1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
24 *   mm->mmap_sem
25 *     page->flags PG_locked (lock_page)
26 *       mapping->i_mmap_rwsem
27 *         anon_vma->rwsem
28 *           mm->page_table_lock or pte_lock
29 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 *             swap_lock (in swap_duplicate, swap_info_get)
31 *               mmlist_lock (in mmput, drain_mmlist and others)
32 *               mapping->private_lock (in __set_page_dirty_buffers)
33 *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36 *                 mapping->tree_lock (widely used, in set_page_dirty,
37 *                           in arch-dependent flush_dcache_mmap_lock,
38 *                           within bdi.wb->list_lock in __sync_single_inode)
39 *
40 * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
41 *   ->tasklist_lock
42 *     pte map lock
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
51#include <linux/ksm.h>
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
54#include <linux/export.h>
55#include <linux/memcontrol.h>
56#include <linux/mmu_notifier.h>
57#include <linux/migrate.h>
58#include <linux/hugetlb.h>
59#include <linux/backing-dev.h>
60
61#include <asm/tlbflush.h>
62
63#include "internal.h"
64
65static struct kmem_cache *anon_vma_cachep;
66static struct kmem_cache *anon_vma_chain_cachep;
67
68static inline struct anon_vma *anon_vma_alloc(void)
69{
70	struct anon_vma *anon_vma;
71
72	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73	if (anon_vma) {
74		atomic_set(&anon_vma->refcount, 1);
75		anon_vma->degree = 1;	/* Reference for first vma */
76		anon_vma->parent = anon_vma;
77		/*
78		 * Initialise the anon_vma root to point to itself. If called
79		 * from fork, the root will be reset to the parents anon_vma.
80		 */
81		anon_vma->root = anon_vma;
82	}
83
84	return anon_vma;
85}
86
87static inline void anon_vma_free(struct anon_vma *anon_vma)
88{
89	VM_BUG_ON(atomic_read(&anon_vma->refcount));
90
91	/*
92	 * Synchronize against page_lock_anon_vma_read() such that
93	 * we can safely hold the lock without the anon_vma getting
94	 * freed.
95	 *
96	 * Relies on the full mb implied by the atomic_dec_and_test() from
97	 * put_anon_vma() against the acquire barrier implied by
98	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
99	 *
100	 * page_lock_anon_vma_read()	VS	put_anon_vma()
101	 *   down_read_trylock()		  atomic_dec_and_test()
102	 *   LOCK				  MB
103	 *   atomic_read()			  rwsem_is_locked()
104	 *
105	 * LOCK should suffice since the actual taking of the lock must
106	 * happen _before_ what follows.
107	 */
108	might_sleep();
109	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
110		anon_vma_lock_write(anon_vma);
111		anon_vma_unlock_write(anon_vma);
112	}
113
114	kmem_cache_free(anon_vma_cachep, anon_vma);
115}
116
117static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
118{
119	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
120}
121
122static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
123{
124	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
125}
126
127static void anon_vma_chain_link(struct vm_area_struct *vma,
128				struct anon_vma_chain *avc,
129				struct anon_vma *anon_vma)
130{
131	avc->vma = vma;
132	avc->anon_vma = anon_vma;
133	list_add(&avc->same_vma, &vma->anon_vma_chain);
134	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
135}
136
137/**
138 * anon_vma_prepare - attach an anon_vma to a memory region
139 * @vma: the memory region in question
140 *
141 * This makes sure the memory mapping described by 'vma' has
142 * an 'anon_vma' attached to it, so that we can associate the
143 * anonymous pages mapped into it with that anon_vma.
144 *
145 * The common case will be that we already have one, but if
146 * not we either need to find an adjacent mapping that we
147 * can re-use the anon_vma from (very common when the only
148 * reason for splitting a vma has been mprotect()), or we
149 * allocate a new one.
150 *
151 * Anon-vma allocations are very subtle, because we may have
152 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
153 * and that may actually touch the spinlock even in the newly
154 * allocated vma (it depends on RCU to make sure that the
155 * anon_vma isn't actually destroyed).
156 *
157 * As a result, we need to do proper anon_vma locking even
158 * for the new allocation. At the same time, we do not want
159 * to do any locking for the common case of already having
160 * an anon_vma.
161 *
162 * This must be called with the mmap_sem held for reading.
163 */
164int anon_vma_prepare(struct vm_area_struct *vma)
165{
166	struct anon_vma *anon_vma = vma->anon_vma;
167	struct anon_vma_chain *avc;
168
169	might_sleep();
170	if (unlikely(!anon_vma)) {
171		struct mm_struct *mm = vma->vm_mm;
172		struct anon_vma *allocated;
173
174		avc = anon_vma_chain_alloc(GFP_KERNEL);
175		if (!avc)
176			goto out_enomem;
177
178		anon_vma = find_mergeable_anon_vma(vma);
179		allocated = NULL;
180		if (!anon_vma) {
181			anon_vma = anon_vma_alloc();
182			if (unlikely(!anon_vma))
183				goto out_enomem_free_avc;
184			allocated = anon_vma;
185		}
186
187		anon_vma_lock_write(anon_vma);
188		/* page_table_lock to protect against threads */
189		spin_lock(&mm->page_table_lock);
190		if (likely(!vma->anon_vma)) {
191			vma->anon_vma = anon_vma;
192			anon_vma_chain_link(vma, avc, anon_vma);
193			/* vma reference or self-parent link for new root */
194			anon_vma->degree++;
195			allocated = NULL;
196			avc = NULL;
197		}
198		spin_unlock(&mm->page_table_lock);
199		anon_vma_unlock_write(anon_vma);
200
201		if (unlikely(allocated))
202			put_anon_vma(allocated);
203		if (unlikely(avc))
204			anon_vma_chain_free(avc);
205	}
206	return 0;
207
208 out_enomem_free_avc:
209	anon_vma_chain_free(avc);
210 out_enomem:
211	return -ENOMEM;
212}
213
214/*
215 * This is a useful helper function for locking the anon_vma root as
216 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
217 * have the same vma.
218 *
219 * Such anon_vma's should have the same root, so you'd expect to see
220 * just a single mutex_lock for the whole traversal.
