1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/memblock.h>
25#include <linux/compiler.h>
26#include <linux/kernel.h>
27#include <linux/kmemcheck.h>
28#include <linux/kasan.h>
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
34#include <linux/ratelimit.h>
35#include <linux/oom.h>
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
41#include <linux/memory_hotplug.h>
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
44#include <linux/vmstat.h>
45#include <linux/mempolicy.h>
46#include <linux/stop_machine.h>
47#include <linux/sort.h>
48#include <linux/pfn.h>
49#include <linux/backing-dev.h>
50#include <linux/fault-inject.h>
51#include <linux/page-isolation.h>
52#include <linux/page_ext.h>
53#include <linux/debugobjects.h>
54#include <linux/kmemleak.h>
55#include <linux/compaction.h>
56#include <trace/events/kmem.h>
57#include <linux/prefetch.h>
58#include <linux/mm_inline.h>
59#include <linux/migrate.h>
60#include <linux/page_ext.h>
61#include <linux/hugetlb.h>
62#include <linux/sched/rt.h>
63#include <linux/page_owner.h>
64
65#include <asm/sections.h>
66#include <asm/tlbflush.h>
67#include <asm/div64.h>
68#include "internal.h"
69
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
72#define MIN_PERCPU_PAGELIST_FRACTION	(8)
73
74#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75DEFINE_PER_CPU(int, numa_node);
76EXPORT_PER_CPU_SYMBOL(numa_node);
77#endif
78
79#ifdef CONFIG_HAVE_MEMORYLESS_NODES
80/*
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
85 */
86DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
87EXPORT_PER_CPU_SYMBOL(_numa_mem_);
88int _node_numa_mem_[MAX_NUMNODES];
89#endif
90
91/*
92 * Array of node states.
93 */
94nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95	[N_POSSIBLE] = NODE_MASK_ALL,
96	[N_ONLINE] = { { [0] = 1UL } },
97#ifndef CONFIG_NUMA
98	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
99#ifdef CONFIG_HIGHMEM
100	[N_HIGH_MEMORY] = { { [0] = 1UL } },
101#endif
102#ifdef CONFIG_MOVABLE_NODE
103	[N_MEMORY] = { { [0] = 1UL } },
104#endif
105	[N_CPU] = { { [0] = 1UL } },
106#endif	/* NUMA */
107};
108EXPORT_SYMBOL(node_states);
109
110/* Protect totalram_pages and zone->managed_pages */
111static DEFINE_SPINLOCK(managed_page_count_lock);
112
113unsigned long totalram_pages __read_mostly;
114unsigned long totalreserve_pages __read_mostly;
115unsigned long totalcma_pages __read_mostly;
116/*
117 * When calculating the number of globally allowed dirty pages, there
118 * is a certain number of per-zone reserves that should not be
119 * considered dirtyable memory.  This is the sum of those reserves
120 * over all existing zones that contribute dirtyable memory.
121 */
122unsigned long dirty_balance_reserve __read_mostly;
123
124int percpu_pagelist_fraction;
125gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
126
127#ifdef CONFIG_PM_SLEEP
128/*
129 * The following functions are used by the suspend/hibernate code to temporarily
130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131 * while devices are suspended.  To avoid races with the suspend/hibernate code,
132 * they should always be called with pm_mutex held (gfp_allowed_mask also should
133 * only be modified with pm_mutex held, unless the suspend/hibernate code is
134 * guaranteed not to run in parallel with that modification).
135 */
136
137static gfp_t saved_gfp_mask;
138
139void pm_restore_gfp_mask(void)
140{
141	WARN_ON(!mutex_is_locked(&pm_mutex));
142	if (saved_gfp_mask) {
143		gfp_allowed_mask = saved_gfp_mask;
144		saved_gfp_mask = 0;
145	}
146}
147
148void pm_restrict_gfp_mask(void)
149{
150	WARN_ON(!mutex_is_locked(&pm_mutex));
151	WARN_ON(saved_gfp_mask);
152	saved_gfp_mask = gfp_allowed_mask;
153	gfp_allowed_mask &= ~GFP_IOFS;
154}
155
156bool pm_suspended_storage(void)
157{
158	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
159		return false;
160	return true;
161}
162#endif /* CONFIG_PM_SLEEP */
163
164#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165unsigned int pageblock_order __read_mostly;
166#endif
167
168static void __free_pages_ok(struct page *page, unsigned int order);
169
170/*
171 * results with 256, 32 in the lowmem_reserve sysctl:
172 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173 *	1G machine -> (16M dma, 784M normal, 224M high)
174 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
176 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
177 *
178 * TBD: should special case ZONE_DMA32 machines here - in those we normally
179 * don't need any ZONE_NORMAL reservation
180 */
181int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
182#ifdef CONFIG_ZONE_DMA
183	 256,
184#endif
185#ifdef CONFIG_ZONE_DMA32
186	 256,
187#endif
188#ifdef CONFIG_HIGHMEM
189	 32,
190#endif
191	 32,
192};
193
194EXPORT_SYMBOL(totalram_pages);
195
196static char * const zone_names[MAX_NR_ZONES] = {
197#ifdef CONFIG_ZONE_DMA
198	 "DMA",
199#endif
200#ifdef CONFIG_ZONE_DMA32
201	 "DMA32",
202#endif
203	 "Normal",
204#ifdef CONFIG_HIGHMEM
205	 "HighMem",
206#endif
207	 "Movable",
208};
209
210int min_free_kbytes = 1024;
211int user_min_free_kbytes = -1;
212
213static unsigned long __meminitdata nr_kernel_pages;
214static unsigned long __meminitdata nr_all_pages;
215static unsigned long __meminitdata dma_reserve;
216
217#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
218static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
219static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
220static unsigned long __initdata required_kernelcore;
221static unsigned long __initdata required_movablecore;
222static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
223
224/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
225int movable_zone;
226EXPORT_SYMBOL(movable_zone);
227#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
228
229#if MAX_NUMNODES > 1
230int nr_node_ids __read_mostly = MAX_NUMNODES;
231int nr_online_nodes __read_mostly = 1;
232EXPORT_SYMBOL(nr_node_ids);
233EXPORT_SYMBOL(nr_online_nodes);
234#endif
235
236int page_group_by_mobility_disabled __read_mostly;
237
238void set_pageblock_migratetype(struct page *page, int migratetype)
239{
240	if (unlikely(page_group_by_mobility_disabled &&
241		     migratetype < MIGRATE_PCPTYPES))
242		migratetype = MIGRATE_UNMOVABLE;
243
244	set_pageblock_flags_group(page, (unsigned long)migratetype,
245					PB_migrate, PB_migrate_end);
246}
247
248#ifdef CONFIG_DEBUG_VM
249static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
250{
251	int ret = 0;
252	unsigned seq;
253	unsigned long pfn = page_to_pfn(page);
254	unsigned long sp, start_pfn;
255
256	do {
257		seq = zone_span_seqbegin(zone);
258		start_pfn = zone->zone_start_pfn;
259		sp = zone->spanned_pages;
260		if (!zone_spans_pfn(zone, pfn))
261			ret = 1;
262	} while (zone_span_seqretry(zone, seq));
263
264	if (ret)
265		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266			pfn, zone_to_nid(zone), zone->name,
267			start_pfn, start_pfn + sp);
268
269	return ret;
270}
271
272static int page_is_consistent(struct zone *zone, struct page *page)
273{
274	if (!pfn_valid_within(page_to_pfn(page)))
275		return 0;
276	if (zone != page_zone(page))
277		return 0;
278
279	return 1;
280}
281/*
282 * Temporary debugging check for pages not lying within a given zone.
283 */
284static int bad_range(struct zone *zone, struct page *page)
285{
286	if (page_outside_zone_boundaries(zone, page))
287		return 1;
288	if (!page_is_consistent(zone, page))
289		return 1;
290
291	return 0;
292}
293#else
294static inline int bad_range(struct zone *zone, struct page *page)
295{
296	return 0;
297}
298#endif
299
300static void bad_page(struct page *page, const char *reason,
301		unsigned long bad_flags)
302{
303	static unsigned long resume;
304	static unsigned long nr_shown;
305	static unsigned long nr_unshown;
306
307	/* Don't complain about poisoned pages */
308	if (PageHWPoison(page)) {
309		page_mapcount_reset(page); /* remove PageBuddy */
310		return;
311	}
312
313	/*
314	 * Allow a burst of 60 reports, then keep quiet for that minute;
315	 * or allow a steady drip of one report per second.
316	 */
317	if (nr_shown == 60) {
318		if (time_before(jiffies, resume)) {
319			nr_unshown++;
320			goto out;
321		}
322		if (nr_unshown) {
323			printk(KERN_ALERT
324			      "BUG: Bad page state: %lu messages suppressed\n",
325				nr_unshown);
326			nr_unshown = 0;
327		}
328		nr_shown = 0;
329	}
330	if (nr_shown++ == 0)
331		resume = jiffies + 60 * HZ;
332
333	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
334		current->comm, page_to_pfn(page));
335	dump_page_badflags(page, reason, bad_flags);
336
337	print_modules();
338	dump_stack();
339out:
340	/* Leave bad fields for debug, except PageBuddy could make trouble */
341	page_mapcount_reset(page); /* remove PageBuddy */
342	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
343}
344
345/*
346 * Higher-order pages are called "compound pages".  They are structured thusly:
347 *
348 * The first PAGE_SIZE page is called the "head page".
349 *
350 * The remaining PAGE_SIZE pages are called "tail pages".
351 *
352 * All pages have PG_compound set.  All tail pages have their ->first_page
353 * pointing at the head page.
354 *
355 * The first tail page's ->lru.next holds the address of the compound page's
356 * put_page() function.  Its ->lru.prev holds the order of allocation.
357 * This usage means that zero-order pages may not be compound.
358 */
359
360static void free_compound_page(struct page *page)
361{
362	__free_pages_ok(page, compound_order(page));
363}
364
365void prep_compound_page(struct page *page, unsigned int order)
366{
367	int i;
368	int nr_pages = 1 << order;
369
370	set_compound_page_dtor(page, free_compound_page);
371	set_compound_order(page, order);
372	__SetPageHead(page);
373	for (i = 1; i < nr_pages; i++) {
374		struct page *p = page + i;
375		set_page_count(p, 0);
376		p->first_page = page;
377		/* Make sure p->first_page is always valid for PageTail() */
378		smp_wmb();
379		__SetPageTail(p);
380	}
381}
382
383static inline void prep_zero_page(struct page *page, unsigned int order,
384							gfp_t gfp_flags)
385{
386	int i;
387
388	/*
389	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
390	 * and __GFP_HIGHMEM from hard or soft interrupt context.
391	 */
392	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
393	for (i = 0; i < (1 << order); i++)
394		clear_highpage(page + i);
395}
396
397#ifdef CONFIG_DEBUG_PAGEALLOC
398unsigned int _debug_guardpage_minorder;
399bool _debug_pagealloc_enabled __read_mostly;
400bool _debug_guardpage_enabled __read_mostly;
401
402static int __init early_debug_pagealloc(char *buf)
403{
404	if (!buf)
405		return -EINVAL;
406
407	if (strcmp(buf, "on") == 0)
408		_debug_pagealloc_enabled = true;
409
410	return 0;
411}
412early_param("debug_pagealloc", early_debug_pagealloc);
413
414static bool need_debug_guardpage(void)
415{
416	/* If we don't use debug_pagealloc, we don't need guard page */
417	if (!debug_pagealloc_enabled())
418		return false;
419
420	return true;
421}
422
423static void init_debug_guardpage(void)
424{
425	if (!debug_pagealloc_enabled())
426		return;
427
428	_debug_guardpage_enabled = true;
429}
430
431struct page_ext_operations debug_guardpage_ops = {
432	.need = need_debug_guardpage,
433	.init = init_debug_guardpage,
434};
435
436static int __init debug_guardpage_minorder_setup(char *buf)
437{
438	unsigned long res;
439
440	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
441		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
442		return 0;
443	}
444	_debug_guardpage_minorder = res;
445	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
446	return 0;
447}
448__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
449
450static inline void set_page_guard(struct zone *zone, struct page *page,
451				unsigned int order, int migratetype)
452{
453	struct page_ext *page_ext;
454
455	if (!debug_guardpage_enabled())
456		return;
457
458	page_ext = lookup_page_ext(page);
459	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
460
461	INIT_LIST_HEAD(&page->lru);
462	set_page_private(page, order);
463	/* Guard pages are not available for any usage */
464	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
465}
466
467static inline void clear_page_guard(struct zone *zone, struct page *page,
468				unsigned int order, int migratetype)
469{
470	struct page_ext *page_ext;
471
472	if (!debug_guardpage_enabled())
473		return;
474
475	page_ext = lookup_page_ext(page);
476	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
477
478	set_page_private(page, 0);
479	if (!is_migrate_isolate(migratetype))
480		__mod_zone_freepage_state(zone, (1 << order), migratetype);
481}
482#else
483struct page_ext_operations debug_guardpage_ops = { NULL, };
484static inline void set_page_guard(struct zone *zone, struct page *page,
485				unsigned int order, int migratetype) {}
486static inline void clear_page_guard(struct zone *zone, struct page *page,
487				unsigned int order, int migratetype) {}
488#endif
489
490static inline void set_page_order(struct page *page, unsigned int order)
491{
492	set_page_private(page, order);
493	__SetPageBuddy(page);
494}
495
496static inline void rmv_page_order(struct page *page)
497{
498	__ClearPageBuddy(page);
499	set_page_private(page, 0);
500}
501
502/*
503 * This function checks whether a page is free && is the buddy
504 * we can do coalesce a page and its buddy if
505 * (a) the buddy is not in a hole &&
506 * (b) the buddy is in the buddy system &&
507 * (c) a page and its buddy have the same order &&
508 * (d) a page and its buddy are in the same zone.
509 *
510 * For recording whether a page is in the buddy system, we set ->_mapcount
511 * PAGE_BUDDY_MAPCOUNT_VALUE.
512 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
513 * serialized by zone->lock.
514 *
515 * For recording page's order, we use page_private(page).
516 */
517static inline int page_is_buddy(struct page *page, struct page *buddy,
518							unsigned int order)
519{
520	if (!pfn_valid_within(page_to_pfn(buddy)))
521		return 0;
522
523	if (page_is_guard(buddy) && page_order(buddy) == order) {
524		if (page_zone_id(page) != page_zone_id(buddy))
525			return 0;
526
527		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
528
529		return 1;
530	}
531
532	if (PageBuddy(buddy) && page_order(buddy) == order) {
533		/*
534		 * zone check is done late to avoid uselessly
535		 * calculating zone/node ids for pages that could
536		 * never merge.
537		 */
538		if (page_zone_id(page) != page_zone_id(buddy))
539			return 0;
540
541		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
542
543		return 1;
544	}
545	return 0;
546}
547
548/*
549 * Freeing function for a buddy system allocator.
550 *
551 * The concept of a buddy system is to maintain direct-mapped table
552 * (containing bit values) for memory blocks of various "orders".
553 * The bottom level table contains the map for the smallest allocatable
554 * units of memory (here, pages), and each level above it describes
555 * pairs of units from the levels below, hence, "buddies".
556 * At a high level, all that happens here is marking the table entry
557 * at the bottom level available, and propagating the changes upward
558 * as necessary, plus some accounting needed to play nicely with other
559 * parts of the VM system.
560 * At each level, we keep a list of pages, which are heads of continuous
561 * free pages of length of (1 << order) and marked with _mapcount
562 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
563 * field.
564 * So when we are allocating or freeing one, we can derive the state of the
565 * other.  That is, if we allocate a small block, and both were
566 * free, the remainder of the region must be split into blocks.
567 * If a block is freed, and its buddy is also free, then this
568 * triggers coalescing into a block of larger size.
569 *
570 * -- nyc
571 */
572
573static inline void __free_one_page(struct page *page,
574		unsigned long pfn,
575		struct zone *zone, unsigned int order,
576		int migratetype)
577{
578	unsigned long page_idx;
579	unsigned long combined_idx;
580	unsigned long uninitialized_var(buddy_idx);
581	struct page *buddy;
582	unsigned int max_order;
583
584	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
585
586	VM_BUG_ON(!zone_is_initialized(zone));
587	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
588
589	VM_BUG_ON(migratetype == -1);
590	if (likely(!is_migrate_isolate(migratetype)))
591		__mod_zone_freepage_state(zone, 1 << order, migratetype);
592
593	page_idx = pfn & ((1 << MAX_ORDER) - 1);
594
595	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
596	VM_BUG_ON_PAGE(bad_range(zone, page), page);
597
598continue_merging:
599	while (order < max_order - 1) {
600		buddy_idx = __find_buddy_index(page_idx, order);
601		buddy = page + (buddy_idx - page_idx);
602		if (!page_is_buddy(page, buddy, order))
603			goto done_merging;
604		/*
605		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
606		 * merge with it and move up one order.
607		 */
608		if (page_is_guard(buddy)) {
609			clear_page_guard(zone, buddy, order, migratetype);
610		} else {
611			list_del(&buddy->lru);
612			zone->free_area[order].nr_free--;
613			rmv_page_order(buddy);
614		}
615		combined_idx = buddy_idx & page_idx;
616		page = page + (combined_idx - page_idx);
617		page_idx = combined_idx;
618		order++;
619	}
620	if (max_order < MAX_ORDER) {
621		/* If we are here, it means order is >= pageblock_order.
622		 * We want to prevent merge between freepages on isolate
623		 * pageblock and normal pageblock. Without this, pageblock
624		 * isolation could cause incorrect freepage or CMA accounting.
625		 *
626		 * We don't want to hit this code for the more frequent
627		 * low-order merging.
628		 */
629		if (unlikely(has_isolate_pageblock(zone))) {
630			int buddy_mt;
631
632			buddy_idx = __find_buddy_index(page_idx, order);
633			buddy = page + (buddy_idx - page_idx);
634			buddy_mt = get_pageblock_migratetype(buddy);
635
636			if (migratetype != buddy_mt
637					&& (is_migrate_isolate(migratetype) ||
638						is_migrate_isolate(buddy_mt)))
639				goto done_merging;
640		}
641		max_order++;
642		goto continue_merging;
643	}
644
645done_merging:
646	set_page_order(page, order);
647
648	/*
649	 * If this is not the largest possible page, check if the buddy
650	 * of the next-highest order is free. If it is, it's possible
651	 * that pages are being freed that will coalesce soon. In case,
652	 * that is happening, add the free page to the tail of the list
653	 * so it's less likely to be used soon and more likely to be merged
654	 * as a higher order page
655	 */
656	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
657		struct page *higher_page, *higher_buddy;
658		combined_idx = buddy_idx & page_idx;
659		higher_page = page + (combined_idx - page_idx);
660		buddy_idx = __find_buddy_index(combined_idx, order + 1);
661		higher_buddy = higher_page + (buddy_idx - combined_idx);
662		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
663			list_add_tail(&page->lru,
664				&zone->free_area[order].free_list[migratetype]);
665			goto out;
666		}
667	}
668
669	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
670out:
671	zone->free_area[order].nr_free++;
672}
673
674static inline int free_pages_check(struct page *page)
675{
676	const char *bad_reason = NULL;
677	unsigned long bad_flags = 0;
678
679	if (unlikely(page_mapcount(page)))
680		bad_reason = "nonzero mapcount";
681	if (unlikely(page->mapping != NULL))
682		bad_reason = "non-NULL mapping";
683	if (unlikely(atomic_read(&page->_count) != 0))
684		bad_reason = "nonzero _count";
685	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
686		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
687		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
688	}
689#ifdef CONFIG_MEMCG
690	if (unlikely(page->mem_cgroup))
691		bad_reason = "page still charged to cgroup";
692#endif
693	if (unlikely(bad_reason)) {
694		bad_page(page, bad_reason, bad_flags);
695		return 1;
696	}
697	page_cpupid_reset_last(page);
698	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
699		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
700	return 0;
701}
702
703/*
704 * Frees a number of pages from the PCP lists
705 * Assumes all pages on list are in same zone, and of same order.
706 * count is the number of pages to free.
707 *
708 * If the zone was previously in an "all pages pinned" state then look to
709 * see if this freeing clears that state.
710 *
711 * And clear the zone's pages_scanned counter, to hold off the "all pages are
712 * pinned" detection logic.
713 */
714static void free_pcppages_bulk(struct zone *zone, int count,
715					struct per_cpu_pages *pcp)
716{
717	int migratetype = 0;
718	int batch_free = 0;
719	int to_free = count;
720	unsigned long nr_scanned;
721
722	spin_lock(&zone->lock);
723	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
724	if (nr_scanned)
725		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
726
727	while (to_free) {
728		struct page *page;
729		struct list_head *list;
730
731		/*
732		 * Remove pages from lists in a round-robin fashion. A
733		 * batch_free count is maintained that is incremented when an
734		 * empty list is encountered.  This is so more pages are freed
735		 * off fuller lists instead of spinning excessively around empty
736		 * lists
737		 */
738		do {
739			batch_free++;
740			if (++migratetype == MIGRATE_PCPTYPES)
741				migratetype = 0;
742			list = &pcp->lists[migratetype];
743		} while (list_empty(list));
744
745		/* This is the only non-empty list. Free them all. */
746		if (batch_free == MIGRATE_PCPTYPES)
747			batch_free = to_free;
748
749		do {
750			int mt;	/* migratetype of the to-be-freed page */
751
752			page = list_entry(list->prev, struct page, lru);
753			/* must delete as __free_one_page list manipulates */
754			list_del(&page->lru);
755			mt = get_freepage_migratetype(page);
756			if (unlikely(has_isolate_pageblock(zone)))
757				mt = get_pageblock_migratetype(page);
758
759			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
760			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
761			trace_mm_page_pcpu_drain(page, 0, mt);
762		} while (--to_free && --batch_free && !list_empty(list));
763	}
764	spin_unlock(&zone->lock);
765}
766
767static void free_one_page(struct zone *zone,
768				struct page *page, unsigned long pfn,
769				unsigned int order,
770				int migratetype)
771{
772	unsigned long nr_scanned;
773	spin_lock(&zone->lock);
774	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
775	if (nr_scanned)
776		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
777
778	if (unlikely(has_isolate_pageblock(zone) ||
779		is_migrate_isolate(migratetype))) {
780		migratetype = get_pfnblock_migratetype(page, pfn);
781	}
782	__free_one_page(page, pfn, zone, order, migratetype);
783	spin_unlock(&zone->lock);
784}
785
786static int free_tail_pages_check(struct page *head_page, struct page *page)
787{
788	if (!IS_ENABLED(CONFIG_DEBUG_VM))
789		return 0;
790	if (unlikely(!PageTail(page))) {
791		bad_page(page, "PageTail not set", 0);
792		return 1;
793	}
794	if (unlikely(page->first_page != head_page)) {
795		bad_page(page, "first_page not consistent", 0);
796		return 1;
797	}
798	return 0;
799}
800
801static bool free_pages_prepare(struct page *page, unsigned int order)
802{
803	bool compound = PageCompound(page);
804	int i, bad = 0;
805
806	VM_BUG_ON_PAGE(PageTail(page), page);
807	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
808
809	trace_mm_page_free(page, order);
810	kmemcheck_free_shadow(page, order);
811	kasan_free_pages(page, order);
812
813	if (PageAnon(page))
814		page->mapping = NULL;
815	bad += free_pages_check(page);
816	for (i = 1; i < (1 << order); i++) {
817		if (compound)
818			bad += free_tail_pages_check(page, page + i);
819		bad += free_pages_check(page + i);
820	}
821	if (bad)
822		return false;
823
824	reset_page_owner(page, order);
825
826	if (!PageHighMem(page)) {
827		debug_check_no_locks_freed(page_address(page),
828					   PAGE_SIZE << order);
829		debug_check_no_obj_freed(page_address(page),
830					   PAGE_SIZE << order);
831	}
832	arch_free_page(page, order);
833	kernel_map_pages(page, 1 << order, 0);
834
835	return true;
836}
837
838static void __free_pages_ok(struct page *page, unsigned int order)
839{
840	unsigned long flags;
841	int migratetype;
842	unsigned long pfn = page_to_pfn(page);
843
844	if (!free_pages_prepare(page, order))
845		return;
846
847	migratetype = get_pfnblock_migratetype(page, pfn);
848	local_irq_save(flags);
849	__count_vm_events(PGFREE, 1 << order);
850	set_freepage_migratetype(page, migratetype);
851	free_one_page(page_zone(page), page, pfn, order, migratetype);
852	local_irq_restore(flags);
853}
854
855void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
856							unsigned int order)
857{
858	unsigned int nr_pages = 1 << order;
859	struct page *p = page;
860	unsigned int loop;
861
862	prefetchw(p);
863	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
864		prefetchw(p + 1);
865		__ClearPageReserved(p);
866		set_page_count(p, 0);
867	}
868	__ClearPageReserved(p);
869	set_page_count(p, 0);
870
871	page_zone(page)->managed_pages += nr_pages;
872	set_page_refcounted(page);
873	__free_pages(page, order);
874}
875
876#ifdef CONFIG_CMA
877/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
878void __init init_cma_reserved_pageblock(struct page *page)
879{
880	unsigned i = pageblock_nr_pages;
881	struct page *p = page;
882
883	do {
884		__ClearPageReserved(p);
885		set_page_count(p, 0);
886	} while (++p, --i);
887
888	set_pageblock_migratetype(page, MIGRATE_CMA);
889
890	if (pageblock_order >= MAX_ORDER) {
891		i = pageblock_nr_pages;
892		p = page;
893		do {
894			set_page_refcounted(p);
895			__free_pages(p, MAX_ORDER - 1);
896			p += MAX_ORDER_NR_PAGES;
897		} while (i -= MAX_ORDER_NR_PAGES);
898	} else {
899		set_page_refcounted(page);
900		__free_pages(page, pageblock_order);
901	}
902
903	adjust_managed_page_count(page, pageblock_nr_pages);
904}
905#endif
906
907/*
908 * The order of subdivision here is critical for the IO subsystem.
