1/* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14#include <linux/kernel.h> 15#include <linux/export.h> 16#include <linux/spinlock.h> 17#include <linux/fs.h> 18#include <linux/mm.h> 19#include <linux/swap.h> 20#include <linux/slab.h> 21#include <linux/pagemap.h> 22#include <linux/writeback.h> 23#include <linux/init.h> 24#include <linux/backing-dev.h> 25#include <linux/task_io_accounting_ops.h> 26#include <linux/blkdev.h> 27#include <linux/mpage.h> 28#include <linux/rmap.h> 29#include <linux/percpu.h> 30#include <linux/notifier.h> 31#include <linux/smp.h> 32#include <linux/sysctl.h> 33#include <linux/cpu.h> 34#include <linux/syscalls.h> 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */ 36#include <linux/pagevec.h> 37#include <linux/timer.h> 38#include <linux/sched/rt.h> 39#include <linux/mm_inline.h> 40#include <trace/events/writeback.h> 41 42#include "internal.h" 43 44/* 45 * Sleep at most 200ms at a time in balance_dirty_pages(). 46 */ 47#define MAX_PAUSE max(HZ/5, 1) 48 49/* 50 * Try to keep balance_dirty_pages() call intervals higher than this many pages 51 * by raising pause time to max_pause when falls below it. 52 */ 53#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 54 55/* 56 * Estimate write bandwidth at 200ms intervals. 57 */ 58#define BANDWIDTH_INTERVAL max(HZ/5, 1) 59 60#define RATELIMIT_CALC_SHIFT 10 61 62/* 63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 64 * will look to see if it needs to force writeback or throttling. 65 */ 66static long ratelimit_pages = 32; 67 68/* The following parameters are exported via /proc/sys/vm */ 69 70/* 71 * Start background writeback (via writeback threads) at this percentage 72 */ 73int dirty_background_ratio = 10; 74 75/* 76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 77 * dirty_background_ratio * the amount of dirtyable memory 78 */ 79unsigned long dirty_background_bytes; 80 81/* 82 * free highmem will not be subtracted from the total free memory 83 * for calculating free ratios if vm_highmem_is_dirtyable is true 84 */ 85int vm_highmem_is_dirtyable; 86 87/* 88 * The generator of dirty data starts writeback at this percentage 89 */ 90int vm_dirty_ratio = 20; 91 92/* 93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 94 * vm_dirty_ratio * the amount of dirtyable memory 95 */ 96unsigned long vm_dirty_bytes; 97 98/* 99 * The interval between `kupdate'-style writebacks 100 */ 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 102 103EXPORT_SYMBOL_GPL(dirty_writeback_interval); 104 105/* 106 * The longest time for which data is allowed to remain dirty 107 */ 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 109 110/* 111 * Flag that makes the machine dump writes/reads and block dirtyings. 112 */ 113int block_dump; 114 115/* 116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 117 * a full sync is triggered after this time elapses without any disk activity. 118 */ 119int laptop_mode; 120 121EXPORT_SYMBOL(laptop_mode); 122 123/* End of sysctl-exported parameters */ 124 125unsigned long global_dirty_limit; 126 127/* 128 * Scale the writeback cache size proportional to the relative writeout speeds. 129 * 130 * We do this by keeping a floating proportion between BDIs, based on page 131 * writeback completions [end_page_writeback()]. Those devices that write out 132 * pages fastest will get the larger share, while the slower will get a smaller 133 * share. 134 * 135 * We use page writeout completions because we are interested in getting rid of 136 * dirty pages. Having them written out is the primary goal. 137 * 138 * We introduce a concept of time, a period over which we measure these events, 139 * because demand can/will vary over time. The length of this period itself is 140 * measured in page writeback completions. 141 * 142 */ 143static struct fprop_global writeout_completions; 144 145static void writeout_period(unsigned long t); 146/* Timer for aging of writeout_completions */ 147static struct timer_list writeout_period_timer = 148 TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0); 149static unsigned long writeout_period_time = 0; 150 151/* 152 * Length of period for aging writeout fractions of bdis. This is an 153 * arbitrarily chosen number. The longer the period, the slower fractions will 154 * reflect changes in current writeout rate. 155 */ 156#define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 157 158/* 159 * In a memory zone, there is a certain amount of pages we consider 160 * available for the page cache, which is essentially the number of 161 * free and reclaimable pages, minus some zone reserves to protect 162 * lowmem and the ability to uphold the zone's watermarks without 163 * requiring writeback. 164 * 165 * This number of dirtyable pages is the base value of which the 166 * user-configurable dirty ratio is the effictive number of pages that 167 * are allowed to be actually dirtied. Per individual zone, or 168 * globally by using the sum of dirtyable pages over all zones. 169 * 170 * Because the user is allowed to specify the dirty limit globally as 171 * absolute number of bytes, calculating the per-zone dirty limit can 172 * require translating the configured limit into a percentage of 173 * global dirtyable memory first. 174 */ 175 176/** 177 * zone_dirtyable_memory - number of dirtyable pages in a zone 178 * @zone: the zone 179 * 180 * Returns the zone's number of pages potentially available for dirty 181 * page cache. This is the base value for the per-zone dirty limits. 182 */ 183static unsigned long zone_dirtyable_memory(struct zone *zone) 184{ 185 unsigned long nr_pages; 186 187 nr_pages = zone_page_state(zone, NR_FREE_PAGES); 188 nr_pages -= min(nr_pages, zone->dirty_balance_reserve); 189 190 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE); 191 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE); 192 193 return nr_pages; 194} 195 196static unsigned long highmem_dirtyable_memory(unsigned long total) 197{ 198#ifdef CONFIG_HIGHMEM 199 int node; 200 unsigned long x = 0; 201 202 for_each_node_state(node, N_HIGH_MEMORY) { 203 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; 204 205 x += zone_dirtyable_memory(z); 206 } 207 /* 208 * Unreclaimable memory (kernel memory or anonymous memory 209 * without swap) can bring down the dirtyable pages below 210 * the zone's dirty balance reserve and the above calculation 211 * will underflow. However we still want to add in nodes 212 * which are below threshold (negative values) to get a more 213 * accurate calculation but make sure that the total never 214 * underflows. 