1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 #define MIN_PERCPU_PAGELIST_FRACTION (8)
73
74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75 DEFINE_PER_CPU(int, numa_node);
76 EXPORT_PER_CPU_SYMBOL(numa_node);
77 #endif
78
79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
80 /*
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
85 */
86 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
88 int _node_numa_mem_[MAX_NUMNODES];
89 #endif
90
91 /*
92 * Array of node states.
93 */
94 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 [N_POSSIBLE] = NODE_MASK_ALL,
96 [N_ONLINE] = { { [0] = 1UL } },
97 #ifndef CONFIG_NUMA
98 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
99 #ifdef CONFIG_HIGHMEM
100 [N_HIGH_MEMORY] = { { [0] = 1UL } },
101 #endif
102 #ifdef CONFIG_MOVABLE_NODE
103 [N_MEMORY] = { { [0] = 1UL } },
104 #endif
105 [N_CPU] = { { [0] = 1UL } },
106 #endif /* NUMA */
107 };
108 EXPORT_SYMBOL(node_states);
109
110 /* Protect totalram_pages and zone->managed_pages */
111 static DEFINE_SPINLOCK(managed_page_count_lock);
112
113 unsigned long totalram_pages __read_mostly;
114 unsigned long totalreserve_pages __read_mostly;
115 unsigned long totalcma_pages __read_mostly;
116 /*
117 * When calculating the number of globally allowed dirty pages, there
118 * is a certain number of per-zone reserves that should not be
119 * considered dirtyable memory. This is the sum of those reserves
120 * over all existing zones that contribute dirtyable memory.
121 */
122 unsigned long dirty_balance_reserve __read_mostly;
123
124 int percpu_pagelist_fraction;
125 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
126
127 #ifdef CONFIG_PM_SLEEP
128 /*
129 * The following functions are used by the suspend/hibernate code to temporarily
130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131 * while devices are suspended. To avoid races with the suspend/hibernate code,
132 * they should always be called with pm_mutex held (gfp_allowed_mask also should
133 * only be modified with pm_mutex held, unless the suspend/hibernate code is
134 * guaranteed not to run in parallel with that modification).
135 */
136
137 static gfp_t saved_gfp_mask;
138
pm_restore_gfp_mask(void)139 void pm_restore_gfp_mask(void)
140 {
141 WARN_ON(!mutex_is_locked(&pm_mutex));
142 if (saved_gfp_mask) {
143 gfp_allowed_mask = saved_gfp_mask;
144 saved_gfp_mask = 0;
145 }
146 }
147
pm_restrict_gfp_mask(void)148 void pm_restrict_gfp_mask(void)
149 {
150 WARN_ON(!mutex_is_locked(&pm_mutex));
151 WARN_ON(saved_gfp_mask);
152 saved_gfp_mask = gfp_allowed_mask;
153 gfp_allowed_mask &= ~GFP_IOFS;
154 }
155
pm_suspended_storage(void)156 bool pm_suspended_storage(void)
157 {
158 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
159 return false;
160 return true;
161 }
162 #endif /* CONFIG_PM_SLEEP */
163
164 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165 unsigned int pageblock_order __read_mostly;
166 #endif
167
168 static void __free_pages_ok(struct page *page, unsigned int order);
169
170 /*
171 * results with 256, 32 in the lowmem_reserve sysctl:
172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173 * 1G machine -> (16M dma, 784M normal, 224M high)
174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
176 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
177 *
178 * TBD: should special case ZONE_DMA32 machines here - in those we normally
179 * don't need any ZONE_NORMAL reservation
180 */
181 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
182 #ifdef CONFIG_ZONE_DMA
183 256,
184 #endif
185 #ifdef CONFIG_ZONE_DMA32
186 256,
187 #endif
188 #ifdef CONFIG_HIGHMEM
189 32,
190 #endif
191 32,
192 };
193
194 EXPORT_SYMBOL(totalram_pages);
195
196 static char * const zone_names[MAX_NR_ZONES] = {
197 #ifdef CONFIG_ZONE_DMA
198 "DMA",
199 #endif
200 #ifdef CONFIG_ZONE_DMA32
201 "DMA32",
202 #endif
203 "Normal",
204 #ifdef CONFIG_HIGHMEM
205 "HighMem",
206 #endif
207 "Movable",
208 };
209
210 int min_free_kbytes = 1024;
211 int user_min_free_kbytes = -1;
212
213 static unsigned long __meminitdata nr_kernel_pages;
214 static unsigned long __meminitdata nr_all_pages;
215 static unsigned long __meminitdata dma_reserve;
216
217 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
218 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
219 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
220 static unsigned long __initdata required_kernelcore;
221 static unsigned long __initdata required_movablecore;
222 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
223
224 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
225 int movable_zone;
226 EXPORT_SYMBOL(movable_zone);
227 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
228
229 #if MAX_NUMNODES > 1
230 int nr_node_ids __read_mostly = MAX_NUMNODES;
231 int nr_online_nodes __read_mostly = 1;
232 EXPORT_SYMBOL(nr_node_ids);
233 EXPORT_SYMBOL(nr_online_nodes);
234 #endif
235
236 int page_group_by_mobility_disabled __read_mostly;
237
set_pageblock_migratetype(struct page * page,int migratetype)238 void set_pageblock_migratetype(struct page *page, int migratetype)
239 {
240 if (unlikely(page_group_by_mobility_disabled &&
241 migratetype < MIGRATE_PCPTYPES))
242 migratetype = MIGRATE_UNMOVABLE;
243
244 set_pageblock_flags_group(page, (unsigned long)migratetype,
245 PB_migrate, PB_migrate_end);
246 }
247
248 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
250 {
251 int ret = 0;
252 unsigned seq;
253 unsigned long pfn = page_to_pfn(page);
254 unsigned long sp, start_pfn;
255
256 do {
257 seq = zone_span_seqbegin(zone);
258 start_pfn = zone->zone_start_pfn;
259 sp = zone->spanned_pages;
260 if (!zone_spans_pfn(zone, pfn))
261 ret = 1;
262 } while (zone_span_seqretry(zone, seq));
263
264 if (ret)
265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 pfn, zone_to_nid(zone), zone->name,
267 start_pfn, start_pfn + sp);
268
269 return ret;
270 }
271
page_is_consistent(struct zone * zone,struct page * page)272 static int page_is_consistent(struct zone *zone, struct page *page)
273 {
274 if (!pfn_valid_within(page_to_pfn(page)))
275 return 0;
276 if (zone != page_zone(page))
277 return 0;
278
279 return 1;
280 }
281 /*
282 * Temporary debugging check for pages not lying within a given zone.
283 */
bad_range(struct zone * zone,struct page * page)284 static int bad_range(struct zone *zone, struct page *page)
285 {
286 if (page_outside_zone_boundaries(zone, page))
287 return 1;
288 if (!page_is_consistent(zone, page))
289 return 1;
290
291 return 0;
292 }
293 #else
bad_range(struct zone * zone,struct page * page)294 static inline int bad_range(struct zone *zone, struct page *page)
295 {
296 return 0;
297 }
298 #endif
299
bad_page(struct page * page,const char * reason,unsigned long bad_flags)300 static void bad_page(struct page *page, const char *reason,
301 unsigned long bad_flags)
302 {
303 static unsigned long resume;
304 static unsigned long nr_shown;
305 static unsigned long nr_unshown;
306
307 /* Don't complain about poisoned pages */
308 if (PageHWPoison(page)) {
309 page_mapcount_reset(page); /* remove PageBuddy */
310 return;
311 }
312
313 /*
314 * Allow a burst of 60 reports, then keep quiet for that minute;
315 * or allow a steady drip of one report per second.
316 */
317 if (nr_shown == 60) {
318 if (time_before(jiffies, resume)) {
319 nr_unshown++;
320 goto out;
321 }
322 if (nr_unshown) {
323 printk(KERN_ALERT
324 "BUG: Bad page state: %lu messages suppressed\n",
325 nr_unshown);
326 nr_unshown = 0;
327 }
328 nr_shown = 0;
329 }
330 if (nr_shown++ == 0)
331 resume = jiffies + 60 * HZ;
332
333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
334 current->comm, page_to_pfn(page));
335 dump_page_badflags(page, reason, bad_flags);
336
337 print_modules();
338 dump_stack();
339 out:
340 /* Leave bad fields for debug, except PageBuddy could make trouble */
341 page_mapcount_reset(page); /* remove PageBuddy */
342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
343 }
344
345 /*
346 * Higher-order pages are called "compound pages". They are structured thusly:
347 *
348 * The first PAGE_SIZE page is called the "head page".
349 *
350 * The remaining PAGE_SIZE pages are called "tail pages".
351 *
352 * All pages have PG_compound set. All tail pages have their ->first_page
353 * pointing at the head page.
354 *
355 * The first tail page's ->lru.next holds the address of the compound page's
356 * put_page() function. Its ->lru.prev holds the order of allocation.
357 * This usage means that zero-order pages may not be compound.
358 */
359
free_compound_page(struct page * page)360 static void free_compound_page(struct page *page)
361 {
362 __free_pages_ok(page, compound_order(page));
363 }
364
prep_compound_page(struct page * page,unsigned int order)365 void prep_compound_page(struct page *page, unsigned int order)
366 {
367 int i;
368 int nr_pages = 1 << order;
369
370 set_compound_page_dtor(page, free_compound_page);
371 set_compound_order(page, order);
372 __SetPageHead(page);
373 for (i = 1; i < nr_pages; i++) {
374 struct page *p = page + i;
375 set_page_count(p, 0);
376 p->first_page = page;
377 /* Make sure p->first_page is always valid for PageTail() */
378 smp_wmb();
379 __SetPageTail(p);
380 }
381 }
382
prep_zero_page(struct page * page,unsigned int order,gfp_t gfp_flags)383 static inline void prep_zero_page(struct page *page, unsigned int order,
384 gfp_t gfp_flags)
385 {
386 int i;
387
388 /*
389 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
390 * and __GFP_HIGHMEM from hard or soft interrupt context.
391 */
392 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
393 for (i = 0; i < (1 << order); i++)
394 clear_highpage(page + i);
395 }
396
397 #ifdef CONFIG_DEBUG_PAGEALLOC
398 unsigned int _debug_guardpage_minorder;
399 bool _debug_pagealloc_enabled __read_mostly;
400 bool _debug_guardpage_enabled __read_mostly;
401
early_debug_pagealloc(char * buf)402 static int __init early_debug_pagealloc(char *buf)
403 {
404 if (!buf)
405 return -EINVAL;
406
407 if (strcmp(buf, "on") == 0)
408 _debug_pagealloc_enabled = true;
409
410 return 0;
411 }
412 early_param("debug_pagealloc", early_debug_pagealloc);
413
need_debug_guardpage(void)414 static bool need_debug_guardpage(void)
415 {
416 /* If we don't use debug_pagealloc, we don't need guard page */
417 if (!debug_pagealloc_enabled())
418 return false;
419
420 return true;
421 }
422
init_debug_guardpage(void)423 static void init_debug_guardpage(void)
424 {
425 if (!debug_pagealloc_enabled())
426 return;
427
428 _debug_guardpage_enabled = true;
429 }
430
431 struct page_ext_operations debug_guardpage_ops = {
432 .need = need_debug_guardpage,
433 .init = init_debug_guardpage,
434 };
435
debug_guardpage_minorder_setup(char * buf)436 static int __init debug_guardpage_minorder_setup(char *buf)
437 {
438 unsigned long res;
439
440 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
441 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
442 return 0;
443 }
444 _debug_guardpage_minorder = res;
445 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
446 return 0;
447 }
448 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
449
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)450 static inline void set_page_guard(struct zone *zone, struct page *page,
451 unsigned int order, int migratetype)
452 {
453 struct page_ext *page_ext;
454
455 if (!debug_guardpage_enabled())
456 return;
457
458 page_ext = lookup_page_ext(page);
459 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
460
461 INIT_LIST_HEAD(&page->lru);
462 set_page_private(page, order);
463 /* Guard pages are not available for any usage */
464 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
465 }
466
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)467 static inline void clear_page_guard(struct zone *zone, struct page *page,
468 unsigned int order, int migratetype)
469 {
470 struct page_ext *page_ext;
471
472 if (!debug_guardpage_enabled())
473 return;
474
475 page_ext = lookup_page_ext(page);
476 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
477
478 set_page_private(page, 0);
479 if (!is_migrate_isolate(migratetype))
480 __mod_zone_freepage_state(zone, (1 << order), migratetype);
481 }
482 #else
483 struct page_ext_operations debug_guardpage_ops = { NULL, };
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)484 static inline void set_page_guard(struct zone *zone, struct page *page,
485 unsigned int order, int migratetype) {}
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)486 static inline void clear_page_guard(struct zone *zone, struct page *page,
487 unsigned int order, int migratetype) {}
488 #endif
489
set_page_order(struct page * page,unsigned int order)490 static inline void set_page_order(struct page *page, unsigned int order)
491 {
492 set_page_private(page, order);
493 __SetPageBuddy(page);
494 }
495
rmv_page_order(struct page * page)496 static inline void rmv_page_order(struct page *page)
497 {
498 __ClearPageBuddy(page);
499 set_page_private(page, 0);
500 }
501
502 /*
503 * This function checks whether a page is free && is the buddy
504 * we can do coalesce a page and its buddy if
505 * (a) the buddy is not in a hole &&
506 * (b) the buddy is in the buddy system &&
507 * (c) a page and its buddy have the same order &&
508 * (d) a page and its buddy are in the same zone.
509 *
510 * For recording whether a page is in the buddy system, we set ->_mapcount
511 * PAGE_BUDDY_MAPCOUNT_VALUE.
512 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
513 * serialized by zone->lock.
514 *
515 * For recording page's order, we use page_private(page).
516 */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)517 static inline int page_is_buddy(struct page *page, struct page *buddy,
518 unsigned int order)
519 {
520 if (!pfn_valid_within(page_to_pfn(buddy)))
521 return 0;
522
523 if (page_is_guard(buddy) && page_order(buddy) == order) {
524 if (page_zone_id(page) != page_zone_id(buddy))
525 return 0;
526
527 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
528
529 return 1;
530 }
531
532 if (PageBuddy(buddy) && page_order(buddy) == order) {
533 /*
534 * zone check is done late to avoid uselessly
535 * calculating zone/node ids for pages that could
536 * never merge.
537 */
538 if (page_zone_id(page) != page_zone_id(buddy))
539 return 0;
540
541 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
542
543 return 1;
544 }
545 return 0;
546 }
547
548 /*
549 * Freeing function for a buddy system allocator.
550 *
551 * The concept of a buddy system is to maintain direct-mapped table
552 * (containing bit values) for memory blocks of various "orders".
553 * The bottom level table contains the map for the smallest allocatable
554 * units of memory (here, pages), and each level above it describes
555 * pairs of units from the levels below, hence, "buddies".
556 * At a high level, all that happens here is marking the table entry
557 * at the bottom level available, and propagating the changes upward
558 * as necessary, plus some accounting needed to play nicely with other
559 * parts of the VM system.
560 * At each level, we keep a list of pages, which are heads of continuous
561 * free pages of length of (1 << order) and marked with _mapcount
562 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
563 * field.
564 * So when we are allocating or freeing one, we can derive the state of the
565 * other. That is, if we allocate a small block, and both were
566 * free, the remainder of the region must be split into blocks.
567 * If a block is freed, and its buddy is also free, then this
568 * triggers coalescing into a block of larger size.
569 *
570 * -- nyc
571 */
572
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype)573 static inline void __free_one_page(struct page *page,
574 unsigned long pfn,
575 struct zone *zone, unsigned int order,
576 int migratetype)
577 {
578 unsigned long page_idx;
579 unsigned long combined_idx;
580 unsigned long uninitialized_var(buddy_idx);
581 struct page *buddy;
582 unsigned int max_order;
583
584 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
585
586 VM_BUG_ON(!zone_is_initialized(zone));
587 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
588
589 VM_BUG_ON(migratetype == -1);
590 if (likely(!is_migrate_isolate(migratetype)))
591 __mod_zone_freepage_state(zone, 1 << order, migratetype);
592
593 page_idx = pfn & ((1 << MAX_ORDER) - 1);
594
595 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
596 VM_BUG_ON_PAGE(bad_range(zone, page), page);
597
598 continue_merging:
599 while (order < max_order - 1) {
600 buddy_idx = __find_buddy_index(page_idx, order);
601 buddy = page + (buddy_idx - page_idx);
602 if (!page_is_buddy(page, buddy, order))
603 goto done_merging;
604 /*
605 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
606 * merge with it and move up one order.
607 */
608 if (page_is_guard(buddy)) {
609 clear_page_guard(zone, buddy, order, migratetype);
610 } else {
611 list_del(&buddy->lru);
612 zone->free_area[order].nr_free--;
613 rmv_page_order(buddy);
614 }
615 combined_idx = buddy_idx & page_idx;
616 page = page + (combined_idx - page_idx);
617 page_idx = combined_idx;
618 order++;
619 }
620 if (max_order < MAX_ORDER) {
621 /* If we are here, it means order is >= pageblock_order.
622 * We want to prevent merge between freepages on isolate
623 * pageblock and normal pageblock. Without this, pageblock
624 * isolation could cause incorrect freepage or CMA accounting.
625 *
626 * We don't want to hit this code for the more frequent
627 * low-order merging.
628 */
629 if (unlikely(has_isolate_pageblock(zone))) {
630 int buddy_mt;
631
632 buddy_idx = __find_buddy_index(page_idx, order);
633 buddy = page + (buddy_idx - page_idx);
634 buddy_mt = get_pageblock_migratetype(buddy);
635
636 if (migratetype != buddy_mt
637 && (is_migrate_isolate(migratetype) ||
638 is_migrate_isolate(buddy_mt)))
639 goto done_merging;
640 }
641 max_order++;
642 goto continue_merging;
643 }
644
645 done_merging:
646 set_page_order(page, order);
647
648 /*
649 * If this is not the largest possible page, check if the buddy
650 * of the next-highest order is free. If it is, it's possible
651 * that pages are being freed that will coalesce soon. In case,
652 * that is happening, add the free page to the tail of the list
653 * so it's less likely to be used soon and more likely to be merged
654 * as a higher order page
655 */
656 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
657 struct page *higher_page, *higher_buddy;
658 combined_idx = buddy_idx & page_idx;
659 higher_page = page + (combined_idx - page_idx);
660 buddy_idx = __find_buddy_index(combined_idx, order + 1);
661 higher_buddy = higher_page + (buddy_idx - combined_idx);
662 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
663 list_add_tail(&page->lru,
664 &zone->free_area[order].free_list[migratetype]);
665 goto out;
666 }
667 }
668
669 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
670 out:
671 zone->free_area[order].nr_free++;
672 }
673
free_pages_check(struct page * page)674 static inline int free_pages_check(struct page *page)
675 {
676 const char *bad_reason = NULL;
677 unsigned long bad_flags = 0;
678
679 if (unlikely(page_mapcount(page)))
680 bad_reason = "nonzero mapcount";
681 if (unlikely(page->mapping != NULL))
682 bad_reason = "non-NULL mapping";
683 if (unlikely(atomic_read(&page->_count) != 0))
684 bad_reason = "nonzero _count";
685 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
686 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
687 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
688 }
689 #ifdef CONFIG_MEMCG
690 if (unlikely(page->mem_cgroup))
691 bad_reason = "page still charged to cgroup";
692 #endif
693 if (unlikely(bad_reason)) {
694 bad_page(page, bad_reason, bad_flags);
695 return 1;
696 }
697 page_cpupid_reset_last(page);
698 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
699 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
700 return 0;
701 }
702
703 /*
704 * Frees a number of pages from the PCP lists
705 * Assumes all pages on list are in same zone, and of same order.
706 * count is the number of pages to free.
707 *
708 * If the zone was previously in an "all pages pinned" state then look to
709 * see if this freeing clears that state.
710 *
711 * And clear the zone's pages_scanned counter, to hold off the "all pages are
712 * pinned" detection logic.
713 */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp)714 static void free_pcppages_bulk(struct zone *zone, int count,
715 struct per_cpu_pages *pcp)
716 {
717 int migratetype = 0;
718 int batch_free = 0;
719 int to_free = count;
720 unsigned long nr_scanned;
721
722 spin_lock(&zone->lock);
723 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
724 if (nr_scanned)
725 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
726
727 while (to_free) {
728 struct page *page;
729 struct list_head *list;
730
731 /*
732 * Remove pages from lists in a round-robin fashion. A
733 * batch_free count is maintained that is incremented when an
734 * empty list is encountered. This is so more pages are freed
735 * off fuller lists instead of spinning excessively around empty
736 * lists
737 */
738 do {
739 batch_free++;
740 if (++migratetype == MIGRATE_PCPTYPES)
741 migratetype = 0;
742 list = &pcp->lists[migratetype];
743 } while (list_empty(list));
744
745 /* This is the only non-empty list. Free them all. */
746 if (batch_free == MIGRATE_PCPTYPES)
747 batch_free = to_free;
748
749 do {
750 int mt; /* migratetype of the to-be-freed page */
751
752 page = list_entry(list->prev, struct page, lru);
753 /* must delete as __free_one_page list manipulates */
754 list_del(&page->lru);
755 mt = get_freepage_migratetype(page);
756 if (unlikely(has_isolate_pageblock(zone)))
757 mt = get_pageblock_migratetype(page);
758
759 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
760 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
761 trace_mm_page_pcpu_drain(page, 0, mt);
762 } while (--to_free && --batch_free && !list_empty(list));
763 }
764 spin_unlock(&zone->lock);
765 }
766
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype)767 static void free_one_page(struct zone *zone,
768 struct page *page, unsigned long pfn,
769 unsigned int order,
770 int migratetype)
771 {
772 unsigned long nr_scanned;
773 spin_lock(&zone->lock);
774 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
775 if (nr_scanned)
776 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
777
778 if (unlikely(has_isolate_pageblock(zone) ||
779 is_migrate_isolate(migratetype))) {
780 migratetype = get_pfnblock_migratetype(page, pfn);
781 }
782 __free_one_page(page, pfn, zone, order, migratetype);
783 spin_unlock(&zone->lock);
784 }
785
free_tail_pages_check(struct page * head_page,struct page * page)786 static int free_tail_pages_check(struct page *head_page, struct page *page)
787 {
788 if (!IS_ENABLED(CONFIG_DEBUG_VM))
789 return 0;
790 if (unlikely(!PageTail(page))) {
791 bad_page(page, "PageTail not set", 0);
792 return 1;
793 }
794 if (unlikely(page->first_page != head_page)) {
795 bad_page(page, "first_page not consistent", 0);
796 return 1;
797 }
798 return 0;
799 }
800
free_pages_prepare(struct page * page,unsigned int order)801 static bool free_pages_prepare(struct page *page, unsigned int order)
802 {
803 bool compound = PageCompound(page);
804 int i, bad = 0;
805
806 VM_BUG_ON_PAGE(PageTail(page), page);
807 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
808
809 trace_mm_page_free(page, order);
810 kmemcheck_free_shadow(page, order);
811 kasan_free_pages(page, order);
812
813 if (PageAnon(page))
814 page->mapping = NULL;
815 bad += free_pages_check(page);
816 for (i = 1; i < (1 << order); i++) {
817 if (compound)
818 bad += free_tail_pages_check(page, page + i);
819 bad += free_pages_check(page + i);
820 }
821 if (bad)
822 return false;
823
824 reset_page_owner(page, order);
825
826 if (!PageHighMem(page)) {
827 debug_check_no_locks_freed(page_address(page),
828 PAGE_SIZE << order);
829 debug_check_no_obj_freed(page_address(page),
830 PAGE_SIZE << order);
831 }
832 arch_free_page(page, order);
833 kernel_map_pages(page, 1 << order, 0);
834
835 return true;
836 }
837
__free_pages_ok(struct page * page,unsigned int order)838 static void __free_pages_ok(struct page *page, unsigned int order)
839 {
840 unsigned long flags;
841 int migratetype;
842 unsigned long pfn = page_to_pfn(page);
843
844 if (!free_pages_prepare(page, order))
845 return;
846
847 migratetype = get_pfnblock_migratetype(page, pfn);
848 local_irq_save(flags);
849 __count_vm_events(PGFREE, 1 << order);
850 set_freepage_migratetype(page, migratetype);
851 free_one_page(page_zone(page), page, pfn, order, migratetype);
852 local_irq_restore(flags);
853 }
854
__free_pages_bootmem(struct page * page,unsigned long pfn,unsigned int order)855 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
856 unsigned int order)
857 {
858 unsigned int nr_pages = 1 << order;
859 struct page *p = page;
860 unsigned int loop;
861
862 prefetchw(p);
863 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
864 prefetchw(p + 1);
865 __ClearPageReserved(p);
866 set_page_count(p, 0);
867 }
868 __ClearPageReserved(p);
869 set_page_count(p, 0);
870
871 page_zone(page)->managed_pages += nr_pages;
872 set_page_refcounted(page);
873 __free_pages(page, order);
874 }
875
876 #ifdef CONFIG_CMA
877 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
init_cma_reserved_pageblock(struct page * page)878 void __init init_cma_reserved_pageblock(struct page *page)
879 {
880 unsigned i = pageblock_nr_pages;
881 struct page *p = page;
882
883 do {
884 __ClearPageReserved(p);
885 set_page_count(p, 0);
886 } while (++p, --i);
887
888 set_pageblock_migratetype(page, MIGRATE_CMA);
889
890 if (pageblock_order >= MAX_ORDER) {
891 i = pageblock_nr_pages;
892 p = page;
893 do {
894 set_page_refcounted(p);
895 __free_pages(p, MAX_ORDER - 1);
896 p += MAX_ORDER_NR_PAGES;
897 } while (i -= MAX_ORDER_NR_PAGES);
898 } else {
899 set_page_refcounted(page);
900 __free_pages(page, pageblock_order);
901 }
902
903 adjust_managed_page_count(page, pageblock_nr_pages);
904 }
905 #endif
906
907 /*
908 * The order of subdivision here is critical for the IO subsystem.
909 * Please do not alter this order without good reasons and regression
910 * testing. Specifically, as large blocks of memory are subdivided,
911 * the order in which smaller blocks are delivered depends on the order
912 * they're subdivided in this function. This is the primary factor
913 * influencing the order in which pages are delivered to the IO
914 * subsystem according to empirical testing, and this is also justified
915 * by considering the behavior of a buddy system containing a single
916 * large block of memory acted on by a series of small allocations.
