1/* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17#include <linux/stddef.h> 18#include <linux/mm.h> 19#include <linux/swap.h> 20#include <linux/interrupt.h> 21#include <linux/pagemap.h> 22#include <linux/jiffies.h> 23#include <linux/bootmem.h> 24#include <linux/memblock.h> 25#include <linux/compiler.h> 26#include <linux/kernel.h> 27#include <linux/kmemcheck.h> 28#include <linux/kasan.h> 29#include <linux/module.h> 30#include <linux/suspend.h> 31#include <linux/pagevec.h> 32#include <linux/blkdev.h> 33#include <linux/slab.h> 34#include <linux/ratelimit.h> 35#include <linux/oom.h> 36#include <linux/notifier.h> 37#include <linux/topology.h> 38#include <linux/sysctl.h> 39#include <linux/cpu.h> 40#include <linux/cpuset.h> 41#include <linux/memory_hotplug.h> 42#include <linux/nodemask.h> 43#include <linux/vmalloc.h> 44#include <linux/vmstat.h> 45#include <linux/mempolicy.h> 46#include <linux/stop_machine.h> 47#include <linux/sort.h> 48#include <linux/pfn.h> 49#include <linux/backing-dev.h> 50#include <linux/fault-inject.h> 51#include <linux/page-isolation.h> 52#include <linux/page_ext.h> 53#include <linux/debugobjects.h> 54#include <linux/kmemleak.h> 55#include <linux/compaction.h> 56#include <trace/events/kmem.h> 57#include <linux/prefetch.h> 58#include <linux/mm_inline.h> 59#include <linux/migrate.h> 60#include <linux/page_ext.h> 61#include <linux/hugetlb.h> 62#include <linux/sched/rt.h> 63#include <linux/page_owner.h> 64 65#include <asm/sections.h> 66#include <asm/tlbflush.h> 67#include <asm/div64.h> 68#include "internal.h" 69 70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 71static DEFINE_MUTEX(pcp_batch_high_lock); 72#define MIN_PERCPU_PAGELIST_FRACTION (8) 73 74#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 75DEFINE_PER_CPU(int, numa_node); 76EXPORT_PER_CPU_SYMBOL(numa_node); 77#endif 78 79#ifdef CONFIG_HAVE_MEMORYLESS_NODES 80/* 81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 84 * defined in <linux/topology.h>. 85 */ 86DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 87EXPORT_PER_CPU_SYMBOL(_numa_mem_); 88int _node_numa_mem_[MAX_NUMNODES]; 89#endif 90 91/* 92 * Array of node states. 93 */ 94nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 95 [N_POSSIBLE] = NODE_MASK_ALL, 96 [N_ONLINE] = { { [0] = 1UL } }, 97#ifndef CONFIG_NUMA 98 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 99#ifdef CONFIG_HIGHMEM 100 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 101#endif 102#ifdef CONFIG_MOVABLE_NODE 103 [N_MEMORY] = { { [0] = 1UL } }, 104#endif 105 [N_CPU] = { { [0] = 1UL } }, 106#endif /* NUMA */ 107}; 108EXPORT_SYMBOL(node_states); 109 110/* Protect totalram_pages and zone->managed_pages */ 111static DEFINE_SPINLOCK(managed_page_count_lock); 112 113unsigned long totalram_pages __read_mostly; 114unsigned long totalreserve_pages __read_mostly; 115unsigned long totalcma_pages __read_mostly; 116/* 117 * When calculating the number of globally allowed dirty pages, there 118 * is a certain number of per-zone reserves that should not be 119 * considered dirtyable memory. This is the sum of those reserves 120 * over all existing zones that contribute dirtyable memory. 121 */ 122unsigned long dirty_balance_reserve __read_mostly; 123 124int percpu_pagelist_fraction; 125gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 126 127#ifdef CONFIG_PM_SLEEP 128/* 129 * The following functions are used by the suspend/hibernate code to temporarily 130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 131 * while devices are suspended. To avoid races with the suspend/hibernate code, 132 * they should always be called with pm_mutex held (gfp_allowed_mask also should 133 * only be modified with pm_mutex held, unless the suspend/hibernate code is 134 * guaranteed not to run in parallel with that modification). 135 */ 136 137static gfp_t saved_gfp_mask; 138 139void pm_restore_gfp_mask(void) 140{ 141 WARN_ON(!mutex_is_locked(&pm_mutex)); 142 if (saved_gfp_mask) { 143 gfp_allowed_mask = saved_gfp_mask; 144 saved_gfp_mask = 0; 145 } 146} 147 148void pm_restrict_gfp_mask(void) 149{ 150 WARN_ON(!mutex_is_locked(&pm_mutex)); 151 WARN_ON(saved_gfp_mask); 152 saved_gfp_mask = gfp_allowed_mask; 153 gfp_allowed_mask &= ~GFP_IOFS; 154} 155 156bool pm_suspended_storage(void) 157{ 158 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 159 return false; 160 return true; 161} 162#endif /* CONFIG_PM_SLEEP */ 163 164#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 165unsigned int pageblock_order __read_mostly; 166#endif 167 168static void __free_pages_ok(struct page *page, unsigned int order); 169 170/* 171 * results with 256, 32 in the lowmem_reserve sysctl: 172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 173 * 1G machine -> (16M dma, 784M normal, 224M high) 174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 176 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 177 * 178 * TBD: should special case ZONE_DMA32 machines here - in those we normally 179 * don't need any ZONE_NORMAL reservation 180 */ 181int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 182#ifdef CONFIG_ZONE_DMA 183 256, 184#endif 185#ifdef CONFIG_ZONE_DMA32 186 256, 187#endif 188#ifdef CONFIG_HIGHMEM 189 32, 190#endif 191 32, 192}; 193 194EXPORT_SYMBOL(totalram_pages); 195 196static char * const zone_names[MAX_NR_ZONES] = { 197#ifdef CONFIG_ZONE_DMA 198 "DMA", 199#endif 200#ifdef CONFIG_ZONE_DMA32 201 "DMA32", 202#endif 203 "Normal", 204#ifdef CONFIG_HIGHMEM 205 "HighMem", 206#endif 207 "Movable", 208}; 209 210int min_free_kbytes = 1024; 211int user_min_free_kbytes = -1; 212 213static unsigned long __meminitdata nr_kernel_pages; 214static unsigned long __meminitdata nr_all_pages; 215static unsigned long __meminitdata dma_reserve; 216 217#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 218static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 219static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 220static unsigned long __initdata required_kernelcore; 221static unsigned long __initdata required_movablecore; 222static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 223 224/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 225int movable_zone; 226EXPORT_SYMBOL(movable_zone); 227#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 228 229#if MAX_NUMNODES > 1 230int nr_node_ids __read_mostly = MAX_NUMNODES; 231int nr_online_nodes __read_mostly = 1; 232EXPORT_SYMBOL(nr_node_ids); 233EXPORT_SYMBOL(nr_online_nodes); 234#endif 235 236int page_group_by_mobility_disabled __read_mostly; 237 238void set_pageblock_migratetype(struct page *page, int migratetype) 239{ 240 if (unlikely(page_group_by_mobility_disabled && 241 migratetype < MIGRATE_PCPTYPES)) 242 migratetype = MIGRATE_UNMOVABLE; 243 244 set_pageblock_flags_group(page, (unsigned long)migratetype, 245 PB_migrate, PB_migrate_end); 246} 247 248#ifdef CONFIG_DEBUG_VM 249static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 250{ 251 int ret = 0; 252 unsigned seq; 253 unsigned long pfn = page_to_pfn(page); 254 unsigned long sp, start_pfn; 255 256 do { 257 seq = zone_span_seqbegin(zone); 258 start_pfn = zone->zone_start_pfn; 259 sp = zone->spanned_pages; 260 if (!zone_spans_pfn(zone, pfn)) 261 ret = 1; 262 } while (zone_span_seqretry(zone, seq)); 263 264 if (ret) 265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 266 pfn, zone_to_nid(zone), zone->name, 267 start_pfn, start_pfn + sp); 268 269 return ret; 270} 271 272static int page_is_consistent(struct zone *zone, struct page *page) 273{ 274 if (!pfn_valid_within(page_to_pfn(page))) 275 return 0; 276 if (zone != page_zone(page)) 277 return 0; 278 279 return 1; 280} 281/* 282 * Temporary debugging check for pages not lying within a given zone. 283 */ 284static int bad_range(struct zone *zone, struct page *page) 285{ 286 if (page_outside_zone_boundaries(zone, page)) 287 return 1; 288 if (!page_is_consistent(zone, page)) 289 return 1; 290 291 return 0; 292} 293#else 294static inline int bad_range(struct zone *zone, struct page *page) 295{ 296 return 0; 297} 298#endif 299 300static void bad_page(struct page *page, const char *reason, 301 unsigned long bad_flags) 302{ 303 static unsigned long resume; 304 static unsigned long nr_shown; 305 static unsigned long nr_unshown; 306 307 /* Don't complain about poisoned pages */ 308 if (PageHWPoison(page)) { 309 page_mapcount_reset(page); /* remove PageBuddy */ 310 return; 311 } 312 313 /* 314 * Allow a burst of 60 reports, then keep quiet for that minute; 315 * or allow a steady drip of one report per second. 316 */ 317 if (nr_shown == 60) { 318 if (time_before(jiffies, resume)) { 319 nr_unshown++; 320 goto out; 321 } 322 if (nr_unshown) { 323 printk(KERN_ALERT 324 "BUG: Bad page state: %lu messages suppressed\n", 325 nr_unshown); 326 nr_unshown = 0; 327 } 328 nr_shown = 0; 329 } 330 if (nr_shown++ == 0) 331 resume = jiffies + 60 * HZ; 332 333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 334 current->comm, page_to_pfn(page)); 335 dump_page_badflags(page, reason, bad_flags); 336 337 print_modules(); 338 dump_stack(); 339out: 340 /* Leave bad fields for debug, except PageBuddy could make trouble */ 341 page_mapcount_reset(page); /* remove PageBuddy */ 342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 343} 344 345/* 346 * Higher-order pages are called "compound pages". They are structured thusly: 347 * 348 * The first PAGE_SIZE page is called the "head page". 349 * 350 * The remaining PAGE_SIZE pages are called "tail pages". 351 * 352 * All pages have PG_compound set. All tail pages have their ->first_page 353 * pointing at the head page. 354 * 355 * The first tail page's ->lru.next holds the address of the compound page's 356 * put_page() function. Its ->lru.prev holds the order of allocation. 357 * This usage means that zero-order pages may not be compound. 358 */ 359 360static void free_compound_page(struct page *page) 361{ 362 __free_pages_ok(page, compound_order(page)); 363} 364 365void prep_compound_page(struct page *page, unsigned int order) 366{ 367 int i; 368 int nr_pages = 1 << order; 369 370 set_compound_page_dtor(page, free_compound_page); 371 set_compound_order(page, order); 372 __SetPageHead(page); 373 for (i = 1; i < nr_pages; i++) { 374 struct page *p = page + i; 375 set_page_count(p, 0); 376 p->first_page = page; 377 /* Make sure p->first_page is always valid for PageTail() */ 378 smp_wmb(); 379 __SetPageTail(p); 380 } 381} 382 383static inline void prep_zero_page(struct page *page, unsigned int order, 384 gfp_t gfp_flags) 385{ 386 int i; 387 388 /* 389 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 390 * and __GFP_HIGHMEM from hard or soft interrupt context. 391 */ 392 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 393 for (i = 0; i < (1 << order); i++) 394 clear_highpage(page + i); 395} 396 397#ifdef CONFIG_DEBUG_PAGEALLOC 398unsigned int _debug_guardpage_minorder; 399bool _debug_pagealloc_enabled __read_mostly; 400bool _debug_guardpage_enabled __read_mostly; 401 402static int __init early_debug_pagealloc(char *buf) 403{ 404 if (!buf) 405 return -EINVAL; 406 407 if (strcmp(buf, "on") == 0) 408 _debug_pagealloc_enabled = true; 409 410 return 0; 411} 412early_param("debug_pagealloc", early_debug_pagealloc); 413 414static bool need_debug_guardpage(void) 415{ 416 /* If we don't use debug_pagealloc, we don't need guard page */ 417 if (!debug_pagealloc_enabled()) 418 return false; 419 420 return true; 421} 422 423static void init_debug_guardpage(void) 424{ 425 if (!debug_pagealloc_enabled()) 426 return; 427 428 _debug_guardpage_enabled = true; 429} 430 431struct page_ext_operations debug_guardpage_ops = { 432 .need = need_debug_guardpage, 433 .init = init_debug_guardpage, 434}; 435 436static int __init debug_guardpage_minorder_setup(char *buf) 437{ 438 unsigned long res; 439 440 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 441 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 442 return 0; 443 } 444 _debug_guardpage_minorder = res; 445 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 446 return 0; 447} 448__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 449 450static inline void set_page_guard(struct zone *zone, struct page *page, 451 unsigned int order, int migratetype) 452{ 453 struct page_ext *page_ext; 454 455 if (!debug_guardpage_enabled()) 456 return; 457 458 page_ext = lookup_page_ext(page); 459 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 460 461 INIT_LIST_HEAD(&page->lru); 462 set_page_private(page, order); 463 /* Guard pages are not available for any usage */ 464 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 465} 466 467static inline void clear_page_guard(struct zone *zone, struct page *page, 468 unsigned int order, int migratetype) 469{ 470 struct page_ext *page_ext; 471 472 if (!debug_guardpage_enabled()) 473 return; 474 475 page_ext = lookup_page_ext(page); 476 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 477 478 set_page_private(page, 0); 479 if (!is_migrate_isolate(migratetype)) 480 __mod_zone_freepage_state(zone, (1 << order), migratetype); 481} 482#else 483struct page_ext_operations debug_guardpage_ops = { NULL, }; 484static inline void set_page_guard(struct zone *zone, struct page *page, 485 unsigned int order, int migratetype) {} 486static inline void clear_page_guard(struct zone *zone, struct page *page, 487 unsigned int order, int migratetype) {} 488#endif 489 490static inline void set_page_order(struct page *page, unsigned int order) 491{ 492 set_page_private(page, order); 493 __SetPageBuddy(page); 494} 495 496static inline void rmv_page_order(struct page *page) 497{ 498 __ClearPageBuddy(page); 499 set_page_private(page, 0); 500} 501 502/* 503 * This function checks whether a page is free && is the buddy 504 * we can do coalesce a page and its buddy if 505 * (a) the buddy is not in a hole && 506 * (b) the buddy is in the buddy system && 507 * (c) a page and its buddy have the same order && 508 * (d) a page and its buddy are in the same zone. 509 * 510 * For recording whether a page is in the buddy system, we set ->_mapcount 511 * PAGE_BUDDY_MAPCOUNT_VALUE. 512 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 513 * serialized by zone->lock. 514 * 515 * For recording page's order, we use page_private(page). 516 */ 517static inline int page_is_buddy(struct page *page, struct page *buddy, 518 unsigned int order) 519{ 520 if (!pfn_valid_within(page_to_pfn(buddy))) 521 return 0; 522 523 if (page_is_guard(buddy) && page_order(buddy) == order) { 524 if (page_zone_id(page) != page_zone_id(buddy)) 525 return 0; 526 527 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 528 529 return 1; 530 } 531 532 if (PageBuddy(buddy) && page_order(buddy) == order) { 533 /* 534 * zone check is done late to avoid uselessly 535 * calculating zone/node ids for pages that could 536 * never merge. 537 */ 538 if (page_zone_id(page) != page_zone_id(buddy)) 539 return 0; 540 541 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 542 543 return 1; 544 } 545 return 0; 546} 547 548/* 549 * Freeing function for a buddy system allocator. 550 * 551 * The concept of a buddy system is to maintain direct-mapped table 552 * (containing bit values) for memory blocks of various "orders". 553 * The bottom level table contains the map for the smallest allocatable 554 * units of memory (here, pages), and each level above it describes 555 * pairs of units from the levels below, hence, "buddies". 556 * At a high level, all that happens here is marking the table entry 557 * at the bottom level available, and propagating the changes upward 558 * as necessary, plus some accounting needed to play nicely with other 559 * parts of the VM system. 560 * At each level, we keep a list of pages, which are heads of continuous 561 * free pages of length of (1 << order) and marked with _mapcount 562 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 563 * field. 564 * So when we are allocating or freeing one, we can derive the state of the 565 * other. That is, if we allocate a small block, and both were 566 * free, the remainder of the region must be split into blocks. 567 * If a block is freed, and its buddy is also free, then this 568 * triggers coalescing into a block of larger size. 569 * 570 * -- nyc 571 */ 572 573static inline void __free_one_page(struct page *page, 574 unsigned long pfn, 575 struct zone *zone, unsigned int order, 576 int migratetype) 577{ 578 unsigned long page_idx; 579 unsigned long combined_idx; 580 unsigned long uninitialized_var(buddy_idx); 581 struct page *buddy; 582 unsigned int max_order; 583 584 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 585 586 VM_BUG_ON(!zone_is_initialized(zone)); 587 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 588 589 VM_BUG_ON(migratetype == -1); 590 if (likely(!is_migrate_isolate(migratetype))) 591 __mod_zone_freepage_state(zone, 1 << order, migratetype); 592 593 page_idx = pfn & ((1 << MAX_ORDER) - 1); 594 595 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); 596 VM_BUG_ON_PAGE(bad_range(zone, page), page); 597 598continue_merging: 599 while (order < max_order - 1) { 600 buddy_idx = __find_buddy_index(page_idx, order); 601 buddy = page + (buddy_idx - page_idx); 602 if (!page_is_buddy(page, buddy, order)) 603 goto done_merging; 604 /* 605 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 606 * merge with it and move up one order. 607 */ 608 if (page_is_guard(buddy)) { 609 clear_page_guard(zone, buddy, order, migratetype); 610 } else { 611 list_del(&buddy->lru); 612 zone->free_area[order].nr_free--; 613 rmv_page_order(buddy); 614 } 615 combined_idx = buddy_idx & page_idx; 616 page = page + (combined_idx - page_idx); 617 page_idx = combined_idx; 618 order++; 619 } 620 if (max_order < MAX_ORDER) { 621 /* If we are here, it means order is >= pageblock_order. 622 * We want to prevent merge between freepages on isolate 623 * pageblock and normal pageblock. Without this, pageblock 624 * isolation could cause incorrect freepage or CMA accounting. 625 * 626 * We don't want to hit this code for the more frequent 627 * low-order merging. 628 */ 629 if (unlikely(has_isolate_pageblock(zone))) { 630 int buddy_mt; 631 632 buddy_idx = __find_buddy_index(page_idx, order); 633 buddy = page + (buddy_idx - page_idx); 634 buddy_mt = get_pageblock_migratetype(buddy); 635 636 if (migratetype != buddy_mt 637 && (is_migrate_isolate(migratetype) || 638 is_migrate_isolate(buddy_mt))) 639 goto done_merging; 640 } 641 max_order++; 642 goto continue_merging; 643 } 644 645done_merging: 646 set_page_order(page, order); 647 648 /* 649 * If this is not the largest possible page, check if the buddy 650 * of the next-highest order is free. If it is, it's possible 651 * that pages are being freed that will coalesce soon. In case, 652 * that is happening, add the free page to the tail of the list 653 * so it's less likely to be used soon and more likely to be merged 654 * as a higher order page 655 */ 656 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 657 struct page *higher_page, *higher_buddy; 658 combined_idx = buddy_idx & page_idx; 659 higher_page = page + (combined_idx - page_idx); 660 buddy_idx = __find_buddy_index(combined_idx, order + 1); 661 higher_buddy = higher_page + (buddy_idx - combined_idx); 662 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 663 list_add_tail(&page->lru, 664 &zone->free_area[order].free_list[migratetype]); 665 goto out; 666 } 667 } 668 669 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 670out: 671 zone->free_area[order].nr_free++; 672} 673 674static inline int free_pages_check(struct page *page) 675{ 676 const char *bad_reason = NULL; 677 unsigned long bad_flags = 0; 678 679 if (unlikely(page_mapcount(page))) 680 bad_reason = "nonzero mapcount"; 681 if (unlikely(page->mapping != NULL)) 682 bad_reason = "non-NULL mapping"; 683 if (unlikely(atomic_read(&page->_count) != 0)) 684 bad_reason = "nonzero _count"; 685 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 686 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 687 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 688 } 689#ifdef CONFIG_MEMCG 690 if (unlikely(page->mem_cgroup)) 691 bad_reason = "page still charged to cgroup"; 692#endif 693 if (unlikely(bad_reason)) { 694 bad_page(page, bad_reason, bad_flags); 695 return 1; 696 } 697 page_cpupid_reset_last(page); 698 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 699 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 700 return 0; 701} 702 703/* 704 * Frees a number of pages from the PCP lists 705 * Assumes all pages on list are in same zone, and of same order. 706 * count is the number of pages to free. 707 * 708 * If the zone was previously in an "all pages pinned" state then look to 709 * see if this freeing clears that state. 710 * 711 * And clear the zone's pages_scanned counter, to hold off the "all pages are 712 * pinned" detection logic. 713 */ 714static void free_pcppages_bulk(struct zone *zone, int count, 715 struct per_cpu_pages *pcp) 716{ 717 int migratetype = 0; 718 int batch_free = 0; 719 int to_free = count; 720 unsigned long nr_scanned; 721 722 spin_lock(&zone->lock); 723 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 724 if (nr_scanned) 725 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 726 727 while (to_free) { 728 struct page *page; 729 struct list_head *list; 730 731 /* 732 * Remove pages from lists in a round-robin fashion. A 733 * batch_free count is maintained that is incremented when an 734 * empty list is encountered. This is so more pages are freed 735 * off fuller lists instead of spinning excessively around empty 736 * lists 737 */ 738 do { 739 batch_free++; 740 if (++migratetype == MIGRATE_PCPTYPES) 741 migratetype = 0; 742 list = &pcp->lists[migratetype]; 743 } while (list_empty(list)); 744 745 /* This is the only non-empty list. Free them all. */ 746 if (batch_free == MIGRATE_PCPTYPES) 747 batch_free = to_free; 748 749 do { 750 int mt; /* migratetype of the to-be-freed page */ 751 752 page = list_entry(list->prev, struct page, lru); 753 /* must delete as __free_one_page list manipulates */ 754 list_del(&page->lru); 755 mt = get_freepage_migratetype(page); 756 if (unlikely(has_isolate_pageblock(zone))) 757 mt = get_pageblock_migratetype(page); 758 759 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 760 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 761 trace_mm_page_pcpu_drain(page, 0, mt); 762 } while (--to_free && --batch_free && !list_empty(list)); 763 } 764 spin_unlock(&zone->lock); 765} 766 767static void free_one_page(struct zone *zone, 768 struct page *page, unsigned long pfn, 769 unsigned int order, 770 int migratetype) 771{ 772 unsigned long nr_scanned; 773 spin_lock(&zone->lock); 774 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 775 if (nr_scanned) 776 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 777 778 if (unlikely(has_isolate_pageblock(zone) || 779 is_migrate_isolate(migratetype))) { 780 migratetype = get_pfnblock_migratetype(page, pfn); 781 } 782 __free_one_page(page, pfn, zone, order, migratetype); 783 spin_unlock(&zone->lock); 784} 785 786static int free_tail_pages_check(struct page *head_page, struct page *page) 787{ 788 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 789 return 0; 790 if (unlikely(!PageTail(page))) { 791 bad_page(page, "PageTail not set", 0); 792 return 1; 793 } 794 if (unlikely(page->first_page != head_page)) { 795 bad_page(page, "first_page not consistent", 0); 796 return 1; 797 } 798 return 0; 799} 800 801static bool free_pages_prepare(struct page *page, unsigned int order) 802{ 803 bool compound = PageCompound(page); 804 int i, bad = 0; 805 806 VM_BUG_ON_PAGE(PageTail(page), page); 807 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 808 809 trace_mm_page_free(page, order); 810 kmemcheck_free_shadow(page, order); 811 kasan_free_pages(page, order); 812 813 if (PageAnon(page)) 814 page->mapping = NULL; 815 bad += free_pages_check(page); 816 for (i = 1; i < (1 << order); i++) { 817 if (compound) 818 bad += free_tail_pages_check(page, page + i); 819 bad += free_pages_check(page + i); 820 } 821 if (bad) 822 return false; 823 824 reset_page_owner(page, order); 825 826 if (!PageHighMem(page)) { 827 debug_check_no_locks_freed(page_address(page), 828 PAGE_SIZE << order); 829 debug_check_no_obj_freed(page_address(page), 830 PAGE_SIZE << order); 831 } 832 arch_free_page(page, order); 833 kernel_map_pages(page, 1 << order, 0); 834 835 return true; 836} 837 838static void __free_pages_ok(struct page *page, unsigned int order) 839{ 840 unsigned long flags; 841 int migratetype; 842 unsigned long pfn = page_to_pfn(page); 843 844 if (!free_pages_prepare(page, order)) 845 return; 846 847 migratetype = get_pfnblock_migratetype(page, pfn); 848 local_irq_save(flags); 849 __count_vm_events(PGFREE, 1 << order); 850 set_freepage_migratetype(page, migratetype); 851 free_one_page(page_zone(page), page, pfn, order, migratetype); 852 local_irq_restore(flags); 853} 854 855void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 856 unsigned int order) 857{ 858 unsigned int nr_pages = 1 << order; 859 struct page *p = page; 860 unsigned int loop; 861 862 prefetchw(p); 863 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 864 prefetchw(p + 1); 865 __ClearPageReserved(p); 866 set_page_count(p, 0); 867 } 868 __ClearPageReserved(p); 869 set_page_count(p, 0); 870 871 page_zone(page)->managed_pages += nr_pages; 872 set_page_refcounted(page); 873 __free_pages(page, order); 874} 875 876#ifdef CONFIG_CMA 877/* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 878void __init init_cma_reserved_pageblock(struct page *page) 879{ 880 unsigned i = pageblock_nr_pages; 881 struct page *p = page; 882 883 do { 884 __ClearPageReserved(p); 885 set_page_count(p, 0); 886 } while (++p, --i); 887 888 set_pageblock_migratetype(page, MIGRATE_CMA); 889 890 if (pageblock_order >= MAX_ORDER) { 891 i = pageblock_nr_pages; 892 p = page; 893 do { 894 set_page_refcounted(p); 895 __free_pages(p, MAX_ORDER - 1); 896 p += MAX_ORDER_NR_PAGES; 897 } while (i -= MAX_ORDER_NR_PAGES); 898 } else { 899 set_page_refcounted(page); 900 __free_pages(page, pageblock_order); 901 } 902 903 adjust_managed_page_count(page, pageblock_nr_pages); 904} 905#endif 906 907/* 908 * The order of subdivision here is critical for the IO subsystem. 