215 */ 216 if ((long)x < 0) 217 x = 0; 218 219 /* 220 * Make sure that the number of highmem pages is never larger 221 * than the number of the total dirtyable memory. This can only 222 * occur in very strange VM situations but we want to make sure 223 * that this does not occur. 224 */ 225 return min(x, total); 226#else 227 return 0; 228#endif 229} 230 231/** 232 * global_dirtyable_memory - number of globally dirtyable pages 233 * 234 * Returns the global number of pages potentially available for dirty 235 * page cache. This is the base value for the global dirty limits. 236 */ 237static unsigned long global_dirtyable_memory(void) 238{ 239 unsigned long x; 240 241 x = global_page_state(NR_FREE_PAGES); 242 x -= min(x, dirty_balance_reserve); 243 244 x += global_page_state(NR_INACTIVE_FILE); 245 x += global_page_state(NR_ACTIVE_FILE); 246 247 if (!vm_highmem_is_dirtyable) 248 x -= highmem_dirtyable_memory(x); 249 250 return x + 1; /* Ensure that we never return 0 */ 251} 252 253/* 254 * global_dirty_limits - background-writeback and dirty-throttling thresholds 255 * 256 * Calculate the dirty thresholds based on sysctl parameters 257 * - vm.dirty_background_ratio or vm.dirty_background_bytes 258 * - vm.dirty_ratio or vm.dirty_bytes 259 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and 260 * real-time tasks. 261 */ 262void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 263{ 264 const unsigned long available_memory = global_dirtyable_memory(); 265 unsigned long background; 266 unsigned long dirty; 267 struct task_struct *tsk; 268 269 if (vm_dirty_bytes) 270 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); 271 else 272 dirty = (vm_dirty_ratio * available_memory) / 100; 273 274 if (dirty_background_bytes) 275 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); 276 else 277 background = (dirty_background_ratio * available_memory) / 100; 278 279 if (background >= dirty) 280 background = dirty / 2; 281 tsk = current; 282 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 283 background += background / 4; 284 dirty += dirty / 4; 285 } 286 *pbackground = background; 287 *pdirty = dirty; 288 trace_global_dirty_state(background, dirty); 289} 290 291/** 292 * zone_dirty_limit - maximum number of dirty pages allowed in a zone 293 * @zone: the zone 294 * 295 * Returns the maximum number of dirty pages allowed in a zone, based 296 * on the zone's dirtyable memory. 297 */ 298static unsigned long zone_dirty_limit(struct zone *zone) 299{ 300 unsigned long zone_memory = zone_dirtyable_memory(zone); 301 struct task_struct *tsk = current; 302 unsigned long dirty; 303 304 if (vm_dirty_bytes) 305 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 306 zone_memory / global_dirtyable_memory(); 307 else 308 dirty = vm_dirty_ratio * zone_memory / 100; 309 310 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) 311 dirty += dirty / 4; 312 313 return dirty; 314} 315 316/** 317 * zone_dirty_ok - tells whether a zone is within its dirty limits 318 * @zone: the zone to check 319 * 320 * Returns %true when the dirty pages in @zone are within the zone's 321 * dirty limit, %false if the limit is exceeded. 322 */ 323bool zone_dirty_ok(struct zone *zone) 324{ 325 unsigned long limit = zone_dirty_limit(zone); 326 327 return zone_page_state(zone, NR_FILE_DIRTY) + 328 zone_page_state(zone, NR_UNSTABLE_NFS) + 329 zone_page_state(zone, NR_WRITEBACK) <= limit; 330} 331 332int dirty_background_ratio_handler(struct ctl_table *table, int write, 333 void __user *buffer, size_t *lenp, 334 loff_t *ppos) 335{ 336 int ret; 337 338 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 339 if (ret == 0 && write) 340 dirty_background_bytes = 0; 341 return ret; 342} 343 344int dirty_background_bytes_handler(struct ctl_table *table, int write, 345 void __user *buffer, size_t *lenp, 346 loff_t *ppos) 347{ 348 int ret; 349 350 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 351 if (ret == 0 && write) 352 dirty_background_ratio = 0; 353 return ret; 354} 355 356int dirty_ratio_handler(struct ctl_table *table, int write, 357 void __user *buffer, size_t *lenp, 358 loff_t *ppos) 359{ 360 int old_ratio = vm_dirty_ratio; 361 int ret; 362 363 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 364 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 365 writeback_set_ratelimit(); 366 vm_dirty_bytes = 0; 367 } 368 return ret; 369} 370 371int dirty_bytes_handler(struct ctl_table *table, int write, 372 void __user *buffer, size_t *lenp, 373 loff_t *ppos) 374{ 375 unsigned long old_bytes = vm_dirty_bytes; 376 int ret; 377 378 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 379 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 380 writeback_set_ratelimit(); 381 vm_dirty_ratio = 0; 382 } 383 return ret; 384} 385 386static unsigned long wp_next_time(unsigned long cur_time) 387{ 388 cur_time += VM_COMPLETIONS_PERIOD_LEN; 389 /* 0 has a special meaning... */ 390 if (!cur_time) 391 return 1; 392 return cur_time; 393} 394 395/* 396 * Increment the BDI's writeout completion count and the global writeout 397 * completion count. Called from test_clear_page_writeback(). 398 */ 399static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) 400{ 401 __inc_bdi_stat(bdi, BDI_WRITTEN); 402 __fprop_inc_percpu_max(&writeout_completions, &bdi->completions, 403 bdi->max_prop_frac); 404 /* First event after period switching was turned off? */ 405 if (!unlikely(writeout_period_time)) { 406 /* 407 * We can race with other __bdi_writeout_inc calls here but 408 * it does not cause any harm since the resulting time when 409 * timer will fire and what is in writeout_period_time will be 410 * roughly the same. 411 */ 412 writeout_period_time = wp_next_time(jiffies); 413 mod_timer(&writeout_period_timer, writeout_period_time); 414 } 415} 416 417void bdi_writeout_inc(struct backing_dev_info *bdi) 418{ 419 unsigned long flags; 420 421 local_irq_save(flags); 422 __bdi_writeout_inc(bdi); 423 local_irq_restore(flags); 424} 425EXPORT_SYMBOL_GPL(bdi_writeout_inc); 426 427/* 428 * Obtain an accurate fraction of the BDI's portion. 