917 * This behavior is a critical factor in sglist merging's success.
918 *
919 * -- nyc
920 */
expand(struct zone * zone,struct page * page,int low,int high,struct free_area * area,int migratetype)921 static inline void expand(struct zone *zone, struct page *page,
922 int low, int high, struct free_area *area,
923 int migratetype)
924 {
925 unsigned long size = 1 << high;
926
927 while (high > low) {
928 area--;
929 high--;
930 size >>= 1;
931 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
932
933 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
934 debug_guardpage_enabled() &&
935 high < debug_guardpage_minorder()) {
936 /*
937 * Mark as guard pages (or page), that will allow to
938 * merge back to allocator when buddy will be freed.
939 * Corresponding page table entries will not be touched,
940 * pages will stay not present in virtual address space
941 */
942 set_page_guard(zone, &page[size], high, migratetype);
943 continue;
944 }
945 list_add(&page[size].lru, &area->free_list[migratetype]);
946 area->nr_free++;
947 set_page_order(&page[size], high);
948 }
949 }
950
951 /*
952 * This page is about to be returned from the page allocator
953 */
check_new_page(struct page * page)954 static inline int check_new_page(struct page *page)
955 {
956 const char *bad_reason = NULL;
957 unsigned long bad_flags = 0;
958
959 if (unlikely(page_mapcount(page)))
960 bad_reason = "nonzero mapcount";
961 if (unlikely(page->mapping != NULL))
962 bad_reason = "non-NULL mapping";
963 if (unlikely(atomic_read(&page->_count) != 0))
964 bad_reason = "nonzero _count";
965 if (unlikely(page->flags & __PG_HWPOISON)) {
966 bad_reason = "HWPoisoned (hardware-corrupted)";
967 bad_flags = __PG_HWPOISON;
968 }
969 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
970 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
971 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
972 }
973 #ifdef CONFIG_MEMCG
974 if (unlikely(page->mem_cgroup))
975 bad_reason = "page still charged to cgroup";
976 #endif
977 if (unlikely(bad_reason)) {
978 bad_page(page, bad_reason, bad_flags);
979 return 1;
980 }
981 return 0;
982 }
983
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,int alloc_flags)984 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
985 int alloc_flags)
986 {
987 int i;
988
989 for (i = 0; i < (1 << order); i++) {
990 struct page *p = page + i;
991 if (unlikely(check_new_page(p)))
992 return 1;
993 }
994
995 set_page_private(page, 0);
996 set_page_refcounted(page);
997
998 arch_alloc_page(page, order);
999 kernel_map_pages(page, 1 << order, 1);
1000 kasan_alloc_pages(page, order);
1001
1002 if (gfp_flags & __GFP_ZERO)
1003 prep_zero_page(page, order, gfp_flags);
1004
1005 if (order && (gfp_flags & __GFP_COMP))
1006 prep_compound_page(page, order);
1007
1008 set_page_owner(page, order, gfp_flags);
1009
1010 /*
1011 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1012 * allocate the page. The expectation is that the caller is taking
1013 * steps that will free more memory. The caller should avoid the page
1014 * being used for !PFMEMALLOC purposes.
1015 */
1016 if (alloc_flags & ALLOC_NO_WATERMARKS)
1017 set_page_pfmemalloc(page);
1018 else
1019 clear_page_pfmemalloc(page);
1020
1021 return 0;
1022 }
1023
1024 /*
1025 * Go through the free lists for the given migratetype and remove
1026 * the smallest available page from the freelists
1027 */
1028 static inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1029 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1030 int migratetype)
1031 {
1032 unsigned int current_order;
1033 struct free_area *area;
1034 struct page *page;
1035
1036 /* Find a page of the appropriate size in the preferred list */
1037 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1038 area = &(zone->free_area[current_order]);
1039 if (list_empty(&area->free_list[migratetype]))
1040 continue;
1041
1042 page = list_entry(area->free_list[migratetype].next,
1043 struct page, lru);
1044 list_del(&page->lru);
1045 rmv_page_order(page);
1046 area->nr_free--;
1047 expand(zone, page, order, current_order, area, migratetype);
1048 set_freepage_migratetype(page, migratetype);
1049 return page;
1050 }
1051
1052 return NULL;
1053 }
1054
1055
1056 /*
1057 * This array describes the order lists are fallen back to when
1058 * the free lists for the desirable migrate type are depleted
1059 */
1060 static int fallbacks[MIGRATE_TYPES][4] = {
1061 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1062 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1063 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1064 #ifdef CONFIG_CMA
1065 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1066 #endif
1067 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1068 #ifdef CONFIG_MEMORY_ISOLATION
1069 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1070 #endif
1071 };
1072
1073 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1074 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1075 unsigned int order)
1076 {
1077 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1078 }
1079 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1080 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1081 unsigned int order) { return NULL; }
1082 #endif
1083
1084 /*
1085 * Move the free pages in a range to the free lists of the requested type.
1086 * Note that start_page and end_pages are not aligned on a pageblock
1087 * boundary. If alignment is required, use move_freepages_block()
1088 */
move_freepages(struct zone * zone,struct page * start_page,struct page * end_page,int migratetype)1089 int move_freepages(struct zone *zone,
1090 struct page *start_page, struct page *end_page,
1091 int migratetype)
1092 {
1093 struct page *page;
1094 unsigned int order;
1095 int pages_moved = 0;
1096
1097 #ifndef CONFIG_HOLES_IN_ZONE
1098 /*
1099 * page_zone is not safe to call in this context when
1100 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1101 * anyway as we check zone boundaries in move_freepages_block().
1102 * Remove at a later date when no bug reports exist related to
1103 * grouping pages by mobility
1104 */
1105 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1106 #endif
1107
1108 for (page = start_page; page <= end_page;) {
1109 /* Make sure we are not inadvertently changing nodes */
1110 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1111
1112 if (!pfn_valid_within(page_to_pfn(page))) {
1113 page++;
1114 continue;
1115 }
1116
1117 if (!PageBuddy(page)) {
1118 page++;
1119 continue;
1120 }
1121
1122 order = page_order(page);
1123 list_move(&page->lru,
1124 &zone->free_area[order].free_list[migratetype]);
1125 set_freepage_migratetype(page, migratetype);
1126 page += 1 << order;
1127 pages_moved += 1 << order;
1128 }
1129
1130 return pages_moved;
1131 }
1132
move_freepages_block(struct zone * zone,struct page * page,int migratetype)1133 int move_freepages_block(struct zone *zone, struct page *page,
1134 int migratetype)
1135 {
1136 unsigned long start_pfn, end_pfn;
1137 struct page *start_page, *end_page;
1138
1139 start_pfn = page_to_pfn(page);
1140 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1141 start_page = pfn_to_page(start_pfn);
1142 end_page = start_page + pageblock_nr_pages - 1;
1143 end_pfn = start_pfn + pageblock_nr_pages - 1;
1144
1145 /* Do not cross zone boundaries */
1146 if (!zone_spans_pfn(zone, start_pfn))
1147 start_page = page;
1148 if (!zone_spans_pfn(zone, end_pfn))
1149 return 0;
1150
1151 return move_freepages(zone, start_page, end_page, migratetype);
1152 }
1153
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1154 static void change_pageblock_range(struct page *pageblock_page,
1155 int start_order, int migratetype)
1156 {
1157 int nr_pageblocks = 1 << (start_order - pageblock_order);
1158
1159 while (nr_pageblocks--) {
1160 set_pageblock_migratetype(pageblock_page, migratetype);
1161 pageblock_page += pageblock_nr_pages;
1162 }
1163 }
1164
1165 /*
1166 * When we are falling back to another migratetype during allocation, try to
1167 * steal extra free pages from the same pageblocks to satisfy further
1168 * allocations, instead of polluting multiple pageblocks.
1169 *
1170 * If we are stealing a relatively large buddy page, it is likely there will
1171 * be more free pages in the pageblock, so try to steal them all. For
1172 * reclaimable and unmovable allocations, we steal regardless of page size,
1173 * as fragmentation caused by those allocations polluting movable pageblocks
1174 * is worse than movable allocations stealing from unmovable and reclaimable
1175 * pageblocks.
1176 */
can_steal_fallback(unsigned int order,int start_mt)1177 static bool can_steal_fallback(unsigned int order, int start_mt)
1178 {
1179 /*
1180 * Leaving this order check is intended, although there is
1181 * relaxed order check in next check. The reason is that
1182 * we can actually steal whole pageblock if this condition met,
1183 * but, below check doesn't guarantee it and that is just heuristic
1184 * so could be changed anytime.
1185 */
1186 if (order >= pageblock_order)
1187 return true;
1188
1189 if (order >= pageblock_order / 2 ||
1190 start_mt == MIGRATE_RECLAIMABLE ||
1191 start_mt == MIGRATE_UNMOVABLE ||
1192 page_group_by_mobility_disabled)
1193 return true;
1194
1195 return false;
1196 }
1197
1198 /*
1199 * This function implements actual steal behaviour. If order is large enough,
1200 * we can steal whole pageblock. If not, we first move freepages in this
1201 * pageblock and check whether half of pages are moved or not. If half of
1202 * pages are moved, we can change migratetype of pageblock and permanently
1203 * use it's pages as requested migratetype in the future.
1204 */
steal_suitable_fallback(struct zone * zone,struct page * page,int start_type)1205 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1206 int start_type)
1207 {
1208 unsigned int current_order = page_order(page);
1209 int pages;
1210
1211 /* Take ownership for orders >= pageblock_order */
1212 if (current_order >= pageblock_order) {
1213 change_pageblock_range(page, current_order, start_type);
1214 return;
1215 }
1216
1217 pages = move_freepages_block(zone, page, start_type);
1218
1219 /* Claim the whole block if over half of it is free */
1220 if (pages >= (1 << (pageblock_order-1)) ||
1221 page_group_by_mobility_disabled)
1222 set_pageblock_migratetype(page, start_type);
1223 }
1224
1225 /*
1226 * Check whether there is a suitable fallback freepage with requested order.
1227 * If only_stealable is true, this function returns fallback_mt only if
1228 * we can steal other freepages all together. This would help to reduce
1229 * fragmentation due to mixed migratetype pages in one pageblock.
1230 */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)1231 int find_suitable_fallback(struct free_area *area, unsigned int order,
1232 int migratetype, bool only_stealable, bool *can_steal)
1233 {
1234 int i;
1235 int fallback_mt;
1236
1237 if (area->nr_free == 0)
1238 return -1;
1239
1240 *can_steal = false;
1241 for (i = 0;; i++) {
1242 fallback_mt = fallbacks[migratetype][i];
1243 if (fallback_mt == MIGRATE_RESERVE)
1244 break;
1245
1246 if (list_empty(&area->free_list[fallback_mt]))
1247 continue;
1248
1249 if (can_steal_fallback(order, migratetype))
1250 *can_steal = true;
1251
1252 if (!only_stealable)
1253 return fallback_mt;
1254
1255 if (*can_steal)
1256 return fallback_mt;
1257 }
1258
1259 return -1;
1260 }
1261
1262 /* Remove an element from the buddy allocator from the fallback list */
1263 static inline struct page *
__rmqueue_fallback(struct zone * zone,unsigned int order,int start_migratetype)1264 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1265 {
1266 struct free_area *area;
1267 unsigned int current_order;
1268 struct page *page;
1269 int fallback_mt;
1270 bool can_steal;
1271
1272 /* Find the largest possible block of pages in the other list */
1273 for (current_order = MAX_ORDER-1;
1274 current_order >= order && current_order <= MAX_ORDER-1;
1275 --current_order) {
1276 area = &(zone->free_area[current_order]);
1277 fallback_mt = find_suitable_fallback(area, current_order,
1278 start_migratetype, false, &can_steal);
1279 if (fallback_mt == -1)
1280 continue;
1281
1282 page = list_entry(area->free_list[fallback_mt].next,
1283 struct page, lru);
1284 if (can_steal)
1285 steal_suitable_fallback(zone, page, start_migratetype);
1286
1287 /* Remove the page from the freelists */
1288 area->nr_free--;
1289 list_del(&page->lru);
1290 rmv_page_order(page);
1291
1292 expand(zone, page, order, current_order, area,
1293 start_migratetype);
1294 /*
1295 * The freepage_migratetype may differ from pageblock's
1296 * migratetype depending on the decisions in
1297 * try_to_steal_freepages(). This is OK as long as it
1298 * does not differ for MIGRATE_CMA pageblocks. For CMA
1299 * we need to make sure unallocated pages flushed from
1300 * pcp lists are returned to the correct freelist.
1301 */
1302 set_freepage_migratetype(page, start_migratetype);
1303
1304 trace_mm_page_alloc_extfrag(page, order, current_order,
1305 start_migratetype, fallback_mt);
1306
1307 return page;
1308 }
1309
1310 return NULL;
1311 }
1312
1313 /*
1314 * Do the hard work of removing an element from the buddy allocator.
1315 * Call me with the zone->lock already held.
1316 */
__rmqueue(struct zone * zone,unsigned int order,int migratetype)1317 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1318 int migratetype)
1319 {
1320 struct page *page;
1321
1322 retry_reserve:
1323 page = __rmqueue_smallest(zone, order, migratetype);
1324
1325 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1326 if (migratetype == MIGRATE_MOVABLE)
1327 page = __rmqueue_cma_fallback(zone, order);
1328
1329 if (!page)
1330 page = __rmqueue_fallback(zone, order, migratetype);
1331
1332 /*
1333 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1334 * is used because __rmqueue_smallest is an inline function
1335 * and we want just one call site
1336 */
1337 if (!page) {
1338 migratetype = MIGRATE_RESERVE;
1339 goto retry_reserve;
1340 }
1341 }
1342
1343 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1344 return page;
1345 }
1346
1347 /*
1348 * Obtain a specified number of elements from the buddy allocator, all under
1349 * a single hold of the lock, for efficiency. Add them to the supplied list.
1350 * Returns the number of new pages which were placed at *list.
1351 */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,bool cold)1352 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1353 unsigned long count, struct list_head *list,
1354 int migratetype, bool cold)
1355 {
1356 int i;
1357
1358 spin_lock(&zone->lock);
1359 for (i = 0; i < count; ++i) {
1360 struct page *page = __rmqueue(zone, order, migratetype);
1361 if (unlikely(page == NULL))
1362 break;
1363
1364 /*
1365 * Split buddy pages returned by expand() are received here
1366 * in physical page order. The page is added to the callers and
1367 * list and the list head then moves forward. From the callers
1368 * perspective, the linked list is ordered by page number in
1369 * some conditions. This is useful for IO devices that can
1370 * merge IO requests if the physical pages are ordered
1371 * properly.
1372 */
1373 if (likely(!cold))
1374 list_add(&page->lru, list);
1375 else
1376 list_add_tail(&page->lru, list);
1377 list = &page->lru;
1378 if (is_migrate_cma(get_freepage_migratetype(page)))
1379 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1380 -(1 << order));
1381 }
1382 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1383 spin_unlock(&zone->lock);
1384 return i;
1385 }
1386
1387 #ifdef CONFIG_NUMA
1388 /*
1389 * Called from the vmstat counter updater to drain pagesets of this
1390 * currently executing processor on remote nodes after they have
1391 * expired.
1392 *
1393 * Note that this function must be called with the thread pinned to
1394 * a single processor.
1395 */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)1396 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1397 {
1398 unsigned long flags;
1399 int to_drain, batch;
1400
1401 local_irq_save(flags);
1402 batch = READ_ONCE(pcp->batch);
1403 to_drain = min(pcp->count, batch);
1404 if (to_drain > 0) {
1405 free_pcppages_bulk(zone, to_drain, pcp);
1406 pcp->count -= to_drain;
1407 }
1408 local_irq_restore(flags);
1409 }
1410 #endif
1411
1412 /*
1413 * Drain pcplists of the indicated processor and zone.
1414 *
1415 * The processor must either be the current processor and the
1416 * thread pinned to the current processor or a processor that
1417 * is not online.
1418 */
drain_pages_zone(unsigned int cpu,struct zone * zone)1419 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1420 {
1421 unsigned long flags;
1422 struct per_cpu_pageset *pset;
1423 struct per_cpu_pages *pcp;
1424
1425 local_irq_save(flags);
1426 pset = per_cpu_ptr(zone->pageset, cpu);
1427
1428 pcp = &pset->pcp;
1429 if (pcp->count) {
1430 free_pcppages_bulk(zone, pcp->count, pcp);
1431 pcp->count = 0;
1432 }
1433 local_irq_restore(flags);
1434 }
1435
1436 /*
1437 * Drain pcplists of all zones on the indicated processor.
1438 *
1439 * The processor must either be the current processor and the
1440 * thread pinned to the current processor or a processor that
1441 * is not online.
1442 */
drain_pages(unsigned int cpu)1443 static void drain_pages(unsigned int cpu)
1444 {
1445 struct zone *zone;
1446
1447 for_each_populated_zone(zone) {
1448 drain_pages_zone(cpu, zone);
1449 }
1450 }
1451
1452 /*
1453 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1454 *
1455 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1456 * the single zone's pages.
1457 */
drain_local_pages(struct zone * zone)1458 void drain_local_pages(struct zone *zone)
1459 {
1460 int cpu = smp_processor_id();
1461
1462 if (zone)
1463 drain_pages_zone(cpu, zone);
1464 else
1465 drain_pages(cpu);
1466 }
1467
1468 /*
1469 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1470 *
1471 * When zone parameter is non-NULL, spill just the single zone's pages.
1472 *
1473 * Note that this code is protected against sending an IPI to an offline
1474 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1475 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1476 * nothing keeps CPUs from showing up after we populated the cpumask and
1477 * before the call to on_each_cpu_mask().
1478 */
drain_all_pages(struct zone * zone)1479 void drain_all_pages(struct zone *zone)
1480 {
1481 int cpu;
1482
1483 /*
1484 * Allocate in the BSS so we wont require allocation in
1485 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1486 */
1487 static cpumask_t cpus_with_pcps;
1488
1489 /*
1490 * We don't care about racing with CPU hotplug event
1491 * as offline notification will cause the notified
1492 * cpu to drain that CPU pcps and on_each_cpu_mask
1493 * disables preemption as part of its processing
1494 */
1495 for_each_online_cpu(cpu) {
1496 struct per_cpu_pageset *pcp;
1497 struct zone *z;
1498 bool has_pcps = false;
1499
1500 if (zone) {
1501 pcp = per_cpu_ptr(zone->pageset, cpu);
1502 if (pcp->pcp.count)
1503 has_pcps = true;
1504 } else {
1505 for_each_populated_zone(z) {
1506 pcp = per_cpu_ptr(z->pageset, cpu);
1507 if (pcp->pcp.count) {
1508 has_pcps = true;
1509 break;
1510 }
1511 }
1512 }
1513
1514 if (has_pcps)
1515 cpumask_set_cpu(cpu, &cpus_with_pcps);
1516 else
1517 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1518 }
1519 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1520 zone, 1);
1521 }
1522
1523 #ifdef CONFIG_HIBERNATION
1524
mark_free_pages(struct zone * zone)1525 void mark_free_pages(struct zone *zone)
1526 {
1527 unsigned long pfn, max_zone_pfn;
1528 unsigned long flags;
1529 unsigned int order, t;
1530 struct list_head *curr;
1531
1532 if (zone_is_empty(zone))
1533 return;
1534
1535 spin_lock_irqsave(&zone->lock, flags);
1536
1537 max_zone_pfn = zone_end_pfn(zone);
1538 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1539 if (pfn_valid(pfn)) {
1540 struct page *page = pfn_to_page(pfn);
1541
1542 if (!swsusp_page_is_forbidden(page))
1543 swsusp_unset_page_free(page);
1544 }
1545
1546 for_each_migratetype_order(order, t) {
1547 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1548 unsigned long i;
1549
1550 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1551 for (i = 0; i < (1UL << order); i++)
1552 swsusp_set_page_free(pfn_to_page(pfn + i));
1553 }
1554 }
1555 spin_unlock_irqrestore(&zone->lock, flags);
1556 }
1557 #endif /* CONFIG_PM */
1558
1559 /*
1560 * Free a 0-order page
1561 * cold == true ? free a cold page : free a hot page
1562 */
free_hot_cold_page(struct page * page,bool cold)1563 void free_hot_cold_page(struct page *page, bool cold)
1564 {
1565 struct zone *zone = page_zone(page);
1566 struct per_cpu_pages *pcp;
1567 unsigned long flags;
1568 unsigned long pfn = page_to_pfn(page);
1569 int migratetype;
1570
1571 if (!free_pages_prepare(page, 0))
1572 return;
1573
1574 migratetype = get_pfnblock_migratetype(page, pfn);
1575 set_freepage_migratetype(page, migratetype);
1576 local_irq_save(flags);
1577 __count_vm_event(PGFREE);
1578
1579 /*
1580 * We only track unmovable, reclaimable and movable on pcp lists.
1581 * Free ISOLATE pages back to the allocator because they are being
1582 * offlined but treat RESERVE as movable pages so we can get those
1583 * areas back if necessary. Otherwise, we may have to free
1584 * excessively into the page allocator
1585 */
1586 if (migratetype >= MIGRATE_PCPTYPES) {
1587 if (unlikely(is_migrate_isolate(migratetype))) {
1588 free_one_page(zone, page, pfn, 0, migratetype);
1589 goto out;
1590 }
1591 migratetype = MIGRATE_MOVABLE;
1592 }
1593
1594 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1595 if (!cold)
1596 list_add(&page->lru, &pcp->lists[migratetype]);
1597 else
1598 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1599 pcp->count++;
1600 if (pcp->count >= pcp->high) {
1601 unsigned long batch = READ_ONCE(pcp->batch);
1602 free_pcppages_bulk(zone, batch, pcp);
1603 pcp->count -= batch;
1604 }
1605
1606 out:
1607 local_irq_restore(flags);
1608 }
1609
1610 /*
1611 * Free a list of 0-order pages
1612 */
free_hot_cold_page_list(struct list_head * list,bool cold)1613 void free_hot_cold_page_list(struct list_head *list, bool cold)
1614 {
1615 struct page *page, *next;
1616
1617 list_for_each_entry_safe(page, next, list, lru) {
1618 trace_mm_page_free_batched(page, cold);
1619 free_hot_cold_page(page, cold);
1620 }
1621 }
1622
1623 /*
1624 * split_page takes a non-compound higher-order page, and splits it into
1625 * n (1<<order) sub-pages: page[0..n]
1626 * Each sub-page must be freed individually.
1627 *
1628 * Note: this is probably too low level an operation for use in drivers.
1629 * Please consult with lkml before using this in your driver.
1630 */
split_page(struct page * page,unsigned int order)1631 void split_page(struct page *page, unsigned int order)
1632 {
1633 int i;
1634
1635 VM_BUG_ON_PAGE(PageCompound(page), page);
1636 VM_BUG_ON_PAGE(!page_count(page), page);
1637
1638 #ifdef CONFIG_KMEMCHECK
1639 /*
1640 * Split shadow pages too, because free(page[0]) would
1641 * otherwise free the whole shadow.
1642 */
1643 if (kmemcheck_page_is_tracked(page))
1644 split_page(virt_to_page(page[0].shadow), order);
1645 #endif
1646
1647 set_page_owner(page, 0, 0);
1648 for (i = 1; i < (1 << order); i++) {
1649 set_page_refcounted(page + i);
1650 set_page_owner(page + i, 0, 0);
1651 }
1652 }
1653 EXPORT_SYMBOL_GPL(split_page);
1654
__isolate_free_page(struct page * page,unsigned int order)1655 int __isolate_free_page(struct page *page, unsigned int order)
1656 {
1657 unsigned long watermark;
1658 struct zone *zone;
1659 int mt;
1660
1661 BUG_ON(!PageBuddy(page));
1662
1663 zone = page_zone(page);
1664 mt = get_pageblock_migratetype(page);
1665
1666 if (!is_migrate_isolate(mt)) {
1667 /* Obey watermarks as if the page was being allocated */
1668 watermark = low_wmark_pages(zone) + (1 << order);
1669 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1670 return 0;
1671
1672 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1673 }
1674
1675 /* Remove page from free list */
1676 list_del(&page->lru);
1677 zone->free_area[order].nr_free--;
1678 rmv_page_order(page);
1679
1680 /* Set the pageblock if the isolated page is at least a pageblock */
1681 if (order >= pageblock_order - 1) {
1682 struct page *endpage = page + (1 << order) - 1;
1683 for (; page < endpage; page += pageblock_nr_pages) {
1684 int mt = get_pageblock_migratetype(page);
1685 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1686 set_pageblock_migratetype(page,
1687 MIGRATE_MOVABLE);
1688 }
1689 }
1690
1691 set_page_owner(page, order, 0);
1692 return 1UL << order;
1693 }
1694
1695 /*
1696 * Similar to split_page except the page is already free. As this is only
1697 * being used for migration, the migratetype of the block also changes.
1698 * As this is called with interrupts disabled, the caller is responsible
1699 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1700 * are enabled.
1701 *
1702 * Note: this is probably too low level an operation for use in drivers.
1703 * Please consult with lkml before using this in your driver.
1704 */
split_free_page(struct page * page)1705 int split_free_page(struct page *page)
1706 {
1707 unsigned int order;
1708 int nr_pages;
1709
1710 order = page_order(page);
1711
1712 nr_pages = __isolate_free_page(page, order);
1713 if (!nr_pages)
1714 return 0;
1715
1716 /* Split into individual pages */
1717 set_page_refcounted(page);
1718 split_page(page, order);
1719 return nr_pages;
1720 }
1721
1722 /*
1723 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1724 */
1725 static inline
buffered_rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,int migratetype)1726 struct page *buffered_rmqueue(struct zone *preferred_zone,
1727 struct zone *zone, unsigned int order,
1728 gfp_t gfp_flags, int migratetype)
1729 {
1730 unsigned long flags;
1731 struct page *page;
1732 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1733
1734 if (likely(order == 0)) {
1735 struct per_cpu_pages *pcp;
1736 struct list_head *list;
1737
1738 local_irq_save(flags);
1739 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1740 list = &pcp->lists[migratetype];
1741 if (list_empty(list)) {
1742 pcp->count += rmqueue_bulk(zone, 0,
1743 pcp->batch, list,
1744 migratetype, cold);
1745 if (unlikely(list_empty(list)))
1746 goto failed;
1747 }
1748
1749 if (cold)
1750 page = list_entry(list->prev, struct page, lru);
1751 else
1752 page = list_entry(list->next, struct page, lru);
1753
1754 list_del(&page->lru);
1755 pcp->count--;
1756 } else {
1757 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1758 /*
1759 * __GFP_NOFAIL is not to be used in new code.