909 * Please do not alter this order without good reasons and regression
910 * testing. Specifically, as large blocks of memory are subdivided,
911 * the order in which smaller blocks are delivered depends on the order
912 * they're subdivided in this function. This is the primary factor
913 * influencing the order in which pages are delivered to the IO
914 * subsystem according to empirical testing, and this is also justified
915 * by considering the behavior of a buddy system containing a single
916 * large block of memory acted on by a series of small allocations.
917 * This behavior is a critical factor in sglist merging's success.
918 *
919 * -- nyc
920 */
921static inline void expand(struct zone *zone, struct page *page,
922	int low, int high, struct free_area *area,
923	int migratetype)
924{
925	unsigned long size = 1 << high;
926
927	while (high > low) {
928		area--;
929		high--;
930		size >>= 1;
931		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
932
933		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
934			debug_guardpage_enabled() &&
935			high < debug_guardpage_minorder()) {
936			/*
937			 * Mark as guard pages (or page), that will allow to
938			 * merge back to allocator when buddy will be freed.
939			 * Corresponding page table entries will not be touched,
940			 * pages will stay not present in virtual address space
941			 */
942			set_page_guard(zone, &page[size], high, migratetype);
943			continue;
944		}
945		list_add(&page[size].lru, &area->free_list[migratetype]);
946		area->nr_free++;
947		set_page_order(&page[size], high);
948	}
949}
950
951/*
952 * This page is about to be returned from the page allocator
953 */
954static inline int check_new_page(struct page *page)
955{
956	const char *bad_reason = NULL;
957	unsigned long bad_flags = 0;
958
959	if (unlikely(page_mapcount(page)))
960		bad_reason = "nonzero mapcount";
961	if (unlikely(page->mapping != NULL))
962		bad_reason = "non-NULL mapping";
963	if (unlikely(atomic_read(&page->_count) != 0))
964		bad_reason = "nonzero _count";
965	if (unlikely(page->flags & __PG_HWPOISON)) {
966		bad_reason = "HWPoisoned (hardware-corrupted)";
967		bad_flags = __PG_HWPOISON;
968	}
969	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
970		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
971		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
972	}
973#ifdef CONFIG_MEMCG
974	if (unlikely(page->mem_cgroup))
975		bad_reason = "page still charged to cgroup";
976#endif
977	if (unlikely(bad_reason)) {
978		bad_page(page, bad_reason, bad_flags);
979		return 1;
980	}
981	return 0;
982}
983
984static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
985								int alloc_flags)
986{
987	int i;
988
989	for (i = 0; i < (1 << order); i++) {
990		struct page *p = page + i;
991		if (unlikely(check_new_page(p)))
992			return 1;
993	}
994
995	set_page_private(page, 0);
996	set_page_refcounted(page);
997
998	arch_alloc_page(page, order);
999	kernel_map_pages(page, 1 << order, 1);
1000	kasan_alloc_pages(page, order);
1001
1002	if (gfp_flags & __GFP_ZERO)
1003		prep_zero_page(page, order, gfp_flags);
1004
1005	if (order && (gfp_flags & __GFP_COMP))
1006		prep_compound_page(page, order);
1007
1008	set_page_owner(page, order, gfp_flags);
1009
1010	/*
1011	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1012	 * allocate the page. The expectation is that the caller is taking
1013	 * steps that will free more memory. The caller should avoid the page
1014	 * being used for !PFMEMALLOC purposes.
1015	 */
1016	if (alloc_flags & ALLOC_NO_WATERMARKS)
1017		set_page_pfmemalloc(page);
1018	else
1019		clear_page_pfmemalloc(page);
1020
1021	return 0;
1022}
1023
1024/*
1025 * Go through the free lists for the given migratetype and remove
1026 * the smallest available page from the freelists
1027 */
1028static inline
1029struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1030						int migratetype)
1031{
1032	unsigned int current_order;
1033	struct free_area *area;
1034	struct page *page;
1035
1036	/* Find a page of the appropriate size in the preferred list */
1037	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1038		area = &(zone->free_area[current_order]);
1039		if (list_empty(&area->free_list[migratetype]))
1040			continue;
1041
1042		page = list_entry(area->free_list[migratetype].next,
1043							struct page, lru);
1044		list_del(&page->lru);
1045		rmv_page_order(page);
1046		area->nr_free--;
1047		expand(zone, page, order, current_order, area, migratetype);
1048		set_freepage_migratetype(page, migratetype);
1049		return page;
1050	}
1051
1052	return NULL;
1053}
1054
1055
1056/*
1057 * This array describes the order lists are fallen back to when
1058 * the free lists for the desirable migrate type are depleted
1059 */
1060static int fallbacks[MIGRATE_TYPES][4] = {
1061	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
1062	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
1063	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
1064#ifdef CONFIG_CMA
1065	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
1066#endif
1067	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
1068#ifdef CONFIG_MEMORY_ISOLATION
1069	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
1070#endif
1071};
1072
1073#ifdef CONFIG_CMA
1074static struct page *__rmqueue_cma_fallback(struct zone *zone,
1075					unsigned int order)
1076{
1077	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1078}
1079#else
1080static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1081					unsigned int order) { return NULL; }
1082#endif
1083
1084/*
1085 * Move the free pages in a range to the free lists of the requested type.
1086 * Note that start_page and end_pages are not aligned on a pageblock
1087 * boundary. If alignment is required, use move_freepages_block()
1088 */
1089int move_freepages(struct zone *zone,
1090			  struct page *start_page, struct page *end_page,
1091			  int migratetype)
1092{
1093	struct page *page;
1094	unsigned int order;
1095	int pages_moved = 0;
1096
1097#ifndef CONFIG_HOLES_IN_ZONE
1098	/*
1099	 * page_zone is not safe to call in this context when
1100	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1101	 * anyway as we check zone boundaries in move_freepages_block().
1102	 * Remove at a later date when no bug reports exist related to
1103	 * grouping pages by mobility
1104	 */
1105	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1106#endif
1107
1108	for (page = start_page; page <= end_page;) {
1109		/* Make sure we are not inadvertently changing nodes */
1110		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1111
1112		if (!pfn_valid_within(page_to_pfn(page))) {
1113			page++;
1114			continue;
1115		}
1116
1117		if (!PageBuddy(page)) {
1118			page++;
1119			continue;
1120		}
1121
1122		order = page_order(page);
1123		list_move(&page->lru,
1124			  &zone->free_area[order].free_list[migratetype]);
1125		set_freepage_migratetype(page, migratetype);
1126		page += 1 << order;
1127		pages_moved += 1 << order;
1128	}
1129
1130	return pages_moved;
1131}
1132
1133int move_freepages_block(struct zone *zone, struct page *page,
1134				int migratetype)
1135{
1136	unsigned long start_pfn, end_pfn;
1137	struct page *start_page, *end_page;
1138
1139	start_pfn = page_to_pfn(page);
1140	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1141	start_page = pfn_to_page(start_pfn);
1142	end_page = start_page + pageblock_nr_pages - 1;
1143	end_pfn = start_pfn + pageblock_nr_pages - 1;
1144
1145	/* Do not cross zone boundaries */
1146	if (!zone_spans_pfn(zone, start_pfn))
1147		start_page = page;
1148	if (!zone_spans_pfn(zone, end_pfn))
1149		return 0;
1150
1151	return move_freepages(zone, start_page, end_page, migratetype);
1152}
1153
1154static void change_pageblock_range(struct page *pageblock_page,
1155					int start_order, int migratetype)
1156{
1157	int nr_pageblocks = 1 << (start_order - pageblock_order);
1158
1159	while (nr_pageblocks--) {
1160		set_pageblock_migratetype(pageblock_page, migratetype);
1161		pageblock_page += pageblock_nr_pages;
1162	}
1163}
1164
1165/*
1166 * When we are falling back to another migratetype during allocation, try to
1167 * steal extra free pages from the same pageblocks to satisfy further
1168 * allocations, instead of polluting multiple pageblocks.
1169 *
1170 * If we are stealing a relatively large buddy page, it is likely there will
1171 * be more free pages in the pageblock, so try to steal them all. For
1172 * reclaimable and unmovable allocations, we steal regardless of page size,
1173 * as fragmentation caused by those allocations polluting movable pageblocks
1174 * is worse than movable allocations stealing from unmovable and reclaimable
1175 * pageblocks.
1176 */
1177static bool can_steal_fallback(unsigned int order, int start_mt)
1178{
1179	/*
1180	 * Leaving this order check is intended, although there is
1181	 * relaxed order check in next check. The reason is that
1182	 * we can actually steal whole pageblock if this condition met,
1183	 * but, below check doesn't guarantee it and that is just heuristic
1184	 * so could be changed anytime.
1185	 */
1186	if (order >= pageblock_order)
1187		return true;
1188
1189	if (order >= pageblock_order / 2 ||
1190		start_mt == MIGRATE_RECLAIMABLE ||
1191		start_mt == MIGRATE_UNMOVABLE ||
1192		page_group_by_mobility_disabled)
1193		return true;
1194
1195	return false;
1196}
1197
1198/*
1199 * This function implements actual steal behaviour. If order is large enough,
1200 * we can steal whole pageblock. If not, we first move freepages in this
1201 * pageblock and check whether half of pages are moved or not. If half of
1202 * pages are moved, we can change migratetype of pageblock and permanently
1203 * use it's pages as requested migratetype in the future.
1204 */
1205static void steal_suitable_fallback(struct zone *zone, struct page *page,
1206							  int start_type)
1207{
1208	unsigned int current_order = page_order(page);
1209	int pages;
1210
1211	/* Take ownership for orders >= pageblock_order */
1212	if (current_order >= pageblock_order) {
1213		change_pageblock_range(page, current_order, start_type);
1214		return;
1215	}
1216
1217	pages = move_freepages_block(zone, page, start_type);
1218
1219	/* Claim the whole block if over half of it is free */
1220	if (pages >= (1 << (pageblock_order-1)) ||
1221			page_group_by_mobility_disabled)
1222		set_pageblock_migratetype(page, start_type);
1223}
1224
1225/*
1226 * Check whether there is a suitable fallback freepage with requested order.
1227 * If only_stealable is true, this function returns fallback_mt only if
1228 * we can steal other freepages all together. This would help to reduce
1229 * fragmentation due to mixed migratetype pages in one pageblock.
1230 */
1231int find_suitable_fallback(struct free_area *area, unsigned int order,
1232			int migratetype, bool only_stealable, bool *can_steal)
1233{
1234	int i;
1235	int fallback_mt;
1236
1237	if (area->nr_free == 0)
1238		return -1;
1239
1240	*can_steal = false;
1241	for (i = 0;; i++) {
1242		fallback_mt = fallbacks[migratetype][i];
1243		if (fallback_mt == MIGRATE_RESERVE)
1244			break;
1245
1246		if (list_empty(&area->free_list[fallback_mt]))
1247			continue;
1248
1249		if (can_steal_fallback(order, migratetype))
1250			*can_steal = true;
1251
1252		if (!only_stealable)
1253			return fallback_mt;
1254
1255		if (*can_steal)
1256			return fallback_mt;
1257	}
1258
1259	return -1;
1260}
1261
1262/* Remove an element from the buddy allocator from the fallback list */
1263static inline struct page *
1264__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1265{
1266	struct free_area *area;
1267	unsigned int current_order;
1268	struct page *page;
1269	int fallback_mt;
1270	bool can_steal;
1271
1272	/* Find the largest possible block of pages in the other list */
1273	for (current_order = MAX_ORDER-1;
1274				current_order >= order && current_order <= MAX_ORDER-1;
1275				--current_order) {
1276		area = &(zone->free_area[current_order]);
1277		fallback_mt = find_suitable_fallback(area, current_order,
1278				start_migratetype, false, &can_steal);
1279		if (fallback_mt == -1)
1280			continue;
1281
1282		page = list_entry(area->free_list[fallback_mt].next,
1283						struct page, lru);
1284		if (can_steal)
1285			steal_suitable_fallback(zone, page, start_migratetype);
1286
1287		/* Remove the page from the freelists */
1288		area->nr_free--;
1289		list_del(&page->lru);
1290		rmv_page_order(page);
1291
1292		expand(zone, page, order, current_order, area,
1293					start_migratetype);
1294		/*
1295		 * The freepage_migratetype may differ from pageblock's
1296		 * migratetype depending on the decisions in
1297		 * try_to_steal_freepages(). This is OK as long as it
1298		 * does not differ for MIGRATE_CMA pageblocks. For CMA
1299		 * we need to make sure unallocated pages flushed from
1300		 * pcp lists are returned to the correct freelist.
1301		 */
1302		set_freepage_migratetype(page, start_migratetype);
1303
1304		trace_mm_page_alloc_extfrag(page, order, current_order,
1305			start_migratetype, fallback_mt);
1306
1307		return page;
1308	}
1309
1310	return NULL;
1311}
1312
1313/*
1314 * Do the hard work of removing an element from the buddy allocator.
1315 * Call me with the zone->lock already held.
1316 */
1317static struct page *__rmqueue(struct zone *zone, unsigned int order,
1318						int migratetype)
1319{
1320	struct page *page;
1321
1322retry_reserve:
1323	page = __rmqueue_smallest(zone, order, migratetype);
1324
1325	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1326		if (migratetype == MIGRATE_MOVABLE)
1327			page = __rmqueue_cma_fallback(zone, order);
1328
1329		if (!page)
1330			page = __rmqueue_fallback(zone, order, migratetype);
1331
1332		/*
1333		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1334		 * is used because __rmqueue_smallest is an inline function
1335		 * and we want just one call site
1336		 */
1337		if (!page) {
1338			migratetype = MIGRATE_RESERVE;
1339			goto retry_reserve;
1340		}
1341	}
1342
1343	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1344	return page;
1345}
1346
1347/*
1348 * Obtain a specified number of elements from the buddy allocator, all under
1349 * a single hold of the lock, for efficiency.  Add them to the supplied list.
1350 * Returns the number of new pages which were placed at *list.
1351 */
1352static int rmqueue_bulk(struct zone *zone, unsigned int order,
1353			unsigned long count, struct list_head *list,
1354			int migratetype, bool cold)
1355{
1356	int i;
1357
1358	spin_lock(&zone->lock);
1359	for (i = 0; i < count; ++i) {
1360		struct page *page = __rmqueue(zone, order, migratetype);
1361		if (unlikely(page == NULL))
1362			break;
1363
1364		/*
1365		 * Split buddy pages returned by expand() are received here
1366		 * in physical page order. The page is added to the callers and
1367		 * list and the list head then moves forward. From the callers
1368		 * perspective, the linked list is ordered by page number in
1369		 * some conditions. This is useful for IO devices that can
1370		 * merge IO requests if the physical pages are ordered
1371		 * properly.
1372		 */
1373		if (likely(!cold))
1374			list_add(&page->lru, list);
1375		else
1376			list_add_tail(&page->lru, list);
1377		list = &page->lru;
1378		if (is_migrate_cma(get_freepage_migratetype(page)))
1379			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1380					      -(1 << order));
1381	}
1382	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1383	spin_unlock(&zone->lock);
1384	return i;
1385}
1386
1387#ifdef CONFIG_NUMA
1388/*
1389 * Called from the vmstat counter updater to drain pagesets of this
1390 * currently executing processor on remote nodes after they have
1391 * expired.
1392 *
1393 * Note that this function must be called with the thread pinned to
1394 * a single processor.
1395 */
1396void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1397{
1398	unsigned long flags;
1399	int to_drain, batch;
1400
1401	local_irq_save(flags);
1402	batch = READ_ONCE(pcp->batch);
1403	to_drain = min(pcp->count, batch);
1404	if (to_drain > 0) {
1405		free_pcppages_bulk(zone, to_drain, pcp);
1406		pcp->count -= to_drain;
1407	}
1408	local_irq_restore(flags);
1409}
1410#endif
1411
1412/*
1413 * Drain pcplists of the indicated processor and zone.
1414 *
1415 * The processor must either be the current processor and the
1416 * thread pinned to the current processor or a processor that
1417 * is not online.
1418 */
1419static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1420{
1421	unsigned long flags;
1422	struct per_cpu_pageset *pset;
1423	struct per_cpu_pages *pcp;
1424
1425	local_irq_save(flags);
1426	pset = per_cpu_ptr(zone->pageset, cpu);
1427
1428	pcp = &pset->pcp;
1429	if (pcp->count) {
1430		free_pcppages_bulk(zone, pcp->count, pcp);
1431		pcp->count = 0;
1432	}
1433	local_irq_restore(flags);
1434}
1435
1436/*
1437 * Drain pcplists of all zones on the indicated processor.
1438 *
1439 * The processor must either be the current processor and the
1440 * thread pinned to the current processor or a processor that
1441 * is not online.
1442 */
1443static void drain_pages(unsigned int cpu)
1444{
1445	struct zone *zone;
1446
1447	for_each_populated_zone(zone) {
1448		drain_pages_zone(cpu, zone);
1449	}
1450}
1451
1452/*
1453 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1454 *
1455 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1456 * the single zone's pages.
1457 */
1458void drain_local_pages(struct zone *zone)
1459{
1460	int cpu = smp_processor_id();
1461
1462	if (zone)
1463		drain_pages_zone(cpu, zone);
1464	else
1465		drain_pages(cpu);
1466}
1467
1468/*
1469 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1470 *
1471 * When zone parameter is non-NULL, spill just the single zone's pages.
1472 *
1473 * Note that this code is protected against sending an IPI to an offline
1474 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1475 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1476 * nothing keeps CPUs from showing up after we populated the cpumask and
1477 * before the call to on_each_cpu_mask().
1478 */
1479void drain_all_pages(struct zone *zone)
1480{
1481	int cpu;
1482
1483	/*
1484	 * Allocate in the BSS so we wont require allocation in
1485	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1486	 */
1487	static cpumask_t cpus_with_pcps;
1488
1489	/*
1490	 * We don't care about racing with CPU hotplug event
1491	 * as offline notification will cause the notified
1492	 * cpu to drain that CPU pcps and on_each_cpu_mask
1493	 * disables preemption as part of its processing
1494	 */
1495	for_each_online_cpu(cpu) {
1496		struct per_cpu_pageset *pcp;
1497		struct zone *z;
1498		bool has_pcps = false;
1499
1500		if (zone) {
1501			pcp = per_cpu_ptr(zone->pageset, cpu);
1502			if (pcp->pcp.count)
1503				has_pcps = true;
1504		} else {
1505			for_each_populated_zone(z) {
1506				pcp = per_cpu_ptr(z->pageset, cpu);
1507				if (pcp->pcp.count) {
1508					has_pcps = true;
1509					break;
1510				}
1511			}
1512		}
1513
1514		if (has_pcps)
1515			cpumask_set_cpu(cpu, &cpus_with_pcps);
1516		else
1517			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1518	}
1519	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1520								zone, 1);
1521}
1522
1523#ifdef CONFIG_HIBERNATION
1524
1525void mark_free_pages(struct zone *zone)
1526{
1527	unsigned long pfn, max_zone_pfn;
1528	unsigned long flags;
1529	unsigned int order, t;
1530	struct list_head *curr;
1531
1532	if (zone_is_empty(zone))
1533		return;
1534
1535	spin_lock_irqsave(&zone->lock, flags);
1536
1537	max_zone_pfn = zone_end_pfn(zone);
1538	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1539		if (pfn_valid(pfn)) {
1540			struct page *page = pfn_to_page(pfn);
1541
1542			if (!swsusp_page_is_forbidden(page))
1543				swsusp_unset_page_free(page);
1544		}
1545
1546	for_each_migratetype_order(order, t) {
1547		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1548			unsigned long i;
1549
1550			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1551			for (i = 0; i < (1UL << order); i++)
1552				swsusp_set_page_free(pfn_to_page(pfn + i));
1553		}
1554	}
1555	spin_unlock_irqrestore(&zone->lock, flags);
1556}
1557#endif /* CONFIG_PM */
1558
1559/*
1560 * Free a 0-order page
1561 * cold == true ? free a cold page : free a hot page
1562 */
1563void free_hot_cold_page(struct page *page, bool cold)
1564{
1565	struct zone *zone = page_zone(page);
1566	struct per_cpu_pages *pcp;
1567	unsigned long flags;
1568	unsigned long pfn = page_to_pfn(page);
1569	int migratetype;
1570
1571	if (!free_pages_prepare(page, 0))
1572		return;
1573
1574	migratetype = get_pfnblock_migratetype(page, pfn);
1575	set_freepage_migratetype(page, migratetype);
1576	local_irq_save(flags);
1577	__count_vm_event(PGFREE);
1578
1579	/*
1580	 * We only track unmovable, reclaimable and movable on pcp lists.
1581	 * Free ISOLATE pages back to the allocator because they are being
1582	 * offlined but treat RESERVE as movable pages so we can get those
1583	 * areas back if necessary. Otherwise, we may have to free
1584	 * excessively into the page allocator
1585	 */
1586	if (migratetype >= MIGRATE_PCPTYPES) {
1587		if (unlikely(is_migrate_isolate(migratetype))) {
1588			free_one_page(zone, page, pfn, 0, migratetype);
1589			goto out;
1590		}
1591		migratetype = MIGRATE_MOVABLE;
1592	}
1593
1594	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1595	if (!cold)
1596		list_add(&page->lru, &pcp->lists[migratetype]);
1597	else
1598		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1599	pcp->count++;
1600	if (pcp->count >= pcp->high) {
1601		unsigned long batch = READ_ONCE(pcp->batch);
1602		free_pcppages_bulk(zone, batch, pcp);
1603		pcp->count -= batch;
1604	}
1605
1606out:
1607	local_irq_restore(flags);
1608}
1609
1610/*
1611 * Free a list of 0-order pages
1612 */
1613void free_hot_cold_page_list(struct list_head *list, bool cold)
1614{
1615	struct page *page, *next;
1616
1617	list_for_each_entry_safe(page, next, list, lru) {
1618		trace_mm_page_free_batched(page, cold);
1619		free_hot_cold_page(page, cold);
1620	}
1621}
1622
1623/*
1624 * split_page takes a non-compound higher-order page, and splits it into
1625 * n (1<<order) sub-pages: page[0..n]
1626 * Each sub-page must be freed individually.
1627 *
1628 * Note: this is probably too low level an operation for use in drivers.
1629 * Please consult with lkml before using this in your driver.
1630 */
1631void split_page(struct page *page, unsigned int order)
1632{
1633	int i;
1634
1635	VM_BUG_ON_PAGE(PageCompound(page), page);
1636	VM_BUG_ON_PAGE(!page_count(page), page);
1637
1638#ifdef CONFIG_KMEMCHECK
1639	/*
1640	 * Split shadow pages too, because free(page[0]) would
1641	 * otherwise free the whole shadow.
1642	 */
1643	if (kmemcheck_page_is_tracked(page))
1644		split_page(virt_to_page(page[0].shadow), order);
1645#endif
1646
1647	set_page_owner(page, 0, 0);
1648	for (i = 1; i < (1 << order); i++) {
1649		set_page_refcounted(page + i);
1650		set_page_owner(page + i, 0, 0);
1651	}
1652}
1653EXPORT_SYMBOL_GPL(split_page);
1654
1655int __isolate_free_page(struct page *page, unsigned int order)
1656{
1657	unsigned long watermark;
1658	struct zone *zone;
1659	int mt;
1660
1661	BUG_ON(!PageBuddy(page));
1662
1663	zone = page_zone(page);
1664	mt = get_pageblock_migratetype(page);
1665
1666	if (!is_migrate_isolate(mt)) {
1667		/* Obey watermarks as if the page was being allocated */
1668		watermark = low_wmark_pages(zone) + (1 << order);
1669		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1670			return 0;
1671
1672		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1673	}
1674
1675	/* Remove page from free list */
1676	list_del(&page->lru);
1677	zone->free_area[order].nr_free--;
1678	rmv_page_order(page);
1679
1680	/* Set the pageblock if the isolated page is at least a pageblock */
1681	if (order >= pageblock_order - 1) {
1682		struct page *endpage = page + (1 << order) - 1;
1683		for (; page < endpage; page += pageblock_nr_pages) {
1684			int mt = get_pageblock_migratetype(page);
1685			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1686				set_pageblock_migratetype(page,
1687							  MIGRATE_MOVABLE);
1688		}
1689	}
1690
1691	set_page_owner(page, order, 0);
1692	return 1UL << order;
1693}
1694
1695/*
1696 * Similar to split_page except the page is already free. As this is only
1697 * being used for migration, the migratetype of the block also changes.
1698 * As this is called with interrupts disabled, the caller is responsible
1699 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1700 * are enabled.
1701 *
1702 * Note: this is probably too low level an operation for use in drivers.
1703 * Please consult with lkml before using this in your driver.
