1/* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24#include <linux/fs.h> 25#include <linux/init.h> 26#include <linux/vfs.h> 27#include <linux/mount.h> 28#include <linux/ramfs.h> 29#include <linux/pagemap.h> 30#include <linux/file.h> 31#include <linux/mm.h> 32#include <linux/export.h> 33#include <linux/swap.h> 34#include <linux/uio.h> 35 36static struct vfsmount *shm_mnt; 37 38#ifdef CONFIG_SHMEM 39/* 40 * This virtual memory filesystem is heavily based on the ramfs. It 41 * extends ramfs by the ability to use swap and honor resource limits 42 * which makes it a completely usable filesystem. 43 */ 44 45#include <linux/xattr.h> 46#include <linux/exportfs.h> 47#include <linux/posix_acl.h> 48#include <linux/posix_acl_xattr.h> 49#include <linux/mman.h> 50#include <linux/string.h> 51#include <linux/slab.h> 52#include <linux/backing-dev.h> 53#include <linux/shmem_fs.h> 54#include <linux/writeback.h> 55#include <linux/blkdev.h> 56#include <linux/pagevec.h> 57#include <linux/percpu_counter.h> 58#include <linux/falloc.h> 59#include <linux/splice.h> 60#include <linux/security.h> 61#include <linux/swapops.h> 62#include <linux/mempolicy.h> 63#include <linux/namei.h> 64#include <linux/ctype.h> 65#include <linux/migrate.h> 66#include <linux/highmem.h> 67#include <linux/seq_file.h> 68#include <linux/magic.h> 69#include <linux/syscalls.h> 70#include <linux/fcntl.h> 71#include <uapi/linux/memfd.h> 72 73#include <asm/uaccess.h> 74#include <asm/pgtable.h> 75 76#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 77#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 78 79/* Pretend that each entry is of this size in directory's i_size */ 80#define BOGO_DIRENT_SIZE 20 81 82/* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 83#define SHORT_SYMLINK_LEN 128 84 85/* 86 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 87 * inode->i_private (with i_mutex making sure that it has only one user at 88 * a time): we would prefer not to enlarge the shmem inode just for that. 89 */ 90struct shmem_falloc { 91 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 92 pgoff_t start; /* start of range currently being fallocated */ 93 pgoff_t next; /* the next page offset to be fallocated */ 94 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 95 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 96}; 97 98/* Flag allocation requirements to shmem_getpage */ 99enum sgp_type { 100 SGP_READ, /* don't exceed i_size, don't allocate page */ 101 SGP_CACHE, /* don't exceed i_size, may allocate page */ 102 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 103 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */ 104 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */ 105}; 106 107#ifdef CONFIG_TMPFS 108static unsigned long shmem_default_max_blocks(void) 109{ 110 return totalram_pages / 2; 111} 112 113static unsigned long shmem_default_max_inodes(void) 114{ 115 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 116} 117#endif 118 119static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 120static int shmem_replace_page(struct page **pagep, gfp_t gfp, 121 struct shmem_inode_info *info, pgoff_t index); 122static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 123 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type); 124 125static inline int shmem_getpage(struct inode *inode, pgoff_t index, 126 struct page **pagep, enum sgp_type sgp, int *fault_type) 127{ 128 return shmem_getpage_gfp(inode, index, pagep, sgp, 129 mapping_gfp_mask(inode->i_mapping), fault_type); 130} 131 132static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 133{ 134 return sb->s_fs_info; 135} 136 137/* 138 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 139 * for shared memory and for shared anonymous (/dev/zero) mappings 140 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 141 * consistent with the pre-accounting of private mappings ... 142 */ 143static inline int shmem_acct_size(unsigned long flags, loff_t size) 144{ 145 return (flags & VM_NORESERVE) ? 146 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 147} 148 149static inline void shmem_unacct_size(unsigned long flags, loff_t size) 150{ 151 if (!(flags & VM_NORESERVE)) 152 vm_unacct_memory(VM_ACCT(size)); 153} 154 155static inline int shmem_reacct_size(unsigned long flags, 156 loff_t oldsize, loff_t newsize) 157{ 158 if (!(flags & VM_NORESERVE)) { 159 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 160 return security_vm_enough_memory_mm(current->mm, 161 VM_ACCT(newsize) - VM_ACCT(oldsize)); 162 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 163 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 164 } 165 return 0; 166} 167 168/* 169 * ... whereas tmpfs objects are accounted incrementally as 170 * pages are allocated, in order to allow huge sparse files. 171 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 172 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 173 */ 174static inline int shmem_acct_block(unsigned long flags) 175{ 176 return (flags & VM_NORESERVE) ? 177 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0; 178} 179 180static inline void shmem_unacct_blocks(unsigned long flags, long pages) 181{ 182 if (flags & VM_NORESERVE) 183 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 184} 185 186static const struct super_operations shmem_ops; 187static const struct address_space_operations shmem_aops; 188static const struct file_operations shmem_file_operations; 189static const struct inode_operations shmem_inode_operations; 190static const struct inode_operations shmem_dir_inode_operations; 191static const struct inode_operations shmem_special_inode_operations; 192static const struct vm_operations_struct shmem_vm_ops; 193 194static LIST_HEAD(shmem_swaplist); 195static DEFINE_MUTEX(shmem_swaplist_mutex); 196 197static int shmem_reserve_inode(struct super_block *sb) 198{ 199 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 200 if (sbinfo->max_inodes) { 201 spin_lock(&sbinfo->stat_lock); 202 if (!sbinfo->free_inodes) { 203 spin_unlock(&sbinfo->stat_lock); 204 return -ENOSPC; 205 } 206 sbinfo->free_inodes--; 207 spin_unlock(&sbinfo->stat_lock); 208 } 209 return 0; 210} 211 212static void shmem_free_inode(struct super_block *sb) 213{ 214 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 215 if (sbinfo->max_inodes) { 216 spin_lock(&sbinfo->stat_lock); 217 sbinfo->free_inodes++; 218 spin_unlock(&sbinfo->stat_lock); 219 } 220} 221 222/** 223 * shmem_recalc_inode - recalculate the block usage of an inode 224 * @inode: inode to recalc 225 * 226 * We have to calculate the free blocks since the mm can drop 227 * undirtied hole pages behind our back. 228 * 229 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 230 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 231 * 232 * It has to be called with the spinlock held. 233 */ 234static void shmem_recalc_inode(struct inode *inode) 235{ 236 struct shmem_inode_info *info = SHMEM_I(inode); 237 long freed; 238 239 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 240 if (freed > 0) { 241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 242 if (sbinfo->max_blocks) 243 percpu_counter_add(&sbinfo->used_blocks, -freed); 244 info->alloced -= freed; 245 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 246 shmem_unacct_blocks(info->flags, freed); 247 } 248} 249 250/* 251 * Replace item expected in radix tree by a new item, while holding tree lock. 252 */ 253static int shmem_radix_tree_replace(struct address_space *mapping, 254 pgoff_t index, void *expected, void *replacement) 255{ 256 void **pslot; 257 void *item; 258 259 VM_BUG_ON(!expected); 260 VM_BUG_ON(!replacement); 261 pslot = radix_tree_lookup_slot(&mapping->page_tree, index); 262 if (!pslot) 263 return -ENOENT; 264 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock); 265 if (item != expected) 266 return -ENOENT; 267 radix_tree_replace_slot(pslot, replacement); 268 return 0; 269} 270 271/* 272 * Sometimes, before we decide whether to proceed or to fail, we must check 273 * that an entry was not already brought back from swap by a racing thread. 274 * 275 * Checking page is not enough: by the time a SwapCache page is locked, it 276 * might be reused, and again be SwapCache, using the same swap as before. 277 */ 278static bool shmem_confirm_swap(struct address_space *mapping, 279 pgoff_t index, swp_entry_t swap) 280{ 281 void *item; 282 283 rcu_read_lock(); 284 item = radix_tree_lookup(&mapping->page_tree, index); 285 rcu_read_unlock(); 286 return item == swp_to_radix_entry(swap); 287} 288 289/* 290 * Like add_to_page_cache_locked, but error if expected item has gone. 291 */ 292static int shmem_add_to_page_cache(struct page *page, 293 struct address_space *mapping, 294 pgoff_t index, void *expected) 295{ 296 int error; 297 298 VM_BUG_ON_PAGE(!PageLocked(page), page); 299 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 300 301 page_cache_get(page); 302 page->mapping = mapping; 303 page->index = index; 304 305 spin_lock_irq(&mapping->tree_lock); 306 if (!expected) 307 error = radix_tree_insert(&mapping->page_tree, index, page); 308 else 309 error = shmem_radix_tree_replace(mapping, index, expected, 310 page); 311 if (!error) { 312 mapping->nrpages++; 313 __inc_zone_page_state(page, NR_FILE_PAGES); 314 __inc_zone_page_state(page, NR_SHMEM); 315 spin_unlock_irq(&mapping->tree_lock); 316 } else { 317 page->mapping = NULL; 318 spin_unlock_irq(&mapping->tree_lock); 319 page_cache_release(page); 320 } 321 return error; 322} 323 324/* 325 * Like delete_from_page_cache, but substitutes swap for page. 326 */ 327static void shmem_delete_from_page_cache(struct page *page, void *radswap) 328{ 329 struct address_space *mapping = page->mapping; 330 int error; 331 332 spin_lock_irq(&mapping->tree_lock); 333 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 334 page->mapping = NULL; 335 mapping->nrpages--; 336 __dec_zone_page_state(page, NR_FILE_PAGES); 337 __dec_zone_page_state(page, NR_SHMEM); 338 spin_unlock_irq(&mapping->tree_lock); 339 page_cache_release(page); 340 BUG_ON(error); 341} 342 343/* 344 * Remove swap entry from radix tree, free the swap and its page cache. 345 */ 346static int shmem_free_swap(struct address_space *mapping, 347 pgoff_t index, void *radswap) 348{ 349 void *old; 350 351 spin_lock_irq(&mapping->tree_lock); 352 old = radix_tree_delete_item(&mapping->page_tree, index, radswap); 353 spin_unlock_irq(&mapping->tree_lock); 354 if (old != radswap) 355 return -ENOENT; 356 free_swap_and_cache(radix_to_swp_entry(radswap)); 357 return 0; 358} 359 360/* 361 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 362 */ 363void shmem_unlock_mapping(struct address_space *mapping) 364{ 365 struct pagevec pvec; 366 pgoff_t indices[PAGEVEC_SIZE]; 367 pgoff_t index = 0; 368 369 pagevec_init(&pvec, 0); 370 /* 371 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 372 */ 373 while (!mapping_unevictable(mapping)) { 374 /* 375 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 376 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 377 */ 378 pvec.nr = find_get_entries(mapping, index, 379 PAGEVEC_SIZE, pvec.pages, indices); 380 if (!pvec.nr) 381 break; 382 index = indices[pvec.nr - 1] + 1; 383 pagevec_remove_exceptionals(&pvec); 384 check_move_unevictable_pages(pvec.pages, pvec.nr); 385 pagevec_release(&pvec); 386 cond_resched(); 387 } 388} 389 390/* 391 * Remove range of pages and swap entries from radix tree, and free them. 392 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 393 */ 394static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 395 bool unfalloc) 396{ 397 struct address_space *mapping = inode->i_mapping; 398 struct shmem_inode_info *info = SHMEM_I(inode); 399 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 400 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT; 401 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1); 402 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 403 struct pagevec pvec; 404 pgoff_t indices[PAGEVEC_SIZE]; 405 long nr_swaps_freed = 0; 406 pgoff_t index; 407 int i; 408 409 if (lend == -1) 410 end = -1; /* unsigned, so actually very big */ 411 412 pagevec_init(&pvec, 0); 413 index = start; 414 while (index < end) { 415 pvec.nr = find_get_entries(mapping, index, 416 min(end - index, (pgoff_t)PAGEVEC_SIZE), 417 pvec.pages, indices); 418 if (!pvec.nr) 419 break; 420 for (i = 0; i < pagevec_count(&pvec); i++) { 421 struct page *page = pvec.pages[i]; 422 423 index = indices[i]; 424 if (index >= end) 425 break; 426 427 if (radix_tree_exceptional_entry(page)) { 428 if (unfalloc) 429 continue; 430 nr_swaps_freed += !shmem_free_swap(mapping, 431 index, page); 432 continue; 433 } 434 435 if (!trylock_page(page)) 436 continue; 437 if (!unfalloc || !PageUptodate(page)) { 438 if (page->mapping == mapping) { 439 VM_BUG_ON_PAGE(PageWriteback(page), page); 440 truncate_inode_page(mapping, page); 441 } 442 } 443 unlock_page(page); 444 } 445 pagevec_remove_exceptionals(&pvec); 446 pagevec_release(&pvec); 447 cond_resched(); 448 index++; 449 } 450 451 if (partial_start) { 452 struct page *page = NULL; 453 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL); 454 if (page) { 455 unsigned int top = PAGE_CACHE_SIZE; 456 if (start > end) { 457 top = partial_end; 458 partial_end = 0; 459 } 460 zero_user_segment(page, partial_start, top); 461 set_page_dirty(page); 462 unlock_page(page); 463 page_cache_release(page); 464 } 465 } 466 if (partial_end) { 467 struct page *page = NULL; 468 shmem_getpage(inode, end, &page, SGP_READ, NULL); 469 if (page) { 470 zero_user_segment(page, 0, partial_end); 471 set_page_dirty(page); 472 unlock_page(page); 473 page_cache_release(page); 474 } 475 } 476 if (start >= end) 477 return; 478 479 index = start; 480 while (index < end) { 481 cond_resched(); 482 483 pvec.nr = find_get_entries(mapping, index, 484 min(end - index, (pgoff_t)PAGEVEC_SIZE), 485 pvec.pages, indices); 486 if (!pvec.nr) { 487 /* If all gone or hole-punch or unfalloc, we're done */ 488 if (index == start || end != -1) 489 break; 490 /* But if truncating, restart to make sure all gone */ 491 index = start; 492 continue; 493 } 494 for (i = 0; i < pagevec_count(&pvec); i++) { 495 struct page *page = pvec.pages[i]; 496 497 index = indices[i]; 498 if (index >= end) 499 break; 500 501 if (radix_tree_exceptional_entry(page)) { 502 if (unfalloc) 503 continue; 504 if (shmem_free_swap(mapping, index, page)) { 505 /* Swap was replaced by page: retry */ 506 index--; 507 break; 508 } 509 nr_swaps_freed++; 510 continue; 511 } 512 513 lock_page(page); 514 if (!unfalloc || !PageUptodate(page)) { 515 if (page->mapping == mapping) { 516 VM_BUG_ON_PAGE(PageWriteback(page), page); 517 truncate_inode_page(mapping, page); 518 } else { 519 /* Page was replaced by swap: retry */ 520 unlock_page(page); 521 index--; 522 break; 523 } 524 } 525 unlock_page(page); 526 } 527 pagevec_remove_exceptionals(&pvec); 528 pagevec_release(&pvec); 529 index++; 530 } 531 532 spin_lock(&info->lock); 533 info->swapped -= nr_swaps_freed; 534 shmem_recalc_inode(inode); 535 spin_unlock(&info->lock); 536} 537 538void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 539{ 540 shmem_undo_range(inode, lstart, lend, false); 541 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 542} 543EXPORT_SYMBOL_GPL(shmem_truncate_range); 544 545static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 546{ 547 struct inode *inode = d_inode(dentry); 548 struct shmem_inode_info *info = SHMEM_I(inode); 549 int error; 550 551 error = inode_change_ok(inode, attr); 552 if (error) 553 return error; 554 555 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 556 loff_t oldsize = inode->i_size; 557 loff_t newsize = attr->ia_size; 558 559 /* protected by i_mutex */ 560 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 561 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 562 return -EPERM; 563 564 if (newsize != oldsize) { 565 error = shmem_reacct_size(SHMEM_I(inode)->flags, 566 oldsize, newsize); 567 if (error) 568 return error; 569 i_size_write(inode, newsize); 570 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 571 } 572 if (newsize < oldsize) { 573 loff_t holebegin = round_up(newsize, PAGE_SIZE); 574 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 575 shmem_truncate_range(inode, newsize, (loff_t)-1); 576 /* unmap again to remove racily COWed private pages */ 577 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 578 } 579 } 580 581 setattr_copy(inode, attr); 582 if (attr->ia_valid & ATTR_MODE) 583 error = posix_acl_chmod(inode, inode->i_mode); 584 return error; 585} 586 587static void shmem_evict_inode(struct inode *inode) 588{ 589 struct shmem_inode_info *info = SHMEM_I(inode); 590 591 if (inode->i_mapping->a_ops == &shmem_aops) { 592 shmem_unacct_size(info->flags, inode->i_size); 593 inode->i_size = 0; 594 shmem_truncate_range(inode, 0, (loff_t)-1); 595 if (!list_empty(&info->swaplist)) { 596 mutex_lock(&shmem_swaplist_mutex); 597 list_del_init(&info->swaplist); 598 mutex_unlock(&shmem_swaplist_mutex); 599 } 600 } else 601 kfree(info->symlink); 602 603 simple_xattrs_free(&info->xattrs); 604 WARN_ON(inode->i_blocks); 605 shmem_free_inode(inode->i_sb); 606 clear_inode(inode); 607} 608 609/* 610 * If swap found in inode, free it and move page from swapcache to filecache. 611 */ 612static int shmem_unuse_inode(struct shmem_inode_info *info, 613 swp_entry_t swap, struct page **pagep) 614{ 615 struct address_space *mapping = info->vfs_inode.i_mapping; 616 void *radswap; 617 pgoff_t index; 618 gfp_t gfp; 619 int error = 0; 620 621 radswap = swp_to_radix_entry(swap); 622 index = radix_tree_locate_item(&mapping->page_tree, radswap); 623 if (index == -1) 624 return -EAGAIN; /* tell shmem_unuse we found nothing */ 625 626 /* 627 * Move _head_ to start search for next from here. 628 * But be careful: shmem_evict_inode checks list_empty without taking 629 * mutex, and there's an instant in list_move_tail when info->swaplist 630 * would appear empty, if it were the only one on shmem_swaplist. 631 */ 632 if (shmem_swaplist.next != &info->swaplist) 633 list_move_tail(&shmem_swaplist, &info->swaplist); 634 635 gfp = mapping_gfp_mask(mapping); 636 if (shmem_should_replace_page(*pagep, gfp)) { 637 mutex_unlock(&shmem_swaplist_mutex); 638 error = shmem_replace_page(pagep, gfp, info, index); 639 mutex_lock(&shmem_swaplist_mutex); 640 /* 641 * We needed to drop mutex to make that restrictive page 642 * allocation, but the inode might have been freed while we 643 * dropped it: although a racing shmem_evict_inode() cannot 644 * complete without emptying the radix_tree, our page lock 645 * on this swapcache page is not enough to prevent that - 646 * free_swap_and_cache() of our swap entry will only 647 * trylock_page(), removing swap from radix_tree whatever. 648 * 649 * We must not proceed to shmem_add_to_page_cache() if the 650 * inode has been freed, but of course we cannot rely on 651 * inode or mapping or info to check that. However, we can 652 * safely check if our swap entry is still in use (and here 653 * it can't have got reused for another page): if it's still 654 * in use, then the inode cannot have been freed yet, and we 655 * can safely proceed (if it's no longer in use, that tells 656 * nothing about the inode, but we don't need to unuse swap). 657 */ 658 if (!page_swapcount(*pagep)) 659 error = -ENOENT; 660 } 661 662 /* 663 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 664 * but also to hold up shmem_evict_inode(): so inode cannot be freed 665 * beneath us (pagelock doesn't help until the page is in pagecache). 666 */ 667 if (!error) 668 error = shmem_add_to_page_cache(*pagep, mapping, index, 669 radswap); 670 if (error != -ENOMEM) { 671 /* 672 * Truncation and eviction use free_swap_and_cache(), which 673 * only does trylock page: if we raced, best clean up here. 674 */ 675 delete_from_swap_cache(*pagep); 676 set_page_dirty(*pagep); 677 if (!error) { 678 spin_lock(&info->lock); 679 info->swapped--; 680 spin_unlock(&info->lock); 681 swap_free(swap); 682 } 683 } 684 return error; 685} 686 687/* 688 * Search through swapped inodes to find and replace swap by page. 689 */ 690int shmem_unuse(swp_entry_t swap, struct page *page) 691{ 692 struct list_head *this, *next; 693 struct shmem_inode_info *info; 694 struct mem_cgroup *memcg; 695 int error = 0; 696 697 /* 698 * There's a faint possibility that swap page was replaced before 699 * caller locked it: caller will come back later with the right page. 700 */ 701 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 702 goto out; 703 704 /* 705 * Charge page using GFP_KERNEL while we can wait, before taking 706 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 707 * Charged back to the user (not to caller) when swap account is used. 708 */ 709 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg); 710 if (error) 711 goto out; 712 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 713 error = -EAGAIN; 714 715 mutex_lock(&shmem_swaplist_mutex); 716 list_for_each_safe(this, next, &shmem_swaplist) { 717 info = list_entry(this, struct shmem_inode_info, swaplist); 718 if (info->swapped) 719 error = shmem_unuse_inode(info, swap, &page); 720 else 721 list_del_init(&info->swaplist); 722 cond_resched(); 723 if (error != -EAGAIN) 724 break; 725 /* found nothing in this: move on to search the next */ 726 } 727 mutex_unlock(&shmem_swaplist_mutex); 728 729 if (error) { 730 if (error != -ENOMEM) 731 error = 0; 732 mem_cgroup_cancel_charge(page, memcg); 733 } else 734 mem_cgroup_commit_charge(page, memcg, true); 735out: 736 unlock_page(page); 737 page_cache_release(page); 738 return error; 739} 740 741/* 742 * Move the page from the page cache to the swap cache. 743 */ 744static int shmem_writepage(struct page *page, struct writeback_control *wbc) 745{ 746 struct shmem_inode_info *info; 747 struct address_space *mapping; 748 struct inode *inode; 749 swp_entry_t swap; 750 pgoff_t index; 751 752 BUG_ON(!PageLocked(page)); 753 mapping = page->mapping; 754 index = page->index; 755 inode = mapping->host; 756 info = SHMEM_I(inode); 757 if (info->flags & VM_LOCKED) 758 goto redirty; 759 if (!total_swap_pages) 760 goto redirty; 761 762 /* 763 * Our capabilities prevent regular writeback or sync from ever calling 764 * shmem_writepage; but a stacking filesystem might use ->writepage of 765 * its underlying filesystem, in which case tmpfs should write out to 766 * swap only in response to memory pressure, and not for the writeback 767 * threads or sync. 768 */ 769 if (!wbc->for_reclaim) { 770 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 771 goto redirty; 772 } 773 774 /* 775 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 776 * value into swapfile.c, the only way we can correctly account for a 777 * fallocated page arriving here is now to initialize it and write it. 778 * 779 * That's okay for a page already fallocated earlier, but if we have 780 * not yet completed the fallocation, then (a) we want to keep track 781 * of this page in case we have to undo it, and (b) it may not be a 782 * good idea to continue anyway, once we're pushing into swap. So 783 * reactivate the page, and let shmem_fallocate() quit when too many. 784 */ 785 if (!PageUptodate(page)) { 786 if (inode->i_private) { 787 struct shmem_falloc *shmem_falloc; 788 spin_lock(&inode->i_lock); 789 shmem_falloc = inode->i_private; 790 if (shmem_falloc && 791 !shmem_falloc->waitq && 792 index >= shmem_falloc->start && 793 index < shmem_falloc->next) 794 shmem_falloc->nr_unswapped++; 795 else 796 shmem_falloc = NULL; 797 spin_unlock(&inode->i_lock); 798 if (shmem_falloc) 799 goto redirty; 800 } 801 clear_highpage(page); 802 flush_dcache_page(page); 803 SetPageUptodate(page); 804 } 805 806 swap = get_swap_page(); 807 if (!swap.val) 808 goto redirty; 809 810 /* 811 * Add inode to shmem_unuse()'s list of swapped-out inodes, 812 * if it's not already there. Do it now before the page is 813 * moved to swap cache, when its pagelock no longer protects 814 * the inode from eviction. But don't unlock the mutex until 815 * we've incremented swapped, because shmem_unuse_inode() will 816 * prune a !swapped inode from the swaplist under this mutex. 