909 * Please do not alter this order without good reasons and regression 910 * testing. Specifically, as large blocks of memory are subdivided, 911 * the order in which smaller blocks are delivered depends on the order 912 * they're subdivided in this function. This is the primary factor 913 * influencing the order in which pages are delivered to the IO 914 * subsystem according to empirical testing, and this is also justified 915 * by considering the behavior of a buddy system containing a single 916 * large block of memory acted on by a series of small allocations. 917 * This behavior is a critical factor in sglist merging's success. 918 * 919 * -- nyc 920 */ 921static inline void expand(struct zone *zone, struct page *page, 922 int low, int high, struct free_area *area, 923 int migratetype) 924{ 925 unsigned long size = 1 << high; 926 927 while (high > low) { 928 area--; 929 high--; 930 size >>= 1; 931 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 932 933 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 934 debug_guardpage_enabled() && 935 high < debug_guardpage_minorder()) { 936 /* 937 * Mark as guard pages (or page), that will allow to 938 * merge back to allocator when buddy will be freed. 939 * Corresponding page table entries will not be touched, 940 * pages will stay not present in virtual address space 941 */ 942 set_page_guard(zone, &page[size], high, migratetype); 943 continue; 944 } 945 list_add(&page[size].lru, &area->free_list[migratetype]); 946 area->nr_free++; 947 set_page_order(&page[size], high); 948 } 949} 950 951/* 952 * This page is about to be returned from the page allocator 953 */ 954static inline int check_new_page(struct page *page) 955{ 956 const char *bad_reason = NULL; 957 unsigned long bad_flags = 0; 958 959 if (unlikely(page_mapcount(page))) 960 bad_reason = "nonzero mapcount"; 961 if (unlikely(page->mapping != NULL)) 962 bad_reason = "non-NULL mapping"; 963 if (unlikely(atomic_read(&page->_count) != 0)) 964 bad_reason = "nonzero _count"; 965 if (unlikely(page->flags & __PG_HWPOISON)) { 966 bad_reason = "HWPoisoned (hardware-corrupted)"; 967 bad_flags = __PG_HWPOISON; 968 } 969 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 970 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 971 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 972 } 973#ifdef CONFIG_MEMCG 974 if (unlikely(page->mem_cgroup)) 975 bad_reason = "page still charged to cgroup"; 976#endif 977 if (unlikely(bad_reason)) { 978 bad_page(page, bad_reason, bad_flags); 979 return 1; 980 } 981 return 0; 982} 983 984static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 985 int alloc_flags) 986{ 987 int i; 988 989 for (i = 0; i < (1 << order); i++) { 990 struct page *p = page + i; 991 if (unlikely(check_new_page(p))) 992 return 1; 993 } 994 995 set_page_private(page, 0); 996 set_page_refcounted(page); 997 998 arch_alloc_page(page, order); 999 kernel_map_pages(page, 1 << order, 1); 1000 kasan_alloc_pages(page, order); 1001 1002 if (gfp_flags & __GFP_ZERO) 1003 prep_zero_page(page, order, gfp_flags); 1004 1005 if (order && (gfp_flags & __GFP_COMP)) 1006 prep_compound_page(page, order); 1007 1008 set_page_owner(page, order, gfp_flags); 1009 1010 /* 1011 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1012 * allocate the page. The expectation is that the caller is taking 1013 * steps that will free more memory. The caller should avoid the page 1014 * being used for !PFMEMALLOC purposes. 1015 */ 1016 if (alloc_flags & ALLOC_NO_WATERMARKS) 1017 set_page_pfmemalloc(page); 1018 else 1019 clear_page_pfmemalloc(page); 1020 1021 return 0; 1022} 1023 1024/* 1025 * Go through the free lists for the given migratetype and remove 1026 * the smallest available page from the freelists 1027 */ 1028static inline 1029struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1030 int migratetype) 1031{ 1032 unsigned int current_order; 1033 struct free_area *area; 1034 struct page *page; 1035 1036 /* Find a page of the appropriate size in the preferred list */ 1037 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1038 area = &(zone->free_area[current_order]); 1039 if (list_empty(&area->free_list[migratetype])) 1040 continue; 1041 1042 page = list_entry(area->free_list[migratetype].next, 1043 struct page, lru); 1044 list_del(&page->lru); 1045 rmv_page_order(page); 1046 area->nr_free--; 1047 expand(zone, page, order, current_order, area, migratetype); 1048 set_freepage_migratetype(page, migratetype); 1049 return page; 1050 } 1051 1052 return NULL; 1053} 1054 1055 1056/* 1057 * This array describes the order lists are fallen back to when 1058 * the free lists for the desirable migrate type are depleted 1059 */ 1060static int fallbacks[MIGRATE_TYPES][4] = { 1061 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 1062 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 1063 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 1064#ifdef CONFIG_CMA 1065 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 1066#endif 1067 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 1068#ifdef CONFIG_MEMORY_ISOLATION 1069 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 1070#endif 1071}; 1072 1073#ifdef CONFIG_CMA 1074static struct page *__rmqueue_cma_fallback(struct zone *zone, 1075 unsigned int order) 1076{ 1077 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1078} 1079#else 1080static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1081 unsigned int order) { return NULL; } 1082#endif 1083 1084/* 1085 * Move the free pages in a range to the free lists of the requested type. 1086 * Note that start_page and end_pages are not aligned on a pageblock 1087 * boundary. If alignment is required, use move_freepages_block() 1088 */ 1089int move_freepages(struct zone *zone, 1090 struct page *start_page, struct page *end_page, 1091 int migratetype) 1092{ 1093 struct page *page; 1094 unsigned int order; 1095 int pages_moved = 0; 1096 1097#ifndef CONFIG_HOLES_IN_ZONE 1098 /* 1099 * page_zone is not safe to call in this context when 1100 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1101 * anyway as we check zone boundaries in move_freepages_block(). 1102 * Remove at a later date when no bug reports exist related to 1103 * grouping pages by mobility 1104 */ 1105 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1106#endif 1107 1108 for (page = start_page; page <= end_page;) { 1109 /* Make sure we are not inadvertently changing nodes */ 1110 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1111 1112 if (!pfn_valid_within(page_to_pfn(page))) { 1113 page++; 1114 continue; 1115 } 1116 1117 if (!PageBuddy(page)) { 1118 page++; 1119 continue; 1120 } 1121 1122 order = page_order(page); 1123 list_move(&page->lru, 1124 &zone->free_area[order].free_list[migratetype]); 1125 set_freepage_migratetype(page, migratetype); 1126 page += 1 << order; 1127 pages_moved += 1 << order; 1128 } 1129 1130 return pages_moved; 1131} 1132 1133int move_freepages_block(struct zone *zone, struct page *page, 1134 int migratetype) 1135{ 1136 unsigned long start_pfn, end_pfn; 1137 struct page *start_page, *end_page; 1138 1139 start_pfn = page_to_pfn(page); 1140 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1141 start_page = pfn_to_page(start_pfn); 1142 end_page = start_page + pageblock_nr_pages - 1; 1143 end_pfn = start_pfn + pageblock_nr_pages - 1; 1144 1145 /* Do not cross zone boundaries */ 1146 if (!zone_spans_pfn(zone, start_pfn)) 1147 start_page = page; 1148 if (!zone_spans_pfn(zone, end_pfn)) 1149 return 0; 1150 1151 return move_freepages(zone, start_page, end_page, migratetype); 1152} 1153 1154static void change_pageblock_range(struct page *pageblock_page, 1155 int start_order, int migratetype) 1156{ 1157 int nr_pageblocks = 1 << (start_order - pageblock_order); 1158 1159 while (nr_pageblocks--) { 1160 set_pageblock_migratetype(pageblock_page, migratetype); 1161 pageblock_page += pageblock_nr_pages; 1162 } 1163} 1164 1165/* 1166 * When we are falling back to another migratetype during allocation, try to 1167 * steal extra free pages from the same pageblocks to satisfy further 1168 * allocations, instead of polluting multiple pageblocks. 1169 * 1170 * If we are stealing a relatively large buddy page, it is likely there will 1171 * be more free pages in the pageblock, so try to steal them all. For 1172 * reclaimable and unmovable allocations, we steal regardless of page size, 1173 * as fragmentation caused by those allocations polluting movable pageblocks 1174 * is worse than movable allocations stealing from unmovable and reclaimable 1175 * pageblocks. 1176 */ 1177static bool can_steal_fallback(unsigned int order, int start_mt) 1178{ 1179 /* 1180 * Leaving this order check is intended, although there is 1181 * relaxed order check in next check. The reason is that 1182 * we can actually steal whole pageblock if this condition met, 1183 * but, below check doesn't guarantee it and that is just heuristic 1184 * so could be changed anytime. 1185 */ 1186 if (order >= pageblock_order) 1187 return true; 1188 1189 if (order >= pageblock_order / 2 || 1190 start_mt == MIGRATE_RECLAIMABLE || 1191 start_mt == MIGRATE_UNMOVABLE || 1192 page_group_by_mobility_disabled) 1193 return true; 1194 1195 return false; 1196} 1197 1198/* 1199 * This function implements actual steal behaviour. If order is large enough, 1200 * we can steal whole pageblock. If not, we first move freepages in this 1201 * pageblock and check whether half of pages are moved or not. If half of 1202 * pages are moved, we can change migratetype of pageblock and permanently 1203 * use it's pages as requested migratetype in the future. 1204 */ 1205static void steal_suitable_fallback(struct zone *zone, struct page *page, 1206 int start_type) 1207{ 1208 unsigned int current_order = page_order(page); 1209 int pages; 1210 1211 /* Take ownership for orders >= pageblock_order */ 1212 if (current_order >= pageblock_order) { 1213 change_pageblock_range(page, current_order, start_type); 1214 return; 1215 } 1216 1217 pages = move_freepages_block(zone, page, start_type); 1218 1219 /* Claim the whole block if over half of it is free */ 1220 if (pages >= (1 << (pageblock_order-1)) || 1221 page_group_by_mobility_disabled) 1222 set_pageblock_migratetype(page, start_type); 1223} 1224 1225/* 1226 * Check whether there is a suitable fallback freepage with requested order. 1227 * If only_stealable is true, this function returns fallback_mt only if 1228 * we can steal other freepages all together. This would help to reduce 1229 * fragmentation due to mixed migratetype pages in one pageblock. 1230 */ 1231int find_suitable_fallback(struct free_area *area, unsigned int order, 1232 int migratetype, bool only_stealable, bool *can_steal) 1233{ 1234 int i; 1235 int fallback_mt; 1236 1237 if (area->nr_free == 0) 1238 return -1; 1239 1240 *can_steal = false; 1241 for (i = 0;; i++) { 1242 fallback_mt = fallbacks[migratetype][i]; 1243 if (fallback_mt == MIGRATE_RESERVE) 1244 break; 1245 1246 if (list_empty(&area->free_list[fallback_mt])) 1247 continue; 1248 1249 if (can_steal_fallback(order, migratetype)) 1250 *can_steal = true; 1251 1252 if (!only_stealable) 1253 return fallback_mt; 1254 1255 if (*can_steal) 1256 return fallback_mt; 1257 } 1258 1259 return -1; 1260} 1261 1262/* Remove an element from the buddy allocator from the fallback list */ 1263static inline struct page * 1264__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) 1265{ 1266 struct free_area *area; 1267 unsigned int current_order; 1268 struct page *page; 1269 int fallback_mt; 1270 bool can_steal; 1271 1272 /* Find the largest possible block of pages in the other list */ 1273 for (current_order = MAX_ORDER-1; 1274 current_order >= order && current_order <= MAX_ORDER-1; 1275 --current_order) { 1276 area = &(zone->free_area[current_order]); 1277 fallback_mt = find_suitable_fallback(area, current_order, 1278 start_migratetype, false, &can_steal); 1279 if (fallback_mt == -1) 1280 continue; 1281 1282 page = list_entry(area->free_list[fallback_mt].next, 1283 struct page, lru); 1284 if (can_steal) 1285 steal_suitable_fallback(zone, page, start_migratetype); 1286 1287 /* Remove the page from the freelists */ 1288 area->nr_free--; 1289 list_del(&page->lru); 1290 rmv_page_order(page); 1291 1292 expand(zone, page, order, current_order, area, 1293 start_migratetype); 1294 /* 1295 * The freepage_migratetype may differ from pageblock's 1296 * migratetype depending on the decisions in 1297 * try_to_steal_freepages(). This is OK as long as it 1298 * does not differ for MIGRATE_CMA pageblocks. For CMA 1299 * we need to make sure unallocated pages flushed from 1300 * pcp lists are returned to the correct freelist. 1301 */ 1302 set_freepage_migratetype(page, start_migratetype); 1303 1304 trace_mm_page_alloc_extfrag(page, order, current_order, 1305 start_migratetype, fallback_mt); 1306 1307 return page; 1308 } 1309 1310 return NULL; 1311} 1312 1313/* 1314 * Do the hard work of removing an element from the buddy allocator. 1315 * Call me with the zone->lock already held. 1316 */ 1317static struct page *__rmqueue(struct zone *zone, unsigned int order, 1318 int migratetype) 1319{ 1320 struct page *page; 1321 1322retry_reserve: 1323 page = __rmqueue_smallest(zone, order, migratetype); 1324 1325 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1326 if (migratetype == MIGRATE_MOVABLE) 1327 page = __rmqueue_cma_fallback(zone, order); 1328 1329 if (!page) 1330 page = __rmqueue_fallback(zone, order, migratetype); 1331 1332 /* 1333 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1334 * is used because __rmqueue_smallest is an inline function 1335 * and we want just one call site 1336 */ 1337 if (!page) { 1338 migratetype = MIGRATE_RESERVE; 1339 goto retry_reserve; 1340 } 1341 } 1342 1343 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1344 return page; 1345} 1346 1347/* 1348 * Obtain a specified number of elements from the buddy allocator, all under 1349 * a single hold of the lock, for efficiency. Add them to the supplied list. 1350 * Returns the number of new pages which were placed at *list. 1351 */ 1352static int rmqueue_bulk(struct zone *zone, unsigned int order, 1353 unsigned long count, struct list_head *list, 1354 int migratetype, bool cold) 1355{ 1356 int i; 1357 1358 spin_lock(&zone->lock); 1359 for (i = 0; i < count; ++i) { 1360 struct page *page = __rmqueue(zone, order, migratetype); 1361 if (unlikely(page == NULL)) 1362 break; 1363 1364 /* 1365 * Split buddy pages returned by expand() are received here 1366 * in physical page order. The page is added to the callers and 1367 * list and the list head then moves forward. From the callers 1368 * perspective, the linked list is ordered by page number in 1369 * some conditions. This is useful for IO devices that can 1370 * merge IO requests if the physical pages are ordered 1371 * properly. 1372 */ 1373 if (likely(!cold)) 1374 list_add(&page->lru, list); 1375 else 1376 list_add_tail(&page->lru, list); 1377 list = &page->lru; 1378 if (is_migrate_cma(get_freepage_migratetype(page))) 1379 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1380 -(1 << order)); 1381 } 1382 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1383 spin_unlock(&zone->lock); 1384 return i; 1385} 1386 1387#ifdef CONFIG_NUMA 1388/* 1389 * Called from the vmstat counter updater to drain pagesets of this 1390 * currently executing processor on remote nodes after they have 1391 * expired. 1392 * 1393 * Note that this function must be called with the thread pinned to 1394 * a single processor. 1395 */ 1396void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1397{ 1398 unsigned long flags; 1399 int to_drain, batch; 1400 1401 local_irq_save(flags); 1402 batch = READ_ONCE(pcp->batch); 1403 to_drain = min(pcp->count, batch); 1404 if (to_drain > 0) { 1405 free_pcppages_bulk(zone, to_drain, pcp); 1406 pcp->count -= to_drain; 1407 } 1408 local_irq_restore(flags); 1409} 1410#endif 1411 1412/* 1413 * Drain pcplists of the indicated processor and zone. 1414 * 1415 * The processor must either be the current processor and the 1416 * thread pinned to the current processor or a processor that 1417 * is not online. 1418 */ 1419static void drain_pages_zone(unsigned int cpu, struct zone *zone) 1420{ 1421 unsigned long flags; 1422 struct per_cpu_pageset *pset; 1423 struct per_cpu_pages *pcp; 1424 1425 local_irq_save(flags); 1426 pset = per_cpu_ptr(zone->pageset, cpu); 1427 1428 pcp = &pset->pcp; 1429 if (pcp->count) { 1430 free_pcppages_bulk(zone, pcp->count, pcp); 1431 pcp->count = 0; 1432 } 1433 local_irq_restore(flags); 1434} 1435 1436/* 1437 * Drain pcplists of all zones on the indicated processor. 1438 * 1439 * The processor must either be the current processor and the 1440 * thread pinned to the current processor or a processor that 1441 * is not online. 1442 */ 1443static void drain_pages(unsigned int cpu) 1444{ 1445 struct zone *zone; 1446 1447 for_each_populated_zone(zone) { 1448 drain_pages_zone(cpu, zone); 1449 } 1450} 1451 1452/* 1453 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1454 * 1455 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 1456 * the single zone's pages. 1457 */ 1458void drain_local_pages(struct zone *zone) 1459{ 1460 int cpu = smp_processor_id(); 1461 1462 if (zone) 1463 drain_pages_zone(cpu, zone); 1464 else 1465 drain_pages(cpu); 1466} 1467 1468/* 1469 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1470 * 1471 * When zone parameter is non-NULL, spill just the single zone's pages. 1472 * 1473 * Note that this code is protected against sending an IPI to an offline 1474 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1475 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1476 * nothing keeps CPUs from showing up after we populated the cpumask and 1477 * before the call to on_each_cpu_mask(). 1478 */ 1479void drain_all_pages(struct zone *zone) 1480{ 1481 int cpu; 1482 1483 /* 1484 * Allocate in the BSS so we wont require allocation in 1485 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1486 */ 1487 static cpumask_t cpus_with_pcps; 1488 1489 /* 1490 * We don't care about racing with CPU hotplug event 1491 * as offline notification will cause the notified 1492 * cpu to drain that CPU pcps and on_each_cpu_mask 1493 * disables preemption as part of its processing 1494 */ 1495 for_each_online_cpu(cpu) { 1496 struct per_cpu_pageset *pcp; 1497 struct zone *z; 1498 bool has_pcps = false; 1499 1500 if (zone) { 1501 pcp = per_cpu_ptr(zone->pageset, cpu); 1502 if (pcp->pcp.count) 1503 has_pcps = true; 1504 } else { 1505 for_each_populated_zone(z) { 1506 pcp = per_cpu_ptr(z->pageset, cpu); 1507 if (pcp->pcp.count) { 1508 has_pcps = true; 1509 break; 1510 } 1511 } 1512 } 1513 1514 if (has_pcps) 1515 cpumask_set_cpu(cpu, &cpus_with_pcps); 1516 else 1517 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1518 } 1519 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages, 1520 zone, 1); 1521} 1522 1523#ifdef CONFIG_HIBERNATION 1524 1525void mark_free_pages(struct zone *zone) 1526{ 1527 unsigned long pfn, max_zone_pfn; 1528 unsigned long flags; 1529 unsigned int order, t; 1530 struct list_head *curr; 1531 1532 if (zone_is_empty(zone)) 1533 return; 1534 1535 spin_lock_irqsave(&zone->lock, flags); 1536 1537 max_zone_pfn = zone_end_pfn(zone); 1538 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1539 if (pfn_valid(pfn)) { 1540 struct page *page = pfn_to_page(pfn); 1541 1542 if (!swsusp_page_is_forbidden(page)) 1543 swsusp_unset_page_free(page); 1544 } 1545 1546 for_each_migratetype_order(order, t) { 1547 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1548 unsigned long i; 1549 1550 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1551 for (i = 0; i < (1UL << order); i++) 1552 swsusp_set_page_free(pfn_to_page(pfn + i)); 1553 } 1554 } 1555 spin_unlock_irqrestore(&zone->lock, flags); 1556} 1557#endif /* CONFIG_PM */ 1558 1559/* 1560 * Free a 0-order page 1561 * cold == true ? free a cold page : free a hot page 1562 */ 1563void free_hot_cold_page(struct page *page, bool cold) 1564{ 1565 struct zone *zone = page_zone(page); 1566 struct per_cpu_pages *pcp; 1567 unsigned long flags; 1568 unsigned long pfn = page_to_pfn(page); 1569 int migratetype; 1570 1571 if (!free_pages_prepare(page, 0)) 1572 return; 1573 1574 migratetype = get_pfnblock_migratetype(page, pfn); 1575 set_freepage_migratetype(page, migratetype); 1576 local_irq_save(flags); 1577 __count_vm_event(PGFREE); 1578 1579 /* 1580 * We only track unmovable, reclaimable and movable on pcp lists. 1581 * Free ISOLATE pages back to the allocator because they are being 1582 * offlined but treat RESERVE as movable pages so we can get those 1583 * areas back if necessary. Otherwise, we may have to free 1584 * excessively into the page allocator 1585 */ 1586 if (migratetype >= MIGRATE_PCPTYPES) { 1587 if (unlikely(is_migrate_isolate(migratetype))) { 1588 free_one_page(zone, page, pfn, 0, migratetype); 1589 goto out; 1590 } 1591 migratetype = MIGRATE_MOVABLE; 1592 } 1593 1594 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1595 if (!cold) 1596 list_add(&page->lru, &pcp->lists[migratetype]); 1597 else 1598 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1599 pcp->count++; 1600 if (pcp->count >= pcp->high) { 1601 unsigned long batch = READ_ONCE(pcp->batch); 1602 free_pcppages_bulk(zone, batch, pcp); 1603 pcp->count -= batch; 1604 } 1605 1606out: 1607 local_irq_restore(flags); 1608} 1609 1610/* 1611 * Free a list of 0-order pages 1612 */ 1613void free_hot_cold_page_list(struct list_head *list, bool cold) 1614{ 1615 struct page *page, *next; 1616 1617 list_for_each_entry_safe(page, next, list, lru) { 1618 trace_mm_page_free_batched(page, cold); 1619 free_hot_cold_page(page, cold); 1620 } 1621} 1622 1623/* 1624 * split_page takes a non-compound higher-order page, and splits it into 1625 * n (1<<order) sub-pages: page[0..n] 1626 * Each sub-page must be freed individually. 1627 * 1628 * Note: this is probably too low level an operation for use in drivers. 1629 * Please consult with lkml before using this in your driver. 1630 */ 1631void split_page(struct page *page, unsigned int order) 1632{ 1633 int i; 1634 1635 VM_BUG_ON_PAGE(PageCompound(page), page); 1636 VM_BUG_ON_PAGE(!page_count(page), page); 1637 1638#ifdef CONFIG_KMEMCHECK 1639 /* 1640 * Split shadow pages too, because free(page[0]) would 1641 * otherwise free the whole shadow. 1642 */ 1643 if (kmemcheck_page_is_tracked(page)) 1644 split_page(virt_to_page(page[0].shadow), order); 1645#endif 1646 1647 set_page_owner(page, 0, 0); 1648 for (i = 1; i < (1 << order); i++) { 1649 set_page_refcounted(page + i); 1650 set_page_owner(page + i, 0, 0); 1651 } 1652} 1653EXPORT_SYMBOL_GPL(split_page); 1654 1655int __isolate_free_page(struct page *page, unsigned int order) 1656{ 1657 unsigned long watermark; 1658 struct zone *zone; 1659 int mt; 1660 1661 BUG_ON(!PageBuddy(page)); 1662 1663 zone = page_zone(page); 1664 mt = get_pageblock_migratetype(page); 1665 1666 if (!is_migrate_isolate(mt)) { 1667 /* Obey watermarks as if the page was being allocated */ 1668 watermark = low_wmark_pages(zone) + (1 << order); 1669 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1670 return 0; 1671 1672 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1673 } 1674 1675 /* Remove page from free list */ 1676 list_del(&page->lru); 1677 zone->free_area[order].nr_free--; 1678 rmv_page_order(page); 1679 1680 /* Set the pageblock if the isolated page is at least a pageblock */ 1681 if (order >= pageblock_order - 1) { 1682 struct page *endpage = page + (1 << order) - 1; 1683 for (; page < endpage; page += pageblock_nr_pages) { 1684 int mt = get_pageblock_migratetype(page); 1685 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 1686 set_pageblock_migratetype(page, 1687 MIGRATE_MOVABLE); 1688 } 1689 } 1690 1691 set_page_owner(page, order, 0); 1692 return 1UL << order; 1693} 1694 1695/* 1696 * Similar to split_page except the page is already free. As this is only 1697 * being used for migration, the migratetype of the block also changes. 1698 * As this is called with interrupts disabled, the caller is responsible 1699 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1700 * are enabled. 1701 * 1702 * Note: this is probably too low level an operation for use in drivers. 1703 * Please consult with lkml before using this in your driver. 