1704 */
1705int split_free_page(struct page *page)
1706{
1707	unsigned int order;
1708	int nr_pages;
1709
1710	order = page_order(page);
1711
1712	nr_pages = __isolate_free_page(page, order);
1713	if (!nr_pages)
1714		return 0;
1715
1716	/* Split into individual pages */
1717	set_page_refcounted(page);
1718	split_page(page, order);
1719	return nr_pages;
1720}
1721
1722/*
1723 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1724 */
1725static inline
1726struct page *buffered_rmqueue(struct zone *preferred_zone,
1727			struct zone *zone, unsigned int order,
1728			gfp_t gfp_flags, int migratetype)
1729{
1730	unsigned long flags;
1731	struct page *page;
1732	bool cold = ((gfp_flags & __GFP_COLD) != 0);
1733
1734	if (likely(order == 0)) {
1735		struct per_cpu_pages *pcp;
1736		struct list_head *list;
1737
1738		local_irq_save(flags);
1739		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1740		list = &pcp->lists[migratetype];
1741		if (list_empty(list)) {
1742			pcp->count += rmqueue_bulk(zone, 0,
1743					pcp->batch, list,
1744					migratetype, cold);
1745			if (unlikely(list_empty(list)))
1746				goto failed;
1747		}
1748
1749		if (cold)
1750			page = list_entry(list->prev, struct page, lru);
1751		else
1752			page = list_entry(list->next, struct page, lru);
1753
1754		list_del(&page->lru);
1755		pcp->count--;
1756	} else {
1757		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1758			/*
1759			 * __GFP_NOFAIL is not to be used in new code.
1760			 *
1761			 * All __GFP_NOFAIL callers should be fixed so that they
1762			 * properly detect and handle allocation failures.
1763			 *
1764			 * We most definitely don't want callers attempting to
1765			 * allocate greater than order-1 page units with
1766			 * __GFP_NOFAIL.
1767			 */
1768			WARN_ON_ONCE(order > 1);
1769		}
1770		spin_lock_irqsave(&zone->lock, flags);
1771		page = __rmqueue(zone, order, migratetype);
1772		spin_unlock(&zone->lock);
1773		if (!page)
1774			goto failed;
1775		__mod_zone_freepage_state(zone, -(1 << order),
1776					  get_freepage_migratetype(page));
1777	}
1778
1779	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1780	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1781	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1782		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1783
1784	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1785	zone_statistics(preferred_zone, zone, gfp_flags);
1786	local_irq_restore(flags);
1787
1788	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1789	return page;
1790
1791failed:
1792	local_irq_restore(flags);
1793	return NULL;
1794}
1795
1796#ifdef CONFIG_FAIL_PAGE_ALLOC
1797
1798static struct {
1799	struct fault_attr attr;
1800
1801	u32 ignore_gfp_highmem;
1802	u32 ignore_gfp_wait;
1803	u32 min_order;
1804} fail_page_alloc = {
1805	.attr = FAULT_ATTR_INITIALIZER,
1806	.ignore_gfp_wait = 1,
1807	.ignore_gfp_highmem = 1,
1808	.min_order = 1,
1809};
1810
1811static int __init setup_fail_page_alloc(char *str)
1812{
1813	return setup_fault_attr(&fail_page_alloc.attr, str);
1814}
1815__setup("fail_page_alloc=", setup_fail_page_alloc);
1816
1817static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1818{
1819	if (order < fail_page_alloc.min_order)
1820		return false;
1821	if (gfp_mask & __GFP_NOFAIL)
1822		return false;
1823	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1824		return false;
1825	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1826		return false;
1827
1828	return should_fail(&fail_page_alloc.attr, 1 << order);
1829}
1830
1831#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1832
1833static int __init fail_page_alloc_debugfs(void)
1834{
1835	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1836	struct dentry *dir;
1837
1838	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1839					&fail_page_alloc.attr);
1840	if (IS_ERR(dir))
1841		return PTR_ERR(dir);
1842
1843	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1844				&fail_page_alloc.ignore_gfp_wait))
1845		goto fail;
1846	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1847				&fail_page_alloc.ignore_gfp_highmem))
1848		goto fail;
1849	if (!debugfs_create_u32("min-order", mode, dir,
1850				&fail_page_alloc.min_order))
1851		goto fail;
1852
1853	return 0;
1854fail:
1855	debugfs_remove_recursive(dir);
1856
1857	return -ENOMEM;
1858}
1859
1860late_initcall(fail_page_alloc_debugfs);
1861
1862#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1863
1864#else /* CONFIG_FAIL_PAGE_ALLOC */
1865
1866static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1867{
1868	return false;
1869}
1870
1871#endif /* CONFIG_FAIL_PAGE_ALLOC */
1872
1873/*
1874 * Return true if free pages are above 'mark'. This takes into account the order
1875 * of the allocation.
1876 */
1877static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1878			unsigned long mark, int classzone_idx, int alloc_flags,
1879			long free_pages)
1880{
1881	/* free_pages may go negative - that's OK */
1882	long min = mark;
1883	int o;
1884	long free_cma = 0;
1885
1886	free_pages -= (1 << order) - 1;
1887	if (alloc_flags & ALLOC_HIGH)
1888		min -= min / 2;
1889	if (alloc_flags & ALLOC_HARDER)
1890		min -= min / 4;
1891#ifdef CONFIG_CMA
1892	/* If allocation can't use CMA areas don't use free CMA pages */
1893	if (!(alloc_flags & ALLOC_CMA))
1894		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1895#endif
1896
1897	if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1898		return false;
1899	for (o = 0; o < order; o++) {
1900		/* At the next order, this order's pages become unavailable */
1901		free_pages -= z->free_area[o].nr_free << o;
1902
1903		/* Require fewer higher order pages to be free */
1904		min >>= 1;
1905
1906		if (free_pages <= min)
1907			return false;
1908	}
1909	return true;
1910}
1911
1912bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1913		      int classzone_idx, int alloc_flags)
1914{
1915	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1916					zone_page_state(z, NR_FREE_PAGES));
1917}
1918
1919bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1920			unsigned long mark, int classzone_idx, int alloc_flags)
1921{
1922	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1923
1924	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1925		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1926
1927	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1928								free_pages);
1929}
1930
1931#ifdef CONFIG_NUMA
1932/*
1933 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1934 * skip over zones that are not allowed by the cpuset, or that have
1935 * been recently (in last second) found to be nearly full.  See further
1936 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1937 * that have to skip over a lot of full or unallowed zones.
1938 *
1939 * If the zonelist cache is present in the passed zonelist, then
1940 * returns a pointer to the allowed node mask (either the current
1941 * tasks mems_allowed, or node_states[N_MEMORY].)
1942 *
1943 * If the zonelist cache is not available for this zonelist, does
1944 * nothing and returns NULL.
1945 *
1946 * If the fullzones BITMAP in the zonelist cache is stale (more than
1947 * a second since last zap'd) then we zap it out (clear its bits.)
1948 *
1949 * We hold off even calling zlc_setup, until after we've checked the
1950 * first zone in the zonelist, on the theory that most allocations will
1951 * be satisfied from that first zone, so best to examine that zone as
1952 * quickly as we can.
1953 */
1954static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1955{
1956	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1957	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1958
1959	zlc = zonelist->zlcache_ptr;
1960	if (!zlc)
1961		return NULL;
1962
1963	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1964		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1965		zlc->last_full_zap = jiffies;
1966	}
1967
1968	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1969					&cpuset_current_mems_allowed :
1970					&node_states[N_MEMORY];
1971	return allowednodes;
1972}
1973
1974/*
1975 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1976 * if it is worth looking at further for free memory:
1977 *  1) Check that the zone isn't thought to be full (doesn't have its
1978 *     bit set in the zonelist_cache fullzones BITMAP).
1979 *  2) Check that the zones node (obtained from the zonelist_cache
1980 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1981 * Return true (non-zero) if zone is worth looking at further, or
1982 * else return false (zero) if it is not.
1983 *
1984 * This check -ignores- the distinction between various watermarks,
1985 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1986 * found to be full for any variation of these watermarks, it will
1987 * be considered full for up to one second by all requests, unless
1988 * we are so low on memory on all allowed nodes that we are forced
1989 * into the second scan of the zonelist.
1990 *
1991 * In the second scan we ignore this zonelist cache and exactly
1992 * apply the watermarks to all zones, even it is slower to do so.
1993 * We are low on memory in the second scan, and should leave no stone
1994 * unturned looking for a free page.
1995 */
1996static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1997						nodemask_t *allowednodes)
1998{
1999	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
2000	int i;				/* index of *z in zonelist zones */
2001	int n;				/* node that zone *z is on */
2002
2003	zlc = zonelist->zlcache_ptr;
2004	if (!zlc)
2005		return 1;
2006
2007	i = z - zonelist->_zonerefs;
2008	n = zlc->z_to_n[i];
2009
2010	/* This zone is worth trying if it is allowed but not full */
2011	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
2012}
2013
2014/*
2015 * Given 'z' scanning a zonelist, set the corresponding bit in
2016 * zlc->fullzones, so that subsequent attempts to allocate a page
2017 * from that zone don't waste time re-examining it.
2018 */
2019static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2020{
2021	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
2022	int i;				/* index of *z in zonelist zones */
2023
2024	zlc = zonelist->zlcache_ptr;
2025	if (!zlc)
2026		return;
2027
2028	i = z - zonelist->_zonerefs;
2029
2030	set_bit(i, zlc->fullzones);
2031}
2032
2033/*
2034 * clear all zones full, called after direct reclaim makes progress so that
2035 * a zone that was recently full is not skipped over for up to a second
2036 */
2037static void zlc_clear_zones_full(struct zonelist *zonelist)
2038{
2039	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
2040
2041	zlc = zonelist->zlcache_ptr;
2042	if (!zlc)
2043		return;
2044
2045	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2046}
2047
2048static bool zone_local(struct zone *local_zone, struct zone *zone)
2049{
2050	return local_zone->node == zone->node;
2051}
2052
2053static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2054{
2055	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2056				RECLAIM_DISTANCE;
2057}
2058
2059#else	/* CONFIG_NUMA */
2060
2061static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2062{
2063	return NULL;
2064}
2065
2066static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2067				nodemask_t *allowednodes)
2068{
2069	return 1;
2070}
2071
2072static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2073{
2074}
2075
2076static void zlc_clear_zones_full(struct zonelist *zonelist)
2077{
2078}
2079
2080static bool zone_local(struct zone *local_zone, struct zone *zone)
2081{
2082	return true;
2083}
2084
2085static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2086{
2087	return true;
2088}
2089
2090#endif	/* CONFIG_NUMA */
2091
2092static void reset_alloc_batches(struct zone *preferred_zone)
2093{
2094	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2095
2096	do {
2097		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2098			high_wmark_pages(zone) - low_wmark_pages(zone) -
2099			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2100		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2101	} while (zone++ != preferred_zone);
2102}
2103
2104/*
2105 * get_page_from_freelist goes through the zonelist trying to allocate
2106 * a page.
2107 */
2108static struct page *
2109get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2110						const struct alloc_context *ac)
2111{
2112	struct zonelist *zonelist = ac->zonelist;
2113	struct zoneref *z;
2114	struct page *page = NULL;
2115	struct zone *zone;
2116	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2117	int zlc_active = 0;		/* set if using zonelist_cache */
2118	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
2119	bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2120				(gfp_mask & __GFP_WRITE);
2121	int nr_fair_skipped = 0;
2122	bool zonelist_rescan;
2123
2124zonelist_scan:
2125	zonelist_rescan = false;
2126
2127	/*
2128	 * Scan zonelist, looking for a zone with enough free.
2129	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2130	 */
2131	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2132								ac->nodemask) {
2133		unsigned long mark;
2134
2135		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2136			!zlc_zone_worth_trying(zonelist, z, allowednodes))
2137				continue;
2138		if (cpusets_enabled() &&
2139			(alloc_flags & ALLOC_CPUSET) &&
2140			!cpuset_zone_allowed(zone, gfp_mask))
2141				continue;
2142		/*
2143		 * Distribute pages in proportion to the individual
2144		 * zone size to ensure fair page aging.  The zone a
2145		 * page was allocated in should have no effect on the
2146		 * time the page has in memory before being reclaimed.
2147		 */
2148		if (alloc_flags & ALLOC_FAIR) {
2149			if (!zone_local(ac->preferred_zone, zone))
2150				break;
2151			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2152				nr_fair_skipped++;
2153				continue;
2154			}
2155		}
2156		/*
2157		 * When allocating a page cache page for writing, we
2158		 * want to get it from a zone that is within its dirty
2159		 * limit, such that no single zone holds more than its
2160		 * proportional share of globally allowed dirty pages.
2161		 * The dirty limits take into account the zone's
2162		 * lowmem reserves and high watermark so that kswapd
2163		 * should be able to balance it without having to
2164		 * write pages from its LRU list.
2165		 *
2166		 * This may look like it could increase pressure on
2167		 * lower zones by failing allocations in higher zones
2168		 * before they are full.  But the pages that do spill
2169		 * over are limited as the lower zones are protected
2170		 * by this very same mechanism.  It should not become
2171		 * a practical burden to them.
2172		 *
2173		 * XXX: For now, allow allocations to potentially
2174		 * exceed the per-zone dirty limit in the slowpath
2175		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2176		 * which is important when on a NUMA setup the allowed
2177		 * zones are together not big enough to reach the
2178		 * global limit.  The proper fix for these situations
2179		 * will require awareness of zones in the
2180		 * dirty-throttling and the flusher threads.
2181		 */
2182		if (consider_zone_dirty && !zone_dirty_ok(zone))
2183			continue;
2184
2185		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2186		if (!zone_watermark_ok(zone, order, mark,
2187				       ac->classzone_idx, alloc_flags)) {
2188			int ret;
2189
2190			/* Checked here to keep the fast path fast */
2191			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2192			if (alloc_flags & ALLOC_NO_WATERMARKS)
2193				goto try_this_zone;
2194
2195			if (IS_ENABLED(CONFIG_NUMA) &&
2196					!did_zlc_setup && nr_online_nodes > 1) {
2197				/*
2198				 * we do zlc_setup if there are multiple nodes
2199				 * and before considering the first zone allowed
2200				 * by the cpuset.
2201				 */
2202				allowednodes = zlc_setup(zonelist, alloc_flags);
2203				zlc_active = 1;
2204				did_zlc_setup = 1;
2205			}
2206
2207			if (zone_reclaim_mode == 0 ||
2208			    !zone_allows_reclaim(ac->preferred_zone, zone))
2209				goto this_zone_full;
2210
2211			/*
2212			 * As we may have just activated ZLC, check if the first
2213			 * eligible zone has failed zone_reclaim recently.
2214			 */
2215			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2216				!zlc_zone_worth_trying(zonelist, z, allowednodes))
2217				continue;
2218
2219			ret = zone_reclaim(zone, gfp_mask, order);
2220			switch (ret) {
2221			case ZONE_RECLAIM_NOSCAN:
2222				/* did not scan */
2223				continue;
2224			case ZONE_RECLAIM_FULL:
2225				/* scanned but unreclaimable */
2226				continue;
2227			default:
2228				/* did we reclaim enough */
2229				if (zone_watermark_ok(zone, order, mark,
2230						ac->classzone_idx, alloc_flags))
2231					goto try_this_zone;
2232
2233				/*
2234				 * Failed to reclaim enough to meet watermark.
2235				 * Only mark the zone full if checking the min
2236				 * watermark or if we failed to reclaim just
2237				 * 1<<order pages or else the page allocator
2238				 * fastpath will prematurely mark zones full
2239				 * when the watermark is between the low and
2240				 * min watermarks.
2241				 */
2242				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2243				    ret == ZONE_RECLAIM_SOME)
2244					goto this_zone_full;
2245
2246				continue;
2247			}
2248		}
2249
2250try_this_zone:
2251		page = buffered_rmqueue(ac->preferred_zone, zone, order,
2252						gfp_mask, ac->migratetype);
2253		if (page) {
2254			if (prep_new_page(page, order, gfp_mask, alloc_flags))
2255				goto try_this_zone;
2256			return page;
2257		}
2258this_zone_full:
2259		if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2260			zlc_mark_zone_full(zonelist, z);
2261	}
2262
2263	/*
2264	 * The first pass makes sure allocations are spread fairly within the
2265	 * local node.  However, the local node might have free pages left
2266	 * after the fairness batches are exhausted, and remote zones haven't
2267	 * even been considered yet.  Try once more without fairness, and
2268	 * include remote zones now, before entering the slowpath and waking
2269	 * kswapd: prefer spilling to a remote zone over swapping locally.
2270	 */
2271	if (alloc_flags & ALLOC_FAIR) {
2272		alloc_flags &= ~ALLOC_FAIR;
2273		if (nr_fair_skipped) {
2274			zonelist_rescan = true;
2275			reset_alloc_batches(ac->preferred_zone);
2276		}
2277		if (nr_online_nodes > 1)
2278			zonelist_rescan = true;
2279	}
2280
2281	if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2282		/* Disable zlc cache for second zonelist scan */
2283		zlc_active = 0;
2284		zonelist_rescan = true;
2285	}
2286
2287	if (zonelist_rescan)
2288		goto zonelist_scan;
2289
2290	return NULL;
2291}
2292
2293/*
2294 * Large machines with many possible nodes should not always dump per-node
2295 * meminfo in irq context.
2296 */
2297static inline bool should_suppress_show_mem(void)
2298{
2299	bool ret = false;
2300
2301#if NODES_SHIFT > 8
2302	ret = in_interrupt();
2303#endif
2304	return ret;
2305}
2306
2307static DEFINE_RATELIMIT_STATE(nopage_rs,
2308		DEFAULT_RATELIMIT_INTERVAL,
2309		DEFAULT_RATELIMIT_BURST);
2310
2311void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2312{
2313	unsigned int filter = SHOW_MEM_FILTER_NODES;
2314
2315	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2316	    debug_guardpage_minorder() > 0)
2317		return;
2318
2319	/*
2320	 * This documents exceptions given to allocations in certain
2321	 * contexts that are allowed to allocate outside current's set
2322	 * of allowed nodes.
2323	 */
2324	if (!(gfp_mask & __GFP_NOMEMALLOC))
2325		if (test_thread_flag(TIF_MEMDIE) ||
2326		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2327			filter &= ~SHOW_MEM_FILTER_NODES;
2328	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2329		filter &= ~SHOW_MEM_FILTER_NODES;
2330
2331	if (fmt) {
2332		struct va_format vaf;
2333		va_list args;
2334
2335		va_start(args, fmt);
2336
2337		vaf.fmt = fmt;
2338		vaf.va = &args;
2339
2340		pr_warn("%pV", &vaf);
2341
2342		va_end(args);
2343	}
2344
2345	pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
2346		current->comm, order, gfp_mask);
2347
2348	dump_stack();
2349	if (!should_suppress_show_mem())
2350		show_mem(filter);
2351}
2352
2353static inline int
2354should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2355				unsigned long did_some_progress,
2356				unsigned long pages_reclaimed)
2357{
2358	/* Do not loop if specifically requested */
2359	if (gfp_mask & __GFP_NORETRY)
2360		return 0;
2361
2362	/* Always retry if specifically requested */
2363	if (gfp_mask & __GFP_NOFAIL)
2364		return 1;
2365
2366	/*
2367	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2368	 * making forward progress without invoking OOM. Suspend also disables
2369	 * storage devices so kswapd will not help. Bail if we are suspending.
2370	 */
2371	if (!did_some_progress && pm_suspended_storage())
2372		return 0;
2373
2374	/*
2375	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2376	 * means __GFP_NOFAIL, but that may not be true in other
2377	 * implementations.
2378	 */
2379	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2380		return 1;
2381
2382	/*
2383	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2384	 * specified, then we retry until we no longer reclaim any pages
2385	 * (above), or we've reclaimed an order of pages at least as
2386	 * large as the allocation's order. In both cases, if the
2387	 * allocation still fails, we stop retrying.
2388	 */
2389	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2390		return 1;
2391
2392	return 0;
2393}
2394
2395static inline struct page *
2396__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2397	const struct alloc_context *ac, unsigned long *did_some_progress)
2398{
2399	struct page *page;
2400
2401	*did_some_progress = 0;
2402
2403	/*
2404	 * Acquire the per-zone oom lock for each zone.  If that
2405	 * fails, somebody else is making progress for us.
2406	 */
2407	if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) {
2408		*did_some_progress = 1;
2409		schedule_timeout_uninterruptible(1);
2410		return NULL;
2411	}
2412
2413	/*
2414	 * Go through the zonelist yet one more time, keep very high watermark
2415	 * here, this is only to catch a parallel oom killing, we must fail if
2416	 * we're still under heavy pressure.
2417	 */
2418	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2419					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2420	if (page)
2421		goto out;
2422
2423	if (!(gfp_mask & __GFP_NOFAIL)) {
2424		/* Coredumps can quickly deplete all memory reserves */
2425		if (current->flags & PF_DUMPCORE)
2426			goto out;
2427		/* The OOM killer will not help higher order allocs */
2428		if (order > PAGE_ALLOC_COSTLY_ORDER)
2429			goto out;
2430		/* The OOM killer does not needlessly kill tasks for lowmem */
2431		if (ac->high_zoneidx < ZONE_NORMAL)
2432			goto out;
2433		/* The OOM killer does not compensate for light reclaim */
2434		if (!(gfp_mask & __GFP_FS)) {
2435			/*
2436			 * XXX: Page reclaim didn't yield anything,
2437			 * and the OOM killer can't be invoked, but
2438			 * keep looping as per should_alloc_retry().
2439			 */
2440			*did_some_progress = 1;
2441			goto out;
2442		}
2443		/* The OOM killer may not free memory on a specific node */
2444		if (gfp_mask & __GFP_THISNODE)
2445			goto out;
2446	}
2447	/* Exhausted what can be done so it's blamo time */
2448	if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2449			|| WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2450		*did_some_progress = 1;
2451out:
2452	oom_zonelist_unlock(ac->zonelist, gfp_mask);
2453	return page;
2454}
2455
2456#ifdef CONFIG_COMPACTION
2457/* Try memory compaction for high-order allocations before reclaim */
2458static struct page *
2459__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2460		int alloc_flags, const struct alloc_context *ac,
2461		enum migrate_mode mode, int *contended_compaction,
2462		bool *deferred_compaction)
2463{
2464	unsigned long compact_result;
2465	struct page *page;
2466
2467	if (!order)
2468		return NULL;
2469
2470	current->flags |= PF_MEMALLOC;
2471	compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2472						mode, contended_compaction);
2473	current->flags &= ~PF_MEMALLOC;
2474
2475	switch (compact_result) {
2476	case COMPACT_DEFERRED:
2477		*deferred_compaction = true;
2478		/* fall-through */
2479	case COMPACT_SKIPPED:
2480		return NULL;
2481	default:
2482		break;
2483	}
2484
2485	/*
2486	 * At least in one zone compaction wasn't deferred or skipped, so let's
2487	 * count a compaction stall
2488	 */
2489	count_vm_event(COMPACTSTALL);
2490
2491	page = get_page_from_freelist(gfp_mask, order,
2492					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2493
2494	if (page) {
2495		struct zone *zone = page_zone(page);
2496
2497		zone->compact_blockskip_flush = false;
2498		compaction_defer_reset(zone, order, true);
2499		count_vm_event(COMPACTSUCCESS);
2500		return page;
2501	}
2502
2503	/*
2504	 * It's bad if compaction run occurs and fails. The most likely reason
2505	 * is that pages exist, but not enough to satisfy watermarks.
2506	 */
2507	count_vm_event(COMPACTFAIL);
2508
2509	cond_resched();
2510
2511	return NULL;
2512}
2513#else
2514static inline struct page *
2515__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2516		int alloc_flags, const struct alloc_context *ac,
2517		enum migrate_mode mode, int *contended_compaction,
2518		bool *deferred_compaction)
2519{
2520	return NULL;
2521}
2522#endif /* CONFIG_COMPACTION */
2523
2524/* Perform direct synchronous page reclaim */
2525static int
2526__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2527					const struct alloc_context *ac)
2528{
2529	struct reclaim_state reclaim_state;
2530	int progress;
2531
2532	cond_resched();
2533
2534	/* We now go into synchronous reclaim */
2535	cpuset_memory_pressure_bump();
2536	current->flags |= PF_MEMALLOC;
2537	lockdep_set_current_reclaim_state(gfp_mask);
2538	reclaim_state.reclaimed_slab = 0;
2539	current->reclaim_state = &reclaim_state;
2540
2541	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2542								ac->nodemask);
2543
2544	current->reclaim_state = NULL;
2545	lockdep_clear_current_reclaim_state();
2546	current->flags &= ~PF_MEMALLOC;
2547
2548	cond_resched();
2549
2550	return progress;
2551}
2552
2553/* The really slow allocator path where we enter direct reclaim */
2554static inline struct page *
2555__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2556		int alloc_flags, const struct alloc_context *ac,
2557		unsigned long *did_some_progress)
2558{
2559	struct page *page = NULL;
2560	bool drained = false;
2561
2562	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2563	if (unlikely(!(*did_some_progress)))
2564		return NULL;
2565
2566	/* After successful reclaim, reconsider all zones for allocation */
2567	if (IS_ENABLED(CONFIG_NUMA))
2568		zlc_clear_zones_full(ac->zonelist);
2569
2570retry:
2571	page = get_page_from_freelist(gfp_mask, order,
2572					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2573
2574	/*
2575	 * If an allocation failed after direct reclaim, it could be because
2576	 * pages are pinned on the per-cpu lists. Drain them and try again
2577	 */
2578	if (!page && !drained) {
2579		drain_all_pages(NULL);
2580		drained = true;
2581		goto retry;
2582	}
2583
2584	return page;
2585}
2586
2587/*
2588 * This is called in the allocator slow-path if the allocation request is of
2589 * sufficient urgency to ignore watermarks and take other desperate measures
2590 */
2591static inline struct page *
2592__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2593				const struct alloc_context *ac)
2594{
2595	struct page *page;
2596
2597	do {
2598		page = get_page_from_freelist(gfp_mask, order,
2599						ALLOC_NO_WATERMARKS, ac);
2600
2601		if (!page && gfp_mask & __GFP_NOFAIL)
2602			wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2603									HZ/50);
2604	} while (!page && (gfp_mask & __GFP_NOFAIL));
2605
2606	return page;
2607}
2608
2609static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2610{
2611	struct zoneref *z;
2612	struct zone *zone;
2613
2614	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2615						ac->high_zoneidx, ac->nodemask)
2616		wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2617}
2618
2619static inline int
2620gfp_to_alloc_flags(gfp_t gfp_mask)
2621{
2622	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2623	const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2624
2625	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2626	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2627
2628	/*
2629	 * The caller may dip into page reserves a bit more if the caller
2630	 * cannot run direct reclaim, or if the caller has realtime scheduling
2631	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2632	 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2633	 */
2634	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2635
2636	if (atomic) {
2637		/*
2638		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2639		 * if it can't schedule.