1760 *
1761 * All __GFP_NOFAIL callers should be fixed so that they
1762 * properly detect and handle allocation failures.
1763 *
1764 * We most definitely don't want callers attempting to
1765 * allocate greater than order-1 page units with
1766 * __GFP_NOFAIL.
1767 */
1768 WARN_ON_ONCE(order > 1);
1769 }
1770 spin_lock_irqsave(&zone->lock, flags);
1771 page = __rmqueue(zone, order, migratetype);
1772 spin_unlock(&zone->lock);
1773 if (!page)
1774 goto failed;
1775 __mod_zone_freepage_state(zone, -(1 << order),
1776 get_freepage_migratetype(page));
1777 }
1778
1779 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1780 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1781 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1782 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1783
1784 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1785 zone_statistics(preferred_zone, zone, gfp_flags);
1786 local_irq_restore(flags);
1787
1788 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1789 return page;
1790
1791 failed:
1792 local_irq_restore(flags);
1793 return NULL;
1794 }
1795
1796 #ifdef CONFIG_FAIL_PAGE_ALLOC
1797
1798 static struct {
1799 struct fault_attr attr;
1800
1801 u32 ignore_gfp_highmem;
1802 u32 ignore_gfp_wait;
1803 u32 min_order;
1804 } fail_page_alloc = {
1805 .attr = FAULT_ATTR_INITIALIZER,
1806 .ignore_gfp_wait = 1,
1807 .ignore_gfp_highmem = 1,
1808 .min_order = 1,
1809 };
1810
setup_fail_page_alloc(char * str)1811 static int __init setup_fail_page_alloc(char *str)
1812 {
1813 return setup_fault_attr(&fail_page_alloc.attr, str);
1814 }
1815 __setup("fail_page_alloc=", setup_fail_page_alloc);
1816
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)1817 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1818 {
1819 if (order < fail_page_alloc.min_order)
1820 return false;
1821 if (gfp_mask & __GFP_NOFAIL)
1822 return false;
1823 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1824 return false;
1825 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1826 return false;
1827
1828 return should_fail(&fail_page_alloc.attr, 1 << order);
1829 }
1830
1831 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1832
fail_page_alloc_debugfs(void)1833 static int __init fail_page_alloc_debugfs(void)
1834 {
1835 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1836 struct dentry *dir;
1837
1838 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1839 &fail_page_alloc.attr);
1840 if (IS_ERR(dir))
1841 return PTR_ERR(dir);
1842
1843 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1844 &fail_page_alloc.ignore_gfp_wait))
1845 goto fail;
1846 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1847 &fail_page_alloc.ignore_gfp_highmem))
1848 goto fail;
1849 if (!debugfs_create_u32("min-order", mode, dir,
1850 &fail_page_alloc.min_order))
1851 goto fail;
1852
1853 return 0;
1854 fail:
1855 debugfs_remove_recursive(dir);
1856
1857 return -ENOMEM;
1858 }
1859
1860 late_initcall(fail_page_alloc_debugfs);
1861
1862 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1863
1864 #else /* CONFIG_FAIL_PAGE_ALLOC */
1865
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)1866 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1867 {
1868 return false;
1869 }
1870
1871 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1872
1873 /*
1874 * Return true if free pages are above 'mark'. This takes into account the order
1875 * of the allocation.
1876 */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,int alloc_flags,long free_pages)1877 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1878 unsigned long mark, int classzone_idx, int alloc_flags,
1879 long free_pages)
1880 {
1881 /* free_pages may go negative - that's OK */
1882 long min = mark;
1883 int o;
1884 long free_cma = 0;
1885
1886 free_pages -= (1 << order) - 1;
1887 if (alloc_flags & ALLOC_HIGH)
1888 min -= min / 2;
1889 if (alloc_flags & ALLOC_HARDER)
1890 min -= min / 4;
1891 #ifdef CONFIG_CMA
1892 /* If allocation can't use CMA areas don't use free CMA pages */
1893 if (!(alloc_flags & ALLOC_CMA))
1894 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1895 #endif
1896
1897 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1898 return false;
1899 for (o = 0; o < order; o++) {
1900 /* At the next order, this order's pages become unavailable */
1901 free_pages -= z->free_area[o].nr_free << o;
1902
1903 /* Require fewer higher order pages to be free */
1904 min >>= 1;
1905
1906 if (free_pages <= min)
1907 return false;
1908 }
1909 return true;
1910 }
1911
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,int alloc_flags)1912 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1913 int classzone_idx, int alloc_flags)
1914 {
1915 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1916 zone_page_state(z, NR_FREE_PAGES));
1917 }
1918
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,int alloc_flags)1919 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1920 unsigned long mark, int classzone_idx, int alloc_flags)
1921 {
1922 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1923
1924 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1925 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1926
1927 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1928 free_pages);
1929 }
1930
1931 #ifdef CONFIG_NUMA
1932 /*
1933 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1934 * skip over zones that are not allowed by the cpuset, or that have
1935 * been recently (in last second) found to be nearly full. See further
1936 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1937 * that have to skip over a lot of full or unallowed zones.
1938 *
1939 * If the zonelist cache is present in the passed zonelist, then
1940 * returns a pointer to the allowed node mask (either the current
1941 * tasks mems_allowed, or node_states[N_MEMORY].)
1942 *
1943 * If the zonelist cache is not available for this zonelist, does
1944 * nothing and returns NULL.
1945 *
1946 * If the fullzones BITMAP in the zonelist cache is stale (more than
1947 * a second since last zap'd) then we zap it out (clear its bits.)
1948 *
1949 * We hold off even calling zlc_setup, until after we've checked the
1950 * first zone in the zonelist, on the theory that most allocations will
1951 * be satisfied from that first zone, so best to examine that zone as
1952 * quickly as we can.
1953 */
zlc_setup(struct zonelist * zonelist,int alloc_flags)1954 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1955 {
1956 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1957 nodemask_t *allowednodes; /* zonelist_cache approximation */
1958
1959 zlc = zonelist->zlcache_ptr;
1960 if (!zlc)
1961 return NULL;
1962
1963 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1964 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1965 zlc->last_full_zap = jiffies;
1966 }
1967
1968 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1969 &cpuset_current_mems_allowed :
1970 &node_states[N_MEMORY];
1971 return allowednodes;
1972 }
1973
1974 /*
1975 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1976 * if it is worth looking at further for free memory:
1977 * 1) Check that the zone isn't thought to be full (doesn't have its
1978 * bit set in the zonelist_cache fullzones BITMAP).
1979 * 2) Check that the zones node (obtained from the zonelist_cache
1980 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1981 * Return true (non-zero) if zone is worth looking at further, or
1982 * else return false (zero) if it is not.
1983 *
1984 * This check -ignores- the distinction between various watermarks,
1985 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1986 * found to be full for any variation of these watermarks, it will
1987 * be considered full for up to one second by all requests, unless
1988 * we are so low on memory on all allowed nodes that we are forced
1989 * into the second scan of the zonelist.
1990 *
1991 * In the second scan we ignore this zonelist cache and exactly
1992 * apply the watermarks to all zones, even it is slower to do so.
1993 * We are low on memory in the second scan, and should leave no stone
1994 * unturned looking for a free page.
1995 */
zlc_zone_worth_trying(struct zonelist * zonelist,struct zoneref * z,nodemask_t * allowednodes)1996 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1997 nodemask_t *allowednodes)
1998 {
1999 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2000 int i; /* index of *z in zonelist zones */
2001 int n; /* node that zone *z is on */
2002
2003 zlc = zonelist->zlcache_ptr;
2004 if (!zlc)
2005 return 1;
2006
2007 i = z - zonelist->_zonerefs;
2008 n = zlc->z_to_n[i];
2009
2010 /* This zone is worth trying if it is allowed but not full */
2011 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
2012 }
2013
2014 /*
2015 * Given 'z' scanning a zonelist, set the corresponding bit in
2016 * zlc->fullzones, so that subsequent attempts to allocate a page
2017 * from that zone don't waste time re-examining it.
2018 */
zlc_mark_zone_full(struct zonelist * zonelist,struct zoneref * z)2019 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2020 {
2021 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2022 int i; /* index of *z in zonelist zones */
2023
2024 zlc = zonelist->zlcache_ptr;
2025 if (!zlc)
2026 return;
2027
2028 i = z - zonelist->_zonerefs;
2029
2030 set_bit(i, zlc->fullzones);
2031 }
2032
2033 /*
2034 * clear all zones full, called after direct reclaim makes progress so that
2035 * a zone that was recently full is not skipped over for up to a second
2036 */
zlc_clear_zones_full(struct zonelist * zonelist)2037 static void zlc_clear_zones_full(struct zonelist *zonelist)
2038 {
2039 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2040
2041 zlc = zonelist->zlcache_ptr;
2042 if (!zlc)
2043 return;
2044
2045 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2046 }
2047
zone_local(struct zone * local_zone,struct zone * zone)2048 static bool zone_local(struct zone *local_zone, struct zone *zone)
2049 {
2050 return local_zone->node == zone->node;
2051 }
2052
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)2053 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2054 {
2055 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2056 RECLAIM_DISTANCE;
2057 }
2058
2059 #else /* CONFIG_NUMA */
2060
zlc_setup(struct zonelist * zonelist,int alloc_flags)2061 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2062 {
2063 return NULL;
2064 }
2065
zlc_zone_worth_trying(struct zonelist * zonelist,struct zoneref * z,nodemask_t * allowednodes)2066 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2067 nodemask_t *allowednodes)
2068 {
2069 return 1;
2070 }
2071
zlc_mark_zone_full(struct zonelist * zonelist,struct zoneref * z)2072 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2073 {
2074 }
2075
zlc_clear_zones_full(struct zonelist * zonelist)2076 static void zlc_clear_zones_full(struct zonelist *zonelist)
2077 {
2078 }
2079
zone_local(struct zone * local_zone,struct zone * zone)2080 static bool zone_local(struct zone *local_zone, struct zone *zone)
2081 {
2082 return true;
2083 }
2084
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)2085 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2086 {
2087 return true;
2088 }
2089
2090 #endif /* CONFIG_NUMA */
2091
reset_alloc_batches(struct zone * preferred_zone)2092 static void reset_alloc_batches(struct zone *preferred_zone)
2093 {
2094 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2095
2096 do {
2097 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2098 high_wmark_pages(zone) - low_wmark_pages(zone) -
2099 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2100 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2101 } while (zone++ != preferred_zone);
2102 }
2103
2104 /*
2105 * get_page_from_freelist goes through the zonelist trying to allocate
2106 * a page.
2107 */
2108 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)2109 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2110 const struct alloc_context *ac)
2111 {
2112 struct zonelist *zonelist = ac->zonelist;
2113 struct zoneref *z;
2114 struct page *page = NULL;
2115 struct zone *zone;
2116 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2117 int zlc_active = 0; /* set if using zonelist_cache */
2118 int did_zlc_setup = 0; /* just call zlc_setup() one time */
2119 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2120 (gfp_mask & __GFP_WRITE);
2121 int nr_fair_skipped = 0;
2122 bool zonelist_rescan;
2123
2124 zonelist_scan:
2125 zonelist_rescan = false;
2126
2127 /*
2128 * Scan zonelist, looking for a zone with enough free.
2129 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2130 */
2131 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2132 ac->nodemask) {
2133 unsigned long mark;
2134
2135 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2136 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2137 continue;
2138 if (cpusets_enabled() &&
2139 (alloc_flags & ALLOC_CPUSET) &&
2140 !cpuset_zone_allowed(zone, gfp_mask))
2141 continue;
2142 /*
2143 * Distribute pages in proportion to the individual
2144 * zone size to ensure fair page aging. The zone a
2145 * page was allocated in should have no effect on the
2146 * time the page has in memory before being reclaimed.
2147 */
2148 if (alloc_flags & ALLOC_FAIR) {
2149 if (!zone_local(ac->preferred_zone, zone))
2150 break;
2151 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2152 nr_fair_skipped++;
2153 continue;
2154 }
2155 }
2156 /*
2157 * When allocating a page cache page for writing, we
2158 * want to get it from a zone that is within its dirty
2159 * limit, such that no single zone holds more than its
2160 * proportional share of globally allowed dirty pages.
2161 * The dirty limits take into account the zone's
2162 * lowmem reserves and high watermark so that kswapd
2163 * should be able to balance it without having to
2164 * write pages from its LRU list.
2165 *
2166 * This may look like it could increase pressure on
2167 * lower zones by failing allocations in higher zones
2168 * before they are full. But the pages that do spill
2169 * over are limited as the lower zones are protected
2170 * by this very same mechanism. It should not become
2171 * a practical burden to them.
2172 *
2173 * XXX: For now, allow allocations to potentially
2174 * exceed the per-zone dirty limit in the slowpath
2175 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2176 * which is important when on a NUMA setup the allowed
2177 * zones are together not big enough to reach the
2178 * global limit. The proper fix for these situations
2179 * will require awareness of zones in the
2180 * dirty-throttling and the flusher threads.
2181 */
2182 if (consider_zone_dirty && !zone_dirty_ok(zone))
2183 continue;
2184
2185 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2186 if (!zone_watermark_ok(zone, order, mark,
2187 ac->classzone_idx, alloc_flags)) {
2188 int ret;
2189
2190 /* Checked here to keep the fast path fast */
2191 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2192 if (alloc_flags & ALLOC_NO_WATERMARKS)
2193 goto try_this_zone;
2194
2195 if (IS_ENABLED(CONFIG_NUMA) &&
2196 !did_zlc_setup && nr_online_nodes > 1) {
2197 /*
2198 * we do zlc_setup if there are multiple nodes
2199 * and before considering the first zone allowed
2200 * by the cpuset.
2201 */
2202 allowednodes = zlc_setup(zonelist, alloc_flags);
2203 zlc_active = 1;
2204 did_zlc_setup = 1;
2205 }
2206
2207 if (zone_reclaim_mode == 0 ||
2208 !zone_allows_reclaim(ac->preferred_zone, zone))
2209 goto this_zone_full;
2210
2211 /*
2212 * As we may have just activated ZLC, check if the first
2213 * eligible zone has failed zone_reclaim recently.
2214 */
2215 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2216 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2217 continue;
2218
2219 ret = zone_reclaim(zone, gfp_mask, order);
2220 switch (ret) {
2221 case ZONE_RECLAIM_NOSCAN:
2222 /* did not scan */
2223 continue;
2224 case ZONE_RECLAIM_FULL:
2225 /* scanned but unreclaimable */
2226 continue;
2227 default:
2228 /* did we reclaim enough */
2229 if (zone_watermark_ok(zone, order, mark,
2230 ac->classzone_idx, alloc_flags))
2231 goto try_this_zone;
2232
2233 /*
2234 * Failed to reclaim enough to meet watermark.
2235 * Only mark the zone full if checking the min
2236 * watermark or if we failed to reclaim just
2237 * 1<<order pages or else the page allocator
2238 * fastpath will prematurely mark zones full
2239 * when the watermark is between the low and
2240 * min watermarks.
2241 */
2242 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2243 ret == ZONE_RECLAIM_SOME)
2244 goto this_zone_full;
2245
2246 continue;
2247 }
2248 }
2249
2250 try_this_zone:
2251 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2252 gfp_mask, ac->migratetype);
2253 if (page) {
2254 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2255 goto try_this_zone;
2256 return page;
2257 }
2258 this_zone_full:
2259 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2260 zlc_mark_zone_full(zonelist, z);
2261 }
2262
2263 /*
2264 * The first pass makes sure allocations are spread fairly within the
2265 * local node. However, the local node might have free pages left
2266 * after the fairness batches are exhausted, and remote zones haven't
2267 * even been considered yet. Try once more without fairness, and
2268 * include remote zones now, before entering the slowpath and waking
2269 * kswapd: prefer spilling to a remote zone over swapping locally.
2270 */
2271 if (alloc_flags & ALLOC_FAIR) {
2272 alloc_flags &= ~ALLOC_FAIR;
2273 if (nr_fair_skipped) {
2274 zonelist_rescan = true;
2275 reset_alloc_batches(ac->preferred_zone);
2276 }
2277 if (nr_online_nodes > 1)
2278 zonelist_rescan = true;
2279 }
2280
2281 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2282 /* Disable zlc cache for second zonelist scan */
2283 zlc_active = 0;
2284 zonelist_rescan = true;
2285 }
2286
2287 if (zonelist_rescan)
2288 goto zonelist_scan;
2289
2290 return NULL;
2291 }
2292
2293 /*
2294 * Large machines with many possible nodes should not always dump per-node
2295 * meminfo in irq context.
2296 */
should_suppress_show_mem(void)2297 static inline bool should_suppress_show_mem(void)
2298 {
2299 bool ret = false;
2300
2301 #if NODES_SHIFT > 8
2302 ret = in_interrupt();
2303 #endif
2304 return ret;
2305 }
2306
2307 static DEFINE_RATELIMIT_STATE(nopage_rs,
2308 DEFAULT_RATELIMIT_INTERVAL,
2309 DEFAULT_RATELIMIT_BURST);
2310
warn_alloc_failed(gfp_t gfp_mask,unsigned int order,const char * fmt,...)2311 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2312 {
2313 unsigned int filter = SHOW_MEM_FILTER_NODES;
2314
2315 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2316 debug_guardpage_minorder() > 0)
2317 return;
2318
2319 /*
2320 * This documents exceptions given to allocations in certain
2321 * contexts that are allowed to allocate outside current's set
2322 * of allowed nodes.
2323 */
2324 if (!(gfp_mask & __GFP_NOMEMALLOC))
2325 if (test_thread_flag(TIF_MEMDIE) ||
2326 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2327 filter &= ~SHOW_MEM_FILTER_NODES;
2328 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2329 filter &= ~SHOW_MEM_FILTER_NODES;
2330
2331 if (fmt) {
2332 struct va_format vaf;
2333 va_list args;
2334
2335 va_start(args, fmt);
2336
2337 vaf.fmt = fmt;
2338 vaf.va = &args;
2339
2340 pr_warn("%pV", &vaf);
2341
2342 va_end(args);
2343 }
2344
2345 pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
2346 current->comm, order, gfp_mask);
2347
2348 dump_stack();
2349 if (!should_suppress_show_mem())
2350 show_mem(filter);
2351 }
2352
2353 static inline int
should_alloc_retry(gfp_t gfp_mask,unsigned int order,unsigned long did_some_progress,unsigned long pages_reclaimed)2354 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2355 unsigned long did_some_progress,
2356 unsigned long pages_reclaimed)
2357 {
2358 /* Do not loop if specifically requested */
2359 if (gfp_mask & __GFP_NORETRY)
2360 return 0;
2361
2362 /* Always retry if specifically requested */
2363 if (gfp_mask & __GFP_NOFAIL)
2364 return 1;
2365
2366 /*
2367 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2368 * making forward progress without invoking OOM. Suspend also disables
2369 * storage devices so kswapd will not help. Bail if we are suspending.
2370 */
2371 if (!did_some_progress && pm_suspended_storage())
2372 return 0;
2373
2374 /*
2375 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2376 * means __GFP_NOFAIL, but that may not be true in other
2377 * implementations.
2378 */
2379 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2380 return 1;
2381
2382 /*
2383 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2384 * specified, then we retry until we no longer reclaim any pages
2385 * (above), or we've reclaimed an order of pages at least as
2386 * large as the allocation's order. In both cases, if the
2387 * allocation still fails, we stop retrying.
2388 */
2389 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2390 return 1;
2391
2392 return 0;
2393 }
2394
2395 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)2396 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2397 const struct alloc_context *ac, unsigned long *did_some_progress)
2398 {
2399 struct page *page;
2400
2401 *did_some_progress = 0;
2402
2403 /*
2404 * Acquire the per-zone oom lock for each zone. If that
2405 * fails, somebody else is making progress for us.
2406 */
2407 if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) {
2408 *did_some_progress = 1;
2409 schedule_timeout_uninterruptible(1);
2410 return NULL;
2411 }
2412
2413 /*
2414 * Go through the zonelist yet one more time, keep very high watermark
2415 * here, this is only to catch a parallel oom killing, we must fail if
2416 * we're still under heavy pressure.
2417 */
2418 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2419 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2420 if (page)
2421 goto out;
2422
2423 if (!(gfp_mask & __GFP_NOFAIL)) {
2424 /* Coredumps can quickly deplete all memory reserves */
2425 if (current->flags & PF_DUMPCORE)
2426 goto out;
2427 /* The OOM killer will not help higher order allocs */
2428 if (order > PAGE_ALLOC_COSTLY_ORDER)
2429 goto out;
2430 /* The OOM killer does not needlessly kill tasks for lowmem */
2431 if (ac->high_zoneidx < ZONE_NORMAL)
2432 goto out;
2433 /* The OOM killer does not compensate for light reclaim */
2434 if (!(gfp_mask & __GFP_FS)) {
2435 /*
2436 * XXX: Page reclaim didn't yield anything,
2437 * and the OOM killer can't be invoked, but
2438 * keep looping as per should_alloc_retry().
2439 */
2440 *did_some_progress = 1;
2441 goto out;
2442 }
2443 /* The OOM killer may not free memory on a specific node */
2444 if (gfp_mask & __GFP_THISNODE)
2445 goto out;
2446 }
2447 /* Exhausted what can be done so it's blamo time */
2448 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2449 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2450 *did_some_progress = 1;
2451 out:
2452 oom_zonelist_unlock(ac->zonelist, gfp_mask);
2453 return page;
2454 }
2455
2456 #ifdef CONFIG_COMPACTION
2457 /* Try memory compaction for high-order allocations before reclaim */
2458 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac,enum migrate_mode mode,int * contended_compaction,bool * deferred_compaction)2459 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2460 int alloc_flags, const struct alloc_context *ac,
2461 enum migrate_mode mode, int *contended_compaction,
2462 bool *deferred_compaction)
2463 {
2464 unsigned long compact_result;
2465 struct page *page;
2466
2467 if (!order)
2468 return NULL;
2469
2470 current->flags |= PF_MEMALLOC;
2471 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2472 mode, contended_compaction);
2473 current->flags &= ~PF_MEMALLOC;
2474
2475 switch (compact_result) {
2476 case COMPACT_DEFERRED:
2477 *deferred_compaction = true;
2478 /* fall-through */
2479 case COMPACT_SKIPPED:
2480 return NULL;
2481 default:
2482 break;
2483 }
2484
2485 /*
2486 * At least in one zone compaction wasn't deferred or skipped, so let's
2487 * count a compaction stall
2488 */
2489 count_vm_event(COMPACTSTALL);
2490
2491 page = get_page_from_freelist(gfp_mask, order,
2492 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2493
2494 if (page) {
2495 struct zone *zone = page_zone(page);
2496
2497 zone->compact_blockskip_flush = false;
2498 compaction_defer_reset(zone, order, true);
2499 count_vm_event(COMPACTSUCCESS);
2500 return page;
2501 }
2502
2503 /*
2504 * It's bad if compaction run occurs and fails. The most likely reason
2505 * is that pages exist, but not enough to satisfy watermarks.
2506 */
2507 count_vm_event(COMPACTFAIL);
2508
2509 cond_resched();
2510
2511 return NULL;
2512 }
2513 #else
2514 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac,enum migrate_mode mode,int * contended_compaction,bool * deferred_compaction)2515 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2516 int alloc_flags, const struct alloc_context *ac,
2517 enum migrate_mode mode, int *contended_compaction,
2518 bool *deferred_compaction)
2519 {
2520 return NULL;
2521 }
2522 #endif /* CONFIG_COMPACTION */
2523
2524 /* Perform direct synchronous page reclaim */
2525 static int
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)2526 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2527 const struct alloc_context *ac)
2528 {
2529 struct reclaim_state reclaim_state;
2530 int progress;
2531
2532 cond_resched();
2533
2534 /* We now go into synchronous reclaim */
2535 cpuset_memory_pressure_bump();
2536 current->flags |= PF_MEMALLOC;
2537 lockdep_set_current_reclaim_state(gfp_mask);
2538 reclaim_state.reclaimed_slab = 0;
2539 current->reclaim_state = &reclaim_state;
2540
2541 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2542 ac->nodemask);
2543
2544 current->reclaim_state = NULL;
2545 lockdep_clear_current_reclaim_state();
2546 current->flags &= ~PF_MEMALLOC;
2547
2548 cond_resched();
2549
2550 return progress;
2551 }
2552
2553 /* The really slow allocator path where we enter direct reclaim */
2554 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)2555 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2556 int alloc_flags, const struct alloc_context *ac,
2557 unsigned long *did_some_progress)
2558 {
2559 struct page *page = NULL;
2560 bool drained = false;
2561
2562 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2563 if (unlikely(!(*did_some_progress)))
2564 return NULL;
2565
2566 /* After successful reclaim, reconsider all zones for allocation */
2567 if (IS_ENABLED(CONFIG_NUMA))
2568 zlc_clear_zones_full(ac->zonelist);
2569
2570 retry:
2571 page = get_page_from_freelist(gfp_mask, order,
2572 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2573
2574 /*
2575 * If an allocation failed after direct reclaim, it could be because
2576 * pages are pinned on the per-cpu lists. Drain them and try again
2577 */
2578 if (!page && !drained) {
2579 drain_all_pages(NULL);
2580 drained = true;
2581 goto retry;
2582 }
2583
2584 return page;
2585 }
2586
2587 /*
2588 * This is called in the allocator slow-path if the allocation request is of
2589 * sufficient urgency to ignore watermarks and take other desperate measures
2590 */
2591 static inline struct page *
__alloc_pages_high_priority(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)2592 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2593 const struct alloc_context *ac)
2594 {
2595 struct page *page;
2596
2597 do {
2598 page = get_page_from_freelist(gfp_mask, order,
2599 ALLOC_NO_WATERMARKS, ac);
2600
2601 if (!page && gfp_mask & __GFP_NOFAIL)
2602 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2603 HZ/50);
2604 } while (!page && (gfp_mask & __GFP_NOFAIL));
2605
2606 return page;
2607 }
2608
wake_all_kswapds(unsigned int order,const struct alloc_context * ac)2609 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2610 {
2611 struct zoneref *z;
2612 struct zone *zone;
2613
2614 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2615 ac->high_zoneidx, ac->nodemask)
2616 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2617 }
2618
2619 static inline int
gfp_to_alloc_flags(gfp_t gfp_mask)2620 gfp_to_alloc_flags(gfp_t gfp_mask)
2621 {
2622 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2623 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2624
2625 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2626 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2627
2628 /*
2629 * The caller may dip into page reserves a bit more if the caller
2630 * cannot run direct reclaim, or if the caller has realtime scheduling
2631 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2632 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2633 */
2634 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2635
2636 if (atomic) {
2637 /*
2638 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2639 * if it can't schedule.