1704 */ 1705int split_free_page(struct page *page) 1706{ 1707 unsigned int order; 1708 int nr_pages; 1709 1710 order = page_order(page); 1711 1712 nr_pages = __isolate_free_page(page, order); 1713 if (!nr_pages) 1714 return 0; 1715 1716 /* Split into individual pages */ 1717 set_page_refcounted(page); 1718 split_page(page, order); 1719 return nr_pages; 1720} 1721 1722/* 1723 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 1724 */ 1725static inline 1726struct page *buffered_rmqueue(struct zone *preferred_zone, 1727 struct zone *zone, unsigned int order, 1728 gfp_t gfp_flags, int migratetype) 1729{ 1730 unsigned long flags; 1731 struct page *page; 1732 bool cold = ((gfp_flags & __GFP_COLD) != 0); 1733 1734 if (likely(order == 0)) { 1735 struct per_cpu_pages *pcp; 1736 struct list_head *list; 1737 1738 local_irq_save(flags); 1739 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1740 list = &pcp->lists[migratetype]; 1741 if (list_empty(list)) { 1742 pcp->count += rmqueue_bulk(zone, 0, 1743 pcp->batch, list, 1744 migratetype, cold); 1745 if (unlikely(list_empty(list))) 1746 goto failed; 1747 } 1748 1749 if (cold) 1750 page = list_entry(list->prev, struct page, lru); 1751 else 1752 page = list_entry(list->next, struct page, lru); 1753 1754 list_del(&page->lru); 1755 pcp->count--; 1756 } else { 1757 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1758 /* 1759 * __GFP_NOFAIL is not to be used in new code. 1760 * 1761 * All __GFP_NOFAIL callers should be fixed so that they 1762 * properly detect and handle allocation failures. 1763 * 1764 * We most definitely don't want callers attempting to 1765 * allocate greater than order-1 page units with 1766 * __GFP_NOFAIL. 1767 */ 1768 WARN_ON_ONCE(order > 1); 1769 } 1770 spin_lock_irqsave(&zone->lock, flags); 1771 page = __rmqueue(zone, order, migratetype); 1772 spin_unlock(&zone->lock); 1773 if (!page) 1774 goto failed; 1775 __mod_zone_freepage_state(zone, -(1 << order), 1776 get_freepage_migratetype(page)); 1777 } 1778 1779 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); 1780 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 && 1781 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) 1782 set_bit(ZONE_FAIR_DEPLETED, &zone->flags); 1783 1784 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1785 zone_statistics(preferred_zone, zone, gfp_flags); 1786 local_irq_restore(flags); 1787 1788 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1789 return page; 1790 1791failed: 1792 local_irq_restore(flags); 1793 return NULL; 1794} 1795 1796#ifdef CONFIG_FAIL_PAGE_ALLOC 1797 1798static struct { 1799 struct fault_attr attr; 1800 1801 u32 ignore_gfp_highmem; 1802 u32 ignore_gfp_wait; 1803 u32 min_order; 1804} fail_page_alloc = { 1805 .attr = FAULT_ATTR_INITIALIZER, 1806 .ignore_gfp_wait = 1, 1807 .ignore_gfp_highmem = 1, 1808 .min_order = 1, 1809}; 1810 1811static int __init setup_fail_page_alloc(char *str) 1812{ 1813 return setup_fault_attr(&fail_page_alloc.attr, str); 1814} 1815__setup("fail_page_alloc=", setup_fail_page_alloc); 1816 1817static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1818{ 1819 if (order < fail_page_alloc.min_order) 1820 return false; 1821 if (gfp_mask & __GFP_NOFAIL) 1822 return false; 1823 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1824 return false; 1825 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1826 return false; 1827 1828 return should_fail(&fail_page_alloc.attr, 1 << order); 1829} 1830 1831#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1832 1833static int __init fail_page_alloc_debugfs(void) 1834{ 1835 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1836 struct dentry *dir; 1837 1838 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1839 &fail_page_alloc.attr); 1840 if (IS_ERR(dir)) 1841 return PTR_ERR(dir); 1842 1843 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1844 &fail_page_alloc.ignore_gfp_wait)) 1845 goto fail; 1846 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1847 &fail_page_alloc.ignore_gfp_highmem)) 1848 goto fail; 1849 if (!debugfs_create_u32("min-order", mode, dir, 1850 &fail_page_alloc.min_order)) 1851 goto fail; 1852 1853 return 0; 1854fail: 1855 debugfs_remove_recursive(dir); 1856 1857 return -ENOMEM; 1858} 1859 1860late_initcall(fail_page_alloc_debugfs); 1861 1862#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1863 1864#else /* CONFIG_FAIL_PAGE_ALLOC */ 1865 1866static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1867{ 1868 return false; 1869} 1870 1871#endif /* CONFIG_FAIL_PAGE_ALLOC */ 1872 1873/* 1874 * Return true if free pages are above 'mark'. This takes into account the order 1875 * of the allocation. 1876 */ 1877static bool __zone_watermark_ok(struct zone *z, unsigned int order, 1878 unsigned long mark, int classzone_idx, int alloc_flags, 1879 long free_pages) 1880{ 1881 /* free_pages may go negative - that's OK */ 1882 long min = mark; 1883 int o; 1884 long free_cma = 0; 1885 1886 free_pages -= (1 << order) - 1; 1887 if (alloc_flags & ALLOC_HIGH) 1888 min -= min / 2; 1889 if (alloc_flags & ALLOC_HARDER) 1890 min -= min / 4; 1891#ifdef CONFIG_CMA 1892 /* If allocation can't use CMA areas don't use free CMA pages */ 1893 if (!(alloc_flags & ALLOC_CMA)) 1894 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); 1895#endif 1896 1897 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx]) 1898 return false; 1899 for (o = 0; o < order; o++) { 1900 /* At the next order, this order's pages become unavailable */ 1901 free_pages -= z->free_area[o].nr_free << o; 1902 1903 /* Require fewer higher order pages to be free */ 1904 min >>= 1; 1905 1906 if (free_pages <= min) 1907 return false; 1908 } 1909 return true; 1910} 1911 1912bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1913 int classzone_idx, int alloc_flags) 1914{ 1915 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1916 zone_page_state(z, NR_FREE_PAGES)); 1917} 1918 1919bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1920 unsigned long mark, int classzone_idx, int alloc_flags) 1921{ 1922 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1923 1924 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1925 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1926 1927 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1928 free_pages); 1929} 1930 1931#ifdef CONFIG_NUMA 1932/* 1933 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1934 * skip over zones that are not allowed by the cpuset, or that have 1935 * been recently (in last second) found to be nearly full. See further 1936 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1937 * that have to skip over a lot of full or unallowed zones. 1938 * 1939 * If the zonelist cache is present in the passed zonelist, then 1940 * returns a pointer to the allowed node mask (either the current 1941 * tasks mems_allowed, or node_states[N_MEMORY].) 1942 * 1943 * If the zonelist cache is not available for this zonelist, does 1944 * nothing and returns NULL. 1945 * 1946 * If the fullzones BITMAP in the zonelist cache is stale (more than 1947 * a second since last zap'd) then we zap it out (clear its bits.) 1948 * 1949 * We hold off even calling zlc_setup, until after we've checked the 1950 * first zone in the zonelist, on the theory that most allocations will 1951 * be satisfied from that first zone, so best to examine that zone as 1952 * quickly as we can. 1953 */ 1954static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1955{ 1956 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1957 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1958 1959 zlc = zonelist->zlcache_ptr; 1960 if (!zlc) 1961 return NULL; 1962 1963 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1964 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1965 zlc->last_full_zap = jiffies; 1966 } 1967 1968 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1969 &cpuset_current_mems_allowed : 1970 &node_states[N_MEMORY]; 1971 return allowednodes; 1972} 1973 1974/* 1975 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1976 * if it is worth looking at further for free memory: 1977 * 1) Check that the zone isn't thought to be full (doesn't have its 1978 * bit set in the zonelist_cache fullzones BITMAP). 1979 * 2) Check that the zones node (obtained from the zonelist_cache 1980 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1981 * Return true (non-zero) if zone is worth looking at further, or 1982 * else return false (zero) if it is not. 1983 * 1984 * This check -ignores- the distinction between various watermarks, 1985 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1986 * found to be full for any variation of these watermarks, it will 1987 * be considered full for up to one second by all requests, unless 1988 * we are so low on memory on all allowed nodes that we are forced 1989 * into the second scan of the zonelist. 1990 * 1991 * In the second scan we ignore this zonelist cache and exactly 1992 * apply the watermarks to all zones, even it is slower to do so. 1993 * We are low on memory in the second scan, and should leave no stone 1994 * unturned looking for a free page. 1995 */ 1996static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1997 nodemask_t *allowednodes) 1998{ 1999 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 2000 int i; /* index of *z in zonelist zones */ 2001 int n; /* node that zone *z is on */ 2002 2003 zlc = zonelist->zlcache_ptr; 2004 if (!zlc) 2005 return 1; 2006 2007 i = z - zonelist->_zonerefs; 2008 n = zlc->z_to_n[i]; 2009 2010 /* This zone is worth trying if it is allowed but not full */ 2011 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 2012} 2013 2014/* 2015 * Given 'z' scanning a zonelist, set the corresponding bit in 2016 * zlc->fullzones, so that subsequent attempts to allocate a page 2017 * from that zone don't waste time re-examining it. 2018 */ 2019static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 2020{ 2021 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 2022 int i; /* index of *z in zonelist zones */ 2023 2024 zlc = zonelist->zlcache_ptr; 2025 if (!zlc) 2026 return; 2027 2028 i = z - zonelist->_zonerefs; 2029 2030 set_bit(i, zlc->fullzones); 2031} 2032 2033/* 2034 * clear all zones full, called after direct reclaim makes progress so that 2035 * a zone that was recently full is not skipped over for up to a second 2036 */ 2037static void zlc_clear_zones_full(struct zonelist *zonelist) 2038{ 2039 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 2040 2041 zlc = zonelist->zlcache_ptr; 2042 if (!zlc) 2043 return; 2044 2045 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2046} 2047 2048static bool zone_local(struct zone *local_zone, struct zone *zone) 2049{ 2050 return local_zone->node == zone->node; 2051} 2052 2053static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2054{ 2055 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < 2056 RECLAIM_DISTANCE; 2057} 2058 2059#else /* CONFIG_NUMA */ 2060 2061static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 2062{ 2063 return NULL; 2064} 2065 2066static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 2067 nodemask_t *allowednodes) 2068{ 2069 return 1; 2070} 2071 2072static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 2073{ 2074} 2075 2076static void zlc_clear_zones_full(struct zonelist *zonelist) 2077{ 2078} 2079 2080static bool zone_local(struct zone *local_zone, struct zone *zone) 2081{ 2082 return true; 2083} 2084 2085static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2086{ 2087 return true; 2088} 2089 2090#endif /* CONFIG_NUMA */ 2091 2092static void reset_alloc_batches(struct zone *preferred_zone) 2093{ 2094 struct zone *zone = preferred_zone->zone_pgdat->node_zones; 2095 2096 do { 2097 mod_zone_page_state(zone, NR_ALLOC_BATCH, 2098 high_wmark_pages(zone) - low_wmark_pages(zone) - 2099 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 2100 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags); 2101 } while (zone++ != preferred_zone); 2102} 2103 2104/* 2105 * get_page_from_freelist goes through the zonelist trying to allocate 2106 * a page. 2107 */ 2108static struct page * 2109get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 2110 const struct alloc_context *ac) 2111{ 2112 struct zonelist *zonelist = ac->zonelist; 2113 struct zoneref *z; 2114 struct page *page = NULL; 2115 struct zone *zone; 2116 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 2117 int zlc_active = 0; /* set if using zonelist_cache */ 2118 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 2119 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) && 2120 (gfp_mask & __GFP_WRITE); 2121 int nr_fair_skipped = 0; 2122 bool zonelist_rescan; 2123 2124zonelist_scan: 2125 zonelist_rescan = false; 2126 2127 /* 2128 * Scan zonelist, looking for a zone with enough free. 2129 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 2130 */ 2131 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2132 ac->nodemask) { 2133 unsigned long mark; 2134 2135 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 2136 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 2137 continue; 2138 if (cpusets_enabled() && 2139 (alloc_flags & ALLOC_CPUSET) && 2140 !cpuset_zone_allowed(zone, gfp_mask)) 2141 continue; 2142 /* 2143 * Distribute pages in proportion to the individual 2144 * zone size to ensure fair page aging. The zone a 2145 * page was allocated in should have no effect on the 2146 * time the page has in memory before being reclaimed. 2147 */ 2148 if (alloc_flags & ALLOC_FAIR) { 2149 if (!zone_local(ac->preferred_zone, zone)) 2150 break; 2151 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) { 2152 nr_fair_skipped++; 2153 continue; 2154 } 2155 } 2156 /* 2157 * When allocating a page cache page for writing, we 2158 * want to get it from a zone that is within its dirty 2159 * limit, such that no single zone holds more than its 2160 * proportional share of globally allowed dirty pages. 2161 * The dirty limits take into account the zone's 2162 * lowmem reserves and high watermark so that kswapd 2163 * should be able to balance it without having to 2164 * write pages from its LRU list. 2165 * 2166 * This may look like it could increase pressure on 2167 * lower zones by failing allocations in higher zones 2168 * before they are full. But the pages that do spill 2169 * over are limited as the lower zones are protected 2170 * by this very same mechanism. It should not become 2171 * a practical burden to them. 2172 * 2173 * XXX: For now, allow allocations to potentially 2174 * exceed the per-zone dirty limit in the slowpath 2175 * (ALLOC_WMARK_LOW unset) before going into reclaim, 2176 * which is important when on a NUMA setup the allowed 2177 * zones are together not big enough to reach the 2178 * global limit. The proper fix for these situations 2179 * will require awareness of zones in the 2180 * dirty-throttling and the flusher threads. 2181 */ 2182 if (consider_zone_dirty && !zone_dirty_ok(zone)) 2183 continue; 2184 2185 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 2186 if (!zone_watermark_ok(zone, order, mark, 2187 ac->classzone_idx, alloc_flags)) { 2188 int ret; 2189 2190 /* Checked here to keep the fast path fast */ 2191 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 2192 if (alloc_flags & ALLOC_NO_WATERMARKS) 2193 goto try_this_zone; 2194 2195 if (IS_ENABLED(CONFIG_NUMA) && 2196 !did_zlc_setup && nr_online_nodes > 1) { 2197 /* 2198 * we do zlc_setup if there are multiple nodes 2199 * and before considering the first zone allowed 2200 * by the cpuset. 2201 */ 2202 allowednodes = zlc_setup(zonelist, alloc_flags); 2203 zlc_active = 1; 2204 did_zlc_setup = 1; 2205 } 2206 2207 if (zone_reclaim_mode == 0 || 2208 !zone_allows_reclaim(ac->preferred_zone, zone)) 2209 goto this_zone_full; 2210 2211 /* 2212 * As we may have just activated ZLC, check if the first 2213 * eligible zone has failed zone_reclaim recently. 2214 */ 2215 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 2216 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 2217 continue; 2218 2219 ret = zone_reclaim(zone, gfp_mask, order); 2220 switch (ret) { 2221 case ZONE_RECLAIM_NOSCAN: 2222 /* did not scan */ 2223 continue; 2224 case ZONE_RECLAIM_FULL: 2225 /* scanned but unreclaimable */ 2226 continue; 2227 default: 2228 /* did we reclaim enough */ 2229 if (zone_watermark_ok(zone, order, mark, 2230 ac->classzone_idx, alloc_flags)) 2231 goto try_this_zone; 2232 2233 /* 2234 * Failed to reclaim enough to meet watermark. 2235 * Only mark the zone full if checking the min 2236 * watermark or if we failed to reclaim just 2237 * 1<<order pages or else the page allocator 2238 * fastpath will prematurely mark zones full 2239 * when the watermark is between the low and 2240 * min watermarks. 2241 */ 2242 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || 2243 ret == ZONE_RECLAIM_SOME) 2244 goto this_zone_full; 2245 2246 continue; 2247 } 2248 } 2249 2250try_this_zone: 2251 page = buffered_rmqueue(ac->preferred_zone, zone, order, 2252 gfp_mask, ac->migratetype); 2253 if (page) { 2254 if (prep_new_page(page, order, gfp_mask, alloc_flags)) 2255 goto try_this_zone; 2256 return page; 2257 } 2258this_zone_full: 2259 if (IS_ENABLED(CONFIG_NUMA) && zlc_active) 2260 zlc_mark_zone_full(zonelist, z); 2261 } 2262 2263 /* 2264 * The first pass makes sure allocations are spread fairly within the 2265 * local node. However, the local node might have free pages left 2266 * after the fairness batches are exhausted, and remote zones haven't 2267 * even been considered yet. Try once more without fairness, and 2268 * include remote zones now, before entering the slowpath and waking 2269 * kswapd: prefer spilling to a remote zone over swapping locally. 2270 */ 2271 if (alloc_flags & ALLOC_FAIR) { 2272 alloc_flags &= ~ALLOC_FAIR; 2273 if (nr_fair_skipped) { 2274 zonelist_rescan = true; 2275 reset_alloc_batches(ac->preferred_zone); 2276 } 2277 if (nr_online_nodes > 1) 2278 zonelist_rescan = true; 2279 } 2280 2281 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) { 2282 /* Disable zlc cache for second zonelist scan */ 2283 zlc_active = 0; 2284 zonelist_rescan = true; 2285 } 2286 2287 if (zonelist_rescan) 2288 goto zonelist_scan; 2289 2290 return NULL; 2291} 2292 2293/* 2294 * Large machines with many possible nodes should not always dump per-node 2295 * meminfo in irq context. 2296 */ 2297static inline bool should_suppress_show_mem(void) 2298{ 2299 bool ret = false; 2300 2301#if NODES_SHIFT > 8 2302 ret = in_interrupt(); 2303#endif 2304 return ret; 2305} 2306 2307static DEFINE_RATELIMIT_STATE(nopage_rs, 2308 DEFAULT_RATELIMIT_INTERVAL, 2309 DEFAULT_RATELIMIT_BURST); 2310 2311void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...) 2312{ 2313 unsigned int filter = SHOW_MEM_FILTER_NODES; 2314 2315 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2316 debug_guardpage_minorder() > 0) 2317 return; 2318 2319 /* 2320 * This documents exceptions given to allocations in certain 2321 * contexts that are allowed to allocate outside current's set 2322 * of allowed nodes. 2323 */ 2324 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2325 if (test_thread_flag(TIF_MEMDIE) || 2326 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2327 filter &= ~SHOW_MEM_FILTER_NODES; 2328 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2329 filter &= ~SHOW_MEM_FILTER_NODES; 2330 2331 if (fmt) { 2332 struct va_format vaf; 2333 va_list args; 2334 2335 va_start(args, fmt); 2336 2337 vaf.fmt = fmt; 2338 vaf.va = &args; 2339 2340 pr_warn("%pV", &vaf); 2341 2342 va_end(args); 2343 } 2344 2345 pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n", 2346 current->comm, order, gfp_mask); 2347 2348 dump_stack(); 2349 if (!should_suppress_show_mem()) 2350 show_mem(filter); 2351} 2352 2353static inline int 2354should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2355 unsigned long did_some_progress, 2356 unsigned long pages_reclaimed) 2357{ 2358 /* Do not loop if specifically requested */ 2359 if (gfp_mask & __GFP_NORETRY) 2360 return 0; 2361 2362 /* Always retry if specifically requested */ 2363 if (gfp_mask & __GFP_NOFAIL) 2364 return 1; 2365 2366 /* 2367 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2368 * making forward progress without invoking OOM. Suspend also disables 2369 * storage devices so kswapd will not help. Bail if we are suspending. 2370 */ 2371 if (!did_some_progress && pm_suspended_storage()) 2372 return 0; 2373 2374 /* 2375 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2376 * means __GFP_NOFAIL, but that may not be true in other 2377 * implementations. 2378 */ 2379 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2380 return 1; 2381 2382 /* 2383 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2384 * specified, then we retry until we no longer reclaim any pages 2385 * (above), or we've reclaimed an order of pages at least as 2386 * large as the allocation's order. In both cases, if the 2387 * allocation still fails, we stop retrying. 2388 */ 2389 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2390 return 1; 2391 2392 return 0; 2393} 2394 2395static inline struct page * 2396__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2397 const struct alloc_context *ac, unsigned long *did_some_progress) 2398{ 2399 struct page *page; 2400 2401 *did_some_progress = 0; 2402 2403 /* 2404 * Acquire the per-zone oom lock for each zone. If that 2405 * fails, somebody else is making progress for us. 2406 */ 2407 if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) { 2408 *did_some_progress = 1; 2409 schedule_timeout_uninterruptible(1); 2410 return NULL; 2411 } 2412 2413 /* 2414 * Go through the zonelist yet one more time, keep very high watermark 2415 * here, this is only to catch a parallel oom killing, we must fail if 2416 * we're still under heavy pressure. 2417 */ 2418 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order, 2419 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 2420 if (page) 2421 goto out; 2422 2423 if (!(gfp_mask & __GFP_NOFAIL)) { 2424 /* Coredumps can quickly deplete all memory reserves */ 2425 if (current->flags & PF_DUMPCORE) 2426 goto out; 2427 /* The OOM killer will not help higher order allocs */ 2428 if (order > PAGE_ALLOC_COSTLY_ORDER) 2429 goto out; 2430 /* The OOM killer does not needlessly kill tasks for lowmem */ 2431 if (ac->high_zoneidx < ZONE_NORMAL) 2432 goto out; 2433 /* The OOM killer does not compensate for light reclaim */ 2434 if (!(gfp_mask & __GFP_FS)) { 2435 /* 2436 * XXX: Page reclaim didn't yield anything, 2437 * and the OOM killer can't be invoked, but 2438 * keep looping as per should_alloc_retry(). 2439 */ 2440 *did_some_progress = 1; 2441 goto out; 2442 } 2443 /* The OOM killer may not free memory on a specific node */ 2444 if (gfp_mask & __GFP_THISNODE) 2445 goto out; 2446 } 2447 /* Exhausted what can be done so it's blamo time */ 2448 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false) 2449 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) 2450 *did_some_progress = 1; 2451out: 2452 oom_zonelist_unlock(ac->zonelist, gfp_mask); 2453 return page; 2454} 2455 2456#ifdef CONFIG_COMPACTION 2457/* Try memory compaction for high-order allocations before reclaim */ 2458static struct page * 2459__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2460 int alloc_flags, const struct alloc_context *ac, 2461 enum migrate_mode mode, int *contended_compaction, 2462 bool *deferred_compaction) 2463{ 2464 unsigned long compact_result; 2465 struct page *page; 2466 2467 if (!order) 2468 return NULL; 2469 2470 current->flags |= PF_MEMALLOC; 2471 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 2472 mode, contended_compaction); 2473 current->flags &= ~PF_MEMALLOC; 2474 2475 switch (compact_result) { 2476 case COMPACT_DEFERRED: 2477 *deferred_compaction = true; 2478 /* fall-through */ 2479 case COMPACT_SKIPPED: 2480 return NULL; 2481 default: 2482 break; 2483 } 2484 2485 /* 2486 * At least in one zone compaction wasn't deferred or skipped, so let's 2487 * count a compaction stall 2488 */ 2489 count_vm_event(COMPACTSTALL); 2490 2491 page = get_page_from_freelist(gfp_mask, order, 2492 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 2493 2494 if (page) { 2495 struct zone *zone = page_zone(page); 2496 2497 zone->compact_blockskip_flush = false; 2498 compaction_defer_reset(zone, order, true); 2499 count_vm_event(COMPACTSUCCESS); 2500 return page; 2501 } 2502 2503 /* 2504 * It's bad if compaction run occurs and fails. The most likely reason 2505 * is that pages exist, but not enough to satisfy watermarks. 2506 */ 2507 count_vm_event(COMPACTFAIL); 2508 2509 cond_resched(); 2510 2511 return NULL; 2512} 2513#else 2514static inline struct page * 2515__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2516 int alloc_flags, const struct alloc_context *ac, 2517 enum migrate_mode mode, int *contended_compaction, 2518 bool *deferred_compaction) 2519{ 2520 return NULL; 2521} 2522#endif /* CONFIG_COMPACTION */ 2523 2524/* Perform direct synchronous page reclaim */ 2525static int 2526__perform_reclaim(gfp_t gfp_mask, unsigned int order, 2527 const struct alloc_context *ac) 2528{ 2529 struct reclaim_state reclaim_state; 2530 int progress; 2531 2532 cond_resched(); 2533 2534 /* We now go into synchronous reclaim */ 2535 cpuset_memory_pressure_bump(); 2536 current->flags |= PF_MEMALLOC; 2537 lockdep_set_current_reclaim_state(gfp_mask); 2538 reclaim_state.reclaimed_slab = 0; 2539 current->reclaim_state = &reclaim_state; 2540 2541 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 2542 ac->nodemask); 2543 2544 current->reclaim_state = NULL; 2545 lockdep_clear_current_reclaim_state(); 2546 current->flags &= ~PF_MEMALLOC; 2547 2548 cond_resched(); 2549 2550 return progress; 2551} 2552 2553/* The really slow allocator path where we enter direct reclaim */ 2554static inline struct page * 2555__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2556 int alloc_flags, const struct alloc_context *ac, 2557 unsigned long *did_some_progress) 2558{ 2559 struct page *page = NULL; 2560 bool drained = false; 2561 2562 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 2563 if (unlikely(!