221 */
222static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
223{
224	struct anon_vma *new_root = anon_vma->root;
225	if (new_root != root) {
226		if (WARN_ON_ONCE(root))
227			up_write(&root->rwsem);
228		root = new_root;
229		down_write(&root->rwsem);
230	}
231	return root;
232}
233
234static inline void unlock_anon_vma_root(struct anon_vma *root)
235{
236	if (root)
237		up_write(&root->rwsem);
238}
239
240/*
241 * Attach the anon_vmas from src to dst.
242 * Returns 0 on success, -ENOMEM on failure.
243 *
244 * If dst->anon_vma is NULL this function tries to find and reuse existing
245 * anon_vma which has no vmas and only one child anon_vma. This prevents
246 * degradation of anon_vma hierarchy to endless linear chain in case of
247 * constantly forking task. On the other hand, an anon_vma with more than one
248 * child isn't reused even if there was no alive vma, thus rmap walker has a
249 * good chance of avoiding scanning the whole hierarchy when it searches where
250 * page is mapped.
251 */
252int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
253{
254	struct anon_vma_chain *avc, *pavc;
255	struct anon_vma *root = NULL;
256
257	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
258		struct anon_vma *anon_vma;
259
260		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
261		if (unlikely(!avc)) {
262			unlock_anon_vma_root(root);
263			root = NULL;
264			avc = anon_vma_chain_alloc(GFP_KERNEL);
265			if (!avc)
266				goto enomem_failure;
267		}
268		anon_vma = pavc->anon_vma;
269		root = lock_anon_vma_root(root, anon_vma);
270		anon_vma_chain_link(dst, avc, anon_vma);
271
272		/*
273		 * Reuse existing anon_vma if its degree lower than two,
274		 * that means it has no vma and only one anon_vma child.
275		 *
276		 * Do not chose parent anon_vma, otherwise first child
277		 * will always reuse it. Root anon_vma is never reused:
278		 * it has self-parent reference and at least one child.
279		 */
280		if (!dst->anon_vma && anon_vma != src->anon_vma &&
281				anon_vma->degree < 2)
282			dst->anon_vma = anon_vma;
283	}
284	if (dst->anon_vma)
285		dst->anon_vma->degree++;
286	unlock_anon_vma_root(root);
287	return 0;
288
289 enomem_failure:
290	/*
291	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
292	 * decremented in unlink_anon_vmas().
293	 * We can safely do this because callers of anon_vma_clone() don't care
294	 * about dst->anon_vma if anon_vma_clone() failed.
295	 */
296	dst->anon_vma = NULL;
297	unlink_anon_vmas(dst);
298	return -ENOMEM;
299}
300
301/*
302 * Attach vma to its own anon_vma, as well as to the anon_vmas that
303 * the corresponding VMA in the parent process is attached to.
304 * Returns 0 on success, non-zero on failure.
305 */
306int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
307{
308	struct anon_vma_chain *avc;
309	struct anon_vma *anon_vma;
310	int error;
311
312	/* Don't bother if the parent process has no anon_vma here. */
313	if (!pvma->anon_vma)
314		return 0;
315
316	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
317	vma->anon_vma = NULL;
318
319	/*
320	 * First, attach the new VMA to the parent VMA's anon_vmas,
321	 * so rmap can find non-COWed pages in child processes.
322	 */
323	error = anon_vma_clone(vma, pvma);
324	if (error)
325		return error;
326
327	/* An existing anon_vma has been reused, all done then. */
328	if (vma->anon_vma)
329		return 0;
330
331	/* Then add our own anon_vma. */
332	anon_vma = anon_vma_alloc();
333	if (!anon_vma)
334		goto out_error;
335	avc = anon_vma_chain_alloc(GFP_KERNEL);
336	if (!avc)
337		goto out_error_free_anon_vma;
338
339	/*
340	 * The root anon_vma's spinlock is the lock actually used when we
341	 * lock any of the anon_vmas in this anon_vma tree.
342	 */
343	anon_vma->root = pvma->anon_vma->root;
344	anon_vma->parent = pvma->anon_vma;
345	/*
346	 * With refcounts, an anon_vma can stay around longer than the
347	 * process it belongs to. The root anon_vma needs to be pinned until
348	 * this anon_vma is freed, because the lock lives in the root.
349	 */
350	get_anon_vma(anon_vma->root);
351	/* Mark this anon_vma as the one where our new (COWed) pages go. */
352	vma->anon_vma = anon_vma;
353	anon_vma_lock_write(anon_vma);
354	anon_vma_chain_link(vma, avc, anon_vma);
355	anon_vma->parent->degree++;
356	anon_vma_unlock_write(anon_vma);
357
358	return 0;
359
360 out_error_free_anon_vma:
361	put_anon_vma(anon_vma);
362 out_error:
363	unlink_anon_vmas(vma);
364	return -ENOMEM;
365}
366
367void unlink_anon_vmas(struct vm_area_struct *vma)
368{
369	struct anon_vma_chain *avc, *next;
370	struct anon_vma *root = NULL;
371
372	/*
373	 * Unlink each anon_vma chained to the VMA.  This list is ordered
374	 * from newest to oldest, ensuring the root anon_vma gets freed last.
375	 */
376	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
377		struct anon_vma *anon_vma = avc->anon_vma;
378
379		root = lock_anon_vma_root(root, anon_vma);
380		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
381
382		/*
383		 * Leave empty anon_vmas on the list - we'll need
384		 * to free them outside the lock.
385		 */
386		if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
387			anon_vma->parent->degree--;
388			continue;
389		}
390
391		list_del(&avc->same_vma);
392		anon_vma_chain_free(avc);
393	}
394	if (vma->anon_vma)
395		vma->anon_vma->degree--;
396	unlock_anon_vma_root(root);
397
398	/*
399	 * Iterate the list once more, it now only contains empty and unlinked
400	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
401	 * needing to write-acquire the anon_vma->root->rwsem.