429 */ 430static void bdi_writeout_fraction(struct backing_dev_info *bdi, 431 long *numerator, long *denominator) 432{ 433 fprop_fraction_percpu(&writeout_completions, &bdi->completions, 434 numerator, denominator); 435} 436 437/* 438 * On idle system, we can be called long after we scheduled because we use 439 * deferred timers so count with missed periods. 440 */ 441static void writeout_period(unsigned long t) 442{ 443 int miss_periods = (jiffies - writeout_period_time) / 444 VM_COMPLETIONS_PERIOD_LEN; 445 446 if (fprop_new_period(&writeout_completions, miss_periods + 1)) { 447 writeout_period_time = wp_next_time(writeout_period_time + 448 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 449 mod_timer(&writeout_period_timer, writeout_period_time); 450 } else { 451 /* 452 * Aging has zeroed all fractions. Stop wasting CPU on period 453 * updates. 454 */ 455 writeout_period_time = 0; 456 } 457} 458 459/* 460 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 461 * registered backing devices, which, for obvious reasons, can not 462 * exceed 100%. 463 */ 464static unsigned int bdi_min_ratio; 465 466int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 467{ 468 int ret = 0; 469 470 spin_lock_bh(&bdi_lock); 471 if (min_ratio > bdi->max_ratio) { 472 ret = -EINVAL; 473 } else { 474 min_ratio -= bdi->min_ratio; 475 if (bdi_min_ratio + min_ratio < 100) { 476 bdi_min_ratio += min_ratio; 477 bdi->min_ratio += min_ratio; 478 } else { 479 ret = -EINVAL; 480 } 481 } 482 spin_unlock_bh(&bdi_lock); 483 484 return ret; 485} 486 487int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 488{ 489 int ret = 0; 490 491 if (max_ratio > 100) 492 return -EINVAL; 493 494 spin_lock_bh(&bdi_lock); 495 if (bdi->min_ratio > max_ratio) { 496 ret = -EINVAL; 497 } else { 498 bdi->max_ratio = max_ratio; 499 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; 500 } 501 spin_unlock_bh(&bdi_lock); 502 503 return ret; 504} 505EXPORT_SYMBOL(bdi_set_max_ratio); 506 507static unsigned long dirty_freerun_ceiling(unsigned long thresh, 508 unsigned long bg_thresh) 509{ 510 return (thresh + bg_thresh) / 2; 511} 512 513static unsigned long hard_dirty_limit(unsigned long thresh) 514{ 515 return max(thresh, global_dirty_limit); 516} 517 518/** 519 * bdi_dirty_limit - @bdi's share of dirty throttling threshold 520 * @bdi: the backing_dev_info to query 521 * @dirty: global dirty limit in pages 522 * 523 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of 524 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages. 525 * 526 * Note that balance_dirty_pages() will only seriously take it as a hard limit 527 * when sleeping max_pause per page is not enough to keep the dirty pages under 528 * control. For example, when the device is completely stalled due to some error 529 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 530 * In the other normal situations, it acts more gently by throttling the tasks 531 * more (rather than completely block them) when the bdi dirty pages go high. 532 * 533 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 534 * - starving fast devices 535 * - piling up dirty pages (that will take long time to sync) on slow devices 536 * 537 * The bdi's share of dirty limit will be adapting to its throughput and 538 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 539 */ 540unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty) 541{ 542 u64 bdi_dirty; 543 long numerator, denominator; 544 545 /* 546 * Calculate this BDI's share of the dirty ratio. 547 */ 548 bdi_writeout_fraction(bdi, &numerator, &denominator); 549 550 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; 551 bdi_dirty *= numerator; 552 do_div(bdi_dirty, denominator); 553 554 bdi_dirty += (dirty * bdi->min_ratio) / 100; 555 if (bdi_dirty > (dirty * bdi->max_ratio) / 100) 556 bdi_dirty = dirty * bdi->max_ratio / 100; 557 558 return bdi_dirty; 559} 560 561/* 562 * setpoint - dirty 3 563 * f(dirty) := 1.0 + (----------------) 564 * limit - setpoint 565 * 566 * it's a 3rd order polynomial that subjects to 567 * 568 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 569 * (2) f(setpoint) = 1.0 => the balance point 570 * (3) f(limit) = 0 => the hard limit 571 * (4) df/dx <= 0 => negative feedback control 572 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 573 * => fast response on large errors; small oscillation near setpoint 574 */ 575static long long pos_ratio_polynom(unsigned long setpoint, 576 unsigned long dirty, 577 unsigned long limit) 578{ 579 long long pos_ratio; 580 long x; 581 582 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 583 (limit - setpoint) | 1); 584 pos_ratio = x; 585 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 586 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 587 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 588 589 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 590} 591 592/* 593 * Dirty position control. 594 * 595 * (o) global/bdi setpoints 596 * 597 * We want the dirty pages be balanced around the global/bdi setpoints. 598 * When the number of dirty pages is higher/lower than the setpoint, the 599 * dirty position control ratio (and hence task dirty ratelimit) will be 600 * decreased/increased to bring the dirty pages back to the setpoint. 601 * 602 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 603 * 604 * if (dirty < setpoint) scale up pos_ratio 605 * if (dirty > setpoint) scale down pos_ratio 606 * 607 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio 608 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio 609 * 610 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 611 * 612 * (o) global control line 613 * 614 * ^ pos_ratio 615 * | 616 * | |<===== global dirty control scope ======>| 617 * 2.0 .............