2640		 */
2641		if (!(gfp_mask & __GFP_NOMEMALLOC))
2642			alloc_flags |= ALLOC_HARDER;
2643		/*
2644		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2645		 * comment for __cpuset_node_allowed().
2646		 */
2647		alloc_flags &= ~ALLOC_CPUSET;
2648	} else if (unlikely(rt_task(current)) && !in_interrupt())
2649		alloc_flags |= ALLOC_HARDER;
2650
2651	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2652		if (gfp_mask & __GFP_MEMALLOC)
2653			alloc_flags |= ALLOC_NO_WATERMARKS;
2654		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2655			alloc_flags |= ALLOC_NO_WATERMARKS;
2656		else if (!in_interrupt() &&
2657				((current->flags & PF_MEMALLOC) ||
2658				 unlikely(test_thread_flag(TIF_MEMDIE))))
2659			alloc_flags |= ALLOC_NO_WATERMARKS;
2660	}
2661#ifdef CONFIG_CMA
2662	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2663		alloc_flags |= ALLOC_CMA;
2664#endif
2665	return alloc_flags;
2666}
2667
2668bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2669{
2670	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2671}
2672
2673static inline struct page *
2674__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2675						struct alloc_context *ac)
2676{
2677	const gfp_t wait = gfp_mask & __GFP_WAIT;
2678	struct page *page = NULL;
2679	int alloc_flags;
2680	unsigned long pages_reclaimed = 0;
2681	unsigned long did_some_progress;
2682	enum migrate_mode migration_mode = MIGRATE_ASYNC;
2683	bool deferred_compaction = false;
2684	int contended_compaction = COMPACT_CONTENDED_NONE;
2685
2686	/*
2687	 * In the slowpath, we sanity check order to avoid ever trying to
2688	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2689	 * be using allocators in order of preference for an area that is
2690	 * too large.
2691	 */
2692	if (order >= MAX_ORDER) {
2693		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2694		return NULL;
2695	}
2696
2697	/*
2698	 * If this allocation cannot block and it is for a specific node, then
2699	 * fail early.  There's no need to wakeup kswapd or retry for a
2700	 * speculative node-specific allocation.
2701	 */
2702	if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
2703		goto nopage;
2704
2705retry:
2706	if (!(gfp_mask & __GFP_NO_KSWAPD))
2707		wake_all_kswapds(order, ac);
2708
2709	/*
2710	 * OK, we're below the kswapd watermark and have kicked background
2711	 * reclaim. Now things get more complex, so set up alloc_flags according
2712	 * to how we want to proceed.
2713	 */
2714	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2715
2716	/*
2717	 * Find the true preferred zone if the allocation is unconstrained by
2718	 * cpusets.
2719	 */
2720	if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
2721		struct zoneref *preferred_zoneref;
2722		preferred_zoneref = first_zones_zonelist(ac->zonelist,
2723				ac->high_zoneidx, NULL, &ac->preferred_zone);
2724		ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
2725	}
2726
2727	/* This is the last chance, in general, before the goto nopage. */
2728	page = get_page_from_freelist(gfp_mask, order,
2729				alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2730	if (page)
2731		goto got_pg;
2732
2733	/* Allocate without watermarks if the context allows */
2734	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2735		/*
2736		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2737		 * the allocation is high priority and these type of
2738		 * allocations are system rather than user orientated
2739		 */
2740		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2741
2742		page = __alloc_pages_high_priority(gfp_mask, order, ac);
2743
2744		if (page) {
2745			goto got_pg;
2746		}
2747	}
2748
2749	/* Atomic allocations - we can't balance anything */
2750	if (!wait) {
2751		/*
2752		 * All existing users of the deprecated __GFP_NOFAIL are
2753		 * blockable, so warn of any new users that actually allow this
2754		 * type of allocation to fail.
2755		 */
2756		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2757		goto nopage;
2758	}
2759
2760	/* Avoid recursion of direct reclaim */
2761	if (current->flags & PF_MEMALLOC)
2762		goto nopage;
2763
2764	/* Avoid allocations with no watermarks from looping endlessly */
2765	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2766		goto nopage;
2767
2768	/*
2769	 * Try direct compaction. The first pass is asynchronous. Subsequent
2770	 * attempts after direct reclaim are synchronous
2771	 */
2772	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2773					migration_mode,
2774					&contended_compaction,
2775					&deferred_compaction);
2776	if (page)
2777		goto got_pg;
2778
2779	/* Checks for THP-specific high-order allocations */
2780	if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2781		/*
2782		 * If compaction is deferred for high-order allocations, it is
2783		 * because sync compaction recently failed. If this is the case
2784		 * and the caller requested a THP allocation, we do not want
2785		 * to heavily disrupt the system, so we fail the allocation
2786		 * instead of entering direct reclaim.
2787		 */
2788		if (deferred_compaction)
2789			goto nopage;
2790
2791		/*
2792		 * In all zones where compaction was attempted (and not
2793		 * deferred or skipped), lock contention has been detected.
2794		 * For THP allocation we do not want to disrupt the others
2795		 * so we fallback to base pages instead.
2796		 */
2797		if (contended_compaction == COMPACT_CONTENDED_LOCK)
2798			goto nopage;
2799
2800		/*
2801		 * If compaction was aborted due to need_resched(), we do not
2802		 * want to further increase allocation latency, unless it is
2803		 * khugepaged trying to collapse.
2804		 */
2805		if (contended_compaction == COMPACT_CONTENDED_SCHED
2806			&& !(current->flags & PF_KTHREAD))
2807			goto nopage;
2808	}
2809
2810	/*
2811	 * It can become very expensive to allocate transparent hugepages at
2812	 * fault, so use asynchronous memory compaction for THP unless it is
2813	 * khugepaged trying to collapse.
2814	 */
2815	if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2816						(current->flags & PF_KTHREAD))
2817		migration_mode = MIGRATE_SYNC_LIGHT;
2818
2819	/* Try direct reclaim and then allocating */
2820	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2821							&did_some_progress);
2822	if (page)
2823		goto got_pg;
2824
2825	/* Check if we should retry the allocation */
2826	pages_reclaimed += did_some_progress;
2827	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2828						pages_reclaimed)) {
2829		/*
2830		 * If we fail to make progress by freeing individual
2831		 * pages, but the allocation wants us to keep going,
2832		 * start OOM killing tasks.
2833		 */
2834		if (!did_some_progress) {
2835			page = __alloc_pages_may_oom(gfp_mask, order, ac,
2836							&did_some_progress);
2837			if (page)
2838				goto got_pg;
2839			if (!did_some_progress)
2840				goto nopage;
2841		}
2842		/* Wait for some write requests to complete then retry */
2843		wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
2844		goto retry;
2845	} else {
2846		/*
2847		 * High-order allocations do not necessarily loop after
2848		 * direct reclaim and reclaim/compaction depends on compaction
2849		 * being called after reclaim so call directly if necessary
2850		 */
2851		page = __alloc_pages_direct_compact(gfp_mask, order,
2852					alloc_flags, ac, migration_mode,
2853					&contended_compaction,
2854					&deferred_compaction);
2855		if (page)
2856			goto got_pg;
2857	}
2858
2859nopage:
2860	warn_alloc_failed(gfp_mask, order, NULL);
2861got_pg:
2862	return page;
2863}
2864
2865/*
2866 * This is the 'heart' of the zoned buddy allocator.
2867 */
2868struct page *
2869__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2870			struct zonelist *zonelist, nodemask_t *nodemask)
2871{
2872	struct zoneref *preferred_zoneref;
2873	struct page *page = NULL;
2874	unsigned int cpuset_mems_cookie;
2875	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2876	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
2877	struct alloc_context ac = {
2878		.high_zoneidx = gfp_zone(gfp_mask),
2879		.nodemask = nodemask,
2880		.migratetype = gfpflags_to_migratetype(gfp_mask),
2881	};
2882
2883	gfp_mask &= gfp_allowed_mask;
2884
2885	lockdep_trace_alloc(gfp_mask);
2886
2887	might_sleep_if(gfp_mask & __GFP_WAIT);
2888
2889	if (should_fail_alloc_page(gfp_mask, order))
2890		return NULL;
2891
2892	/*
2893	 * Check the zones suitable for the gfp_mask contain at least one
2894	 * valid zone. It's possible to have an empty zonelist as a result
2895	 * of __GFP_THISNODE and a memoryless node
2896	 */
2897	if (unlikely(!zonelist->_zonerefs->zone))
2898		return NULL;
2899
2900	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
2901		alloc_flags |= ALLOC_CMA;
2902
2903retry_cpuset:
2904	cpuset_mems_cookie = read_mems_allowed_begin();
2905
2906	/* We set it here, as __alloc_pages_slowpath might have changed it */
2907	ac.zonelist = zonelist;
2908	/* The preferred zone is used for statistics later */
2909	preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2910				ac.nodemask ? : &cpuset_current_mems_allowed,
2911				&ac.preferred_zone);
2912	if (!ac.preferred_zone)
2913		goto out;
2914	ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
2915
2916	/* First allocation attempt */
2917	alloc_mask = gfp_mask|__GFP_HARDWALL;
2918	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
2919	if (unlikely(!page)) {
2920		/*
2921		 * Runtime PM, block IO and its error handling path
2922		 * can deadlock because I/O on the device might not
2923		 * complete.
2924		 */
2925		alloc_mask = memalloc_noio_flags(gfp_mask);
2926
2927		page = __alloc_pages_slowpath(alloc_mask, order, &ac);
2928	}
2929
2930	if (kmemcheck_enabled && page)
2931		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2932
2933	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
2934
2935out:
2936	/*
2937	 * When updating a task's mems_allowed, it is possible to race with
2938	 * parallel threads in such a way that an allocation can fail while
2939	 * the mask is being updated. If a page allocation is about to fail,
2940	 * check if the cpuset changed during allocation and if so, retry.
2941	 */
2942	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2943		goto retry_cpuset;
2944
2945	return page;
2946}
2947EXPORT_SYMBOL(__alloc_pages_nodemask);
2948
2949/*
2950 * Common helper functions.
2951 */
2952unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2953{
2954	struct page *page;
2955
2956	/*
2957	 * __get_free_pages() returns a 32-bit address, which cannot represent
2958	 * a highmem page
2959	 */
2960	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2961
2962	page = alloc_pages(gfp_mask, order);
2963	if (!page)
2964		return 0;
2965	return (unsigned long) page_address(page);
2966}
2967EXPORT_SYMBOL(__get_free_pages);
2968
2969unsigned long get_zeroed_page(gfp_t gfp_mask)
2970{
2971	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2972}
2973EXPORT_SYMBOL(get_zeroed_page);
2974
2975void __free_pages(struct page *page, unsigned int order)
2976{
2977	if (put_page_testzero(page)) {
2978		if (order == 0)
2979			free_hot_cold_page(page, false);
2980		else
2981			__free_pages_ok(page, order);
2982	}
2983}
2984
2985EXPORT_SYMBOL(__free_pages);
2986
2987void free_pages(unsigned long addr, unsigned int order)
2988{
2989	if (addr != 0) {
2990		VM_BUG_ON(!virt_addr_valid((void *)addr));
2991		__free_pages(virt_to_page((void *)addr), order);
2992	}
2993}
2994
2995EXPORT_SYMBOL(free_pages);
2996
2997/*
2998 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2999 * of the current memory cgroup.
3000 *
3001 * It should be used when the caller would like to use kmalloc, but since the
3002 * allocation is large, it has to fall back to the page allocator.
3003 */
3004struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3005{
3006	struct page *page;
3007	struct mem_cgroup *memcg = NULL;
3008
3009	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3010		return NULL;
3011	page = alloc_pages(gfp_mask, order);
3012	memcg_kmem_commit_charge(page, memcg, order);
3013	return page;
3014}
3015
3016struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3017{
3018	struct page *page;
3019	struct mem_cgroup *memcg = NULL;
3020
3021	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3022		return NULL;
3023	page = alloc_pages_node(nid, gfp_mask, order);
3024	memcg_kmem_commit_charge(page, memcg, order);
3025	return page;
3026}
3027
3028/*
3029 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3030 * alloc_kmem_pages.
3031 */
3032void __free_kmem_pages(struct page *page, unsigned int order)
3033{
3034	memcg_kmem_uncharge_pages(page, order);
3035	__free_pages(page, order);
3036}
3037
3038void free_kmem_pages(unsigned long addr, unsigned int order)
3039{
3040	if (addr != 0) {
3041		VM_BUG_ON(!virt_addr_valid((void *)addr));
3042		__free_kmem_pages(virt_to_page((void *)addr), order);
3043	}
3044}
3045
3046static void *make_alloc_exact(unsigned long addr, unsigned int order,
3047		size_t size)
3048{
3049	if (addr) {
3050		unsigned long alloc_end = addr + (PAGE_SIZE << order);
3051		unsigned long used = addr + PAGE_ALIGN(size);
3052
3053		split_page(virt_to_page((void *)addr), order);
3054		while (used < alloc_end) {
3055			free_page(used);
3056			used += PAGE_SIZE;
3057		}
3058	}
3059	return (void *)addr;
3060}
3061
3062/**
3063 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3064 * @size: the number of bytes to allocate
3065 * @gfp_mask: GFP flags for the allocation
3066 *
3067 * This function is similar to alloc_pages(), except that it allocates the
3068 * minimum number of pages to satisfy the request.  alloc_pages() can only
3069 * allocate memory in power-of-two pages.
3070 *
3071 * This function is also limited by MAX_ORDER.
3072 *
3073 * Memory allocated by this function must be released by free_pages_exact().
3074 */
3075void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3076{
3077	unsigned int order = get_order(size);
3078	unsigned long addr;
3079
3080	addr = __get_free_pages(gfp_mask, order);
3081	return make_alloc_exact(addr, order, size);
3082}
3083EXPORT_SYMBOL(alloc_pages_exact);
3084
3085/**
3086 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3087 *			   pages on a node.
3088 * @nid: the preferred node ID where memory should be allocated
3089 * @size: the number of bytes to allocate
3090 * @gfp_mask: GFP flags for the allocation
3091 *
3092 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3093 * back.
3094 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3095 * but is not exact.
3096 */
3097void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3098{
3099	unsigned int order = get_order(size);
3100	struct page *p = alloc_pages_node(nid, gfp_mask, order);
3101	if (!p)
3102		return NULL;
3103	return make_alloc_exact((unsigned long)page_address(p), order, size);
3104}
3105
3106/**
3107 * free_pages_exact - release memory allocated via alloc_pages_exact()
3108 * @virt: the value returned by alloc_pages_exact.
3109 * @size: size of allocation, same value as passed to alloc_pages_exact().
3110 *
3111 * Release the memory allocated by a previous call to alloc_pages_exact.
3112 */
3113void free_pages_exact(void *virt, size_t size)
3114{
3115	unsigned long addr = (unsigned long)virt;
3116	unsigned long end = addr + PAGE_ALIGN(size);
3117
3118	while (addr < end) {
3119		free_page(addr);
3120		addr += PAGE_SIZE;
3121	}
3122}
3123EXPORT_SYMBOL(free_pages_exact);
3124
3125/**
3126 * nr_free_zone_pages - count number of pages beyond high watermark
3127 * @offset: The zone index of the highest zone
3128 *
3129 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3130 * high watermark within all zones at or below a given zone index.  For each
3131 * zone, the number of pages is calculated as:
3132 *     managed_pages - high_pages
3133 */
3134static unsigned long nr_free_zone_pages(int offset)
3135{
3136	struct zoneref *z;
3137	struct zone *zone;
3138
3139	/* Just pick one node, since fallback list is circular */
3140	unsigned long sum = 0;
3141
3142	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3143
3144	for_each_zone_zonelist(zone, z, zonelist, offset) {
3145		unsigned long size = zone->managed_pages;
3146		unsigned long high = high_wmark_pages(zone);
3147		if (size > high)
3148			sum += size - high;
3149	}
3150
3151	return sum;
3152}
3153
3154/**
3155 * nr_free_buffer_pages - count number of pages beyond high watermark
3156 *
3157 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3158 * watermark within ZONE_DMA and ZONE_NORMAL.
3159 */
3160unsigned long nr_free_buffer_pages(void)
3161{
3162	return nr_free_zone_pages(gfp_zone(GFP_USER));
3163}
3164EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3165
3166/**
3167 * nr_free_pagecache_pages - count number of pages beyond high watermark
3168 *
3169 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3170 * high watermark within all zones.
3171 */
3172unsigned long nr_free_pagecache_pages(void)
3173{
3174	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3175}
3176
3177static inline void show_node(struct zone *zone)
3178{
3179	if (IS_ENABLED(CONFIG_NUMA))
3180		printk("Node %d ", zone_to_nid(zone));
3181}
3182
3183void si_meminfo(struct sysinfo *val)
3184{
3185	val->totalram = totalram_pages;
3186	val->sharedram = global_page_state(NR_SHMEM);
3187	val->freeram = global_page_state(NR_FREE_PAGES);
3188	val->bufferram = nr_blockdev_pages();
3189	val->totalhigh = totalhigh_pages;
3190	val->freehigh = nr_free_highpages();
3191	val->mem_unit = PAGE_SIZE;
3192}
3193
3194EXPORT_SYMBOL(si_meminfo);
3195
3196#ifdef CONFIG_NUMA
3197void si_meminfo_node(struct sysinfo *val, int nid)
3198{
3199	int zone_type;		/* needs to be signed */
3200	unsigned long managed_pages = 0;
3201	pg_data_t *pgdat = NODE_DATA(nid);
3202
3203	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3204		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3205	val->totalram = managed_pages;
3206	val->sharedram = node_page_state(nid, NR_SHMEM);
3207	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3208#ifdef CONFIG_HIGHMEM
3209	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3210	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3211			NR_FREE_PAGES);
3212#else
3213	val->totalhigh = 0;
3214	val->freehigh = 0;
3215#endif
3216	val->mem_unit = PAGE_SIZE;
3217}
3218#endif
3219
3220/*
3221 * Determine whether the node should be displayed or not, depending on whether
3222 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3223 */
3224bool skip_free_areas_node(unsigned int flags, int nid)
3225{
3226	bool ret = false;
3227	unsigned int cpuset_mems_cookie;
3228
3229	if (!(flags & SHOW_MEM_FILTER_NODES))
3230		goto out;
3231
3232	do {
3233		cpuset_mems_cookie = read_mems_allowed_begin();
3234		ret = !node_isset(nid, cpuset_current_mems_allowed);
3235	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3236out:
3237	return ret;
3238}
3239
3240#define K(x) ((x) << (PAGE_SHIFT-10))
3241
3242static void show_migration_types(unsigned char type)
3243{
3244	static const char types[MIGRATE_TYPES] = {
3245		[MIGRATE_UNMOVABLE]	= 'U',
3246		[MIGRATE_RECLAIMABLE]	= 'E',
3247		[MIGRATE_MOVABLE]	= 'M',
3248		[MIGRATE_RESERVE]	= 'R',
3249#ifdef CONFIG_CMA
3250		[MIGRATE_CMA]		= 'C',
3251#endif
3252#ifdef CONFIG_MEMORY_ISOLATION
3253		[MIGRATE_ISOLATE]	= 'I',
3254#endif
3255	};
3256	char tmp[MIGRATE_TYPES + 1];
3257	char *p = tmp;
3258	int i;
3259
3260	for (i = 0; i < MIGRATE_TYPES; i++) {
3261		if (type & (1 << i))
3262			*p++ = types[i];
3263	}
3264
3265	*p = '\0';
3266	printk("(%s) ", tmp);
3267}
3268
3269/*
3270 * Show free area list (used inside shift_scroll-lock stuff)
3271 * We also calculate the percentage fragmentation. We do this by counting the
3272 * memory on each free list with the exception of the first item on the list.
3273 *
3274 * Bits in @filter:
3275 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3276 *   cpuset.
3277 */
3278void show_free_areas(unsigned int filter)
3279{
3280	unsigned long free_pcp = 0;
3281	int cpu;
3282	struct zone *zone;
3283
3284	for_each_populated_zone(zone) {
3285		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3286			continue;
3287
3288		for_each_online_cpu(cpu)
3289			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3290	}
3291
3292	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3293		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3294		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3295		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3296		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3297		" free:%lu free_pcp:%lu free_cma:%lu\n",
3298		global_page_state(NR_ACTIVE_ANON),
3299		global_page_state(NR_INACTIVE_ANON),
3300		global_page_state(NR_ISOLATED_ANON),
3301		global_page_state(NR_ACTIVE_FILE),
3302		global_page_state(NR_INACTIVE_FILE),
3303		global_page_state(NR_ISOLATED_FILE),
3304		global_page_state(NR_UNEVICTABLE),
3305		global_page_state(NR_FILE_DIRTY),
3306		global_page_state(NR_WRITEBACK),
3307		global_page_state(NR_UNSTABLE_NFS),
3308		global_page_state(NR_SLAB_RECLAIMABLE),
3309		global_page_state(NR_SLAB_UNRECLAIMABLE),
3310		global_page_state(NR_FILE_MAPPED),
3311		global_page_state(NR_SHMEM),
3312		global_page_state(NR_PAGETABLE),
3313		global_page_state(NR_BOUNCE),
3314		global_page_state(NR_FREE_PAGES),
3315		free_pcp,
3316		global_page_state(NR_FREE_CMA_PAGES));
3317
3318	for_each_populated_zone(zone) {
3319		int i;
3320
3321		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3322			continue;
3323
3324		free_pcp = 0;
3325		for_each_online_cpu(cpu)
3326			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3327
3328		show_node(zone);
3329		printk("%s"
3330			" free:%lukB"
3331			" min:%lukB"
3332			" low:%lukB"
3333			" high:%lukB"
3334			" active_anon:%lukB"
3335			" inactive_anon:%lukB"
3336			" active_file:%lukB"
3337			" inactive_file:%lukB"
3338			" unevictable:%lukB"
3339			" isolated(anon):%lukB"
3340			" isolated(file):%lukB"
3341			" present:%lukB"
3342			" managed:%lukB"
3343			" mlocked:%lukB"
3344			" dirty:%lukB"
3345			" writeback:%lukB"
3346			" mapped:%lukB"
3347			" shmem:%lukB"
3348			" slab_reclaimable:%lukB"
3349			" slab_unreclaimable:%lukB"
3350			" kernel_stack:%lukB"
3351			" pagetables:%lukB"
3352			" unstable:%lukB"
3353			" bounce:%lukB"
3354			" free_pcp:%lukB"
3355			" local_pcp:%ukB"
3356			" free_cma:%lukB"
3357			" writeback_tmp:%lukB"
3358			" pages_scanned:%lu"
3359			" all_unreclaimable? %s"
3360			"\n",
3361			zone->name,
3362			K(zone_page_state(zone, NR_FREE_PAGES)),
3363			K(min_wmark_pages(zone)),
3364			K(low_wmark_pages(zone)),
3365			K(high_wmark_pages(zone)),
3366			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3367			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3368			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3369			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3370			K(zone_page_state(zone, NR_UNEVICTABLE)),
3371			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3372			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3373			K(zone->present_pages),
3374			K(zone->managed_pages),
3375			K(zone_page_state(zone, NR_MLOCK)),
3376			K(zone_page_state(zone, NR_FILE_DIRTY)),
3377			K(zone_page_state(zone, NR_WRITEBACK)),
3378			K(zone_page_state(zone, NR_FILE_MAPPED)),
3379			K(zone_page_state(zone, NR_SHMEM)),
3380			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3381			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3382			zone_page_state(zone, NR_KERNEL_STACK) *
3383				THREAD_SIZE / 1024,
3384			K(zone_page_state(zone, NR_PAGETABLE)),
3385			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3386			K(zone_page_state(zone, NR_BOUNCE)),
3387			K(free_pcp),
3388			K(this_cpu_read(zone->pageset->pcp.count)),
3389			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3390			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3391			K(zone_page_state(zone, NR_PAGES_SCANNED)),
3392			(!zone_reclaimable(zone) ? "yes" : "no")
3393			);
3394		printk("lowmem_reserve[]:");
3395		for (i = 0; i < MAX_NR_ZONES; i++)
3396			printk(" %ld", zone->lowmem_reserve[i]);
3397		printk("\n");
3398	}
3399
3400	for_each_populated_zone(zone) {
3401		unsigned int order;
3402		unsigned long nr[MAX_ORDER], flags, total = 0;
3403		unsigned char types[MAX_ORDER];
3404
3405		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3406			continue;
3407		show_node(zone);
3408		printk("%s: ", zone->name);
3409
3410		spin_lock_irqsave(&zone->lock, flags);
3411		for (order = 0; order < MAX_ORDER; order++) {
3412			struct free_area *area = &zone->free_area[order];
3413			int type;
3414
3415			nr[order] = area->nr_free;
3416			total += nr[order] << order;
3417
3418			types[order] = 0;
3419			for (type = 0; type < MIGRATE_TYPES; type++) {
3420				if (!list_empty(&area->free_list[type]))
3421					types[order] |= 1 << type;
3422			}
3423		}
3424		spin_unlock_irqrestore(&zone->lock, flags);
3425		for (order = 0; order < MAX_ORDER; order++) {
3426			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3427			if (nr[order])
3428				show_migration_types(types[order]);
3429		}
3430		printk("= %lukB\n", K(total));
3431	}
3432
3433	hugetlb_show_meminfo();
3434
3435	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3436
3437	show_swap_cache_info();
3438}
3439
3440static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3441{
3442	zoneref->zone = zone;
3443	zoneref->zone_idx = zone_idx(zone);
3444}
3445
3446/*
3447 * Builds allocation fallback zone lists.