2640 */
2641 if (!(gfp_mask & __GFP_NOMEMALLOC))
2642 alloc_flags |= ALLOC_HARDER;
2643 /*
2644 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2645 * comment for __cpuset_node_allowed().
2646 */
2647 alloc_flags &= ~ALLOC_CPUSET;
2648 } else if (unlikely(rt_task(current)) && !in_interrupt())
2649 alloc_flags |= ALLOC_HARDER;
2650
2651 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2652 if (gfp_mask & __GFP_MEMALLOC)
2653 alloc_flags |= ALLOC_NO_WATERMARKS;
2654 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2655 alloc_flags |= ALLOC_NO_WATERMARKS;
2656 else if (!in_interrupt() &&
2657 ((current->flags & PF_MEMALLOC) ||
2658 unlikely(test_thread_flag(TIF_MEMDIE))))
2659 alloc_flags |= ALLOC_NO_WATERMARKS;
2660 }
2661 #ifdef CONFIG_CMA
2662 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2663 alloc_flags |= ALLOC_CMA;
2664 #endif
2665 return alloc_flags;
2666 }
2667
gfp_pfmemalloc_allowed(gfp_t gfp_mask)2668 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2669 {
2670 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2671 }
2672
2673 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)2674 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2675 struct alloc_context *ac)
2676 {
2677 const gfp_t wait = gfp_mask & __GFP_WAIT;
2678 struct page *page = NULL;
2679 int alloc_flags;
2680 unsigned long pages_reclaimed = 0;
2681 unsigned long did_some_progress;
2682 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2683 bool deferred_compaction = false;
2684 int contended_compaction = COMPACT_CONTENDED_NONE;
2685
2686 /*
2687 * In the slowpath, we sanity check order to avoid ever trying to
2688 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2689 * be using allocators in order of preference for an area that is
2690 * too large.
2691 */
2692 if (order >= MAX_ORDER) {
2693 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2694 return NULL;
2695 }
2696
2697 /*
2698 * If this allocation cannot block and it is for a specific node, then
2699 * fail early. There's no need to wakeup kswapd or retry for a
2700 * speculative node-specific allocation.
2701 */
2702 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
2703 goto nopage;
2704
2705 retry:
2706 if (!(gfp_mask & __GFP_NO_KSWAPD))
2707 wake_all_kswapds(order, ac);
2708
2709 /*
2710 * OK, we're below the kswapd watermark and have kicked background
2711 * reclaim. Now things get more complex, so set up alloc_flags according
2712 * to how we want to proceed.
2713 */
2714 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2715
2716 /*
2717 * Find the true preferred zone if the allocation is unconstrained by
2718 * cpusets.
2719 */
2720 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
2721 struct zoneref *preferred_zoneref;
2722 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2723 ac->high_zoneidx, NULL, &ac->preferred_zone);
2724 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
2725 }
2726
2727 /* This is the last chance, in general, before the goto nopage. */
2728 page = get_page_from_freelist(gfp_mask, order,
2729 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2730 if (page)
2731 goto got_pg;
2732
2733 /* Allocate without watermarks if the context allows */
2734 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2735 /*
2736 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2737 * the allocation is high priority and these type of
2738 * allocations are system rather than user orientated
2739 */
2740 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2741
2742 page = __alloc_pages_high_priority(gfp_mask, order, ac);
2743
2744 if (page) {
2745 goto got_pg;
2746 }
2747 }
2748
2749 /* Atomic allocations - we can't balance anything */
2750 if (!wait) {
2751 /*
2752 * All existing users of the deprecated __GFP_NOFAIL are
2753 * blockable, so warn of any new users that actually allow this
2754 * type of allocation to fail.
2755 */
2756 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2757 goto nopage;
2758 }
2759
2760 /* Avoid recursion of direct reclaim */
2761 if (current->flags & PF_MEMALLOC)
2762 goto nopage;
2763
2764 /* Avoid allocations with no watermarks from looping endlessly */
2765 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2766 goto nopage;
2767
2768 /*
2769 * Try direct compaction. The first pass is asynchronous. Subsequent
2770 * attempts after direct reclaim are synchronous
2771 */
2772 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2773 migration_mode,
2774 &contended_compaction,
2775 &deferred_compaction);
2776 if (page)
2777 goto got_pg;
2778
2779 /* Checks for THP-specific high-order allocations */
2780 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2781 /*
2782 * If compaction is deferred for high-order allocations, it is
2783 * because sync compaction recently failed. If this is the case
2784 * and the caller requested a THP allocation, we do not want
2785 * to heavily disrupt the system, so we fail the allocation
2786 * instead of entering direct reclaim.
2787 */
2788 if (deferred_compaction)
2789 goto nopage;
2790
2791 /*
2792 * In all zones where compaction was attempted (and not
2793 * deferred or skipped), lock contention has been detected.
2794 * For THP allocation we do not want to disrupt the others
2795 * so we fallback to base pages instead.
2796 */
2797 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2798 goto nopage;
2799
2800 /*
2801 * If compaction was aborted due to need_resched(), we do not
2802 * want to further increase allocation latency, unless it is
2803 * khugepaged trying to collapse.
2804 */
2805 if (contended_compaction == COMPACT_CONTENDED_SCHED
2806 && !(current->flags & PF_KTHREAD))
2807 goto nopage;
2808 }
2809
2810 /*
2811 * It can become very expensive to allocate transparent hugepages at
2812 * fault, so use asynchronous memory compaction for THP unless it is
2813 * khugepaged trying to collapse.
2814 */
2815 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2816 (current->flags & PF_KTHREAD))
2817 migration_mode = MIGRATE_SYNC_LIGHT;
2818
2819 /* Try direct reclaim and then allocating */
2820 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2821 &did_some_progress);
2822 if (page)
2823 goto got_pg;
2824
2825 /* Check if we should retry the allocation */
2826 pages_reclaimed += did_some_progress;
2827 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2828 pages_reclaimed)) {
2829 /*
2830 * If we fail to make progress by freeing individual
2831 * pages, but the allocation wants us to keep going,
2832 * start OOM killing tasks.
2833 */
2834 if (!did_some_progress) {
2835 page = __alloc_pages_may_oom(gfp_mask, order, ac,
2836 &did_some_progress);
2837 if (page)
2838 goto got_pg;
2839 if (!did_some_progress)
2840 goto nopage;
2841 }
2842 /* Wait for some write requests to complete then retry */
2843 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
2844 goto retry;
2845 } else {
2846 /*
2847 * High-order allocations do not necessarily loop after
2848 * direct reclaim and reclaim/compaction depends on compaction
2849 * being called after reclaim so call directly if necessary
2850 */
2851 page = __alloc_pages_direct_compact(gfp_mask, order,
2852 alloc_flags, ac, migration_mode,
2853 &contended_compaction,
2854 &deferred_compaction);
2855 if (page)
2856 goto got_pg;
2857 }
2858
2859 nopage:
2860 warn_alloc_failed(gfp_mask, order, NULL);
2861 got_pg:
2862 return page;
2863 }
2864
2865 /*
2866 * This is the 'heart' of the zoned buddy allocator.
2867 */
2868 struct page *
__alloc_pages_nodemask(gfp_t gfp_mask,unsigned int order,struct zonelist * zonelist,nodemask_t * nodemask)2869 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2870 struct zonelist *zonelist, nodemask_t *nodemask)
2871 {
2872 struct zoneref *preferred_zoneref;
2873 struct page *page = NULL;
2874 unsigned int cpuset_mems_cookie;
2875 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2876 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
2877 struct alloc_context ac = {
2878 .high_zoneidx = gfp_zone(gfp_mask),
2879 .nodemask = nodemask,
2880 .migratetype = gfpflags_to_migratetype(gfp_mask),
2881 };
2882
2883 gfp_mask &= gfp_allowed_mask;
2884
2885 lockdep_trace_alloc(gfp_mask);
2886
2887 might_sleep_if(gfp_mask & __GFP_WAIT);
2888
2889 if (should_fail_alloc_page(gfp_mask, order))
2890 return NULL;
2891
2892 /*
2893 * Check the zones suitable for the gfp_mask contain at least one
2894 * valid zone. It's possible to have an empty zonelist as a result
2895 * of __GFP_THISNODE and a memoryless node
2896 */
2897 if (unlikely(!zonelist->_zonerefs->zone))
2898 return NULL;
2899
2900 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
2901 alloc_flags |= ALLOC_CMA;
2902
2903 retry_cpuset:
2904 cpuset_mems_cookie = read_mems_allowed_begin();
2905
2906 /* We set it here, as __alloc_pages_slowpath might have changed it */
2907 ac.zonelist = zonelist;
2908 /* The preferred zone is used for statistics later */
2909 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2910 ac.nodemask ? : &cpuset_current_mems_allowed,
2911 &ac.preferred_zone);
2912 if (!ac.preferred_zone)
2913 goto out;
2914 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
2915
2916 /* First allocation attempt */
2917 alloc_mask = gfp_mask|__GFP_HARDWALL;
2918 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
2919 if (unlikely(!page)) {
2920 /*
2921 * Runtime PM, block IO and its error handling path
2922 * can deadlock because I/O on the device might not
2923 * complete.
2924 */
2925 alloc_mask = memalloc_noio_flags(gfp_mask);
2926
2927 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
2928 }
2929
2930 if (kmemcheck_enabled && page)
2931 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2932
2933 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
2934
2935 out:
2936 /*
2937 * When updating a task's mems_allowed, it is possible to race with
2938 * parallel threads in such a way that an allocation can fail while
2939 * the mask is being updated. If a page allocation is about to fail,
2940 * check if the cpuset changed during allocation and if so, retry.
2941 */
2942 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2943 goto retry_cpuset;
2944
2945 return page;
2946 }
2947 EXPORT_SYMBOL(__alloc_pages_nodemask);
2948
2949 /*
2950 * Common helper functions.
2951 */
__get_free_pages(gfp_t gfp_mask,unsigned int order)2952 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2953 {
2954 struct page *page;
2955
2956 /*
2957 * __get_free_pages() returns a 32-bit address, which cannot represent
2958 * a highmem page
2959 */
2960 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2961
2962 page = alloc_pages(gfp_mask, order);
2963 if (!page)
2964 return 0;
2965 return (unsigned long) page_address(page);
2966 }
2967 EXPORT_SYMBOL(__get_free_pages);
2968
get_zeroed_page(gfp_t gfp_mask)2969 unsigned long get_zeroed_page(gfp_t gfp_mask)
2970 {
2971 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2972 }
2973 EXPORT_SYMBOL(get_zeroed_page);
2974
__free_pages(struct page * page,unsigned int order)2975 void __free_pages(struct page *page, unsigned int order)
2976 {
2977 if (put_page_testzero(page)) {
2978 if (order == 0)
2979 free_hot_cold_page(page, false);
2980 else
2981 __free_pages_ok(page, order);
2982 }
2983 }
2984
2985 EXPORT_SYMBOL(__free_pages);
2986
free_pages(unsigned long addr,unsigned int order)2987 void free_pages(unsigned long addr, unsigned int order)
2988 {
2989 if (addr != 0) {
2990 VM_BUG_ON(!virt_addr_valid((void *)addr));
2991 __free_pages(virt_to_page((void *)addr), order);
2992 }
2993 }
2994
2995 EXPORT_SYMBOL(free_pages);
2996
2997 /*
2998 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2999 * of the current memory cgroup.
3000 *
3001 * It should be used when the caller would like to use kmalloc, but since the
3002 * allocation is large, it has to fall back to the page allocator.
3003 */
alloc_kmem_pages(gfp_t gfp_mask,unsigned int order)3004 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3005 {
3006 struct page *page;
3007 struct mem_cgroup *memcg = NULL;
3008
3009 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3010 return NULL;
3011 page = alloc_pages(gfp_mask, order);
3012 memcg_kmem_commit_charge(page, memcg, order);
3013 return page;
3014 }
3015
alloc_kmem_pages_node(int nid,gfp_t gfp_mask,unsigned int order)3016 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3017 {
3018 struct page *page;
3019 struct mem_cgroup *memcg = NULL;
3020
3021 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3022 return NULL;
3023 page = alloc_pages_node(nid, gfp_mask, order);
3024 memcg_kmem_commit_charge(page, memcg, order);
3025 return page;
3026 }
3027
3028 /*
3029 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3030 * alloc_kmem_pages.
3031 */
__free_kmem_pages(struct page * page,unsigned int order)3032 void __free_kmem_pages(struct page *page, unsigned int order)
3033 {
3034 memcg_kmem_uncharge_pages(page, order);
3035 __free_pages(page, order);
3036 }
3037
free_kmem_pages(unsigned long addr,unsigned int order)3038 void free_kmem_pages(unsigned long addr, unsigned int order)
3039 {
3040 if (addr != 0) {
3041 VM_BUG_ON(!virt_addr_valid((void *)addr));
3042 __free_kmem_pages(virt_to_page((void *)addr), order);
3043 }
3044 }
3045
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)3046 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3047 size_t size)
3048 {
3049 if (addr) {
3050 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3051 unsigned long used = addr + PAGE_ALIGN(size);
3052
3053 split_page(virt_to_page((void *)addr), order);
3054 while (used < alloc_end) {
3055 free_page(used);
3056 used += PAGE_SIZE;
3057 }
3058 }
3059 return (void *)addr;
3060 }
3061
3062 /**
3063 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3064 * @size: the number of bytes to allocate
3065 * @gfp_mask: GFP flags for the allocation
3066 *
3067 * This function is similar to alloc_pages(), except that it allocates the
3068 * minimum number of pages to satisfy the request. alloc_pages() can only
3069 * allocate memory in power-of-two pages.
3070 *
3071 * This function is also limited by MAX_ORDER.
3072 *
3073 * Memory allocated by this function must be released by free_pages_exact().
3074 */
alloc_pages_exact(size_t size,gfp_t gfp_mask)3075 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3076 {
3077 unsigned int order = get_order(size);
3078 unsigned long addr;
3079
3080 addr = __get_free_pages(gfp_mask, order);
3081 return make_alloc_exact(addr, order, size);
3082 }
3083 EXPORT_SYMBOL(alloc_pages_exact);
3084
3085 /**
3086 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3087 * pages on a node.
3088 * @nid: the preferred node ID where memory should be allocated
3089 * @size: the number of bytes to allocate
3090 * @gfp_mask: GFP flags for the allocation
3091 *
3092 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3093 * back.
3094 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3095 * but is not exact.
3096 */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)3097 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3098 {
3099 unsigned int order = get_order(size);
3100 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3101 if (!p)
3102 return NULL;
3103 return make_alloc_exact((unsigned long)page_address(p), order, size);
3104 }
3105
3106 /**
3107 * free_pages_exact - release memory allocated via alloc_pages_exact()
3108 * @virt: the value returned by alloc_pages_exact.
3109 * @size: size of allocation, same value as passed to alloc_pages_exact().
3110 *
3111 * Release the memory allocated by a previous call to alloc_pages_exact.
3112 */
free_pages_exact(void * virt,size_t size)3113 void free_pages_exact(void *virt, size_t size)
3114 {
3115 unsigned long addr = (unsigned long)virt;
3116 unsigned long end = addr + PAGE_ALIGN(size);
3117
3118 while (addr < end) {
3119 free_page(addr);
3120 addr += PAGE_SIZE;
3121 }
3122 }
3123 EXPORT_SYMBOL(free_pages_exact);
3124
3125 /**
3126 * nr_free_zone_pages - count number of pages beyond high watermark
3127 * @offset: The zone index of the highest zone
3128 *
3129 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3130 * high watermark within all zones at or below a given zone index. For each
3131 * zone, the number of pages is calculated as:
3132 * managed_pages - high_pages
3133 */
nr_free_zone_pages(int offset)3134 static unsigned long nr_free_zone_pages(int offset)
3135 {
3136 struct zoneref *z;
3137 struct zone *zone;
3138
3139 /* Just pick one node, since fallback list is circular */
3140 unsigned long sum = 0;
3141
3142 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3143
3144 for_each_zone_zonelist(zone, z, zonelist, offset) {
3145 unsigned long size = zone->managed_pages;
3146 unsigned long high = high_wmark_pages(zone);
3147 if (size > high)
3148 sum += size - high;
3149 }
3150
3151 return sum;
3152 }
3153
3154 /**
3155 * nr_free_buffer_pages - count number of pages beyond high watermark
3156 *
3157 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3158 * watermark within ZONE_DMA and ZONE_NORMAL.
3159 */
nr_free_buffer_pages(void)3160 unsigned long nr_free_buffer_pages(void)
3161 {
3162 return nr_free_zone_pages(gfp_zone(GFP_USER));
3163 }
3164 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3165
3166 /**
3167 * nr_free_pagecache_pages - count number of pages beyond high watermark
3168 *
3169 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3170 * high watermark within all zones.
3171 */
nr_free_pagecache_pages(void)3172 unsigned long nr_free_pagecache_pages(void)
3173 {
3174 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3175 }
3176
show_node(struct zone * zone)3177 static inline void show_node(struct zone *zone)
3178 {
3179 if (IS_ENABLED(CONFIG_NUMA))
3180 printk("Node %d ", zone_to_nid(zone));
3181 }
3182
si_meminfo(struct sysinfo * val)3183 void si_meminfo(struct sysinfo *val)
3184 {
3185 val->totalram = totalram_pages;
3186 val->sharedram = global_page_state(NR_SHMEM);
3187 val->freeram = global_page_state(NR_FREE_PAGES);
3188 val->bufferram = nr_blockdev_pages();
3189 val->totalhigh = totalhigh_pages;
3190 val->freehigh = nr_free_highpages();
3191 val->mem_unit = PAGE_SIZE;
3192 }
3193
3194 EXPORT_SYMBOL(si_meminfo);
3195
3196 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)3197 void si_meminfo_node(struct sysinfo *val, int nid)
3198 {
3199 int zone_type; /* needs to be signed */
3200 unsigned long managed_pages = 0;
3201 pg_data_t *pgdat = NODE_DATA(nid);
3202
3203 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3204 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3205 val->totalram = managed_pages;
3206 val->sharedram = node_page_state(nid, NR_SHMEM);
3207 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3208 #ifdef CONFIG_HIGHMEM
3209 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3210 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3211 NR_FREE_PAGES);
3212 #else
3213 val->totalhigh = 0;
3214 val->freehigh = 0;
3215 #endif
3216 val->mem_unit = PAGE_SIZE;
3217 }
3218 #endif
3219
3220 /*
3221 * Determine whether the node should be displayed or not, depending on whether
3222 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3223 */
skip_free_areas_node(unsigned int flags,int nid)3224 bool skip_free_areas_node(unsigned int flags, int nid)
3225 {
3226 bool ret = false;
3227 unsigned int cpuset_mems_cookie;
3228
3229 if (!(flags & SHOW_MEM_FILTER_NODES))
3230 goto out;
3231
3232 do {
3233 cpuset_mems_cookie = read_mems_allowed_begin();
3234 ret = !node_isset(nid, cpuset_current_mems_allowed);
3235 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3236 out:
3237 return ret;
3238 }
3239
3240 #define K(x) ((x) << (PAGE_SHIFT-10))
3241
show_migration_types(unsigned char type)3242 static void show_migration_types(unsigned char type)
3243 {
3244 static const char types[MIGRATE_TYPES] = {
3245 [MIGRATE_UNMOVABLE] = 'U',
3246 [MIGRATE_RECLAIMABLE] = 'E',
3247 [MIGRATE_MOVABLE] = 'M',
3248 [MIGRATE_RESERVE] = 'R',
3249 #ifdef CONFIG_CMA
3250 [MIGRATE_CMA] = 'C',
3251 #endif
3252 #ifdef CONFIG_MEMORY_ISOLATION
3253 [MIGRATE_ISOLATE] = 'I',
3254 #endif
3255 };
3256 char tmp[MIGRATE_TYPES + 1];
3257 char *p = tmp;
3258 int i;
3259
3260 for (i = 0; i < MIGRATE_TYPES; i++) {
3261 if (type & (1 << i))
3262 *p++ = types[i];
3263 }
3264
3265 *p = '\0';
3266 printk("(%s) ", tmp);
3267 }
3268
3269 /*
3270 * Show free area list (used inside shift_scroll-lock stuff)
3271 * We also calculate the percentage fragmentation. We do this by counting the
3272 * memory on each free list with the exception of the first item on the list.
3273 *
3274 * Bits in @filter:
3275 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3276 * cpuset.
3277 */
show_free_areas(unsigned int filter)3278 void show_free_areas(unsigned int filter)
3279 {
3280 unsigned long free_pcp = 0;
3281 int cpu;
3282 struct zone *zone;
3283
3284 for_each_populated_zone(zone) {
3285 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3286 continue;
3287
3288 for_each_online_cpu(cpu)
3289 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3290 }
3291
3292 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3293 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3294 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3295 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3296 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3297 " free:%lu free_pcp:%lu free_cma:%lu\n",
3298 global_page_state(NR_ACTIVE_ANON),
3299 global_page_state(NR_INACTIVE_ANON),
3300 global_page_state(NR_ISOLATED_ANON),
3301 global_page_state(NR_ACTIVE_FILE),
3302 global_page_state(NR_INACTIVE_FILE),
3303 global_page_state(NR_ISOLATED_FILE),
3304 global_page_state(NR_UNEVICTABLE),
3305 global_page_state(NR_FILE_DIRTY),
3306 global_page_state(NR_WRITEBACK),
3307 global_page_state(NR_UNSTABLE_NFS),
3308 global_page_state(NR_SLAB_RECLAIMABLE),
3309 global_page_state(NR_SLAB_UNRECLAIMABLE),
3310 global_page_state(NR_FILE_MAPPED),
3311 global_page_state(NR_SHMEM),
3312 global_page_state(NR_PAGETABLE),
3313 global_page_state(NR_BOUNCE),
3314 global_page_state(NR_FREE_PAGES),
3315 free_pcp,
3316 global_page_state(NR_FREE_CMA_PAGES));
3317
3318 for_each_populated_zone(zone) {
3319 int i;
3320
3321 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3322 continue;
3323
3324 free_pcp = 0;
3325 for_each_online_cpu(cpu)
3326 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3327
3328 show_node(zone);
3329 printk("%s"
3330 " free:%lukB"
3331 " min:%lukB"
3332 " low:%lukB"
3333 " high:%lukB"
3334 " active_anon:%lukB"
3335 " inactive_anon:%lukB"
3336 " active_file:%lukB"
3337 " inactive_file:%lukB"
3338 " unevictable:%lukB"
3339 " isolated(anon):%lukB"
3340 " isolated(file):%lukB"
3341 " present:%lukB"
3342 " managed:%lukB"
3343 " mlocked:%lukB"
3344 " dirty:%lukB"
3345 " writeback:%lukB"
3346 " mapped:%lukB"
3347 " shmem:%lukB"
3348 " slab_reclaimable:%lukB"
3349 " slab_unreclaimable:%lukB"
3350 " kernel_stack:%lukB"
3351 " pagetables:%lukB"
3352 " unstable:%lukB"
3353 " bounce:%lukB"
3354 " free_pcp:%lukB"
3355 " local_pcp:%ukB"
3356 " free_cma:%lukB"
3357 " writeback_tmp:%lukB"
3358 " pages_scanned:%lu"
3359 " all_unreclaimable? %s"
3360 "\n",
3361 zone->name,
3362 K(zone_page_state(zone, NR_FREE_PAGES)),
3363 K(min_wmark_pages(zone)),
3364 K(low_wmark_pages(zone)),
3365 K(high_wmark_pages(zone)),
3366 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3367 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3368 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3369 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3370 K(zone_page_state(zone, NR_UNEVICTABLE)),
3371 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3372 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3373 K(zone->present_pages),
3374 K(zone->managed_pages),
3375 K(zone_page_state(zone, NR_MLOCK)),
3376 K(zone_page_state(zone, NR_FILE_DIRTY)),
3377 K(zone_page_state(zone, NR_WRITEBACK)),
3378 K(zone_page_state(zone, NR_FILE_MAPPED)),
3379 K(zone_page_state(zone, NR_SHMEM)),
3380 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3381 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3382 zone_page_state(zone, NR_KERNEL_STACK) *
3383 THREAD_SIZE / 1024,
3384 K(zone_page_state(zone, NR_PAGETABLE)),
3385 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3386 K(zone_page_state(zone, NR_BOUNCE)),
3387 K(free_pcp),
3388 K(this_cpu_read(zone->pageset->pcp.count)),
3389 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3390 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3391 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3392 (!zone_reclaimable(zone) ? "yes" : "no")
3393 );
3394 printk("lowmem_reserve[]:");
3395 for (i = 0; i < MAX_NR_ZONES; i++)
3396 printk(" %ld", zone->lowmem_reserve[i]);
3397 printk("\n");
3398 }
3399
3400 for_each_populated_zone(zone) {
3401 unsigned int order;
3402 unsigned long nr[MAX_ORDER], flags, total = 0;
3403 unsigned char types[MAX_ORDER];
3404
3405 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3406 continue;
3407 show_node(zone);
3408 printk("%s: ", zone->name);
3409
3410 spin_lock_irqsave(&zone->lock, flags);
3411 for (order = 0; order < MAX_ORDER; order++) {
3412 struct free_area *area = &zone->free_area[order];
3413 int type;
3414
3415 nr[order] = area->nr_free;
3416 total += nr[order] << order;
3417
3418 types[order] = 0;
3419 for (type = 0; type < MIGRATE_TYPES; type++) {
3420 if (!list_empty(&area->free_list[type]))
3421 types[order] |= 1 << type;
3422 }
3423 }
3424 spin_unlock_irqrestore(&zone->lock, flags);
3425 for (order = 0; order < MAX_ORDER; order++) {
3426 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3427 if (nr[order])
3428 show_migration_types(types[order]);
3429 }
3430 printk("= %lukB\n", K(total));
3431 }
3432
3433 hugetlb_show_meminfo();
3434
3435 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3436
3437 show_swap_cache_info();
3438 }
3439
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)3440 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3441 {
3442 zoneref->zone = zone;
3443 zoneref->zone_idx = zone_idx(zone);
3444 }
3445
3446 /*
3447 * Builds allocation fallback zone lists.