402	 */
403	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
404		struct anon_vma *anon_vma = avc->anon_vma;
405
406		BUG_ON(anon_vma->degree);
407		put_anon_vma(anon_vma);
408
409		list_del(&avc->same_vma);
410		anon_vma_chain_free(avc);
411	}
412}
413
414static void anon_vma_ctor(void *data)
415{
416	struct anon_vma *anon_vma = data;
417
418	init_rwsem(&anon_vma->rwsem);
419	atomic_set(&anon_vma->refcount, 0);
420	anon_vma->rb_root = RB_ROOT;
421}
422
423void __init anon_vma_init(void)
424{
425	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
426			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
427	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
428}
429
430/*
431 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
432 *
433 * Since there is no serialization what so ever against page_remove_rmap()
434 * the best this function can do is return a locked anon_vma that might
435 * have been relevant to this page.
436 *
437 * The page might have been remapped to a different anon_vma or the anon_vma
438 * returned may already be freed (and even reused).
439 *
440 * In case it was remapped to a different anon_vma, the new anon_vma will be a
441 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
442 * ensure that any anon_vma obtained from the page will still be valid for as
443 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
444 *
445 * All users of this function must be very careful when walking the anon_vma
446 * chain and verify that the page in question is indeed mapped in it
447 * [ something equivalent to page_mapped_in_vma() ].
448 *
449 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
450 * that the anon_vma pointer from page->mapping is valid if there is a
451 * mapcount, we can dereference the anon_vma after observing those.
452 */
453struct anon_vma *page_get_anon_vma(struct page *page)
454{
455	struct anon_vma *anon_vma = NULL;
456	unsigned long anon_mapping;
457
458	rcu_read_lock();
459	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
460	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
461		goto out;
462	if (!page_mapped(page))
463		goto out;
464
465	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
466	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
467		anon_vma = NULL;
468		goto out;
469	}
470
471	/*
472	 * If this page is still mapped, then its anon_vma cannot have been
473	 * freed.  But if it has been unmapped, we have no security against the
474	 * anon_vma structure being freed and reused (for another anon_vma:
475	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
476	 * above cannot corrupt).
477	 */
478	if (!page_mapped(page)) {
479		rcu_read_unlock();
480		put_anon_vma(anon_vma);
481		return NULL;
482	}
483out:
484	rcu_read_unlock();
485
486	return anon_vma;
487}
488
489/*
490 * Similar to page_get_anon_vma() except it locks the anon_vma.
491 *
492 * Its a little more complex as it tries to keep the fast path to a single
493 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
494 * reference like with page_get_anon_vma() and then block on the mutex.
495 */
496struct anon_vma *page_lock_anon_vma_read(struct page *page)
497{
498	struct anon_vma *anon_vma = NULL;
499	struct anon_vma *root_anon_vma;
500	unsigned long anon_mapping;
501
502	rcu_read_lock();
503	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
504	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
505		goto out;
506	if (!page_mapped(page))
507		goto out;
508
509	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
510	root_anon_vma = READ_ONCE(anon_vma->root);
511	if (down_read_trylock(&root_anon_vma->rwsem)) {
512		/*
513		 * If the page is still mapped, then this anon_vma is still
514		 * its anon_vma, and holding the mutex ensures that it will
515		 * not go away, see anon_vma_free().
516		 */
517		if (!page_mapped(page)) {
518			up_read(&root_anon_vma->rwsem);
519			anon_vma = NULL;
520		}
521		goto out;
522	}
523
524	/* trylock failed, we got to sleep */
525	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
526		anon_vma = NULL;
527		goto out;
528	}
529
530	if (!page_mapped(page)) {
531		rcu_read_unlock();
532		put_anon_vma(anon_vma);
533		return NULL;
534	}
535
536	/* we pinned the anon_vma, its safe to sleep */
537	rcu_read_unlock();
538	anon_vma_lock_read(anon_vma);
539
540	if (atomic_dec_and_test(&anon_vma->refcount)) {
541		/*
542		 * Oops, we held the last refcount, release the lock
543		 * and bail -- can't simply use put_anon_vma() because
544		 * we'll deadlock on the anon_vma_lock_write() recursion.
545		 */
546		anon_vma_unlock_read(anon_vma);
547		__put_anon_vma(anon_vma);
548		anon_vma = NULL;
549	}
550
551	return anon_vma;
552
553out:
554	rcu_read_unlock();
555	return anon_vma;
556}
557
558void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
559{
560	anon_vma_unlock_read(anon_vma);
561}
562
563/*
564 * At what user virtual address is page expected in @vma?
565 */
566static inline unsigned long
567__vma_address(struct page *page, struct vm_area_struct *vma)
568{
569	pgoff_t pgoff = page_to_pgoff(page);
570	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
571}
572
573inline unsigned long
574vma_address(struct page *page, struct vm_area_struct *vma)
575{
576	unsigned long address = __vma_address(page, vma);
577
578	/* page should be within @vma mapping range */
579	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
580
581	return address;
582}
583
584/*
585 * At what user virtual address is page expected in vma?
586 * Caller should check the page is actually part of the vma.
587 */
588unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
589{
590	unsigned long address;
591	if (PageAnon(page)) {
592		struct anon_vma *page__anon_vma = page_anon_vma(page);
593		/*
594		 * Note: swapoff's unuse_vma() is more efficient with this
595		 * check, and needs it to match anon_vma when KSM is active.
596		 */
597		if (!vma->anon_vma || !page__anon_vma ||
598		    vma->anon_vma->root != page__anon_vma->root)
599			return -EFAULT;
600	} else if (page->mapping) {
601		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
602			return -EFAULT;
603	} else
604		return -EFAULT;
605	address = __vma_address(page, vma);
606	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
607		return -EFAULT;
608	return address;
609}
610
611pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
612{
613	pgd_t *pgd;
614	pud_t *pud;
615	pmd_t *pmd = NULL;
616	pmd_t pmde;
617
618	pgd = pgd_offset(mm, address);
619	if (!pgd_present(*pgd))
620		goto out;
621
622	pud = pud_offset(pgd, address);
623	if (!pud_present(*pud))
624		goto out;
625
626	pmd = pmd_offset(pud, address);
627	/*
628	 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
629	 * without holding anon_vma lock for write.  So when looking for a
630	 * genuine pmde (in which to find pte), test present and !THP together.