817 */ 818 mutex_lock(&shmem_swaplist_mutex); 819 if (list_empty(&info->swaplist)) 820 list_add_tail(&info->swaplist, &shmem_swaplist); 821 822 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 823 swap_shmem_alloc(swap); 824 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 825 826 spin_lock(&info->lock); 827 info->swapped++; 828 shmem_recalc_inode(inode); 829 spin_unlock(&info->lock); 830 831 mutex_unlock(&shmem_swaplist_mutex); 832 BUG_ON(page_mapped(page)); 833 swap_writepage(page, wbc); 834 return 0; 835 } 836 837 mutex_unlock(&shmem_swaplist_mutex); 838 swapcache_free(swap); 839redirty: 840 set_page_dirty(page); 841 if (wbc->for_reclaim) 842 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 843 unlock_page(page); 844 return 0; 845} 846 847#ifdef CONFIG_NUMA 848#ifdef CONFIG_TMPFS 849static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 850{ 851 char buffer[64]; 852 853 if (!mpol || mpol->mode == MPOL_DEFAULT) 854 return; /* show nothing */ 855 856 mpol_to_str(buffer, sizeof(buffer), mpol); 857 858 seq_printf(seq, ",mpol=%s", buffer); 859} 860 861static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 862{ 863 struct mempolicy *mpol = NULL; 864 if (sbinfo->mpol) { 865 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 866 mpol = sbinfo->mpol; 867 mpol_get(mpol); 868 spin_unlock(&sbinfo->stat_lock); 869 } 870 return mpol; 871} 872#endif /* CONFIG_TMPFS */ 873 874static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 875 struct shmem_inode_info *info, pgoff_t index) 876{ 877 struct vm_area_struct pvma; 878 struct page *page; 879 880 /* Create a pseudo vma that just contains the policy */ 881 pvma.vm_start = 0; 882 /* Bias interleave by inode number to distribute better across nodes */ 883 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 884 pvma.vm_ops = NULL; 885 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 886 887 page = swapin_readahead(swap, gfp, &pvma, 0); 888 889 /* Drop reference taken by mpol_shared_policy_lookup() */ 890 mpol_cond_put(pvma.vm_policy); 891 892 return page; 893} 894 895static struct page *shmem_alloc_page(gfp_t gfp, 896 struct shmem_inode_info *info, pgoff_t index) 897{ 898 struct vm_area_struct pvma; 899 struct page *page; 900 901 /* Create a pseudo vma that just contains the policy */ 902 pvma.vm_start = 0; 903 /* Bias interleave by inode number to distribute better across nodes */ 904 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 905 pvma.vm_ops = NULL; 906 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 907 908 page = alloc_page_vma(gfp, &pvma, 0); 909 910 /* Drop reference taken by mpol_shared_policy_lookup() */ 911 mpol_cond_put(pvma.vm_policy); 912 913 return page; 914} 915#else /* !CONFIG_NUMA */ 916#ifdef CONFIG_TMPFS 917static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 918{ 919} 920#endif /* CONFIG_TMPFS */ 921 922static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 923 struct shmem_inode_info *info, pgoff_t index) 924{ 925 return swapin_readahead(swap, gfp, NULL, 0); 926} 927 928static inline struct page *shmem_alloc_page(gfp_t gfp, 929 struct shmem_inode_info *info, pgoff_t index) 930{ 931 return alloc_page(gfp); 932} 933#endif /* CONFIG_NUMA */ 934 935#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 936static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 937{ 938 return NULL; 939} 940#endif 941 942/* 943 * When a page is moved from swapcache to shmem filecache (either by the 944 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 945 * shmem_unuse_inode()), it may have been read in earlier from swap, in 946 * ignorance of the mapping it belongs to. If that mapping has special 947 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 948 * we may need to copy to a suitable page before moving to filecache. 949 * 950 * In a future release, this may well be extended to respect cpuset and 951 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 952 * but for now it is a simple matter of zone. 953 */ 954static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 955{ 956 return page_zonenum(page) > gfp_zone(gfp); 957} 958 959static int shmem_replace_page(struct page **pagep, gfp_t gfp, 960 struct shmem_inode_info *info, pgoff_t index) 961{ 962 struct page *oldpage, *newpage; 963 struct address_space *swap_mapping; 964 pgoff_t swap_index; 965 int error; 966 967 oldpage = *pagep; 968 swap_index = page_private(oldpage); 969 swap_mapping = page_mapping(oldpage); 970 971 /* 972 * We have arrived here because our zones are constrained, so don't 973 * limit chance of success by further cpuset and node constraints. 974 */ 975 gfp &= ~GFP_CONSTRAINT_MASK; 976 newpage = shmem_alloc_page(gfp, info, index); 977 if (!newpage) 978 return -ENOMEM; 979 980 page_cache_get(newpage); 981 copy_highpage(newpage, oldpage); 982 flush_dcache_page(newpage); 983 984 __set_page_locked(newpage); 985 SetPageUptodate(newpage); 986 SetPageSwapBacked(newpage); 987 set_page_private(newpage, swap_index); 988 SetPageSwapCache(newpage); 989 990 /* 991 * Our caller will very soon move newpage out of swapcache, but it's 992 * a nice clean interface for us to replace oldpage by newpage there. 993 */ 994 spin_lock_irq(&swap_mapping->tree_lock); 995 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 996 newpage); 997 if (!error) { 998 __inc_zone_page_state(newpage, NR_FILE_PAGES); 999 __dec_zone_page_state(oldpage, NR_FILE_PAGES); 1000 } 1001 spin_unlock_irq(&swap_mapping->tree_lock); 1002 1003 if (unlikely(error)) { 1004 /* 1005 * Is this possible? I think not, now that our callers check 1006 * both PageSwapCache and page_private after getting page lock; 1007 * but be defensive. Reverse old to newpage for clear and free. 1008 */ 1009 oldpage = newpage; 1010 } else { 1011 mem_cgroup_migrate(oldpage, newpage, true); 1012 lru_cache_add_anon(newpage); 1013 *pagep = newpage; 1014 } 1015 1016 ClearPageSwapCache(oldpage); 1017 set_page_private(oldpage, 0); 1018 1019 unlock_page(oldpage); 1020 page_cache_release(oldpage); 1021 page_cache_release(oldpage); 1022 return error; 1023} 1024 1025/* 1026 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1027 * 1028 * If we allocate a new one we do not mark it dirty. That's up to the 1029 * vm. If we swap it in we mark it dirty since we also free the swap 1030 * entry since a page cannot live in both the swap and page cache 1031 */ 1032static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1033 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type) 1034{ 1035 struct address_space *mapping = inode->i_mapping; 1036 struct shmem_inode_info *info; 1037 struct shmem_sb_info *sbinfo; 1038 struct mem_cgroup *memcg; 1039 struct page *page; 1040 swp_entry_t swap; 1041 int error; 1042 int once = 0; 1043 int alloced = 0; 1044 1045 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT)) 1046 return -EFBIG; 1047repeat: 1048 swap.val = 0; 1049 page = find_lock_entry(mapping, index); 1050 if (radix_tree_exceptional_entry(page)) { 1051 swap = radix_to_swp_entry(page); 1052 page = NULL; 1053 } 1054 1055 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1056 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1057 error = -EINVAL; 1058 goto failed; 1059 } 1060 1061 if (page && sgp == SGP_WRITE) 1062 mark_page_accessed(page); 1063 1064 /* fallocated page? */ 1065 if (page && !PageUptodate(page)) { 1066 if (sgp != SGP_READ) 1067 goto clear; 1068 unlock_page(page); 1069 page_cache_release(page); 1070 page = NULL; 1071 } 1072 if (page || (sgp == SGP_READ && !swap.val)) { 1073 *pagep = page; 1074 return 0; 1075 } 1076 1077 /* 1078 * Fast cache lookup did not find it: 1079 * bring it back from swap or allocate. 1080 */ 1081 info = SHMEM_I(inode); 1082 sbinfo = SHMEM_SB(inode->i_sb); 1083 1084 if (swap.val) { 1085 /* Look it up and read it in.. */ 1086 page = lookup_swap_cache(swap); 1087 if (!page) { 1088 /* here we actually do the io */ 1089 if (fault_type) 1090 *fault_type |= VM_FAULT_MAJOR; 1091 page = shmem_swapin(swap, gfp, info, index); 1092 if (!page) { 1093 error = -ENOMEM; 1094 goto failed; 1095 } 1096 } 1097 1098 /* We have to do this with page locked to prevent races */ 1099 lock_page(page); 1100 if (!PageSwapCache(page) || page_private(page) != swap.val || 1101 !shmem_confirm_swap(mapping, index, swap)) { 1102 error = -EEXIST; /* try again */ 1103 goto unlock; 1104 } 1105 if (!PageUptodate(page)) { 1106 error = -EIO; 1107 goto failed; 1108 } 1109 wait_on_page_writeback(page); 1110 1111 if (shmem_should_replace_page(page, gfp)) { 1112 error = shmem_replace_page(&page, gfp, info, index); 1113 if (error) 1114 goto failed; 1115 } 1116 1117 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg); 1118 if (!error) { 1119 error = shmem_add_to_page_cache(page, mapping, index, 1120 swp_to_radix_entry(swap)); 1121 /* 1122 * We already confirmed swap under page lock, and make 1123 * no memory allocation here, so usually no possibility 1124 * of error; but free_swap_and_cache() only trylocks a 1125 * page, so it is just possible that the entry has been 1126 * truncated or holepunched since swap was confirmed. 1127 * shmem_undo_range() will have done some of the 1128 * unaccounting, now delete_from_swap_cache() will do 1129 * the rest. 1130 * Reset swap.val? No, leave it so "failed" goes back to 1131 * "repeat": reading a hole and writing should succeed. 1132 */ 1133 if (error) { 1134 mem_cgroup_cancel_charge(page, memcg); 1135 delete_from_swap_cache(page); 1136 } 1137 } 1138 if (error) 1139 goto failed; 1140 1141 mem_cgroup_commit_charge(page, memcg, true); 1142 1143 spin_lock(&info->lock); 1144 info->swapped--; 1145 shmem_recalc_inode(inode); 1146 spin_unlock(&info->lock); 1147 1148 if (sgp == SGP_WRITE) 1149 mark_page_accessed(page); 1150 1151 delete_from_swap_cache(page); 1152 set_page_dirty(page); 1153 swap_free(swap); 1154 1155 } else { 1156 if (shmem_acct_block(info->flags)) { 1157 error = -ENOSPC; 1158 goto failed; 1159 } 1160 if (sbinfo->max_blocks) { 1161 if (percpu_counter_compare(&sbinfo->used_blocks, 1162 sbinfo->max_blocks) >= 0) { 1163 error = -ENOSPC; 1164 goto unacct; 1165 } 1166 percpu_counter_inc(&sbinfo->used_blocks); 1167 } 1168 1169 page = shmem_alloc_page(gfp, info, index); 1170 if (!page) { 1171 error = -ENOMEM; 1172 goto decused; 1173 } 1174 1175 __SetPageSwapBacked(page); 1176 __set_page_locked(page); 1177 if (sgp == SGP_WRITE) 1178 __SetPageReferenced(page); 1179 1180 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg); 1181 if (error) 1182 goto decused; 1183 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); 1184 if (!error) { 1185 error = shmem_add_to_page_cache(page, mapping, index, 1186 NULL); 1187 radix_tree_preload_end(); 1188 } 1189 if (error) { 1190 mem_cgroup_cancel_charge(page, memcg); 1191 goto decused; 1192 } 1193 mem_cgroup_commit_charge(page, memcg, false); 1194 lru_cache_add_anon(page); 1195 1196 spin_lock(&info->lock); 1197 info->alloced++; 1198 inode->i_blocks += BLOCKS_PER_PAGE; 1199 shmem_recalc_inode(inode); 1200 spin_unlock(&info->lock); 1201 alloced = true; 1202 1203 /* 1204 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1205 */ 1206 if (sgp == SGP_FALLOC) 1207 sgp = SGP_WRITE; 1208clear: 1209 /* 1210 * Let SGP_WRITE caller clear ends if write does not fill page; 1211 * but SGP_FALLOC on a page fallocated earlier must initialize 1212 * it now, lest undo on failure cancel our earlier guarantee. 1213 */ 1214 if (sgp != SGP_WRITE) { 1215 clear_highpage(page); 1216 flush_dcache_page(page); 1217 SetPageUptodate(page); 1218 } 1219 if (sgp == SGP_DIRTY) 1220 set_page_dirty(page); 1221 } 1222 1223 /* Perhaps the file has been truncated since we checked */ 1224 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1225 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1226 error = -EINVAL; 1227 if (alloced) 1228 goto trunc; 1229 else 1230 goto failed; 1231 } 1232 *pagep = page; 1233 return 0; 1234 1235 /* 1236 * Error recovery. 