3448 *
3449 * Add all populated zones of a node to the zonelist.
3450 */
build_zonelists_node(pg_data_t * pgdat,struct zonelist * zonelist,int nr_zones)3451 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3452 int nr_zones)
3453 {
3454 struct zone *zone;
3455 enum zone_type zone_type = MAX_NR_ZONES;
3456
3457 do {
3458 zone_type--;
3459 zone = pgdat->node_zones + zone_type;
3460 if (populated_zone(zone)) {
3461 zoneref_set_zone(zone,
3462 &zonelist->_zonerefs[nr_zones++]);
3463 check_highest_zone(zone_type);
3464 }
3465 } while (zone_type);
3466
3467 return nr_zones;
3468 }
3469
3470
3471 /*
3472 * zonelist_order:
3473 * 0 = automatic detection of better ordering.
3474 * 1 = order by ([node] distance, -zonetype)
3475 * 2 = order by (-zonetype, [node] distance)
3476 *
3477 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3478 * the same zonelist. So only NUMA can configure this param.
3479 */
3480 #define ZONELIST_ORDER_DEFAULT 0
3481 #define ZONELIST_ORDER_NODE 1
3482 #define ZONELIST_ORDER_ZONE 2
3483
3484 /* zonelist order in the kernel.
3485 * set_zonelist_order() will set this to NODE or ZONE.
3486 */
3487 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3488 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3489
3490
3491 #ifdef CONFIG_NUMA
3492 /* The value user specified ....changed by config */
3493 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3494 /* string for sysctl */
3495 #define NUMA_ZONELIST_ORDER_LEN 16
3496 char numa_zonelist_order[16] = "default";
3497
3498 /*
3499 * interface for configure zonelist ordering.
3500 * command line option "numa_zonelist_order"
3501 * = "[dD]efault - default, automatic configuration.
3502 * = "[nN]ode - order by node locality, then by zone within node
3503 * = "[zZ]one - order by zone, then by locality within zone
3504 */
3505
__parse_numa_zonelist_order(char * s)3506 static int __parse_numa_zonelist_order(char *s)
3507 {
3508 if (*s == 'd' || *s == 'D') {
3509 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3510 } else if (*s == 'n' || *s == 'N') {
3511 user_zonelist_order = ZONELIST_ORDER_NODE;
3512 } else if (*s == 'z' || *s == 'Z') {
3513 user_zonelist_order = ZONELIST_ORDER_ZONE;
3514 } else {
3515 printk(KERN_WARNING
3516 "Ignoring invalid numa_zonelist_order value: "
3517 "%s\n", s);
3518 return -EINVAL;
3519 }
3520 return 0;
3521 }
3522
setup_numa_zonelist_order(char * s)3523 static __init int setup_numa_zonelist_order(char *s)
3524 {
3525 int ret;
3526
3527 if (!s)
3528 return 0;
3529
3530 ret = __parse_numa_zonelist_order(s);
3531 if (ret == 0)
3532 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3533
3534 return ret;
3535 }
3536 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3537
3538 /*
3539 * sysctl handler for numa_zonelist_order
3540 */
numa_zonelist_order_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)3541 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3542 void __user *buffer, size_t *length,
3543 loff_t *ppos)
3544 {
3545 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3546 int ret;
3547 static DEFINE_MUTEX(zl_order_mutex);
3548
3549 mutex_lock(&zl_order_mutex);
3550 if (write) {
3551 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3552 ret = -EINVAL;
3553 goto out;
3554 }
3555 strcpy(saved_string, (char *)table->data);
3556 }
3557 ret = proc_dostring(table, write, buffer, length, ppos);
3558 if (ret)
3559 goto out;
3560 if (write) {
3561 int oldval = user_zonelist_order;
3562
3563 ret = __parse_numa_zonelist_order((char *)table->data);
3564 if (ret) {
3565 /*
3566 * bogus value. restore saved string
3567 */
3568 strncpy((char *)table->data, saved_string,
3569 NUMA_ZONELIST_ORDER_LEN);
3570 user_zonelist_order = oldval;
3571 } else if (oldval != user_zonelist_order) {
3572 mutex_lock(&zonelists_mutex);
3573 build_all_zonelists(NULL, NULL);
3574 mutex_unlock(&zonelists_mutex);
3575 }
3576 }
3577 out:
3578 mutex_unlock(&zl_order_mutex);
3579 return ret;
3580 }
3581
3582
3583 #define MAX_NODE_LOAD (nr_online_nodes)
3584 static int node_load[MAX_NUMNODES];
3585
3586 /**
3587 * find_next_best_node - find the next node that should appear in a given node's fallback list
3588 * @node: node whose fallback list we're appending
3589 * @used_node_mask: nodemask_t of already used nodes
3590 *
3591 * We use a number of factors to determine which is the next node that should
3592 * appear on a given node's fallback list. The node should not have appeared
3593 * already in @node's fallback list, and it should be the next closest node
3594 * according to the distance array (which contains arbitrary distance values
3595 * from each node to each node in the system), and should also prefer nodes
3596 * with no CPUs, since presumably they'll have very little allocation pressure
3597 * on them otherwise.
3598 * It returns -1 if no node is found.
3599 */
find_next_best_node(int node,nodemask_t * used_node_mask)3600 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3601 {
3602 int n, val;
3603 int min_val = INT_MAX;
3604 int best_node = NUMA_NO_NODE;
3605 const struct cpumask *tmp = cpumask_of_node(0);
3606
3607 /* Use the local node if we haven't already */
3608 if (!node_isset(node, *used_node_mask)) {
3609 node_set(node, *used_node_mask);
3610 return node;
3611 }
3612
3613 for_each_node_state(n, N_MEMORY) {
3614
3615 /* Don't want a node to appear more than once */
3616 if (node_isset(n, *used_node_mask))
3617 continue;
3618
3619 /* Use the distance array to find the distance */
3620 val = node_distance(node, n);
3621
3622 /* Penalize nodes under us ("prefer the next node") */
3623 val += (n < node);
3624
3625 /* Give preference to headless and unused nodes */
3626 tmp = cpumask_of_node(n);
3627 if (!cpumask_empty(tmp))
3628 val += PENALTY_FOR_NODE_WITH_CPUS;
3629
3630 /* Slight preference for less loaded node */
3631 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3632 val += node_load[n];
3633
3634 if (val < min_val) {
3635 min_val = val;
3636 best_node = n;
3637 }
3638 }
3639
3640 if (best_node >= 0)
3641 node_set(best_node, *used_node_mask);
3642
3643 return best_node;
3644 }
3645
3646
3647 /*
3648 * Build zonelists ordered by node and zones within node.
3649 * This results in maximum locality--normal zone overflows into local
3650 * DMA zone, if any--but risks exhausting DMA zone.
3651 */
build_zonelists_in_node_order(pg_data_t * pgdat,int node)3652 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3653 {
3654 int j;
3655 struct zonelist *zonelist;
3656
3657 zonelist = &pgdat->node_zonelists[0];
3658 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3659 ;
3660 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3661 zonelist->_zonerefs[j].zone = NULL;
3662 zonelist->_zonerefs[j].zone_idx = 0;
3663 }
3664
3665 /*
3666 * Build gfp_thisnode zonelists
3667 */
build_thisnode_zonelists(pg_data_t * pgdat)3668 static void build_thisnode_zonelists(pg_data_t *pgdat)
3669 {
3670 int j;
3671 struct zonelist *zonelist;
3672
3673 zonelist = &pgdat->node_zonelists[1];
3674 j = build_zonelists_node(pgdat, zonelist, 0);
3675 zonelist->_zonerefs[j].zone = NULL;
3676 zonelist->_zonerefs[j].zone_idx = 0;
3677 }
3678
3679 /*
3680 * Build zonelists ordered by zone and nodes within zones.
3681 * This results in conserving DMA zone[s] until all Normal memory is
3682 * exhausted, but results in overflowing to remote node while memory
3683 * may still exist in local DMA zone.
3684 */
3685 static int node_order[MAX_NUMNODES];
3686
build_zonelists_in_zone_order(pg_data_t * pgdat,int nr_nodes)3687 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3688 {
3689 int pos, j, node;
3690 int zone_type; /* needs to be signed */
3691 struct zone *z;
3692 struct zonelist *zonelist;
3693
3694 zonelist = &pgdat->node_zonelists[0];
3695 pos = 0;
3696 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3697 for (j = 0; j < nr_nodes; j++) {
3698 node = node_order[j];
3699 z = &NODE_DATA(node)->node_zones[zone_type];
3700 if (populated_zone(z)) {
3701 zoneref_set_zone(z,
3702 &zonelist->_zonerefs[pos++]);
3703 check_highest_zone(zone_type);
3704 }
3705 }
3706 }
3707 zonelist->_zonerefs[pos].zone = NULL;
3708 zonelist->_zonerefs[pos].zone_idx = 0;
3709 }
3710
3711 #if defined(CONFIG_64BIT)
3712 /*
3713 * Devices that require DMA32/DMA are relatively rare and do not justify a
3714 * penalty to every machine in case the specialised case applies. Default
3715 * to Node-ordering on 64-bit NUMA machines
3716 */
default_zonelist_order(void)3717 static int default_zonelist_order(void)
3718 {
3719 return ZONELIST_ORDER_NODE;
3720 }
3721 #else
3722 /*
3723 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3724 * by the kernel. If processes running on node 0 deplete the low memory zone
3725 * then reclaim will occur more frequency increasing stalls and potentially
3726 * be easier to OOM if a large percentage of the zone is under writeback or
3727 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3728 * Hence, default to zone ordering on 32-bit.
3729 */
default_zonelist_order(void)3730 static int default_zonelist_order(void)
3731 {
3732 return ZONELIST_ORDER_ZONE;
3733 }
3734 #endif /* CONFIG_64BIT */
3735
set_zonelist_order(void)3736 static void set_zonelist_order(void)
3737 {
3738 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3739 current_zonelist_order = default_zonelist_order();
3740 else
3741 current_zonelist_order = user_zonelist_order;
3742 }
3743
build_zonelists(pg_data_t * pgdat)3744 static void build_zonelists(pg_data_t *pgdat)
3745 {
3746 int j, node, load;
3747 enum zone_type i;
3748 nodemask_t used_mask;
3749 int local_node, prev_node;
3750 struct zonelist *zonelist;
3751 unsigned int order = current_zonelist_order;
3752
3753 /* initialize zonelists */
3754 for (i = 0; i < MAX_ZONELISTS; i++) {
3755 zonelist = pgdat->node_zonelists + i;
3756 zonelist->_zonerefs[0].zone = NULL;
3757 zonelist->_zonerefs[0].zone_idx = 0;
3758 }
3759
3760 /* NUMA-aware ordering of nodes */
3761 local_node = pgdat->node_id;
3762 load = nr_online_nodes;
3763 prev_node = local_node;
3764 nodes_clear(used_mask);
3765
3766 memset(node_order, 0, sizeof(node_order));
3767 j = 0;
3768
3769 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3770 /*
3771 * We don't want to pressure a particular node.
3772 * So adding penalty to the first node in same
3773 * distance group to make it round-robin.
3774 */
3775 if (node_distance(local_node, node) !=
3776 node_distance(local_node, prev_node))
3777 node_load[node] = load;
3778
3779 prev_node = node;
3780 load--;
3781 if (order == ZONELIST_ORDER_NODE)
3782 build_zonelists_in_node_order(pgdat, node);
3783 else
3784 node_order[j++] = node; /* remember order */
3785 }
3786
3787 if (order == ZONELIST_ORDER_ZONE) {
3788 /* calculate node order -- i.e., DMA last! */
3789 build_zonelists_in_zone_order(pgdat, j);
3790 }
3791
3792 build_thisnode_zonelists(pgdat);
3793 }
3794
3795 /* Construct the zonelist performance cache - see further mmzone.h */
build_zonelist_cache(pg_data_t * pgdat)3796 static void build_zonelist_cache(pg_data_t *pgdat)
3797 {
3798 struct zonelist *zonelist;
3799 struct zonelist_cache *zlc;
3800 struct zoneref *z;
3801
3802 zonelist = &pgdat->node_zonelists[0];
3803 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3804 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3805 for (z = zonelist->_zonerefs; z->zone; z++)
3806 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3807 }
3808
3809 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3810 /*
3811 * Return node id of node used for "local" allocations.
3812 * I.e., first node id of first zone in arg node's generic zonelist.
3813 * Used for initializing percpu 'numa_mem', which is used primarily
3814 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3815 */
local_memory_node(int node)3816 int local_memory_node(int node)
3817 {
3818 struct zone *zone;
3819
3820 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3821 gfp_zone(GFP_KERNEL),
3822 NULL,
3823 &zone);
3824 return zone->node;
3825 }
3826 #endif
3827
3828 #else /* CONFIG_NUMA */
3829
set_zonelist_order(void)3830 static void set_zonelist_order(void)
3831 {
3832 current_zonelist_order = ZONELIST_ORDER_ZONE;
3833 }
3834
build_zonelists(pg_data_t * pgdat)3835 static void build_zonelists(pg_data_t *pgdat)
3836 {
3837 int node, local_node;
3838 enum zone_type j;
3839 struct zonelist *zonelist;
3840
3841 local_node = pgdat->node_id;
3842
3843 zonelist = &pgdat->node_zonelists[0];
3844 j = build_zonelists_node(pgdat, zonelist, 0);
3845
3846 /*
3847 * Now we build the zonelist so that it contains the zones
3848 * of all the other nodes.
3849 * We don't want to pressure a particular node, so when
3850 * building the zones for node N, we make sure that the
3851 * zones coming right after the local ones are those from
3852 * node N+1 (modulo N)
3853 */
3854 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3855 if (!node_online(node))
3856 continue;
3857 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3858 }
3859 for (node = 0; node < local_node; node++) {
3860 if (!node_online(node))
3861 continue;
3862 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3863 }
3864
3865 zonelist->_zonerefs[j].zone = NULL;
3866 zonelist->_zonerefs[j].zone_idx = 0;
3867 }
3868
3869 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
build_zonelist_cache(pg_data_t * pgdat)3870 static void build_zonelist_cache(pg_data_t *pgdat)
3871 {
3872 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3873 }
3874
3875 #endif /* CONFIG_NUMA */
3876
3877 /*
3878 * Boot pageset table. One per cpu which is going to be used for all
3879 * zones and all nodes. The parameters will be set in such a way
3880 * that an item put on a list will immediately be handed over to
3881 * the buddy list. This is safe since pageset manipulation is done
3882 * with interrupts disabled.
3883 *
3884 * The boot_pagesets must be kept even after bootup is complete for
3885 * unused processors and/or zones. They do play a role for bootstrapping
3886 * hotplugged processors.
3887 *
3888 * zoneinfo_show() and maybe other functions do
3889 * not check if the processor is online before following the pageset pointer.
3890 * Other parts of the kernel may not check if the zone is available.
3891 */
3892 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3893 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3894 static void setup_zone_pageset(struct zone *zone);
3895
3896 /*
3897 * Global mutex to protect against size modification of zonelists
3898 * as well as to serialize pageset setup for the new populated zone.
3899 */
3900 DEFINE_MUTEX(zonelists_mutex);
3901
3902 /* return values int ....just for stop_machine() */
__build_all_zonelists(void * data)3903 static int __build_all_zonelists(void *data)
3904 {
3905 int nid;
3906 int cpu;
3907 pg_data_t *self = data;
3908
3909 #ifdef CONFIG_NUMA
3910 memset(node_load, 0, sizeof(node_load));
3911 #endif
3912
3913 if (self && !node_online(self->node_id)) {
3914 build_zonelists(self);
3915 build_zonelist_cache(self);
3916 }
3917
3918 for_each_online_node(nid) {
3919 pg_data_t *pgdat = NODE_DATA(nid);
3920
3921 build_zonelists(pgdat);
3922 build_zonelist_cache(pgdat);
3923 }
3924
3925 /*
3926 * Initialize the boot_pagesets that are going to be used
3927 * for bootstrapping processors. The real pagesets for
3928 * each zone will be allocated later when the per cpu
3929 * allocator is available.
3930 *
3931 * boot_pagesets are used also for bootstrapping offline
3932 * cpus if the system is already booted because the pagesets
3933 * are needed to initialize allocators on a specific cpu too.
3934 * F.e. the percpu allocator needs the page allocator which
3935 * needs the percpu allocator in order to allocate its pagesets
3936 * (a chicken-egg dilemma).
3937 */
3938 for_each_possible_cpu(cpu) {
3939 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3940
3941 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3942 /*
3943 * We now know the "local memory node" for each node--
3944 * i.e., the node of the first zone in the generic zonelist.
3945 * Set up numa_mem percpu variable for on-line cpus. During
3946 * boot, only the boot cpu should be on-line; we'll init the
3947 * secondary cpus' numa_mem as they come on-line. During
3948 * node/memory hotplug, we'll fixup all on-line cpus.
3949 */
3950 if (cpu_online(cpu))
3951 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3952 #endif
3953 }
3954
3955 return 0;
3956 }
3957
3958 static noinline void __init
build_all_zonelists_init(void)3959 build_all_zonelists_init(void)
3960 {
3961 __build_all_zonelists(NULL);
3962 mminit_verify_zonelist();
3963 cpuset_init_current_mems_allowed();
3964 }
3965
3966 /*
3967 * Called with zonelists_mutex held always
3968 * unless system_state == SYSTEM_BOOTING.
3969 *
3970 * __ref due to (1) call of __meminit annotated setup_zone_pageset
3971 * [we're only called with non-NULL zone through __meminit paths] and
3972 * (2) call of __init annotated helper build_all_zonelists_init
3973 * [protected by SYSTEM_BOOTING].
3974 */
build_all_zonelists(pg_data_t * pgdat,struct zone * zone)3975 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3976 {
3977 set_zonelist_order();
3978
3979 if (system_state == SYSTEM_BOOTING) {
3980 build_all_zonelists_init();
3981 } else {
3982 #ifdef CONFIG_MEMORY_HOTPLUG
3983 if (zone)
3984 setup_zone_pageset(zone);
3985 #endif
3986 /* we have to stop all cpus to guarantee there is no user
3987 of zonelist */
3988 stop_machine(__build_all_zonelists, pgdat, NULL);
3989 /* cpuset refresh routine should be here */
3990 }
3991 vm_total_pages = nr_free_pagecache_pages();
3992 /*
3993 * Disable grouping by mobility if the number of pages in the
3994 * system is too low to allow the mechanism to work. It would be
3995 * more accurate, but expensive to check per-zone. This check is
3996 * made on memory-hotadd so a system can start with mobility
3997 * disabled and enable it later
3998 */
3999 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4000 page_group_by_mobility_disabled = 1;
4001 else
4002 page_group_by_mobility_disabled = 0;
4003
4004 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4005 "Total pages: %ld\n",
4006 nr_online_nodes,
4007 zonelist_order_name[current_zonelist_order],
4008 page_group_by_mobility_disabled ? "off" : "on",
4009 vm_total_pages);
4010 #ifdef CONFIG_NUMA
4011 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4012 #endif
4013 }
4014
4015 /*
4016 * Helper functions to size the waitqueue hash table.
4017 * Essentially these want to choose hash table sizes sufficiently
4018 * large so that collisions trying to wait on pages are rare.
4019 * But in fact, the number of active page waitqueues on typical
4020 * systems is ridiculously low, less than 200. So this is even
4021 * conservative, even though it seems large.
4022 *
4023 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4024 * waitqueues, i.e. the size of the waitq table given the number of pages.
4025 */
4026 #define PAGES_PER_WAITQUEUE 256
4027
4028 #ifndef CONFIG_MEMORY_HOTPLUG
wait_table_hash_nr_entries(unsigned long pages)4029 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4030 {
4031 unsigned long size = 1;
4032
4033 pages /= PAGES_PER_WAITQUEUE;
4034
4035 while (size < pages)
4036 size <<= 1;
4037
4038 /*
4039 * Once we have dozens or even hundreds of threads sleeping
4040 * on IO we've got bigger problems than wait queue collision.
4041 * Limit the size of the wait table to a reasonable size.
4042 */
4043 size = min(size, 4096UL);
4044
4045 return max(size, 4UL);
4046 }
4047 #else
4048 /*
4049 * A zone's size might be changed by hot-add, so it is not possible to determine
4050 * a suitable size for its wait_table. So we use the maximum size now.
4051 *
4052 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4053 *
4054 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4055 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4056 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4057 *
4058 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4059 * or more by the traditional way. (See above). It equals:
4060 *
4061 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4062 * ia64(16K page size) : = ( 8G + 4M)byte.
4063 * powerpc (64K page size) : = (32G +16M)byte.
4064 */
wait_table_hash_nr_entries(unsigned long pages)4065 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4066 {
4067 return 4096UL;
4068 }
4069 #endif
4070
4071 /*
4072 * This is an integer logarithm so that shifts can be used later
4073 * to extract the more random high bits from the multiplicative
4074 * hash function before the remainder is taken.
4075 */
wait_table_bits(unsigned long size)4076 static inline unsigned long wait_table_bits(unsigned long size)
4077 {
4078 return ffz(~size);
4079 }
4080
4081 /*
4082 * Check if a pageblock contains reserved pages
4083 */
pageblock_is_reserved(unsigned long start_pfn,unsigned long end_pfn)4084 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4085 {
4086 unsigned long pfn;
4087
4088 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4089 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4090 return 1;
4091 }
4092 return 0;
4093 }
4094
4095 /*
4096 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4097 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4098 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4099 * higher will lead to a bigger reserve which will get freed as contiguous
4100 * blocks as reclaim kicks in
4101 */
setup_zone_migrate_reserve(struct zone * zone)4102 static void setup_zone_migrate_reserve(struct zone *zone)
4103 {
4104 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4105 struct page *page;
4106 unsigned long block_migratetype;
4107 int reserve;
4108 int old_reserve;
4109
4110 /*
4111 * Get the start pfn, end pfn and the number of blocks to reserve
4112 * We have to be careful to be aligned to pageblock_nr_pages to
4113 * make sure that we always check pfn_valid for the first page in
4114 * the block.
4115 */
4116 start_pfn = zone->zone_start_pfn;
4117 end_pfn = zone_end_pfn(zone);
4118 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4119 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4120 pageblock_order;
4121
4122 /*
4123 * Reserve blocks are generally in place to help high-order atomic
4124 * allocations that are short-lived. A min_free_kbytes value that
4125 * would result in more than 2 reserve blocks for atomic allocations
4126 * is assumed to be in place to help anti-fragmentation for the
4127 * future allocation of hugepages at runtime.
4128 */
4129 reserve = min(2, reserve);
4130 old_reserve = zone->nr_migrate_reserve_block;
4131
4132 /* When memory hot-add, we almost always need to do nothing */
4133 if (reserve == old_reserve)
4134 return;
4135 zone->nr_migrate_reserve_block = reserve;
4136
4137 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4138 if (!pfn_valid(pfn))
4139 continue;
4140 page = pfn_to_page(pfn);
4141
4142 /* Watch out for overlapping nodes */
4143 if (page_to_nid(page) != zone_to_nid(zone))
4144 continue;
4145
4146 block_migratetype = get_pageblock_migratetype(page);
4147
4148 /* Only test what is necessary when the reserves are not met */
4149 if (reserve > 0) {
4150 /*
4151 * Blocks with reserved pages will never free, skip
4152 * them.
4153 */
4154 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4155 if (pageblock_is_reserved(pfn, block_end_pfn))
4156 continue;
4157
4158 /* If this block is reserved, account for it */
4159 if (block_migratetype == MIGRATE_RESERVE) {
4160 reserve--;
4161 continue;
4162 }
4163
4164 /* Suitable for reserving if this block is movable */
4165 if (block_migratetype == MIGRATE_MOVABLE) {
4166 set_pageblock_migratetype(page,
4167 MIGRATE_RESERVE);
4168 move_freepages_block(zone, page,
4169 MIGRATE_RESERVE);
4170 reserve--;
4171 continue;
4172 }
4173 } else if (!old_reserve) {
4174 /*
4175 * At boot time we don't need to scan the whole zone
4176 * for turning off MIGRATE_RESERVE.
4177 */
4178 break;
4179 }
4180
4181 /*
4182 * If the reserve is met and this is a previous reserved block,
4183 * take it back
4184 */
4185 if (block_migratetype == MIGRATE_RESERVE) {
4186 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4187 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4188 }
4189 }
4190 }
4191
4192 /*
4193 * Initially all pages are reserved - free ones are freed
4194 * up by free_all_bootmem() once the early boot process is
4195 * done. Non-atomic initialization, single-pass.
4196 */
memmap_init_zone(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,enum memmap_context context)4197 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4198 unsigned long start_pfn, enum memmap_context context)
4199 {
4200 struct page *page;
4201 unsigned long end_pfn = start_pfn + size;
4202 unsigned long pfn;
4203 struct zone *z;
4204
4205 if (highest_memmap_pfn < end_pfn - 1)
4206 highest_memmap_pfn = end_pfn - 1;
4207
4208 z = &NODE_DATA(nid)->node_zones[zone];
4209 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4210 /*
4211 * There can be holes in boot-time mem_map[]s
4212 * handed to this function. They do not
4213 * exist on hotplugged memory.
