inode_cachep;
3062
3063static struct inode *shmem_alloc_inode(struct super_block *sb)
3064{
3065	struct shmem_inode_info *info;
3066	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3067	if (!info)
3068		return NULL;
3069	return &info->vfs_inode;
3070}
3071
3072static void shmem_destroy_callback(struct rcu_head *head)
3073{
3074	struct inode *inode = container_of(head, struct inode, i_rcu);
3075	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3076}
3077
3078static void shmem_destroy_inode(struct inode *inode)
3079{
3080	if (S_ISREG(inode->i_mode))
3081		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3082	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3083}
3084
3085static void shmem_init_inode(void *foo)
3086{
3087	struct shmem_inode_info *info = foo;
3088	inode_init_once(&info->vfs_inode);
3089}
3090
3091static int shmem_init_inodecache(void)
3092{
3093	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3094				sizeof(struct shmem_inode_info),
3095				0, SLAB_PANIC, shmem_init_inode);
3096	return 0;
3097}
3098
3099static void shmem_destroy_inodecache(void)
3100{
3101	kmem_cache_destroy(shmem_inode_cachep);
3102}
3103
3104static const struct address_space_operations shmem_aops = {
3105	.writepage	= shmem_writepage,
3106	.set_page_dirty	= __set_page_dirty_no_writeback,
3107#ifdef CONFIG_TMPFS
3108	.write_begin	= shmem_write_begin,
3109	.write_end	= shmem_write_end,
3110#endif
3111#ifdef CONFIG_MIGRATION
3112	.migratepage	= migrate_page,
3113#endif
3114	.error_remove_page = generic_error_remove_page,
3115};
3116
3117static const struct file_operations shmem_file_operations = {
3118	.mmap		= shmem_mmap,
3119#ifdef CONFIG_TMPFS
3120	.llseek		= shmem_file_llseek,
3121	.read_iter	= shmem_file_read_iter,
3122	.write_iter	= generic_file_write_iter,
3123	.fsync		= noop_fsync,
3124	.splice_read	= shmem_file_splice_read,
3125	.splice_write	= iter_file_splice_write,
3126	.fallocate	= shmem_fallocate,
3127#endif
3128};
3129
3130static const struct inode_operations shmem_inode_operations = {
3131	.setattr	= shmem_setattr,
3132#ifdef CONFIG_TMPFS_XATTR
3133	.setxattr	= shmem_setxattr,
3134	.getxattr	= shmem_getxattr,
3135	.listxattr	= shmem_listxattr,
3136	.removexattr	= shmem_removexattr,
3137	.set_acl	= simple_set_acl,
3138#endif
3139};
3140
3141static const struct inode_operations shmem_dir_inode_operations = {
3142#ifdef CONFIG_TMPFS
3143	.create		= shmem_create,
3144	.lookup		= simple_lookup,
3145	.link		= shmem_link,
3146	.unlink		= shmem_unlink,
3147	.symlink	= shmem_symlink,
3148	.mkdir		= shmem_mkdir,
3149	.rmdir		= shmem_rmdir,
3150	.mknod		= shmem_mknod,
3151	.rename2	= shmem_rename2,
3152	.tmpfile	= shmem_tmpfile,
3153#endif
3154#ifdef CONFIG_TMPFS_XATTR
3155	.setxattr	= shmem_setxattr,
3156	.getxattr	= shmem_getxattr,
3157	.listxattr	= shmem_listxattr,
3158	.removexattr	= shmem_removexattr,
3159#endif
3160#ifdef CONFIG_TMPFS_POSIX_ACL
3161	.setattr	= shmem_setattr,
3162	.set_acl	= simple_set_acl,
3163#endif
3164};
3165
3166static const struct inode_operations shmem_special_inode_operations = {
3167#ifdef CONFIG_TMPFS_XATTR
3168	.setxattr	= shmem_setxattr,
3169	.getxattr	= shmem_getxattr,
3170	.listxattr	= shmem_listxattr,
3171	.removexattr	= shmem_removexattr,
3172#endif
3173#ifdef CONFIG_TMPFS_POSIX_ACL
3174	.setattr	= shmem_setattr,
3175	.set_acl	= simple_set_acl,
3176#endif
3177};
3178
3179static const struct super_operations shmem_ops = {
3180	.alloc_inode	= shmem_alloc_inode,
3181	.destroy_inode	= shmem_destroy_inode,
3182#ifdef CONFIG_TMPFS
3183	.statfs		= shmem_statfs,
3184	.remount_fs	= shmem_remount_fs,
3185	.show_options	= shmem_show_options,
3186#endif
3187	.evict_inode	= shmem_evict_inode,
3188	.drop_inode	= generic_delete_inode,
3189	.put_super	= shmem_put_super,
3190};
3191
3192static const struct vm_operations_struct shmem_vm_ops = {