1237 */ 1238trunc: 1239 info = SHMEM_I(inode); 1240 ClearPageDirty(page); 1241 delete_from_page_cache(page); 1242 spin_lock(&info->lock); 1243 info->alloced--; 1244 inode->i_blocks -= BLOCKS_PER_PAGE; 1245 spin_unlock(&info->lock); 1246decused: 1247 sbinfo = SHMEM_SB(inode->i_sb); 1248 if (sbinfo->max_blocks) 1249 percpu_counter_add(&sbinfo->used_blocks, -1); 1250unacct: 1251 shmem_unacct_blocks(info->flags, 1); 1252failed: 1253 if (swap.val && error != -EINVAL && 1254 !shmem_confirm_swap(mapping, index, swap)) 1255 error = -EEXIST; 1256unlock: 1257 if (page) { 1258 unlock_page(page); 1259 page_cache_release(page); 1260 } 1261 if (error == -ENOSPC && !once++) { 1262 info = SHMEM_I(inode); 1263 spin_lock(&info->lock); 1264 shmem_recalc_inode(inode); 1265 spin_unlock(&info->lock); 1266 goto repeat; 1267 } 1268 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1269 goto repeat; 1270 return error; 1271} 1272 1273static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1274{ 1275 struct inode *inode = file_inode(vma->vm_file); 1276 int error; 1277 int ret = VM_FAULT_LOCKED; 1278 1279 /* 1280 * Trinity finds that probing a hole which tmpfs is punching can 1281 * prevent the hole-punch from ever completing: which in turn 1282 * locks writers out with its hold on i_mutex. So refrain from 1283 * faulting pages into the hole while it's being punched. Although 1284 * shmem_undo_range() does remove the additions, it may be unable to 1285 * keep up, as each new page needs its own unmap_mapping_range() call, 1286 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1287 * 1288 * It does not matter if we sometimes reach this check just before the 1289 * hole-punch begins, so that one fault then races with the punch: 1290 * we just need to make racing faults a rare case. 1291 * 1292 * The implementation below would be much simpler if we just used a 1293 * standard mutex or completion: but we cannot take i_mutex in fault, 1294 * and bloating every shmem inode for this unlikely case would be sad. 1295 */ 1296 if (unlikely(inode->i_private)) { 1297 struct shmem_falloc *shmem_falloc; 1298 1299 spin_lock(&inode->i_lock); 1300 shmem_falloc = inode->i_private; 1301 if (shmem_falloc && 1302 shmem_falloc->waitq && 1303 vmf->pgoff >= shmem_falloc->start && 1304 vmf->pgoff < shmem_falloc->next) { 1305 wait_queue_head_t *shmem_falloc_waitq; 1306 DEFINE_WAIT(shmem_fault_wait); 1307 1308 ret = VM_FAULT_NOPAGE; 1309 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1310 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1311 /* It's polite to up mmap_sem if we can */ 1312 up_read(&vma->vm_mm->mmap_sem); 1313 ret = VM_FAULT_RETRY; 1314 } 1315 1316 shmem_falloc_waitq = shmem_falloc->waitq; 1317 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1318 TASK_UNINTERRUPTIBLE); 1319 spin_unlock(&inode->i_lock); 1320 schedule(); 1321 1322 /* 1323 * shmem_falloc_waitq points into the shmem_fallocate() 1324 * stack of the hole-punching task: shmem_falloc_waitq 1325 * is usually invalid by the time we reach here, but 1326 * finish_wait() does not dereference it in that case; 1327 * though i_lock needed lest racing with wake_up_all(). 1328 */ 1329 spin_lock(&inode->i_lock); 1330 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1331 spin_unlock(&inode->i_lock); 1332 return ret; 1333 } 1334 spin_unlock(&inode->i_lock); 1335 } 1336 1337 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1338 if (error) 1339 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1340 1341 if (ret & VM_FAULT_MAJOR) { 1342 count_vm_event(PGMAJFAULT); 1343 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1344 } 1345 return ret; 1346} 1347 1348#ifdef CONFIG_NUMA 1349static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 1350{ 1351 struct inode *inode = file_inode(vma->vm_file); 1352 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 1353} 1354 1355static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1356 unsigned long addr) 1357{ 1358 struct inode *inode = file_inode(vma->vm_file); 1359 pgoff_t index; 1360 1361 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1362 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 1363} 1364#endif 1365 1366int shmem_lock(struct file *file, int lock, struct user_struct *user) 1367{ 1368 struct inode *inode = file_inode(file); 1369 struct shmem_inode_info *info = SHMEM_I(inode); 1370 int retval = -ENOMEM; 1371 1372 spin_lock(&info->lock); 1373 if (lock && !(info->flags & VM_LOCKED)) { 1374 if (!user_shm_lock(inode->i_size, user)) 1375 goto out_nomem; 1376 info->flags |= VM_LOCKED; 1377 mapping_set_unevictable(file->f_mapping); 1378 } 1379 if (!lock && (info->flags & VM_LOCKED) && user) { 1380 user_shm_unlock(inode->i_size, user); 1381 info->flags &= ~VM_LOCKED; 1382 mapping_clear_unevictable(file->f_mapping); 1383 } 1384 retval = 0; 1385 1386out_nomem: 1387 spin_unlock(&info->lock); 1388 return retval; 1389} 1390 1391static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1392{ 1393 file_accessed(file); 1394 vma->vm_ops = &shmem_vm_ops; 1395 return 0; 1396} 1397 1398static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 1399 umode_t mode, dev_t dev, unsigned long flags) 1400{ 1401 struct inode *inode; 1402 struct shmem_inode_info *info; 1403 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1404 1405 if (shmem_reserve_inode(sb)) 1406 return NULL; 1407 1408 inode = new_inode(sb); 1409 if (inode) { 1410 inode->i_ino = get_next_ino(); 1411 inode_init_owner(inode, dir, mode); 1412 inode->i_blocks = 0; 1413 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1414 inode->i_generation = get_seconds(); 1415 info = SHMEM_I(inode); 1416 memset(info, 0, (char *)inode - (char *)info); 1417 spin_lock_init(&info->lock); 1418 info->seals = F_SEAL_SEAL; 1419 info->flags = flags & VM_NORESERVE; 1420 INIT_LIST_HEAD(&info->swaplist); 1421 simple_xattrs_init(&info->xattrs); 1422 cache_no_acl(inode); 1423 1424 switch (mode & S_IFMT) { 1425 default: 1426 inode->i_op = &shmem_special_inode_operations; 1427 init_special_inode(inode, mode, dev); 1428 break; 1429 case S_IFREG: 1430 inode->i_mapping->a_ops = &shmem_aops; 1431 inode->i_op = &shmem_inode_operations; 1432 inode->i_fop = &shmem_file_operations; 1433 mpol_shared_policy_init(&info->policy, 1434 shmem_get_sbmpol(sbinfo)); 1435 break; 1436 case S_IFDIR: 1437 inc_nlink(inode); 1438 /* Some things misbehave if size == 0 on a directory */ 1439 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1440 inode->i_op = &shmem_dir_inode_operations; 1441 inode->i_fop = &simple_dir_operations; 1442 break; 1443 case S_IFLNK: 1444 /* 1445 * Must not load anything in the rbtree, 1446 * mpol_free_shared_policy will not be called. 1447 */ 1448 mpol_shared_policy_init(&info->policy, NULL); 1449 break; 1450 } 1451 } else 1452 shmem_free_inode(sb); 1453 return inode; 1454} 1455 1456bool shmem_mapping(struct address_space *mapping) 1457{ 1458 if (!mapping->host) 1459 return false; 1460 1461 return mapping->host->i_sb->s_op == &shmem_ops; 1462} 1463 1464#ifdef CONFIG_TMPFS 1465static const struct inode_operations shmem_symlink_inode_operations; 1466static const struct inode_operations shmem_short_symlink_operations; 1467 1468#ifdef CONFIG_TMPFS_XATTR 1469static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 1470#else 1471#define shmem_initxattrs NULL 1472#endif 1473 1474static int 1475shmem_write_begin(struct file *file, struct address_space *mapping, 1476 loff_t pos, unsigned len, unsigned flags, 1477 struct page **pagep, void **fsdata) 1478{ 1479 struct inode *inode = mapping->host; 1480 struct shmem_inode_info *info = SHMEM_I(inode); 1481 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1482 1483 /* i_mutex is held by caller */ 1484 if (unlikely(info->seals)) { 1485 if (info->seals & F_SEAL_WRITE) 1486 return -EPERM; 1487 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 1488 return -EPERM; 1489 } 1490 1491 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1492} 1493 1494static int 1495shmem_write_end(struct file *file, struct address_space *mapping, 1496 loff_t pos, unsigned len, unsigned copied, 1497 struct page *page, void *fsdata) 1498{ 1499 struct inode *inode = mapping->host; 1500 1501 if (pos + copied > inode->i_size) 1502 i_size_write(inode, pos + copied); 1503 1504 if (!PageUptodate(page)) { 1505 if (copied < PAGE_CACHE_SIZE) { 1506 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1507 zero_user_segments(page, 0, from, 1508 from + copied, PAGE_CACHE_SIZE); 1509 } 1510 SetPageUptodate(page); 1511 } 1512 set_page_dirty(page); 1513 unlock_page(page); 1514 page_cache_release(page); 1515 1516 return copied; 1517} 1518 1519static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1520{ 1521 struct file *file = iocb->ki_filp; 1522 struct inode *inode = file_inode(file); 1523 struct address_space *mapping = inode->i_mapping; 1524 pgoff_t index; 1525 unsigned long offset; 1526 enum sgp_type sgp = SGP_READ; 1527 int error = 0; 1528 ssize_t retval = 0; 1529 loff_t *ppos = &iocb->ki_pos; 1530 1531 /* 1532 * Might this read be for a stacking filesystem? Then when reading 1533 * holes of a sparse file, we actually need to allocate those pages, 1534 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1535 */ 1536 if (!iter_is_iovec(to)) 1537 sgp = SGP_DIRTY; 1538 1539 index = *ppos >> PAGE_CACHE_SHIFT; 1540 offset = *ppos & ~PAGE_CACHE_MASK; 1541 1542 for (;;) { 1543 struct page *page = NULL; 1544 pgoff_t end_index; 1545 unsigned long nr, ret; 1546 loff_t i_size = i_size_read(inode); 1547 1548 end_index = i_size >> PAGE_CACHE_SHIFT; 1549 if (index > end_index) 1550 break; 1551 if (index == end_index) { 1552 nr = i_size & ~PAGE_CACHE_MASK; 1553 if (nr <= offset) 1554 break; 1555 } 1556 1557 error = shmem_getpage(inode, index, &page, sgp, NULL); 1558 if (error) { 1559 if (error == -EINVAL) 1560 error = 0; 1561 break; 1562 } 1563 if (page) 1564 unlock_page(page); 1565 1566 /* 1567 * We must evaluate after, since reads (unlike writes) 1568 * are called without i_mutex protection against truncate 1569 */ 1570 nr = PAGE_CACHE_SIZE; 1571 i_size = i_size_read(inode); 1572 end_index = i_size >> PAGE_CACHE_SHIFT; 1573 if (index == end_index) { 1574 nr = i_size & ~PAGE_CACHE_MASK; 1575 if (nr <= offset) { 1576 if (page) 1577 page_cache_release(page); 1578 break; 1579 } 1580 } 1581 nr -= offset; 1582 1583 if (page) { 1584 /* 1585 * If users can be writing to this page using arbitrary 1586 * virtual addresses, take care about potential aliasing 1587 * before reading the page on the kernel side. 1588 */ 1589 if (mapping_writably_mapped(mapping)) 1590 flush_dcache_page(page); 1591 /* 1592 * Mark the page accessed if we read the beginning. 1593 */ 1594 if (!offset) 1595 mark_page_accessed(page); 1596 } else { 1597 page = ZERO_PAGE(0); 1598 page_cache_get(page); 1599 } 1600 1601 /* 1602 * Ok, we have the page, and it's up-to-date, so 1603 * now we can copy it to user space... 1604 */ 1605 ret = copy_page_to_iter(page, offset, nr, to); 1606 retval += ret; 1607 offset += ret; 1608 index += offset >> PAGE_CACHE_SHIFT; 1609 offset &= ~PAGE_CACHE_MASK; 1610 1611 page_cache_release(page); 1612 if (!iov_iter_count(to)) 1613 break; 1614 if (ret < nr) { 1615 error = -EFAULT; 1616 break; 1617 } 1618 cond_resched(); 1619 } 1620 1621 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1622 file_accessed(file); 1623 return retval ? retval : error; 1624} 1625 1626static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 1627 struct pipe_inode_info *pipe, size_t len, 1628 unsigned int flags) 1629{ 1630 struct address_space *mapping = in->f_mapping; 1631 struct inode *inode = mapping->host; 1632 unsigned int loff, nr_pages, req_pages; 1633 struct page *pages[PIPE_DEF_BUFFERS]; 1634 struct partial_page partial[PIPE_DEF_BUFFERS]; 1635 struct page *page; 1636 pgoff_t index, end_index; 1637 loff_t isize, left; 1638 int error, page_nr; 1639 struct splice_pipe_desc spd = { 1640 .pages = pages, 1641 .partial = partial, 1642 .nr_pages_max = PIPE_DEF_BUFFERS, 1643 .flags = flags, 1644 .ops = &page_cache_pipe_buf_ops, 1645 .spd_release = spd_release_page, 1646 }; 1647 1648 isize = i_size_read(inode); 1649 if (unlikely(*ppos >= isize)) 1650 return 0; 1651 1652 left = isize - *ppos; 1653 if (unlikely(left < len)) 1654 len = left; 1655 1656 if (splice_grow_spd(pipe, &spd)) 1657 return -ENOMEM; 1658 1659 index = *ppos >> PAGE_CACHE_SHIFT; 1660 loff = *ppos & ~PAGE_CACHE_MASK; 1661 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1662 nr_pages = min(req_pages, spd.nr_pages_max); 1663 1664 spd.nr_pages = find_get_pages_contig(mapping, index, 1665 nr_pages, spd.pages); 1666 index += spd.nr_pages; 1667 error = 0; 1668 1669 while (spd.nr_pages < nr_pages) { 1670 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL); 1671 if (error) 1672 break; 1673 unlock_page(page); 1674 spd.pages[spd.nr_pages++] = page; 1675 index++; 1676 } 1677 1678 index = *ppos >> PAGE_CACHE_SHIFT; 1679 nr_pages = spd.nr_pages; 1680 spd.nr_pages = 0; 1681 1682 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 1683 unsigned int this_len; 1684 1685 if (!len) 1686 break; 1687 1688 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 1689 page = spd.pages[page_nr]; 1690 1691 if (!PageUptodate(page) || page->mapping != mapping) { 1692 error = shmem_getpage(inode, index, &page, 1693 SGP_CACHE, NULL); 1694 if (error) 1695 break; 1696 unlock_page(page); 1697 