3448 *
3449 * Add all populated zones of a node to the zonelist.
3450 */
3451static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3452				int nr_zones)
3453{
3454	struct zone *zone;
3455	enum zone_type zone_type = MAX_NR_ZONES;
3456
3457	do {
3458		zone_type--;
3459		zone = pgdat->node_zones + zone_type;
3460		if (populated_zone(zone)) {
3461			zoneref_set_zone(zone,
3462				&zonelist->_zonerefs[nr_zones++]);
3463			check_highest_zone(zone_type);
3464		}
3465	} while (zone_type);
3466
3467	return nr_zones;
3468}
3469
3470
3471/*
3472 *  zonelist_order:
3473 *  0 = automatic detection of better ordering.
3474 *  1 = order by ([node] distance, -zonetype)
3475 *  2 = order by (-zonetype, [node] distance)
3476 *
3477 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3478 *  the same zonelist. So only NUMA can configure this param.
3479 */
3480#define ZONELIST_ORDER_DEFAULT  0
3481#define ZONELIST_ORDER_NODE     1
3482#define ZONELIST_ORDER_ZONE     2
3483
3484/* zonelist order in the kernel.
3485 * set_zonelist_order() will set this to NODE or ZONE.
3486 */
3487static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3488static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3489
3490
3491#ifdef CONFIG_NUMA
3492/* The value user specified ....changed by config */
3493static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3494/* string for sysctl */
3495#define NUMA_ZONELIST_ORDER_LEN	16
3496char numa_zonelist_order[16] = "default";
3497
3498/*
3499 * interface for configure zonelist ordering.
3500 * command line option "numa_zonelist_order"
3501 *	= "[dD]efault	- default, automatic configuration.
3502 *	= "[nN]ode 	- order by node locality, then by zone within node
3503 *	= "[zZ]one      - order by zone, then by locality within zone
3504 */
3505
3506static int __parse_numa_zonelist_order(char *s)
3507{
3508	if (*s == 'd' || *s == 'D') {
3509		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3510	} else if (*s == 'n' || *s == 'N') {
3511		user_zonelist_order = ZONELIST_ORDER_NODE;
3512	} else if (*s == 'z' || *s == 'Z') {
3513		user_zonelist_order = ZONELIST_ORDER_ZONE;
3514	} else {
3515		printk(KERN_WARNING
3516			"Ignoring invalid numa_zonelist_order value:  "
3517			"%s\n", s);
3518		return -EINVAL;
3519	}
3520	return 0;
3521}
3522
3523static __init int setup_numa_zonelist_order(char *s)
3524{
3525	int ret;
3526
3527	if (!s)
3528		return 0;
3529
3530	ret = __parse_numa_zonelist_order(s);
3531	if (ret == 0)
3532		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3533
3534	return ret;
3535}
3536early_param("numa_zonelist_order", setup_numa_zonelist_order);
3537
3538/*
3539 * sysctl handler for numa_zonelist_order
3540 */
3541int numa_zonelist_order_handler(struct ctl_table *table, int write,
3542		void __user *buffer, size_t *length,
3543		loff_t *ppos)
3544{
3545	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3546	int ret;
3547	static DEFINE_MUTEX(zl_order_mutex);
3548
3549	mutex_lock(&zl_order_mutex);
3550	if (write) {
3551		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3552			ret = -EINVAL;
3553			goto out;
3554		}
3555		strcpy(saved_string, (char *)table->data);
3556	}
3557	ret = proc_dostring(table, write, buffer, length, ppos);
3558	if (ret)
3559		goto out;
3560	if (write) {
3561		int oldval = user_zonelist_order;
3562
3563		ret = __parse_numa_zonelist_order((char *)table->data);
3564		if (ret) {
3565			/*
3566			 * bogus value.  restore saved string
3567			 */
3568			strncpy((char *)table->data, saved_string,
3569				NUMA_ZONELIST_ORDER_LEN);
3570			user_zonelist_order = oldval;
3571		} else if (oldval != user_zonelist_order) {
3572			mutex_lock(&zonelists_mutex);
3573			build_all_zonelists(NULL, NULL);
3574			mutex_unlock(&zonelists_mutex);
3575		}
3576	}
3577out:
3578	mutex_unlock(&zl_order_mutex);
3579	return ret;
3580}
3581
3582
3583#define MAX_NODE_LOAD (nr_online_nodes)
3584static int node_load[MAX_NUMNODES];
3585
3586/**
3587 * find_next_best_node - find the next node that should appear in a given node's fallback list
3588 * @node: node whose fallback list we're appending
3589 * @used_node_mask: nodemask_t of already used nodes
3590 *
3591 * We use a number of factors to determine which is the next node that should
3592 * appear on a given node's fallback list.  The node should not have appeared
3593 * already in @node's fallback list, and it should be the next closest node
3594 * according to the distance array (which contains arbitrary distance values
3595 * from each node to each node in the system), and should also prefer nodes
3596 * with no CPUs, since presumably they'll have very little allocation pressure
3597 * on them otherwise.
3598 * It returns -1 if no node is found.
3599 */
3600static int find_next_best_node(int node, nodemask_t *used_node_mask)
3601{
3602	int n, val;
3603	int min_val = INT_MAX;
3604	int best_node = NUMA_NO_NODE;
3605	const struct cpumask *tmp = cpumask_of_node(0);
3606
3607	/* Use the local node if we haven't already */
3608	if (!node_isset(node, *used_node_mask)) {
3609		node_set(node, *used_node_mask);
3610		return node;
3611	}
3612
3613	for_each_node_state(n, N_MEMORY) {
3614
3615		/* Don't want a node to appear more than once */
3616		if (node_isset(n, *used_node_mask))
3617			continue;
3618
3619		/* Use the distance array to find the distance */
3620		val = node_distance(node, n);
3621
3622		/* Penalize nodes under us ("prefer the next node") */
3623		val += (n < node);
3624
3625		/* Give preference to headless and unused nodes */
3626		tmp = cpumask_of_node(n);
3627		if (!cpumask_empty(tmp))
3628			val += PENALTY_FOR_NODE_WITH_CPUS;
3629
3630		/* Slight preference for less loaded node */
3631		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3632		val += node_load[n];
3633
3634		if (val < min_val) {
3635			min_val = val;
3636			best_node = n;
3637		}
3638	}
3639
3640	if (best_node >= 0)
3641		node_set(best_node, *used_node_mask);
3642
3643	return best_node;
3644}
3645
3646
3647/*
3648 * Build zonelists ordered by node and zones within node.
3649 * This results in maximum locality--normal zone overflows into local
3650 * DMA zone, if any--but risks exhausting DMA zone.
3651 */
3652static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3653{
3654	int j;
3655	struct zonelist *zonelist;
3656
3657	zonelist = &pgdat->node_zonelists[0];
3658	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3659		;
3660	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3661	zonelist->_zonerefs[j].zone = NULL;
3662	zonelist->_zonerefs[j].zone_idx = 0;
3663}
3664
3665/*
3666 * Build gfp_thisnode zonelists
3667 */
3668static void build_thisnode_zonelists(pg_data_t *pgdat)
3669{
3670	int j;
3671	struct zonelist *zonelist;
3672
3673	zonelist = &pgdat->node_zonelists[1];
3674	j = build_zonelists_node(pgdat, zonelist, 0);
3675	zonelist->_zonerefs[j].zone = NULL;
3676	zonelist->_zonerefs[j].zone_idx = 0;
3677}
3678
3679/*
3680 * Build zonelists ordered by zone and nodes within zones.
3681 * This results in conserving DMA zone[s] until all Normal memory is
3682 * exhausted, but results in overflowing to remote node while memory
3683 * may still exist in local DMA zone.
3684 */
3685static int node_order[MAX_NUMNODES];
3686
3687static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3688{
3689	int pos, j, node;
3690	int zone_type;		/* needs to be signed */
3691	struct zone *z;
3692	struct zonelist *zonelist;
3693
3694	zonelist = &pgdat->node_zonelists[0];
3695	pos = 0;
3696	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3697		for (j = 0; j < nr_nodes; j++) {
3698			node = node_order[j];
3699			z = &NODE_DATA(node)->node_zones[zone_type];
3700			if (populated_zone(z)) {
3701				zoneref_set_zone(z,
3702					&zonelist->_zonerefs[pos++]);
3703				check_highest_zone(zone_type);
3704			}
3705		}
3706	}
3707	zonelist->_zonerefs[pos].zone = NULL;
3708	zonelist->_zonerefs[pos].zone_idx = 0;
3709}
3710
3711#if defined(CONFIG_64BIT)
3712/*
3713 * Devices that require DMA32/DMA are relatively rare and do not justify a
3714 * penalty to every machine in case the specialised case applies. Default
3715 * to Node-ordering on 64-bit NUMA machines
3716 */
3717static int default_zonelist_order(void)
3718{
3719	return ZONELIST_ORDER_NODE;
3720}
3721#else
3722/*
3723 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3724 * by the kernel. If processes running on node 0 deplete the low memory zone
3725 * then reclaim will occur more frequency increasing stalls and potentially
3726 * be easier to OOM if a large percentage of the zone is under writeback or
3727 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3728 * Hence, default to zone ordering on 32-bit.
3729 */
3730static int default_zonelist_order(void)
3731{
3732	return ZONELIST_ORDER_ZONE;
3733}
3734#endif /* CONFIG_64BIT */
3735
3736static void set_zonelist_order(void)
3737{
3738	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3739		current_zonelist_order = default_zonelist_order();
3740	else
3741		current_zonelist_order = user_zonelist_order;
3742}
3743
3744static void build_zonelists(pg_data_t *pgdat)
3745{
3746	int j, node, load;
3747	enum zone_type i;
3748	nodemask_t used_mask;
3749	int local_node, prev_node;
3750	struct zonelist *zonelist;
3751	unsigned int order = current_zonelist_order;
3752
3753	/* initialize zonelists */
3754	for (i = 0; i < MAX_ZONELISTS; i++) {
3755		zonelist = pgdat->node_zonelists + i;
3756		zonelist->_zonerefs[0].zone = NULL;
3757		zonelist->_zonerefs[0].zone_idx = 0;
3758	}
3759
3760	/* NUMA-aware ordering of nodes */
3761	local_node = pgdat->node_id;
3762	load = nr_online_nodes;
3763	prev_node = local_node;
3764	nodes_clear(used_mask);
3765
3766	memset(node_order, 0, sizeof(node_order));
3767	j = 0;
3768
3769	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3770		/*
3771		 * We don't want to pressure a particular node.
3772		 * So adding penalty to the first node in same
3773		 * distance group to make it round-robin.
3774		 */
3775		if (node_distance(local_node, node) !=
3776		    node_distance(local_node, prev_node))
3777			node_load[node] = load;
3778
3779		prev_node = node;
3780		load--;
3781		if (order == ZONELIST_ORDER_NODE)
3782			build_zonelists_in_node_order(pgdat, node);
3783		else
3784			node_order[j++] = node;	/* remember order */
3785	}
3786
3787	if (order == ZONELIST_ORDER_ZONE) {
3788		/* calculate node order -- i.e., DMA last! */
3789		build_zonelists_in_zone_order(pgdat, j);
3790	}
3791
3792	build_thisnode_zonelists(pgdat);
3793}
3794
3795/* Construct the zonelist performance cache - see further mmzone.h */
3796static void build_zonelist_cache(pg_data_t *pgdat)
3797{
3798	struct zonelist *zonelist;
3799	struct zonelist_cache *zlc;
3800	struct zoneref *z;
3801
3802	zonelist = &pgdat->node_zonelists[0];
3803	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3804	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3805	for (z = zonelist->_zonerefs; z->zone; z++)
3806		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3807}
3808
3809#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3810/*
3811 * Return node id of node used for "local" allocations.
3812 * I.e., first node id of first zone in arg node's generic zonelist.
3813 * Used for initializing percpu 'numa_mem', which is used primarily
3814 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3815 */
3816int local_memory_node(int node)
3817{
3818	struct zone *zone;
3819
3820	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3821				   gfp_zone(GFP_KERNEL),
3822				   NULL,
3823				   &zone);
3824	return zone->node;
3825}
3826#endif
3827
3828#else	/* CONFIG_NUMA */
3829
3830static void set_zonelist_order(void)
3831{
3832	current_zonelist_order = ZONELIST_ORDER_ZONE;
3833}
3834
3835static void build_zonelists(pg_data_t *pgdat)
3836{
3837	int node, local_node;
3838	enum zone_type j;
3839	struct zonelist *zonelist;
3840
3841	local_node = pgdat->node_id;
3842
3843	zonelist = &pgdat->node_zonelists[0];
3844	j = build_zonelists_node(pgdat, zonelist, 0);
3845
3846	/*
3847	 * Now we build the zonelist so that it contains the zones
3848	 * of all the other nodes.
3849	 * We don't want to pressure a particular node, so when
3850	 * building the zones for node N, we make sure that the
3851	 * zones coming right after the local ones are those from
3852	 * node N+1 (modulo N)
3853	 */
3854	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3855		if (!node_online(node))
3856			continue;
3857		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3858	}
3859	for (node = 0; node < local_node; node++) {
3860		if (!node_online(node))
3861			continue;
3862		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3863	}
3864
3865	zonelist->_zonerefs[j].zone = NULL;
3866	zonelist->_zonerefs[j].zone_idx = 0;
3867}
3868
3869/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3870static void build_zonelist_cache(pg_data_t *pgdat)
3871{
3872	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3873}
3874
3875#endif	/* CONFIG_NUMA */
3876
3877/*
3878 * Boot pageset table. One per cpu which is going to be used for all
3879 * zones and all nodes. The parameters will be set in such a way
3880 * that an item put on a list will immediately be handed over to
3881 * the buddy list. This is safe since pageset manipulation is done
3882 * with interrupts disabled.
3883 *
3884 * The boot_pagesets must be kept even after bootup is complete for
3885 * unused processors and/or zones. They do play a role for bootstrapping
3886 * hotplugged processors.
3887 *
3888 * zoneinfo_show() and maybe other functions do
3889 * not check if the processor is online before following the pageset pointer.
3890 * Other parts of the kernel may not check if the zone is available.
3891 */
3892static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3893static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3894static void setup_zone_pageset(struct zone *zone);
3895
3896/*
3897 * Global mutex to protect against size modification of zonelists
3898 * as well as to serialize pageset setup for the new populated zone.
3899 */
3900DEFINE_MUTEX(zonelists_mutex);
3901
3902/* return values int ....just for stop_machine() */
3903static int __build_all_zonelists(void *data)
3904{
3905	int nid;
3906	int cpu;
3907	pg_data_t *self = data;
3908
3909#ifdef CONFIG_NUMA
3910	memset(node_load, 0, sizeof(node_load));
3911#endif
3912
3913	if (self && !node_online(self->node_id)) {
3914		build_zonelists(self);
3915		build_zonelist_cache(self);
3916	}
3917
3918	for_each_online_node(nid) {
3919		pg_data_t *pgdat = NODE_DATA(nid);
3920
3921		build_zonelists(pgdat);
3922		build_zonelist_cache(pgdat);
3923	}
3924
3925	/*
3926	 * Initialize the boot_pagesets that are going to be used
3927	 * for bootstrapping processors. The real pagesets for
3928	 * each zone will be allocated later when the per cpu
3929	 * allocator is available.
3930	 *
3931	 * boot_pagesets are used also for bootstrapping offline
3932	 * cpus if the system is already booted because the pagesets
3933	 * are needed to initialize allocators on a specific cpu too.
3934	 * F.e. the percpu allocator needs the page allocator which
3935	 * needs the percpu allocator in order to allocate its pagesets
3936	 * (a chicken-egg dilemma).
3937	 */
3938	for_each_possible_cpu(cpu) {
3939		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3940
3941#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3942		/*
3943		 * We now know the "local memory node" for each node--
3944		 * i.e., the node of the first zone in the generic zonelist.
3945		 * Set up numa_mem percpu variable for on-line cpus.  During
3946		 * boot, only the boot cpu should be on-line;  we'll init the
3947		 * secondary cpus' numa_mem as they come on-line.  During
3948		 * node/memory hotplug, we'll fixup all on-line cpus.
3949		 */
3950		if (cpu_online(cpu))
3951			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3952#endif
3953	}
3954
3955	return 0;
3956}
3957
3958static noinline void __init
3959build_all_zonelists_init(void)
3960{
3961	__build_all_zonelists(NULL);
3962	mminit_verify_zonelist();
3963	cpuset_init_current_mems_allowed();
3964}
3965
3966/*
3967 * Called with zonelists_mutex held always
3968 * unless system_state == SYSTEM_BOOTING.
3969 *
3970 * __ref due to (1) call of __meminit annotated setup_zone_pageset
3971 * [we're only called with non-NULL zone through __meminit paths] and
3972 * (2) call of __init annotated helper build_all_zonelists_init
3973 * [protected by SYSTEM_BOOTING].
3974 */
3975void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3976{
3977	set_zonelist_order();
3978
3979	if (system_state == SYSTEM_BOOTING) {
3980		build_all_zonelists_init();
3981	} else {
3982#ifdef CONFIG_MEMORY_HOTPLUG
3983		if (zone)
3984			setup_zone_pageset(zone);
3985#endif
3986		/* we have to stop all cpus to guarantee there is no user
3987		   of zonelist */
3988		stop_machine(__build_all_zonelists, pgdat, NULL);
3989		/* cpuset refresh routine should be here */
3990	}
3991	vm_total_pages = nr_free_pagecache_pages();
3992	/*
3993	 * Disable grouping by mobility if the number of pages in the
3994	 * system is too low to allow the mechanism to work. It would be
3995	 * more accurate, but expensive to check per-zone. This check is
3996	 * made on memory-hotadd so a system can start with mobility
3997	 * disabled and enable it later
3998	 */
3999	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4000		page_group_by_mobility_disabled = 1;
4001	else
4002		page_group_by_mobility_disabled = 0;
4003
4004	pr_info("Built %i zonelists in %s order, mobility grouping %s.  "
4005		"Total pages: %ld\n",
4006			nr_online_nodes,
4007			zonelist_order_name[current_zonelist_order],
4008			page_group_by_mobility_disabled ? "off" : "on",
4009			vm_total_pages);
4010#ifdef CONFIG_NUMA
4011	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4012#endif
4013}
4014
4015/*
4016 * Helper functions to size the waitqueue hash table.
4017 * Essentially these want to choose hash table sizes sufficiently
4018 * large so that collisions trying to wait on pages are rare.
4019 * But in fact, the number of active page waitqueues on typical
4020 * systems is ridiculously low, less than 200. So this is even
4021 * conservative, even though it seems large.
4022 *
4023 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4024 * waitqueues, i.e. the size of the waitq table given the number of pages.
4025 */
4026#define PAGES_PER_WAITQUEUE	256
4027
4028#ifndef CONFIG_MEMORY_HOTPLUG
4029static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4030{
4031	unsigned long size = 1;
4032
4033	pages /= PAGES_PER_WAITQUEUE;
4034
4035	while (size < pages)
4036		size <<= 1;
4037
4038	/*
4039	 * Once we have dozens or even hundreds of threads sleeping
4040	 * on IO we've got bigger problems than wait queue collision.
4041	 * Limit the size of the wait table to a reasonable size.
4042	 */
4043	size = min(size, 4096UL);
4044
4045	return max(size, 4UL);
4046}
4047#else
4048/*
4049 * A zone's size might be changed by hot-add, so it is not possible to determine
4050 * a suitable size for its wait_table.  So we use the maximum size now.
4051 *
4052 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
4053 *
4054 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
4055 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4056 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
4057 *
4058 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4059 * or more by the traditional way. (See above).  It equals:
4060 *
4061 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
4062 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
4063 *    powerpc (64K page size)             : =  (32G +16M)byte.
4064 */
4065static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4066{
4067	return 4096UL;
4068}
4069#endif
4070
4071/*
4072 * This is an integer logarithm so that shifts can be used later
4073 * to extract the more random high bits from the multiplicative
4074 * hash function before the remainder is taken.
4075 */
4076static inline unsigned long wait_table_bits(unsigned long size)
4077{
4078	return ffz(~size);
4079}
4080
4081/*
4082 * Check if a pageblock contains reserved pages
4083 */
4084static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4085{
4086	unsigned long pfn;
4087
4088	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4089		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4090			return 1;
4091	}
4092	return 0;
4093}
4094
4095/*
4096 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4097 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4098 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4099 * higher will lead to a bigger reserve which will get freed as contiguous
4100 * blocks as reclaim kicks in
4101 */
4102static void setup_zone_migrate_reserve(struct zone *zone)
4103{
4104	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4105	struct page *page;
4106	unsigned long block_migratetype;
4107	int reserve;
4108	int old_reserve;
4109
4110	/*
4111	 * Get the start pfn, end pfn and the number of blocks to reserve
4112	 * We have to be careful to be aligned to pageblock_nr_pages to
4113	 * make sure that we always check pfn_valid for the first page in
4114	 * the block.
4115	 */
4116	start_pfn = zone->zone_start_pfn;
4117	end_pfn = zone_end_pfn(zone);
4118	start_pfn = roundup(start_pfn, pageblock_nr_pages);
4119	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4120							pageblock_order;
4121
4122	/*
4123	 * Reserve blocks are generally in place to help high-order atomic
4124	 * allocations that are short-lived. A min_free_kbytes value that
4125	 * would result in more than 2 reserve blocks for atomic allocations
4126	 * is assumed to be in place to help anti-fragmentation for the
4127	 * future allocation of hugepages at runtime.
4128	 */
4129	reserve = min(2, reserve);
4130	old_reserve = zone->nr_migrate_reserve_block;
4131
4132	/* When memory hot-add, we almost always need to do nothing */
4133	if (reserve == old_reserve)
4134		return;
4135	zone->nr_migrate_reserve_block = reserve;
4136
4137	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4138		if (!pfn_valid(pfn))
4139			continue;
4140		page = pfn_to_page(pfn);
4141
4142		/* Watch out for overlapping nodes */
4143		if (page_to_nid(page) != zone_to_nid(zone))
4144			continue;
4145
4146		block_migratetype = get_pageblock_migratetype(page);
4147
4148		/* Only test what is necessary when the reserves are not met */
4149		if (reserve > 0) {
4150			/*
4151			 * Blocks with reserved pages will never free, skip
4152			 * them.
4153			 */
4154			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4155			if (pageblock_is_reserved(pfn, block_end_pfn))
4156				continue;
4157
4158			/* If this block is reserved, account for it */
4159			if (block_migratetype == MIGRATE_RESERVE) {
4160				reserve--;
4161				continue;
4162			}
4163
4164			/* Suitable for reserving if this block is movable */
4165			if (block_migratetype == MIGRATE_MOVABLE) {
4166				set_pageblock_migratetype(page,
4167							MIGRATE_RESERVE);
4168				move_freepages_block(zone, page,
4169							MIGRATE_RESERVE);
4170				reserve--;
4171				continue;
4172			}
4173		} else if (!old_reserve) {
4174			/*
4175			 * At boot time we don't need to scan the whole zone
4176			 * for turning off MIGRATE_RESERVE.
4177			 */
4178			break;
4179		}
4180
4181		/*
4182		 * If the reserve is met and this is a previous reserved block,
4183		 * take it back
4184		 */
4185		if (block_migratetype == MIGRATE_RESERVE) {
4186			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4187			move_freepages_block(zone, page, MIGRATE_MOVABLE);
4188		}
4189	}
4190}
4191
4192/*
4193 * Initially all pages are reserved - free ones are freed
4194 * up by free_all_bootmem() once the early boot process is
4195 * done. Non-atomic initialization, single-pass.
4196 */
4197void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4198		unsigned long start_pfn, enum memmap_context context)
4199{
4200	struct page *page;
4201	unsigned long end_pfn = start_pfn + size;
4202	unsigned long pfn;
4203	struct zone *z;
4204
4205	if (highest_memmap_pfn < end_pfn - 1)
4206		highest_memmap_pfn = end_pfn - 1;
4207
4208	z = &NODE_DATA(nid)->node_zones[zone];
4209	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4210		/*
4211		 * There can be holes in boot-time mem_map[]s
4212		 * handed to this function.  They do not
4213		 * exist on hotplugged memory.