(*did_some_progress))) 2564 return NULL; 2565 2566 /* After successful reclaim, reconsider all zones for allocation */ 2567 if (IS_ENABLED(CONFIG_NUMA)) 2568 zlc_clear_zones_full(ac->zonelist); 2569 2570retry: 2571 page = get_page_from_freelist(gfp_mask, order, 2572 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 2573 2574 /* 2575 * If an allocation failed after direct reclaim, it could be because 2576 * pages are pinned on the per-cpu lists. Drain them and try again 2577 */ 2578 if (!page && !drained) { 2579 drain_all_pages(NULL); 2580 drained = true; 2581 goto retry; 2582 } 2583 2584 return page; 2585} 2586 2587/* 2588 * This is called in the allocator slow-path if the allocation request is of 2589 * sufficient urgency to ignore watermarks and take other desperate measures 2590 */ 2591static inline struct page * 2592__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2593 const struct alloc_context *ac) 2594{ 2595 struct page *page; 2596 2597 do { 2598 page = get_page_from_freelist(gfp_mask, order, 2599 ALLOC_NO_WATERMARKS, ac); 2600 2601 if (!page && gfp_mask & __GFP_NOFAIL) 2602 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, 2603 HZ/50); 2604 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2605 2606 return page; 2607} 2608 2609static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 2610{ 2611 struct zoneref *z; 2612 struct zone *zone; 2613 2614 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2615 ac->high_zoneidx, ac->nodemask) 2616 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone)); 2617} 2618 2619static inline int 2620gfp_to_alloc_flags(gfp_t gfp_mask) 2621{ 2622 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2623 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD)); 2624 2625 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2626 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2627 2628 /* 2629 * The caller may dip into page reserves a bit more if the caller 2630 * cannot run direct reclaim, or if the caller has realtime scheduling 2631 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2632 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH). 2633 */ 2634 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2635 2636 if (atomic) { 2637 /* 2638 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 2639 * if it can't schedule. 2640 */ 2641 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2642 alloc_flags |= ALLOC_HARDER; 2643 /* 2644 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 2645 * comment for __cpuset_node_allowed(). 2646 */ 2647 alloc_flags &= ~ALLOC_CPUSET; 2648 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2649 alloc_flags |= ALLOC_HARDER; 2650 2651 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2652 if (gfp_mask & __GFP_MEMALLOC) 2653 alloc_flags |= ALLOC_NO_WATERMARKS; 2654 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2655 alloc_flags |= ALLOC_NO_WATERMARKS; 2656 else if (!in_interrupt() && 2657 ((current->flags & PF_MEMALLOC) || 2658 unlikely(test_thread_flag(TIF_MEMDIE)))) 2659 alloc_flags |= ALLOC_NO_WATERMARKS; 2660 } 2661#ifdef CONFIG_CMA 2662 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2663 alloc_flags |= ALLOC_CMA; 2664#endif 2665 return alloc_flags; 2666} 2667 2668bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2669{ 2670 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2671} 2672 2673static inline struct page * 2674__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2675 struct alloc_context *ac) 2676{ 2677 const gfp_t wait = gfp_mask & __GFP_WAIT; 2678 struct page *page = NULL; 2679 int alloc_flags; 2680 unsigned long pages_reclaimed = 0; 2681 unsigned long did_some_progress; 2682 enum migrate_mode migration_mode = MIGRATE_ASYNC; 2683 bool deferred_compaction = false; 2684 int contended_compaction = COMPACT_CONTENDED_NONE; 2685 2686 /* 2687 * In the slowpath, we sanity check order to avoid ever trying to 2688 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2689 * be using allocators in order of preference for an area that is 2690 * too large. 2691 */ 2692 if (order >= MAX_ORDER) { 2693 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2694 return NULL; 2695 } 2696 2697 /* 2698 * If this allocation cannot block and it is for a specific node, then 2699 * fail early. There's no need to wakeup kswapd or retry for a 2700 * speculative node-specific allocation. 2701 */ 2702 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait) 2703 goto nopage; 2704 2705retry: 2706 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2707 wake_all_kswapds(order, ac); 2708 2709 /* 2710 * OK, we're below the kswapd watermark and have kicked background 2711 * reclaim. Now things get more complex, so set up alloc_flags according 2712 * to how we want to proceed. 2713 */ 2714 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2715 2716 /* 2717 * Find the true preferred zone if the allocation is unconstrained by 2718 * cpusets. 2719 */ 2720 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) { 2721 struct zoneref *preferred_zoneref; 2722 preferred_zoneref = first_zones_zonelist(ac->zonelist, 2723 ac->high_zoneidx, NULL, &ac->preferred_zone); 2724 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref); 2725 } 2726 2727 /* This is the last chance, in general, before the goto nopage. */ 2728 page = get_page_from_freelist(gfp_mask, order, 2729 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 2730 if (page) 2731 goto got_pg; 2732 2733 /* Allocate without watermarks if the context allows */ 2734 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2735 /* 2736 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2737 * the allocation is high priority and these type of 2738 * allocations are system rather than user orientated 2739 */ 2740 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 2741 2742 page = __alloc_pages_high_priority(gfp_mask, order, ac); 2743 2744 if (page) { 2745 goto got_pg; 2746 } 2747 } 2748 2749 /* Atomic allocations - we can't balance anything */ 2750 if (!wait) { 2751 /* 2752 * All existing users of the deprecated __GFP_NOFAIL are 2753 * blockable, so warn of any new users that actually allow this 2754 * type of allocation to fail. 2755 */ 2756 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); 2757 goto nopage; 2758 } 2759 2760 /* Avoid recursion of direct reclaim */ 2761 if (current->flags & PF_MEMALLOC) 2762 goto nopage; 2763 2764 /* Avoid allocations with no watermarks from looping endlessly */ 2765 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2766 goto nopage; 2767 2768 /* 2769 * Try direct compaction. The first pass is asynchronous. Subsequent 2770 * attempts after direct reclaim are synchronous 2771 */ 2772 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 2773 migration_mode, 2774 &contended_compaction, 2775 &deferred_compaction); 2776 if (page) 2777 goto got_pg; 2778 2779 /* Checks for THP-specific high-order allocations */ 2780 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) { 2781 /* 2782 * If compaction is deferred for high-order allocations, it is 2783 * because sync compaction recently failed. If this is the case 2784 * and the caller requested a THP allocation, we do not want 2785 * to heavily disrupt the system, so we fail the allocation 2786 * instead of entering direct reclaim. 2787 */ 2788 if (deferred_compaction) 2789 goto nopage; 2790 2791 /* 2792 * In all zones where compaction was attempted (and not 2793 * deferred or skipped), lock contention has been detected. 2794 * For THP allocation we do not want to disrupt the others 2795 * so we fallback to base pages instead. 2796 */ 2797 if (contended_compaction == COMPACT_CONTENDED_LOCK) 2798 goto nopage; 2799 2800 /* 2801 * If compaction was aborted due to need_resched(), we do not 2802 * want to further increase allocation latency, unless it is 2803 * khugepaged trying to collapse. 2804 */ 2805 if (contended_compaction == COMPACT_CONTENDED_SCHED 2806 && !(current->flags & PF_KTHREAD)) 2807 goto nopage; 2808 } 2809 2810 /* 2811 * It can become very expensive to allocate transparent hugepages at 2812 * fault, so use asynchronous memory compaction for THP unless it is 2813 * khugepaged trying to collapse. 2814 */ 2815 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE || 2816 (current->flags & PF_KTHREAD)) 2817 migration_mode = MIGRATE_SYNC_LIGHT; 2818 2819 /* Try direct reclaim and then allocating */ 2820 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 2821 &did_some_progress); 2822 if (page) 2823 goto got_pg; 2824 2825 /* Check if we should retry the allocation */ 2826 pages_reclaimed += did_some_progress; 2827 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2828 pages_reclaimed)) { 2829 /* 2830 * If we fail to make progress by freeing individual 2831 * pages, but the allocation wants us to keep going, 2832 * start OOM killing tasks. 2833 */ 2834 if (!did_some_progress) { 2835 page = __alloc_pages_may_oom(gfp_mask, order, ac, 2836 &did_some_progress); 2837 if (page) 2838 goto got_pg; 2839 if (!did_some_progress) 2840 goto nopage; 2841 } 2842 /* Wait for some write requests to complete then retry */ 2843 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50); 2844 goto retry; 2845 } else { 2846 /* 2847 * High-order allocations do not necessarily loop after 2848 * direct reclaim and reclaim/compaction depends on compaction 2849 * being called after reclaim so call directly if necessary 2850 */ 2851 page = __alloc_pages_direct_compact(gfp_mask, order, 2852 alloc_flags, ac, migration_mode, 2853 &contended_compaction, 2854 &deferred_compaction); 2855 if (page) 2856 goto got_pg; 2857 } 2858 2859nopage: 2860 warn_alloc_failed(gfp_mask, order, NULL); 2861got_pg: 2862 return page; 2863} 2864 2865/* 2866 * This is the 'heart' of the zoned buddy allocator. 2867 */ 2868struct page * 2869__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2870 struct zonelist *zonelist, nodemask_t *nodemask) 2871{ 2872 struct zoneref *preferred_zoneref; 2873 struct page *page = NULL; 2874 unsigned int cpuset_mems_cookie; 2875 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR; 2876 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 2877 struct alloc_context ac = { 2878 .high_zoneidx = gfp_zone(gfp_mask), 2879 .nodemask = nodemask, 2880 .migratetype = gfpflags_to_migratetype(gfp_mask), 2881 }; 2882 2883 gfp_mask &= gfp_allowed_mask; 2884 2885 lockdep_trace_alloc(gfp_mask); 2886 2887 might_sleep_if(gfp_mask & __GFP_WAIT); 2888 2889 if (should_fail_alloc_page(gfp_mask, order)) 2890 return NULL; 2891 2892 /* 2893 * Check the zones suitable for the gfp_mask contain at least one 2894 * valid zone. It's possible to have an empty zonelist as a result 2895 * of __GFP_THISNODE and a memoryless node 2896 */ 2897 if (unlikely(!zonelist->_zonerefs->zone)) 2898 return NULL; 2899 2900 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE) 2901 alloc_flags |= ALLOC_CMA; 2902 2903retry_cpuset: 2904 cpuset_mems_cookie = read_mems_allowed_begin(); 2905 2906 /* We set it here, as __alloc_pages_slowpath might have changed it */ 2907 ac.zonelist = zonelist; 2908 /* The preferred zone is used for statistics later */ 2909 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx, 2910 ac.nodemask ? : &cpuset_current_mems_allowed, 2911 &ac.preferred_zone); 2912 if (!ac.preferred_zone) 2913 goto out; 2914 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref); 2915 2916 /* First allocation attempt */ 2917 alloc_mask = gfp_mask|__GFP_HARDWALL; 2918 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 2919 if (unlikely(!page)) { 2920 /* 2921 * Runtime PM, block IO and its error handling path 2922 * can deadlock because I/O on the device might not 2923 * complete. 2924 */ 2925 alloc_mask = memalloc_noio_flags(gfp_mask); 2926 2927 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 2928 } 2929 2930 if (kmemcheck_enabled && page) 2931 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2932 2933 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 2934 2935out: 2936 /* 2937 * When updating a task's mems_allowed, it is possible to race with 2938 * parallel threads in such a way that an allocation can fail while 2939 * the mask is being updated. If a page allocation is about to fail, 2940 * check if the cpuset changed during allocation and if so, retry. 2941 */ 2942 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2943 goto retry_cpuset; 2944 2945 return page; 2946} 2947EXPORT_SYMBOL(__alloc_pages_nodemask); 2948 2949/* 2950 * Common helper functions. 2951 */ 2952unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2953{ 2954 struct page *page; 2955 2956 /* 2957 * __get_free_pages() returns a 32-bit address, which cannot represent 2958 * a highmem page 2959 */ 2960 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2961 2962 page = alloc_pages(gfp_mask, order); 2963 if (!page) 2964 return 0; 2965 return (unsigned long) page_address(page); 2966} 2967EXPORT_SYMBOL(__get_free_pages); 2968 2969unsigned long get_zeroed_page(gfp_t gfp_mask) 2970{ 2971 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2972} 2973EXPORT_SYMBOL(get_zeroed_page); 2974 2975void __free_pages(struct page *page, unsigned int order) 2976{ 2977 if (put_page_testzero(page)) { 2978 if (order == 0) 2979 free_hot_cold_page(page, false); 2980 else 2981 __free_pages_ok(page, order); 2982 } 2983} 2984 2985EXPORT_SYMBOL(__free_pages); 2986 2987void free_pages(unsigned long addr, unsigned int order) 2988{ 2989 if (addr != 0) { 2990 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2991 __free_pages(virt_to_page((void *)addr), order); 2992 } 2993} 2994 2995EXPORT_SYMBOL(free_pages); 2996 2997/* 2998 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter 2999 * of the current memory cgroup. 3000 * 3001 * It should be used when the caller would like to use kmalloc, but since the 3002 * allocation is large, it has to fall back to the page allocator. 3003 */ 3004struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order) 3005{ 3006 struct page *page; 3007 struct mem_cgroup *memcg = NULL; 3008 3009 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 3010 return NULL; 3011 page = alloc_pages(gfp_mask, order); 3012 memcg_kmem_commit_charge(page, memcg, order); 3013 return page; 3014} 3015 3016struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 3017{ 3018 struct page *page; 3019 struct mem_cgroup *memcg = NULL; 3020 3021 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 3022 return NULL; 3023 page = alloc_pages_node(nid, gfp_mask, order); 3024 memcg_kmem_commit_charge(page, memcg, order); 3025 return page; 3026} 3027 3028/* 3029 * __free_kmem_pages and free_kmem_pages will free pages allocated with 3030 * alloc_kmem_pages. 3031 */ 3032void __free_kmem_pages(struct page *page, unsigned int order) 3033{ 3034 memcg_kmem_uncharge_pages(page, order); 3035 __free_pages(page, order); 3036} 3037 3038void free_kmem_pages(unsigned long addr, unsigned int order) 3039{ 3040 if (addr != 0) { 3041 VM_BUG_ON(!virt_addr_valid((void *)addr)); 3042 __free_kmem_pages(virt_to_page((void *)addr), order); 3043 } 3044} 3045 3046static void *make_alloc_exact(unsigned long addr, unsigned int order, 3047 size_t size) 3048{ 3049 if (addr) { 3050 unsigned long alloc_end = addr + (PAGE_SIZE << order); 3051 unsigned long used = addr + PAGE_ALIGN(size); 3052 3053 split_page(virt_to_page((void *)addr), order); 3054 while (used < alloc_end) { 3055 free_page(used); 3056 used += PAGE_SIZE; 3057 } 3058 } 3059 return (void *)addr; 3060} 3061 3062/** 3063 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 3064 * @size: the number of bytes to allocate 3065 * @gfp_mask: GFP flags for the allocation 3066 * 3067 * This function is similar to alloc_pages(), except that it allocates the 3068 * minimum number of pages to satisfy the request. alloc_pages() can only 3069 * allocate memory in power-of-two pages. 3070 * 3071 * This function is also limited by MAX_ORDER. 3072 * 3073 * Memory allocated by this function must be released by free_pages_exact(). 3074 */ 3075void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 3076{ 3077 unsigned int order = get_order(size); 3078 unsigned long addr; 3079 3080 addr = __get_free_pages(gfp_mask, order); 3081 return make_alloc_exact(addr, order, size); 3082} 3083EXPORT_SYMBOL(alloc_pages_exact); 3084 3085/** 3086 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 3087 * pages on a node. 3088 * @nid: the preferred node ID where memory should be allocated 3089 * @size: the number of bytes to allocate 3090 * @gfp_mask: GFP flags for the allocation 3091 * 3092 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 3093 * back. 3094 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 3095 * but is not exact. 3096 */ 3097void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 3098{ 3099 unsigned int order = get_order(size); 3100 struct page *p = alloc_pages_node(nid, gfp_mask, order); 3101 if (!p) 3102 return NULL; 3103 return make_alloc_exact((unsigned long)page_address(p), order, size); 3104} 3105 3106/** 3107 * free_pages_exact - release memory allocated via alloc_pages_exact() 3108 * @virt: the value returned by alloc_pages_exact. 3109 * @size: size of allocation, same value as passed to alloc_pages_exact(). 3110 * 3111 * Release the memory allocated by a previous call to alloc_pages_exact. 3112 */ 3113void free_pages_exact(void *virt, size_t size) 3114{ 3115 unsigned long addr = (unsigned long)virt; 3116 unsigned long end = addr + PAGE_ALIGN(size); 3117 3118 while (addr < end) { 3119 free_page(addr); 3120 addr += PAGE_SIZE; 3121 } 3122} 3123EXPORT_SYMBOL(free_pages_exact); 3124 3125/** 3126 * nr_free_zone_pages - count number of pages beyond high watermark 3127 * @offset: The zone index of the highest zone 3128 * 3129 * nr_free_zone_pages() counts the number of counts pages which are beyond the 3130 * high watermark within all zones at or below a given zone index. For each 3131 * zone, the number of pages is calculated as: 3132 * managed_pages - high_pages 3133 */ 3134static unsigned long nr_free_zone_pages(int offset) 3135{ 3136 struct zoneref *z; 3137 struct zone *zone; 3138 3139 /* Just pick one node, since fallback list is circular */ 3140 unsigned long sum = 0; 3141 3142 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 3143 3144 for_each_zone_zonelist(zone, z, zonelist, offset) { 3145 unsigned long size = zone->managed_pages; 3146 unsigned long high = high_wmark_pages(zone); 3147 if (size > high) 3148 sum += size - high; 3149 } 3150 3151 return sum; 3152} 3153 3154/** 3155 * nr_free_buffer_pages - count number of pages beyond high watermark 3156 * 3157 * nr_free_buffer_pages() counts the number of pages which are beyond the high 3158 * watermark within ZONE_DMA and ZONE_NORMAL. 3159 */ 3160unsigned long nr_free_buffer_pages(void) 3161{ 3162 return nr_free_zone_pages(gfp_zone(GFP_USER)); 3163} 3164EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 3165 3166/** 3167 * nr_free_pagecache_pages - count number of pages beyond high watermark 3168 * 3169 * nr_free_pagecache_pages() counts the number of pages which are beyond the 3170 * high watermark within all zones. 3171 */ 3172unsigned long nr_free_pagecache_pages(void) 3173{ 3174 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 3175} 3176 3177static inline void show_node(struct zone *zone) 3178{ 3179 if (IS_ENABLED(CONFIG_NUMA)) 3180 printk("Node %d ", zone_to_nid(zone)); 3181} 3182 3183void si_meminfo(struct sysinfo *val) 3184{ 3185 val->totalram = totalram_pages; 3186 val->sharedram = global_page_state(NR_SHMEM); 3187 val->freeram = global_page_state(NR_FREE_PAGES); 3188 val->bufferram = nr_blockdev_pages(); 3189 val->totalhigh = totalhigh_pages; 3190 val->freehigh = nr_free_highpages(); 3191 val->mem_unit = PAGE_SIZE; 3192} 3193 3194EXPORT_SYMBOL(si_meminfo); 3195 3196#ifdef CONFIG_NUMA 3197void si_meminfo_node(struct sysinfo *val, int nid) 3198{ 3199 int zone_type; /* needs to be signed */ 3200 unsigned long managed_pages = 0; 3201 pg_data_t *pgdat = NODE_DATA(nid); 3202 3203 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 3204 managed_pages += pgdat->node_zones[zone_type].managed_pages; 3205 val->totalram = managed_pages; 3206 val->sharedram = node_page_state(nid, NR_SHMEM); 3207 val->freeram = node_page_state(nid, NR_FREE_PAGES); 3208#ifdef CONFIG_HIGHMEM 3209 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 3210 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 3211 NR_FREE_PAGES); 3212#else 3213 val->totalhigh = 0; 3214 val->freehigh = 0; 3215#endif 3216 val->mem_unit = PAGE_SIZE; 3217} 3218#endif 3219 3220/* 3221 * Determine whether the node should be displayed or not, depending on whether 3222 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 3223 */ 3224bool skip_free_areas_node(unsigned int flags, int nid) 3225{ 3226 bool ret = false; 3227 unsigned int cpuset_mems_cookie; 3228 3229 if (!(flags & SHOW_MEM_FILTER_NODES)) 3230 goto out; 3231 3232 do { 3233 cpuset_mems_cookie = read_mems_allowed_begin(); 3234 ret = !node_isset(nid, cpuset_current_mems_allowed); 3235 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 3236out: 3237 return ret; 3238} 3239 3240#define K(x) ((x) << (PAGE_SHIFT-10)) 3241 3242static void show_migration_types(unsigned char type) 3243{ 3244 static const char types[MIGRATE_TYPES] = { 3245 [MIGRATE_UNMOVABLE] = 'U', 3246 [MIGRATE_RECLAIMABLE] = 'E', 3247 [MIGRATE_MOVABLE] = 'M', 3248 [MIGRATE_RESERVE] = 'R', 3249#ifdef CONFIG_CMA 3250 [MIGRATE_CMA] = 'C', 3251#endif 3252#ifdef CONFIG_MEMORY_ISOLATION 3253 [MIGRATE_ISOLATE] = 'I', 3254#endif 3255 }; 3256 char tmp[MIGRATE_TYPES + 1]; 3257 char *p = tmp; 3258 int i; 3259 3260 for (i = 0; i < MIGRATE_TYPES; i++) { 3261 if (type & (1 << i)) 3262 *p++ = types[i]; 3263 } 3264 3265 *p = '\0'; 3266 printk("(%s) ", tmp); 3267} 3268 3269/* 3270 * Show free area list (used inside shift_scroll-lock stuff) 3271 * We also calculate the percentage fragmentation. We do this by counting the 3272 * memory on each free list with the exception of the first item on the list. 3273 * 3274 * Bits in @filter: 3275 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 3276 * cpuset. 3277 */ 3278void show_free_areas(unsigned int filter) 3279{ 3280 unsigned long free_pcp = 0; 3281 int cpu; 3282 struct zone *zone; 3283 3284 for_each_populated_zone(zone) { 3285 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3286 continue; 3287 3288 for_each_online_cpu(cpu) 3289 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 3290 } 3291 3292 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3293 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3294 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 3295 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3296 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3297 " free:%lu free_pcp:%lu free_cma:%lu\n", 3298 global_page_state(NR_ACTIVE_ANON), 3299 global_page_state(NR_INACTIVE_ANON), 3300 global_page_state(NR_ISOLATED_ANON), 3301 global_page_state(NR_ACTIVE_FILE), 3302 global_page_state(NR_INACTIVE_FILE), 3303 global_page_state(NR_ISOLATED_FILE), 3304 global_page_state(NR_UNEVICTABLE), 3305 global_page_state(NR_FILE_DIRTY), 3306 global_page_state(NR_WRITEBACK), 3307 global_page_state(NR_UNSTABLE_NFS), 3308 global_page_state(NR_SLAB_RECLAIMABLE), 3309 global_page_state(NR_SLAB_UNRECLAIMABLE), 3310 global_page_state(NR_FILE_MAPPED), 3311 global_page_state(NR_SHMEM), 3312 global_page_state(NR_PAGETABLE), 3313 global_page_state(NR_BOUNCE), 3314 global_page_state(NR_FREE_PAGES), 3315 free_pcp, 3316 global_page_state(NR_FREE_CMA_PAGES)); 3317 3318 for_each_populated_zone(zone) { 3319 int i; 3320 3321 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3322 continue; 3323 3324 free_pcp = 0; 3325 for_each_online_cpu(cpu) 3326 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 3327 3328 show_node(zone); 3329 printk("%s" 3330 " free:%lukB" 3331 " min:%lukB" 3332 " low:%lukB" 3333 " high:%lukB" 3334 " active_anon:%lukB" 3335 " inactive_anon:%lukB" 3336 " active_file:%lukB" 3337 " inactive_file:%lukB" 3338 " unevictable:%lukB" 3339 " isolated(anon):%lukB" 3340 " isolated(file):%lukB" 3341 " present:%lukB" 3342 " managed:%lukB" 3343 " mlocked:%lukB" 3344 " dirty:%lukB" 3345 " writeback:%lukB" 3346 " mapped:%lukB" 3347 " shmem:%lukB" 3348 " slab_reclaimable:%lukB" 3349 " slab_unreclaimable:%lukB" 3350 " kernel_stack:%lukB" 3351 " pagetables:%lukB" 3352 " unstable:%lukB" 3353 " bounce:%lukB" 3354 " free_pcp:%lukB" 3355 " local_pcp:%ukB" 3356 " free_cma:%lukB" 3357 " writeback_tmp:%lukB" 3358 " pages_scanned:%lu" 3359 " all_unreclaimable? %s" 3360 "\n", 3361 zone->name, 3362 K(zone_page_state(zone, NR_FREE_PAGES)), 3363 K(min_wmark_pages(zone)), 3364 K(low_wmark_pages(zone)), 3365 K(high_wmark_pages(zone)), 3366 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3367 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3368 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3369 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3370 K(zone_page_state(zone, NR_UNEVICTABLE)), 3371 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3372 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3373 K(zone->present_pages), 3374 K(zone->managed_pages), 3375 K(zone_page_state(zone, NR_MLOCK)), 3376 K(zone_page_state(zone, NR_FILE_DIRTY)), 3377 K(zone_page_state(zone, NR_WRITEBACK)), 3378 K(zone_page_state(zone, NR_FILE_MAPPED)), 3379 K(zone_page_state(zone, NR_SHMEM)), 3380 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3381 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3382 zone_page_state(zone, NR_KERNEL_STACK) * 3383 THREAD_SIZE / 1024, 3384 K(zone_page_state(zone, NR_PAGETABLE)), 3385 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3386 K(zone_page_state(zone, NR_BOUNCE)), 3387 K(free_pcp), 3388 K(this_cpu_read(zone->pageset->pcp.count)), 3389 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3390 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3391 K(zone_page_state(zone, NR_PAGES_SCANNED)), 3392 (!zone_reclaimable(zone) ? "yes" : "no") 3393 ); 3394 printk("lowmem_reserve[]:"); 3395 for (i = 0; i < MAX_NR_ZONES; i++) 3396 printk(" %ld", zone->lowmem_reserve[i]); 3397 printk("\n"); 3398 } 3399 3400 for_each_populated_zone(zone) { 3401 unsigned int order; 3402 unsigned long nr[MAX_ORDER], flags, total = 0; 3403 unsigned char types[MAX_ORDER]; 3404 3405 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3406 continue; 3407 show_node(zone); 3408 printk("%s: ", zone->name); 3409 3410 spin_lock_irqsave(&zone->lock, flags); 3411 for (order = 0; order < MAX_ORDER; order++) { 3412 struct free_area *area = &zone->free_area[order]; 3413 int type; 3414 3415 nr[order] = area->nr_free; 3416 total += nr[order] << order; 3417 3418 types[order] = 0; 3419 for (type = 0; type < MIGRATE_TYPES; type++) { 3420 if (!list_empty(&area->free_list[type])) 3421 types[order] |= 1 << type; 3422 } 3423 } 3424 spin_unlock_irqrestore(&zone->lock, flags); 3425 for (order = 0; order < MAX_ORDER; order++) { 3426 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3427 if (nr[order]) 3428 show_migration_types(types[order]); 3429 } 3430 printk("= %lukB\n", K(total)); 3431 } 3432 3433 hugetlb_show_meminfo(); 3434 3435 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3436 3437 show_swap_cache_info(); 3438} 3439 3440static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3441{ 3442 zoneref->zone = zone; 3443 zoneref->zone_idx = zone_idx(zone); 3444} 3445 3446/* 3447 * Builds allocation fallback zone lists. 