page_cache_release(spd.pages[page_nr]); 1698 spd.pages[page_nr] = page; 1699 } 1700 1701 isize = i_size_read(inode); 1702 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1703 if (unlikely(!isize || index > end_index)) 1704 break; 1705 1706 if (end_index == index) { 1707 unsigned int plen; 1708 1709 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1710 if (plen <= loff) 1711 break; 1712 1713 this_len = min(this_len, plen - loff); 1714 len = this_len; 1715 } 1716 1717 spd.partial[page_nr].offset = loff; 1718 spd.partial[page_nr].len = this_len; 1719 len -= this_len; 1720 loff = 0; 1721 spd.nr_pages++; 1722 index++; 1723 } 1724 1725 while (page_nr < nr_pages) 1726 page_cache_release(spd.pages[page_nr++]); 1727 1728 if (spd.nr_pages) 1729 error = splice_to_pipe(pipe, &spd); 1730 1731 splice_shrink_spd(&spd); 1732 1733 if (error > 0) { 1734 *ppos += error; 1735 file_accessed(in); 1736 } 1737 return error; 1738} 1739 1740/* 1741 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 1742 */ 1743static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 1744 pgoff_t index, pgoff_t end, int whence) 1745{ 1746 struct page *page; 1747 struct pagevec pvec; 1748 pgoff_t indices[PAGEVEC_SIZE]; 1749 bool done = false; 1750 int i; 1751 1752 pagevec_init(&pvec, 0); 1753 pvec.nr = 1; /* start small: we may be there already */ 1754 while (!done) { 1755 pvec.nr = find_get_entries(mapping, index, 1756 pvec.nr, pvec.pages, indices); 1757 if (!pvec.nr) { 1758 if (whence == SEEK_DATA) 1759 index = end; 1760 break; 1761 } 1762 for (i = 0; i < pvec.nr; i++, index++) { 1763 if (index < indices[i]) { 1764 if (whence == SEEK_HOLE) { 1765 done = true; 1766 break; 1767 } 1768 index = indices[i]; 1769 } 1770 page = pvec.pages[i]; 1771 if (page && !radix_tree_exceptional_entry(page)) { 1772 if (!PageUptodate(page)) 1773 page = NULL; 1774 } 1775 if (index >= end || 1776 (page && whence == SEEK_DATA) || 1777 (!page && whence == SEEK_HOLE)) { 1778 done = true; 1779 break; 1780 } 1781 } 1782 pagevec_remove_exceptionals(&pvec); 1783 pagevec_release(&pvec); 1784 pvec.nr = PAGEVEC_SIZE; 1785 cond_resched(); 1786 } 1787 return index; 1788} 1789 1790static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 1791{ 1792 struct address_space *mapping = file->f_mapping; 1793 struct inode *inode = mapping->host; 1794 pgoff_t start, end; 1795 loff_t new_offset; 1796 1797 if (whence != SEEK_DATA && whence != SEEK_HOLE) 1798 return generic_file_llseek_size(file, offset, whence, 1799 MAX_LFS_FILESIZE, i_size_read(inode)); 1800 mutex_lock(&inode->i_mutex); 1801 /* We're holding i_mutex so we can access i_size directly */ 1802 1803 if (offset < 0) 1804 offset = -EINVAL; 1805 else if (offset >= inode->i_size) 1806 offset = -ENXIO; 1807 else { 1808 start = offset >> PAGE_CACHE_SHIFT; 1809 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1810 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 1811 new_offset <<= PAGE_CACHE_SHIFT; 1812 if (new_offset > offset) { 1813 if (new_offset < inode->i_size) 1814 offset = new_offset; 1815 else if (whence == SEEK_DATA) 1816 offset = -ENXIO; 1817 else 1818 offset = inode->i_size; 1819 } 1820 } 1821 1822 if (offset >= 0) 1823 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 1824 mutex_unlock(&inode->i_mutex); 1825 return offset; 1826} 1827 1828/* 1829 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, 1830 * so reuse a tag which we firmly believe is never set or cleared on shmem. 1831 */ 1832#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE 1833#define LAST_SCAN 4 /* about 150ms max */ 1834 1835static void shmem_tag_pins(struct address_space *mapping) 1836{ 1837 struct radix_tree_iter iter; 1838 void **slot; 1839 pgoff_t start; 1840 struct page *page; 1841 1842 lru_add_drain(); 1843 start = 0; 1844 rcu_read_lock(); 1845 1846restart: 1847 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1848 page = radix_tree_deref_slot(slot); 1849 if (!page || radix_tree_exception(page)) { 1850 if (radix_tree_deref_retry(page)) 1851 goto restart; 1852 } else if (page_count(page) - page_mapcount(page) > 1) { 1853 spin_lock_irq(&mapping->tree_lock); 1854 radix_tree_tag_set(&mapping->page_tree, iter.index, 1855 SHMEM_TAG_PINNED); 1856 spin_unlock_irq(&mapping->tree_lock); 1857 } 1858 1859 if (need_resched()) { 1860 cond_resched_rcu(); 1861 start = iter.index + 1; 1862 goto restart; 1863 } 1864 } 1865 rcu_read_unlock(); 1866} 1867 1868/* 1869 * Setting SEAL_WRITE requires us to verify there's no pending writer. However, 1870 * via get_user_pages(), drivers might have some pending I/O without any active 1871 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages 1872 * and see whether it has an elevated ref-count. If so, we tag them and wait for 1873 * them to be dropped. 1874 * The caller must guarantee that no new user will acquire writable references 1875 * to those pages to avoid races. 1876 */ 1877static int shmem_wait_for_pins(struct address_space *mapping) 1878{ 1879 struct radix_tree_iter iter; 1880 void **slot; 1881 pgoff_t start; 1882 struct page *page; 1883 int error, scan; 1884 1885 shmem_tag_pins(mapping); 1886 1887 error = 0; 1888 for (scan = 0; scan <= LAST_SCAN; scan++) { 1889 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED)) 1890 break; 1891 1892 if (!scan) 1893 lru_add_drain_all(); 1894 else if (schedule_timeout_killable((HZ << scan) / 200)) 1895 scan = LAST_SCAN; 1896 1897 start = 0; 1898 rcu_read_lock(); 1899restart: 1900 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 1901 start, SHMEM_TAG_PINNED) { 1902 1903 page = radix_tree_deref_slot(slot); 1904 if (radix_tree_exception(page)) { 1905 if (radix_tree_deref_retry(page)) 1906 goto restart; 1907 1908 page = NULL; 1909 } 1910 1911 if (page && 1912 page_count(page) - page_mapcount(page) != 1) { 1913 if (scan < LAST_SCAN) 1914 goto continue_resched; 1915 1916 /* 1917 * On the last scan, we clean up all those tags 1918 * we inserted; but make a note that we still 1919 * found pages pinned. 1920 */ 1921 error = -EBUSY; 1922 } 1923 1924 spin_lock_irq(&mapping->tree_lock); 1925 radix_tree_tag_clear(&mapping->page_tree, 1926 iter.index, SHMEM_TAG_PINNED); 1927 spin_unlock_irq(&mapping->tree_lock); 1928continue_resched: 1929 if (need_resched()) { 1930 cond_resched_rcu(); 1931 start = iter.index + 1; 1932 goto restart; 1933 } 1934 } 1935 rcu_read_unlock(); 1936 } 1937 1938 return error; 1939} 1940 1941#define F_ALL_SEALS (F_SEAL_SEAL | \ 1942 F_SEAL_SHRINK | \ 1943 F_SEAL_GROW | \ 1944 F_SEAL_WRITE) 1945 1946int shmem_add_seals(struct file *file, unsigned int seals) 1947{ 1948 struct inode *inode = file_inode(file); 1949 struct shmem_inode_info *info = SHMEM_I(inode); 1950 int error; 1951 1952 /* 1953 * SEALING 1954 * Sealing allows multiple parties to share a shmem-file but restrict 1955 * access to a specific subset of file operations. Seals can only be 1956 * added, but never removed. This way, mutually untrusted parties can 1957 * share common memory regions with a well-defined policy. A malicious 1958 * peer can thus never perform unwanted operations on a shared object. 1959 * 1960 * Seals are only supported on special shmem-files and always affect 1961 * the whole underlying inode. Once a seal is set, it may prevent some 1962 * kinds of access to the file. Currently, the following seals are 1963 * defined: 1964 * SEAL_SEAL: Prevent further seals from being set on this file 1965 * SEAL_SHRINK: Prevent the file from shrinking 1966 * SEAL_GROW: Prevent the file from growing 1967 * SEAL_WRITE: Prevent write access to the file 1968 * 1969 * As we don't require any trust relationship between two parties, we 1970 * must prevent seals from being removed. Therefore, sealing a file 1971 * only adds a given set of seals to the file, it never touches 1972 * existing seals. Furthermore, the "setting seals"-operation can be 1973 * sealed itself, which basically prevents any further seal from being 1974 * added. 1975 * 1976 * Semantics of sealing are only defined on volatile files. Only 1977 * anonymous shmem files support sealing. More importantly, seals are 1978 * never written to disk. Therefore, there's no plan to support it on 1979 * other file types. 1980 */ 1981 1982 if (file->f_op != &shmem_file_operations) 1983 return -EINVAL; 1984 if (!(file->f_mode & FMODE_WRITE)) 1985 return -EPERM; 1986 if (seals & ~(unsigned int)F_ALL_SEALS) 1987 return -EINVAL; 1988 1989 mutex_lock(&inode->i_mutex); 1990 1991 if (info->seals & F_SEAL_SEAL) { 1992 error = -EPERM; 1993 goto unlock; 1994 } 1995 1996 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) { 1997 error = mapping_deny_writable(file->f_mapping); 1998 if (error) 1999 goto unlock; 2000 2001 error = shmem_wait_for_pins(file->f_mapping); 2002 if (error) { 2003 mapping_allow_writable(file->f_mapping); 2004 goto unlock; 2005 } 2006 } 2007 2008 info->seals |= seals; 2009 error = 0; 2010 2011unlock: 2012 mutex_unlock(&inode->i_mutex); 2013 return error; 2014} 2015EXPORT_SYMBOL_GPL(shmem_add_seals); 2016 2017int shmem_get_seals(struct file *file) 2018{ 2019 if (file->f_op != &shmem_file_operations) 2020 return -EINVAL; 2021 2022 return SHMEM_I(file_inode(file))->seals; 2023} 2024EXPORT_SYMBOL_GPL(shmem_get_seals); 2025 2026long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2027{ 2028 long error; 2029 2030 switch (cmd) { 2031 case F_ADD_SEALS: 2032 /* disallow upper 32bit */ 2033 if (arg > UINT_MAX) 2034 return -EINVAL; 2035 2036 error = shmem_add_seals(file, arg); 2037 break; 2038 case F_GET_SEALS: 2039 error = shmem_get_seals(file); 2040 break; 2041 default: 2042 error = -EINVAL; 2043 break; 2044 } 2045 2046 return error; 2047} 2048 2049static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2050 loff_t len) 2051{ 2052 struct inode *inode = file_inode(file); 2053 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2054 struct shmem_inode_info *info = SHMEM_I(inode); 2055 struct shmem_falloc shmem_falloc; 2056 pgoff_t start, index, end; 2057 int error; 2058 2059 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2060 return -EOPNOTSUPP; 2061 2062 mutex_lock(&inode->i_mutex); 2063 2064 if (mode & FALLOC_FL_PUNCH_HOLE) { 2065 struct address_space *mapping = file->f_mapping; 2066 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2067 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2068 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2069 2070 /* protected by i_mutex */ 2071 if (info->seals & F_SEAL_WRITE) { 2072 error = -EPERM; 2073 goto out; 2074 } 2075 2076 shmem_falloc.waitq = &shmem_falloc_waitq; 2077 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2078 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2079 spin_lock(&inode->i_lock); 2080 inode->i_private = &shmem_falloc; 2081 spin_unlock(&inode->i_lock); 2082 2083 if ((u64)unmap_end > (u64)unmap_start) 2084 unmap_mapping_range(mapping, unmap_start, 2085 1 + unmap_end - unmap_start, 0); 2086 shmem_truncate_range(inode, offset, offset + len - 1); 2087 /* No need to unmap again: hole-punching leaves COWed pages */ 2088 2089 spin_lock(&inode->i_lock); 2090 inode->i_private = NULL; 2091 wake_up_all(&shmem_falloc_waitq); 2092 spin_unlock(&inode->i_lock); 2093 error = 0; 2094 goto out; 2095 } 2096 2097 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2098 error = inode_newsize_ok(inode, offset + len); 2099 if (error) 2100 goto out; 2101 2102 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2103 error = -EPERM; 2104 goto out; 2105 } 2106 2107 start = offset >> PAGE_CACHE_SHIFT; 2108 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 2109 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2110 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2111 error = -ENOSPC; 2112 goto out; 2113 } 2114 2115 shmem_falloc.waitq = NULL; 2116 shmem_falloc.start = start; 2117 shmem_falloc.next = start; 2118 shmem_falloc.nr_falloced = 0; 2119 shmem_falloc.nr_unswapped = 0; 2120 spin_lock(&inode->i_lock); 2121 inode->i_private = &shmem_falloc; 2122 spin_unlock(&inode->i_lock); 2123 2124 for (index = start; index < end; index++) { 2125 struct page *page; 2126 2127 /* 2128 * Good, the fallocate(2) manpage permits EINTR: we may have 2129 * been interrupted because we are using up too much memory. 