631	 */
632	pmde = *pmd;
633	barrier();
634	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
635		pmd = NULL;
636out:
637	return pmd;
638}
639
640/*
641 * Check that @page is mapped at @address into @mm.
642 *
643 * If @sync is false, page_check_address may perform a racy check to avoid
644 * the page table lock when the pte is not present (helpful when reclaiming
645 * highly shared pages).
646 *
647 * On success returns with pte mapped and locked.
648 */
649pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
650			  unsigned long address, spinlock_t **ptlp, int sync)
651{
652	pmd_t *pmd;
653	pte_t *pte;
654	spinlock_t *ptl;
655
656	if (unlikely(PageHuge(page))) {
657		/* when pud is not present, pte will be NULL */
658		pte = huge_pte_offset(mm, address);
659		if (!pte)
660			return NULL;
661
662		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
663		goto check;
664	}
665
666	pmd = mm_find_pmd(mm, address);
667	if (!pmd)
668		return NULL;
669
670	pte = pte_offset_map(pmd, address);
671	/* Make a quick check before getting the lock */
672	if (!sync && !pte_present(*pte)) {
673		pte_unmap(pte);
674		return NULL;
675	}
676
677	ptl = pte_lockptr(mm, pmd);
678check:
679	spin_lock(ptl);
680	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
681		*ptlp = ptl;
682		return pte;
683	}
684	pte_unmap_unlock(pte, ptl);
685	return NULL;
686}
687
688/**
689 * page_mapped_in_vma - check whether a page is really mapped in a VMA
690 * @page: the page to test
691 * @vma: the VMA to test
692 *
693 * Returns 1 if the page is mapped into the page tables of the VMA, 0
694 * if the page is not mapped into the page tables of this VMA.  Only
695 * valid for normal file or anonymous VMAs.
696 */
697int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
698{
699	unsigned long address;
700	pte_t *pte;
701	spinlock_t *ptl;
702
703	address = __vma_address(page, vma);
704	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
705		return 0;
706	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
707	if (!pte)			/* the page is not in this mm */
708		return 0;
709	pte_unmap_unlock(pte, ptl);
710
711	return 1;
712}
713
714struct page_referenced_arg {
715	int mapcount;
716	int referenced;
717	unsigned long vm_flags;
718	struct mem_cgroup *memcg;
719};
720/*
721 * arg: page_referenced_arg will be passed
722 */
723static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
724			unsigned long address, void *arg)
725{
726	struct mm_struct *mm = vma->vm_mm;
727	spinlock_t *ptl;
728	int referenced = 0;
729	struct page_referenced_arg *pra = arg;
730
731	if (unlikely(PageTransHuge(page))) {
732		pmd_t *pmd;
733
734		/*
735		 * rmap might return false positives; we must filter
736		 * these out using page_check_address_pmd().
737		 */
738		pmd = page_check_address_pmd(page, mm, address,
739					     PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
740		if (!pmd)
741			return SWAP_AGAIN;
742
743		if (vma->vm_flags & VM_LOCKED) {
744			spin_unlock(ptl);
745			pra->vm_flags |= VM_LOCKED;
746			return SWAP_FAIL; /* To break the loop */
747		}
748
749		/* go ahead even if the pmd is pmd_trans_splitting() */
750		if (pmdp_clear_flush_young_notify(vma, address, pmd))
751			referenced++;
752		spin_unlock(ptl);
753	} else {
754		pte_t *pte;
755
756		/*
757		 * rmap might return false positives; we must filter
758		 * these out using page_check_address().
759		 */
760		pte = page_check_address(page, mm, address, &ptl, 0);
761		if (!pte)
762			return SWAP_AGAIN;
763
764		if (vma->vm_flags & VM_LOCKED) {
765			pte_unmap_unlock(pte, ptl);
766			pra->vm_flags |= VM_LOCKED;
767			return SWAP_FAIL; /* To break the loop */
768		}
769
770		if (ptep_clear_flush_young_notify(vma, address, pte)) {
771			/*
772			 * Don't treat a reference through a sequentially read
773			 * mapping as such.  If the page has been used in
774			 * another mapping, we will catch it; if this other
775			 * mapping is already gone, the unmap path will have
776			 * set PG_referenced or activated the page.
777			 */
778			if (likely(!(vma->vm_flags & VM_SEQ_READ)))
779				referenced++;
780		}
781		pte_unmap_unlock(pte, ptl);
782	}
783
784	if (referenced) {
785		pra->referenced++;
786		pra->vm_flags |= vma->vm_flags;
787	}
788
789	pra->mapcount--;
790	if (!pra->mapcount)
791		return SWAP_SUCCESS; /* To break the loop */
792
793	return SWAP_AGAIN;
794}
795
796static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
797{
798	struct page_referenced_arg *pra = arg;
799	struct mem_cgroup *memcg = pra->memcg;
800
801	if (!mm_match_cgroup(vma->vm_mm, memcg))
802		return true;
803
804	return false;
805}
806
807/**
808 * page_referenced - test if the page was referenced
809 * @page: the page to test
810 * @is_locked: caller holds lock on the page
811 * @memcg: target memory cgroup
812 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
813 *
814 * Quick test_and_clear_referenced for all mappings to a page,
815 * returns the number of ptes which referenced the page.