3448 * 3449 * Add all populated zones of a node to the zonelist. 3450 */ 3451static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3452 int nr_zones) 3453{ 3454 struct zone *zone; 3455 enum zone_type zone_type = MAX_NR_ZONES; 3456 3457 do { 3458 zone_type--; 3459 zone = pgdat->node_zones + zone_type; 3460 if (populated_zone(zone)) { 3461 zoneref_set_zone(zone, 3462 &zonelist->_zonerefs[nr_zones++]); 3463 check_highest_zone(zone_type); 3464 } 3465 } while (zone_type); 3466 3467 return nr_zones; 3468} 3469 3470 3471/* 3472 * zonelist_order: 3473 * 0 = automatic detection of better ordering. 3474 * 1 = order by ([node] distance, -zonetype) 3475 * 2 = order by (-zonetype, [node] distance) 3476 * 3477 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3478 * the same zonelist. So only NUMA can configure this param. 3479 */ 3480#define ZONELIST_ORDER_DEFAULT 0 3481#define ZONELIST_ORDER_NODE 1 3482#define ZONELIST_ORDER_ZONE 2 3483 3484/* zonelist order in the kernel. 3485 * set_zonelist_order() will set this to NODE or ZONE. 3486 */ 3487static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3488static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3489 3490 3491#ifdef CONFIG_NUMA 3492/* The value user specified ....changed by config */ 3493static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3494/* string for sysctl */ 3495#define NUMA_ZONELIST_ORDER_LEN 16 3496char numa_zonelist_order[16] = "default"; 3497 3498/* 3499 * interface for configure zonelist ordering. 3500 * command line option "numa_zonelist_order" 3501 * = "[dD]efault - default, automatic configuration. 3502 * = "[nN]ode - order by node locality, then by zone within node 3503 * = "[zZ]one - order by zone, then by locality within zone 3504 */ 3505 3506static int __parse_numa_zonelist_order(char *s) 3507{ 3508 if (*s == 'd' || *s == 'D') { 3509 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3510 } else if (*s == 'n' || *s == 'N') { 3511 user_zonelist_order = ZONELIST_ORDER_NODE; 3512 } else if (*s == 'z' || *s == 'Z') { 3513 user_zonelist_order = ZONELIST_ORDER_ZONE; 3514 } else { 3515 printk(KERN_WARNING 3516 "Ignoring invalid numa_zonelist_order value: " 3517 "%s\n", s); 3518 return -EINVAL; 3519 } 3520 return 0; 3521} 3522 3523static __init int setup_numa_zonelist_order(char *s) 3524{ 3525 int ret; 3526 3527 if (!s) 3528 return 0; 3529 3530 ret = __parse_numa_zonelist_order(s); 3531 if (ret == 0) 3532 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3533 3534 return ret; 3535} 3536early_param("numa_zonelist_order", setup_numa_zonelist_order); 3537 3538/* 3539 * sysctl handler for numa_zonelist_order 3540 */ 3541int numa_zonelist_order_handler(struct ctl_table *table, int write, 3542 void __user *buffer, size_t *length, 3543 loff_t *ppos) 3544{ 3545 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3546 int ret; 3547 static DEFINE_MUTEX(zl_order_mutex); 3548 3549 mutex_lock(&zl_order_mutex); 3550 if (write) { 3551 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 3552 ret = -EINVAL; 3553 goto out; 3554 } 3555 strcpy(saved_string, (char *)table->data); 3556 } 3557 ret = proc_dostring(table, write, buffer, length, ppos); 3558 if (ret) 3559 goto out; 3560 if (write) { 3561 int oldval = user_zonelist_order; 3562 3563 ret = __parse_numa_zonelist_order((char *)table->data); 3564 if (ret) { 3565 /* 3566 * bogus value. restore saved string 3567 */ 3568 strncpy((char *)table->data, saved_string, 3569 NUMA_ZONELIST_ORDER_LEN); 3570 user_zonelist_order = oldval; 3571 } else if (oldval != user_zonelist_order) { 3572 mutex_lock(&zonelists_mutex); 3573 build_all_zonelists(NULL, NULL); 3574 mutex_unlock(&zonelists_mutex); 3575 } 3576 } 3577out: 3578 mutex_unlock(&zl_order_mutex); 3579 return ret; 3580} 3581 3582 3583#define MAX_NODE_LOAD (nr_online_nodes) 3584static int node_load[MAX_NUMNODES]; 3585 3586/** 3587 * find_next_best_node - find the next node that should appear in a given node's fallback list 3588 * @node: node whose fallback list we're appending 3589 * @used_node_mask: nodemask_t of already used nodes 3590 * 3591 * We use a number of factors to determine which is the next node that should 3592 * appear on a given node's fallback list. The node should not have appeared 3593 * already in @node's fallback list, and it should be the next closest node 3594 * according to the distance array (which contains arbitrary distance values 3595 * from each node to each node in the system), and should also prefer nodes 3596 * with no CPUs, since presumably they'll have very little allocation pressure 3597 * on them otherwise. 3598 * It returns -1 if no node is found. 3599 */ 3600static int find_next_best_node(int node, nodemask_t *used_node_mask) 3601{ 3602 int n, val; 3603 int min_val = INT_MAX; 3604 int best_node = NUMA_NO_NODE; 3605 const struct cpumask *tmp = cpumask_of_node(0); 3606 3607 /* Use the local node if we haven't already */ 3608 if (!node_isset(node, *used_node_mask)) { 3609 node_set(node, *used_node_mask); 3610 return node; 3611 } 3612 3613 for_each_node_state(n, N_MEMORY) { 3614 3615 /* Don't want a node to appear more than once */ 3616 if (node_isset(n, *used_node_mask)) 3617 continue; 3618 3619 /* Use the distance array to find the distance */ 3620 val = node_distance(node, n); 3621 3622 /* Penalize nodes under us ("prefer the next node") */ 3623 val += (n < node); 3624 3625 /* Give preference to headless and unused nodes */ 3626 tmp = cpumask_of_node(n); 3627 if (!cpumask_empty(tmp)) 3628 val += PENALTY_FOR_NODE_WITH_CPUS; 3629 3630 /* Slight preference for less loaded node */ 3631 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3632 val += node_load[n]; 3633 3634 if (val < min_val) { 3635 min_val = val; 3636 best_node = n; 3637 } 3638 } 3639 3640 if (best_node >= 0) 3641 node_set(best_node, *used_node_mask); 3642 3643 return best_node; 3644} 3645 3646 3647/* 3648 * Build zonelists ordered by node and zones within node. 3649 * This results in maximum locality--normal zone overflows into local 3650 * DMA zone, if any--but risks exhausting DMA zone. 3651 */ 3652static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3653{ 3654 int j; 3655 struct zonelist *zonelist; 3656 3657 zonelist = &pgdat->node_zonelists[0]; 3658 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3659 ; 3660 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3661 zonelist->_zonerefs[j].zone = NULL; 3662 zonelist->_zonerefs[j].zone_idx = 0; 3663} 3664 3665/* 3666 * Build gfp_thisnode zonelists 3667 */ 3668static void build_thisnode_zonelists(pg_data_t *pgdat) 3669{ 3670 int j; 3671 struct zonelist *zonelist; 3672 3673 zonelist = &pgdat->node_zonelists[1]; 3674 j = build_zonelists_node(pgdat, zonelist, 0); 3675 zonelist->_zonerefs[j].zone = NULL; 3676 zonelist->_zonerefs[j].zone_idx = 0; 3677} 3678 3679/* 3680 * Build zonelists ordered by zone and nodes within zones. 3681 * This results in conserving DMA zone[s] until all Normal memory is 3682 * exhausted, but results in overflowing to remote node while memory 3683 * may still exist in local DMA zone. 3684 */ 3685static int node_order[MAX_NUMNODES]; 3686 3687static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3688{ 3689 int pos, j, node; 3690 int zone_type; /* needs to be signed */ 3691 struct zone *z; 3692 struct zonelist *zonelist; 3693 3694 zonelist = &pgdat->node_zonelists[0]; 3695 pos = 0; 3696 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3697 for (j = 0; j < nr_nodes; j++) { 3698 node = node_order[j]; 3699 z = &NODE_DATA(node)->node_zones[zone_type]; 3700 if (populated_zone(z)) { 3701 zoneref_set_zone(z, 3702 &zonelist->_zonerefs[pos++]); 3703 check_highest_zone(zone_type); 3704 } 3705 } 3706 } 3707 zonelist->_zonerefs[pos].zone = NULL; 3708 zonelist->_zonerefs[pos].zone_idx = 0; 3709} 3710 3711#if defined(CONFIG_64BIT) 3712/* 3713 * Devices that require DMA32/DMA are relatively rare and do not justify a 3714 * penalty to every machine in case the specialised case applies. Default 3715 * to Node-ordering on 64-bit NUMA machines 3716 */ 3717static int default_zonelist_order(void) 3718{ 3719 return ZONELIST_ORDER_NODE; 3720} 3721#else 3722/* 3723 * On 32-bit, the Normal zone needs to be preserved for allocations accessible 3724 * by the kernel. If processes running on node 0 deplete the low memory zone 3725 * then reclaim will occur more frequency increasing stalls and potentially 3726 * be easier to OOM if a large percentage of the zone is under writeback or 3727 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. 3728 * Hence, default to zone ordering on 32-bit. 3729 */ 3730static int default_zonelist_order(void) 3731{ 3732 return ZONELIST_ORDER_ZONE; 3733} 3734#endif /* CONFIG_64BIT */ 3735 3736static void set_zonelist_order(void) 3737{ 3738 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3739 current_zonelist_order = default_zonelist_order(); 3740 else 3741 current_zonelist_order = user_zonelist_order; 3742} 3743 3744static void build_zonelists(pg_data_t *pgdat) 3745{ 3746 int j, node, load; 3747 enum zone_type i; 3748 nodemask_t used_mask; 3749 int local_node, prev_node; 3750 struct zonelist *zonelist; 3751 unsigned int order = current_zonelist_order; 3752 3753 /* initialize zonelists */ 3754 for (i = 0; i < MAX_ZONELISTS; i++) { 3755 zonelist = pgdat->node_zonelists + i; 3756 zonelist->_zonerefs[0].zone = NULL; 3757 zonelist->_zonerefs[0].zone_idx = 0; 3758 } 3759 3760 /* NUMA-aware ordering of nodes */ 3761 local_node = pgdat->node_id; 3762 load = nr_online_nodes; 3763 prev_node = local_node; 3764 nodes_clear(used_mask); 3765 3766 memset(node_order, 0, sizeof(node_order)); 3767 j = 0; 3768 3769 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3770 /* 3771 * We don't want to pressure a particular node. 3772 * So adding penalty to the first node in same 3773 * distance group to make it round-robin. 3774 */ 3775 if (node_distance(local_node, node) != 3776 node_distance(local_node, prev_node)) 3777 node_load[node] = load; 3778 3779 prev_node = node; 3780 load--; 3781 if (order == ZONELIST_ORDER_NODE) 3782 build_zonelists_in_node_order(pgdat, node); 3783 else 3784 node_order[j++] = node; /* remember order */ 3785 } 3786 3787 if (order == ZONELIST_ORDER_ZONE) { 3788 /* calculate node order -- i.e., DMA last! */ 3789 build_zonelists_in_zone_order(pgdat, j); 3790 } 3791 3792 build_thisnode_zonelists(pgdat); 3793} 3794 3795/* Construct the zonelist performance cache - see further mmzone.h */ 3796static void build_zonelist_cache(pg_data_t *pgdat) 3797{ 3798 struct zonelist *zonelist; 3799 struct zonelist_cache *zlc; 3800 struct zoneref *z; 3801 3802 zonelist = &pgdat->node_zonelists[0]; 3803 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3804 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3805 for (z = zonelist->_zonerefs; z->zone; z++) 3806 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3807} 3808 3809#ifdef CONFIG_HAVE_MEMORYLESS_NODES 3810/* 3811 * Return node id of node used for "local" allocations. 3812 * I.e., first node id of first zone in arg node's generic zonelist. 3813 * Used for initializing percpu 'numa_mem', which is used primarily 3814 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3815 */ 3816int local_memory_node(int node) 3817{ 3818 struct zone *zone; 3819 3820 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3821 gfp_zone(GFP_KERNEL), 3822 NULL, 3823 &zone); 3824 return zone->node; 3825} 3826#endif 3827 3828#else /* CONFIG_NUMA */ 3829 3830static void set_zonelist_order(void) 3831{ 3832 current_zonelist_order = ZONELIST_ORDER_ZONE; 3833} 3834 3835static void build_zonelists(pg_data_t *pgdat) 3836{ 3837 int node, local_node; 3838 enum zone_type j; 3839 struct zonelist *zonelist; 3840 3841 local_node = pgdat->node_id; 3842 3843 zonelist = &pgdat->node_zonelists[0]; 3844 j = build_zonelists_node(pgdat, zonelist, 0); 3845 3846 /* 3847 * Now we build the zonelist so that it contains the zones 3848 * of all the other nodes. 3849 * We don't want to pressure a particular node, so when 3850 * building the zones for node N, we make sure that the 3851 * zones coming right after the local ones are those from 3852 * node N+1 (modulo N) 3853 */ 3854 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3855 if (!node_online(node)) 3856 continue; 3857 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3858 } 3859 for (node = 0; node < local_node; node++) { 3860 if (!node_online(node)) 3861 continue; 3862 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3863 } 3864 3865 zonelist->_zonerefs[j].zone = NULL; 3866 zonelist->_zonerefs[j].zone_idx = 0; 3867} 3868 3869/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3870static void build_zonelist_cache(pg_data_t *pgdat) 3871{ 3872 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3873} 3874 3875#endif /* CONFIG_NUMA */ 3876 3877/* 3878 * Boot pageset table. One per cpu which is going to be used for all 3879 * zones and all nodes. The parameters will be set in such a way 3880 * that an item put on a list will immediately be handed over to 3881 * the buddy list. This is safe since pageset manipulation is done 3882 * with interrupts disabled. 3883 * 3884 * The boot_pagesets must be kept even after bootup is complete for 3885 * unused processors and/or zones. They do play a role for bootstrapping 3886 * hotplugged processors. 3887 * 3888 * zoneinfo_show() and maybe other functions do 3889 * not check if the processor is online before following the pageset pointer. 3890 * Other parts of the kernel may not check if the zone is available. 3891 */ 3892static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3893static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3894static void setup_zone_pageset(struct zone *zone); 3895 3896/* 3897 * Global mutex to protect against size modification of zonelists 3898 * as well as to serialize pageset setup for the new populated zone. 3899 */ 3900DEFINE_MUTEX(zonelists_mutex); 3901 3902/* return values int ....just for stop_machine() */ 3903static int __build_all_zonelists(void *data) 3904{ 3905 int nid; 3906 int cpu; 3907 pg_data_t *self = data; 3908 3909#ifdef CONFIG_NUMA 3910 memset(node_load, 0, sizeof(node_load)); 3911#endif 3912 3913 if (self && !node_online(self->node_id)) { 3914 build_zonelists(self); 3915 build_zonelist_cache(self); 3916 } 3917 3918 for_each_online_node(nid) { 3919 pg_data_t *pgdat = NODE_DATA(nid); 3920 3921 build_zonelists(pgdat); 3922 build_zonelist_cache(pgdat); 3923 } 3924 3925 /* 3926 * Initialize the boot_pagesets that are going to be used 3927 * for bootstrapping processors. The real pagesets for 3928 * each zone will be allocated later when the per cpu 3929 * allocator is available. 3930 * 3931 * boot_pagesets are used also for bootstrapping offline 3932 * cpus if the system is already booted because the pagesets 3933 * are needed to initialize allocators on a specific cpu too. 3934 * F.e. the percpu allocator needs the page allocator which 3935 * needs the percpu allocator in order to allocate its pagesets 3936 * (a chicken-egg dilemma). 3937 */ 3938 for_each_possible_cpu(cpu) { 3939 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3940 3941#ifdef CONFIG_HAVE_MEMORYLESS_NODES 3942 /* 3943 * We now know the "local memory node" for each node-- 3944 * i.e., the node of the first zone in the generic zonelist. 3945 * Set up numa_mem percpu variable for on-line cpus. During 3946 * boot, only the boot cpu should be on-line; we'll init the 3947 * secondary cpus' numa_mem as they come on-line. During 3948 * node/memory hotplug, we'll fixup all on-line cpus. 3949 */ 3950 if (cpu_online(cpu)) 3951 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3952#endif 3953 } 3954 3955 return 0; 3956} 3957 3958static noinline void __init 3959build_all_zonelists_init(void) 3960{ 3961 __build_all_zonelists(NULL); 3962 mminit_verify_zonelist(); 3963 cpuset_init_current_mems_allowed(); 3964} 3965 3966/* 3967 * Called with zonelists_mutex held always 3968 * unless system_state == SYSTEM_BOOTING. 3969 * 3970 * __ref due to (1) call of __meminit annotated setup_zone_pageset 3971 * [we're only called with non-NULL zone through __meminit paths] and 3972 * (2) call of __init annotated helper build_all_zonelists_init 3973 * [protected by SYSTEM_BOOTING]. 3974 */ 3975void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3976{ 3977 set_zonelist_order(); 3978 3979 if (system_state == SYSTEM_BOOTING) { 3980 build_all_zonelists_init(); 3981 } else { 3982#ifdef CONFIG_MEMORY_HOTPLUG 3983 if (zone) 3984 setup_zone_pageset(zone); 3985#endif 3986 /* we have to stop all cpus to guarantee there is no user 3987 of zonelist */ 3988 stop_machine(__build_all_zonelists, pgdat, NULL); 3989 /* cpuset refresh routine should be here */ 3990 } 3991 vm_total_pages = nr_free_pagecache_pages(); 3992 /* 3993 * Disable grouping by mobility if the number of pages in the 3994 * system is too low to allow the mechanism to work. It would be 3995 * more accurate, but expensive to check per-zone. This check is 3996 * made on memory-hotadd so a system can start with mobility 3997 * disabled and enable it later 3998 */ 3999 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 4000 page_group_by_mobility_disabled = 1; 4001 else 4002 page_group_by_mobility_disabled = 0; 4003 4004 pr_info("Built %i zonelists in %s order, mobility grouping %s. " 4005 "Total pages: %ld\n", 4006 nr_online_nodes, 4007 zonelist_order_name[current_zonelist_order], 4008 page_group_by_mobility_disabled ? "off" : "on", 4009 vm_total_pages); 4010#ifdef CONFIG_NUMA 4011 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 4012#endif 4013} 4014 4015/* 4016 * Helper functions to size the waitqueue hash table. 4017 * Essentially these want to choose hash table sizes sufficiently 4018 * large so that collisions trying to wait on pages are rare. 4019 * But in fact, the number of active page waitqueues on typical 4020 * systems is ridiculously low, less than 200. So this is even 4021 * conservative, even though it seems large. 4022 * 4023 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 4024 * waitqueues, i.e. the size of the waitq table given the number of pages. 4025 */ 4026#define PAGES_PER_WAITQUEUE 256 4027 4028#ifndef CONFIG_MEMORY_HOTPLUG 4029static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 4030{ 4031 unsigned long size = 1; 4032 4033 pages /= PAGES_PER_WAITQUEUE; 4034 4035 while (size < pages) 4036 size <<= 1; 4037 4038 /* 4039 * Once we have dozens or even hundreds of threads sleeping 4040 * on IO we've got bigger problems than wait queue collision. 4041 * Limit the size of the wait table to a reasonable size. 4042 */ 4043 size = min(size, 4096UL); 4044 4045 return max(size, 4UL); 4046} 4047#else 4048/* 4049 * A zone's size might be changed by hot-add, so it is not possible to determine 4050 * a suitable size for its wait_table. So we use the maximum size now. 4051 * 4052 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 4053 * 4054 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 4055 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 4056 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 4057 * 4058 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 4059 * or more by the traditional way. (See above). It equals: 4060 * 4061 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 4062 * ia64(16K page size) : = ( 8G + 4M)byte. 4063 * powerpc (64K page size) : = (32G +16M)byte. 4064 */ 4065static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 4066{ 4067 return 4096UL; 4068} 4069#endif 4070 4071/* 4072 * This is an integer logarithm so that shifts can be used later 4073 * to extract the more random high bits from the multiplicative 4074 * hash function before the remainder is taken. 4075 */ 4076static inline unsigned long wait_table_bits(unsigned long size) 4077{ 4078 return ffz(~size); 4079} 4080 4081/* 4082 * Check if a pageblock contains reserved pages 4083 */ 4084static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 4085{ 4086 unsigned long pfn; 4087 4088 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4089 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 4090 return 1; 4091 } 4092 return 0; 4093} 4094 4095/* 4096 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 4097 * of blocks reserved is based on min_wmark_pages(zone). The memory within 4098 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 4099 * higher will lead to a bigger reserve which will get freed as contiguous 4100 * blocks as reclaim kicks in 4101 */ 4102static void setup_zone_migrate_reserve(struct zone *zone) 4103{ 4104 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 4105 struct page *page; 4106 unsigned long block_migratetype; 4107 int reserve; 4108 int old_reserve; 4109 4110 /* 4111 * Get the start pfn, end pfn and the number of blocks to reserve 4112 * We have to be careful to be aligned to pageblock_nr_pages to 4113 * make sure that we always check pfn_valid for the first page in 4114 * the block. 4115 */ 4116 start_pfn = zone->zone_start_pfn; 4117 end_pfn = zone_end_pfn(zone); 4118 start_pfn = roundup(start_pfn, pageblock_nr_pages); 4119 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 4120 pageblock_order; 4121 4122 /* 4123 * Reserve blocks are generally in place to help high-order atomic 4124 * allocations that are short-lived. A min_free_kbytes value that 4125 * would result in more than 2 reserve blocks for atomic allocations 4126 * is assumed to be in place to help anti-fragmentation for the 4127 * future allocation of hugepages at runtime. 4128 */ 4129 reserve = min(2, reserve); 4130 old_reserve = zone->nr_migrate_reserve_block; 4131 4132 /* When memory hot-add, we almost always need to do nothing */ 4133 if (reserve == old_reserve) 4134 return; 4135 zone->nr_migrate_reserve_block = reserve; 4136 4137 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 4138 if (!pfn_valid(pfn)) 4139 continue; 4140 page = pfn_to_page(pfn); 4141 4142 /* Watch out for overlapping nodes */ 4143 if (page_to_nid(page) != zone_to_nid(zone)) 4144 continue; 4145 4146 block_migratetype = get_pageblock_migratetype(page); 4147 4148 /* Only test what is necessary when the reserves are not met */ 4149 if (reserve > 0) { 4150 /* 4151 * Blocks with reserved pages will never free, skip 4152 * them. 4153 */ 4154 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 4155 if (pageblock_is_reserved(pfn, block_end_pfn)) 4156 continue; 4157 4158 /* If this block is reserved, account for it */ 4159 if (block_migratetype == MIGRATE_RESERVE) { 4160 reserve--; 4161 continue; 4162 } 4163 4164 /* Suitable for reserving if this block is movable */ 4165 if (block_migratetype == MIGRATE_MOVABLE) { 4166 set_pageblock_migratetype(page, 4167 MIGRATE_RESERVE); 4168 move_freepages_block(zone, page, 4169 MIGRATE_RESERVE); 4170 reserve--; 4171 continue; 4172 } 4173 } else if (!old_reserve) { 4174 /* 4175 * At boot time we don't need to scan the whole zone 4176 * for turning off MIGRATE_RESERVE. 