2130 */ 2131 if (signal_pending(current)) 2132 error = -EINTR; 2133 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2134 error = -ENOMEM; 2135 else 2136 error = shmem_getpage(inode, index, &page, SGP_FALLOC, 2137 NULL); 2138 if (error) { 2139 /* Remove the !PageUptodate pages we added */ 2140 shmem_undo_range(inode, 2141 (loff_t)start << PAGE_CACHE_SHIFT, 2142 (loff_t)index << PAGE_CACHE_SHIFT, true); 2143 goto undone; 2144 } 2145 2146 /* 2147 * Inform shmem_writepage() how far we have reached. 2148 * No need for lock or barrier: we have the page lock. 2149 */ 2150 shmem_falloc.next++; 2151 if (!PageUptodate(page)) 2152 shmem_falloc.nr_falloced++; 2153 2154 /* 2155 * If !PageUptodate, leave it that way so that freeable pages 2156 * can be recognized if we need to rollback on error later. 2157 * But set_page_dirty so that memory pressure will swap rather 2158 * than free the pages we are allocating (and SGP_CACHE pages 2159 * might still be clean: we now need to mark those dirty too). 2160 */ 2161 set_page_dirty(page); 2162 unlock_page(page); 2163 page_cache_release(page); 2164 cond_resched(); 2165 } 2166 2167 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2168 i_size_write(inode, offset + len); 2169 inode->i_ctime = CURRENT_TIME; 2170undone: 2171 spin_lock(&inode->i_lock); 2172 inode->i_private = NULL; 2173 spin_unlock(&inode->i_lock); 2174out: 2175 mutex_unlock(&inode->i_mutex); 2176 return error; 2177} 2178 2179static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2180{ 2181 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2182 2183 buf->f_type = TMPFS_MAGIC; 2184 buf->f_bsize = PAGE_CACHE_SIZE; 2185 buf->f_namelen = NAME_MAX; 2186 if (sbinfo->max_blocks) { 2187 buf->f_blocks = sbinfo->max_blocks; 2188 buf->f_bavail = 2189 buf->f_bfree = sbinfo->max_blocks - 2190 percpu_counter_sum(&sbinfo->used_blocks); 2191 } 2192 if (sbinfo->max_inodes) { 2193 buf->f_files = sbinfo->max_inodes; 2194 buf->f_ffree = sbinfo->free_inodes; 2195 } 2196 /* else leave those fields 0 like simple_statfs */ 2197 return 0; 2198} 2199 2200/* 2201 * File creation. Allocate an inode, and we're done.. 2202 */ 2203static int 2204shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2205{ 2206 struct inode *inode; 2207 int error = -ENOSPC; 2208 2209 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2210 if (inode) { 2211 error = simple_acl_create(dir, inode); 2212 if (error) 2213 goto out_iput; 2214 error = security_inode_init_security(inode, dir, 2215 &dentry->d_name, 2216 shmem_initxattrs, NULL); 2217 if (error && error != -EOPNOTSUPP) 2218 goto out_iput; 2219 2220 error = 0; 2221 dir->i_size += BOGO_DIRENT_SIZE; 2222 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2223 d_instantiate(dentry, inode); 2224 dget(dentry); /* Extra count - pin the dentry in core */ 2225 } 2226 return error; 2227out_iput: 2228 iput(inode); 2229 return error; 2230} 2231 2232static int 2233shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2234{ 2235 struct inode *inode; 2236 int error = -ENOSPC; 2237 2238 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2239 if (inode) { 2240 error = security_inode_init_security(inode, dir, 2241 NULL, 2242 shmem_initxattrs, NULL); 2243 if (error && error != -EOPNOTSUPP) 2244 goto out_iput; 2245 error = simple_acl_create(dir, inode); 2246 if (error) 2247 goto out_iput; 2248 d_tmpfile(dentry, inode); 2249 } 2250 return error; 2251out_iput: 2252 iput(inode); 2253 return error; 2254} 2255 2256static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2257{ 2258 int error; 2259 2260 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2261 return error; 2262 inc_nlink(dir); 2263 return 0; 2264} 2265 2266static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2267 bool excl) 2268{ 2269 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2270} 2271 2272/* 2273 * Link a file.. 2274 */ 2275static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2276{ 2277 struct inode *inode = d_inode(old_dentry); 2278 int ret; 2279 2280 /* 2281 * No ordinary (disk based) filesystem counts links as inodes; 2282 * but each new link needs a new dentry, pinning lowmem, and 2283 * tmpfs dentries cannot be pruned until they are unlinked. 2284 */ 2285 ret = shmem_reserve_inode(inode->i_sb); 2286 if (ret) 2287 goto out; 2288 2289 dir->i_size += BOGO_DIRENT_SIZE; 2290 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2291 inc_nlink(inode); 2292 ihold(inode); /* New dentry reference */ 2293 dget(dentry); /* Extra pinning count for the created dentry */ 2294 d_instantiate(dentry, inode); 2295out: 2296 return ret; 2297} 2298 2299static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2300{ 2301 struct inode *inode = d_inode(dentry); 2302 2303 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2304 shmem_free_inode(inode->i_sb); 2305 2306 dir->i_size -= BOGO_DIRENT_SIZE; 2307 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2308 drop_nlink(inode); 2309 dput(dentry); /* Undo the count from "create" - this does all the work */ 2310 return 0; 2311} 2312 2313static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2314{ 2315 if (!simple_empty(dentry)) 2316 return -ENOTEMPTY; 2317 2318 drop_nlink(d_inode(dentry)); 2319 drop_nlink(dir); 2320 return shmem_unlink(dir, dentry); 2321} 2322 2323static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2324{ 2325 bool old_is_dir = d_is_dir(old_dentry); 2326 bool new_is_dir = d_is_dir(new_dentry); 2327 2328 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2329 if (old_is_dir) { 2330 drop_nlink(old_dir); 2331 inc_nlink(new_dir); 2332 } else { 2333 drop_nlink(new_dir); 2334 inc_nlink(old_dir); 2335 } 2336 } 2337 old_dir->i_ctime = old_dir->i_mtime = 2338 new_dir->i_ctime = new_dir->i_mtime = 2339 d_inode(old_dentry)->i_ctime = 2340 d_inode(new_dentry)->i_ctime = CURRENT_TIME; 2341 2342 return 0; 2343} 2344 2345static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 2346{ 2347 struct dentry *whiteout; 2348 int error; 2349 2350 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2351 if (!whiteout) 2352 return -ENOMEM; 2353 2354 error = shmem_mknod(old_dir, whiteout, 2355 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2356 dput(whiteout); 2357 if (error) 2358 return error; 2359 2360 /* 2361 * Cheat and hash the whiteout while the old dentry is still in 2362 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2363 * 2364 * d_lookup() will consistently find one of them at this point, 2365 * not sure which one, but that isn't even important. 2366 */ 2367 d_rehash(whiteout); 2368 return 0; 2369} 2370 2371/* 2372 * The VFS layer already does all the dentry stuff for rename, 2373 * we just have to decrement the usage count for the target if 2374 * it exists so that the VFS layer correctly free's it when it 2375 * gets overwritten. 2376 */ 2377static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 2378{ 2379 struct inode *inode = d_inode(old_dentry); 2380 int they_are_dirs = S_ISDIR(inode->i_mode); 2381 2382 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 2383 return -EINVAL; 2384 2385 if (flags & RENAME_EXCHANGE) 2386 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 2387 2388 if (!simple_empty(new_dentry)) 2389 return -ENOTEMPTY; 2390 2391 if (flags & RENAME_WHITEOUT) { 2392 int error; 2393 2394 error = shmem_whiteout(old_dir, old_dentry); 2395 if (error) 2396 return error; 2397 } 2398 2399 if (d_really_is_positive(new_dentry)) { 2400 (void) shmem_unlink(new_dir, new_dentry); 2401 if (they_are_dirs) { 2402 drop_nlink(d_inode(new_dentry)); 2403 drop_nlink(old_dir); 2404 } 2405 } else if (they_are_dirs) { 2406 drop_nlink(old_dir); 2407 inc_nlink(new_dir); 2408 } 2409 2410 old_dir->i_size -= BOGO_DIRENT_SIZE; 2411 new_dir->i_size += BOGO_DIRENT_SIZE; 2412 old_dir->i_ctime = old_dir->i_mtime = 2413 new_dir->i_ctime = new_dir->i_mtime = 2414 inode->i_ctime = CURRENT_TIME; 2415 return 0; 2416} 2417 2418static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2419{ 2420 int error; 2421 int len; 2422 struct inode *inode; 2423 struct page *page; 2424 char *kaddr; 2425 struct shmem_inode_info *info; 2426 2427 len = strlen(symname) + 1; 2428 if (len > PAGE_CACHE_SIZE) 2429 return -ENAMETOOLONG; 2430 2431 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 2432 if (!inode) 2433 return -ENOSPC; 2434 2435 error = security_inode_init_security(inode, dir, &dentry->d_name, 2436 shmem_initxattrs, NULL); 2437 if (error) { 2438 if (error != -EOPNOTSUPP) { 2439 iput(inode); 2440 return error; 2441 } 2442 error = 0; 2443 } 2444 2445 info = SHMEM_I(inode); 2446 inode->i_size = len-1; 2447 if (len <= SHORT_SYMLINK_LEN) { 2448 info->symlink = kmemdup(symname, len, GFP_KERNEL); 2449 if (!info->symlink) { 2450 iput(inode); 2451 return -ENOMEM; 2452 } 2453 inode->i_op = &shmem_short_symlink_operations; 2454 } else { 2455 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 2456 if (error) { 2457 iput(inode); 2458 return error; 2459 } 2460 inode->i_mapping->a_ops = &shmem_aops; 2461 inode->i_op = &shmem_symlink_inode_operations; 2462 kaddr = kmap_atomic(page); 2463 memcpy(kaddr, symname, len); 2464 kunmap_atomic(kaddr); 2465 SetPageUptodate(page); 2466 set_page_dirty(page); 2467 unlock_page(page); 2468 page_cache_release(page); 2469 } 2470 dir->i_size += BOGO_DIRENT_SIZE; 2471 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2472 d_instantiate(dentry, inode); 2473 dget(dentry); 2474 return 0; 2475} 2476 2477static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd) 2478{ 2479 nd_set_link(nd, SHMEM_I(d_inode(dentry))->symlink); 2480 return NULL; 2481} 2482 2483static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) 2484{ 2485 struct page *page = NULL; 2486 int error = shmem_getpage(d_inode(dentry), 0, &page, SGP_READ, NULL); 2487 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page)); 2488 if (page) 2489 unlock_page(page); 2490 return page; 2491} 2492 2493static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2494{ 2495 if (!IS_ERR(nd_get_link(nd))) { 2496 struct page *page = cookie; 2497 kunmap(page); 2498 mark_page_accessed(page); 2499 page_cache_release(page); 2500 } 2501} 2502 2503#ifdef CONFIG_TMPFS_XATTR 2504/* 2505 * Superblocks without xattr inode operations may get some security.* xattr 2506 * support from the LSM "for free". As soon as we have any other xattrs 2507 * like ACLs, we also need to implement the security.* handlers at 2508 * filesystem level, though. 2509 */ 2510 2511/* 2512 * Callback for security_inode_init_security() for acquiring xattrs. 2513 */ 2514static int shmem_initxattrs(struct inode *inode, 2515 const struct xattr *xattr_array, 2516 void *fs_info) 2517{ 2518 struct shmem_inode_info *info = SHMEM_I(inode); 2519 const struct xattr *xattr; 2520 struct simple_xattr *new_xattr; 2521 size_t len; 2522 2523 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 2524 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 2525 if (!new_xattr) 2526 return -ENOMEM; 2527 2528 len = strlen(xattr->name) + 1; 2529 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 2530 GFP_KERNEL); 2531 if (!new_xattr->name) { 2532 kfree(new_xattr); 2533 return -ENOMEM; 2534 } 2535 2536 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 2537 XATTR_SECURITY_PREFIX_LEN); 2538 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 2539 xattr->name, len); 2540 2541 simple_xattr_list_add(&info->xattrs, new_xattr); 2542 } 2543 2544 return 0; 2545} 2546 2547static const struct xattr_handler *shmem_xattr_handlers[] = { 2548#ifdef CONFIG_TMPFS_POSIX_ACL 2549 &posix_acl_access_xattr_handler, 2550 &posix_acl_default_xattr_handler, 2551#endif 2552 NULL 2553}; 2554 2555static int shmem_xattr_validate(const char *name) 2556{ 2557 struct { const char *prefix; size_t len; } arr[] = { 2558 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN }, 2559 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN } 2560 }; 2561 int i; 2562 2563 for (i = 0; i < ARRAY_SIZE(arr); i++) { 2564 size_t preflen = arr[i].len; 2565 if (strncmp(name, arr[i].prefix, preflen) == 0) { 2566 if (!name[preflen]) 2567 return -EINVAL; 2568 return 0; 2569 } 2570 } 2571 return -EOPNOTSUPP; 2572} 2573 2574static ssize_t shmem_getxattr(struct dentry *dentry, const char *name, 2575 void *buffer, size_t size) 2576{ 2577 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2578 int err; 2579 2580 /* 2581 * If this is a request for a synthetic attribute in the system.* 2582 * namespace use the generic infrastructure to resolve a handler 2583 * for it via sb->s_xattr. 