3193	.fault		= shmem_fault,
3194	.map_pages	= filemap_map_pages,
3195#ifdef CONFIG_NUMA
3196	.set_policy     = shmem_set_policy,
3197	.get_policy     = shmem_get_policy,
3198#endif
3199};
3200
3201static struct dentry *shmem_mount(struct file_system_type *fs_type,
3202	int flags, const char *dev_name, void *data)
3203{
3204	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3205}
3206
3207static struct file_system_type shmem_fs_type = {
3208	.owner		= THIS_MODULE,
3209	.name		= "tmpfs",
3210	.mount		= shmem_mount,
3211	.kill_sb	= kill_litter_super,
3212	.fs_flags	= FS_USERNS_MOUNT,
3213};
3214
3215int __init shmem_init(void)
3216{
3217	int error;
3218
3219	/* If rootfs called this, don't re-init */
3220	if (shmem_inode_cachep)
3221		return 0;
3222
3223	error = shmem_init_inodecache();
3224	if (error)
3225		goto out3;
3226
3227	error = register_filesystem(&shmem_fs_type);
3228	if (error) {
3229		printk(KERN_ERR "Could not register tmpfs\n");
3230		goto out2;
3231	}
3232
3233	shm_mnt = kern_mount(&shmem_fs_type);
3234	if (IS_ERR(shm_mnt)) {
3235		error = PTR_ERR(shm_mnt);
3236		printk(KERN_ERR "Could not kern_mount tmpfs\n");
3237		goto out1;
3238	}
3239	return 0;
3240
3241out1:
3242	unregister_filesystem(&shmem_fs_type);
3243out2:
3244	shmem_destroy_inodecache();
3245out3:
3246	shm_mnt = ERR_PTR(error);
3247	return error;
3248}
3249
3250#else /* !CONFIG_SHMEM */
3251
3252/*
3253 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3254 *
3255 * This is intended for small system where the benefits of the full
3256 * shmem code (swap-backed and resource-limited) are outweighed by
3257 * their complexity. On systems without swap this code should be
3258 * effectively equivalent, but much lighter weight.
3259 */
3260
3261static struct file_system_type shmem_fs_type = {
3262	.name		= "tmpfs",
3263	.mount		= ramfs_mount,
3264	.kill_sb	= kill_litter_super,
3265	.fs_flags	= FS_USERNS_MOUNT,
3266};
3267
3268int __init shmem_init(void)
3269{
3270	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3271
3272	shm_mnt = kern_mount(&shmem_fs_type);
3273	BUG_ON(IS_ERR(shm_mnt));
3274
3275	return 0;
3276}
3277
3278int shmem_unuse(swp_entry_t swap, struct page *page)
3279{
3280	return 0;
3281}
3282
3283int shmem_lock(struct file *file, int lock, struct user_struct *user)
3284{
3285	return 0;
3286}
3287
3288void shmem_unlock_mapping(struct address_space *mapping)
3289{
3290}
3291
3292void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3293{
3294	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3295}
3296EXPORT_SYMBOL_GPL(shmem_truncate_range);
3297
3298#define shmem_vm_ops				generic_file_vm_ops
3299#define shmem_file_operations			ramfs_file_operations
3300#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3301#define shmem_acct_size(flags, size)		0
3302#define shmem_unacct_size(flags, size)		do {} while (0)
3303
3304#endif /* CONFIG_SHMEM */
3305
3306/* common code */
3307
3308static struct dentry_operations anon_ops = {
3309	.d_dname = simple_dname
3310};
3311
3312static struct file *__shmem_file_setup(const char *name, loff_t size,
3313				       unsigned long flags, unsigned int i_flags)
3314{
3315	struct file *res;
3316	struct inode *inode;
3317	struct path path;
3318	struct super_block *sb;
3319	struct qstr this;
3320
3321	if (IS_ERR(shm_mnt))
3322		return ERR_CAST(shm_mnt);
3323
3324	if (size < 0 || size > MAX_LFS_FILESIZE)
3325		return ERR_PTR(-EINVAL);
3326
3327	if (shmem_acct_size(flags, size))
3328		return ERR_PTR(-ENOMEM);
3329
3330	res = ERR_PTR(-ENOMEM);
3331	this.name = name;
3332	this.len = strlen(name);
3333	this.hash = 0; /* will go */
3334	sb = shm_mnt->mnt_sb;
3335	path.mnt = mntget(shm_mnt);
3336	path.dentry = d_alloc_pseudo(sb, &this);
3337	if (!path.dentry)
3338		goto put_memory;
3339	d_set_d_op(path.dentry, &anon_ops);
3340