4214 */
4215 if (context == MEMMAP_EARLY) {
4216 if (!early_pfn_valid(pfn))
4217 continue;
4218 if (!early_pfn_in_nid(pfn, nid))
4219 continue;
4220 }
4221 page = pfn_to_page(pfn);
4222 set_page_links(page, zone, nid, pfn);
4223 mminit_verify_page_links(page, zone, nid, pfn);
4224 init_page_count(page);
4225 page_mapcount_reset(page);
4226 page_cpupid_reset_last(page);
4227 SetPageReserved(page);
4228 /*
4229 * Mark the block movable so that blocks are reserved for
4230 * movable at startup. This will force kernel allocations
4231 * to reserve their blocks rather than leaking throughout
4232 * the address space during boot when many long-lived
4233 * kernel allocations are made. Later some blocks near
4234 * the start are marked MIGRATE_RESERVE by
4235 * setup_zone_migrate_reserve()
4236 *
4237 * bitmap is created for zone's valid pfn range. but memmap
4238 * can be created for invalid pages (for alignment)
4239 * check here not to call set_pageblock_migratetype() against
4240 * pfn out of zone.
4241 */
4242 if ((z->zone_start_pfn <= pfn)
4243 && (pfn < zone_end_pfn(z))
4244 && !(pfn & (pageblock_nr_pages - 1)))
4245 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4246
4247 INIT_LIST_HEAD(&page->lru);
4248 #ifdef WANT_PAGE_VIRTUAL
4249 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4250 if (!is_highmem_idx(zone))
4251 set_page_address(page, __va(pfn << PAGE_SHIFT));
4252 #endif
4253 }
4254 }
4255
zone_init_free_lists(struct zone * zone)4256 static void __meminit zone_init_free_lists(struct zone *zone)
4257 {
4258 unsigned int order, t;
4259 for_each_migratetype_order(order, t) {
4260 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4261 zone->free_area[order].nr_free = 0;
4262 }
4263 }
4264
4265 #ifndef __HAVE_ARCH_MEMMAP_INIT
4266 #define memmap_init(size, nid, zone, start_pfn) \
4267 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4268 #endif
4269
zone_batchsize(struct zone * zone)4270 static int zone_batchsize(struct zone *zone)
4271 {
4272 #ifdef CONFIG_MMU
4273 int batch;
4274
4275 /*
4276 * The per-cpu-pages pools are set to around 1000th of the
4277 * size of the zone. But no more than 1/2 of a meg.
4278 *
4279 * OK, so we don't know how big the cache is. So guess.
4280 */
4281 batch = zone->managed_pages / 1024;
4282 if (batch * PAGE_SIZE > 512 * 1024)
4283 batch = (512 * 1024) / PAGE_SIZE;
4284 batch /= 4; /* We effectively *= 4 below */
4285 if (batch < 1)
4286 batch = 1;
4287
4288 /*
4289 * Clamp the batch to a 2^n - 1 value. Having a power
4290 * of 2 value was found to be more likely to have
4291 * suboptimal cache aliasing properties in some cases.
4292 *
4293 * For example if 2 tasks are alternately allocating
4294 * batches of pages, one task can end up with a lot
4295 * of pages of one half of the possible page colors
4296 * and the other with pages of the other colors.
4297 */
4298 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4299
4300 return batch;
4301
4302 #else
4303 /* The deferral and batching of frees should be suppressed under NOMMU
4304 * conditions.
4305 *
4306 * The problem is that NOMMU needs to be able to allocate large chunks
4307 * of contiguous memory as there's no hardware page translation to
4308 * assemble apparent contiguous memory from discontiguous pages.
4309 *
4310 * Queueing large contiguous runs of pages for batching, however,
4311 * causes the pages to actually be freed in smaller chunks. As there
4312 * can be a significant delay between the individual batches being
4313 * recycled, this leads to the once large chunks of space being
4314 * fragmented and becoming unavailable for high-order allocations.
4315 */
4316 return 0;
4317 #endif
4318 }
4319
4320 /*
4321 * pcp->high and pcp->batch values are related and dependent on one another:
4322 * ->batch must never be higher then ->high.
4323 * The following function updates them in a safe manner without read side
4324 * locking.
4325 *
4326 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4327 * those fields changing asynchronously (acording the the above rule).
4328 *
4329 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4330 * outside of boot time (or some other assurance that no concurrent updaters
4331 * exist).
4332 */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)4333 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4334 unsigned long batch)
4335 {
4336 /* start with a fail safe value for batch */
4337 pcp->batch = 1;
4338 smp_wmb();
4339
4340 /* Update high, then batch, in order */
4341 pcp->high = high;
4342 smp_wmb();
4343
4344 pcp->batch = batch;
4345 }
4346
4347 /* a companion to pageset_set_high() */
pageset_set_batch(struct per_cpu_pageset * p,unsigned long batch)4348 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4349 {
4350 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4351 }
4352
pageset_init(struct per_cpu_pageset * p)4353 static void pageset_init(struct per_cpu_pageset *p)
4354 {
4355 struct per_cpu_pages *pcp;
4356 int migratetype;
4357
4358 memset(p, 0, sizeof(*p));
4359
4360 pcp = &p->pcp;
4361 pcp->count = 0;
4362 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4363 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4364 }
4365
setup_pageset(struct per_cpu_pageset * p,unsigned long batch)4366 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4367 {
4368 pageset_init(p);
4369 pageset_set_batch(p, batch);
4370 }
4371
4372 /*
4373 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4374 * to the value high for the pageset p.
4375 */
pageset_set_high(struct per_cpu_pageset * p,unsigned long high)4376 static void pageset_set_high(struct per_cpu_pageset *p,
4377 unsigned long high)
4378 {
4379 unsigned long batch = max(1UL, high / 4);
4380 if ((high / 4) > (PAGE_SHIFT * 8))
4381 batch = PAGE_SHIFT * 8;
4382
4383 pageset_update(&p->pcp, high, batch);
4384 }
4385
pageset_set_high_and_batch(struct zone * zone,struct per_cpu_pageset * pcp)4386 static void pageset_set_high_and_batch(struct zone *zone,
4387 struct per_cpu_pageset *pcp)
4388 {
4389 if (percpu_pagelist_fraction)
4390 pageset_set_high(pcp,
4391 (zone->managed_pages /
4392 percpu_pagelist_fraction));
4393 else
4394 pageset_set_batch(pcp, zone_batchsize(zone));
4395 }
4396
zone_pageset_init(struct zone * zone,int cpu)4397 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4398 {
4399 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4400
4401 pageset_init(pcp);
4402 pageset_set_high_and_batch(zone, pcp);
4403 }
4404
setup_zone_pageset(struct zone * zone)4405 static void __meminit setup_zone_pageset(struct zone *zone)
4406 {
4407 int cpu;
4408 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4409 for_each_possible_cpu(cpu)
4410 zone_pageset_init(zone, cpu);
4411 }
4412
4413 /*
4414 * Allocate per cpu pagesets and initialize them.
4415 * Before this call only boot pagesets were available.
4416 */
setup_per_cpu_pageset(void)4417 void __init setup_per_cpu_pageset(void)
4418 {
4419 struct zone *zone;
4420
4421 for_each_populated_zone(zone)
4422 setup_zone_pageset(zone);
4423 }
4424
4425 static noinline __init_refok
zone_wait_table_init(struct zone * zone,unsigned long zone_size_pages)4426 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4427 {
4428 int i;
4429 size_t alloc_size;
4430
4431 /*
4432 * The per-page waitqueue mechanism uses hashed waitqueues
4433 * per zone.
4434 */
4435 zone->wait_table_hash_nr_entries =
4436 wait_table_hash_nr_entries(zone_size_pages);
4437 zone->wait_table_bits =
4438 wait_table_bits(zone->wait_table_hash_nr_entries);
4439 alloc_size = zone->wait_table_hash_nr_entries
4440 * sizeof(wait_queue_head_t);
4441
4442 if (!slab_is_available()) {
4443 zone->wait_table = (wait_queue_head_t *)
4444 memblock_virt_alloc_node_nopanic(
4445 alloc_size, zone->zone_pgdat->node_id);
4446 } else {
4447 /*
4448 * This case means that a zone whose size was 0 gets new memory
4449 * via memory hot-add.
4450 * But it may be the case that a new node was hot-added. In
4451 * this case vmalloc() will not be able to use this new node's
4452 * memory - this wait_table must be initialized to use this new
4453 * node itself as well.
4454 * To use this new node's memory, further consideration will be
4455 * necessary.
4456 */
4457 zone->wait_table = vmalloc(alloc_size);
4458 }
4459 if (!zone->wait_table)
4460 return -ENOMEM;
4461
4462 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4463 init_waitqueue_head(zone->wait_table + i);
4464
4465 return 0;
4466 }
4467
zone_pcp_init(struct zone * zone)4468 static __meminit void zone_pcp_init(struct zone *zone)
4469 {
4470 /*
4471 * per cpu subsystem is not up at this point. The following code
4472 * relies on the ability of the linker to provide the
4473 * offset of a (static) per cpu variable into the per cpu area.
4474 */
4475 zone->pageset = &boot_pageset;
4476
4477 if (populated_zone(zone))
4478 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4479 zone->name, zone->present_pages,
4480 zone_batchsize(zone));
4481 }
4482
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size,enum memmap_context context)4483 int __meminit init_currently_empty_zone(struct zone *zone,
4484 unsigned long zone_start_pfn,
4485 unsigned long size,
4486 enum memmap_context context)
4487 {
4488 struct pglist_data *pgdat = zone->zone_pgdat;
4489 int ret;
4490 ret = zone_wait_table_init(zone, size);
4491 if (ret)
4492 return ret;
4493 pgdat->nr_zones = zone_idx(zone) + 1;
4494
4495 zone->zone_start_pfn = zone_start_pfn;
4496
4497 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4498 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4499 pgdat->node_id,
4500 (unsigned long)zone_idx(zone),
4501 zone_start_pfn, (zone_start_pfn + size));
4502
4503 zone_init_free_lists(zone);
4504
4505 return 0;
4506 }
4507
4508 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4509 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4510 /*
4511 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4512 */
__early_pfn_to_nid(unsigned long pfn)4513 int __meminit __early_pfn_to_nid(unsigned long pfn)
4514 {
4515 unsigned long start_pfn, end_pfn;
4516 int nid;
4517 /*
4518 * NOTE: The following SMP-unsafe globals are only used early in boot
4519 * when the kernel is running single-threaded.
4520 */
4521 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4522 static int __meminitdata last_nid;
4523
4524 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4525 return last_nid;
4526
4527 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4528 if (nid != -1) {
4529 last_start_pfn = start_pfn;
4530 last_end_pfn = end_pfn;
4531 last_nid = nid;
4532 }
4533
4534 return nid;
4535 }
4536 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4537
early_pfn_to_nid(unsigned long pfn)4538 int __meminit early_pfn_to_nid(unsigned long pfn)
4539 {
4540 int nid;
4541
4542 nid = __early_pfn_to_nid(pfn);
4543 if (nid >= 0)
4544 return nid;
4545 /* just returns 0 */
4546 return 0;
4547 }
4548
4549 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
early_pfn_in_nid(unsigned long pfn,int node)4550 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4551 {
4552 int nid;
4553
4554 nid = __early_pfn_to_nid(pfn);
4555 if (nid >= 0 && nid != node)
4556 return false;
4557 return true;
4558 }
4559 #endif
4560
4561 /**
4562 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4563 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4564 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4565 *
4566 * If an architecture guarantees that all ranges registered contain no holes
4567 * and may be freed, this this function may be used instead of calling
4568 * memblock_free_early_nid() manually.
4569 */
free_bootmem_with_active_regions(int nid,unsigned long max_low_pfn)4570 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4571 {
4572 unsigned long start_pfn, end_pfn;
4573 int i, this_nid;
4574
4575 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4576 start_pfn = min(start_pfn, max_low_pfn);
4577 end_pfn = min(end_pfn, max_low_pfn);
4578
4579 if (start_pfn < end_pfn)
4580 memblock_free_early_nid(PFN_PHYS(start_pfn),
4581 (end_pfn - start_pfn) << PAGE_SHIFT,
4582 this_nid);
4583 }
4584 }
4585
4586 /**
4587 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4588 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4589 *
4590 * If an architecture guarantees that all ranges registered contain no holes and may
4591 * be freed, this function may be used instead of calling memory_present() manually.
4592 */
sparse_memory_present_with_active_regions(int nid)4593 void __init sparse_memory_present_with_active_regions(int nid)
4594 {
4595 unsigned long start_pfn, end_pfn;
4596 int i, this_nid;
4597
4598 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4599 memory_present(this_nid, start_pfn, end_pfn);
4600 }
4601
4602 /**
4603 * get_pfn_range_for_nid - Return the start and end page frames for a node
4604 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4605 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4606 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4607 *
4608 * It returns the start and end page frame of a node based on information
4609 * provided by memblock_set_node(). If called for a node
4610 * with no available memory, a warning is printed and the start and end
4611 * PFNs will be 0.
4612 */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)4613 void __meminit get_pfn_range_for_nid(unsigned int nid,
4614 unsigned long *start_pfn, unsigned long *end_pfn)
4615 {
4616 unsigned long this_start_pfn, this_end_pfn;
4617 int i;
4618
4619 *start_pfn = -1UL;
4620 *end_pfn = 0;
4621
4622 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4623 *start_pfn = min(*start_pfn, this_start_pfn);
4624 *end_pfn = max(*end_pfn, this_end_pfn);
4625 }
4626
4627 if (*start_pfn == -1UL)
4628 *start_pfn = 0;
4629 }
4630
4631 /*
4632 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4633 * assumption is made that zones within a node are ordered in monotonic
4634 * increasing memory addresses so that the "highest" populated zone is used
4635 */
find_usable_zone_for_movable(void)4636 static void __init find_usable_zone_for_movable(void)
4637 {
4638 int zone_index;
4639 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4640 if (zone_index == ZONE_MOVABLE)
4641 continue;
4642
4643 if (arch_zone_highest_possible_pfn[zone_index] >
4644 arch_zone_lowest_possible_pfn[zone_index])
4645 break;
4646 }
4647
4648 VM_BUG_ON(zone_index == -1);
4649 movable_zone = zone_index;
4650 }
4651
4652 /*
4653 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4654 * because it is sized independent of architecture. Unlike the other zones,
4655 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4656 * in each node depending on the size of each node and how evenly kernelcore
4657 * is distributed. This helper function adjusts the zone ranges
4658 * provided by the architecture for a given node by using the end of the
4659 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4660 * zones within a node are in order of monotonic increases memory addresses
4661 */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)4662 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4663 unsigned long zone_type,
4664 unsigned long node_start_pfn,
4665 unsigned long node_end_pfn,
4666 unsigned long *zone_start_pfn,
4667 unsigned long *zone_end_pfn)
4668 {
4669 /* Only adjust if ZONE_MOVABLE is on this node */
4670 if (zone_movable_pfn[nid]) {
4671 /* Size ZONE_MOVABLE */
4672 if (zone_type == ZONE_MOVABLE) {
4673 *zone_start_pfn = zone_movable_pfn[nid];
4674 *zone_end_pfn = min(node_end_pfn,
4675 arch_zone_highest_possible_pfn[movable_zone]);
4676
4677 /* Adjust for ZONE_MOVABLE starting within this range */
4678 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4679 *zone_end_pfn > zone_movable_pfn[nid]) {
4680 *zone_end_pfn = zone_movable_pfn[nid];
4681
4682 /* Check if this whole range is within ZONE_MOVABLE */
4683 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4684 *zone_start_pfn = *zone_end_pfn;
4685 }
4686 }
4687
4688 /*
4689 * Return the number of pages a zone spans in a node, including holes
4690 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4691 */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * ignored)4692 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4693 unsigned long zone_type,
4694 unsigned long node_start_pfn,
4695 unsigned long node_end_pfn,
4696 unsigned long *ignored)
4697 {
4698 unsigned long zone_start_pfn, zone_end_pfn;
4699
4700 /* Get the start and end of the zone */
4701 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4702 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4703 adjust_zone_range_for_zone_movable(nid, zone_type,
4704 node_start_pfn, node_end_pfn,
4705 &zone_start_pfn, &zone_end_pfn);
4706
4707 /* Check that this node has pages within the zone's required range */
4708 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4709 return 0;
4710
4711 /* Move the zone boundaries inside the node if necessary */
4712 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4713 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4714
4715 /* Return the spanned pages */
4716 return zone_end_pfn - zone_start_pfn;
4717 }
4718
4719 /*
4720 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4721 * then all holes in the requested range will be accounted for.
4722 */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)4723 unsigned long __meminit __absent_pages_in_range(int nid,
4724 unsigned long range_start_pfn,
4725 unsigned long range_end_pfn)
4726 {
4727 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4728 unsigned long start_pfn, end_pfn;
4729 int i;
4730
4731 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4732 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4733 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4734 nr_absent -= end_pfn - start_pfn;
4735 }
4736 return nr_absent;
4737 }
4738
4739 /**
4740 * absent_pages_in_range - Return number of page frames in holes within a range
4741 * @start_pfn: The start PFN to start searching for holes
4742 * @end_pfn: The end PFN to stop searching for holes
4743 *
4744 * It returns the number of pages frames in memory holes within a range.
4745 */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)4746 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4747 unsigned long end_pfn)
4748 {
4749 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4750 }
4751
4752 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * ignored)4753 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4754 unsigned long zone_type,
4755 unsigned long node_start_pfn,
4756 unsigned long node_end_pfn,
4757 unsigned long *ignored)
4758 {
4759 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4760 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4761 unsigned long zone_start_pfn, zone_end_pfn;
4762
4763 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4764 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4765
4766 adjust_zone_range_for_zone_movable(nid, zone_type,
4767 node_start_pfn, node_end_pfn,
4768 &zone_start_pfn, &zone_end_pfn);
4769 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4770 }
4771
4772 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zones_size)4773 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4774 unsigned long zone_type,
4775 unsigned long node_start_pfn,
4776 unsigned long node_end_pfn,
4777 unsigned long *zones_size)
4778 {
4779 return zones_size[zone_type];
4780 }
4781
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zholes_size)4782 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4783 unsigned long zone_type,
4784 unsigned long node_start_pfn,
4785 unsigned long node_end_pfn,
4786 unsigned long *zholes_size)
4787 {
4788 if (!zholes_size)
4789 return 0;
4790
4791 return zholes_size[zone_type];
4792 }
4793
4794 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4795
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zones_size,unsigned long * zholes_size)4796 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4797 unsigned long node_start_pfn,
4798 unsigned long node_end_pfn,
4799 unsigned long *zones_size,
4800 unsigned long *zholes_size)
4801 {
4802 unsigned long realtotalpages, totalpages = 0;
4803 enum zone_type i;
4804
4805 for (i = 0; i < MAX_NR_ZONES; i++)
4806 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4807 node_start_pfn,
4808 node_end_pfn,
4809 zones_size);
4810 pgdat->node_spanned_pages = totalpages;
4811
4812 realtotalpages = totalpages;
4813 for (i = 0; i < MAX_NR_ZONES; i++)
4814 realtotalpages -=
4815 zone_absent_pages_in_node(pgdat->node_id, i,
4816 node_start_pfn, node_end_pfn,
4817 zholes_size);
4818 pgdat->node_present_pages = realtotalpages;
4819 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4820 realtotalpages);
4821 }
4822
4823 #ifndef CONFIG_SPARSEMEM
4824 /*
4825 * Calculate the size of the zone->blockflags rounded to an unsigned long
4826 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4827 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4828 * round what is now in bits to nearest long in bits, then return it in
4829 * bytes.
4830 */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)4831 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4832 {
4833 unsigned long usemapsize;
4834
4835 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4836 usemapsize = roundup(zonesize, pageblock_nr_pages);
4837 usemapsize = usemapsize >> pageblock_order;
4838 usemapsize *= NR_PAGEBLOCK_BITS;
4839 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4840
4841 return usemapsize / 8;
4842 }
4843
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)4844 static void __init setup_usemap(struct pglist_data *pgdat,
4845 struct zone *zone,
4846 unsigned long zone_start_pfn,
4847 unsigned long zonesize)
4848 {
4849 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4850 zone->pageblock_flags = NULL;
4851 if (usemapsize)
4852 zone->pageblock_flags =
4853 memblock_virt_alloc_node_nopanic(usemapsize,
4854 pgdat->node_id);
4855 }
4856 #else
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)4857 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4858 unsigned long zone_start_pfn, unsigned long zonesize) {}
4859 #endif /* CONFIG_SPARSEMEM */
4860
4861 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4862
4863 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)4864 void __paginginit set_pageblock_order(void)
4865 {
4866 unsigned int order;
4867
4868 /* Check that pageblock_nr_pages has not already been setup */
4869 if (pageblock_order)
4870 return;
4871
4872 if (HPAGE_SHIFT > PAGE_SHIFT)
4873 order = HUGETLB_PAGE_ORDER;
4874 else
4875 order = MAX_ORDER - 1;
4876
4877 /*
4878 * Assume the largest contiguous order of interest is a huge page.
4879 * This value may be variable depending on boot parameters on IA64 and
4880 * powerpc.
4881 */
4882 pageblock_order = order;
4883 }
4884 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4885
4886 /*
4887 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4888 * is unused as pageblock_order is set at compile-time. See
4889 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4890 * the kernel config
4891 */
set_pageblock_order(void)4892 void __paginginit set_pageblock_order(void)
4893 {
4894 }
4895
4896 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4897
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)4898 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4899 unsigned long present_pages)
4900 {
4901 unsigned long pages = spanned_pages;
4902
4903 /*
4904 * Provide a more accurate estimation if there are holes within
4905 * the zone and SPARSEMEM is in use. If there are holes within the
4906 * zone, each populated memory region may cost us one or two extra
4907 * memmap pages due to alignment because memmap pages for each
4908 * populated regions may not naturally algined on page boundary.
4909 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4910 */
4911 if (spanned_pages > present_pages + (present_pages >> 4) &&
4912 IS_ENABLED(CONFIG_SPARSEMEM))
4913 pages = present_pages;
4914
4915 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4916 }
4917
4918 /*
4919 * Set up the zone data structures:
4920 * - mark all pages reserved
4921 * - mark all memory queues empty
4922 * - clear the memory bitmaps
4923 *
4924 * NOTE: pgdat should get zeroed by caller.
4925 */
free_area_init_core(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zones_size,unsigned long * zholes_size)4926 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4927 unsigned long node_start_pfn, unsigned long node_end_pfn,
4928 unsigned long *zones_size, unsigned long *zholes_size)
4929 {
4930 enum zone_type j;
4931 int nid = pgdat->node_id;
4932 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4933 int ret;
4934
4935 pgdat_resize_init(pgdat);
4936 #ifdef CONFIG_NUMA_BALANCING
4937 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4938 pgdat->numabalancing_migrate_nr_pages = 0;
4939 pgdat->numabalancing_migrate_next_window = jiffies;
4940 #endif
4941 init_waitqueue_head(&pgdat->kswapd_wait);
4942 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4943 pgdat_page_ext_init(pgdat);
4944
4945 for (j = 0; j < MAX_NR_ZONES; j++) {
4946 struct zone *zone = pgdat->node_zones + j;
4947 unsigned long size, realsize, freesize, memmap_pages;
4948
4949 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4950 node_end_pfn, zones_size);
4951 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4952 node_start_pfn,
4953 node_end_pfn,
4954 zholes_size);
4955
4956 /*
4957 * Adjust freesize so that it accounts for how much memory
4958 * is used by this zone for memmap. This affects the watermark
4959 * and per-cpu initialisations
4960 */
4961 memmap_pages = calc_memmap_size(size, realsize);
4962 if (!is_highmem_idx(j)) {
4963 if (freesize >= memmap_pages) {
4964 freesize -= memmap_pages;
4965 if (memmap_pages)
4966 printk(KERN_DEBUG
4967 " %s zone: %lu pages used for memmap\n",
4968 zone_names[j], memmap_pages);
4969 } else
4970 printk(KERN_WARNING
4971 " %s zone: %lu pages exceeds freesize %lu\n",
4972 zone_names[j], memmap_pages, freesize);
4973 }
4974
4975 /* Account for reserved pages */
4976 if (j == 0 && freesize > dma_reserve) {
4977 freesize -= dma_reserve;
4978 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4979 zone_names[0], dma_reserve);
4980 }
4981
4982 if (!is_highmem_idx(j))
4983 nr_kernel_pages += freesize;
4984 /* Charge for highmem memmap if there are enough kernel pages */
4985 else if (nr_kernel_pages > memmap_pages * 2)
4986 nr_kernel_pages -= memmap_pages;
4987 nr_all_pages += freesize;
4988
4989 zone->spanned_pages = size;
4990 zone->present_pages = realsize;
4991 /*
4992 * Set an approximate value for lowmem here, it will be adjusted
4993 * when the bootmem allocator frees pages into the buddy system.
4994 * And all highmem pages will be managed by the buddy system.
4995 */
4996 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4997 #ifdef CONFIG_NUMA
4998 zone->node = nid;
4999 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5000 / 100;
5001 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5002 #endif
5003 zone->name = zone_names[j];
5004 spin_lock_init(&zone->lock);
5005 spin_lock_init(&zone->lru_lock);
5006 zone_seqlock_init(zone);
5007 zone->zone_pgdat = pgdat;
5008 zone_pcp_init(zone);
5009
5010 /* For bootup, initialized properly in watermark setup */
5011 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5012
5013 lruvec_init(&zone->lruvec);
5014 if (!size)
5015 continue;
5016
5017 set_pageblock_order();
5018 setup_usemap(pgdat, zone, zone_start_pfn, size);
5019 ret = init_currently_empty_zone(zone, zone_start_pfn,
5020 size, MEMMAP_EARLY);
5021 BUG_ON(ret);
5022 memmap_init(size, nid, j, zone_start_pfn);
5023 zone_start_pfn += size;
5024 }
5025 }
5026
alloc_node_mem_map(struct pglist_data * pgdat)5027 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5028 {
5029 /* Skip empty nodes */
5030 if (!pgdat->node_spanned_pages)
5031 return;
5032
5033 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5034 /* ia64 gets its own node_mem_map, before this, without bootmem */
5035 if (!pgdat->node_mem_map) {
5036 unsigned long size, start, end;
5037 struct page *map;
5038
5039 /*
5040 * The zone's endpoints aren't required to be MAX_ORDER
5041 * aligned but the node_mem_map endpoints must be in order
5042 * for the buddy allocator to function correctly.