4177 */ 4178 break; 4179 } 4180 4181 /* 4182 * If the reserve is met and this is a previous reserved block, 4183 * take it back 4184 */ 4185 if (block_migratetype == MIGRATE_RESERVE) { 4186 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4187 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4188 } 4189 } 4190} 4191 4192/* 4193 * Initially all pages are reserved - free ones are freed 4194 * up by free_all_bootmem() once the early boot process is 4195 * done. Non-atomic initialization, single-pass. 4196 */ 4197void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 4198 unsigned long start_pfn, enum memmap_context context) 4199{ 4200 struct page *page; 4201 unsigned long end_pfn = start_pfn + size; 4202 unsigned long pfn; 4203 struct zone *z; 4204 4205 if (highest_memmap_pfn < end_pfn - 1) 4206 highest_memmap_pfn = end_pfn - 1; 4207 4208 z = &NODE_DATA(nid)->node_zones[zone]; 4209 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4210 /* 4211 * There can be holes in boot-time mem_map[]s 4212 * handed to this function. They do not 4213 * exist on hotplugged memory. 4214 */ 4215 if (context == MEMMAP_EARLY) { 4216 if (!early_pfn_valid(pfn)) 4217 continue; 4218 if (!early_pfn_in_nid(pfn, nid)) 4219 continue; 4220 } 4221 page = pfn_to_page(pfn); 4222 set_page_links(page, zone, nid, pfn); 4223 mminit_verify_page_links(page, zone, nid, pfn); 4224 init_page_count(page); 4225 page_mapcount_reset(page); 4226 page_cpupid_reset_last(page); 4227 SetPageReserved(page); 4228 /* 4229 * Mark the block movable so that blocks are reserved for 4230 * movable at startup. This will force kernel allocations 4231 * to reserve their blocks rather than leaking throughout 4232 * the address space during boot when many long-lived 4233 * kernel allocations are made. Later some blocks near 4234 * the start are marked MIGRATE_RESERVE by 4235 * setup_zone_migrate_reserve() 4236 * 4237 * bitmap is created for zone's valid pfn range. but memmap 4238 * can be created for invalid pages (for alignment) 4239 * check here not to call set_pageblock_migratetype() against 4240 * pfn out of zone. 4241 */ 4242 if ((z->zone_start_pfn <= pfn) 4243 && (pfn < zone_end_pfn(z)) 4244 && !(pfn & (pageblock_nr_pages - 1))) 4245 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4246 4247 INIT_LIST_HEAD(&page->lru); 4248#ifdef WANT_PAGE_VIRTUAL 4249 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 4250 if (!is_highmem_idx(zone)) 4251 set_page_address(page, __va(pfn << PAGE_SHIFT)); 4252#endif 4253 } 4254} 4255 4256static void __meminit zone_init_free_lists(struct zone *zone) 4257{ 4258 unsigned int order, t; 4259 for_each_migratetype_order(order, t) { 4260 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 4261 zone->free_area[order].nr_free = 0; 4262 } 4263} 4264 4265#ifndef __HAVE_ARCH_MEMMAP_INIT 4266#define memmap_init(size, nid, zone, start_pfn) \ 4267 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 4268#endif 4269 4270static int zone_batchsize(struct zone *zone) 4271{ 4272#ifdef CONFIG_MMU 4273 int batch; 4274 4275 /* 4276 * The per-cpu-pages pools are set to around 1000th of the 4277 * size of the zone. But no more than 1/2 of a meg. 4278 * 4279 * OK, so we don't know how big the cache is. So guess. 4280 */ 4281 batch = zone->managed_pages / 1024; 4282 if (batch * PAGE_SIZE > 512 * 1024) 4283 batch = (512 * 1024) / PAGE_SIZE; 4284 batch /= 4; /* We effectively *= 4 below */ 4285 if (batch < 1) 4286 batch = 1; 4287 4288 /* 4289 * Clamp the batch to a 2^n - 1 value. Having a power 4290 * of 2 value was found to be more likely to have 4291 * suboptimal cache aliasing properties in some cases. 4292 * 4293 * For example if 2 tasks are alternately allocating 4294 * batches of pages, one task can end up with a lot 4295 * of pages of one half of the possible page colors 4296 * and the other with pages of the other colors. 4297 */ 4298 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4299 4300 return batch; 4301 4302#else 4303 /* The deferral and batching of frees should be suppressed under NOMMU 4304 * conditions. 4305 * 4306 * The problem is that NOMMU needs to be able to allocate large chunks 4307 * of contiguous memory as there's no hardware page translation to 4308 * assemble apparent contiguous memory from discontiguous pages. 4309 * 4310 * Queueing large contiguous runs of pages for batching, however, 4311 * causes the pages to actually be freed in smaller chunks. As there 4312 * can be a significant delay between the individual batches being 4313 * recycled, this leads to the once large chunks of space being 4314 * fragmented and becoming unavailable for high-order allocations. 4315 */ 4316 return 0; 4317#endif 4318} 4319 4320/* 4321 * pcp->high and pcp->batch values are related and dependent on one another: 4322 * ->batch must never be higher then ->high. 4323 * The following function updates them in a safe manner without read side 4324 * locking. 4325 * 4326 * Any new users of pcp->batch and pcp->high should ensure they can cope with 4327 * those fields changing asynchronously (acording the the above rule). 4328 * 4329 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 4330 * outside of boot time (or some other assurance that no concurrent updaters 4331 * exist). 4332 */ 4333static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 4334 unsigned long batch) 4335{ 4336 /* start with a fail safe value for batch */ 4337 pcp->batch = 1; 4338 smp_wmb(); 4339 4340 /* Update high, then batch, in order */ 4341 pcp->high = high; 4342 smp_wmb(); 4343 4344 pcp->batch = batch; 4345} 4346 4347/* a companion to pageset_set_high() */ 4348static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 4349{ 4350 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 4351} 4352 4353static void pageset_init(struct per_cpu_pageset *p) 4354{ 4355 struct per_cpu_pages *pcp; 4356 int migratetype; 4357 4358 memset(p, 0, sizeof(*p)); 4359 4360 pcp = &p->pcp; 4361 pcp->count = 0; 4362 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4363 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4364} 4365 4366static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4367{ 4368 pageset_init(p); 4369 pageset_set_batch(p, batch); 4370} 4371 4372/* 4373 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 4374 * to the value high for the pageset p. 4375 */ 4376static void pageset_set_high(struct per_cpu_pageset *p, 4377 unsigned long high) 4378{ 4379 unsigned long batch = max(1UL, high / 4); 4380 if ((high / 4) > (PAGE_SHIFT * 8)) 4381 batch = PAGE_SHIFT * 8; 4382 4383 pageset_update(&p->pcp, high, batch); 4384} 4385 4386static void pageset_set_high_and_batch(struct zone *zone, 4387 struct per_cpu_pageset *pcp) 4388{ 4389 if (percpu_pagelist_fraction) 4390 pageset_set_high(pcp, 4391 (zone->managed_pages / 4392 percpu_pagelist_fraction)); 4393 else 4394 pageset_set_batch(pcp, zone_batchsize(zone)); 4395} 4396 4397static void __meminit zone_pageset_init(struct zone *zone, int cpu) 4398{ 4399 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4400 4401 pageset_init(pcp); 4402 pageset_set_high_and_batch(zone, pcp); 4403} 4404 4405static void __meminit setup_zone_pageset(struct zone *zone) 4406{ 4407 int cpu; 4408 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4409 for_each_possible_cpu(cpu) 4410 zone_pageset_init(zone, cpu); 4411} 4412 4413/* 4414 * Allocate per cpu pagesets and initialize them. 4415 * Before this call only boot pagesets were available. 4416 */ 4417void __init setup_per_cpu_pageset(void) 4418{ 4419 struct zone *zone; 4420 4421 for_each_populated_zone(zone) 4422 setup_zone_pageset(zone); 4423} 4424 4425static noinline __init_refok 4426int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4427{ 4428 int i; 4429 size_t alloc_size; 4430 4431 /* 4432 * The per-page waitqueue mechanism uses hashed waitqueues 4433 * per zone. 4434 */ 4435 zone->wait_table_hash_nr_entries = 4436 wait_table_hash_nr_entries(zone_size_pages); 4437 zone->wait_table_bits = 4438 wait_table_bits(zone->wait_table_hash_nr_entries); 4439 alloc_size = zone->wait_table_hash_nr_entries 4440 * sizeof(wait_queue_head_t); 4441 4442 if (!slab_is_available()) { 4443 zone->wait_table = (wait_queue_head_t *) 4444 memblock_virt_alloc_node_nopanic( 4445 alloc_size, zone->zone_pgdat->node_id); 4446 } else { 4447 /* 4448 * This case means that a zone whose size was 0 gets new memory 4449 * via memory hot-add. 4450 * But it may be the case that a new node was hot-added. In 4451 * this case vmalloc() will not be able to use this new node's 4452 * memory - this wait_table must be initialized to use this new 4453 * node itself as well. 4454 * To use this new node's memory, further consideration will be 4455 * necessary. 4456 */ 4457 zone->wait_table = vmalloc(alloc_size); 4458 } 4459 if (!zone->wait_table) 4460 return -ENOMEM; 4461 4462 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4463 init_waitqueue_head(zone->wait_table + i); 4464 4465 return 0; 4466} 4467 4468static __meminit void zone_pcp_init(struct zone *zone) 4469{ 4470 /* 4471 * per cpu subsystem is not up at this point. The following code 4472 * relies on the ability of the linker to provide the 4473 * offset of a (static) per cpu variable into the per cpu area. 4474 */ 4475 zone->pageset = &boot_pageset; 4476 4477 if (populated_zone(zone)) 4478 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4479 zone->name, zone->present_pages, 4480 zone_batchsize(zone)); 4481} 4482 4483int __meminit init_currently_empty_zone(struct zone *zone, 4484 unsigned long zone_start_pfn, 4485 unsigned long size, 4486 enum memmap_context context) 4487{ 4488 struct pglist_data *pgdat = zone->zone_pgdat; 4489 int ret; 4490 ret = zone_wait_table_init(zone, size); 4491 if (ret) 4492 return ret; 4493 pgdat->nr_zones = zone_idx(zone) + 1; 4494 4495 zone->zone_start_pfn = zone_start_pfn; 4496 4497 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4498 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4499 pgdat->node_id, 4500 (unsigned long)zone_idx(zone), 4501 zone_start_pfn, (zone_start_pfn + size)); 4502 4503 zone_init_free_lists(zone); 4504 4505 return 0; 4506} 4507 4508#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4509#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4510/* 4511 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4512 */ 4513int __meminit __early_pfn_to_nid(unsigned long pfn) 4514{ 4515 unsigned long start_pfn, end_pfn; 4516 int nid; 4517 /* 4518 * NOTE: The following SMP-unsafe globals are only used early in boot 4519 * when the kernel is running single-threaded. 4520 */ 4521 static unsigned long __meminitdata last_start_pfn, last_end_pfn; 4522 static int __meminitdata last_nid; 4523 4524 if (last_start_pfn <= pfn && pfn < last_end_pfn) 4525 return last_nid; 4526 4527 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 4528 if (nid != -1) { 4529 last_start_pfn = start_pfn; 4530 last_end_pfn = end_pfn; 4531 last_nid = nid; 4532 } 4533 4534 return nid; 4535} 4536#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4537 4538int __meminit early_pfn_to_nid(unsigned long pfn) 4539{ 4540 int nid; 4541 4542 nid = __early_pfn_to_nid(pfn); 4543 if (nid >= 0) 4544 return nid; 4545 /* just returns 0 */ 4546 return 0; 4547} 4548 4549#ifdef CONFIG_NODES_SPAN_OTHER_NODES 4550bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4551{ 4552 int nid; 4553 4554 nid = __early_pfn_to_nid(pfn); 4555 if (nid >= 0 && nid != node) 4556 return false; 4557 return true; 4558} 4559#endif 4560 4561/** 4562 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 4563 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4564 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 4565 * 4566 * If an architecture guarantees that all ranges registered contain no holes 4567 * and may be freed, this this function may be used instead of calling 4568 * memblock_free_early_nid() manually. 4569 */ 4570void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4571{ 4572 unsigned long start_pfn, end_pfn; 4573 int i, this_nid; 4574 4575 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4576 start_pfn = min(start_pfn, max_low_pfn); 4577 end_pfn = min(end_pfn, max_low_pfn); 4578 4579 if (start_pfn < end_pfn) 4580 memblock_free_early_nid(PFN_PHYS(start_pfn), 4581 (end_pfn - start_pfn) << PAGE_SHIFT, 4582 this_nid); 4583 } 4584} 4585 4586/** 4587 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4588 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4589 * 4590 * If an architecture guarantees that all ranges registered contain no holes and may 4591 * be freed, this function may be used instead of calling memory_present() manually. 4592 */ 4593void __init sparse_memory_present_with_active_regions(int nid) 4594{ 4595 unsigned long start_pfn, end_pfn; 4596 int i, this_nid; 4597 4598 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4599 memory_present(this_nid, start_pfn, end_pfn); 4600} 4601 4602/** 4603 * get_pfn_range_for_nid - Return the start and end page frames for a node 4604 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4605 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4606 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4607 * 4608 * It returns the start and end page frame of a node based on information 4609 * provided by memblock_set_node(). If called for a node 4610 * with no available memory, a warning is printed and the start and end 4611 * PFNs will be 0. 4612 */ 4613void __meminit get_pfn_range_for_nid(unsigned int nid, 4614 unsigned long *start_pfn, unsigned long *end_pfn) 4615{ 4616 unsigned long this_start_pfn, this_end_pfn; 4617 int i; 4618 4619 *start_pfn = -1UL; 4620 *end_pfn = 0; 4621 4622 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4623 *start_pfn = min(*start_pfn, this_start_pfn); 4624 *end_pfn = max(*end_pfn, this_end_pfn); 4625 } 4626 4627 if (*start_pfn == -1UL) 4628 *start_pfn = 0; 4629} 4630 4631/* 4632 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4633 * assumption is made that zones within a node are ordered in monotonic 4634 * increasing memory addresses so that the "highest" populated zone is used 4635 */ 4636static void __init find_usable_zone_for_movable(void) 4637{ 4638 int zone_index; 4639 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4640 if (zone_index == ZONE_MOVABLE) 4641 continue; 4642 4643 if (arch_zone_highest_possible_pfn[zone_index] > 4644 arch_zone_lowest_possible_pfn[zone_index]) 4645 break; 4646 } 4647 4648 VM_BUG_ON(zone_index == -1); 4649 movable_zone = zone_index; 4650} 4651 4652/* 4653 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4654 * because it is sized independent of architecture. Unlike the other zones, 4655 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4656 * in each node depending on the size of each node and how evenly kernelcore 4657 * is distributed. This helper function adjusts the zone ranges 4658 * provided by the architecture for a given node by using the end of the 4659 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4660 * zones within a node are in order of monotonic increases memory addresses 4661 */ 4662static void __meminit adjust_zone_range_for_zone_movable(int nid, 4663 unsigned long zone_type, 4664 unsigned long node_start_pfn, 4665 unsigned long node_end_pfn, 4666 unsigned long *zone_start_pfn, 4667 unsigned long *zone_end_pfn) 4668{ 4669 /* Only adjust if ZONE_MOVABLE is on this node */ 4670 if (zone_movable_pfn[nid]) { 4671 /* Size ZONE_MOVABLE */ 4672 if (zone_type == ZONE_MOVABLE) { 4673 *zone_start_pfn = zone_movable_pfn[nid]; 4674 *zone_end_pfn = min(node_end_pfn, 4675 arch_zone_highest_possible_pfn[movable_zone]); 4676 4677 /* Adjust for ZONE_MOVABLE starting within this range */ 4678 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4679 *zone_end_pfn > zone_movable_pfn[nid]) { 4680 *zone_end_pfn = zone_movable_pfn[nid]; 4681 4682 /* Check if this whole range is within ZONE_MOVABLE */ 4683 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4684 *zone_start_pfn = *zone_end_pfn; 4685 } 4686} 4687 4688/* 4689 * Return the number of pages a zone spans in a node, including holes 4690 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4691 */ 4692static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4693 unsigned long zone_type, 4694 unsigned long node_start_pfn, 4695 unsigned long node_end_pfn, 4696 unsigned long *ignored) 4697{ 4698 unsigned long zone_start_pfn, zone_end_pfn; 4699 4700 /* Get the start and end of the zone */ 4701 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4702 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4703 adjust_zone_range_for_zone_movable(nid, zone_type, 4704 node_start_pfn, node_end_pfn, 4705 &zone_start_pfn, &zone_end_pfn); 4706 4707 /* Check that this node has pages within the zone's required range */ 4708 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4709 return 0; 4710 4711 /* Move the zone boundaries inside the node if necessary */ 4712 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4713 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4714 4715 /* Return the spanned pages */ 4716 return zone_end_pfn - zone_start_pfn; 4717} 4718 4719/* 4720 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4721 * then all holes in the requested range will be accounted for. 4722 */ 4723unsigned long __meminit __absent_pages_in_range(int nid, 4724 unsigned long range_start_pfn, 4725 unsigned long range_end_pfn) 4726{ 4727 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4728 unsigned long start_pfn, end_pfn; 4729 int i; 4730 4731 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4732 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4733 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4734 nr_absent -= end_pfn - start_pfn; 4735 } 4736 return nr_absent; 4737} 4738 4739/** 4740 * absent_pages_in_range - Return number of page frames in holes within a range 4741 * @start_pfn: The start PFN to start searching for holes 4742 * @end_pfn: The end PFN to stop searching for holes 4743 * 4744 * It returns the number of pages frames in memory holes within a range. 4745 */ 4746unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4747 unsigned long end_pfn) 4748{ 4749 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4750} 4751 4752/* Return the number of page frames in holes in a zone on a node */ 4753static unsigned long __meminit zone_absent_pages_in_node(int nid, 4754 unsigned long zone_type, 4755 unsigned long node_start_pfn, 4756 unsigned long node_end_pfn, 4757 unsigned long *ignored) 4758{ 4759 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4760 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4761 unsigned long zone_start_pfn, zone_end_pfn; 4762 4763 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4764 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4765 4766 adjust_zone_range_for_zone_movable(nid, zone_type, 4767 node_start_pfn, node_end_pfn, 4768 &zone_start_pfn, &zone_end_pfn); 4769 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4770} 4771 4772#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4773static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4774 unsigned long zone_type, 4775 unsigned long node_start_pfn, 4776 unsigned long node_end_pfn, 4777 unsigned long *zones_size) 4778{ 4779 return zones_size[zone_type]; 4780} 4781 4782static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4783 unsigned long zone_type, 4784 unsigned long node_start_pfn, 4785 unsigned long node_end_pfn, 4786 unsigned long *zholes_size) 4787{ 4788 if (!zholes_size) 4789 return 0; 4790 4791 return zholes_size[zone_type]; 4792} 4793 4794#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4795 4796static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4797 unsigned long node_start_pfn, 4798 unsigned long node_end_pfn, 4799 unsigned long *zones_size, 4800 unsigned long *zholes_size) 4801{ 4802 unsigned long realtotalpages, totalpages = 0; 4803 enum zone_type i; 4804 4805 for (i = 0; i < MAX_NR_ZONES; i++) 4806 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4807 node_start_pfn, 4808 node_end_pfn, 4809 zones_size); 4810 pgdat->node_spanned_pages = totalpages; 4811 4812 realtotalpages = totalpages; 4813 for (i = 0; i < MAX_NR_ZONES; i++) 4814 realtotalpages -= 4815 zone_absent_pages_in_node(pgdat->node_id, i, 4816 node_start_pfn, node_end_pfn, 4817 zholes_size); 4818 pgdat->node_present_pages = realtotalpages; 4819 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4820 realtotalpages); 4821} 4822 4823#ifndef CONFIG_SPARSEMEM 4824/* 4825 * Calculate the size of the zone->blockflags rounded to an unsigned long 4826 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4827 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4828 * round what is now in bits to nearest long in bits, then return it in 4829 * bytes. 4830 */ 4831static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 4832{ 4833 unsigned long usemapsize; 4834 4835 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 4836 usemapsize = roundup(zonesize, pageblock_nr_pages); 4837 usemapsize = usemapsize >> pageblock_order; 4838 usemapsize *= NR_PAGEBLOCK_BITS; 4839 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4840 4841 return usemapsize / 8; 4842} 4843 4844static void __init setup_usemap(struct pglist_data *pgdat, 4845 struct zone *zone, 4846 unsigned long zone_start_pfn, 4847 unsigned long zonesize) 4848{ 4849 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 4850 zone->pageblock_flags = NULL; 4851 if (usemapsize) 4852 zone->pageblock_flags = 4853 memblock_virt_alloc_node_nopanic(usemapsize, 4854 pgdat->node_id); 4855} 4856#else 4857static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 4858 unsigned long zone_start_pfn, unsigned long zonesize) {} 4859#endif /* CONFIG_SPARSEMEM */ 4860 4861#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4862 4863/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4864void __paginginit set_pageblock_order(void) 4865{ 4866 unsigned int order; 4867 4868 /* Check that pageblock_nr_pages has not already been setup */ 4869 if (pageblock_order) 4870 return; 4871 4872 if (HPAGE_SHIFT > PAGE_SHIFT) 4873 order = HUGETLB_PAGE_ORDER; 4874 else 4875 order = MAX_ORDER - 1; 4876 4877 /* 4878 * Assume the largest contiguous order of interest is a huge page. 4879 * This value may be variable depending on boot parameters on IA64 and 4880 * powerpc. 4881 */ 4882 pageblock_order = order; 4883} 4884#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4885 4886/* 4887 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4888 * is unused as pageblock_order is set at compile-time. See 4889 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4890 * the kernel config 4891 */ 4892void __paginginit set_pageblock_order(void) 4893{ 4894} 4895 4896#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4897 4898static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4899 unsigned long present_pages) 4900{ 4901 unsigned long pages = spanned_pages; 4902 4903 /* 4904 * Provide a more accurate estimation if there are holes within 4905 * the zone and SPARSEMEM is in use. If there are holes within the 4906 * zone, each populated memory region may cost us one or two extra 4907 * memmap pages due to alignment because memmap pages for each 4908 * populated regions may not naturally algined on page boundary. 4909 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4910 */ 4911 if (spanned_pages > present_pages + (present_pages >> 4) && 4912 IS_ENABLED(CONFIG_SPARSEMEM)) 4913 pages = present_pages; 4914 4915 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4916} 4917 4918/* 4919 * Set up the zone data structures: 4920 * - mark all pages reserved 4921 * - mark all memory queues empty 4922 * - clear the memory bitmaps 4923 * 4924 * NOTE: pgdat should get zeroed by caller. 4925 */ 4926static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4927 unsigned long node_start_pfn, unsigned long node_end_pfn, 4928 unsigned long *zones_size, unsigned long *zholes_size) 4929{ 4930 enum zone_type j; 4931 int nid = pgdat->node_id; 4932 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4933 int ret; 4934 4935 pgdat_resize_init(pgdat); 4936#ifdef CONFIG_NUMA_BALANCING 4937 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4938 pgdat->numabalancing_migrate_nr_pages = 0; 4939 pgdat->numabalancing_migrate_next_window = jiffies; 4940#endif 4941 init_waitqueue_head(&pgdat->kswapd_wait); 4942 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4943 pgdat_page_ext_init(pgdat); 4944 4945 for (j = 0; j < MAX_NR_ZONES; j++) { 4946 struct zone *zone = pgdat->node_zones + j; 4947 unsigned long size, realsize, freesize, memmap_pages; 4948 4949 size = zone_spanned_pages_in_node(nid, j, node_start_pfn, 4950 node_end_pfn, zones_size); 4951 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4952 node_start_pfn, 4953 node_end_pfn, 4954 zholes_size); 4955 4956 /* 4957 * Adjust freesize so that it accounts for how much memory 4958 * is used by this zone for memmap. This affects the watermark 4959 * and per-cpu initialisations 4960 */ 4961 memmap_pages = calc_memmap_size(size, realsize); 4962 if (!is_highmem_idx(j)) { 4963 if (freesize >= memmap_pages) { 4964 freesize -= memmap_pages; 4965 if (memmap_pages) 4966 printk(KERN_DEBUG 4967 " %s zone: %lu pages used for memmap\n", 4968 zone_names[j], memmap_pages); 4969 } else 4970 printk(KERN_WARNING 4971 " %s zone: %lu pages exceeds freesize %lu\n", 4972 zone_names[j], memmap_pages, freesize); 4973 } 4974 4975 /* Account for reserved pages */ 4976 if (j == 0 && freesize > dma_reserve) { 4977 freesize -= dma_reserve; 4978 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4979 zone_names[0], dma_reserve); 4980 } 4981 4982 if (!is_highmem_idx(j)) 4983 nr_kernel_pages += freesize; 4984 /* Charge for highmem memmap if there are enough kernel pages */ 4985 else if (nr_kernel_pages > memmap_pages * 2) 4986 nr_kernel_pages -= memmap_pages; 4987 nr_all_pages += freesize; 4988 4989 zone->spanned_pages = size; 4990 zone->present_pages = realsize; 4991 /* 4992 * Set an approximate value for lowmem here, it will be adjusted 4993 * when the bootmem allocator frees pages into the buddy system. 