816 */
817int page_referenced(struct page *page,
818		    int is_locked,
819		    struct mem_cgroup *memcg,
820		    unsigned long *vm_flags)
821{
822	int ret;
823	int we_locked = 0;
824	struct page_referenced_arg pra = {
825		.mapcount = page_mapcount(page),
826		.memcg = memcg,
827	};
828	struct rmap_walk_control rwc = {
829		.rmap_one = page_referenced_one,
830		.arg = (void *)&pra,
831		.anon_lock = page_lock_anon_vma_read,
832	};
833
834	*vm_flags = 0;
835	if (!page_mapped(page))
836		return 0;
837
838	if (!page_rmapping(page))
839		return 0;
840
841	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
842		we_locked = trylock_page(page);
843		if (!we_locked)
844			return 1;
845	}
846
847	/*
848	 * If we are reclaiming on behalf of a cgroup, skip
849	 * counting on behalf of references from different
850	 * cgroups
851	 */
852	if (memcg) {
853		rwc.invalid_vma = invalid_page_referenced_vma;
854	}
855
856	ret = rmap_walk(page, &rwc);
857	*vm_flags = pra.vm_flags;
858
859	if (we_locked)
860		unlock_page(page);
861
862	return pra.referenced;
863}
864
865static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
866			    unsigned long address, void *arg)
867{
868	struct mm_struct *mm = vma->vm_mm;
869	pte_t *pte;
870	spinlock_t *ptl;
871	int ret = 0;
872	int *cleaned = arg;
873
874	pte = page_check_address(page, mm, address, &ptl, 1);
875	if (!pte)
876		goto out;
877
878	if (pte_dirty(*pte) || pte_write(*pte)) {
879		pte_t entry;
880
881		flush_cache_page(vma, address, pte_pfn(*pte));
882		entry = ptep_clear_flush(vma, address, pte);
883		entry = pte_wrprotect(entry);
884		entry = pte_mkclean(entry);
885		set_pte_at(mm, address, pte, entry);
886		ret = 1;
887	}
888
889	pte_unmap_unlock(pte, ptl);
890
891	if (ret) {
892		mmu_notifier_invalidate_page(mm, address);
893		(*cleaned)++;
894	}
895out:
896	return SWAP_AGAIN;
897}
898
899static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
900{
901	if (vma->vm_flags & VM_SHARED)
902		return false;
903
904	return true;
905}
906
907int page_mkclean(struct page *page)
908{
909	int cleaned = 0;
910	struct address_space *mapping;
911	struct rmap_walk_control rwc = {
912		.arg = (void *)&cleaned,
913		.rmap_one = page_mkclean_one,
914		.invalid_vma = invalid_mkclean_vma,
915	};
916
917	BUG_ON(!PageLocked(page));
918
919	if (!page_mapped(page))
920		return 0;
921
922	mapping = page_mapping(page);
923	if (!mapping)
924		return 0;
925
926	rmap_walk(page, &rwc);
927
928	return cleaned;
929}
930EXPORT_SYMBOL_GPL(page_mkclean);
931
932/**
933 * page_move_anon_rmap - move a page to our anon_vma
934 * @page:	the page to move to our anon_vma
935 * @vma:	the vma the page belongs to
936 * @address:	the user virtual address mapped
937 *
938 * When a page belongs exclusively to one process after a COW event,
939 * that page can be moved into the anon_vma that belongs to just that
940 * process, so the rmap code will not search the parent or sibling
941 * processes.
942 */
943void page_move_anon_rmap(struct page *page,
944	struct vm_area_struct *vma, unsigned long address)
945{
946	struct anon_vma *anon_vma = vma->anon_vma;
947
948	VM_BUG_ON_PAGE(!PageLocked(page), page);
949	VM_BUG_ON_VMA(!anon_vma, vma);
950	VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
951
952	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
953	page->mapping = (struct address_space *) anon_vma;
954}
955
956/**
957 * __page_set_anon_rmap - set up new anonymous rmap
958 * @page:	Page to add to rmap
959 * @vma:	VM area to add page to.
960 * @address:	User virtual address of the mapping
961 * @exclusive:	the page is exclusively owned by the current process
962 */
963static void __page_set_anon_rmap(struct page *page,
964	struct vm_area_struct *vma, unsigned long address, int exclusive)
965{
966	struct anon_vma *anon_vma = vma->anon_vma;
967
968	BUG_ON(!anon_vma);
969
970	if (PageAnon(page))
971		return;
972
973	/*
974	 * If the page isn't exclusively mapped into this vma,
975	 * we must use the _oldest_ possible anon_vma for the
976	 * page mapping!
977	 */
978	if (!exclusive)
979		anon_vma = anon_vma->root;
980
981	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
982	page->mapping = (struct address_space *) anon_vma;
983	page->index = linear_page_index(vma, address);
984}
985
986/**
987 * __page_check_anon_rmap - sanity check anonymous rmap addition
988 * @page:	the page to add the mapping to
989 * @vma:	the vm area in which the mapping is added
990 * @address:	the user virtual address mapped
991 */
992static void __page_check_anon_rmap(struct page *page,
993	struct vm_area_struct *vma, unsigned long address)
994{
995#ifdef CONFIG_DEBUG_VM
996	/*
997	 * The page's anon-rmap details (mapping and index) are guaranteed to
998	 * be set up correctly at this point.
999	 *
1000	 * We have exclusion against page_add_anon_rmap because the caller
1001	 * always holds the page locked, except if called from page_dup_rmap,
1002	 * in which case the page is already known to be setup.
1003	 *
1004	 * We have exclusion against page_add_new_anon_rmap because those pages
1005	 * are initially only visible via the pagetables, and the pte is locked
1006	 * over the call to page_add_new_anon_rmap.
1007	 */
1008	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1009	BUG_ON(page->index != linear_page_index(vma, address));
1010#endif
1011}
1012
1013/**
1014 * page_add_anon_rmap - add pte mapping to an anonymous page
1015 * @page:	the page to add the mapping to
1016 * @vma:	the vm area in which the mapping is added
1017 * @address:	the user virtual address mapped
1018 *
1019 * The caller needs to hold the pte lock, and the page must be locked in
1020 * the anon_vma case: to serialize mapping,index checking after setting,
1021 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1022 * (but PageKsm is never downgraded to PageAnon).
1023 */
1024void page_add_anon_rmap(struct page *page,
1025	struct vm_area_struct *vma, unsigned long address)
1026{
1027	do_page_add_anon_rmap(page, vma, address, 0);
1028}
1029
1030/*
1031 * Special version of the above for do_swap_page, which often runs
1032 * into pages that are exclusively owned by the current process.
1033 * Everybody else should continue to use page_add_anon_rmap above.
1034 */
1035void do_page_add_anon_rmap(struct page *page,
1036	struct vm_area_struct *vma, unsigned long address, int exclusive)
1037{
1038	int first = atomic_inc_and_test(&page->_mapcount);
1039	if (first) {
1040		/*
1041		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1042		 * these counters are not modified in interrupt context, and
1043		 * pte lock(a spinlock) is held, which implies preemption
1044		 * disabled.