* 618 * | .* 619 * | . * 620 * | . * 621 * | . * 622 * | . * 623 * | . * 624 * 1.0 ................................* 625 * | . . * 626 * | . . * 627 * | . . * 628 * | . . * 629 * | . . * 630 * 0 +------------.------------------.----------------------*-------------> 631 * freerun^ setpoint^ limit^ dirty pages 632 * 633 * (o) bdi control line 634 * 635 * ^ pos_ratio 636 * | 637 * | * 638 * | * 639 * | * 640 * | * 641 * | * |<=========== span ============>| 642 * 1.0 .......................* 643 * | . * 644 * | . * 645 * | . * 646 * | . * 647 * | . * 648 * | . * 649 * | . * 650 * | . * 651 * | . * 652 * | . * 653 * | . * 654 * 1/4 ...............................................* * * * * * * * * * * * 655 * | . . 656 * | . . 657 * | . . 658 * 0 +----------------------.-------------------------------.-------------> 659 * bdi_setpoint^ x_intercept^ 660 * 661 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can 662 * be smoothly throttled down to normal if it starts high in situations like 663 * - start writing to a slow SD card and a fast disk at the same time. The SD 664 * card's bdi_dirty may rush to many times higher than bdi_setpoint. 665 * - the bdi dirty thresh drops quickly due to change of JBOD workload 666 */ 667static unsigned long bdi_position_ratio(struct backing_dev_info *bdi, 668 unsigned long thresh, 669 unsigned long bg_thresh, 670 unsigned long dirty, 671 unsigned long bdi_thresh, 672 unsigned long bdi_dirty) 673{ 674 unsigned long write_bw = bdi->avg_write_bandwidth; 675 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); 676 unsigned long limit = hard_dirty_limit(thresh); 677 unsigned long x_intercept; 678 unsigned long setpoint; /* dirty pages' target balance point */ 679 unsigned long bdi_setpoint; 680 unsigned long span; 681 long long pos_ratio; /* for scaling up/down the rate limit */ 682 long x; 683 684 if (unlikely(dirty >= limit)) 685 return 0; 686 687 /* 688 * global setpoint 689 * 690 * See comment for pos_ratio_polynom(). 691 */ 692 setpoint = (freerun + limit) / 2; 693 pos_ratio = pos_ratio_polynom(setpoint, dirty, limit); 694 695 /* 696 * The strictlimit feature is a tool preventing mistrusted filesystems 697 * from growing a large number of dirty pages before throttling. For 698 * such filesystems balance_dirty_pages always checks bdi counters 699 * against bdi limits. Even if global "nr_dirty" is under "freerun". 700 * This is especially important for fuse which sets bdi->max_ratio to 701 * 1% by default. Without strictlimit feature, fuse writeback may 702 * consume arbitrary amount of RAM because it is accounted in 703 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 704 * 705 * Here, in bdi_position_ratio(), we calculate pos_ratio based on 706 * two values: bdi_dirty and bdi_thresh. Let's consider an example: 707 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 708 * limits are set by default to 10% and 20% (background and throttle). 709 * Then bdi_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 710 * bdi_dirty_limit(bdi, bg_thresh) is about ~4K pages. bdi_setpoint is 711 * about ~6K pages (as the average of background and throttle bdi 712 * limits). The 3rd order polynomial will provide positive feedback if 713 * bdi_dirty is under bdi_setpoint and vice versa. 714 * 715 * Note, that we cannot use global counters in these calculations 716 * because we want to throttle process writing to a strictlimit BDI 717 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 718 * in the example above). 719 */ 720 if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 721 long long bdi_pos_ratio; 722 unsigned long bdi_bg_thresh; 723 724 if (bdi_dirty < 8) 725 return min_t(long long, pos_ratio * 2, 726 2 << RATELIMIT_CALC_SHIFT); 727 728 if (bdi_dirty >= bdi_thresh) 729 return 0; 730 731 bdi_bg_thresh = div_u64((u64)bdi_thresh * bg_thresh, thresh); 732 bdi_setpoint = dirty_freerun_ceiling(bdi_thresh, 733 bdi_bg_thresh); 734 735 if (bdi_setpoint == 0 || bdi_setpoint == bdi_thresh) 736 return 0; 737 738 bdi_pos_ratio = pos_ratio_polynom(bdi_setpoint, bdi_dirty, 739 bdi_thresh); 740 741 /* 742 * Typically, for strictlimit case, bdi_setpoint << setpoint 743 * and pos_ratio >> bdi_pos_ratio. In the other words global 744 * state ("dirty") is not limiting factor and we have to 745 * make decision based on bdi counters. But there is an 746 * important case when global pos_ratio should get precedence: 747 * global limits are exceeded (e.g. due to activities on other 748 * BDIs) while given strictlimit BDI is below limit. 749 * 750 * "pos_ratio * bdi_pos_ratio" would work for the case above, 751 * but it would look too non-natural for the case of all 752 * activity in the system coming from a single strictlimit BDI 753 * with bdi->max_ratio == 100%. 754 * 755 * Note that min() below somewhat changes the dynamics of the 756 * control system. Normally, pos_ratio value can be well over 3 757 * (when globally we are at freerun and bdi is well below bdi 758 * setpoint). Now the maximum pos_ratio in the same situation 759 * is 2. We might want to tweak this if we observe the control 760 * system is too slow to adapt. 761 */ 762 return min(pos_ratio, bdi_pos_ratio); 763 } 764 765 /* 766 * We have computed basic pos_ratio above based on global situation. If 767 * the bdi is over/under its share of dirty pages, we want to scale 768 * pos_ratio further down/up. That is done by the following mechanism. 769 */ 770 771 /* 772 * bdi setpoint 773 * 774 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint) 775 * 776 * x_intercept - bdi_dirty 777 * := -------------------------- 778 * x_intercept - bdi_setpoint 779 * 780 * The main bdi control line is a linear function that subjects to 781 * 782 * (1) f(bdi_setpoint) = 1.0 783 * (2) k = - 1 / (8 * write_bw) (in single bdi case) 784 * or equally: x_intercept = bdi_setpoint + 8 * write_bw 785 * 786 * For single bdi case, the dirty pages are observed to fluctuate 787 * regularly within range 788 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2] 789 * for various filesystems, where (2) can yield in a reasonable 12.5% 790 * fluctuation range for pos_ratio. 