3341	res = ERR_PTR(-ENOSPC);
3342	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3343	if (!inode)
3344		goto put_memory;
3345
3346	inode->i_flags |= i_flags;
3347	d_instantiate(path.dentry, inode);
3348	inode->i_size = size;
3349	clear_nlink(inode);	/* It is unlinked */
3350	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3351	if (IS_ERR(res))
3352		goto put_path;
3353
3354	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3355		  &shmem_file_operations);
3356	if (IS_ERR(res))
3357		goto put_path;
3358
3359	return res;
3360
3361put_memory:
3362	shmem_unacct_size(flags, size);
3363put_path:
3364	path_put(&path);
3365	return res;
3366}
3367
3368/**
3369 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3370 * 	kernel internal.  There will be NO LSM permission checks against the
3371 * 	underlying inode.  So users of this interface must do LSM checks at a
3372 * 	higher layer.  The one user is the big_key implementation.  LSM checks
3373 * 	are provided at the key level rather than the inode level.
3374 * @name: name for dentry (to be seen in /proc/<pid>/maps
3375 * @size: size to be set for the file
3376 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3377 */
3378struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3379{
3380	return __shmem_file_setup(name, size, flags, S_PRIVATE);
3381}
3382
3383/**
3384 * shmem_file_setup - get an unlinked file living in tmpfs
3385 * @name: name for dentry (to be seen in /proc/<pid>/maps
3386 * @size: size to be set for the file
3387 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3388 */
3389struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3390{
3391	return __shmem_file_setup(name, size, flags, 0);
3392}
3393EXPORT_SYMBOL_GPL(shmem_file_setup);
3394
3395/**
3396 * shmem_zero_setup - setup a shared anonymous mapping
3397 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3398 */
3399int shmem_zero_setup(struct vm_area_struct *vma)
3400{
3401	struct file *file;
3402	loff_t size = vma->vm_end - vma->vm_start;
3403
3404	/*
3405	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3406	 * between XFS directory reading and selinux: since this file is only
3407	 * accessible to the user through its mapping, use S_PRIVATE flag to
3408	 * bypass file security, in the same way as shmem_kernel_file_setup().
3409	 */
3410	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3411	if (IS_ERR(file))
3412		return PTR_ERR(file);
3413
3414	if (vma->vm_file)
3415		fput(vma->vm_file);
3416	vma->vm_file = file;
3417	vma->vm_ops = &shmem_vm_ops;
3418	return 0;
3419}
3420
3421/**
3422 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3423 * @mapping:	the page's address_space
3424 * @index:	the page index
3425 * @gfp:	the page allocator flags to use if allocating
3426 *
3427 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3428 * with any new page allocations done using the specified allocation flags.
3429 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3430 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3431 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3432 *
3433 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3434 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3435 */
3436struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3437					 pgoff_t index, gfp_t gfp)
3438{
3439#ifdef CONFIG_SHMEM
3440	struct inode *inode = mapping->host;
3441	struct page *page;
3442	int error;
3443
3444	BUG_ON(mapping->a_ops != &shmem_aops);
3445	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3446	if (error)
3447		page = ERR_PTR(error);
3448	else
3449		unlock_page(page);
3450	return page;
3451#else
3452	/*
3453	 * The tiny !SHMEM case uses ramfs without swap
3454	 */
3455	return read_cache_page_gfp(mapping, index, gfp);
3456#endif
3457}
3458EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3459