1045		 */
1046		if (PageTransHuge(page))
1047			__inc_zone_page_state(page,
1048					      NR_ANON_TRANSPARENT_HUGEPAGES);
1049		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1050				hpage_nr_pages(page));
1051	}
1052	if (unlikely(PageKsm(page)))
1053		return;
1054
1055	VM_BUG_ON_PAGE(!PageLocked(page), page);
1056	/* address might be in next vma when migration races vma_adjust */
1057	if (first)
1058		__page_set_anon_rmap(page, vma, address, exclusive);
1059	else
1060		__page_check_anon_rmap(page, vma, address);
1061}
1062
1063/**
1064 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1065 * @page:	the page to add the mapping to
1066 * @vma:	the vm area in which the mapping is added
1067 * @address:	the user virtual address mapped
1068 *
1069 * Same as page_add_anon_rmap but must only be called on *new* pages.
1070 * This means the inc-and-test can be bypassed.
1071 * Page does not have to be locked.
1072 */
1073void page_add_new_anon_rmap(struct page *page,
1074	struct vm_area_struct *vma, unsigned long address)
1075{
1076	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1077	SetPageSwapBacked(page);
1078	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1079	if (PageTransHuge(page))
1080		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1081	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1082			hpage_nr_pages(page));
1083	__page_set_anon_rmap(page, vma, address, 1);
1084}
1085
1086/**
1087 * page_add_file_rmap - add pte mapping to a file page
1088 * @page: the page to add the mapping to
1089 *
1090 * The caller needs to hold the pte lock.
1091 */
1092void page_add_file_rmap(struct page *page)
1093{
1094	struct mem_cgroup *memcg;
1095
1096	memcg = mem_cgroup_begin_page_stat(page);
1097	if (atomic_inc_and_test(&page->_mapcount)) {
1098		__inc_zone_page_state(page, NR_FILE_MAPPED);
1099		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1100	}
1101	mem_cgroup_end_page_stat(memcg);
1102}
1103
1104static void page_remove_file_rmap(struct page *page)
1105{
1106	struct mem_cgroup *memcg;
1107
1108	memcg = mem_cgroup_begin_page_stat(page);
1109
1110	/* page still mapped by someone else? */
1111	if (!atomic_add_negative(-1, &page->_mapcount))
1112		goto out;
1113
1114	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1115	if (unlikely(PageHuge(page)))
1116		goto out;
1117
1118	/*
1119	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1120	 * these counters are not modified in interrupt context, and
1121	 * pte lock(a spinlock) is held, which implies preemption disabled.
1122	 */
1123	__dec_zone_page_state(page, NR_FILE_MAPPED);
1124	mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1125
1126	if (unlikely(PageMlocked(page)))
1127		clear_page_mlock(page);
1128out:
1129	mem_cgroup_end_page_stat(memcg);
1130}
1131
1132/**
1133 * page_remove_rmap - take down pte mapping from a page
1134 * @page: page to remove mapping from
1135 *
1136 * The caller needs to hold the pte lock.
1137 */
1138void page_remove_rmap(struct page *page)
1139{
1140	if (!PageAnon(page)) {
1141		page_remove_file_rmap(page);
1142		return;
1143	}
1144
1145	/* page still mapped by someone else? */
1146	if (!atomic_add_negative(-1, &page->_mapcount))
1147		return;
1148
1149	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1150	if (unlikely(PageHuge(page)))
1151		return;
1152
1153	/*
1154	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1155	 * these counters are not modified in interrupt context, and
1156	 * pte lock(a spinlock) is held, which implies preemption disabled.
1157	 */
1158	if (PageTransHuge(page))
1159		__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1160
1161	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1162			      -hpage_nr_pages(page));
1163
1164	if (unlikely(PageMlocked(page)))
1165		clear_page_mlock(page);
1166
1167	/*
1168	 * It would be tidy to reset the PageAnon mapping here,
1169	 * but that might overwrite a racing page_add_anon_rmap
1170	 * which increments mapcount after us but sets mapping
1171	 * before us: so leave the reset to free_hot_cold_page,
1172	 * and remember that it's only reliable while mapped.
1173	 * Leaving it set also helps swapoff to reinstate ptes
1174	 * faster for those pages still in swapcache.
1175	 */
1176}
1177
1178/*
1179 * @arg: enum ttu_flags will be passed to this argument
1180 */
1181static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1182		     unsigned long address, void *arg)
1183{
1184	struct mm_struct *mm = vma->vm_mm;
1185	pte_t *pte;
1186	pte_t pteval;
1187	spinlock_t *ptl;
1188	int ret = SWAP_AGAIN;
1189	enum ttu_flags flags = (enum ttu_flags)arg;
1190
1191	pte = page_check_address(page, mm, address, &ptl, 0);
1192	if (!pte)
1193		goto out;
1194
1195	/*
1196	 * If the page is mlock()d, we cannot swap it out.
1197	 * If it's recently referenced (perhaps page_referenced
1198	 * skipped over this mm) then we should reactivate it.
1199	 */
1200	if (!(flags & TTU_IGNORE_MLOCK)) {
1201		if (vma->vm_flags & VM_LOCKED)
1202			goto out_mlock;
1203
1204		if (flags & TTU_MUNLOCK)
1205			goto out_unmap;
1206	}
1207	if (!(flags & TTU_IGNORE_ACCESS)) {
1208		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1209			ret = SWAP_FAIL;
1210			goto out_unmap;
1211		}
1212  	}
1213
1214	/* Nuke the page table entry. */
1215	flush_cache_page(vma, address, page_to_pfn(page));
1216	pteval = ptep_clear_flush(vma, address, pte);
1217
1218	/* Move the dirty bit to the physical page now the pte is gone. */
1219	if (pte_dirty(pteval))
1220		set_page_dirty(page);
1221
1222	/* Update high watermark before we lower rss */
1223	update_hiwater_rss(mm);
1224
1225	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1226		if (!PageHuge(page)) {
1227			if (PageAnon(page))
1228				dec_mm_counter(mm, MM_ANONPAGES);
1229			else
1230				dec_mm_counter(mm, MM_FILEPAGES);
1231		}
1232		set_pte_at(mm, address, pte,
1233			   swp_entry_to_pte(make_hwpoison_entry(page)));
1234	} else if (pte_unused(pteval)) {
1235		/*
1236		 * The guest indicated that the page content is of no
1237		 * interest anymore. Simply discard the pte, vmscan
1238		 * will take care of the rest.