4214		 */
4215		if (context == MEMMAP_EARLY) {
4216			if (!early_pfn_valid(pfn))
4217				continue;
4218			if (!early_pfn_in_nid(pfn, nid))
4219				continue;
4220		}
4221		page = pfn_to_page(pfn);
4222		set_page_links(page, zone, nid, pfn);
4223		mminit_verify_page_links(page, zone, nid, pfn);
4224		init_page_count(page);
4225		page_mapcount_reset(page);
4226		page_cpupid_reset_last(page);
4227		SetPageReserved(page);
4228		/*
4229		 * Mark the block movable so that blocks are reserved for
4230		 * movable at startup. This will force kernel allocations
4231		 * to reserve their blocks rather than leaking throughout
4232		 * the address space during boot when many long-lived
4233		 * kernel allocations are made. Later some blocks near
4234		 * the start are marked MIGRATE_RESERVE by
4235		 * setup_zone_migrate_reserve()
4236		 *
4237		 * bitmap is created for zone's valid pfn range. but memmap
4238		 * can be created for invalid pages (for alignment)
4239		 * check here not to call set_pageblock_migratetype() against
4240		 * pfn out of zone.
4241		 */
4242		if ((z->zone_start_pfn <= pfn)
4243		    && (pfn < zone_end_pfn(z))
4244		    && !(pfn & (pageblock_nr_pages - 1)))
4245			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4246
4247		INIT_LIST_HEAD(&page->lru);
4248#ifdef WANT_PAGE_VIRTUAL
4249		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
4250		if (!is_highmem_idx(zone))
4251			set_page_address(page, __va(pfn << PAGE_SHIFT));
4252#endif
4253	}
4254}
4255
4256static void __meminit zone_init_free_lists(struct zone *zone)
4257{
4258	unsigned int order, t;
4259	for_each_migratetype_order(order, t) {
4260		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4261		zone->free_area[order].nr_free = 0;
4262	}
4263}
4264
4265#ifndef __HAVE_ARCH_MEMMAP_INIT
4266#define memmap_init(size, nid, zone, start_pfn) \
4267	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4268#endif
4269
4270static int zone_batchsize(struct zone *zone)
4271{
4272#ifdef CONFIG_MMU
4273	int batch;
4274
4275	/*
4276	 * The per-cpu-pages pools are set to around 1000th of the
4277	 * size of the zone.  But no more than 1/2 of a meg.
4278	 *
4279	 * OK, so we don't know how big the cache is.  So guess.
4280	 */
4281	batch = zone->managed_pages / 1024;
4282	if (batch * PAGE_SIZE > 512 * 1024)
4283		batch = (512 * 1024) / PAGE_SIZE;
4284	batch /= 4;		/* We effectively *= 4 below */
4285	if (batch < 1)
4286		batch = 1;
4287
4288	/*
4289	 * Clamp the batch to a 2^n - 1 value. Having a power
4290	 * of 2 value was found to be more likely to have
4291	 * suboptimal cache aliasing properties in some cases.
4292	 *
4293	 * For example if 2 tasks are alternately allocating
4294	 * batches of pages, one task can end up with a lot
4295	 * of pages of one half of the possible page colors
4296	 * and the other with pages of the other colors.
4297	 */
4298	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4299
4300	return batch;
4301
4302#else
4303	/* The deferral and batching of frees should be suppressed under NOMMU
4304	 * conditions.
4305	 *
4306	 * The problem is that NOMMU needs to be able to allocate large chunks
4307	 * of contiguous memory as there's no hardware page translation to
4308	 * assemble apparent contiguous memory from discontiguous pages.
4309	 *
4310	 * Queueing large contiguous runs of pages for batching, however,
4311	 * causes the pages to actually be freed in smaller chunks.  As there
4312	 * can be a significant delay between the individual batches being
4313	 * recycled, this leads to the once large chunks of space being
4314	 * fragmented and becoming unavailable for high-order allocations.
4315	 */
4316	return 0;
4317#endif
4318}
4319
4320/*
4321 * pcp->high and pcp->batch values are related and dependent on one another:
4322 * ->batch must never be higher then ->high.
4323 * The following function updates them in a safe manner without read side
4324 * locking.
4325 *
4326 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4327 * those fields changing asynchronously (acording the the above rule).
4328 *
4329 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4330 * outside of boot time (or some other assurance that no concurrent updaters
4331 * exist).
4332 */
4333static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4334		unsigned long batch)
4335{
4336       /* start with a fail safe value for batch */
4337	pcp->batch = 1;
4338	smp_wmb();
4339
4340       /* Update high, then batch, in order */
4341	pcp->high = high;
4342	smp_wmb();
4343
4344	pcp->batch = batch;
4345}
4346
4347/* a companion to pageset_set_high() */
4348static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4349{
4350	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4351}
4352
4353static void pageset_init(struct per_cpu_pageset *p)
4354{
4355	struct per_cpu_pages *pcp;
4356	int migratetype;
4357
4358	memset(p, 0, sizeof(*p));
4359
4360	pcp = &p->pcp;
4361	pcp->count = 0;
4362	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4363		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4364}
4365
4366static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4367{
4368	pageset_init(p);
4369	pageset_set_batch(p, batch);
4370}
4371
4372/*
4373 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4374 * to the value high for the pageset p.
4375 */
4376static void pageset_set_high(struct per_cpu_pageset *p,
4377				unsigned long high)
4378{
4379	unsigned long batch = max(1UL, high / 4);
4380	if ((high / 4) > (PAGE_SHIFT * 8))
4381		batch = PAGE_SHIFT * 8;
4382
4383	pageset_update(&p->pcp, high, batch);
4384}
4385
4386static void pageset_set_high_and_batch(struct zone *zone,
4387				       struct per_cpu_pageset *pcp)
4388{
4389	if (percpu_pagelist_fraction)
4390		pageset_set_high(pcp,
4391			(zone->managed_pages /
4392				percpu_pagelist_fraction));
4393	else
4394		pageset_set_batch(pcp, zone_batchsize(zone));
4395}
4396
4397static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4398{
4399	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4400
4401	pageset_init(pcp);
4402	pageset_set_high_and_batch(zone, pcp);
4403}
4404
4405static void __meminit setup_zone_pageset(struct zone *zone)
4406{
4407	int cpu;
4408	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4409	for_each_possible_cpu(cpu)
4410		zone_pageset_init(zone, cpu);
4411}
4412
4413/*
4414 * Allocate per cpu pagesets and initialize them.
4415 * Before this call only boot pagesets were available.
4416 */
4417void __init setup_per_cpu_pageset(void)
4418{
4419	struct zone *zone;
4420
4421	for_each_populated_zone(zone)
4422		setup_zone_pageset(zone);
4423}
4424
4425static noinline __init_refok
4426int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4427{
4428	int i;
4429	size_t alloc_size;
4430
4431	/*
4432	 * The per-page waitqueue mechanism uses hashed waitqueues
4433	 * per zone.
4434	 */
4435	zone->wait_table_hash_nr_entries =
4436		 wait_table_hash_nr_entries(zone_size_pages);
4437	zone->wait_table_bits =
4438		wait_table_bits(zone->wait_table_hash_nr_entries);
4439	alloc_size = zone->wait_table_hash_nr_entries
4440					* sizeof(wait_queue_head_t);
4441
4442	if (!slab_is_available()) {
4443		zone->wait_table = (wait_queue_head_t *)
4444			memblock_virt_alloc_node_nopanic(
4445				alloc_size, zone->zone_pgdat->node_id);
4446	} else {
4447		/*
4448		 * This case means that a zone whose size was 0 gets new memory
4449		 * via memory hot-add.
4450		 * But it may be the case that a new node was hot-added.  In
4451		 * this case vmalloc() will not be able to use this new node's
4452		 * memory - this wait_table must be initialized to use this new
4453		 * node itself as well.
4454		 * To use this new node's memory, further consideration will be
4455		 * necessary.
4456		 */
4457		zone->wait_table = vmalloc(alloc_size);
4458	}
4459	if (!zone->wait_table)
4460		return -ENOMEM;
4461
4462	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4463		init_waitqueue_head(zone->wait_table + i);
4464
4465	return 0;
4466}
4467
4468static __meminit void zone_pcp_init(struct zone *zone)
4469{
4470	/*
4471	 * per cpu subsystem is not up at this point. The following code
4472	 * relies on the ability of the linker to provide the
4473	 * offset of a (static) per cpu variable into the per cpu area.
4474	 */
4475	zone->pageset = &boot_pageset;
4476
4477	if (populated_zone(zone))
4478		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4479			zone->name, zone->present_pages,
4480					 zone_batchsize(zone));
4481}
4482
4483int __meminit init_currently_empty_zone(struct zone *zone,
4484					unsigned long zone_start_pfn,
4485					unsigned long size,
4486					enum memmap_context context)
4487{
4488	struct pglist_data *pgdat = zone->zone_pgdat;
4489	int ret;
4490	ret = zone_wait_table_init(zone, size);
4491	if (ret)
4492		return ret;
4493	pgdat->nr_zones = zone_idx(zone) + 1;
4494
4495	zone->zone_start_pfn = zone_start_pfn;
4496
4497	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4498			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4499			pgdat->node_id,
4500			(unsigned long)zone_idx(zone),
4501			zone_start_pfn, (zone_start_pfn + size));
4502
4503	zone_init_free_lists(zone);
4504
4505	return 0;
4506}
4507
4508#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4509#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4510/*
4511 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4512 */
4513int __meminit __early_pfn_to_nid(unsigned long pfn)
4514{
4515	unsigned long start_pfn, end_pfn;
4516	int nid;
4517	/*
4518	 * NOTE: The following SMP-unsafe globals are only used early in boot
4519	 * when the kernel is running single-threaded.
4520	 */
4521	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4522	static int __meminitdata last_nid;
4523
4524	if (last_start_pfn <= pfn && pfn < last_end_pfn)
4525		return last_nid;
4526
4527	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4528	if (nid != -1) {
4529		last_start_pfn = start_pfn;
4530		last_end_pfn = end_pfn;
4531		last_nid = nid;
4532	}
4533
4534	return nid;
4535}
4536#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4537
4538int __meminit early_pfn_to_nid(unsigned long pfn)
4539{
4540	int nid;
4541
4542	nid = __early_pfn_to_nid(pfn);
4543	if (nid >= 0)
4544		return nid;
4545	/* just returns 0 */
4546	return 0;
4547}
4548
4549#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4550bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4551{
4552	int nid;
4553
4554	nid = __early_pfn_to_nid(pfn);
4555	if (nid >= 0 && nid != node)
4556		return false;
4557	return true;
4558}
4559#endif
4560
4561/**
4562 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4563 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4564 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4565 *
4566 * If an architecture guarantees that all ranges registered contain no holes
4567 * and may be freed, this this function may be used instead of calling
4568 * memblock_free_early_nid() manually.
4569 */
4570void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4571{
4572	unsigned long start_pfn, end_pfn;
4573	int i, this_nid;
4574
4575	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4576		start_pfn = min(start_pfn, max_low_pfn);
4577		end_pfn = min(end_pfn, max_low_pfn);
4578
4579		if (start_pfn < end_pfn)
4580			memblock_free_early_nid(PFN_PHYS(start_pfn),
4581					(end_pfn - start_pfn) << PAGE_SHIFT,
4582					this_nid);
4583	}
4584}
4585
4586/**
4587 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4588 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4589 *
4590 * If an architecture guarantees that all ranges registered contain no holes and may
4591 * be freed, this function may be used instead of calling memory_present() manually.
4592 */
4593void __init sparse_memory_present_with_active_regions(int nid)
4594{
4595	unsigned long start_pfn, end_pfn;
4596	int i, this_nid;
4597
4598	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4599		memory_present(this_nid, start_pfn, end_pfn);
4600}
4601
4602/**
4603 * get_pfn_range_for_nid - Return the start and end page frames for a node
4604 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4605 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4606 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4607 *
4608 * It returns the start and end page frame of a node based on information
4609 * provided by memblock_set_node(). If called for a node
4610 * with no available memory, a warning is printed and the start and end
4611 * PFNs will be 0.
4612 */
4613void __meminit get_pfn_range_for_nid(unsigned int nid,
4614			unsigned long *start_pfn, unsigned long *end_pfn)
4615{
4616	unsigned long this_start_pfn, this_end_pfn;
4617	int i;
4618
4619	*start_pfn = -1UL;
4620	*end_pfn = 0;
4621
4622	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4623		*start_pfn = min(*start_pfn, this_start_pfn);
4624		*end_pfn = max(*end_pfn, this_end_pfn);
4625	}
4626
4627	if (*start_pfn == -1UL)
4628		*start_pfn = 0;
4629}
4630
4631/*
4632 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4633 * assumption is made that zones within a node are ordered in monotonic
4634 * increasing memory addresses so that the "highest" populated zone is used
4635 */
4636static void __init find_usable_zone_for_movable(void)
4637{
4638	int zone_index;
4639	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4640		if (zone_index == ZONE_MOVABLE)
4641			continue;
4642
4643		if (arch_zone_highest_possible_pfn[zone_index] >
4644				arch_zone_lowest_possible_pfn[zone_index])
4645			break;
4646	}
4647
4648	VM_BUG_ON(zone_index == -1);
4649	movable_zone = zone_index;
4650}
4651
4652/*
4653 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4654 * because it is sized independent of architecture. Unlike the other zones,
4655 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4656 * in each node depending on the size of each node and how evenly kernelcore
4657 * is distributed. This helper function adjusts the zone ranges
4658 * provided by the architecture for a given node by using the end of the
4659 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4660 * zones within a node are in order of monotonic increases memory addresses
4661 */
4662static void __meminit adjust_zone_range_for_zone_movable(int nid,
4663					unsigned long zone_type,
4664					unsigned long node_start_pfn,
4665					unsigned long node_end_pfn,
4666					unsigned long *zone_start_pfn,
4667					unsigned long *zone_end_pfn)
4668{
4669	/* Only adjust if ZONE_MOVABLE is on this node */
4670	if (zone_movable_pfn[nid]) {
4671		/* Size ZONE_MOVABLE */
4672		if (zone_type == ZONE_MOVABLE) {
4673			*zone_start_pfn = zone_movable_pfn[nid];
4674			*zone_end_pfn = min(node_end_pfn,
4675				arch_zone_highest_possible_pfn[movable_zone]);
4676
4677		/* Adjust for ZONE_MOVABLE starting within this range */
4678		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4679				*zone_end_pfn > zone_movable_pfn[nid]) {
4680			*zone_end_pfn = zone_movable_pfn[nid];
4681
4682		/* Check if this whole range is within ZONE_MOVABLE */
4683		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4684			*zone_start_pfn = *zone_end_pfn;
4685	}
4686}
4687
4688/*
4689 * Return the number of pages a zone spans in a node, including holes
4690 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4691 */
4692static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4693					unsigned long zone_type,
4694					unsigned long node_start_pfn,
4695					unsigned long node_end_pfn,
4696					unsigned long *ignored)
4697{
4698	unsigned long zone_start_pfn, zone_end_pfn;
4699
4700	/* Get the start and end of the zone */
4701	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4702	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4703	adjust_zone_range_for_zone_movable(nid, zone_type,
4704				node_start_pfn, node_end_pfn,
4705				&zone_start_pfn, &zone_end_pfn);
4706
4707	/* Check that this node has pages within the zone's required range */
4708	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4709		return 0;
4710
4711	/* Move the zone boundaries inside the node if necessary */
4712	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4713	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4714
4715	/* Return the spanned pages */
4716	return zone_end_pfn - zone_start_pfn;
4717}
4718
4719/*
4720 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4721 * then all holes in the requested range will be accounted for.
4722 */
4723unsigned long __meminit __absent_pages_in_range(int nid,
4724				unsigned long range_start_pfn,
4725				unsigned long range_end_pfn)
4726{
4727	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4728	unsigned long start_pfn, end_pfn;
4729	int i;
4730
4731	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4732		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4733		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4734		nr_absent -= end_pfn - start_pfn;
4735	}
4736	return nr_absent;
4737}
4738
4739/**
4740 * absent_pages_in_range - Return number of page frames in holes within a range
4741 * @start_pfn: The start PFN to start searching for holes
4742 * @end_pfn: The end PFN to stop searching for holes
4743 *
4744 * It returns the number of pages frames in memory holes within a range.
4745 */
4746unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4747							unsigned long end_pfn)
4748{
4749	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4750}
4751
4752/* Return the number of page frames in holes in a zone on a node */
4753static unsigned long __meminit zone_absent_pages_in_node(int nid,
4754					unsigned long zone_type,
4755					unsigned long node_start_pfn,
4756					unsigned long node_end_pfn,
4757					unsigned long *ignored)
4758{
4759	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4760	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4761	unsigned long zone_start_pfn, zone_end_pfn;
4762
4763	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4764	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4765
4766	adjust_zone_range_for_zone_movable(nid, zone_type,
4767			node_start_pfn, node_end_pfn,
4768			&zone_start_pfn, &zone_end_pfn);
4769	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4770}
4771
4772#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4773static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4774					unsigned long zone_type,
4775					unsigned long node_start_pfn,
4776					unsigned long node_end_pfn,
4777					unsigned long *zones_size)
4778{
4779	return zones_size[zone_type];
4780}
4781
4782static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4783						unsigned long zone_type,
4784						unsigned long node_start_pfn,
4785						unsigned long node_end_pfn,
4786						unsigned long *zholes_size)
4787{
4788	if (!zholes_size)
4789		return 0;
4790
4791	return zholes_size[zone_type];
4792}
4793
4794#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4795
4796static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4797						unsigned long node_start_pfn,
4798						unsigned long node_end_pfn,
4799						unsigned long *zones_size,
4800						unsigned long *zholes_size)
4801{
4802	unsigned long realtotalpages, totalpages = 0;
4803	enum zone_type i;
4804
4805	for (i = 0; i < MAX_NR_ZONES; i++)
4806		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4807							 node_start_pfn,
4808							 node_end_pfn,
4809							 zones_size);
4810	pgdat->node_spanned_pages = totalpages;
4811
4812	realtotalpages = totalpages;
4813	for (i = 0; i < MAX_NR_ZONES; i++)
4814		realtotalpages -=
4815			zone_absent_pages_in_node(pgdat->node_id, i,
4816						  node_start_pfn, node_end_pfn,
4817						  zholes_size);
4818	pgdat->node_present_pages = realtotalpages;
4819	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4820							realtotalpages);
4821}
4822
4823#ifndef CONFIG_SPARSEMEM
4824/*
4825 * Calculate the size of the zone->blockflags rounded to an unsigned long
4826 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4827 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4828 * round what is now in bits to nearest long in bits, then return it in
4829 * bytes.
4830 */
4831static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4832{
4833	unsigned long usemapsize;
4834
4835	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4836	usemapsize = roundup(zonesize, pageblock_nr_pages);
4837	usemapsize = usemapsize >> pageblock_order;
4838	usemapsize *= NR_PAGEBLOCK_BITS;
4839	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4840
4841	return usemapsize / 8;
4842}
4843
4844static void __init setup_usemap(struct pglist_data *pgdat,
4845				struct zone *zone,
4846				unsigned long zone_start_pfn,
4847				unsigned long zonesize)
4848{
4849	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4850	zone->pageblock_flags = NULL;
4851	if (usemapsize)
4852		zone->pageblock_flags =
4853			memblock_virt_alloc_node_nopanic(usemapsize,
4854							 pgdat->node_id);
4855}
4856#else
4857static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4858				unsigned long zone_start_pfn, unsigned long zonesize) {}
4859#endif /* CONFIG_SPARSEMEM */
4860
4861#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4862
4863/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4864void __paginginit set_pageblock_order(void)
4865{
4866	unsigned int order;
4867
4868	/* Check that pageblock_nr_pages has not already been setup */
4869	if (pageblock_order)
4870		return;
4871
4872	if (HPAGE_SHIFT > PAGE_SHIFT)
4873		order = HUGETLB_PAGE_ORDER;
4874	else
4875		order = MAX_ORDER - 1;
4876
4877	/*
4878	 * Assume the largest contiguous order of interest is a huge page.
4879	 * This value may be variable depending on boot parameters on IA64 and
4880	 * powerpc.
4881	 */
4882	pageblock_order = order;
4883}
4884#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4885
4886/*
4887 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4888 * is unused as pageblock_order is set at compile-time. See
4889 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4890 * the kernel config
4891 */
4892void __paginginit set_pageblock_order(void)
4893{
4894}
4895
4896#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4897
4898static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4899						   unsigned long present_pages)
4900{
4901	unsigned long pages = spanned_pages;
4902
4903	/*
4904	 * Provide a more accurate estimation if there are holes within
4905	 * the zone and SPARSEMEM is in use. If there are holes within the
4906	 * zone, each populated memory region may cost us one or two extra
4907	 * memmap pages due to alignment because memmap pages for each
4908	 * populated regions may not naturally algined on page boundary.
4909	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4910	 */
4911	if (spanned_pages > present_pages + (present_pages >> 4) &&
4912	    IS_ENABLED(CONFIG_SPARSEMEM))
4913		pages = present_pages;
4914
4915	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4916}
4917
4918/*
4919 * Set up the zone data structures:
4920 *   - mark all pages reserved
4921 *   - mark all memory queues empty
4922 *   - clear the memory bitmaps
4923 *
4924 * NOTE: pgdat should get zeroed by caller.
4925 */
4926static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4927		unsigned long node_start_pfn, unsigned long node_end_pfn,
4928		unsigned long *zones_size, unsigned long *zholes_size)
4929{
4930	enum zone_type j;
4931	int nid = pgdat->node_id;
4932	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4933	int ret;
4934
4935	pgdat_resize_init(pgdat);
4936#ifdef CONFIG_NUMA_BALANCING
4937	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4938	pgdat->numabalancing_migrate_nr_pages = 0;
4939	pgdat->numabalancing_migrate_next_window = jiffies;
4940#endif
4941	init_waitqueue_head(&pgdat->kswapd_wait);
4942	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4943	pgdat_page_ext_init(pgdat);
4944
4945	for (j = 0; j < MAX_NR_ZONES; j++) {
4946		struct zone *zone = pgdat->node_zones + j;
4947		unsigned long size, realsize, freesize, memmap_pages;
4948
4949		size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4950						  node_end_pfn, zones_size);
4951		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4952								node_start_pfn,
4953								node_end_pfn,
4954								zholes_size);
4955
4956		/*
4957		 * Adjust freesize so that it accounts for how much memory
4958		 * is used by this zone for memmap. This affects the watermark
4959		 * and per-cpu initialisations
4960		 */
4961		memmap_pages = calc_memmap_size(size, realsize);
4962		if (!is_highmem_idx(j)) {
4963			if (freesize >= memmap_pages) {
4964				freesize -= memmap_pages;
4965				if (memmap_pages)
4966					printk(KERN_DEBUG
4967					       "  %s zone: %lu pages used for memmap\n",
4968					       zone_names[j], memmap_pages);
4969			} else
4970				printk(KERN_WARNING
4971					"  %s zone: %lu pages exceeds freesize %lu\n",
4972					zone_names[j], memmap_pages, freesize);
4973		}
4974
4975		/* Account for reserved pages */
4976		if (j == 0 && freesize > dma_reserve) {
4977			freesize -= dma_reserve;
4978			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4979					zone_names[0], dma_reserve);
4980		}
4981
4982		if (!is_highmem_idx(j))
4983			nr_kernel_pages += freesize;
4984		/* Charge for highmem memmap if there are enough kernel pages */
4985		else if (nr_kernel_pages > memmap_pages * 2)
4986			nr_kernel_pages -= memmap_pages;
4987		nr_all_pages += freesize;
4988
4989		zone->spanned_pages = size;
4990		zone->present_pages = realsize;
4991		/*
4992		 * Set an approximate value for lowmem here, it will be adjusted
4993		 * when the bootmem allocator frees pages into the buddy system.
4994		 * And all highmem pages will be managed by the buddy system.
4995		 */
4996		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4997#ifdef CONFIG_NUMA
4998		zone->node = nid;
4999		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5000						/ 100;
5001		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5002#endif
5003		zone->name = zone_names[j];
5004		spin_lock_init(&zone->lock);
5005		spin_lock_init(&zone->lru_lock);
5006		zone_seqlock_init(zone);
5007		zone->zone_pgdat = pgdat;
5008		zone_pcp_init(zone);
5009
5010		/* For bootup, initialized properly in watermark setup */
5011		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5012
5013		lruvec_init(&zone->lruvec);
5014		if (!size)
5015			continue;
5016
5017		set_pageblock_order();
5018		setup_usemap(pgdat, zone, zone_start_pfn, size);
5019		ret = init_currently_empty_zone(zone, zone_start_pfn,
5020						size, MEMMAP_EARLY);
5021		BUG_ON(ret);
5022		memmap_init(size, nid, j, zone_start_pfn);
5023		zone_start_pfn += size;
5024	}
5025}
5026
5027static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5028{
5029	/* Skip empty nodes */
5030	if (!pgdat->node_spanned_pages)
5031		return;
5032
5033#ifdef CONFIG_FLAT_NODE_MEM_MAP
5034	/* ia64 gets its own node_mem_map, before this, without bootmem */
5035	if (!pgdat->node_mem_map) {
5036		unsigned long size, start, end;
5037		struct page *map;
5038
5039		/*
5040		 * The zone's endpoints aren't required to be MAX_ORDER
5041		 * aligned but the node_mem_map endpoints must be in order
5042		 * for the buddy allocator to function correctly.