791 * 792 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its 793 * own size, so move the slope over accordingly and choose a slope that 794 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh. 795 */ 796 if (unlikely(bdi_thresh > thresh)) 797 bdi_thresh = thresh; 798 /* 799 * It's very possible that bdi_thresh is close to 0 not because the 800 * device is slow, but that it has remained inactive for long time. 801 * Honour such devices a reasonable good (hopefully IO efficient) 802 * threshold, so that the occasional writes won't be blocked and active 803 * writes can rampup the threshold quickly. 804 */ 805 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8); 806 /* 807 * scale global setpoint to bdi's: 808 * bdi_setpoint = setpoint * bdi_thresh / thresh 809 */ 810 x = div_u64((u64)bdi_thresh << 16, thresh | 1); 811 bdi_setpoint = setpoint * (u64)x >> 16; 812 /* 813 * Use span=(8*write_bw) in single bdi case as indicated by 814 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case. 815 * 816 * bdi_thresh thresh - bdi_thresh 817 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh 818 * thresh thresh 819 */ 820 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16; 821 x_intercept = bdi_setpoint + span; 822 823 if (bdi_dirty < x_intercept - span / 4) { 824 pos_ratio = div64_u64(pos_ratio * (x_intercept - bdi_dirty), 825 (x_intercept - bdi_setpoint) | 1); 826 } else 827 pos_ratio /= 4; 828 829 /* 830 * bdi reserve area, safeguard against dirty pool underrun and disk idle 831 * It may push the desired control point of global dirty pages higher 832 * than setpoint. 833 */ 834 x_intercept = bdi_thresh / 2; 835 if (bdi_dirty < x_intercept) { 836 if (bdi_dirty > x_intercept / 8) 837 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty); 838 else 839 pos_ratio *= 8; 840 } 841 842 return pos_ratio; 843} 844 845static void bdi_update_write_bandwidth(struct backing_dev_info *bdi, 846 unsigned long elapsed, 847 unsigned long written) 848{ 849 const unsigned long period = roundup_pow_of_two(3 * HZ); 850 unsigned long avg = bdi->avg_write_bandwidth; 851 unsigned long old = bdi->write_bandwidth; 852 u64 bw; 853 854 /* 855 * bw = written * HZ / elapsed 856 * 857 * bw * elapsed + write_bandwidth * (period - elapsed) 858 * write_bandwidth = --------------------------------------------------- 859 * period 860 * 861 * @written may have decreased due to account_page_redirty(). 862 * Avoid underflowing @bw calculation. 863 */ 864 bw = written - min(written, bdi->written_stamp); 865 bw *= HZ; 866 if (unlikely(elapsed > period)) { 867 do_div(bw, elapsed); 868 avg = bw; 869 goto out; 870 } 871 bw += (u64)bdi->write_bandwidth * (period - elapsed); 872 bw >>= ilog2(period); 873 874 /* 875 * one more level of smoothing, for filtering out sudden spikes 876 */ 877 if (avg > old && old >= (unsigned long)bw) 878 avg -= (avg - old) >> 3; 879 880 if (avg < old && old <= (unsigned long)bw) 881 avg += (old - avg) >> 3; 882 883out: 884 bdi->write_bandwidth = bw; 885 bdi->avg_write_bandwidth = avg; 886} 887 888/* 889 * The global dirtyable memory and dirty threshold could be suddenly knocked 890 * down by a large amount (eg. on the startup of KVM in a swapless system). 891 * This may throw the system into deep dirty exceeded state and throttle 892 * heavy/light dirtiers alike. To retain good responsiveness, maintain 893 * global_dirty_limit for tracking slowly down to the knocked down dirty 894 * threshold. 895 */ 896static void update_dirty_limit(unsigned long thresh, unsigned long dirty) 897{ 898 unsigned long limit = global_dirty_limit; 899 900 /* 901 * Follow up in one step. 902 */ 903 if (limit < thresh) { 904 limit = thresh; 905 goto update; 906 } 907 908 /* 909 * Follow down slowly. Use the higher one as the target, because thresh 910 * may drop below dirty. This is exactly the reason to introduce 911 * global_dirty_limit which is guaranteed to lie above the dirty pages. 912 */ 913 thresh = max(thresh, dirty); 914 if (limit > thresh) { 915 limit -= (limit - thresh) >> 5; 916 goto update; 917 } 918 return; 919update: 920 global_dirty_limit = limit; 921} 922 923static void global_update_bandwidth(unsigned long thresh, 924 unsigned long dirty, 925 unsigned long now) 926{ 927 static DEFINE_SPINLOCK(dirty_lock); 928 static unsigned long update_time = INITIAL_JIFFIES; 929 930 /* 931 * check locklessly first to optimize away locking for the most time 932 */ 933 if (time_before(now, update_time + BANDWIDTH_INTERVAL)) 934 return; 935 936 spin_lock(&dirty_lock); 937 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) { 938 update_dirty_limit(thresh, dirty); 939 update_time = now; 940 } 941 spin_unlock(&dirty_lock); 942} 943 944/* 945 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate. 946 * 947 * Normal bdi tasks will be curbed at or below it in long term. 948 * Obviously it should be around (write_bw / N) when there are N dd tasks. 949 */ 950static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi, 951 unsigned long thresh, 952 unsigned long bg_thresh, 953 unsigned long dirty, 954 unsigned long bdi_thresh, 955 unsigned long bdi_dirty, 956 unsigned long dirtied, 957 unsigned long elapsed) 958{ 959 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); 960 unsigned long limit = hard_dirty_limit(thresh); 961 unsigned long setpoint = (freerun + limit) / 2; 962 unsigned long write_bw = bdi->avg_write_bandwidth; 963 unsigned long dirty_ratelimit = bdi->dirty_ratelimit; 964 unsigned long dirty_rate; 965 unsigned long task_ratelimit; 966 unsigned long balanced_dirty_ratelimit; 967 unsigned long pos_ratio; 968 unsigned long step; 969 unsigned long x; 970 971 /* 972 * The dirty rate will match the writeout rate in long term, except 973 * when dirty pages are truncated by userspace or re-dirtied by FS. 974 */ 975 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed; 976 977 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty, 978 bdi_thresh, bdi_dirty); 979 /* 980 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 981 */ 982 task_ratelimit = (u64)dirty_ratelimit * 983 pos_ratio >> RATELIMIT_CALC_SHIFT; 984 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 985 986 /* 987 * A linear estimation of the "balanced" throttle rate. The theory is, 988 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's 989 * dirty_rate will be measured to be (N * task_ratelimit). So the below 990 * formula will yield the balanced rate limit (write_bw / N). 