2584 */ 2585 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2586 return generic_getxattr(dentry, name, buffer, size); 2587 2588 err = shmem_xattr_validate(name); 2589 if (err) 2590 return err; 2591 2592 return simple_xattr_get(&info->xattrs, name, buffer, size); 2593} 2594 2595static int shmem_setxattr(struct dentry *dentry, const char *name, 2596 const void *value, size_t size, int flags) 2597{ 2598 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2599 int err; 2600 2601 /* 2602 * If this is a request for a synthetic attribute in the system.* 2603 * namespace use the generic infrastructure to resolve a handler 2604 * for it via sb->s_xattr. 2605 */ 2606 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2607 return generic_setxattr(dentry, name, value, size, flags); 2608 2609 err = shmem_xattr_validate(name); 2610 if (err) 2611 return err; 2612 2613 return simple_xattr_set(&info->xattrs, name, value, size, flags); 2614} 2615 2616static int shmem_removexattr(struct dentry *dentry, const char *name) 2617{ 2618 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2619 int err; 2620 2621 /* 2622 * If this is a request for a synthetic attribute in the system.* 2623 * namespace use the generic infrastructure to resolve a handler 2624 * for it via sb->s_xattr. 2625 */ 2626 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2627 return generic_removexattr(dentry, name); 2628 2629 err = shmem_xattr_validate(name); 2630 if (err) 2631 return err; 2632 2633 return simple_xattr_remove(&info->xattrs, name); 2634} 2635 2636static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 2637{ 2638 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2639 return simple_xattr_list(&info->xattrs, buffer, size); 2640} 2641#endif /* CONFIG_TMPFS_XATTR */ 2642 2643static const struct inode_operations shmem_short_symlink_operations = { 2644 .readlink = generic_readlink, 2645 .follow_link = shmem_follow_short_symlink, 2646#ifdef CONFIG_TMPFS_XATTR 2647 .setxattr = shmem_setxattr, 2648 .getxattr = shmem_getxattr, 2649 .listxattr = shmem_listxattr, 2650 .removexattr = shmem_removexattr, 2651#endif 2652}; 2653 2654static const struct inode_operations shmem_symlink_inode_operations = { 2655 .readlink = generic_readlink, 2656 .follow_link = shmem_follow_link, 2657 .put_link = shmem_put_link, 2658#ifdef CONFIG_TMPFS_XATTR 2659 .setxattr = shmem_setxattr, 2660 .getxattr = shmem_getxattr, 2661 .listxattr = shmem_listxattr, 2662 .removexattr = shmem_removexattr, 2663#endif 2664}; 2665 2666static struct dentry *shmem_get_parent(struct dentry *child) 2667{ 2668 return ERR_PTR(-ESTALE); 2669} 2670 2671static int shmem_match(struct inode *ino, void *vfh) 2672{ 2673 __u32 *fh = vfh; 2674 __u64 inum = fh[2]; 2675 inum = (inum << 32) | fh[1]; 2676 return ino->i_ino == inum && fh[0] == ino->i_generation; 2677} 2678 2679static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2680 struct fid *fid, int fh_len, int fh_type) 2681{ 2682 struct inode *inode; 2683 struct dentry *dentry = NULL; 2684 u64 inum; 2685 2686 if (fh_len < 3) 2687 return NULL; 2688 2689 inum = fid->raw[2]; 2690 inum = (inum << 32) | fid->raw[1]; 2691 2692 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2693 shmem_match, fid->raw); 2694 if (inode) { 2695 dentry = d_find_alias(inode); 2696 iput(inode); 2697 } 2698 2699 return dentry; 2700} 2701 2702static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 2703 struct inode *parent) 2704{ 2705 if (*len < 3) { 2706 *len = 3; 2707 return FILEID_INVALID; 2708 } 2709 2710 if (inode_unhashed(inode)) { 2711 /* Unfortunately insert_inode_hash is not idempotent, 2712 * so as we hash inodes here rather than at creation 2713 * time, we need a lock to ensure we only try 2714 * to do it once 2715 */ 2716 static DEFINE_SPINLOCK(lock); 2717 spin_lock(&lock); 2718 if (inode_unhashed(inode)) 2719 __insert_inode_hash(inode, 2720 inode->i_ino + inode->i_generation); 2721 spin_unlock(&lock); 2722 } 2723 2724 fh[0] = inode->i_generation; 2725 fh[1] = inode->i_ino; 2726 fh[2] = ((__u64)inode->i_ino) >> 32; 2727 2728 *len = 3; 2729 return 1; 2730} 2731 2732static const struct export_operations shmem_export_ops = { 2733 .get_parent = shmem_get_parent, 2734 .encode_fh = shmem_encode_fh, 2735 .fh_to_dentry = shmem_fh_to_dentry, 2736}; 2737 2738static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2739 bool remount) 2740{ 2741 char *this_char, *value, *rest; 2742 struct mempolicy *mpol = NULL; 2743 uid_t uid; 2744 gid_t gid; 2745 2746 while (options != NULL) { 2747 this_char = options; 2748 for (;;) { 2749 /* 2750 * NUL-terminate this option: unfortunately, 2751 * mount options form a comma-separated list, 2752 * but mpol's nodelist may also contain commas. 2753 */ 2754 options = strchr(options, ','); 2755 if (options == NULL) 2756 break; 2757 options++; 2758 if (!isdigit(*options)) { 2759 options[-1] = '\0'; 2760 break; 2761 } 2762 } 2763 if (!*this_char) 2764 continue; 2765 if ((value = strchr(this_char,'=')) != NULL) { 2766 *value++ = 0; 2767 } else { 2768 printk(KERN_ERR 2769 "tmpfs: No value for mount option '%s'\n", 2770 this_char); 2771 goto error; 2772 } 2773 2774 if (!strcmp(this_char,"size")) { 2775 unsigned long long size; 2776 size = memparse(value,&rest); 2777 if (*rest == '%') { 2778 size <<= PAGE_SHIFT; 2779 size *= totalram_pages; 2780 do_div(size, 100); 2781 rest++; 2782 } 2783 if (*rest) 2784 goto bad_val; 2785 sbinfo->max_blocks = 2786 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2787 } else if (!strcmp(this_char,"nr_blocks")) { 2788 sbinfo->max_blocks = memparse(value, &rest); 2789 if (*rest) 2790 goto bad_val; 2791 } else if (!strcmp(this_char,"nr_inodes")) { 2792 sbinfo->max_inodes = memparse(value, &rest); 2793 if (*rest) 2794 goto bad_val; 2795 } else if (!strcmp(this_char,"mode")) { 2796 if (remount) 2797 continue; 2798 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2799 if (*rest) 2800 goto bad_val; 2801 } else if (!strcmp(this_char,"uid")) { 2802 if (remount) 2803 continue; 2804 uid = simple_strtoul(value, &rest, 0); 2805 if (*rest) 2806 goto bad_val; 2807 sbinfo->uid = make_kuid(current_user_ns(), uid); 2808 if (!uid_valid(sbinfo->uid)) 2809 goto bad_val; 2810 } else if (!strcmp(this_char,"gid")) { 2811 if (remount) 2812 continue; 2813 gid = simple_strtoul(value, &rest, 0); 2814 if (*rest) 2815 goto bad_val; 2816 sbinfo->gid = make_kgid(current_user_ns(), gid); 2817 if (!gid_valid(sbinfo->gid)) 2818 goto bad_val; 2819 } else if (!strcmp(this_char,"mpol")) { 2820 mpol_put(mpol); 2821 mpol = NULL; 2822 if (mpol_parse_str(value, &mpol)) 2823 goto bad_val; 2824 } else { 2825 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2826 this_char); 2827 goto error; 2828 } 2829 } 2830 sbinfo->mpol = mpol; 2831 return 0; 2832 2833bad_val: 2834 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2835 value, this_char); 2836error: 2837 mpol_put(mpol); 2838 return 1; 2839 2840} 2841 2842static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2843{ 2844 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2845 struct shmem_sb_info config = *sbinfo; 2846 unsigned long inodes; 2847 int error = -EINVAL; 2848 2849 config.mpol = NULL; 2850 if (shmem_parse_options(data, &config, true)) 2851 return error; 2852 2853 spin_lock(&sbinfo->stat_lock); 2854 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2855 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 2856 goto out; 2857 if (config.max_inodes < inodes) 2858 goto out; 2859 /* 2860 * Those tests disallow limited->unlimited while any are in use; 2861 * but we must separately disallow unlimited->limited, because 2862 * in that case we have no record of how much is already in use. 2863 */ 2864 if (config.max_blocks && !sbinfo->max_blocks) 2865 goto out; 2866 if (config.max_inodes && !sbinfo->max_inodes) 2867 goto out; 2868 2869 error = 0; 2870 sbinfo->max_blocks = config.max_blocks; 2871 sbinfo->max_inodes = config.max_inodes; 2872 sbinfo->free_inodes = config.max_inodes - inodes; 2873 2874 /* 2875 * Preserve previous mempolicy unless mpol remount option was specified. 2876 */ 2877 if (config.mpol) { 2878 mpol_put(sbinfo->mpol); 2879 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2880 } 2881out: 2882 spin_unlock(&sbinfo->stat_lock); 2883 return error; 2884} 2885 2886static int shmem_show_options(struct seq_file *seq, struct dentry *root) 2887{ 2888 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 2889 2890 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2891 seq_printf(seq, ",size=%luk", 2892 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2893 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2894 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2895 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2896 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 2897 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 2898 seq_printf(seq, ",uid=%u", 2899 from_kuid_munged(&init_user_ns, sbinfo->uid)); 2900 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 2901 seq_printf(seq, ",gid=%u", 2902 from_kgid_munged(&init_user_ns, sbinfo->gid)); 2903 shmem_show_mpol(seq, sbinfo->mpol); 2904 return 0; 2905} 2906 2907#define MFD_NAME_PREFIX "memfd:" 2908#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) 2909#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) 2910 2911#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING) 2912 2913SYSCALL_DEFINE2(memfd_create, 2914 const char __user *, uname, 2915 unsigned int, flags) 2916{ 2917 struct shmem_inode_info *info; 2918 struct file *file; 2919 int fd, error; 2920 char *name; 2921 long len; 2922 2923 if (flags & ~(unsigned int)MFD_ALL_FLAGS) 2924 return -EINVAL; 2925 2926 /* length includes terminating zero */ 2927 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); 2928 if (len <= 0) 2929 return -EFAULT; 2930 if (len > MFD_NAME_MAX_LEN + 1) 2931 return -EINVAL; 2932 2933 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY); 2934 if (!name) 2935 return -ENOMEM; 2936 2937 strcpy(name, MFD_NAME_PREFIX); 2938 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { 2939 error = -EFAULT; 2940 goto err_name; 2941 } 2942 2943 /* terminating-zero may have changed after strnlen_user() returned */ 2944 if (name[len + MFD_NAME_PREFIX_LEN - 1]) { 2945 error = -EFAULT; 2946 goto err_name; 2947 } 2948 2949 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); 2950 if (fd < 0) { 2951 error = fd; 2952 goto err_name; 2953 } 2954 2955 file = shmem_file_setup(name, 0, VM_NORESERVE); 2956 if (IS_ERR(file)) { 2957 error = PTR_ERR(file); 2958 goto err_fd; 2959 } 2960 info = SHMEM_I(file_inode(file)); 2961 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; 2962 file->f_flags |= O_RDWR | O_LARGEFILE; 2963 if (flags & MFD_ALLOW_SEALING) 2964 info->seals &= ~F_SEAL_SEAL; 2965 2966 fd_install(fd, file); 2967 kfree(name); 2968 return fd; 2969 2970err_fd: 2971 put_unused_fd(fd); 2972err_name: 2973 kfree(name); 2974 return error; 2975} 2976 2977#endif /* CONFIG_TMPFS */ 2978 2979static void shmem_put_super(struct super_block *sb) 2980{ 2981 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2982 2983 percpu_counter_destroy(&sbinfo->used_blocks); 2984 mpol_put(sbinfo->mpol); 2985 kfree(sbinfo); 2986 sb->s_fs_info = NULL; 2987} 2988 2989int shmem_fill_super(struct super_block *sb, void *data, int silent) 2990{ 2991 struct inode *inode; 2992 struct shmem_sb_info *sbinfo; 2993 int err = -ENOMEM; 2994 2995 /* Round up to L1_CACHE_BYTES to resist false sharing */ 2996 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 2997 L1_CACHE_BYTES), GFP_KERNEL); 2998 if (!sbinfo) 2999 return -ENOMEM; 3000 3001 sbinfo->mode = S_IRWXUGO | S_ISVTX; 3002 sbinfo->uid = current_fsuid(); 3003 sbinfo->gid = current_fsgid(); 3004 sb->s_fs_info = sbinfo; 3005 3006#ifdef CONFIG_TMPFS 3007 /* 3008 * Per default we only allow half of the physical ram per 3009 * tmpfs instance, limiting inodes to one per page of lowmem; 3010 * but the internal instance is left unlimited. 3011 */ 3012 if (!