4994 * And all highmem pages will be managed by the buddy system. 4995 */ 4996 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4997#ifdef CONFIG_NUMA 4998 zone->node = nid; 4999 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 5000 / 100; 5001 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 5002#endif 5003 zone->name = zone_names[j]; 5004 spin_lock_init(&zone->lock); 5005 spin_lock_init(&zone->lru_lock); 5006 zone_seqlock_init(zone); 5007 zone->zone_pgdat = pgdat; 5008 zone_pcp_init(zone); 5009 5010 /* For bootup, initialized properly in watermark setup */ 5011 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); 5012 5013 lruvec_init(&zone->lruvec); 5014 if (!size) 5015 continue; 5016 5017 set_pageblock_order(); 5018 setup_usemap(pgdat, zone, zone_start_pfn, size); 5019 ret = init_currently_empty_zone(zone, zone_start_pfn, 5020 size, MEMMAP_EARLY); 5021 BUG_ON(ret); 5022 memmap_init(size, nid, j, zone_start_pfn); 5023 zone_start_pfn += size; 5024 } 5025} 5026 5027static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 5028{ 5029 /* Skip empty nodes */ 5030 if (!pgdat->node_spanned_pages) 5031 return; 5032 5033#ifdef CONFIG_FLAT_NODE_MEM_MAP 5034 /* ia64 gets its own node_mem_map, before this, without bootmem */ 5035 if (!pgdat->node_mem_map) { 5036 unsigned long size, start, end; 5037 struct page *map; 5038 5039 /* 5040 * The zone's endpoints aren't required to be MAX_ORDER 5041 * aligned but the node_mem_map endpoints must be in order 5042 * for the buddy allocator to function correctly. 5043 */ 5044 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 5045 end = pgdat_end_pfn(pgdat); 5046 end = ALIGN(end, MAX_ORDER_NR_PAGES); 5047 size = (end - start) * sizeof(struct page); 5048 map = alloc_remap(pgdat->node_id, size); 5049 if (!map) 5050 map = memblock_virt_alloc_node_nopanic(size, 5051 pgdat->node_id); 5052 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 5053 } 5054#ifndef CONFIG_NEED_MULTIPLE_NODES 5055 /* 5056 * With no DISCONTIG, the global mem_map is just set as node 0's 5057 */ 5058 if (pgdat == NODE_DATA(0)) { 5059 mem_map = NODE_DATA(0)->node_mem_map; 5060#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5061 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 5062 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 5063#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5064 } 5065#endif 5066#endif /* CONFIG_FLAT_NODE_MEM_MAP */ 5067} 5068 5069void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 5070 unsigned long node_start_pfn, unsigned long *zholes_size) 5071{ 5072 pg_data_t *pgdat = NODE_DATA(nid); 5073 unsigned long start_pfn = 0; 5074 unsigned long end_pfn = 0; 5075 5076 /* pg_data_t should be reset to zero when it's allocated */ 5077 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 5078 5079 pgdat->node_id = nid; 5080 pgdat->node_start_pfn = node_start_pfn; 5081#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5082 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 5083 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 5084 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1); 5085#endif 5086 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 5087 zones_size, zholes_size); 5088 5089 alloc_node_mem_map(pgdat); 5090#ifdef CONFIG_FLAT_NODE_MEM_MAP 5091 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 5092 nid, (unsigned long)pgdat, 5093 (unsigned long)pgdat->node_mem_map); 5094#endif 5095 5096 free_area_init_core(pgdat, start_pfn, end_pfn, 5097 zones_size, zholes_size); 5098} 5099 5100#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5101 5102#if MAX_NUMNODES > 1 5103/* 5104 * Figure out the number of possible node ids. 5105 */ 5106void __init setup_nr_node_ids(void) 5107{ 5108 unsigned int node; 5109 unsigned int highest = 0; 5110 5111 for_each_node_mask(node, node_possible_map) 5112 highest = node; 5113 nr_node_ids = highest + 1; 5114} 5115#endif 5116 5117/** 5118 * node_map_pfn_alignment - determine the maximum internode alignment 5119 * 5120 * This function should be called after node map is populated and sorted. 5121 * It calculates the maximum power of two alignment which can distinguish 5122 * all the nodes. 5123 * 5124 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 5125 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 5126 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 5127 * shifted, 1GiB is enough and this function will indicate so. 5128 * 5129 * This is used to test whether pfn -> nid mapping of the chosen memory 5130 * model has fine enough granularity to avoid incorrect mapping for the 5131 * populated node map. 5132 * 5133 * Returns the determined alignment in pfn's. 0 if there is no alignment 5134 * requirement (single node). 5135 */ 5136unsigned long __init node_map_pfn_alignment(void) 5137{ 5138 unsigned long accl_mask = 0, last_end = 0; 5139 unsigned long start, end, mask; 5140 int last_nid = -1; 5141 int i, nid; 5142 5143 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 5144 if (!start || last_nid < 0 || last_nid == nid) { 5145 last_nid = nid; 5146 last_end = end; 5147 continue; 5148 } 5149 5150 /* 5151 * Start with a mask granular enough to pin-point to the 5152 * start pfn and tick off bits one-by-one until it becomes 5153 * too coarse to separate the current node from the last. 5154 */ 5155 mask = ~((1 << __ffs(start)) - 1); 5156 while (mask && last_end <= (start & (mask << 1))) 5157 mask <<= 1; 5158 5159 /* accumulate all internode masks */ 5160 accl_mask |= mask; 5161 } 5162 5163 /* convert mask to number of pages */ 5164 return ~accl_mask + 1; 5165} 5166 5167/* Find the lowest pfn for a node */ 5168static unsigned long __init find_min_pfn_for_node(int nid) 5169{ 5170 unsigned long min_pfn = ULONG_MAX; 5171 unsigned long start_pfn; 5172 int i; 5173 5174 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 5175 min_pfn = min(min_pfn, start_pfn); 5176 5177 if (min_pfn == ULONG_MAX) { 5178 printk(KERN_WARNING 5179 "Could not find start_pfn for node %d\n", nid); 5180 return 0; 5181 } 5182 5183 return min_pfn; 5184} 5185 5186/** 5187 * find_min_pfn_with_active_regions - Find the minimum PFN registered 5188 * 5189 * It returns the minimum PFN based on information provided via 5190 * memblock_set_node(). 5191 */ 5192unsigned long __init find_min_pfn_with_active_regions(void) 5193{ 5194 return find_min_pfn_for_node(MAX_NUMNODES); 5195} 5196 5197/* 5198 * early_calculate_totalpages() 5199 * Sum pages in active regions for movable zone. 5200 * Populate N_MEMORY for calculating usable_nodes. 5201 */ 5202static unsigned long __init early_calculate_totalpages(void) 5203{ 5204 unsigned long totalpages = 0; 5205 unsigned long start_pfn, end_pfn; 5206 int i, nid; 5207 5208 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5209 unsigned long pages = end_pfn - start_pfn; 5210 5211 totalpages += pages; 5212 if (pages) 5213 node_set_state(nid, N_MEMORY); 5214 } 5215 return totalpages; 5216} 5217 5218/* 5219 * Find the PFN the Movable zone begins in each node. Kernel memory 5220 * is spread evenly between nodes as long as the nodes have enough 5221 * memory. When they don't, some nodes will have more kernelcore than 5222 * others 5223 */ 5224static void __init find_zone_movable_pfns_for_nodes(void) 5225{ 5226 int i, nid; 5227 unsigned long usable_startpfn; 5228 unsigned long kernelcore_node, kernelcore_remaining; 5229 /* save the state before borrow the nodemask */ 5230 nodemask_t saved_node_state = node_states[N_MEMORY]; 5231 unsigned long totalpages = early_calculate_totalpages(); 5232 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 5233 struct memblock_region *r; 5234 5235 /* Need to find movable_zone earlier when movable_node is specified. */ 5236 find_usable_zone_for_movable(); 5237 5238 /* 5239 * If movable_node is specified, ignore kernelcore and movablecore 5240 * options. 5241 */ 5242 if (movable_node_is_enabled()) { 5243 for_each_memblock(memory, r) { 5244 if (!memblock_is_hotpluggable(r)) 5245 continue; 5246 5247 nid = r->nid; 5248 5249 usable_startpfn = PFN_DOWN(r->base); 5250 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 5251 min(usable_startpfn, zone_movable_pfn[nid]) : 5252 usable_startpfn; 5253 } 5254 5255 goto out2; 5256 } 5257 5258 /* 5259 * If movablecore=nn[KMG] was specified, calculate what size of 5260 * kernelcore that corresponds so that memory usable for 5261 * any allocation type is evenly spread. If both kernelcore 5262 * and movablecore are specified, then the value of kernelcore 5263 * will be used for required_kernelcore if it's greater than 5264 * what movablecore would have allowed. 5265 */ 5266 if (required_movablecore) { 5267 unsigned long corepages; 5268 5269 /* 5270 * Round-up so that ZONE_MOVABLE is at least as large as what 5271 * was requested by the user 5272 */ 5273 required_movablecore = 5274 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 5275 corepages = totalpages - required_movablecore; 5276 5277 required_kernelcore = max(required_kernelcore, corepages); 5278 } 5279 5280 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 5281 if (!required_kernelcore) 5282 goto out; 5283 5284 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 5285 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 5286 5287restart: 5288 /* Spread kernelcore memory as evenly as possible throughout nodes */ 5289 kernelcore_node = required_kernelcore / usable_nodes; 5290 for_each_node_state(nid, N_MEMORY) { 5291 unsigned long start_pfn, end_pfn; 5292 5293 /* 5294 * Recalculate kernelcore_node if the division per node 5295 * now exceeds what is necessary to satisfy the requested 5296 * amount of memory for the kernel 5297 */ 5298 if (required_kernelcore < kernelcore_node) 5299 kernelcore_node = required_kernelcore / usable_nodes; 5300 5301 /* 5302 * As the map is walked, we track how much memory is usable 5303 * by the kernel using kernelcore_remaining. When it is 5304 * 0, the rest of the node is usable by ZONE_MOVABLE 5305 */ 5306 kernelcore_remaining = kernelcore_node; 5307 5308 /* Go through each range of PFNs within this node */ 5309 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5310 unsigned long size_pages; 5311 5312 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 5313 if (start_pfn >= end_pfn) 5314 continue; 5315 5316 /* Account for what is only usable for kernelcore */ 5317 if (start_pfn < usable_startpfn) { 5318 unsigned long kernel_pages; 5319 kernel_pages = min(end_pfn, usable_startpfn) 5320 - start_pfn; 5321 5322 kernelcore_remaining -= min(kernel_pages, 5323 kernelcore_remaining); 5324 required_kernelcore -= min(kernel_pages, 5325 required_kernelcore); 5326 5327 /* Continue if range is now fully accounted */ 5328 if (end_pfn <= usable_startpfn) { 5329 5330 /* 5331 * Push zone_movable_pfn to the end so 5332 * that if we have to rebalance 5333 * kernelcore across nodes, we will 5334 * not double account here 5335 */ 5336 zone_movable_pfn[nid] = end_pfn; 5337 continue; 5338 } 5339 start_pfn = usable_startpfn; 5340 } 5341 5342 /* 5343 * The usable PFN range for ZONE_MOVABLE is from 5344 * start_pfn->end_pfn. Calculate size_pages as the 5345 * number of pages used as kernelcore 5346 */ 5347 size_pages = end_pfn - start_pfn; 5348 if (size_pages > kernelcore_remaining) 5349 size_pages = kernelcore_remaining; 5350 zone_movable_pfn[nid] = start_pfn + size_pages; 5351 5352 /* 5353 * Some kernelcore has been met, update counts and 5354 * break if the kernelcore for this node has been 5355 * satisfied 5356 */ 5357 required_kernelcore -= min(required_kernelcore, 5358 size_pages); 5359 kernelcore_remaining -= size_pages; 5360 if (!kernelcore_remaining) 5361 break; 5362 } 5363 } 5364 5365 /* 5366 * If there is still required_kernelcore, we do another pass with one 5367 * less node in the count. This will push zone_movable_pfn[nid] further 5368 * along on the nodes that still have memory until kernelcore is 5369 * satisfied 5370 */ 5371 usable_nodes--; 5372 if (usable_nodes && required_kernelcore > usable_nodes) 5373 goto restart; 5374 5375out2: 5376 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5377 for (nid = 0; nid < MAX_NUMNODES; nid++) 5378 zone_movable_pfn[nid] = 5379 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5380 5381out: 5382 /* restore the node_state */ 5383 node_states[N_MEMORY] = saved_node_state; 5384} 5385 5386/* Any regular or high memory on that node ? */ 5387static void check_for_memory(pg_data_t *pgdat, int nid) 5388{ 5389 enum zone_type zone_type; 5390 5391 if (N_MEMORY == N_NORMAL_MEMORY) 5392 return; 5393 5394 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5395 struct zone *zone = &pgdat->node_zones[zone_type]; 5396 if (populated_zone(zone)) { 5397 node_set_state(nid, N_HIGH_MEMORY); 5398 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5399 zone_type <= ZONE_NORMAL) 5400 node_set_state(nid, N_NORMAL_MEMORY); 5401 break; 5402 } 5403 } 5404} 5405 5406/** 5407 * free_area_init_nodes - Initialise all pg_data_t and zone data 5408 * @max_zone_pfn: an array of max PFNs for each zone 5409 * 5410 * This will call free_area_init_node() for each active node in the system. 5411 * Using the page ranges provided by memblock_set_node(), the size of each 5412 * zone in each node and their holes is calculated. If the maximum PFN 5413 * between two adjacent zones match, it is assumed that the zone is empty. 5414 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5415 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5416 * starts where the previous one ended. For example, ZONE_DMA32 starts 5417 * at arch_max_dma_pfn. 5418 */ 5419void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5420{ 5421 unsigned long start_pfn, end_pfn; 5422 int i, nid; 5423 5424 /* Record where the zone boundaries are */ 5425 memset(arch_zone_lowest_possible_pfn, 0, 5426 sizeof(arch_zone_lowest_possible_pfn)); 5427 memset(arch_zone_highest_possible_pfn, 0, 5428 sizeof(arch_zone_highest_possible_pfn)); 5429 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5430 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5431 for (i = 1; i < MAX_NR_ZONES; i++) { 5432 if (i == ZONE_MOVABLE) 5433 continue; 5434 arch_zone_lowest_possible_pfn[i] = 5435 arch_zone_highest_possible_pfn[i-1]; 5436 arch_zone_highest_possible_pfn[i] = 5437 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5438 } 5439 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5440 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5441 5442 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5443 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5444 find_zone_movable_pfns_for_nodes(); 5445 5446 /* Print out the zone ranges */ 5447 pr_info("Zone ranges:\n"); 5448 for (i = 0; i < MAX_NR_ZONES; i++) { 5449 if (i == ZONE_MOVABLE) 5450 continue; 5451 pr_info(" %-8s ", zone_names[i]); 5452 if (arch_zone_lowest_possible_pfn[i] == 5453 arch_zone_highest_possible_pfn[i]) 5454 pr_cont("empty\n"); 5455 else 5456 pr_cont("[mem %#018Lx-%#018Lx]\n", 5457 (u64)arch_zone_lowest_possible_pfn[i] 5458 << PAGE_SHIFT, 5459 ((u64)arch_zone_highest_possible_pfn[i] 5460 << PAGE_SHIFT) - 1); 5461 } 5462 5463 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5464 pr_info("Movable zone start for each node\n"); 5465 for (i = 0; i < MAX_NUMNODES; i++) { 5466 if (zone_movable_pfn[i]) 5467 pr_info(" Node %d: %#018Lx\n", i, 5468 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 5469 } 5470 5471 /* Print out the early node map */ 5472 pr_info("Early memory node ranges\n"); 5473 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5474 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 5475 (u64)start_pfn << PAGE_SHIFT, 5476 ((u64)end_pfn << PAGE_SHIFT) - 1); 5477 5478 /* Initialise every node */ 5479 mminit_verify_pageflags_layout(); 5480 setup_nr_node_ids(); 5481 for_each_online_node(nid) { 5482 pg_data_t *pgdat = NODE_DATA(nid); 5483 free_area_init_node(nid, NULL, 5484 find_min_pfn_for_node(nid), NULL); 5485 5486 /* Any memory on that node */ 5487 if (pgdat->node_present_pages) 5488 node_set_state(nid, N_MEMORY); 5489 check_for_memory(pgdat, nid); 5490 } 5491} 5492 5493static int __init cmdline_parse_core(char *p, unsigned long *core) 5494{ 5495 unsigned long long coremem; 5496 if (!p) 5497 return -EINVAL; 5498 5499 coremem = memparse(p, &p); 5500 *core = coremem >> PAGE_SHIFT; 5501 5502 /* Paranoid check that UL is enough for the coremem value */ 5503 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5504 5505 return 0; 5506} 5507 5508/* 5509 * kernelcore=size sets the amount of memory for use for allocations that 5510 * cannot be reclaimed or migrated. 5511 */ 5512static int __init cmdline_parse_kernelcore(char *p) 5513{ 5514 return cmdline_parse_core(p, &required_kernelcore); 5515} 5516 5517/* 5518 * movablecore=size sets the amount of memory for use for allocations that 5519 * can be reclaimed or migrated. 5520 */ 5521static int __init cmdline_parse_movablecore(char *p) 5522{ 5523 return cmdline_parse_core(p, &required_movablecore); 5524} 5525 5526early_param("kernelcore", cmdline_parse_kernelcore); 5527early_param("movablecore", cmdline_parse_movablecore); 5528 5529#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5530 5531void adjust_managed_page_count(struct page *page, long count) 5532{ 5533 spin_lock(&managed_page_count_lock); 5534 page_zone(page)->managed_pages += count; 5535 totalram_pages += count; 5536#ifdef CONFIG_HIGHMEM 5537 if (PageHighMem(page)) 5538 totalhigh_pages += count; 5539#endif 5540 spin_unlock(&managed_page_count_lock); 5541} 5542EXPORT_SYMBOL(adjust_managed_page_count); 5543 5544unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 5545{ 5546 void *pos; 5547 unsigned long pages = 0; 5548 5549 start = (void *)PAGE_ALIGN((unsigned long)start); 5550 end = (void *)((unsigned long)end & PAGE_MASK); 5551 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5552 if ((unsigned int)poison <= 0xFF) 5553 memset(pos, poison, PAGE_SIZE); 5554 free_reserved_page(virt_to_page(pos)); 5555 } 5556 5557 if (pages && s) 5558 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 5559 s, pages << (PAGE_SHIFT - 10), start, end); 5560 5561 return pages; 5562} 5563EXPORT_SYMBOL(free_reserved_area); 5564 5565#ifdef CONFIG_HIGHMEM 5566void free_highmem_page(struct page *page) 5567{ 5568 __free_reserved_page(page); 5569 totalram_pages++; 5570 page_zone(page)->managed_pages++; 5571 totalhigh_pages++; 5572} 5573#endif 5574 5575 5576void __init mem_init_print_info(const char *str) 5577{ 5578 unsigned long physpages, codesize, datasize, rosize, bss_size; 5579 unsigned long init_code_size, init_data_size; 5580 5581 physpages = get_num_physpages(); 5582 codesize = _etext - _stext; 5583 datasize = _edata - _sdata; 5584 rosize = __end_rodata - __start_rodata; 5585 bss_size = __bss_stop - __bss_start; 5586 init_data_size = __init_end - __init_begin; 5587 init_code_size = _einittext - _sinittext; 5588 5589 /* 5590 * Detect special cases and adjust section sizes accordingly: 5591 * 1) .init.* may be embedded into .data sections 5592 * 2) .init.text.* may be out of [__init_begin, __init_end], 5593 * please refer to arch/tile/kernel/vmlinux.lds.S. 5594 * 3) .rodata.* may be embedded into .text or .data sections. 5595 */ 5596#define adj_init_size(start, end, size, pos, adj) \ 5597 do { \ 5598 if (start <= pos && pos < end && size > adj) \ 5599 size -= adj; \ 5600 } while (0) 5601 5602 adj_init_size(__init_begin, __init_end, init_data_size, 5603 _sinittext, init_code_size); 5604 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 5605 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 5606 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 5607 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 5608 5609#undef adj_init_size 5610 5611 pr_info("Memory: %luK/%luK available " 5612 "(%luK kernel code, %luK rwdata, %luK rodata, " 5613 "%luK init, %luK bss, %luK reserved, %luK cma-reserved" 5614#ifdef CONFIG_HIGHMEM 5615 ", %luK highmem" 5616#endif 5617 "%s%s)\n", 5618 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), 5619 codesize >> 10, datasize >> 10, rosize >> 10, 5620 (init_data_size + init_code_size) >> 10, bss_size >> 10, 5621 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10), 5622 totalcma_pages << (PAGE_SHIFT-10), 5623#ifdef CONFIG_HIGHMEM 5624 totalhigh_pages << (PAGE_SHIFT-10), 5625#endif 5626 str ? ", " : "", str ? str : ""); 5627} 5628 5629/** 5630 * set_dma_reserve - set the specified number of pages reserved in the first zone 5631 * @new_dma_reserve: The number of pages to mark reserved 5632 * 5633 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5634 * In the DMA zone, a significant percentage may be consumed by kernel image 5635 * and other unfreeable allocations which can skew the watermarks badly. This 5636 * function may optionally be used to account for unfreeable pages in the 5637 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5638 * smaller per-cpu batchsize. 5639 */ 5640void __init set_dma_reserve(unsigned long new_dma_reserve) 5641{ 5642 dma_reserve = new_dma_reserve; 5643} 5644 5645void __init free_area_init(unsigned long *zones_size) 5646{ 5647 free_area_init_node(0, zones_size, 5648 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5649} 5650 5651static int page_alloc_cpu_notify(struct notifier_block *self, 5652 unsigned long action, void *hcpu) 5653{ 5654 int cpu = (unsigned long)hcpu; 5655 5656 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5657 lru_add_drain_cpu(cpu); 5658 drain_pages(cpu); 5659 5660 /* 5661 * Spill the event counters of the dead processor 5662 * into the current processors event counters. 5663 * This artificially elevates the count of the current 5664 * processor. 5665 */ 5666 vm_events_fold_cpu(cpu); 5667 5668 /* 5669 * Zero the differential counters of the dead processor 5670 * so that the vm statistics are consistent. 5671 * 5672 * This is only okay since the processor is dead and cannot 5673 * race with what we are doing. 5674 */ 5675 cpu_vm_stats_fold(cpu); 5676 } 5677 return NOTIFY_OK; 5678} 5679 5680void __init page_alloc_init(void) 5681{ 5682 hotcpu_notifier(page_alloc_cpu_notify, 0); 5683} 5684 5685/* 5686 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5687 * or min_free_kbytes changes. 5688 */ 5689static void calculate_totalreserve_pages(void) 5690{ 5691 struct pglist_data *pgdat; 5692 unsigned long reserve_pages = 0; 5693 enum zone_type i, j; 5694 5695 for_each_online_pgdat(pgdat) { 5696 for (i = 0; i < MAX_NR_ZONES; i++) { 5697 struct zone *zone = pgdat->node_zones + i; 5698 long max = 0; 5699 5700 /* Find valid and maximum lowmem_reserve in the zone */ 5701 for (j = i; j < MAX_NR_ZONES; j++) { 5702 if (zone->lowmem_reserve[j] > max) 5703 max = zone->lowmem_reserve[j]; 5704 } 5705 5706 /* we treat the high watermark as reserved pages. */ 5707 max += high_wmark_pages(zone); 5708 5709 if (max > zone->managed_pages) 5710 max = zone->managed_pages; 5711 reserve_pages += max; 5712 /* 5713 * Lowmem reserves are not available to 5714 * GFP_HIGHUSER page cache allocations and 5715 * kswapd tries to balance zones to their high 5716 * watermark. As a result, neither should be 5717 * regarded as dirtyable memory, to prevent a 5718 * situation where reclaim has to clean pages 5719 * in order to balance the zones. 5720 */ 5721 zone->dirty_balance_reserve = max; 5722 } 5723 } 5724 dirty_balance_reserve = reserve_pages; 5725 totalreserve_pages = reserve_pages; 5726} 5727 5728/* 5729 * setup_per_zone_lowmem_reserve - called whenever 5730 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5731 * has a correct pages reserved value, so an adequate number of 5732 * pages are left in the zone after a successful __alloc_pages(). 5733 */ 5734static void setup_per_zone_lowmem_reserve(void) 5735{ 5736 struct pglist_data *pgdat; 5737 enum zone_type j, idx; 5738 5739 for_each_online_pgdat(pgdat) { 5740 for (j = 0; j < MAX_NR_ZONES; j++) { 5741 struct zone *zone = pgdat->node_zones + j; 5742 unsigned long managed_pages = zone->managed_pages; 5743 5744 zone->lowmem_reserve[j] = 0; 5745 5746 idx = j; 5747 while (idx) { 5748 struct zone *lower_zone; 5749 5750 idx--; 5751 5752 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5753 sysctl_lowmem_reserve_ratio[idx] = 1; 5754 5755 lower_zone = pgdat->node_zones + idx; 5756 lower_zone->lowmem_reserve[j] = managed_pages / 5757 sysctl_lowmem_reserve_ratio[idx]; 5758 managed_pages += lower_zone->managed_pages; 5759 } 5760 } 5761 } 5762 5763 /* update totalreserve_pages */ 5764 calculate_totalreserve_pages(); 5765} 5766 5767static void __setup_per_zone_wmarks(void) 5768{ 5769 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5770 unsigned long lowmem_pages = 0; 5771 struct zone *zone; 5772 unsigned long flags; 5773 5774 /* Calculate total number of !ZONE_HIGHMEM pages */ 5775 for_each_zone(zone) { 5776 if (!is_highmem(zone)) 5777 lowmem_pages += zone->managed_pages; 5778 } 5779 5780 for_each_zone(zone) { 5781 u64 tmp; 5782 5783 spin_lock_irqsave(&zone->lock, flags); 5784 tmp = (u64)pages_min * zone->managed_pages; 5785 do_div(tmp, lowmem_pages); 5786 if (is_highmem(zone)) { 5787 /* 5788 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5789 * need highmem pages, so cap pages_min to a small 5790 * value here. 5791 * 5792 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5793 * deltas control asynch page reclaim, and so should 5794 * not be capped for highmem. 