5043		 */
5044		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5045		end = pgdat_end_pfn(pgdat);
5046		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5047		size =  (end - start) * sizeof(struct page);
5048		map = alloc_remap(pgdat->node_id, size);
5049		if (!map)
5050			map = memblock_virt_alloc_node_nopanic(size,
5051							       pgdat->node_id);
5052		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5053	}
5054#ifndef CONFIG_NEED_MULTIPLE_NODES
5055	/*
5056	 * With no DISCONTIG, the global mem_map is just set as node 0's
5057	 */
5058	if (pgdat == NODE_DATA(0)) {
5059		mem_map = NODE_DATA(0)->node_mem_map;
5060#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5061		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5062			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5063#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5064	}
5065#endif
5066#endif /* CONFIG_FLAT_NODE_MEM_MAP */
5067}
5068
5069void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5070		unsigned long node_start_pfn, unsigned long *zholes_size)
5071{
5072	pg_data_t *pgdat = NODE_DATA(nid);
5073	unsigned long start_pfn = 0;
5074	unsigned long end_pfn = 0;
5075
5076	/* pg_data_t should be reset to zero when it's allocated */
5077	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5078
5079	pgdat->node_id = nid;
5080	pgdat->node_start_pfn = node_start_pfn;
5081#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5082	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5083	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5084		(u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
5085#endif
5086	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5087				  zones_size, zholes_size);
5088
5089	alloc_node_mem_map(pgdat);
5090#ifdef CONFIG_FLAT_NODE_MEM_MAP
5091	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5092		nid, (unsigned long)pgdat,
5093		(unsigned long)pgdat->node_mem_map);
5094#endif
5095
5096	free_area_init_core(pgdat, start_pfn, end_pfn,
5097			    zones_size, zholes_size);
5098}
5099
5100#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5101
5102#if MAX_NUMNODES > 1
5103/*
5104 * Figure out the number of possible node ids.
5105 */
5106void __init setup_nr_node_ids(void)
5107{
5108	unsigned int node;
5109	unsigned int highest = 0;
5110
5111	for_each_node_mask(node, node_possible_map)
5112		highest = node;
5113	nr_node_ids = highest + 1;
5114}
5115#endif
5116
5117/**
5118 * node_map_pfn_alignment - determine the maximum internode alignment
5119 *
5120 * This function should be called after node map is populated and sorted.
5121 * It calculates the maximum power of two alignment which can distinguish
5122 * all the nodes.
5123 *
5124 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5125 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5126 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5127 * shifted, 1GiB is enough and this function will indicate so.
5128 *
5129 * This is used to test whether pfn -> nid mapping of the chosen memory
5130 * model has fine enough granularity to avoid incorrect mapping for the
5131 * populated node map.
5132 *
5133 * Returns the determined alignment in pfn's.  0 if there is no alignment
5134 * requirement (single node).
5135 */
5136unsigned long __init node_map_pfn_alignment(void)
5137{
5138	unsigned long accl_mask = 0, last_end = 0;
5139	unsigned long start, end, mask;
5140	int last_nid = -1;
5141	int i, nid;
5142
5143	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5144		if (!start || last_nid < 0 || last_nid == nid) {
5145			last_nid = nid;
5146			last_end = end;
5147			continue;
5148		}
5149
5150		/*
5151		 * Start with a mask granular enough to pin-point to the
5152		 * start pfn and tick off bits one-by-one until it becomes
5153		 * too coarse to separate the current node from the last.
5154		 */
5155		mask = ~((1 << __ffs(start)) - 1);
5156		while (mask && last_end <= (start & (mask << 1)))
5157			mask <<= 1;
5158
5159		/* accumulate all internode masks */
5160		accl_mask |= mask;
5161	}
5162
5163	/* convert mask to number of pages */
5164	return ~accl_mask + 1;
5165}
5166
5167/* Find the lowest pfn for a node */
5168static unsigned long __init find_min_pfn_for_node(int nid)
5169{
5170	unsigned long min_pfn = ULONG_MAX;
5171	unsigned long start_pfn;
5172	int i;
5173
5174	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5175		min_pfn = min(min_pfn, start_pfn);
5176
5177	if (min_pfn == ULONG_MAX) {
5178		printk(KERN_WARNING
5179			"Could not find start_pfn for node %d\n", nid);
5180		return 0;
5181	}
5182
5183	return min_pfn;
5184}
5185
5186/**
5187 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5188 *
5189 * It returns the minimum PFN based on information provided via
5190 * memblock_set_node().
5191 */
5192unsigned long __init find_min_pfn_with_active_regions(void)
5193{
5194	return find_min_pfn_for_node(MAX_NUMNODES);
5195}
5196
5197/*
5198 * early_calculate_totalpages()
5199 * Sum pages in active regions for movable zone.
5200 * Populate N_MEMORY for calculating usable_nodes.
5201 */
5202static unsigned long __init early_calculate_totalpages(void)
5203{
5204	unsigned long totalpages = 0;
5205	unsigned long start_pfn, end_pfn;
5206	int i, nid;
5207
5208	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5209		unsigned long pages = end_pfn - start_pfn;
5210
5211		totalpages += pages;
5212		if (pages)
5213			node_set_state(nid, N_MEMORY);
5214	}
5215	return totalpages;
5216}
5217
5218/*
5219 * Find the PFN the Movable zone begins in each node. Kernel memory
5220 * is spread evenly between nodes as long as the nodes have enough
5221 * memory. When they don't, some nodes will have more kernelcore than
5222 * others
5223 */
5224static void __init find_zone_movable_pfns_for_nodes(void)
5225{
5226	int i, nid;
5227	unsigned long usable_startpfn;
5228	unsigned long kernelcore_node, kernelcore_remaining;
5229	/* save the state before borrow the nodemask */
5230	nodemask_t saved_node_state = node_states[N_MEMORY];
5231	unsigned long totalpages = early_calculate_totalpages();
5232	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5233	struct memblock_region *r;
5234
5235	/* Need to find movable_zone earlier when movable_node is specified. */
5236	find_usable_zone_for_movable();
5237
5238	/*
5239	 * If movable_node is specified, ignore kernelcore and movablecore
5240	 * options.
5241	 */
5242	if (movable_node_is_enabled()) {
5243		for_each_memblock(memory, r) {
5244			if (!memblock_is_hotpluggable(r))
5245				continue;
5246
5247			nid = r->nid;
5248
5249			usable_startpfn = PFN_DOWN(r->base);
5250			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5251				min(usable_startpfn, zone_movable_pfn[nid]) :
5252				usable_startpfn;
5253		}
5254
5255		goto out2;
5256	}
5257
5258	/*
5259	 * If movablecore=nn[KMG] was specified, calculate what size of
5260	 * kernelcore that corresponds so that memory usable for
5261	 * any allocation type is evenly spread. If both kernelcore
5262	 * and movablecore are specified, then the value of kernelcore
5263	 * will be used for required_kernelcore if it's greater than
5264	 * what movablecore would have allowed.
5265	 */
5266	if (required_movablecore) {
5267		unsigned long corepages;
5268
5269		/*
5270		 * Round-up so that ZONE_MOVABLE is at least as large as what
5271		 * was requested by the user
5272		 */
5273		required_movablecore =
5274			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5275		corepages = totalpages - required_movablecore;
5276
5277		required_kernelcore = max(required_kernelcore, corepages);
5278	}
5279
5280	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
5281	if (!required_kernelcore)
5282		goto out;
5283
5284	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5285	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5286
5287restart:
5288	/* Spread kernelcore memory as evenly as possible throughout nodes */
5289	kernelcore_node = required_kernelcore / usable_nodes;
5290	for_each_node_state(nid, N_MEMORY) {
5291		unsigned long start_pfn, end_pfn;
5292
5293		/*
5294		 * Recalculate kernelcore_node if the division per node
5295		 * now exceeds what is necessary to satisfy the requested
5296		 * amount of memory for the kernel
5297		 */
5298		if (required_kernelcore < kernelcore_node)
5299			kernelcore_node = required_kernelcore / usable_nodes;
5300
5301		/*
5302		 * As the map is walked, we track how much memory is usable
5303		 * by the kernel using kernelcore_remaining. When it is
5304		 * 0, the rest of the node is usable by ZONE_MOVABLE
5305		 */
5306		kernelcore_remaining = kernelcore_node;
5307
5308		/* Go through each range of PFNs within this node */
5309		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5310			unsigned long size_pages;
5311
5312			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5313			if (start_pfn >= end_pfn)
5314				continue;
5315
5316			/* Account for what is only usable for kernelcore */
5317			if (start_pfn < usable_startpfn) {
5318				unsigned long kernel_pages;
5319				kernel_pages = min(end_pfn, usable_startpfn)
5320								- start_pfn;
5321
5322				kernelcore_remaining -= min(kernel_pages,
5323							kernelcore_remaining);
5324				required_kernelcore -= min(kernel_pages,
5325							required_kernelcore);
5326
5327				/* Continue if range is now fully accounted */
5328				if (end_pfn <= usable_startpfn) {
5329
5330					/*
5331					 * Push zone_movable_pfn to the end so
5332					 * that if we have to rebalance
5333					 * kernelcore across nodes, we will
5334					 * not double account here
5335					 */
5336					zone_movable_pfn[nid] = end_pfn;
5337					continue;
5338				}
5339				start_pfn = usable_startpfn;
5340			}
5341
5342			/*
5343			 * The usable PFN range for ZONE_MOVABLE is from
5344			 * start_pfn->end_pfn. Calculate size_pages as the
5345			 * number of pages used as kernelcore
5346			 */
5347			size_pages = end_pfn - start_pfn;
5348			if (size_pages > kernelcore_remaining)
5349				size_pages = kernelcore_remaining;
5350			zone_movable_pfn[nid] = start_pfn + size_pages;
5351
5352			/*
5353			 * Some kernelcore has been met, update counts and
5354			 * break if the kernelcore for this node has been
5355			 * satisfied
5356			 */
5357			required_kernelcore -= min(required_kernelcore,
5358								size_pages);
5359			kernelcore_remaining -= size_pages;
5360			if (!kernelcore_remaining)
5361				break;
5362		}
5363	}
5364
5365	/*
5366	 * If there is still required_kernelcore, we do another pass with one
5367	 * less node in the count. This will push zone_movable_pfn[nid] further
5368	 * along on the nodes that still have memory until kernelcore is
5369	 * satisfied
5370	 */
5371	usable_nodes--;
5372	if (usable_nodes && required_kernelcore > usable_nodes)
5373		goto restart;
5374
5375out2:
5376	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5377	for (nid = 0; nid < MAX_NUMNODES; nid++)
5378		zone_movable_pfn[nid] =
5379			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5380
5381out:
5382	/* restore the node_state */
5383	node_states[N_MEMORY] = saved_node_state;
5384}
5385
5386/* Any regular or high memory on that node ? */
5387static void check_for_memory(pg_data_t *pgdat, int nid)
5388{
5389	enum zone_type zone_type;
5390
5391	if (N_MEMORY == N_NORMAL_MEMORY)
5392		return;
5393
5394	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5395		struct zone *zone = &pgdat->node_zones[zone_type];
5396		if (populated_zone(zone)) {
5397			node_set_state(nid, N_HIGH_MEMORY);
5398			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5399			    zone_type <= ZONE_NORMAL)
5400				node_set_state(nid, N_NORMAL_MEMORY);
5401			break;
5402		}
5403	}
5404}
5405
5406/**
5407 * free_area_init_nodes - Initialise all pg_data_t and zone data
5408 * @max_zone_pfn: an array of max PFNs for each zone
5409 *
5410 * This will call free_area_init_node() for each active node in the system.
5411 * Using the page ranges provided by memblock_set_node(), the size of each
5412 * zone in each node and their holes is calculated. If the maximum PFN
5413 * between two adjacent zones match, it is assumed that the zone is empty.
5414 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5415 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5416 * starts where the previous one ended. For example, ZONE_DMA32 starts
5417 * at arch_max_dma_pfn.
5418 */
5419void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5420{
5421	unsigned long start_pfn, end_pfn;
5422	int i, nid;
5423
5424	/* Record where the zone boundaries are */
5425	memset(arch_zone_lowest_possible_pfn, 0,
5426				sizeof(arch_zone_lowest_possible_pfn));
5427	memset(arch_zone_highest_possible_pfn, 0,
5428				sizeof(arch_zone_highest_possible_pfn));
5429	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5430	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5431	for (i = 1; i < MAX_NR_ZONES; i++) {
5432		if (i == ZONE_MOVABLE)
5433			continue;
5434		arch_zone_lowest_possible_pfn[i] =
5435			arch_zone_highest_possible_pfn[i-1];
5436		arch_zone_highest_possible_pfn[i] =
5437			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5438	}
5439	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5440	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5441
5442	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5443	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5444	find_zone_movable_pfns_for_nodes();
5445
5446	/* Print out the zone ranges */
5447	pr_info("Zone ranges:\n");
5448	for (i = 0; i < MAX_NR_ZONES; i++) {
5449		if (i == ZONE_MOVABLE)
5450			continue;
5451		pr_info("  %-8s ", zone_names[i]);
5452		if (arch_zone_lowest_possible_pfn[i] ==
5453				arch_zone_highest_possible_pfn[i])
5454			pr_cont("empty\n");
5455		else
5456			pr_cont("[mem %#018Lx-%#018Lx]\n",
5457				(u64)arch_zone_lowest_possible_pfn[i]
5458					<< PAGE_SHIFT,
5459				((u64)arch_zone_highest_possible_pfn[i]
5460					<< PAGE_SHIFT) - 1);
5461	}
5462
5463	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5464	pr_info("Movable zone start for each node\n");
5465	for (i = 0; i < MAX_NUMNODES; i++) {
5466		if (zone_movable_pfn[i])
5467			pr_info("  Node %d: %#018Lx\n", i,
5468			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5469	}
5470
5471	/* Print out the early node map */
5472	pr_info("Early memory node ranges\n");
5473	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5474		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5475			(u64)start_pfn << PAGE_SHIFT,
5476			((u64)end_pfn << PAGE_SHIFT) - 1);
5477
5478	/* Initialise every node */
5479	mminit_verify_pageflags_layout();
5480	setup_nr_node_ids();
5481	for_each_online_node(nid) {
5482		pg_data_t *pgdat = NODE_DATA(nid);
5483		free_area_init_node(nid, NULL,
5484				find_min_pfn_for_node(nid), NULL);
5485
5486		/* Any memory on that node */
5487		if (pgdat->node_present_pages)
5488			node_set_state(nid, N_MEMORY);
5489		check_for_memory(pgdat, nid);
5490	}
5491}
5492
5493static int __init cmdline_parse_core(char *p, unsigned long *core)
5494{
5495	unsigned long long coremem;
5496	if (!p)
5497		return -EINVAL;
5498
5499	coremem = memparse(p, &p);
5500	*core = coremem >> PAGE_SHIFT;
5501
5502	/* Paranoid check that UL is enough for the coremem value */
5503	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5504
5505	return 0;
5506}
5507
5508/*
5509 * kernelcore=size sets the amount of memory for use for allocations that
5510 * cannot be reclaimed or migrated.
5511 */
5512static int __init cmdline_parse_kernelcore(char *p)
5513{
5514	return cmdline_parse_core(p, &required_kernelcore);
5515}
5516
5517/*
5518 * movablecore=size sets the amount of memory for use for allocations that
5519 * can be reclaimed or migrated.
5520 */
5521static int __init cmdline_parse_movablecore(char *p)
5522{
5523	return cmdline_parse_core(p, &required_movablecore);
5524}
5525
5526early_param("kernelcore", cmdline_parse_kernelcore);
5527early_param("movablecore", cmdline_parse_movablecore);
5528
5529#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5530
5531void adjust_managed_page_count(struct page *page, long count)
5532{
5533	spin_lock(&managed_page_count_lock);
5534	page_zone(page)->managed_pages += count;
5535	totalram_pages += count;
5536#ifdef CONFIG_HIGHMEM
5537	if (PageHighMem(page))
5538		totalhigh_pages += count;
5539#endif
5540	spin_unlock(&managed_page_count_lock);
5541}
5542EXPORT_SYMBOL(adjust_managed_page_count);
5543
5544unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5545{
5546	void *pos;
5547	unsigned long pages = 0;
5548
5549	start = (void *)PAGE_ALIGN((unsigned long)start);
5550	end = (void *)((unsigned long)end & PAGE_MASK);
5551	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5552		if ((unsigned int)poison <= 0xFF)
5553			memset(pos, poison, PAGE_SIZE);
5554		free_reserved_page(virt_to_page(pos));
5555	}
5556
5557	if (pages && s)
5558		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5559			s, pages << (PAGE_SHIFT - 10), start, end);
5560
5561	return pages;
5562}
5563EXPORT_SYMBOL(free_reserved_area);
5564
5565#ifdef	CONFIG_HIGHMEM
5566void free_highmem_page(struct page *page)
5567{
5568	__free_reserved_page(page);
5569	totalram_pages++;
5570	page_zone(page)->managed_pages++;
5571	totalhigh_pages++;
5572}
5573#endif
5574
5575
5576void __init mem_init_print_info(const char *str)
5577{
5578	unsigned long physpages, codesize, datasize, rosize, bss_size;
5579	unsigned long init_code_size, init_data_size;
5580
5581	physpages = get_num_physpages();
5582	codesize = _etext - _stext;
5583	datasize = _edata - _sdata;
5584	rosize = __end_rodata - __start_rodata;
5585	bss_size = __bss_stop - __bss_start;
5586	init_data_size = __init_end - __init_begin;
5587	init_code_size = _einittext - _sinittext;
5588
5589	/*
5590	 * Detect special cases and adjust section sizes accordingly:
5591	 * 1) .init.* may be embedded into .data sections
5592	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5593	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5594	 * 3) .rodata.* may be embedded into .text or .data sections.
5595	 */
5596#define adj_init_size(start, end, size, pos, adj) \
5597	do { \
5598		if (start <= pos && pos < end && size > adj) \
5599			size -= adj; \
5600	} while (0)
5601
5602	adj_init_size(__init_begin, __init_end, init_data_size,
5603		     _sinittext, init_code_size);
5604	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5605	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5606	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5607	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5608
5609#undef	adj_init_size
5610
5611	pr_info("Memory: %luK/%luK available "
5612	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5613	       "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5614#ifdef	CONFIG_HIGHMEM
5615	       ", %luK highmem"
5616#endif
5617	       "%s%s)\n",
5618	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5619	       codesize >> 10, datasize >> 10, rosize >> 10,
5620	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5621	       (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5622	       totalcma_pages << (PAGE_SHIFT-10),
5623#ifdef	CONFIG_HIGHMEM
5624	       totalhigh_pages << (PAGE_SHIFT-10),
5625#endif
5626	       str ? ", " : "", str ? str : "");
5627}
5628
5629/**
5630 * set_dma_reserve - set the specified number of pages reserved in the first zone
5631 * @new_dma_reserve: The number of pages to mark reserved
5632 *
5633 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5634 * In the DMA zone, a significant percentage may be consumed by kernel image
5635 * and other unfreeable allocations which can skew the watermarks badly. This
5636 * function may optionally be used to account for unfreeable pages in the
5637 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5638 * smaller per-cpu batchsize.
5639 */
5640void __init set_dma_reserve(unsigned long new_dma_reserve)
5641{
5642	dma_reserve = new_dma_reserve;
5643}
5644
5645void __init free_area_init(unsigned long *zones_size)
5646{
5647	free_area_init_node(0, zones_size,
5648			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5649}
5650
5651static int page_alloc_cpu_notify(struct notifier_block *self,
5652				 unsigned long action, void *hcpu)
5653{
5654	int cpu = (unsigned long)hcpu;
5655
5656	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5657		lru_add_drain_cpu(cpu);
5658		drain_pages(cpu);
5659
5660		/*
5661		 * Spill the event counters of the dead processor
5662		 * into the current processors event counters.
5663		 * This artificially elevates the count of the current
5664		 * processor.
5665		 */
5666		vm_events_fold_cpu(cpu);
5667
5668		/*
5669		 * Zero the differential counters of the dead processor
5670		 * so that the vm statistics are consistent.
5671		 *
5672		 * This is only okay since the processor is dead and cannot
5673		 * race with what we are doing.
5674		 */
5675		cpu_vm_stats_fold(cpu);
5676	}
5677	return NOTIFY_OK;
5678}
5679
5680void __init page_alloc_init(void)
5681{
5682	hotcpu_notifier(page_alloc_cpu_notify, 0);
5683}
5684
5685/*
5686 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5687 *	or min_free_kbytes changes.
5688 */
5689static void calculate_totalreserve_pages(void)
5690{
5691	struct pglist_data *pgdat;
5692	unsigned long reserve_pages = 0;
5693	enum zone_type i, j;
5694
5695	for_each_online_pgdat(pgdat) {
5696		for (i = 0; i < MAX_NR_ZONES; i++) {
5697			struct zone *zone = pgdat->node_zones + i;
5698			long max = 0;
5699
5700			/* Find valid and maximum lowmem_reserve in the zone */
5701			for (j = i; j < MAX_NR_ZONES; j++) {
5702				if (zone->lowmem_reserve[j] > max)
5703					max = zone->lowmem_reserve[j];
5704			}
5705
5706			/* we treat the high watermark as reserved pages. */
5707			max += high_wmark_pages(zone);
5708
5709			if (max > zone->managed_pages)
5710				max = zone->managed_pages;
5711			reserve_pages += max;
5712			/*
5713			 * Lowmem reserves are not available to
5714			 * GFP_HIGHUSER page cache allocations and
5715			 * kswapd tries to balance zones to their high
5716			 * watermark.  As a result, neither should be
5717			 * regarded as dirtyable memory, to prevent a
5718			 * situation where reclaim has to clean pages
5719			 * in order to balance the zones.
5720			 */
5721			zone->dirty_balance_reserve = max;
5722		}
5723	}
5724	dirty_balance_reserve = reserve_pages;
5725	totalreserve_pages = reserve_pages;
5726}
5727
5728/*
5729 * setup_per_zone_lowmem_reserve - called whenever
5730 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5731 *	has a correct pages reserved value, so an adequate number of
5732 *	pages are left in the zone after a successful __alloc_pages().
5733 */
5734static void setup_per_zone_lowmem_reserve(void)
5735{
5736	struct pglist_data *pgdat;
5737	enum zone_type j, idx;
5738
5739	for_each_online_pgdat(pgdat) {
5740		for (j = 0; j < MAX_NR_ZONES; j++) {
5741			struct zone *zone = pgdat->node_zones + j;
5742			unsigned long managed_pages = zone->managed_pages;
5743
5744			zone->lowmem_reserve[j] = 0;
5745
5746			idx = j;
5747			while (idx) {
5748				struct zone *lower_zone;
5749
5750				idx--;
5751
5752				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5753					sysctl_lowmem_reserve_ratio[idx] = 1;
5754
5755				lower_zone = pgdat->node_zones + idx;
5756				lower_zone->lowmem_reserve[j] = managed_pages /
5757					sysctl_lowmem_reserve_ratio[idx];
5758				managed_pages += lower_zone->managed_pages;
5759			}
5760		}
5761	}
5762
5763	/* update totalreserve_pages */
5764	calculate_totalreserve_pages();
5765}
5766
5767static void __setup_per_zone_wmarks(void)
5768{
5769	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5770	unsigned long lowmem_pages = 0;
5771	struct zone *zone;
5772	unsigned long flags;
5773
5774	/* Calculate total number of !ZONE_HIGHMEM pages */
5775	for_each_zone(zone) {
5776		if (!is_highmem(zone))
5777			lowmem_pages += zone->managed_pages;
5778	}
5779
5780	for_each_zone(zone) {
5781		u64 tmp;
5782
5783		spin_lock_irqsave(&zone->lock, flags);
5784		tmp = (u64)pages_min * zone->managed_pages;
5785		do_div(tmp, lowmem_pages);
5786		if (is_highmem(zone)) {
5787			/*
5788			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5789			 * need highmem pages, so cap pages_min to a small
5790			 * value here.
5791			 *
5792			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5793			 * deltas control asynch page reclaim, and so should
5794			 * not be capped for highmem.
5795			 */
5796			unsigned long min_pages;
5797
5798			min_pages = zone->managed_pages / 1024;
5799			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5800			zone->watermark[WMARK_MIN] = min_pages;
5801		} else {
5802			/*
5803			 * If it's a lowmem zone, reserve a number of pages
5804			 * proportionate to the zone's size.
5805			 */
5806			zone->watermark[WMARK_MIN] = tmp;
5807		}
5808
5809		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5810		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5811
5812		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
5813			high_wmark_pages(zone) - low_wmark_pages(zone) -
5814			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5815
5816		setup_zone_migrate_reserve(zone);
5817		spin_unlock_irqrestore(&zone->lock, flags);
5818	}
5819
5820	/* update totalreserve_pages */
5821	calculate_totalreserve_pages();
5822}
5823
5824/**
5825 * setup_per_zone_wmarks - called when min_free_kbytes changes
5826 * or when memory is hot-{added|removed}
5827 *
5828 * Ensures that the watermark[min,low,high] values for each zone are set
5829 * correctly with respect to min_free_kbytes.