5043 */
5044 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5045 end = pgdat_end_pfn(pgdat);
5046 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5047 size = (end - start) * sizeof(struct page);
5048 map = alloc_remap(pgdat->node_id, size);
5049 if (!map)
5050 map = memblock_virt_alloc_node_nopanic(size,
5051 pgdat->node_id);
5052 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5053 }
5054 #ifndef CONFIG_NEED_MULTIPLE_NODES
5055 /*
5056 * With no DISCONTIG, the global mem_map is just set as node 0's
5057 */
5058 if (pgdat == NODE_DATA(0)) {
5059 mem_map = NODE_DATA(0)->node_mem_map;
5060 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5061 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5062 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5063 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5064 }
5065 #endif
5066 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5067 }
5068
free_area_init_node(int nid,unsigned long * zones_size,unsigned long node_start_pfn,unsigned long * zholes_size)5069 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5070 unsigned long node_start_pfn, unsigned long *zholes_size)
5071 {
5072 pg_data_t *pgdat = NODE_DATA(nid);
5073 unsigned long start_pfn = 0;
5074 unsigned long end_pfn = 0;
5075
5076 /* pg_data_t should be reset to zero when it's allocated */
5077 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5078
5079 pgdat->node_id = nid;
5080 pgdat->node_start_pfn = node_start_pfn;
5081 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5082 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5083 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5084 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
5085 #endif
5086 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5087 zones_size, zholes_size);
5088
5089 alloc_node_mem_map(pgdat);
5090 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5091 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5092 nid, (unsigned long)pgdat,
5093 (unsigned long)pgdat->node_mem_map);
5094 #endif
5095
5096 free_area_init_core(pgdat, start_pfn, end_pfn,
5097 zones_size, zholes_size);
5098 }
5099
5100 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5101
5102 #if MAX_NUMNODES > 1
5103 /*
5104 * Figure out the number of possible node ids.
5105 */
setup_nr_node_ids(void)5106 void __init setup_nr_node_ids(void)
5107 {
5108 unsigned int node;
5109 unsigned int highest = 0;
5110
5111 for_each_node_mask(node, node_possible_map)
5112 highest = node;
5113 nr_node_ids = highest + 1;
5114 }
5115 #endif
5116
5117 /**
5118 * node_map_pfn_alignment - determine the maximum internode alignment
5119 *
5120 * This function should be called after node map is populated and sorted.
5121 * It calculates the maximum power of two alignment which can distinguish
5122 * all the nodes.
5123 *
5124 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5125 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5126 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5127 * shifted, 1GiB is enough and this function will indicate so.
5128 *
5129 * This is used to test whether pfn -> nid mapping of the chosen memory
5130 * model has fine enough granularity to avoid incorrect mapping for the
5131 * populated node map.
5132 *
5133 * Returns the determined alignment in pfn's. 0 if there is no alignment
5134 * requirement (single node).
5135 */
node_map_pfn_alignment(void)5136 unsigned long __init node_map_pfn_alignment(void)
5137 {
5138 unsigned long accl_mask = 0, last_end = 0;
5139 unsigned long start, end, mask;
5140 int last_nid = -1;
5141 int i, nid;
5142
5143 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5144 if (!start || last_nid < 0 || last_nid == nid) {
5145 last_nid = nid;
5146 last_end = end;
5147 continue;
5148 }
5149
5150 /*
5151 * Start with a mask granular enough to pin-point to the
5152 * start pfn and tick off bits one-by-one until it becomes
5153 * too coarse to separate the current node from the last.
5154 */
5155 mask = ~((1 << __ffs(start)) - 1);
5156 while (mask && last_end <= (start & (mask << 1)))
5157 mask <<= 1;
5158
5159 /* accumulate all internode masks */
5160 accl_mask |= mask;
5161 }
5162
5163 /* convert mask to number of pages */
5164 return ~accl_mask + 1;
5165 }
5166
5167 /* Find the lowest pfn for a node */
find_min_pfn_for_node(int nid)5168 static unsigned long __init find_min_pfn_for_node(int nid)
5169 {
5170 unsigned long min_pfn = ULONG_MAX;
5171 unsigned long start_pfn;
5172 int i;
5173
5174 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5175 min_pfn = min(min_pfn, start_pfn);
5176
5177 if (min_pfn == ULONG_MAX) {
5178 printk(KERN_WARNING
5179 "Could not find start_pfn for node %d\n", nid);
5180 return 0;
5181 }
5182
5183 return min_pfn;
5184 }
5185
5186 /**
5187 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5188 *
5189 * It returns the minimum PFN based on information provided via
5190 * memblock_set_node().
5191 */
find_min_pfn_with_active_regions(void)5192 unsigned long __init find_min_pfn_with_active_regions(void)
5193 {
5194 return find_min_pfn_for_node(MAX_NUMNODES);
5195 }
5196
5197 /*
5198 * early_calculate_totalpages()
5199 * Sum pages in active regions for movable zone.
5200 * Populate N_MEMORY for calculating usable_nodes.
5201 */
early_calculate_totalpages(void)5202 static unsigned long __init early_calculate_totalpages(void)
5203 {
5204 unsigned long totalpages = 0;
5205 unsigned long start_pfn, end_pfn;
5206 int i, nid;
5207
5208 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5209 unsigned long pages = end_pfn - start_pfn;
5210
5211 totalpages += pages;
5212 if (pages)
5213 node_set_state(nid, N_MEMORY);
5214 }
5215 return totalpages;
5216 }
5217
5218 /*
5219 * Find the PFN the Movable zone begins in each node. Kernel memory
5220 * is spread evenly between nodes as long as the nodes have enough
5221 * memory. When they don't, some nodes will have more kernelcore than
5222 * others
5223 */
find_zone_movable_pfns_for_nodes(void)5224 static void __init find_zone_movable_pfns_for_nodes(void)
5225 {
5226 int i, nid;
5227 unsigned long usable_startpfn;
5228 unsigned long kernelcore_node, kernelcore_remaining;
5229 /* save the state before borrow the nodemask */
5230 nodemask_t saved_node_state = node_states[N_MEMORY];
5231 unsigned long totalpages = early_calculate_totalpages();
5232 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5233 struct memblock_region *r;
5234
5235 /* Need to find movable_zone earlier when movable_node is specified. */
5236 find_usable_zone_for_movable();
5237
5238 /*
5239 * If movable_node is specified, ignore kernelcore and movablecore
5240 * options.
5241 */
5242 if (movable_node_is_enabled()) {
5243 for_each_memblock(memory, r) {
5244 if (!memblock_is_hotpluggable(r))
5245 continue;
5246
5247 nid = r->nid;
5248
5249 usable_startpfn = PFN_DOWN(r->base);
5250 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5251 min(usable_startpfn, zone_movable_pfn[nid]) :
5252 usable_startpfn;
5253 }
5254
5255 goto out2;
5256 }
5257
5258 /*
5259 * If movablecore=nn[KMG] was specified, calculate what size of
5260 * kernelcore that corresponds so that memory usable for
5261 * any allocation type is evenly spread. If both kernelcore
5262 * and movablecore are specified, then the value of kernelcore
5263 * will be used for required_kernelcore if it's greater than
5264 * what movablecore would have allowed.
5265 */
5266 if (required_movablecore) {
5267 unsigned long corepages;
5268
5269 /*
5270 * Round-up so that ZONE_MOVABLE is at least as large as what
5271 * was requested by the user
5272 */
5273 required_movablecore =
5274 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5275 corepages = totalpages - required_movablecore;
5276
5277 required_kernelcore = max(required_kernelcore, corepages);
5278 }
5279
5280 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5281 if (!required_kernelcore)
5282 goto out;
5283
5284 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5285 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5286
5287 restart:
5288 /* Spread kernelcore memory as evenly as possible throughout nodes */
5289 kernelcore_node = required_kernelcore / usable_nodes;
5290 for_each_node_state(nid, N_MEMORY) {
5291 unsigned long start_pfn, end_pfn;
5292
5293 /*
5294 * Recalculate kernelcore_node if the division per node
5295 * now exceeds what is necessary to satisfy the requested
5296 * amount of memory for the kernel
5297 */
5298 if (required_kernelcore < kernelcore_node)
5299 kernelcore_node = required_kernelcore / usable_nodes;
5300
5301 /*
5302 * As the map is walked, we track how much memory is usable
5303 * by the kernel using kernelcore_remaining. When it is
5304 * 0, the rest of the node is usable by ZONE_MOVABLE
5305 */
5306 kernelcore_remaining = kernelcore_node;
5307
5308 /* Go through each range of PFNs within this node */
5309 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5310 unsigned long size_pages;
5311
5312 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5313 if (start_pfn >= end_pfn)
5314 continue;
5315
5316 /* Account for what is only usable for kernelcore */
5317 if (start_pfn < usable_startpfn) {
5318 unsigned long kernel_pages;
5319 kernel_pages = min(end_pfn, usable_startpfn)
5320 - start_pfn;
5321
5322 kernelcore_remaining -= min(kernel_pages,
5323 kernelcore_remaining);
5324 required_kernelcore -= min(kernel_pages,
5325 required_kernelcore);
5326
5327 /* Continue if range is now fully accounted */
5328 if (end_pfn <= usable_startpfn) {
5329
5330 /*
5331 * Push zone_movable_pfn to the end so
5332 * that if we have to rebalance
5333 * kernelcore across nodes, we will
5334 * not double account here
5335 */
5336 zone_movable_pfn[nid] = end_pfn;
5337 continue;
5338 }
5339 start_pfn = usable_startpfn;
5340 }
5341
5342 /*
5343 * The usable PFN range for ZONE_MOVABLE is from
5344 * start_pfn->end_pfn. Calculate size_pages as the
5345 * number of pages used as kernelcore
5346 */
5347 size_pages = end_pfn - start_pfn;
5348 if (size_pages > kernelcore_remaining)
5349 size_pages = kernelcore_remaining;
5350 zone_movable_pfn[nid] = start_pfn + size_pages;
5351
5352 /*
5353 * Some kernelcore has been met, update counts and
5354 * break if the kernelcore for this node has been
5355 * satisfied
5356 */
5357 required_kernelcore -= min(required_kernelcore,
5358 size_pages);
5359 kernelcore_remaining -= size_pages;
5360 if (!kernelcore_remaining)
5361 break;
5362 }
5363 }
5364
5365 /*
5366 * If there is still required_kernelcore, we do another pass with one
5367 * less node in the count. This will push zone_movable_pfn[nid] further
5368 * along on the nodes that still have memory until kernelcore is
5369 * satisfied
5370 */
5371 usable_nodes--;
5372 if (usable_nodes && required_kernelcore > usable_nodes)
5373 goto restart;
5374
5375 out2:
5376 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5377 for (nid = 0; nid < MAX_NUMNODES; nid++)
5378 zone_movable_pfn[nid] =
5379 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5380
5381 out:
5382 /* restore the node_state */
5383 node_states[N_MEMORY] = saved_node_state;
5384 }
5385
5386 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat,int nid)5387 static void check_for_memory(pg_data_t *pgdat, int nid)
5388 {
5389 enum zone_type zone_type;
5390
5391 if (N_MEMORY == N_NORMAL_MEMORY)
5392 return;
5393
5394 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5395 struct zone *zone = &pgdat->node_zones[zone_type];
5396 if (populated_zone(zone)) {
5397 node_set_state(nid, N_HIGH_MEMORY);
5398 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5399 zone_type <= ZONE_NORMAL)
5400 node_set_state(nid, N_NORMAL_MEMORY);
5401 break;
5402 }
5403 }
5404 }
5405
5406 /**
5407 * free_area_init_nodes - Initialise all pg_data_t and zone data
5408 * @max_zone_pfn: an array of max PFNs for each zone
5409 *
5410 * This will call free_area_init_node() for each active node in the system.
5411 * Using the page ranges provided by memblock_set_node(), the size of each
5412 * zone in each node and their holes is calculated. If the maximum PFN
5413 * between two adjacent zones match, it is assumed that the zone is empty.
5414 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5415 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5416 * starts where the previous one ended. For example, ZONE_DMA32 starts
5417 * at arch_max_dma_pfn.
5418 */
free_area_init_nodes(unsigned long * max_zone_pfn)5419 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5420 {
5421 unsigned long start_pfn, end_pfn;
5422 int i, nid;
5423
5424 /* Record where the zone boundaries are */
5425 memset(arch_zone_lowest_possible_pfn, 0,
5426 sizeof(arch_zone_lowest_possible_pfn));
5427 memset(arch_zone_highest_possible_pfn, 0,
5428 sizeof(arch_zone_highest_possible_pfn));
5429 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5430 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5431 for (i = 1; i < MAX_NR_ZONES; i++) {
5432 if (i == ZONE_MOVABLE)
5433 continue;
5434 arch_zone_lowest_possible_pfn[i] =
5435 arch_zone_highest_possible_pfn[i-1];
5436 arch_zone_highest_possible_pfn[i] =
5437 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5438 }
5439 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5440 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5441
5442 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5443 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5444 find_zone_movable_pfns_for_nodes();
5445
5446 /* Print out the zone ranges */
5447 pr_info("Zone ranges:\n");
5448 for (i = 0; i < MAX_NR_ZONES; i++) {
5449 if (i == ZONE_MOVABLE)
5450 continue;
5451 pr_info(" %-8s ", zone_names[i]);
5452 if (arch_zone_lowest_possible_pfn[i] ==
5453 arch_zone_highest_possible_pfn[i])
5454 pr_cont("empty\n");
5455 else
5456 pr_cont("[mem %#018Lx-%#018Lx]\n",
5457 (u64)arch_zone_lowest_possible_pfn[i]
5458 << PAGE_SHIFT,
5459 ((u64)arch_zone_highest_possible_pfn[i]
5460 << PAGE_SHIFT) - 1);
5461 }
5462
5463 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5464 pr_info("Movable zone start for each node\n");
5465 for (i = 0; i < MAX_NUMNODES; i++) {
5466 if (zone_movable_pfn[i])
5467 pr_info(" Node %d: %#018Lx\n", i,
5468 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5469 }
5470
5471 /* Print out the early node map */
5472 pr_info("Early memory node ranges\n");
5473 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5474 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5475 (u64)start_pfn << PAGE_SHIFT,
5476 ((u64)end_pfn << PAGE_SHIFT) - 1);
5477
5478 /* Initialise every node */
5479 mminit_verify_pageflags_layout();
5480 setup_nr_node_ids();
5481 for_each_online_node(nid) {
5482 pg_data_t *pgdat = NODE_DATA(nid);
5483 free_area_init_node(nid, NULL,
5484 find_min_pfn_for_node(nid), NULL);
5485
5486 /* Any memory on that node */
5487 if (pgdat->node_present_pages)
5488 node_set_state(nid, N_MEMORY);
5489 check_for_memory(pgdat, nid);
5490 }
5491 }
5492
cmdline_parse_core(char * p,unsigned long * core)5493 static int __init cmdline_parse_core(char *p, unsigned long *core)
5494 {
5495 unsigned long long coremem;
5496 if (!p)
5497 return -EINVAL;
5498
5499 coremem = memparse(p, &p);
5500 *core = coremem >> PAGE_SHIFT;
5501
5502 /* Paranoid check that UL is enough for the coremem value */
5503 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5504
5505 return 0;
5506 }
5507
5508 /*
5509 * kernelcore=size sets the amount of memory for use for allocations that
5510 * cannot be reclaimed or migrated.
5511 */
cmdline_parse_kernelcore(char * p)5512 static int __init cmdline_parse_kernelcore(char *p)
5513 {
5514 return cmdline_parse_core(p, &required_kernelcore);
5515 }
5516
5517 /*
5518 * movablecore=size sets the amount of memory for use for allocations that
5519 * can be reclaimed or migrated.
5520 */
cmdline_parse_movablecore(char * p)5521 static int __init cmdline_parse_movablecore(char *p)
5522 {
5523 return cmdline_parse_core(p, &required_movablecore);
5524 }
5525
5526 early_param("kernelcore", cmdline_parse_kernelcore);
5527 early_param("movablecore", cmdline_parse_movablecore);
5528
5529 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5530
adjust_managed_page_count(struct page * page,long count)5531 void adjust_managed_page_count(struct page *page, long count)
5532 {
5533 spin_lock(&managed_page_count_lock);
5534 page_zone(page)->managed_pages += count;
5535 totalram_pages += count;
5536 #ifdef CONFIG_HIGHMEM
5537 if (PageHighMem(page))
5538 totalhigh_pages += count;
5539 #endif
5540 spin_unlock(&managed_page_count_lock);
5541 }
5542 EXPORT_SYMBOL(adjust_managed_page_count);
5543
free_reserved_area(void * start,void * end,int poison,char * s)5544 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5545 {
5546 void *pos;
5547 unsigned long pages = 0;
5548
5549 start = (void *)PAGE_ALIGN((unsigned long)start);
5550 end = (void *)((unsigned long)end & PAGE_MASK);
5551 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5552 if ((unsigned int)poison <= 0xFF)
5553 memset(pos, poison, PAGE_SIZE);
5554 free_reserved_page(virt_to_page(pos));
5555 }
5556
5557 if (pages && s)
5558 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5559 s, pages << (PAGE_SHIFT - 10), start, end);
5560
5561 return pages;
5562 }
5563 EXPORT_SYMBOL(free_reserved_area);
5564
5565 #ifdef CONFIG_HIGHMEM
free_highmem_page(struct page * page)5566 void free_highmem_page(struct page *page)
5567 {
5568 __free_reserved_page(page);
5569 totalram_pages++;
5570 page_zone(page)->managed_pages++;
5571 totalhigh_pages++;
5572 }
5573 #endif
5574
5575
mem_init_print_info(const char * str)5576 void __init mem_init_print_info(const char *str)
5577 {
5578 unsigned long physpages, codesize, datasize, rosize, bss_size;
5579 unsigned long init_code_size, init_data_size;
5580
5581 physpages = get_num_physpages();
5582 codesize = _etext - _stext;
5583 datasize = _edata - _sdata;
5584 rosize = __end_rodata - __start_rodata;
5585 bss_size = __bss_stop - __bss_start;
5586 init_data_size = __init_end - __init_begin;
5587 init_code_size = _einittext - _sinittext;
5588
5589 /*
5590 * Detect special cases and adjust section sizes accordingly:
5591 * 1) .init.* may be embedded into .data sections
5592 * 2) .init.text.* may be out of [__init_begin, __init_end],
5593 * please refer to arch/tile/kernel/vmlinux.lds.S.
5594 * 3) .rodata.* may be embedded into .text or .data sections.
5595 */
5596 #define adj_init_size(start, end, size, pos, adj) \
5597 do { \
5598 if (start <= pos && pos < end && size > adj) \
5599 size -= adj; \
5600 } while (0)
5601
5602 adj_init_size(__init_begin, __init_end, init_data_size,
5603 _sinittext, init_code_size);
5604 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5605 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5606 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5607 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5608
5609 #undef adj_init_size
5610
5611 pr_info("Memory: %luK/%luK available "
5612 "(%luK kernel code, %luK rwdata, %luK rodata, "
5613 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5614 #ifdef CONFIG_HIGHMEM
5615 ", %luK highmem"
5616 #endif
5617 "%s%s)\n",
5618 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5619 codesize >> 10, datasize >> 10, rosize >> 10,
5620 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5621 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5622 totalcma_pages << (PAGE_SHIFT-10),
5623 #ifdef CONFIG_HIGHMEM
5624 totalhigh_pages << (PAGE_SHIFT-10),
5625 #endif
5626 str ? ", " : "", str ? str : "");
5627 }
5628
5629 /**
5630 * set_dma_reserve - set the specified number of pages reserved in the first zone
5631 * @new_dma_reserve: The number of pages to mark reserved
5632 *
5633 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5634 * In the DMA zone, a significant percentage may be consumed by kernel image
5635 * and other unfreeable allocations which can skew the watermarks badly. This
5636 * function may optionally be used to account for unfreeable pages in the
5637 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5638 * smaller per-cpu batchsize.
5639 */
set_dma_reserve(unsigned long new_dma_reserve)5640 void __init set_dma_reserve(unsigned long new_dma_reserve)
5641 {
5642 dma_reserve = new_dma_reserve;
5643 }
5644
free_area_init(unsigned long * zones_size)5645 void __init free_area_init(unsigned long *zones_size)
5646 {
5647 free_area_init_node(0, zones_size,
5648 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5649 }
5650
page_alloc_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)5651 static int page_alloc_cpu_notify(struct notifier_block *self,
5652 unsigned long action, void *hcpu)
5653 {
5654 int cpu = (unsigned long)hcpu;
5655
5656 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5657 lru_add_drain_cpu(cpu);
5658 drain_pages(cpu);
5659
5660 /*
5661 * Spill the event counters of the dead processor
5662 * into the current processors event counters.
5663 * This artificially elevates the count of the current
5664 * processor.
5665 */
5666 vm_events_fold_cpu(cpu);
5667
5668 /*
5669 * Zero the differential counters of the dead processor
5670 * so that the vm statistics are consistent.
5671 *
5672 * This is only okay since the processor is dead and cannot
5673 * race with what we are doing.
5674 */
5675 cpu_vm_stats_fold(cpu);
5676 }
5677 return NOTIFY_OK;
5678 }
5679
page_alloc_init(void)5680 void __init page_alloc_init(void)
5681 {
5682 hotcpu_notifier(page_alloc_cpu_notify, 0);
5683 }
5684
5685 /*
5686 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5687 * or min_free_kbytes changes.
5688 */
calculate_totalreserve_pages(void)5689 static void calculate_totalreserve_pages(void)
5690 {
5691 struct pglist_data *pgdat;
5692 unsigned long reserve_pages = 0;
5693 enum zone_type i, j;
5694
5695 for_each_online_pgdat(pgdat) {
5696 for (i = 0; i < MAX_NR_ZONES; i++) {
5697 struct zone *zone = pgdat->node_zones + i;
5698 long max = 0;
5699
5700 /* Find valid and maximum lowmem_reserve in the zone */
5701 for (j = i; j < MAX_NR_ZONES; j++) {
5702 if (zone->lowmem_reserve[j] > max)
5703 max = zone->lowmem_reserve[j];
5704 }
5705
5706 /* we treat the high watermark as reserved pages. */
5707 max += high_wmark_pages(zone);
5708
5709 if (max > zone->managed_pages)
5710 max = zone->managed_pages;
5711 reserve_pages += max;
5712 /*
5713 * Lowmem reserves are not available to
5714 * GFP_HIGHUSER page cache allocations and
5715 * kswapd tries to balance zones to their high
5716 * watermark. As a result, neither should be
5717 * regarded as dirtyable memory, to prevent a
5718 * situation where reclaim has to clean pages
5719 * in order to balance the zones.
5720 */
5721 zone->dirty_balance_reserve = max;
5722 }
5723 }
5724 dirty_balance_reserve = reserve_pages;
5725 totalreserve_pages = reserve_pages;
5726 }
5727
5728 /*
5729 * setup_per_zone_lowmem_reserve - called whenever
5730 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5731 * has a correct pages reserved value, so an adequate number of
5732 * pages are left in the zone after a successful __alloc_pages().
5733 */
setup_per_zone_lowmem_reserve(void)5734 static void setup_per_zone_lowmem_reserve(void)
5735 {
5736 struct pglist_data *pgdat;
5737 enum zone_type j, idx;
5738
5739 for_each_online_pgdat(pgdat) {
5740 for (j = 0; j < MAX_NR_ZONES; j++) {
5741 struct zone *zone = pgdat->node_zones + j;
5742 unsigned long managed_pages = zone->managed_pages;
5743
5744 zone->lowmem_reserve[j] = 0;
5745
5746 idx = j;
5747 while (idx) {
5748 struct zone *lower_zone;
5749
5750 idx--;
5751
5752 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5753 sysctl_lowmem_reserve_ratio[idx] = 1;
5754
5755 lower_zone = pgdat->node_zones + idx;
5756 lower_zone->lowmem_reserve[j] = managed_pages /
5757 sysctl_lowmem_reserve_ratio[idx];
5758 managed_pages += lower_zone->managed_pages;
5759 }
5760 }
5761 }
5762
5763 /* update totalreserve_pages */
5764 calculate_totalreserve_pages();
5765 }
5766
__setup_per_zone_wmarks(void)5767 static void __setup_per_zone_wmarks(void)
5768 {
5769 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5770 unsigned long lowmem_pages = 0;
5771 struct zone *zone;
5772 unsigned long flags;
5773
5774 /* Calculate total number of !ZONE_HIGHMEM pages */
5775 for_each_zone(zone) {
5776 if (!is_highmem(zone))
5777 lowmem_pages += zone->managed_pages;
5778 }
5779
5780 for_each_zone(zone) {
5781 u64 tmp;
5782
5783 spin_lock_irqsave(&zone->lock, flags);
5784 tmp = (u64)pages_min * zone->managed_pages;
5785 do_div(tmp, lowmem_pages);
5786 if (is_highmem(zone)) {
5787 /*
5788 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5789 * need highmem pages, so cap pages_min to a small
5790 * value here.
5791 *
5792 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5793 * deltas control asynch page reclaim, and so should
5794 * not be capped for highmem.
5795 */
5796 unsigned long min_pages;
5797
5798 min_pages = zone->managed_pages / 1024;
5799 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5800 zone->watermark[WMARK_MIN] = min_pages;
5801 } else {
5802 /*
5803 * If it's a lowmem zone, reserve a number of pages
5804 * proportionate to the zone's size.
5805 */
5806 zone->watermark[WMARK_MIN] = tmp;
5807 }
5808
5809 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5810 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5811
5812 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5813 high_wmark_pages(zone) - low_wmark_pages(zone) -
5814 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5815
5816 setup_zone_migrate_reserve(zone);
5817 spin_unlock_irqrestore(&zone->lock, flags);
5818 }
5819
5820 /* update totalreserve_pages */
5821 calculate_totalreserve_pages();
5822 }
5823
5824 /**
5825 * setup_per_zone_wmarks - called when min_free_kbytes changes
5826 * or when memory is hot-{added|removed}
5827 *
5828 * Ensures that the watermark[min,low,high] values for each zone are set
5829 * correctly with respect to min_free_kbytes.