991 * 992 * Note that the expanded form is not a pure rate feedback: 993 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 994 * but also takes pos_ratio into account: 995 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 996 * 997 * (1) is not realistic because pos_ratio also takes part in balancing 998 * the dirty rate. Consider the state 999 * pos_ratio = 0.5 (3) 1000 * rate = 2 * (write_bw / N) (4) 1001 * If (1) is used, it will stuck in that state! Because each dd will 1002 * be throttled at 1003 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1004 * yielding 1005 * dirty_rate = N * task_ratelimit = write_bw (6) 1006 * put (6) into (1) we get 1007 * rate_(i+1) = rate_(i) (7) 1008 * 1009 * So we end up using (2) to always keep 1010 * rate_(i+1) ~= (write_bw / N) (8) 1011 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1012 * pos_ratio is able to drive itself to 1.0, which is not only where 1013 * the dirty count meet the setpoint, but also where the slope of 1014 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1015 */ 1016 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1017 dirty_rate | 1); 1018 /* 1019 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1020 */ 1021 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1022 balanced_dirty_ratelimit = write_bw; 1023 1024 /* 1025 * We could safely do this and return immediately: 1026 * 1027 * bdi->dirty_ratelimit = balanced_dirty_ratelimit; 1028 * 1029 * However to get a more stable dirty_ratelimit, the below elaborated 1030 * code makes use of task_ratelimit to filter out singular points and 1031 * limit the step size. 1032 * 1033 * The below code essentially only uses the relative value of 1034 * 1035 * task_ratelimit - dirty_ratelimit 1036 * = (pos_ratio - 1) * dirty_ratelimit 1037 * 1038 * which reflects the direction and size of dirty position error. 1039 */ 1040 1041 /* 1042 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1043 * task_ratelimit is on the same side of dirty_ratelimit, too. 1044 * For example, when 1045 * - dirty_ratelimit > balanced_dirty_ratelimit 1046 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1047 * lowering dirty_ratelimit will help meet both the position and rate 1048 * control targets. Otherwise, don't update dirty_ratelimit if it will 1049 * only help meet the rate target. After all, what the users ultimately 1050 * feel and care are stable dirty rate and small position error. 1051 * 1052 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1053 * and filter out the singular points of balanced_dirty_ratelimit. Which 1054 * keeps jumping around randomly and can even leap far away at times 1055 * due to the small 200ms estimation period of dirty_rate (we want to 1056 * keep that period small to reduce time lags). 1057 */ 1058 step = 0; 1059 1060 /* 1061 * For strictlimit case, calculations above were based on bdi counters 1062 * and limits (starting from pos_ratio = bdi_position_ratio() and up to 1063 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1064 * Hence, to calculate "step" properly, we have to use bdi_dirty as 1065 * "dirty" and bdi_setpoint as "setpoint". 1066 * 1067 * We rampup dirty_ratelimit forcibly if bdi_dirty is low because 1068 * it's possible that bdi_thresh is close to zero due to inactivity 1069 * of backing device (see the implementation of bdi_dirty_limit()). 1070 */ 1071 if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1072 dirty = bdi_dirty; 1073 if (bdi_dirty < 8) 1074 setpoint = bdi_dirty + 1; 1075 else 1076 setpoint = (bdi_thresh + 1077 bdi_dirty_limit(bdi, bg_thresh)) / 2; 1078 } 1079 1080 if (dirty < setpoint) { 1081 x = min3(bdi->balanced_dirty_ratelimit, 1082 balanced_dirty_ratelimit, task_ratelimit); 1083 if (dirty_ratelimit < x) 1084 step = x - dirty_ratelimit; 1085 } else { 1086 x = max3(bdi->balanced_dirty_ratelimit, 1087 balanced_dirty_ratelimit, task_ratelimit); 1088 if (dirty_ratelimit > x) 1089 step = dirty_ratelimit - x; 1090 } 1091 1092 /* 1093 * Don't pursue 100% rate matching. It's impossible since the balanced 1094 * rate itself is constantly fluctuating. So decrease the track speed 1095 * when it gets close to the target. Helps eliminate pointless tremors. 1096 */ 1097 step >>= dirty_ratelimit / (2 * step + 1); 1098 /* 1099 * Limit the tracking speed to avoid overshooting. 1100 */ 1101 step = (step + 7) / 8; 1102 1103 if (dirty_ratelimit < balanced_dirty_ratelimit) 1104 dirty_ratelimit += step; 1105 else 1106 dirty_ratelimit -= step; 1107 1108 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL); 1109 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1110 1111 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit); 1112} 1113 1114void __bdi_update_bandwidth(struct backing_dev_info *bdi, 1115 unsigned long thresh, 1116 unsigned long bg_thresh, 1117 unsigned long dirty, 1118 unsigned long bdi_thresh, 1119 unsigned long bdi_dirty, 1120 unsigned long start_time) 1121{ 1122 unsigned long now = jiffies; 1123 unsigned long elapsed = now - bdi->bw_time_stamp; 1124 unsigned long dirtied; 1125 unsigned long written; 1126 1127 /* 1128 * rate-limit, only update once every 200ms. 1129 */ 1130 if (elapsed < BANDWIDTH_INTERVAL) 1131 return; 1132 1133 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]); 1134 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]); 1135 1136 /* 1137 * Skip quiet periods when disk bandwidth is under-utilized. 