5795 */ 5796 unsigned long min_pages; 5797 5798 min_pages = zone->managed_pages / 1024; 5799 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5800 zone->watermark[WMARK_MIN] = min_pages; 5801 } else { 5802 /* 5803 * If it's a lowmem zone, reserve a number of pages 5804 * proportionate to the zone's size. 5805 */ 5806 zone->watermark[WMARK_MIN] = tmp; 5807 } 5808 5809 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5810 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5811 5812 __mod_zone_page_state(zone, NR_ALLOC_BATCH, 5813 high_wmark_pages(zone) - low_wmark_pages(zone) - 5814 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 5815 5816 setup_zone_migrate_reserve(zone); 5817 spin_unlock_irqrestore(&zone->lock, flags); 5818 } 5819 5820 /* update totalreserve_pages */ 5821 calculate_totalreserve_pages(); 5822} 5823 5824/** 5825 * setup_per_zone_wmarks - called when min_free_kbytes changes 5826 * or when memory is hot-{added|removed} 5827 * 5828 * Ensures that the watermark[min,low,high] values for each zone are set 5829 * correctly with respect to min_free_kbytes. 5830 */ 5831void setup_per_zone_wmarks(void) 5832{ 5833 mutex_lock(&zonelists_mutex); 5834 __setup_per_zone_wmarks(); 5835 mutex_unlock(&zonelists_mutex); 5836} 5837 5838/* 5839 * The inactive anon list should be small enough that the VM never has to 5840 * do too much work, but large enough that each inactive page has a chance 5841 * to be referenced again before it is swapped out. 5842 * 5843 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5844 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5845 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5846 * the anonymous pages are kept on the inactive list. 5847 * 5848 * total target max 5849 * memory ratio inactive anon 5850 * ------------------------------------- 5851 * 10MB 1 5MB 5852 * 100MB 1 50MB 5853 * 1GB 3 250MB 5854 * 10GB 10 0.9GB 5855 * 100GB 31 3GB 5856 * 1TB 101 10GB 5857 * 10TB 320 32GB 5858 */ 5859static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5860{ 5861 unsigned int gb, ratio; 5862 5863 /* Zone size in gigabytes */ 5864 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 5865 if (gb) 5866 ratio = int_sqrt(10 * gb); 5867 else 5868 ratio = 1; 5869 5870 zone->inactive_ratio = ratio; 5871} 5872 5873static void __meminit setup_per_zone_inactive_ratio(void) 5874{ 5875 struct zone *zone; 5876 5877 for_each_zone(zone) 5878 calculate_zone_inactive_ratio(zone); 5879} 5880 5881/* 5882 * Initialise min_free_kbytes. 5883 * 5884 * For small machines we want it small (128k min). For large machines 5885 * we want it large (64MB max). But it is not linear, because network 5886 * bandwidth does not increase linearly with machine size. We use 5887 * 5888 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5889 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5890 * 5891 * which yields 5892 * 5893 * 16MB: 512k 5894 * 32MB: 724k 5895 * 64MB: 1024k 5896 * 128MB: 1448k 5897 * 256MB: 2048k 5898 * 512MB: 2896k 5899 * 1024MB: 4096k 5900 * 2048MB: 5792k 5901 * 4096MB: 8192k 5902 * 8192MB: 11584k 5903 * 16384MB: 16384k 5904 */ 5905int __meminit init_per_zone_wmark_min(void) 5906{ 5907 unsigned long lowmem_kbytes; 5908 int new_min_free_kbytes; 5909 5910 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5911 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5912 5913 if (new_min_free_kbytes > user_min_free_kbytes) { 5914 min_free_kbytes = new_min_free_kbytes; 5915 if (min_free_kbytes < 128) 5916 min_free_kbytes = 128; 5917 if (min_free_kbytes > 65536) 5918 min_free_kbytes = 65536; 5919 } else { 5920 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5921 new_min_free_kbytes, user_min_free_kbytes); 5922 } 5923 setup_per_zone_wmarks(); 5924 refresh_zone_stat_thresholds(); 5925 setup_per_zone_lowmem_reserve(); 5926 setup_per_zone_inactive_ratio(); 5927 return 0; 5928} 5929module_init(init_per_zone_wmark_min) 5930 5931/* 5932 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5933 * that we can call two helper functions whenever min_free_kbytes 5934 * changes. 5935 */ 5936int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 5937 void __user *buffer, size_t *length, loff_t *ppos) 5938{ 5939 int rc; 5940 5941 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5942 if (rc) 5943 return rc; 5944 5945 if (write) { 5946 user_min_free_kbytes = min_free_kbytes; 5947 setup_per_zone_wmarks(); 5948 } 5949 return 0; 5950} 5951 5952#ifdef CONFIG_NUMA 5953int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 5954 void __user *buffer, size_t *length, loff_t *ppos) 5955{ 5956 struct zone *zone; 5957 int rc; 5958 5959 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5960 if (rc) 5961 return rc; 5962 5963 for_each_zone(zone) 5964 zone->min_unmapped_pages = (zone->managed_pages * 5965 sysctl_min_unmapped_ratio) / 100; 5966 return 0; 5967} 5968 5969int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 5970 void __user *buffer, size_t *length, loff_t *ppos) 5971{ 5972 struct zone *zone; 5973 int rc; 5974 5975 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5976 if (rc) 5977 return rc; 5978 5979 for_each_zone(zone) 5980 zone->min_slab_pages = (zone->managed_pages * 5981 sysctl_min_slab_ratio) / 100; 5982 return 0; 5983} 5984#endif 5985 5986/* 5987 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5988 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5989 * whenever sysctl_lowmem_reserve_ratio changes. 5990 * 5991 * The reserve ratio obviously has absolutely no relation with the 5992 * minimum watermarks. The lowmem reserve ratio can only make sense 5993 * if in function of the boot time zone sizes. 5994 */ 5995int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 5996 void __user *buffer, size_t *length, loff_t *ppos) 5997{ 5998 proc_dointvec_minmax(table, write, buffer, length, ppos); 5999 setup_per_zone_lowmem_reserve(); 6000 return 0; 6001} 6002 6003/* 6004 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 6005 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6006 * pagelist can have before it gets flushed back to buddy allocator. 6007 */ 6008int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 6009 void __user *buffer, size_t *length, loff_t *ppos) 6010{ 6011 struct zone *zone; 6012 int old_percpu_pagelist_fraction; 6013 int ret; 6014 6015 mutex_lock(&pcp_batch_high_lock); 6016 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 6017 6018 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6019 if (!write || ret < 0) 6020 goto out; 6021 6022 /* Sanity checking to avoid pcp imbalance */ 6023 if (percpu_pagelist_fraction && 6024 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 6025 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 6026 ret = -EINVAL; 6027 goto out; 6028 } 6029 6030 /* No change? */ 6031 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 6032 goto out; 6033 6034 for_each_populated_zone(zone) { 6035 unsigned int cpu; 6036 6037 for_each_possible_cpu(cpu) 6038 pageset_set_high_and_batch(zone, 6039 per_cpu_ptr(zone->pageset, cpu)); 6040 } 6041out: 6042 mutex_unlock(&pcp_batch_high_lock); 6043 return ret; 6044} 6045 6046int hashdist = HASHDIST_DEFAULT; 6047 6048#ifdef CONFIG_NUMA 6049static int __init set_hashdist(char *str) 6050{ 6051 if (!str) 6052 return 0; 6053 hashdist = simple_strtoul(str, &str, 0); 6054 return 1; 6055} 6056__setup("hashdist=", set_hashdist); 6057#endif 6058 6059/* 6060 * allocate a large system hash table from bootmem 6061 * - it is assumed that the hash table must contain an exact power-of-2 6062 * quantity of entries 6063 * - limit is the number of hash buckets, not the total allocation size 6064 */ 6065void *__init alloc_large_system_hash(const char *tablename, 6066 unsigned long bucketsize, 6067 unsigned long numentries, 6068 int scale, 6069 int flags, 6070 unsigned int *_hash_shift, 6071 unsigned int *_hash_mask, 6072 unsigned long low_limit, 6073 unsigned long high_limit) 6074{ 6075 unsigned long long max = high_limit; 6076 unsigned long log2qty, size; 6077 void *table = NULL; 6078 6079 /* allow the kernel cmdline to have a say */ 6080 if (!numentries) { 6081 /* round applicable memory size up to nearest megabyte */ 6082 numentries = nr_kernel_pages; 6083 6084 /* It isn't necessary when PAGE_SIZE >= 1MB */ 6085 if (PAGE_SHIFT < 20) 6086 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 6087 6088 /* limit to 1 bucket per 2^scale bytes of low memory */ 6089 if (scale > PAGE_SHIFT) 6090 numentries >>= (scale - PAGE_SHIFT); 6091 else 6092 numentries <<= (PAGE_SHIFT - scale); 6093 6094 /* Make sure we've got at least a 0-order allocation.. */ 6095 if (unlikely(flags & HASH_SMALL)) { 6096 /* Makes no sense without HASH_EARLY */ 6097 WARN_ON(!(flags & HASH_EARLY)); 6098 if (!(numentries >> *_hash_shift)) { 6099 numentries = 1UL << *_hash_shift; 6100 BUG_ON(!numentries); 6101 } 6102 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 6103 numentries = PAGE_SIZE / bucketsize; 6104 } 6105 numentries = roundup_pow_of_two(numentries); 6106 6107 /* limit allocation size to 1/16 total memory by default */ 6108 if (max == 0) { 6109 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 6110 do_div(max, bucketsize); 6111 } 6112 max = min(max, 0x80000000ULL); 6113 6114 if (numentries < low_limit) 6115 numentries = low_limit; 6116 if (numentries > max) 6117 numentries = max; 6118 6119 log2qty = ilog2(numentries); 6120 6121 do { 6122 size = bucketsize << log2qty; 6123 if (flags & HASH_EARLY) 6124 table = memblock_virt_alloc_nopanic(size, 0); 6125 else if (hashdist) 6126 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 6127 else { 6128 /* 6129 * If bucketsize is not a power-of-two, we may free 6130 * some pages at the end of hash table which 6131 * alloc_pages_exact() automatically does 6132 */ 6133 if (get_order(size) < MAX_ORDER) { 6134 table = alloc_pages_exact(size, GFP_ATOMIC); 6135 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 6136 } 6137 } 6138 } while (!table && size > PAGE_SIZE && --log2qty); 6139 6140 if (!table) 6141 panic("Failed to allocate %s hash table\n", tablename); 6142 6143 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 6144 tablename, 6145 (1UL << log2qty), 6146 ilog2(size) - PAGE_SHIFT, 6147 size); 6148 6149 if (_hash_shift) 6150 *_hash_shift = log2qty; 6151 if (_hash_mask) 6152 *_hash_mask = (1 << log2qty) - 1; 6153 6154 return table; 6155} 6156 6157/* Return a pointer to the bitmap storing bits affecting a block of pages */ 6158static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 6159 unsigned long pfn) 6160{ 6161#ifdef CONFIG_SPARSEMEM 6162 return __pfn_to_section(pfn)->pageblock_flags; 6163#else 6164 return zone->pageblock_flags; 6165#endif /* CONFIG_SPARSEMEM */ 6166} 6167 6168static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 6169{ 6170#ifdef CONFIG_SPARSEMEM 6171 pfn &= (PAGES_PER_SECTION-1); 6172 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6173#else 6174 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 6175 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6176#endif /* CONFIG_SPARSEMEM */ 6177} 6178 6179/** 6180 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 6181 * @page: The page within the block of interest 6182 * @pfn: The target page frame number 6183 * @end_bitidx: The last bit of interest to retrieve 6184 * @mask: mask of bits that the caller is interested in 6185 * 6186 * Return: pageblock_bits flags 6187 */ 6188unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 6189 unsigned long end_bitidx, 6190 unsigned long mask) 6191{ 6192 struct zone *zone; 6193 unsigned long *bitmap; 6194 unsigned long bitidx, word_bitidx; 6195 unsigned long word; 6196 6197 zone = page_zone(page); 6198 bitmap = get_pageblock_bitmap(zone, pfn); 6199 bitidx = pfn_to_bitidx(zone, pfn); 6200 word_bitidx = bitidx / BITS_PER_LONG; 6201 bitidx &= (BITS_PER_LONG-1); 6202 6203 word = bitmap[word_bitidx]; 6204 bitidx += end_bitidx; 6205 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 6206} 6207 6208/** 6209 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 6210 * @page: The page within the block of interest 6211 * @flags: The flags to set 6212 * @pfn: The target page frame number 6213 * @end_bitidx: The last bit of interest 6214 * @mask: mask of bits that the caller is interested in 6215 */ 6216void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 6217 unsigned long pfn, 6218 unsigned long end_bitidx, 6219 unsigned long mask) 6220{ 6221 struct zone *zone; 6222 unsigned long *bitmap; 6223 unsigned long bitidx, word_bitidx; 6224 unsigned long old_word, word; 6225 6226 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 6227 6228 zone = page_zone(page); 6229 bitmap = get_pageblock_bitmap(zone, pfn); 6230 bitidx = pfn_to_bitidx(zone, pfn); 6231 word_bitidx = bitidx / BITS_PER_LONG; 6232 bitidx &= (BITS_PER_LONG-1); 6233 6234 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); 6235 6236 bitidx += end_bitidx; 6237 mask <<= (BITS_PER_LONG - bitidx - 1); 6238 flags <<= (BITS_PER_LONG - bitidx - 1); 6239 6240 word = READ_ONCE(bitmap[word_bitidx]); 6241 for (;;) { 6242 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 6243 if (word == old_word) 6244 break; 6245 word = old_word; 6246 } 6247} 6248 6249/* 6250 * This function checks whether pageblock includes unmovable pages or not. 6251 * If @count is not zero, it is okay to include less @count unmovable pages 6252 * 6253 * PageLRU check without isolation or lru_lock could race so that 6254 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 6255 * expect this function should be exact. 6256 */ 6257bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 6258 bool skip_hwpoisoned_pages) 6259{ 6260 unsigned long pfn, iter, found; 6261 int mt; 6262 6263 /* 6264 * For avoiding noise data, lru_add_drain_all() should be called 6265 * If ZONE_MOVABLE, the zone never contains unmovable pages 6266 */ 6267 if (zone_idx(zone) == ZONE_MOVABLE) 6268 return false; 6269 mt = get_pageblock_migratetype(page); 6270 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 6271 return false; 6272 6273 pfn = page_to_pfn(page); 6274 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 6275 unsigned long check = pfn + iter; 6276 6277 if (!pfn_valid_within(check)) 6278 continue; 6279 6280 page = pfn_to_page(check); 6281 6282 /* 6283 * Hugepages are not in LRU lists, but they're movable. 6284 * We need not scan over tail pages bacause we don't 6285 * handle each tail page individually in migration. 6286 */ 6287 if (PageHuge(page)) { 6288 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 6289 continue; 6290 } 6291 6292 /* 6293 * We can't use page_count without pin a page 6294 * because another CPU can free compound page. 6295 * This check already skips compound tails of THP 6296 * because their page->_count is zero at all time. 6297 */ 6298 if (!atomic_read(&page->_count)) { 6299 if (PageBuddy(page)) 6300 iter += (1 << page_order(page)) - 1; 6301 continue; 6302 } 6303 6304 /* 6305 * The HWPoisoned page may be not in buddy system, and 6306 * page_count() is not 0. 6307 */ 6308 if (skip_hwpoisoned_pages && PageHWPoison(page)) 6309 continue; 6310 6311 if (!PageLRU(page)) 6312 found++; 6313 /* 6314 * If there are RECLAIMABLE pages, we need to check 6315 * it. But now, memory offline itself doesn't call 6316 * shrink_node_slabs() and it still to be fixed. 6317 */ 6318 /* 6319 * If the page is not RAM, page_count()should be 0. 6320 * we don't need more check. This is an _used_ not-movable page. 6321 * 6322 * The problematic thing here is PG_reserved pages. PG_reserved 6323 * is set to both of a memory hole page and a _used_ kernel 6324 * page at boot. 6325 */ 6326 if (found > count) 6327 return true; 6328 } 6329 return false; 6330} 6331 6332bool is_pageblock_removable_nolock(struct page *page) 6333{ 6334 struct zone *zone; 6335 unsigned long pfn; 6336 6337 /* 6338 * We have to be careful here because we are iterating over memory 6339 * sections which are not zone aware so we might end up outside of 6340 * the zone but still within the section. 6341 * We have to take care about the node as well. If the node is offline 6342 * its NODE_DATA will be NULL - see page_zone. 6343 */ 6344 if (!node_online(page_to_nid(page))) 6345 return false; 6346 6347 zone = page_zone(page); 6348 pfn = page_to_pfn(page); 6349 if (!zone_spans_pfn(zone, pfn)) 6350 return false; 6351 6352 return !has_unmovable_pages(zone, page, 0, true); 6353} 6354 6355#ifdef CONFIG_CMA 6356 6357static unsigned long pfn_max_align_down(unsigned long pfn) 6358{ 6359 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 6360 pageblock_nr_pages) - 1); 6361} 6362 6363static unsigned long pfn_max_align_up(unsigned long pfn) 6364{ 6365 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 6366 pageblock_nr_pages)); 6367} 6368 6369/* [start, end) must belong to a single zone. */ 6370static int __alloc_contig_migrate_range(struct compact_control *cc, 6371 unsigned long start, unsigned long end) 6372{ 6373 /* This function is based on compact_zone() from compaction.c. */ 6374 unsigned long nr_reclaimed; 6375 unsigned long pfn = start; 6376 unsigned int tries = 0; 6377 int ret = 0; 6378 6379 migrate_prep(); 6380 6381 while (pfn < end || !list_empty(&cc->migratepages)) { 6382 if (fatal_signal_pending(current)) { 6383 ret = -EINTR; 6384 break; 6385 } 6386 6387 if (list_empty(&cc->migratepages)) { 6388 cc->nr_migratepages = 0; 6389 pfn = isolate_migratepages_range(cc, pfn, end); 6390 if (!pfn) { 6391 ret = -EINTR; 6392 break; 6393 } 6394 tries = 0; 6395 } else if (++tries == 5) { 6396 ret = ret < 0 ? ret : -EBUSY; 6397 break; 6398 } 6399 6400 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6401 &cc->migratepages); 6402 cc->nr_migratepages -= nr_reclaimed; 6403 6404 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 6405 NULL, 0, cc->mode, MR_CMA); 6406 } 6407 if (ret < 0) { 6408 putback_movable_pages(&cc->migratepages); 6409 return ret; 6410 } 6411 return 0; 6412} 6413 6414/** 6415 * alloc_contig_range() -- tries to allocate given range of pages 6416 * @start: start PFN to allocate 6417 * @end: one-past-the-last PFN to allocate 6418 * @migratetype: migratetype of the underlaying pageblocks (either 6419 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6420 * in range must have the same migratetype and it must 6421 * be either of the two. 6422 * 6423 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 6424 * aligned, however it's the caller's responsibility to guarantee that 6425 * we are the only thread that changes migrate type of pageblocks the 6426 * pages fall in. 6427 * 6428 * The PFN range must belong to a single zone. 6429 * 6430 * Returns zero on success or negative error code. On success all 6431 * pages which PFN is in [start, end) are allocated for the caller and 6432 * need to be freed with free_contig_range(). 6433 */ 6434int alloc_contig_range(unsigned long start, unsigned long end, 6435 unsigned migratetype) 6436{ 6437 unsigned long outer_start, outer_end; 6438 unsigned int order; 6439 int ret = 0; 6440 6441 struct compact_control cc = { 6442 .nr_migratepages = 0, 6443 .order = -1, 6444 .zone = page_zone(pfn_to_page(start)), 6445 .mode = MIGRATE_SYNC, 6446 .ignore_skip_hint = true, 6447 }; 6448 INIT_LIST_HEAD(&cc.migratepages); 6449 6450 /* 6451 * What we do here is we mark all pageblocks in range as 6452 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6453 * have different sizes, and due to the way page allocator 6454 * work, we align the range to biggest of the two pages so 6455 * that page allocator won't try to merge buddies from 6456 * different pageblocks and change MIGRATE_ISOLATE to some 6457 * other migration type. 6458 * 6459 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6460 * migrate the pages from an unaligned range (ie. pages that 6461 * we are interested in). This will put all the pages in 6462 * range back to page allocator as MIGRATE_ISOLATE. 6463 * 6464 * When this is done, we take the pages in range from page 6465 * allocator removing them from the buddy system. This way 6466 * page allocator will never consider using them. 6467 * 6468 * This lets us mark the pageblocks back as 6469 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6470 * aligned range but not in the unaligned, original range are 6471 * put back to page allocator so that buddy can use them. 6472 */ 6473 6474 ret = start_isolate_page_range(pfn_max_align_down(start), 6475 pfn_max_align_up(end), migratetype, 6476 false); 6477 if (ret) 6478 return ret; 6479 6480 ret = __alloc_contig_migrate_range(&cc, start, end); 6481 if (ret) 6482 goto done; 6483 6484 /* 6485 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 6486 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6487 * more, all pages in [start, end) are free in page allocator. 6488 * What we are going to do is to allocate all pages from 6489 * [start, end) (that is remove them from page allocator). 6490 * 6491 * The only problem is that pages at the beginning and at the 6492 * end of interesting range may be not aligned with pages that 6493 * page allocator holds, ie. they can be part of higher order 6494 * pages. Because of this, we reserve the bigger range and 6495 * once this is done free the pages we are not interested in. 6496 * 6497 * We don't have to hold zone->lock here because the pages are 6498 * isolated thus they won't get removed from buddy. 6499 */ 6500 6501 lru_add_drain_all(); 6502 drain_all_pages(cc.zone); 6503 6504 order = 0; 6505 outer_start = start; 6506 while (!PageBuddy(pfn_to_page(outer_start))) { 6507 if (++order >= MAX_ORDER) { 6508 ret = -EBUSY; 6509 goto done; 6510 } 6511 outer_start &= ~0UL << order; 6512 } 6513 6514 /* Make sure the range is really isolated. */ 6515 if (test_pages_isolated(outer_start, end, false)) { 6516 pr_info("%s: [%lx, %lx) PFNs busy\n", 6517 __func__, outer_start, end); 6518 ret = -EBUSY; 6519 goto done; 6520 } 6521 6522 /* Grab isolated pages from freelists. */ 6523 outer_end = isolate_freepages_range(&cc, outer_start, end); 6524 if (!outer_end) { 6525 ret = -EBUSY; 6526 goto done; 6527 } 6528 6529 /* Free head and tail (if any) */ 6530 if (start != outer_start) 6531 free_contig_range(outer_start, start - outer_start); 6532 if (end != outer_end) 6533 free_contig_range(end, outer_end - end); 6534 6535done: 6536 undo_isolate_page_range(pfn_max_align_down(start), 6537 pfn_max_align_up(end), migratetype); 6538 return ret; 6539} 6540 6541void free_contig_range(unsigned long pfn, unsigned nr_pages) 6542{ 6543 unsigned int count = 0; 6544 6545 for (; nr_pages--; pfn++) { 6546 struct page *page = pfn_to_page(pfn); 6547 6548 count += page_count(page) != 1; 6549 __free_page(page); 6550 } 6551 WARN(count != 0, "%d pages are still in use!\n", count); 6552} 6553#endif 6554 6555#ifdef CONFIG_MEMORY_HOTPLUG 6556/* 6557 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6558 * page high values need to be recalulated. 6559 */ 6560void __meminit zone_pcp_update(struct zone *zone) 6561{ 6562 unsigned cpu; 6563 mutex_lock(&pcp_batch_high_lock); 6564 for_each_possible_cpu(cpu) 6565 pageset_set_high_and_batch(zone, 6566 per_cpu_ptr(zone->pageset, cpu)); 6567 mutex_unlock(&pcp_batch_high_lock); 6568} 6569#endif 6570 6571void zone_pcp_reset(struct zone *zone) 6572{ 6573 unsigned long flags; 6574 int cpu; 6575 struct per_cpu_pageset *pset; 6576 6577 /* avoid races with drain_pages() */ 6578 local_irq_save(flags); 6579 if (zone->pageset != &boot_pageset) { 6580 for_each_online_cpu(cpu) { 6581 pset = per_cpu_ptr(zone->pageset, cpu); 6582 drain_zonestat(zone, pset); 6583 } 6584 free_percpu(zone->pageset); 6585 zone->pageset = &boot_pageset; 6586 } 6587 local_irq_restore(flags); 6588} 6589 6590#ifdef CONFIG_MEMORY_HOTREMOVE 6591/* 6592 * All pages in the range must be isolated before calling this. 6593 */ 6594void 6595__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6596{ 6597 struct page *page; 6598 struct zone *zone; 6599 unsigned int order, i; 6600 unsigned long pfn; 6601 unsigned long flags; 6602 /* find the first valid pfn */ 6603 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6604 if (pfn_valid(pfn)) 6605 break; 6606 if (pfn == end_pfn) 6607 return; 6608 zone = page_zone(pfn_to_page(pfn)); 6609 spin_lock_irqsave(&zone->lock, flags); 6610 pfn = start_pfn; 6611 while (pfn < end_pfn) { 6612 if (!pfn_valid(pfn)) { 6613 pfn++; 6614 continue; 6615 } 6616 page = pfn_to_page(pfn); 6617 /* 6618 * The HWPoisoned page may be not in buddy system, and 6619 * page_count() is not 0. 6620 */ 6621 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6622 pfn++; 6623 SetPageReserved(page); 6624 continue; 6625 } 6626 6627 BUG_ON(page_count(page)); 6628 BUG_ON(!PageBuddy(page)); 6629 order = page_order(page); 6630#ifdef CONFIG_DEBUG_VM 6631 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6632 pfn, 1 << order, end_pfn); 6633#endif 6634 list_del(&page->lru); 6635 rmv_page_order(page); 6636 zone->free_area[order].nr_free--; 6637 for (i = 0; i < (1 << order); i++) 6638 SetPageReserved((page+i)); 6639 pfn += (1 << order); 6640 } 6641 spin_unlock_irqrestore(&zone->lock, flags); 6642} 6643#endif 6644 6645#ifdef CONFIG_MEMORY_FAILURE 6646bool is_free_buddy_page(struct page *page) 6647{ 6648 struct zone *zone = page_zone(page); 6649 unsigned long pfn = page_to_pfn(page); 6650 unsigned long flags; 6651 unsigned int order; 6652 6653 spin_lock_irqsave(&zone->lock, flags); 6654 for (order = 0; order < MAX_ORDER; order++) { 6655 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6656 6657 if (PageBuddy(page_head) && page_order(page_head) >= order) 6658 break; 6659 } 6660 spin_unlock_irqrestore(&zone->lock, flags); 6661 6662 return order < MAX_ORDER; 6663} 6664#endif 6665