1239		 */
1240		if (PageAnon(page))
1241			dec_mm_counter(mm, MM_ANONPAGES);
1242		else
1243			dec_mm_counter(mm, MM_FILEPAGES);
1244	} else if (PageAnon(page)) {
1245		swp_entry_t entry = { .val = page_private(page) };
1246		pte_t swp_pte;
1247
1248		if (PageSwapCache(page)) {
1249			/*
1250			 * Store the swap location in the pte.
1251			 * See handle_pte_fault() ...
1252			 */
1253			if (swap_duplicate(entry) < 0) {
1254				set_pte_at(mm, address, pte, pteval);
1255				ret = SWAP_FAIL;
1256				goto out_unmap;
1257			}
1258			if (list_empty(&mm->mmlist)) {
1259				spin_lock(&mmlist_lock);
1260				if (list_empty(&mm->mmlist))
1261					list_add(&mm->mmlist, &init_mm.mmlist);
1262				spin_unlock(&mmlist_lock);
1263			}
1264			dec_mm_counter(mm, MM_ANONPAGES);
1265			inc_mm_counter(mm, MM_SWAPENTS);
1266		} else if (IS_ENABLED(CONFIG_MIGRATION)) {
1267			/*
1268			 * Store the pfn of the page in a special migration
1269			 * pte. do_swap_page() will wait until the migration
1270			 * pte is removed and then restart fault handling.
1271			 */
1272			BUG_ON(!(flags & TTU_MIGRATION));
1273			entry = make_migration_entry(page, pte_write(pteval));
1274		}
1275		swp_pte = swp_entry_to_pte(entry);
1276		if (pte_soft_dirty(pteval))
1277			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1278		set_pte_at(mm, address, pte, swp_pte);
1279	} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1280		   (flags & TTU_MIGRATION)) {
1281		/* Establish migration entry for a file page */
1282		swp_entry_t entry;
1283		entry = make_migration_entry(page, pte_write(pteval));
1284		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1285	} else
1286		dec_mm_counter(mm, MM_FILEPAGES);
1287
1288	page_remove_rmap(page);
1289	page_cache_release(page);
1290
1291out_unmap:
1292	pte_unmap_unlock(pte, ptl);
1293	if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
1294		mmu_notifier_invalidate_page(mm, address);
1295out:
1296	return ret;
1297
1298out_mlock:
1299	pte_unmap_unlock(pte, ptl);
1300
1301
1302	/*
1303	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1304	 * unstable result and race. Plus, We can't wait here because
1305	 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
1306	 * if trylock failed, the page remain in evictable lru and later
1307	 * vmscan could retry to move the page to unevictable lru if the
1308	 * page is actually mlocked.
1309	 */
1310	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1311		if (vma->vm_flags & VM_LOCKED) {
1312			mlock_vma_page(page);
1313			ret = SWAP_MLOCK;
1314		}
1315		up_read(&vma->vm_mm->mmap_sem);
1316	}
1317	return ret;
1318}
1319
1320bool is_vma_temporary_stack(struct vm_area_struct *vma)
1321{
1322	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1323
1324	if (!maybe_stack)
1325		return false;
1326
1327	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1328						VM_STACK_INCOMPLETE_SETUP)
1329		return true;
1330
1331	return false;
1332}
1333
1334static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1335{
1336	return is_vma_temporary_stack(vma);
1337}
1338
1339static int page_not_mapped(struct page *page)
1340{
1341	return !page_mapped(page);
1342};
1343
1344/**
1345 * try_to_unmap - try to remove all page table mappings to a page
1346 * @page: the page to get unmapped
1347 * @flags: action and flags
1348 *
1349 * Tries to remove all the page table entries which are mapping this
1350 * page, used in the pageout path.  Caller must hold the page lock.
1351 * Return values are:
1352 *
1353 * SWAP_SUCCESS	- we succeeded in removing all mappings
1354 * SWAP_AGAIN	- we missed a mapping, try again later
1355 * SWAP_FAIL	- the page is unswappable
1356 * SWAP_MLOCK	- page is mlocked.
1357 */
1358int try_to_unmap(struct page *page, enum ttu_flags flags)
1359{
1360	int ret;
1361	struct rmap_walk_control rwc = {
1362		.rmap_one = try_to_unmap_one,
1363		.arg = (void *)flags,
1364		.done = page_not_mapped,
1365		.anon_lock = page_lock_anon_vma_read,
1366	};
1367
1368	VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1369
1370	/*
1371	 * During exec, a temporary VMA is setup and later moved.
1372	 * The VMA is moved under the anon_vma lock but not the
1373	 * page tables leading to a race where migration cannot
1374	 * find the migration ptes. Rather than increasing the
1375	 * locking requirements of exec(), migration skips
1376	 * temporary VMAs until after exec() completes.
1377	 */
1378	if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1379		rwc.invalid_vma = invalid_migration_vma;
1380
1381	ret = rmap_walk(page, &rwc);
1382
1383	if (ret != SWAP_MLOCK && !page_mapped(page))
1384		ret = SWAP_SUCCESS;
1385	return ret;
1386}
1387
1388/**
1389 * try_to_munlock - try to munlock a page
1390 * @page: the page to be munlocked
1391 *
1392 * Called from munlock code.  Checks all of the VMAs mapping the page
1393 * to make sure nobody else has this page mlocked. The page will be
1394 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1395 *
1396 * Return values are:
1397 *
1398 * SWAP_AGAIN	- no vma is holding page mlocked, or,
1399 * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1400 * SWAP_FAIL	- page cannot be located at present
1401 * SWAP_MLOCK	- page is now mlocked.