1138 * (at least 1s idle time between two flusher runs) 1139 */ 1140 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time)) 1141 goto snapshot; 1142 1143 if (thresh) { 1144 global_update_bandwidth(thresh, dirty, now); 1145 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty, 1146 bdi_thresh, bdi_dirty, 1147 dirtied, elapsed); 1148 } 1149 bdi_update_write_bandwidth(bdi, elapsed, written); 1150 1151snapshot: 1152 bdi->dirtied_stamp = dirtied; 1153 bdi->written_stamp = written; 1154 bdi->bw_time_stamp = now; 1155} 1156 1157static void bdi_update_bandwidth(struct backing_dev_info *bdi, 1158 unsigned long thresh, 1159 unsigned long bg_thresh, 1160 unsigned long dirty, 1161 unsigned long bdi_thresh, 1162 unsigned long bdi_dirty, 1163 unsigned long start_time) 1164{ 1165 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL)) 1166 return; 1167 spin_lock(&bdi->wb.list_lock); 1168 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty, 1169 bdi_thresh, bdi_dirty, start_time); 1170 spin_unlock(&bdi->wb.list_lock); 1171} 1172 1173/* 1174 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1175 * will look to see if it needs to start dirty throttling. 1176 * 1177 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1178 * global_page_state() too often. So scale it near-sqrt to the safety margin 1179 * (the number of pages we may dirty without exceeding the dirty limits). 1180 */ 1181static unsigned long dirty_poll_interval(unsigned long dirty, 1182 unsigned long thresh) 1183{ 1184 if (thresh > dirty) 1185 return 1UL << (ilog2(thresh - dirty) >> 1); 1186 1187 return 1; 1188} 1189 1190static unsigned long bdi_max_pause(struct backing_dev_info *bdi, 1191 unsigned long bdi_dirty) 1192{ 1193 unsigned long bw = bdi->avg_write_bandwidth; 1194 unsigned long t; 1195 1196 /* 1197 * Limit pause time for small memory systems. If sleeping for too long 1198 * time, a small pool of dirty/writeback pages may go empty and disk go 1199 * idle. 1200 * 1201 * 8 serves as the safety ratio. 1202 */ 1203 t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1204 t++; 1205 1206 return min_t(unsigned long, t, MAX_PAUSE); 1207} 1208 1209static long bdi_min_pause(struct backing_dev_info *bdi, 1210 long max_pause, 1211 unsigned long task_ratelimit, 1212 unsigned long dirty_ratelimit, 1213 int *nr_dirtied_pause) 1214{ 1215 long hi = ilog2(bdi->avg_write_bandwidth); 1216 long lo = ilog2(bdi->dirty_ratelimit); 1217 long t; /* target pause */ 1218 long pause; /* estimated next pause */ 1219 int pages; /* target nr_dirtied_pause */ 1220 1221 /* target for 10ms pause on 1-dd case */ 1222 t = max(1, HZ / 100); 1223 1224 /* 1225 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1226 * overheads. 1227 * 1228 * (N * 10ms) on 2^N concurrent tasks. 1229 */ 1230 if (hi > lo) 1231 t += (hi - lo) * (10 * HZ) / 1024; 1232 1233 /* 1234 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1235 * on the much more stable dirty_ratelimit. However the next pause time 1236 * will be computed based on task_ratelimit and the two rate limits may 1237 * depart considerably at some time. Especially if task_ratelimit goes 1238 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1239 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1240 * result task_ratelimit won't be executed faithfully, which could 1241 * eventually bring down dirty_ratelimit. 1242 * 1243 * We apply two rules to fix it up: 1244 * 1) try to estimate the next pause time and if necessary, use a lower 1245 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1246 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1247 * 2) limit the target pause time to max_pause/2, so that the normal 1248 * small fluctuations of task_ratelimit won't trigger rule (1) and 1249 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1250 */ 1251 t = min(t, 1 + max_pause / 2); 1252 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1253 1254 /* 1255 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1256 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1257 * When the 16 consecutive reads are often interrupted by some dirty 1258 * throttling pause during the async writes, cfq will go into idles 1259 * (deadline is fine). So push nr_dirtied_pause as high as possible 1260 * until reaches DIRTY_POLL_THRESH=32 pages. 1261 */ 1262 if (pages < DIRTY_POLL_THRESH) { 1263 t = max_pause; 1264 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1265 if (pages > DIRTY_POLL_THRESH) { 1266 pages = DIRTY_POLL_THRESH; 1267 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1268 } 1269 } 1270 1271 pause = HZ * pages / (task_ratelimit + 1); 1272 if (pause > max_pause) { 1273 t = max_pause; 1274 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1275 } 1276 1277 *nr_dirtied_pause = pages; 1278 /* 1279 * The minimal pause time will normally be half the target pause time. 1280 */ 1281 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1282} 1283 1284static inline void bdi_dirty_limits(struct backing_dev_info *bdi, 1285 unsigned long dirty_thresh, 1286 unsigned long background_thresh, 1287 unsigned long *bdi_dirty, 1288 unsigned long *bdi_thresh, 1289 unsigned long *bdi_bg_thresh) 1290{ 1291 unsigned long bdi_reclaimable; 1292 1293 /* 1294 * bdi_thresh is not treated as some limiting factor as 1295 * dirty_thresh, due to reasons 1296 * - in JBOD setup, bdi_thresh can fluctuate a lot 1297 * - in a system with HDD and USB key, the USB key may somehow 1298 * go into state (bdi_dirty >> bdi_thresh) either because 1299 * bdi_dirty starts high, or because bdi_thresh drops low. 1300 * In this case we don't want to hard throttle the USB key 1301 * dirtiers for 100 seconds until bdi_dirty drops under 1302 * bdi_thresh. Instead the auxiliary bdi control line in 1303 * bdi_position_ratio() will let the dirtier task progress 1304 * at some rate <= (write_bw / 2) for bringing down bdi_dirty. 1305 */ 1306 *bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); 1307 1308 if (bdi_bg_thresh) 1309 *bdi_bg_thresh = dirty_thresh ? div_u64((u64)*bdi_thresh * 1310 background_thresh, 1311 dirty_thresh) : 0; 1312 1313 /* 1314 * In order to avoid the stacked BDI deadlock we need 1315 * to ensure we accurately count the 'dirty' pages when 1316 * the threshold is low. 1317 * 1318 * Otherwise it would be possible to get thresh+n pages 1319 * reported dirty, even though there are thresh-m pages 1320 * actually dirty; with m+n sitting in the percpu 1321 * deltas. 