5830 */
5831void setup_per_zone_wmarks(void)
5832{
5833	mutex_lock(&zonelists_mutex);
5834	__setup_per_zone_wmarks();
5835	mutex_unlock(&zonelists_mutex);
5836}
5837
5838/*
5839 * The inactive anon list should be small enough that the VM never has to
5840 * do too much work, but large enough that each inactive page has a chance
5841 * to be referenced again before it is swapped out.
5842 *
5843 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5844 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5845 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5846 * the anonymous pages are kept on the inactive list.
5847 *
5848 * total     target    max
5849 * memory    ratio     inactive anon
5850 * -------------------------------------
5851 *   10MB       1         5MB
5852 *  100MB       1        50MB
5853 *    1GB       3       250MB
5854 *   10GB      10       0.9GB
5855 *  100GB      31         3GB
5856 *    1TB     101        10GB
5857 *   10TB     320        32GB
5858 */
5859static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5860{
5861	unsigned int gb, ratio;
5862
5863	/* Zone size in gigabytes */
5864	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5865	if (gb)
5866		ratio = int_sqrt(10 * gb);
5867	else
5868		ratio = 1;
5869
5870	zone->inactive_ratio = ratio;
5871}
5872
5873static void __meminit setup_per_zone_inactive_ratio(void)
5874{
5875	struct zone *zone;
5876
5877	for_each_zone(zone)
5878		calculate_zone_inactive_ratio(zone);
5879}
5880
5881/*
5882 * Initialise min_free_kbytes.
5883 *
5884 * For small machines we want it small (128k min).  For large machines
5885 * we want it large (64MB max).  But it is not linear, because network
5886 * bandwidth does not increase linearly with machine size.  We use
5887 *
5888 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5889 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5890 *
5891 * which yields
5892 *
5893 * 16MB:	512k
5894 * 32MB:	724k
5895 * 64MB:	1024k
5896 * 128MB:	1448k
5897 * 256MB:	2048k
5898 * 512MB:	2896k
5899 * 1024MB:	4096k
5900 * 2048MB:	5792k
5901 * 4096MB:	8192k
5902 * 8192MB:	11584k
5903 * 16384MB:	16384k
5904 */
5905int __meminit init_per_zone_wmark_min(void)
5906{
5907	unsigned long lowmem_kbytes;
5908	int new_min_free_kbytes;
5909
5910	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5911	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5912
5913	if (new_min_free_kbytes > user_min_free_kbytes) {
5914		min_free_kbytes = new_min_free_kbytes;
5915		if (min_free_kbytes < 128)
5916			min_free_kbytes = 128;
5917		if (min_free_kbytes > 65536)
5918			min_free_kbytes = 65536;
5919	} else {
5920		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5921				new_min_free_kbytes, user_min_free_kbytes);
5922	}
5923	setup_per_zone_wmarks();
5924	refresh_zone_stat_thresholds();
5925	setup_per_zone_lowmem_reserve();
5926	setup_per_zone_inactive_ratio();
5927	return 0;
5928}
5929module_init(init_per_zone_wmark_min)
5930
5931/*
5932 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5933 *	that we can call two helper functions whenever min_free_kbytes
5934 *	changes.
5935 */
5936int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5937	void __user *buffer, size_t *length, loff_t *ppos)
5938{
5939	int rc;
5940
5941	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5942	if (rc)
5943		return rc;
5944
5945	if (write) {
5946		user_min_free_kbytes = min_free_kbytes;
5947		setup_per_zone_wmarks();
5948	}
5949	return 0;
5950}
5951
5952#ifdef CONFIG_NUMA
5953int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5954	void __user *buffer, size_t *length, loff_t *ppos)
5955{
5956	struct zone *zone;
5957	int rc;
5958
5959	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5960	if (rc)
5961		return rc;
5962
5963	for_each_zone(zone)
5964		zone->min_unmapped_pages = (zone->managed_pages *
5965				sysctl_min_unmapped_ratio) / 100;
5966	return 0;
5967}
5968
5969int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5970	void __user *buffer, size_t *length, loff_t *ppos)
5971{
5972	struct zone *zone;
5973	int rc;
5974
5975	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5976	if (rc)
5977		return rc;
5978
5979	for_each_zone(zone)
5980		zone->min_slab_pages = (zone->managed_pages *
5981				sysctl_min_slab_ratio) / 100;
5982	return 0;
5983}
5984#endif
5985
5986/*
5987 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5988 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5989 *	whenever sysctl_lowmem_reserve_ratio changes.
5990 *
5991 * The reserve ratio obviously has absolutely no relation with the
5992 * minimum watermarks. The lowmem reserve ratio can only make sense
5993 * if in function of the boot time zone sizes.
5994 */
5995int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5996	void __user *buffer, size_t *length, loff_t *ppos)
5997{
5998	proc_dointvec_minmax(table, write, buffer, length, ppos);
5999	setup_per_zone_lowmem_reserve();
6000	return 0;
6001}
6002
6003/*
6004 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6005 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
6006 * pagelist can have before it gets flushed back to buddy allocator.
6007 */
6008int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6009	void __user *buffer, size_t *length, loff_t *ppos)
6010{
6011	struct zone *zone;
6012	int old_percpu_pagelist_fraction;
6013	int ret;
6014
6015	mutex_lock(&pcp_batch_high_lock);
6016	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6017
6018	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6019	if (!write || ret < 0)
6020		goto out;
6021
6022	/* Sanity checking to avoid pcp imbalance */
6023	if (percpu_pagelist_fraction &&
6024	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6025		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6026		ret = -EINVAL;
6027		goto out;
6028	}
6029
6030	/* No change? */
6031	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6032		goto out;
6033
6034	for_each_populated_zone(zone) {
6035		unsigned int cpu;
6036
6037		for_each_possible_cpu(cpu)
6038			pageset_set_high_and_batch(zone,
6039					per_cpu_ptr(zone->pageset, cpu));
6040	}
6041out:
6042	mutex_unlock(&pcp_batch_high_lock);
6043	return ret;
6044}
6045
6046int hashdist = HASHDIST_DEFAULT;
6047
6048#ifdef CONFIG_NUMA
6049static int __init set_hashdist(char *str)
6050{
6051	if (!str)
6052		return 0;
6053	hashdist = simple_strtoul(str, &str, 0);
6054	return 1;
6055}
6056__setup("hashdist=", set_hashdist);
6057#endif
6058
6059/*
6060 * allocate a large system hash table from bootmem
6061 * - it is assumed that the hash table must contain an exact power-of-2
6062 *   quantity of entries
6063 * - limit is the number of hash buckets, not the total allocation size
6064 */
6065void *__init alloc_large_system_hash(const char *tablename,
6066				     unsigned long bucketsize,
6067				     unsigned long numentries,
6068				     int scale,
6069				     int flags,
6070				     unsigned int *_hash_shift,
6071				     unsigned int *_hash_mask,
6072				     unsigned long low_limit,
6073				     unsigned long high_limit)
6074{
6075	unsigned long long max = high_limit;
6076	unsigned long log2qty, size;
6077	void *table = NULL;
6078
6079	/* allow the kernel cmdline to have a say */
6080	if (!numentries) {
6081		/* round applicable memory size up to nearest megabyte */
6082		numentries = nr_kernel_pages;
6083
6084		/* It isn't necessary when PAGE_SIZE >= 1MB */
6085		if (PAGE_SHIFT < 20)
6086			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6087
6088		/* limit to 1 bucket per 2^scale bytes of low memory */
6089		if (scale > PAGE_SHIFT)
6090			numentries >>= (scale - PAGE_SHIFT);
6091		else
6092			numentries <<= (PAGE_SHIFT - scale);
6093
6094		/* Make sure we've got at least a 0-order allocation.. */
6095		if (unlikely(flags & HASH_SMALL)) {
6096			/* Makes no sense without HASH_EARLY */
6097			WARN_ON(!(flags & HASH_EARLY));
6098			if (!(numentries >> *_hash_shift)) {
6099				numentries = 1UL << *_hash_shift;
6100				BUG_ON(!numentries);
6101			}
6102		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6103			numentries = PAGE_SIZE / bucketsize;
6104	}
6105	numentries = roundup_pow_of_two(numentries);
6106
6107	/* limit allocation size to 1/16 total memory by default */
6108	if (max == 0) {
6109		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6110		do_div(max, bucketsize);
6111	}
6112	max = min(max, 0x80000000ULL);
6113
6114	if (numentries < low_limit)
6115		numentries = low_limit;
6116	if (numentries > max)
6117		numentries = max;
6118
6119	log2qty = ilog2(numentries);
6120
6121	do {
6122		size = bucketsize << log2qty;
6123		if (flags & HASH_EARLY)
6124			table = memblock_virt_alloc_nopanic(size, 0);
6125		else if (hashdist)
6126			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6127		else {
6128			/*
6129			 * If bucketsize is not a power-of-two, we may free
6130			 * some pages at the end of hash table which
6131			 * alloc_pages_exact() automatically does
6132			 */
6133			if (get_order(size) < MAX_ORDER) {
6134				table = alloc_pages_exact(size, GFP_ATOMIC);
6135				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6136			}
6137		}
6138	} while (!table && size > PAGE_SIZE && --log2qty);
6139
6140	if (!table)
6141		panic("Failed to allocate %s hash table\n", tablename);
6142
6143	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6144	       tablename,
6145	       (1UL << log2qty),
6146	       ilog2(size) - PAGE_SHIFT,
6147	       size);
6148
6149	if (_hash_shift)
6150		*_hash_shift = log2qty;
6151	if (_hash_mask)
6152		*_hash_mask = (1 << log2qty) - 1;
6153
6154	return table;
6155}
6156
6157/* Return a pointer to the bitmap storing bits affecting a block of pages */
6158static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6159							unsigned long pfn)
6160{
6161#ifdef CONFIG_SPARSEMEM
6162	return __pfn_to_section(pfn)->pageblock_flags;
6163#else
6164	return zone->pageblock_flags;
6165#endif /* CONFIG_SPARSEMEM */
6166}
6167
6168static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6169{
6170#ifdef CONFIG_SPARSEMEM
6171	pfn &= (PAGES_PER_SECTION-1);
6172	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6173#else
6174	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6175	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6176#endif /* CONFIG_SPARSEMEM */
6177}
6178
6179/**
6180 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6181 * @page: The page within the block of interest
6182 * @pfn: The target page frame number
6183 * @end_bitidx: The last bit of interest to retrieve
6184 * @mask: mask of bits that the caller is interested in
6185 *
6186 * Return: pageblock_bits flags
6187 */
6188unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6189					unsigned long end_bitidx,
6190					unsigned long mask)
6191{
6192	struct zone *zone;
6193	unsigned long *bitmap;
6194	unsigned long bitidx, word_bitidx;
6195	unsigned long word;
6196
6197	zone = page_zone(page);
6198	bitmap = get_pageblock_bitmap(zone, pfn);
6199	bitidx = pfn_to_bitidx(zone, pfn);
6200	word_bitidx = bitidx / BITS_PER_LONG;
6201	bitidx &= (BITS_PER_LONG-1);
6202
6203	word = bitmap[word_bitidx];
6204	bitidx += end_bitidx;
6205	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6206}
6207
6208/**
6209 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6210 * @page: The page within the block of interest
6211 * @flags: The flags to set
6212 * @pfn: The target page frame number
6213 * @end_bitidx: The last bit of interest
6214 * @mask: mask of bits that the caller is interested in
6215 */
6216void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6217					unsigned long pfn,
6218					unsigned long end_bitidx,
6219					unsigned long mask)
6220{
6221	struct zone *zone;
6222	unsigned long *bitmap;
6223	unsigned long bitidx, word_bitidx;
6224	unsigned long old_word, word;
6225
6226	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6227
6228	zone = page_zone(page);
6229	bitmap = get_pageblock_bitmap(zone, pfn);
6230	bitidx = pfn_to_bitidx(zone, pfn);
6231	word_bitidx = bitidx / BITS_PER_LONG;
6232	bitidx &= (BITS_PER_LONG-1);
6233
6234	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6235
6236	bitidx += end_bitidx;
6237	mask <<= (BITS_PER_LONG - bitidx - 1);
6238	flags <<= (BITS_PER_LONG - bitidx - 1);
6239
6240	word = READ_ONCE(bitmap[word_bitidx]);
6241	for (;;) {
6242		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6243		if (word == old_word)
6244			break;
6245		word = old_word;
6246	}
6247}
6248
6249/*
6250 * This function checks whether pageblock includes unmovable pages or not.
6251 * If @count is not zero, it is okay to include less @count unmovable pages
6252 *
6253 * PageLRU check without isolation or lru_lock could race so that
6254 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6255 * expect this function should be exact.
6256 */
6257bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6258			 bool skip_hwpoisoned_pages)
6259{
6260	unsigned long pfn, iter, found;
6261	int mt;
6262
6263	/*
6264	 * For avoiding noise data, lru_add_drain_all() should be called
6265	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6266	 */
6267	if (zone_idx(zone) == ZONE_MOVABLE)
6268		return false;
6269	mt = get_pageblock_migratetype(page);
6270	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6271		return false;
6272
6273	pfn = page_to_pfn(page);
6274	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6275		unsigned long check = pfn + iter;
6276
6277		if (!pfn_valid_within(check))
6278			continue;
6279
6280		page = pfn_to_page(check);
6281
6282		/*
6283		 * Hugepages are not in LRU lists, but they're movable.
6284		 * We need not scan over tail pages bacause we don't
6285		 * handle each tail page individually in migration.
6286		 */
6287		if (PageHuge(page)) {
6288			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6289			continue;
6290		}
6291
6292		/*
6293		 * We can't use page_count without pin a page
6294		 * because another CPU can free compound page.
6295		 * This check already skips compound tails of THP
6296		 * because their page->_count is zero at all time.
6297		 */
6298		if (!atomic_read(&page->_count)) {
6299			if (PageBuddy(page))
6300				iter += (1 << page_order(page)) - 1;
6301			continue;
6302		}
6303
6304		/*
6305		 * The HWPoisoned page may be not in buddy system, and
6306		 * page_count() is not 0.
6307		 */
6308		if (skip_hwpoisoned_pages && PageHWPoison(page))
6309			continue;
6310
6311		if (!PageLRU(page))
6312			found++;
6313		/*
6314		 * If there are RECLAIMABLE pages, we need to check
6315		 * it.  But now, memory offline itself doesn't call
6316		 * shrink_node_slabs() and it still to be fixed.
6317		 */
6318		/*
6319		 * If the page is not RAM, page_count()should be 0.
6320		 * we don't need more check. This is an _used_ not-movable page.
6321		 *
6322		 * The problematic thing here is PG_reserved pages. PG_reserved
6323		 * is set to both of a memory hole page and a _used_ kernel
6324		 * page at boot.
6325		 */
6326		if (found > count)
6327			return true;
6328	}
6329	return false;
6330}
6331
6332bool is_pageblock_removable_nolock(struct page *page)
6333{
6334	struct zone *zone;
6335	unsigned long pfn;
6336
6337	/*
6338	 * We have to be careful here because we are iterating over memory
6339	 * sections which are not zone aware so we might end up outside of
6340	 * the zone but still within the section.
6341	 * We have to take care about the node as well. If the node is offline
6342	 * its NODE_DATA will be NULL - see page_zone.
6343	 */
6344	if (!node_online(page_to_nid(page)))
6345		return false;
6346
6347	zone = page_zone(page);
6348	pfn = page_to_pfn(page);
6349	if (!zone_spans_pfn(zone, pfn))
6350		return false;
6351
6352	return !has_unmovable_pages(zone, page, 0, true);
6353}
6354
6355#ifdef CONFIG_CMA
6356
6357static unsigned long pfn_max_align_down(unsigned long pfn)
6358{
6359	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6360			     pageblock_nr_pages) - 1);
6361}
6362
6363static unsigned long pfn_max_align_up(unsigned long pfn)
6364{
6365	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6366				pageblock_nr_pages));
6367}
6368
6369/* [start, end) must belong to a single zone. */
6370static int __alloc_contig_migrate_range(struct compact_control *cc,
6371					unsigned long start, unsigned long end)
6372{
6373	/* This function is based on compact_zone() from compaction.c. */
6374	unsigned long nr_reclaimed;
6375	unsigned long pfn = start;
6376	unsigned int tries = 0;
6377	int ret = 0;
6378
6379	migrate_prep();
6380
6381	while (pfn < end || !list_empty(&cc->migratepages)) {
6382		if (fatal_signal_pending(current)) {
6383			ret = -EINTR;
6384			break;
6385		}
6386
6387		if (list_empty(&cc->migratepages)) {
6388			cc->nr_migratepages = 0;
6389			pfn = isolate_migratepages_range(cc, pfn, end);
6390			if (!pfn) {
6391				ret = -EINTR;
6392				break;
6393			}
6394			tries = 0;
6395		} else if (++tries == 5) {
6396			ret = ret < 0 ? ret : -EBUSY;
6397			break;
6398		}
6399
6400		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6401							&cc->migratepages);
6402		cc->nr_migratepages -= nr_reclaimed;
6403
6404		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6405				    NULL, 0, cc->mode, MR_CMA);
6406	}
6407	if (ret < 0) {
6408		putback_movable_pages(&cc->migratepages);
6409		return ret;
6410	}
6411	return 0;
6412}
6413
6414/**
6415 * alloc_contig_range() -- tries to allocate given range of pages
6416 * @start:	start PFN to allocate
6417 * @end:	one-past-the-last PFN to allocate
6418 * @migratetype:	migratetype of the underlaying pageblocks (either
6419 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6420 *			in range must have the same migratetype and it must
6421 *			be either of the two.
6422 *
6423 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6424 * aligned, however it's the caller's responsibility to guarantee that
6425 * we are the only thread that changes migrate type of pageblocks the
6426 * pages fall in.
6427 *
6428 * The PFN range must belong to a single zone.
6429 *
6430 * Returns zero on success or negative error code.  On success all
6431 * pages which PFN is in [start, end) are allocated for the caller and
6432 * need to be freed with free_contig_range().
6433 */
6434int alloc_contig_range(unsigned long start, unsigned long end,
6435		       unsigned migratetype)
6436{
6437	unsigned long outer_start, outer_end;
6438	unsigned int order;
6439	int ret = 0;
6440
6441	struct compact_control cc = {
6442		.nr_migratepages = 0,
6443		.order = -1,
6444		.zone = page_zone(pfn_to_page(start)),
6445		.mode = MIGRATE_SYNC,
6446		.ignore_skip_hint = true,
6447	};
6448	INIT_LIST_HEAD(&cc.migratepages);
6449
6450	/*
6451	 * What we do here is we mark all pageblocks in range as
6452	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6453	 * have different sizes, and due to the way page allocator
6454	 * work, we align the range to biggest of the two pages so
6455	 * that page allocator won't try to merge buddies from
6456	 * different pageblocks and change MIGRATE_ISOLATE to some
6457	 * other migration type.
6458	 *
6459	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6460	 * migrate the pages from an unaligned range (ie. pages that
6461	 * we are interested in).  This will put all the pages in
6462	 * range back to page allocator as MIGRATE_ISOLATE.
6463	 *
6464	 * When this is done, we take the pages in range from page
6465	 * allocator removing them from the buddy system.  This way
6466	 * page allocator will never consider using them.
6467	 *
6468	 * This lets us mark the pageblocks back as
6469	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6470	 * aligned range but not in the unaligned, original range are
6471	 * put back to page allocator so that buddy can use them.
6472	 */
6473
6474	ret = start_isolate_page_range(pfn_max_align_down(start),
6475				       pfn_max_align_up(end), migratetype,
6476				       false);
6477	if (ret)
6478		return ret;
6479
6480	ret = __alloc_contig_migrate_range(&cc, start, end);
6481	if (ret)
6482		goto done;
6483
6484	/*
6485	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6486	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6487	 * more, all pages in [start, end) are free in page allocator.
6488	 * What we are going to do is to allocate all pages from
6489	 * [start, end) (that is remove them from page allocator).
6490	 *
6491	 * The only problem is that pages at the beginning and at the
6492	 * end of interesting range may be not aligned with pages that
6493	 * page allocator holds, ie. they can be part of higher order
6494	 * pages.  Because of this, we reserve the bigger range and
6495	 * once this is done free the pages we are not interested in.
6496	 *
6497	 * We don't have to hold zone->lock here because the pages are
6498	 * isolated thus they won't get removed from buddy.
6499	 */
6500
6501	lru_add_drain_all();
6502	drain_all_pages(cc.zone);
6503
6504	order = 0;
6505	outer_start = start;
6506	while (!PageBuddy(pfn_to_page(outer_start))) {
6507		if (++order >= MAX_ORDER) {
6508			ret = -EBUSY;
6509			goto done;
6510		}
6511		outer_start &= ~0UL << order;
6512	}
6513
6514	/* Make sure the range is really isolated. */
6515	if (test_pages_isolated(outer_start, end, false)) {
6516		pr_info("%s: [%lx, %lx) PFNs busy\n",
6517			__func__, outer_start, end);
6518		ret = -EBUSY;
6519		goto done;
6520	}
6521
6522	/* Grab isolated pages from freelists. */
6523	outer_end = isolate_freepages_range(&cc, outer_start, end);
6524	if (!outer_end) {
6525		ret = -EBUSY;
6526		goto done;
6527	}
6528
6529	/* Free head and tail (if any) */
6530	if (start != outer_start)
6531		free_contig_range(outer_start, start - outer_start);
6532	if (end != outer_end)
6533		free_contig_range(end, outer_end - end);
6534
6535done:
6536	undo_isolate_page_range(pfn_max_align_down(start),
6537				pfn_max_align_up(end), migratetype);
6538	return ret;
6539}
6540
6541void free_contig_range(unsigned long pfn, unsigned nr_pages)
6542{
6543	unsigned int count = 0;
6544
6545	for (; nr_pages--; pfn++) {
6546		struct page *page = pfn_to_page(pfn);
6547
6548		count += page_count(page) != 1;
6549		__free_page(page);
6550	}
6551	WARN(count != 0, "%d pages are still in use!\n", count);
6552}
6553#endif
6554
6555#ifdef CONFIG_MEMORY_HOTPLUG
6556/*
6557 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6558 * page high values need to be recalulated.
6559 */
6560void __meminit zone_pcp_update(struct zone *zone)
6561{
6562	unsigned cpu;
6563	mutex_lock(&pcp_batch_high_lock);
6564	for_each_possible_cpu(cpu)
6565		pageset_set_high_and_batch(zone,
6566				per_cpu_ptr(zone->pageset, cpu));
6567	mutex_unlock(&pcp_batch_high_lock);
6568}
6569#endif
6570
6571void zone_pcp_reset(struct zone *zone)
6572{
6573	unsigned long flags;
6574	int cpu;
6575	struct per_cpu_pageset *pset;
6576
6577	/* avoid races with drain_pages()  */
6578	local_irq_save(flags);
6579	if (zone->pageset != &boot_pageset) {
6580		for_each_online_cpu(cpu) {
6581			pset = per_cpu_ptr(zone->pageset, cpu);
6582			drain_zonestat(zone, pset);
6583		}
6584		free_percpu(zone->pageset);
6585		zone->pageset = &boot_pageset;
6586	}
6587	local_irq_restore(flags);
6588}
6589
6590#ifdef CONFIG_MEMORY_HOTREMOVE
6591/*
6592 * All pages in the range must be isolated before calling this.
6593 */
6594void
6595__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6596{
6597	struct page *page;
6598	struct zone *zone;
6599	unsigned int order, i;
6600	unsigned long pfn;
6601	unsigned long flags;
6602	/* find the first valid pfn */
6603	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6604		if (pfn_valid(pfn))
6605			break;
6606	if (pfn == end_pfn)
6607		return;
6608	zone = page_zone(pfn_to_page(pfn));
6609	spin_lock_irqsave(&zone->lock, flags);
6610	pfn = start_pfn;
6611	while (pfn < end_pfn) {
6612		if (!pfn_valid(pfn)) {
6613			pfn++;
6614			continue;
6615		}
6616		page = pfn_to_page(pfn);
6617		/*
6618		 * The HWPoisoned page may be not in buddy system, and
6619		 * page_count() is not 0.
6620		 */
6621		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6622			pfn++;
6623			SetPageReserved(page);
6624			continue;
6625		}
6626
6627		BUG_ON(page_count(page));
6628		BUG_ON(!PageBuddy(page));
6629		order = page_order(page);
6630#ifdef CONFIG_DEBUG_VM
6631		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6632		       pfn, 1 << order, end_pfn);
6633#endif
6634		list_del(&page->lru);
6635		rmv_page_order(page);
6636		zone->free_area[order].nr_free--;
6637		for (i = 0; i < (1 << order); i++)
6638			SetPageReserved((page+i));
6639		pfn += (1 << order);
6640	}
6641	spin_unlock_irqrestore(&zone->lock, flags);
6642}
6643#endif
6644
6645#ifdef CONFIG_MEMORY_FAILURE
6646bool is_free_buddy_page(struct page *page)
6647{
6648	struct zone *zone = page_zone(page);
6649	unsigned long pfn = page_to_pfn(page);
6650	unsigned long flags;
6651	unsigned int order;
6652
6653	spin_lock_irqsave(&zone->lock, flags);
6654	for (order = 0; order < MAX_ORDER; order++) {
6655		struct page *page_head = page - (pfn & ((1 << order) - 1));
6656
6657		if (PageBuddy(page_head) && page_order(page_head) >= order)
6658			break;
6659	}
6660	spin_unlock_irqrestore(&zone->lock, flags);
6661
6662	return order < MAX_ORDER;
6663}
6664#endif
6665