5830 */
setup_per_zone_wmarks(void)5831 void setup_per_zone_wmarks(void)
5832 {
5833 mutex_lock(&zonelists_mutex);
5834 __setup_per_zone_wmarks();
5835 mutex_unlock(&zonelists_mutex);
5836 }
5837
5838 /*
5839 * The inactive anon list should be small enough that the VM never has to
5840 * do too much work, but large enough that each inactive page has a chance
5841 * to be referenced again before it is swapped out.
5842 *
5843 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5844 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5845 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5846 * the anonymous pages are kept on the inactive list.
5847 *
5848 * total target max
5849 * memory ratio inactive anon
5850 * -------------------------------------
5851 * 10MB 1 5MB
5852 * 100MB 1 50MB
5853 * 1GB 3 250MB
5854 * 10GB 10 0.9GB
5855 * 100GB 31 3GB
5856 * 1TB 101 10GB
5857 * 10TB 320 32GB
5858 */
calculate_zone_inactive_ratio(struct zone * zone)5859 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5860 {
5861 unsigned int gb, ratio;
5862
5863 /* Zone size in gigabytes */
5864 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5865 if (gb)
5866 ratio = int_sqrt(10 * gb);
5867 else
5868 ratio = 1;
5869
5870 zone->inactive_ratio = ratio;
5871 }
5872
setup_per_zone_inactive_ratio(void)5873 static void __meminit setup_per_zone_inactive_ratio(void)
5874 {
5875 struct zone *zone;
5876
5877 for_each_zone(zone)
5878 calculate_zone_inactive_ratio(zone);
5879 }
5880
5881 /*
5882 * Initialise min_free_kbytes.
5883 *
5884 * For small machines we want it small (128k min). For large machines
5885 * we want it large (64MB max). But it is not linear, because network
5886 * bandwidth does not increase linearly with machine size. We use
5887 *
5888 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5889 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5890 *
5891 * which yields
5892 *
5893 * 16MB: 512k
5894 * 32MB: 724k
5895 * 64MB: 1024k
5896 * 128MB: 1448k
5897 * 256MB: 2048k
5898 * 512MB: 2896k
5899 * 1024MB: 4096k
5900 * 2048MB: 5792k
5901 * 4096MB: 8192k
5902 * 8192MB: 11584k
5903 * 16384MB: 16384k
5904 */
init_per_zone_wmark_min(void)5905 int __meminit init_per_zone_wmark_min(void)
5906 {
5907 unsigned long lowmem_kbytes;
5908 int new_min_free_kbytes;
5909
5910 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5911 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5912
5913 if (new_min_free_kbytes > user_min_free_kbytes) {
5914 min_free_kbytes = new_min_free_kbytes;
5915 if (min_free_kbytes < 128)
5916 min_free_kbytes = 128;
5917 if (min_free_kbytes > 65536)
5918 min_free_kbytes = 65536;
5919 } else {
5920 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5921 new_min_free_kbytes, user_min_free_kbytes);
5922 }
5923 setup_per_zone_wmarks();
5924 refresh_zone_stat_thresholds();
5925 setup_per_zone_lowmem_reserve();
5926 setup_per_zone_inactive_ratio();
5927 return 0;
5928 }
module_init(init_per_zone_wmark_min)5929 module_init(init_per_zone_wmark_min)
5930
5931 /*
5932 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5933 * that we can call two helper functions whenever min_free_kbytes
5934 * changes.
5935 */
5936 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5937 void __user *buffer, size_t *length, loff_t *ppos)
5938 {
5939 int rc;
5940
5941 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5942 if (rc)
5943 return rc;
5944
5945 if (write) {
5946 user_min_free_kbytes = min_free_kbytes;
5947 setup_per_zone_wmarks();
5948 }
5949 return 0;
5950 }
5951
5952 #ifdef CONFIG_NUMA
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)5953 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5954 void __user *buffer, size_t *length, loff_t *ppos)
5955 {
5956 struct zone *zone;
5957 int rc;
5958
5959 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5960 if (rc)
5961 return rc;
5962
5963 for_each_zone(zone)
5964 zone->min_unmapped_pages = (zone->managed_pages *
5965 sysctl_min_unmapped_ratio) / 100;
5966 return 0;
5967 }
5968
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)5969 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5970 void __user *buffer, size_t *length, loff_t *ppos)
5971 {
5972 struct zone *zone;
5973 int rc;
5974
5975 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5976 if (rc)
5977 return rc;
5978
5979 for_each_zone(zone)
5980 zone->min_slab_pages = (zone->managed_pages *
5981 sysctl_min_slab_ratio) / 100;
5982 return 0;
5983 }
5984 #endif
5985
5986 /*
5987 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5988 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5989 * whenever sysctl_lowmem_reserve_ratio changes.
5990 *
5991 * The reserve ratio obviously has absolutely no relation with the
5992 * minimum watermarks. The lowmem reserve ratio can only make sense
5993 * if in function of the boot time zone sizes.
5994 */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)5995 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5996 void __user *buffer, size_t *length, loff_t *ppos)
5997 {
5998 proc_dointvec_minmax(table, write, buffer, length, ppos);
5999 setup_per_zone_lowmem_reserve();
6000 return 0;
6001 }
6002
6003 /*
6004 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6005 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6006 * pagelist can have before it gets flushed back to buddy allocator.
6007 */
percpu_pagelist_fraction_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)6008 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6009 void __user *buffer, size_t *length, loff_t *ppos)
6010 {
6011 struct zone *zone;
6012 int old_percpu_pagelist_fraction;
6013 int ret;
6014
6015 mutex_lock(&pcp_batch_high_lock);
6016 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6017
6018 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6019 if (!write || ret < 0)
6020 goto out;
6021
6022 /* Sanity checking to avoid pcp imbalance */
6023 if (percpu_pagelist_fraction &&
6024 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6025 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6026 ret = -EINVAL;
6027 goto out;
6028 }
6029
6030 /* No change? */
6031 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6032 goto out;
6033
6034 for_each_populated_zone(zone) {
6035 unsigned int cpu;
6036
6037 for_each_possible_cpu(cpu)
6038 pageset_set_high_and_batch(zone,
6039 per_cpu_ptr(zone->pageset, cpu));
6040 }
6041 out:
6042 mutex_unlock(&pcp_batch_high_lock);
6043 return ret;
6044 }
6045
6046 int hashdist = HASHDIST_DEFAULT;
6047
6048 #ifdef CONFIG_NUMA
set_hashdist(char * str)6049 static int __init set_hashdist(char *str)
6050 {
6051 if (!str)
6052 return 0;
6053 hashdist = simple_strtoul(str, &str, 0);
6054 return 1;
6055 }
6056 __setup("hashdist=", set_hashdist);
6057 #endif
6058
6059 /*
6060 * allocate a large system hash table from bootmem
6061 * - it is assumed that the hash table must contain an exact power-of-2
6062 * quantity of entries
6063 * - limit is the number of hash buckets, not the total allocation size
6064 */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)6065 void *__init alloc_large_system_hash(const char *tablename,
6066 unsigned long bucketsize,
6067 unsigned long numentries,
6068 int scale,
6069 int flags,
6070 unsigned int *_hash_shift,
6071 unsigned int *_hash_mask,
6072 unsigned long low_limit,
6073 unsigned long high_limit)
6074 {
6075 unsigned long long max = high_limit;
6076 unsigned long log2qty, size;
6077 void *table = NULL;
6078
6079 /* allow the kernel cmdline to have a say */
6080 if (!numentries) {
6081 /* round applicable memory size up to nearest megabyte */
6082 numentries = nr_kernel_pages;
6083
6084 /* It isn't necessary when PAGE_SIZE >= 1MB */
6085 if (PAGE_SHIFT < 20)
6086 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6087
6088 /* limit to 1 bucket per 2^scale bytes of low memory */
6089 if (scale > PAGE_SHIFT)
6090 numentries >>= (scale - PAGE_SHIFT);
6091 else
6092 numentries <<= (PAGE_SHIFT - scale);
6093
6094 /* Make sure we've got at least a 0-order allocation.. */
6095 if (unlikely(flags & HASH_SMALL)) {
6096 /* Makes no sense without HASH_EARLY */
6097 WARN_ON(!(flags & HASH_EARLY));
6098 if (!(numentries >> *_hash_shift)) {
6099 numentries = 1UL << *_hash_shift;
6100 BUG_ON(!numentries);
6101 }
6102 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6103 numentries = PAGE_SIZE / bucketsize;
6104 }
6105 numentries = roundup_pow_of_two(numentries);
6106
6107 /* limit allocation size to 1/16 total memory by default */
6108 if (max == 0) {
6109 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6110 do_div(max, bucketsize);
6111 }
6112 max = min(max, 0x80000000ULL);
6113
6114 if (numentries < low_limit)
6115 numentries = low_limit;
6116 if (numentries > max)
6117 numentries = max;
6118
6119 log2qty = ilog2(numentries);
6120
6121 do {
6122 size = bucketsize << log2qty;
6123 if (flags & HASH_EARLY)
6124 table = memblock_virt_alloc_nopanic(size, 0);
6125 else if (hashdist)
6126 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6127 else {
6128 /*
6129 * If bucketsize is not a power-of-two, we may free
6130 * some pages at the end of hash table which
6131 * alloc_pages_exact() automatically does
6132 */
6133 if (get_order(size) < MAX_ORDER) {
6134 table = alloc_pages_exact(size, GFP_ATOMIC);
6135 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6136 }
6137 }
6138 } while (!table && size > PAGE_SIZE && --log2qty);
6139
6140 if (!table)
6141 panic("Failed to allocate %s hash table\n", tablename);
6142
6143 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6144 tablename,
6145 (1UL << log2qty),
6146 ilog2(size) - PAGE_SHIFT,
6147 size);
6148
6149 if (_hash_shift)
6150 *_hash_shift = log2qty;
6151 if (_hash_mask)
6152 *_hash_mask = (1 << log2qty) - 1;
6153
6154 return table;
6155 }
6156
6157 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(struct zone * zone,unsigned long pfn)6158 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6159 unsigned long pfn)
6160 {
6161 #ifdef CONFIG_SPARSEMEM
6162 return __pfn_to_section(pfn)->pageblock_flags;
6163 #else
6164 return zone->pageblock_flags;
6165 #endif /* CONFIG_SPARSEMEM */
6166 }
6167
pfn_to_bitidx(struct zone * zone,unsigned long pfn)6168 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6169 {
6170 #ifdef CONFIG_SPARSEMEM
6171 pfn &= (PAGES_PER_SECTION-1);
6172 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6173 #else
6174 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6175 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6176 #endif /* CONFIG_SPARSEMEM */
6177 }
6178
6179 /**
6180 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6181 * @page: The page within the block of interest
6182 * @pfn: The target page frame number
6183 * @end_bitidx: The last bit of interest to retrieve
6184 * @mask: mask of bits that the caller is interested in
6185 *
6186 * Return: pageblock_bits flags
6187 */
get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)6188 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6189 unsigned long end_bitidx,
6190 unsigned long mask)
6191 {
6192 struct zone *zone;
6193 unsigned long *bitmap;
6194 unsigned long bitidx, word_bitidx;
6195 unsigned long word;
6196
6197 zone = page_zone(page);
6198 bitmap = get_pageblock_bitmap(zone, pfn);
6199 bitidx = pfn_to_bitidx(zone, pfn);
6200 word_bitidx = bitidx / BITS_PER_LONG;
6201 bitidx &= (BITS_PER_LONG-1);
6202
6203 word = bitmap[word_bitidx];
6204 bitidx += end_bitidx;
6205 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6206 }
6207
6208 /**
6209 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6210 * @page: The page within the block of interest
6211 * @flags: The flags to set
6212 * @pfn: The target page frame number
6213 * @end_bitidx: The last bit of interest
6214 * @mask: mask of bits that the caller is interested in
6215 */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)6216 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6217 unsigned long pfn,
6218 unsigned long end_bitidx,
6219 unsigned long mask)
6220 {
6221 struct zone *zone;
6222 unsigned long *bitmap;
6223 unsigned long bitidx, word_bitidx;
6224 unsigned long old_word, word;
6225
6226 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6227
6228 zone = page_zone(page);
6229 bitmap = get_pageblock_bitmap(zone, pfn);
6230 bitidx = pfn_to_bitidx(zone, pfn);
6231 word_bitidx = bitidx / BITS_PER_LONG;
6232 bitidx &= (BITS_PER_LONG-1);
6233
6234 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6235
6236 bitidx += end_bitidx;
6237 mask <<= (BITS_PER_LONG - bitidx - 1);
6238 flags <<= (BITS_PER_LONG - bitidx - 1);
6239
6240 word = READ_ONCE(bitmap[word_bitidx]);
6241 for (;;) {
6242 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6243 if (word == old_word)
6244 break;
6245 word = old_word;
6246 }
6247 }
6248
6249 /*
6250 * This function checks whether pageblock includes unmovable pages or not.
6251 * If @count is not zero, it is okay to include less @count unmovable pages
6252 *
6253 * PageLRU check without isolation or lru_lock could race so that
6254 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6255 * expect this function should be exact.
6256 */
has_unmovable_pages(struct zone * zone,struct page * page,int count,bool skip_hwpoisoned_pages)6257 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6258 bool skip_hwpoisoned_pages)
6259 {
6260 unsigned long pfn, iter, found;
6261 int mt;
6262
6263 /*
6264 * For avoiding noise data, lru_add_drain_all() should be called
6265 * If ZONE_MOVABLE, the zone never contains unmovable pages
6266 */
6267 if (zone_idx(zone) == ZONE_MOVABLE)
6268 return false;
6269 mt = get_pageblock_migratetype(page);
6270 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6271 return false;
6272
6273 pfn = page_to_pfn(page);
6274 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6275 unsigned long check = pfn + iter;
6276
6277 if (!pfn_valid_within(check))
6278 continue;
6279
6280 page = pfn_to_page(check);
6281
6282 /*
6283 * Hugepages are not in LRU lists, but they're movable.
6284 * We need not scan over tail pages bacause we don't
6285 * handle each tail page individually in migration.
6286 */
6287 if (PageHuge(page)) {
6288 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6289 continue;
6290 }
6291
6292 /*
6293 * We can't use page_count without pin a page
6294 * because another CPU can free compound page.
6295 * This check already skips compound tails of THP
6296 * because their page->_count is zero at all time.
6297 */
6298 if (!atomic_read(&page->_count)) {
6299 if (PageBuddy(page))
6300 iter += (1 << page_order(page)) - 1;
6301 continue;
6302 }
6303
6304 /*
6305 * The HWPoisoned page may be not in buddy system, and
6306 * page_count() is not 0.
6307 */
6308 if (skip_hwpoisoned_pages && PageHWPoison(page))
6309 continue;
6310
6311 if (!PageLRU(page))
6312 found++;
6313 /*
6314 * If there are RECLAIMABLE pages, we need to check
6315 * it. But now, memory offline itself doesn't call
6316 * shrink_node_slabs() and it still to be fixed.
6317 */
6318 /*
6319 * If the page is not RAM, page_count()should be 0.
6320 * we don't need more check. This is an _used_ not-movable page.
6321 *
6322 * The problematic thing here is PG_reserved pages. PG_reserved
6323 * is set to both of a memory hole page and a _used_ kernel
6324 * page at boot.
6325 */
6326 if (found > count)
6327 return true;
6328 }
6329 return false;
6330 }
6331
is_pageblock_removable_nolock(struct page * page)6332 bool is_pageblock_removable_nolock(struct page *page)
6333 {
6334 struct zone *zone;
6335 unsigned long pfn;
6336
6337 /*
6338 * We have to be careful here because we are iterating over memory
6339 * sections which are not zone aware so we might end up outside of
6340 * the zone but still within the section.
6341 * We have to take care about the node as well. If the node is offline
6342 * its NODE_DATA will be NULL - see page_zone.
6343 */
6344 if (!node_online(page_to_nid(page)))
6345 return false;
6346
6347 zone = page_zone(page);
6348 pfn = page_to_pfn(page);
6349 if (!zone_spans_pfn(zone, pfn))
6350 return false;
6351
6352 return !has_unmovable_pages(zone, page, 0, true);
6353 }
6354
6355 #ifdef CONFIG_CMA
6356
pfn_max_align_down(unsigned long pfn)6357 static unsigned long pfn_max_align_down(unsigned long pfn)
6358 {
6359 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6360 pageblock_nr_pages) - 1);
6361 }
6362
pfn_max_align_up(unsigned long pfn)6363 static unsigned long pfn_max_align_up(unsigned long pfn)
6364 {
6365 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6366 pageblock_nr_pages));
6367 }
6368
6369 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)6370 static int __alloc_contig_migrate_range(struct compact_control *cc,
6371 unsigned long start, unsigned long end)
6372 {
6373 /* This function is based on compact_zone() from compaction.c. */
6374 unsigned long nr_reclaimed;
6375 unsigned long pfn = start;
6376 unsigned int tries = 0;
6377 int ret = 0;
6378
6379 migrate_prep();
6380
6381 while (pfn < end || !list_empty(&cc->migratepages)) {
6382 if (fatal_signal_pending(current)) {
6383 ret = -EINTR;
6384 break;
6385 }
6386
6387 if (list_empty(&cc->migratepages)) {
6388 cc->nr_migratepages = 0;
6389 pfn = isolate_migratepages_range(cc, pfn, end);
6390 if (!pfn) {
6391 ret = -EINTR;
6392 break;
6393 }
6394 tries = 0;
6395 } else if (++tries == 5) {
6396 ret = ret < 0 ? ret : -EBUSY;
6397 break;
6398 }
6399
6400 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6401 &cc->migratepages);
6402 cc->nr_migratepages -= nr_reclaimed;
6403
6404 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6405 NULL, 0, cc->mode, MR_CMA);
6406 }
6407 if (ret < 0) {
6408 putback_movable_pages(&cc->migratepages);
6409 return ret;
6410 }
6411 return 0;
6412 }
6413
6414 /**
6415 * alloc_contig_range() -- tries to allocate given range of pages
6416 * @start: start PFN to allocate
6417 * @end: one-past-the-last PFN to allocate
6418 * @migratetype: migratetype of the underlaying pageblocks (either
6419 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6420 * in range must have the same migratetype and it must
6421 * be either of the two.
6422 *
6423 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6424 * aligned, however it's the caller's responsibility to guarantee that
6425 * we are the only thread that changes migrate type of pageblocks the
6426 * pages fall in.
6427 *
6428 * The PFN range must belong to a single zone.
6429 *
6430 * Returns zero on success or negative error code. On success all
6431 * pages which PFN is in [start, end) are allocated for the caller and
6432 * need to be freed with free_contig_range().
6433 */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype)6434 int alloc_contig_range(unsigned long start, unsigned long end,
6435 unsigned migratetype)
6436 {
6437 unsigned long outer_start, outer_end;
6438 unsigned int order;
6439 int ret = 0;
6440
6441 struct compact_control cc = {
6442 .nr_migratepages = 0,
6443 .order = -1,
6444 .zone = page_zone(pfn_to_page(start)),
6445 .mode = MIGRATE_SYNC,
6446 .ignore_skip_hint = true,
6447 };
6448 INIT_LIST_HEAD(&cc.migratepages);
6449
6450 /*
6451 * What we do here is we mark all pageblocks in range as
6452 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6453 * have different sizes, and due to the way page allocator
6454 * work, we align the range to biggest of the two pages so
6455 * that page allocator won't try to merge buddies from
6456 * different pageblocks and change MIGRATE_ISOLATE to some
6457 * other migration type.
6458 *
6459 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6460 * migrate the pages from an unaligned range (ie. pages that
6461 * we are interested in). This will put all the pages in
6462 * range back to page allocator as MIGRATE_ISOLATE.
6463 *
6464 * When this is done, we take the pages in range from page
6465 * allocator removing them from the buddy system. This way
6466 * page allocator will never consider using them.
6467 *
6468 * This lets us mark the pageblocks back as
6469 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6470 * aligned range but not in the unaligned, original range are
6471 * put back to page allocator so that buddy can use them.
6472 */
6473
6474 ret = start_isolate_page_range(pfn_max_align_down(start),
6475 pfn_max_align_up(end), migratetype,
6476 false);
6477 if (ret)
6478 return ret;
6479
6480 ret = __alloc_contig_migrate_range(&cc, start, end);
6481 if (ret)
6482 goto done;
6483
6484 /*
6485 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6486 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6487 * more, all pages in [start, end) are free in page allocator.
6488 * What we are going to do is to allocate all pages from
6489 * [start, end) (that is remove them from page allocator).
6490 *
6491 * The only problem is that pages at the beginning and at the
6492 * end of interesting range may be not aligned with pages that
6493 * page allocator holds, ie. they can be part of higher order
6494 * pages. Because of this, we reserve the bigger range and
6495 * once this is done free the pages we are not interested in.
6496 *
6497 * We don't have to hold zone->lock here because the pages are
6498 * isolated thus they won't get removed from buddy.
6499 */
6500
6501 lru_add_drain_all();
6502 drain_all_pages(cc.zone);
6503
6504 order = 0;
6505 outer_start = start;
6506 while (!PageBuddy(pfn_to_page(outer_start))) {
6507 if (++order >= MAX_ORDER) {
6508 ret = -EBUSY;
6509 goto done;
6510 }
6511 outer_start &= ~0UL << order;
6512 }
6513
6514 /* Make sure the range is really isolated. */
6515 if (test_pages_isolated(outer_start, end, false)) {
6516 pr_info("%s: [%lx, %lx) PFNs busy\n",
6517 __func__, outer_start, end);
6518 ret = -EBUSY;
6519 goto done;
6520 }
6521
6522 /* Grab isolated pages from freelists. */
6523 outer_end = isolate_freepages_range(&cc, outer_start, end);
6524 if (!outer_end) {
6525 ret = -EBUSY;
6526 goto done;
6527 }
6528
6529 /* Free head and tail (if any) */
6530 if (start != outer_start)
6531 free_contig_range(outer_start, start - outer_start);
6532 if (end != outer_end)
6533 free_contig_range(end, outer_end - end);
6534
6535 done:
6536 undo_isolate_page_range(pfn_max_align_down(start),
6537 pfn_max_align_up(end), migratetype);
6538 return ret;
6539 }
6540
free_contig_range(unsigned long pfn,unsigned nr_pages)6541 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6542 {
6543 unsigned int count = 0;
6544
6545 for (; nr_pages--; pfn++) {
6546 struct page *page = pfn_to_page(pfn);
6547
6548 count += page_count(page) != 1;
6549 __free_page(page);
6550 }
6551 WARN(count != 0, "%d pages are still in use!\n", count);
6552 }
6553 #endif
6554
6555 #ifdef CONFIG_MEMORY_HOTPLUG
6556 /*
6557 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6558 * page high values need to be recalulated.
6559 */
zone_pcp_update(struct zone * zone)6560 void __meminit zone_pcp_update(struct zone *zone)
6561 {
6562 unsigned cpu;
6563 mutex_lock(&pcp_batch_high_lock);
6564 for_each_possible_cpu(cpu)
6565 pageset_set_high_and_batch(zone,
6566 per_cpu_ptr(zone->pageset, cpu));
6567 mutex_unlock(&pcp_batch_high_lock);
6568 }
6569 #endif
6570
zone_pcp_reset(struct zone * zone)6571 void zone_pcp_reset(struct zone *zone)
6572 {
6573 unsigned long flags;
6574 int cpu;
6575 struct per_cpu_pageset *pset;
6576
6577 /* avoid races with drain_pages() */
6578 local_irq_save(flags);
6579 if (zone->pageset != &boot_pageset) {
6580 for_each_online_cpu(cpu) {
6581 pset = per_cpu_ptr(zone->pageset, cpu);
6582 drain_zonestat(zone, pset);
6583 }
6584 free_percpu(zone->pageset);
6585 zone->pageset = &boot_pageset;
6586 }
6587 local_irq_restore(flags);
6588 }
6589
6590 #ifdef CONFIG_MEMORY_HOTREMOVE
6591 /*
6592 * All pages in the range must be isolated before calling this.
6593 */
6594 void
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6595 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6596 {
6597 struct page *page;
6598 struct zone *zone;
6599 unsigned int order, i;
6600 unsigned long pfn;
6601 unsigned long flags;
6602 /* find the first valid pfn */
6603 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6604 if (pfn_valid(pfn))
6605 break;
6606 if (pfn == end_pfn)
6607 return;
6608 zone = page_zone(pfn_to_page(pfn));
6609 spin_lock_irqsave(&zone->lock, flags);
6610 pfn = start_pfn;
6611 while (pfn < end_pfn) {
6612 if (!pfn_valid(pfn)) {
6613 pfn++;
6614 continue;
6615 }
6616 page = pfn_to_page(pfn);
6617 /*
6618 * The HWPoisoned page may be not in buddy system, and
6619 * page_count() is not 0.
6620 */
6621 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6622 pfn++;
6623 SetPageReserved(page);
6624 continue;
6625 }
6626
6627 BUG_ON(page_count(page));
6628 BUG_ON(!PageBuddy(page));
6629 order = page_order(page);
6630 #ifdef CONFIG_DEBUG_VM
6631 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6632 pfn, 1 << order, end_pfn);
6633 #endif
6634 list_del(&page->lru);
6635 rmv_page_order(page);
6636 zone->free_area[order].nr_free--;
6637 for (i = 0; i < (1 << order); i++)
6638 SetPageReserved((page+i));
6639 pfn += (1 << order);
6640 }
6641 spin_unlock_irqrestore(&zone->lock, flags);
6642 }
6643 #endif
6644
6645 #ifdef CONFIG_MEMORY_FAILURE
is_free_buddy_page(struct page * page)6646 bool is_free_buddy_page(struct page *page)
6647 {
6648 struct zone *zone = page_zone(page);
6649 unsigned long pfn = page_to_pfn(page);
6650 unsigned long flags;
6651 unsigned int order;
6652
6653 spin_lock_irqsave(&zone->lock, flags);
6654 for (order = 0; order < MAX_ORDER; order++) {
6655 struct page *page_head = page - (pfn & ((1 << order) - 1));
6656
6657 if (PageBuddy(page_head) && page_order(page_head) >= order)
6658 break;
6659 }
6660 spin_unlock_irqrestore(&zone->lock, flags);
6661
6662 return order < MAX_ORDER;
6663 }
6664 #endif
6665