1402 */
1403int try_to_munlock(struct page *page)
1404{
1405	int ret;
1406	struct rmap_walk_control rwc = {
1407		.rmap_one = try_to_unmap_one,
1408		.arg = (void *)TTU_MUNLOCK,
1409		.done = page_not_mapped,
1410		.anon_lock = page_lock_anon_vma_read,
1411
1412	};
1413
1414	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1415
1416	ret = rmap_walk(page, &rwc);
1417	return ret;
1418}
1419
1420void __put_anon_vma(struct anon_vma *anon_vma)
1421{
1422	struct anon_vma *root = anon_vma->root;
1423
1424	anon_vma_free(anon_vma);
1425	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1426		anon_vma_free(root);
1427}
1428
1429static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1430					struct rmap_walk_control *rwc)
1431{
1432	struct anon_vma *anon_vma;
1433
1434	if (rwc->anon_lock)
1435		return rwc->anon_lock(page);
1436
1437	/*
1438	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1439	 * because that depends on page_mapped(); but not all its usages
1440	 * are holding mmap_sem. Users without mmap_sem are required to
1441	 * take a reference count to prevent the anon_vma disappearing
1442	 */
1443	anon_vma = page_anon_vma(page);
1444	if (!anon_vma)
1445		return NULL;
1446
1447	anon_vma_lock_read(anon_vma);
1448	return anon_vma;
1449}
1450
1451/*
1452 * rmap_walk_anon - do something to anonymous page using the object-based
1453 * rmap method
1454 * @page: the page to be handled
1455 * @rwc: control variable according to each walk type
1456 *
1457 * Find all the mappings of a page using the mapping pointer and the vma chains
1458 * contained in the anon_vma struct it points to.
1459 *
1460 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1461 * where the page was found will be held for write.  So, we won't recheck
1462 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1463 * LOCKED.
1464 */
1465static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1466{
1467	struct anon_vma *anon_vma;
1468	pgoff_t pgoff;
1469	struct anon_vma_chain *avc;
1470	int ret = SWAP_AGAIN;
1471
1472	anon_vma = rmap_walk_anon_lock(page, rwc);
1473	if (!anon_vma)
1474		return ret;
1475
1476	pgoff = page_to_pgoff(page);
1477	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1478		struct vm_area_struct *vma = avc->vma;
1479		unsigned long address = vma_address(page, vma);
1480
1481		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1482			continue;
1483
1484		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1485		if (ret != SWAP_AGAIN)
1486			break;
1487		if (rwc->done && rwc->done(page))
1488			break;
1489	}
1490	anon_vma_unlock_read(anon_vma);
1491	return ret;
1492}
1493
1494/*
1495 * rmap_walk_file - do something to file page using the object-based rmap method
1496 * @page: the page to be handled
1497 * @rwc: control variable according to each walk type
1498 *
1499 * Find all the mappings of a page using the mapping pointer and the vma chains
1500 * contained in the address_space struct it points to.
1501 *
1502 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1503 * where the page was found will be held for write.  So, we won't recheck
1504 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1505 * LOCKED.
1506 */
1507static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1508{
1509	struct address_space *mapping = page->mapping;
1510	pgoff_t pgoff;
1511	struct vm_area_struct *vma;
1512	int ret = SWAP_AGAIN;
1513
1514	/*
1515	 * The page lock not only makes sure that page->mapping cannot
1516	 * suddenly be NULLified by truncation, it makes sure that the
1517	 * structure at mapping cannot be freed and reused yet,
1518	 * so we can safely take mapping->i_mmap_rwsem.
1519	 */
1520	VM_BUG_ON_PAGE(!PageLocked(page), page);
1521
1522	if (!mapping)
1523		return ret;
1524
1525	pgoff = page_to_pgoff(page);
1526	i_mmap_lock_read(mapping);
1527	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1528		unsigned long address = vma_address(page, vma);
1529
1530		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1531			continue;
1532
1533		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1534		if (ret != SWAP_AGAIN)
1535			goto done;
1536		if (rwc->done && rwc->done(page))
1537			goto done;
1538	}
1539
1540done:
1541	i_mmap_unlock_read(mapping);
1542	return ret;
1543}
1544
1545int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1546{
1547	if (unlikely(PageKsm(page)))
1548		return rmap_walk_ksm(page, rwc);
1549	else if (PageAnon(page))
1550		return rmap_walk_anon(page, rwc);
1551	else
1552		return rmap_walk_file(page, rwc);
1553}
1554
1555#ifdef CONFIG_HUGETLB_PAGE
1556/*
1557 * The following three functions are for anonymous (private mapped) hugepages.
1558 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1559 * and no lru code, because we handle hugepages differently from common pages.
1560 */
1561static void __hugepage_set_anon_rmap(struct page *page,
1562	struct vm_area_struct *vma, unsigned long address, int exclusive)
1563{
1564	struct anon_vma *anon_vma = vma->anon_vma;
1565
1566	BUG_ON(!anon_vma);
1567
1568	if (PageAnon(page))
1569		return;
1570	if (!exclusive)
1571		anon_vma = anon_vma->root;
1572
1573	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1574	page->mapping = (struct address_space *) anon_vma;
1575	page->index = linear_page_index(vma, address);
1576}
1577
1578void hugepage_add_anon_rmap(struct page *page,
1579			    struct vm_area_struct *vma, unsigned long address)
1580{
1581	struct anon_vma *anon_vma = vma->anon_vma;
1582	int first;
1583
1584	BUG_ON(!PageLocked(page));
1585	BUG_ON(!anon_vma);
1586	/* address might be in next vma when migration races vma_adjust */
1587	first = atomic_inc_and_test(&page->_mapcount);
1588	if (first)
1589		__hugepage_set_anon_rmap(page, vma, address, 0);
1590}
1591
1592void hugepage_add_new_anon_rmap(struct page *page,
1593			struct vm_area_struct *vma, unsigned long address)
1594{
1595	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1596	atomic_set(&page->_mapcount, 0);
1597	__hugepage_set_anon_rmap(page, vma, address, 1);
1598}
1599#endif /* CONFIG_HUGETLB_PAGE */
1600