(sb->s_flags & MS_KERNMOUNT)) { 3013 sbinfo->max_blocks = shmem_default_max_blocks(); 3014 sbinfo->max_inodes = shmem_default_max_inodes(); 3015 if (shmem_parse_options(data, sbinfo, false)) { 3016 err = -EINVAL; 3017 goto failed; 3018 } 3019 } else { 3020 sb->s_flags |= MS_NOUSER; 3021 } 3022 sb->s_export_op = &shmem_export_ops; 3023 sb->s_flags |= MS_NOSEC; 3024#else 3025 sb->s_flags |= MS_NOUSER; 3026#endif 3027 3028 spin_lock_init(&sbinfo->stat_lock); 3029 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3030 goto failed; 3031 sbinfo->free_inodes = sbinfo->max_inodes; 3032 3033 sb->s_maxbytes = MAX_LFS_FILESIZE; 3034 sb->s_blocksize = PAGE_CACHE_SIZE; 3035 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 3036 sb->s_magic = TMPFS_MAGIC; 3037 sb->s_op = &shmem_ops; 3038 sb->s_time_gran = 1; 3039#ifdef CONFIG_TMPFS_XATTR 3040 sb->s_xattr = shmem_xattr_handlers; 3041#endif 3042#ifdef CONFIG_TMPFS_POSIX_ACL 3043 sb->s_flags |= MS_POSIXACL; 3044#endif 3045 3046 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3047 if (!inode) 3048 goto failed; 3049 inode->i_uid = sbinfo->uid; 3050 inode->i_gid = sbinfo->gid; 3051 sb->s_root = d_make_root(inode); 3052 if (!sb->s_root) 3053 goto failed; 3054 return 0; 3055 3056failed: 3057 shmem_put_super(sb); 3058 return err; 3059} 3060 3061static struct kmem_cache *shmem_inode_cachep; 3062 3063static struct inode *shmem_alloc_inode(struct super_block *sb) 3064{ 3065 struct shmem_inode_info *info; 3066 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3067 if (!info) 3068 return NULL; 3069 return &info->vfs_inode; 3070} 3071 3072static void shmem_destroy_callback(struct rcu_head *head) 3073{ 3074 struct inode *inode = container_of(head, struct inode, i_rcu); 3075 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3076} 3077 3078static void shmem_destroy_inode(struct inode *inode) 3079{ 3080 if (S_ISREG(inode->i_mode)) 3081 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3082 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3083} 3084 3085static void shmem_init_inode(void *foo) 3086{ 3087 struct shmem_inode_info *info = foo; 3088 inode_init_once(&info->vfs_inode); 3089} 3090 3091static int shmem_init_inodecache(void) 3092{ 3093 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3094 sizeof(struct shmem_inode_info), 3095 0, SLAB_PANIC, shmem_init_inode); 3096 return 0; 3097} 3098 3099static void shmem_destroy_inodecache(void) 3100{ 3101 kmem_cache_destroy(shmem_inode_cachep); 3102} 3103 3104static const struct address_space_operations shmem_aops = { 3105 .writepage = shmem_writepage, 3106 .set_page_dirty = __set_page_dirty_no_writeback, 3107#ifdef CONFIG_TMPFS 3108 .write_begin = shmem_write_begin, 3109 .write_end = shmem_write_end, 3110#endif 3111#ifdef CONFIG_MIGRATION 3112 .migratepage = migrate_page, 3113#endif 3114 .error_remove_page = generic_error_remove_page, 3115}; 3116 3117static const struct file_operations shmem_file_operations = { 3118 .mmap = shmem_mmap, 3119#ifdef CONFIG_TMPFS 3120 .llseek = shmem_file_llseek, 3121 .read_iter = shmem_file_read_iter, 3122 .write_iter = generic_file_write_iter, 3123 .fsync = noop_fsync, 3124 .splice_read = shmem_file_splice_read, 3125 .splice_write = iter_file_splice_write, 3126 .fallocate = shmem_fallocate, 3127#endif 3128}; 3129 3130static const struct inode_operations shmem_inode_operations = { 3131 .setattr = shmem_setattr, 3132#ifdef CONFIG_TMPFS_XATTR 3133 .setxattr = shmem_setxattr, 3134 .getxattr = shmem_getxattr, 3135 .listxattr = shmem_listxattr, 3136 .removexattr = shmem_removexattr, 3137 .set_acl = simple_set_acl, 3138#endif 3139}; 3140 3141static const struct inode_operations shmem_dir_inode_operations = { 3142#ifdef CONFIG_TMPFS 3143 .create = shmem_create, 3144 .lookup = simple_lookup, 3145 .link = shmem_link, 3146 .unlink = shmem_unlink, 3147 .symlink = shmem_symlink, 3148 .mkdir = shmem_mkdir, 3149 .rmdir = shmem_rmdir, 3150 .mknod = shmem_mknod, 3151 .rename2 = shmem_rename2, 3152 .tmpfile = shmem_tmpfile, 3153#endif 3154#ifdef CONFIG_TMPFS_XATTR 3155 .setxattr = shmem_setxattr, 3156 .getxattr = shmem_getxattr, 3157 .listxattr = shmem_listxattr, 3158 .removexattr = shmem_removexattr, 3159#endif 3160#ifdef CONFIG_TMPFS_POSIX_ACL 3161 .setattr = shmem_setattr, 3162 .set_acl = simple_set_acl, 3163#endif 3164}; 3165 3166static const struct inode_operations shmem_special_inode_operations = { 3167#ifdef CONFIG_TMPFS_XATTR 3168 .setxattr = shmem_setxattr, 3169 .getxattr = shmem_getxattr, 3170 .listxattr = shmem_listxattr, 3171 .removexattr = shmem_removexattr, 3172#endif 3173#ifdef CONFIG_TMPFS_POSIX_ACL 3174 .setattr = shmem_setattr, 3175 .set_acl = simple_set_acl, 3176#endif 3177}; 3178 3179static const struct super_operations shmem_ops = { 3180 .alloc_inode = shmem_alloc_inode, 3181 .destroy_inode = shmem_destroy_inode, 3182#ifdef CONFIG_TMPFS 3183 .statfs = shmem_statfs, 3184 .remount_fs = shmem_remount_fs, 3185 .show_options = shmem_show_options, 3186#endif 3187 .evict_inode = shmem_evict_inode, 3188 .drop_inode = generic_delete_inode, 3189 .put_super = shmem_put_super, 3190}; 3191 3192static const struct vm_operations_struct shmem_vm_ops = { 3193 .fault = shmem_fault, 3194 .map_pages = filemap_map_pages, 3195#ifdef CONFIG_NUMA 3196 .set_policy = shmem_set_policy, 3197 .get_policy = shmem_get_policy, 3198#endif 3199}; 3200 3201static struct dentry *shmem_mount(struct file_system_type *fs_type, 3202 int flags, const char *dev_name, void *data) 3203{ 3204 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3205} 3206 3207static struct file_system_type shmem_fs_type = { 3208 .owner = THIS_MODULE, 3209 .name = "tmpfs", 3210 .mount = shmem_mount, 3211 .kill_sb = kill_litter_super, 3212 .fs_flags = FS_USERNS_MOUNT, 3213}; 3214 3215int __init shmem_init(void) 3216{ 3217 int error; 3218 3219 /* If rootfs called this, don't re-init */ 3220 if (shmem_inode_cachep) 3221 return 0; 3222 3223 error = shmem_init_inodecache(); 3224 if (error) 3225 goto out3; 3226 3227 error = register_filesystem(&shmem_fs_type); 3228 if (error) { 3229 printk(KERN_ERR "Could not register tmpfs\n"); 3230 goto out2; 3231 } 3232 3233 shm_mnt = kern_mount(&shmem_fs_type); 3234 if (IS_ERR(shm_mnt)) { 3235 error = PTR_ERR(shm_mnt); 3236 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 3237 goto out1; 3238 } 3239 return 0; 3240 3241out1: 3242 unregister_filesystem(&shmem_fs_type); 3243out2: 3244 shmem_destroy_inodecache(); 3245out3: 3246 shm_mnt = ERR_PTR(error); 3247 return error; 3248} 3249 3250#else /* !CONFIG_SHMEM */ 3251 3252/* 3253 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3254 * 3255 * This is intended for small system where the benefits of the full 3256 * shmem code (swap-backed and resource-limited) are outweighed by 3257 * their complexity. On systems without swap this code should be 3258 * effectively equivalent, but much lighter weight. 3259 */ 3260 3261static struct file_system_type shmem_fs_type = { 3262 .name = "tmpfs", 3263 .mount = ramfs_mount, 3264 .kill_sb = kill_litter_super, 3265 .fs_flags = FS_USERNS_MOUNT, 3266}; 3267 3268int __init shmem_init(void) 3269{ 3270 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 3271 3272 shm_mnt = kern_mount(&shmem_fs_type); 3273 BUG_ON(IS_ERR(shm_mnt)); 3274 3275 return 0; 3276} 3277 3278int shmem_unuse(swp_entry_t swap, struct page *page) 3279{ 3280 return 0; 3281} 3282 3283int shmem_lock(struct file *file, int lock, struct user_struct *user) 3284{ 3285 return 0; 3286} 3287 3288void shmem_unlock_mapping(struct address_space *mapping) 3289{ 3290} 3291 3292void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 3293{ 3294 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 3295} 3296EXPORT_SYMBOL_GPL(shmem_truncate_range); 3297 3298#define shmem_vm_ops generic_file_vm_ops 3299#define shmem_file_operations ramfs_file_operations 3300#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 3301#define shmem_acct_size(flags, size) 0 3302#define shmem_unacct_size(flags, size) do {} while (0) 3303 3304#endif /* CONFIG_SHMEM */ 3305 3306/* common code */ 3307 3308static struct dentry_operations anon_ops = { 3309 .d_dname = simple_dname 3310}; 3311 3312static struct file *__shmem_file_setup(const char *name, loff_t size, 3313 unsigned long flags, unsigned int i_flags) 3314{ 3315 struct file *res; 3316 struct inode *inode; 3317 struct path path; 3318 struct super_block *sb; 3319 struct qstr this; 3320 3321 if (IS_ERR(shm_mnt)) 3322 return ERR_CAST(shm_mnt); 3323 3324 if (size < 0 || size > MAX_LFS_FILESIZE) 3325 return ERR_PTR(-EINVAL); 3326 3327 if (shmem_acct_size(flags, size)) 3328 return ERR_PTR(-ENOMEM); 3329 3330 res = ERR_PTR(-ENOMEM); 3331 this.name = name; 3332 this.len = strlen(name); 3333 this.hash = 0; /* will go */ 3334 sb = shm_mnt->mnt_sb; 3335 path.mnt = mntget(shm_mnt); 3336 path.dentry = d_alloc_pseudo(sb, &this); 3337 if (!path.dentry) 3338 goto put_memory; 3339 d_set_d_op(path.dentry, &anon_ops); 3340 3341 res = ERR_PTR(-ENOSPC); 3342 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 3343 if (!inode) 3344 goto put_memory; 3345 3346 inode->i_flags |= i_flags; 3347 d_instantiate(path.dentry, inode); 3348 inode->i_size = size; 3349 clear_nlink(inode); /* It is unlinked */ 3350 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 3351 if (IS_ERR(res)) 3352 goto put_path; 3353 3354 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 3355 &shmem_file_operations); 3356 if (IS_ERR(res)) 3357 goto put_path; 3358 3359 return res; 3360 3361put_memory: 3362 shmem_unacct_size(flags, size); 3363put_path: 3364 path_put(&path); 3365 return res; 3366} 3367 3368/** 3369 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 3370 * kernel internal. There will be NO LSM permission checks against the 3371 * underlying inode. So users of this interface must do LSM checks at a 3372 * higher layer. The one user is the big_key implementation. LSM checks 3373 * are provided at the key level rather than the inode level. 3374 * @name: name for dentry (to be seen in /proc/<pid>/maps 3375 * @size: size to be set for the file 3376 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3377 */ 3378struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 3379{ 3380 return __shmem_file_setup(name, size, flags, S_PRIVATE); 3381} 3382 3383/** 3384 * shmem_file_setup - get an unlinked file living in tmpfs 3385 * @name: name for dentry (to be seen in /proc/<pid>/maps 3386 * @size: size to be set for the file 3387 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3388 */ 3389struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 3390{ 3391 return __shmem_file_setup(name, size, flags, 0); 3392} 3393EXPORT_SYMBOL_GPL(shmem_file_setup); 3394 3395/** 3396 * shmem_zero_setup - setup a shared anonymous mapping 3397 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 3398 */ 3399int shmem_zero_setup(struct vm_area_struct *vma) 3400{ 3401 struct file *file; 3402 loff_t size = vma->vm_end - vma->vm_start; 3403 3404 /* 3405 * Cloning a new file under mmap_sem leads to a lock ordering conflict 3406 * between XFS directory reading and selinux: since this file is only 3407 * accessible to the user through its mapping, use S_PRIVATE flag to 3408 * bypass file security, in the same way as shmem_kernel_file_setup(). 3409 */ 3410 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE); 3411 if (IS_ERR(file)) 3412 return PTR_ERR(file); 3413 3414 if (vma->vm_file) 3415 fput(vma->vm_file); 3416 vma->vm_file = file; 3417 vma->vm_ops = &shmem_vm_ops; 3418 return 0; 3419} 3420 3421/** 3422 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 3423 * @mapping: the page's address_space 3424 * @index: the page index 3425 * @gfp: the page allocator flags to use if allocating 3426 * 3427 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 3428 * with any new page allocations done using the specified allocation flags. 3429 * But read_cache_page_gfp() uses the ->readpage() method: which does not 3430 * suit tmpfs, since it may have pages in swapcache, and needs to find those 3431 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 3432 * 3433 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 3434 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 3435 */ 3436struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 3437 pgoff_t index, gfp_t gfp) 3438{ 3439#ifdef CONFIG_SHMEM 3440 struct inode *inode = mapping->host; 3441 struct page *page; 3442 int error; 3443 3444 BUG_ON(mapping->a_ops != &shmem_aops); 3445 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL); 3446 if (error) 3447 page = ERR_PTR(error); 3448 else 3449 unlock_page(page); 3450 return page; 3451#else 3452 /* 3453 * The tiny !SHMEM case uses ramfs without swap 3454 */ 3455 return read_cache_page_gfp(mapping, index, gfp); 3456#endif 3457} 3458EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 3459