1322 */ 1323 if (*bdi_thresh < 2 * bdi_stat_error(bdi)) { 1324 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); 1325 *bdi_dirty = bdi_reclaimable + 1326 bdi_stat_sum(bdi, BDI_WRITEBACK); 1327 } else { 1328 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 1329 *bdi_dirty = bdi_reclaimable + 1330 bdi_stat(bdi, BDI_WRITEBACK); 1331 } 1332} 1333 1334/* 1335 * balance_dirty_pages() must be called by processes which are generating dirty 1336 * data. It looks at the number of dirty pages in the machine and will force 1337 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1338 * If we're over `background_thresh' then the writeback threads are woken to 1339 * perform some writeout. 1340 */ 1341static void balance_dirty_pages(struct address_space *mapping, 1342 unsigned long pages_dirtied) 1343{ 1344 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */ 1345 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */ 1346 unsigned long background_thresh; 1347 unsigned long dirty_thresh; 1348 long period; 1349 long pause; 1350 long max_pause; 1351 long min_pause; 1352 int nr_dirtied_pause; 1353 bool dirty_exceeded = false; 1354 unsigned long task_ratelimit; 1355 unsigned long dirty_ratelimit; 1356 unsigned long pos_ratio; 1357 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 1358 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1359 unsigned long start_time = jiffies; 1360 1361 for (;;) { 1362 unsigned long now = jiffies; 1363 unsigned long uninitialized_var(bdi_thresh); 1364 unsigned long thresh; 1365 unsigned long uninitialized_var(bdi_dirty); 1366 unsigned long dirty; 1367 unsigned long bg_thresh; 1368 1369 /* 1370 * Unstable writes are a feature of certain networked 1371 * filesystems (i.e. NFS) in which data may have been 1372 * written to the server's write cache, but has not yet 1373 * been flushed to permanent storage. 1374 */ 1375 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 1376 global_page_state(NR_UNSTABLE_NFS); 1377 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK); 1378 1379 global_dirty_limits(&background_thresh, &dirty_thresh); 1380 1381 if (unlikely(strictlimit)) { 1382 bdi_dirty_limits(bdi, dirty_thresh, background_thresh, 1383 &bdi_dirty, &bdi_thresh, &bg_thresh); 1384 1385 dirty = bdi_dirty; 1386 thresh = bdi_thresh; 1387 } else { 1388 dirty = nr_dirty; 1389 thresh = dirty_thresh; 1390 bg_thresh = background_thresh; 1391 } 1392 1393 /* 1394 * Throttle it only when the background writeback cannot 1395 * catch-up. This avoids (excessively) small writeouts 1396 * when the bdi limits are ramping up in case of !strictlimit. 1397 * 1398 * In strictlimit case make decision based on the bdi counters 1399 * and limits. Small writeouts when the bdi limits are ramping 1400 * up are the price we consciously pay for strictlimit-ing. 1401 */ 1402 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) { 1403 current->dirty_paused_when = now; 1404 current->nr_dirtied = 0; 1405 current->nr_dirtied_pause = 1406 dirty_poll_interval(dirty, thresh); 1407 break; 1408 } 1409 1410 if (unlikely(!writeback_in_progress(bdi))) 1411 bdi_start_background_writeback(bdi); 1412 1413 if (!strictlimit) 1414 bdi_dirty_limits(bdi, dirty_thresh, background_thresh, 1415 &bdi_dirty, &bdi_thresh, NULL); 1416 1417 dirty_exceeded = (bdi_dirty > bdi_thresh) && 1418 ((nr_dirty > dirty_thresh) || strictlimit); 1419 if (dirty_exceeded && !bdi->dirty_exceeded) 1420 bdi->dirty_exceeded = 1; 1421 1422 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh, 1423 nr_dirty, bdi_thresh, bdi_dirty, 1424 start_time); 1425 1426 dirty_ratelimit = bdi->dirty_ratelimit; 1427 pos_ratio = bdi_position_ratio(bdi, dirty_thresh, 1428 background_thresh, nr_dirty, 1429 bdi_thresh, bdi_dirty); 1430 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >> 1431 RATELIMIT_CALC_SHIFT; 1432 max_pause = bdi_max_pause(bdi, bdi_dirty); 1433 min_pause = bdi_min_pause(bdi, max_pause, 1434 task_ratelimit, dirty_ratelimit, 1435 &nr_dirtied_pause); 1436 1437 if (unlikely(task_ratelimit == 0)) { 1438 period = max_pause; 1439 pause = max_pause; 1440 goto pause; 1441 } 1442 period = HZ * pages_dirtied / task_ratelimit; 1443 pause = period; 1444 if (current->dirty_paused_when) 1445 pause -= now - current->dirty_paused_when; 1446 /* 1447 * For less than 1s think time (ext3/4 may block the dirtier 1448 * for up to 800ms from time to time on 1-HDD; so does xfs, 1449 * however at much less frequency), try to compensate it in 1450 * future periods by updating the virtual time; otherwise just 1451 * do a reset, as it may be a light dirtier. 1452 */ 1453 if (pause < min_pause) { 1454 trace_balance_dirty_pages(bdi, 1455 dirty_thresh, 1456 background_thresh, 1457 nr_dirty, 1458 bdi_thresh, 1459 bdi_dirty, 1460 dirty_ratelimit, 1461 task_ratelimit, 1462 pages_dirtied, 1463 period, 1464 min(pause, 0L), 1465 start_time); 1466 if (pause < -HZ) { 1467 current->dirty_paused_when = now; 1468 current->nr_dirtied = 0; 1469 } else if (period) { 1470 current->dirty_paused_when += period; 1471 current->nr_dirtied = 0; 1472 } else if (current->nr_dirtied_pause <= pages_dirtied) 1473 current->nr_dirtied_pause += pages_dirtied; 1474 break; 1475 } 1476 if (unlikely(pause > max_pause)) { 1477 /* for occasional dropped task_ratelimit */ 1478 now += min(pause - max_pause, max_pause); 1479 pause = max_pause; 1480 } 1481 1482pause: 1483 trace_balance_dirty_pages(bdi, 1484 dirty_thresh, 1485 background_thresh, 1486 nr_dirty, 1487 bdi_thresh, 1488 bdi_dirty, 1489 dirty_ratelimit, 1490 task_ratelimit, 1491 pages_dirtied, 1492 period, 1493 pause, 1494 start_time); 1495 __set_current_state(TASK_KILLABLE); 1496 io_schedule_timeout(pause); 1497 1498 current->dirty_paused_when = now + pause; 1499 current->nr_dirtied = 0; 1500 current->nr_dirtied_pause = nr_dirtied_pause; 1501 1502 /* 1503 * This is typically equal to (nr_dirty < dirty_thresh) and can 1504 * also keep "1000+ dd on a slow USB stick" under control. 1505 */ 1506 if (task_ratelimit) 1507 break; 1508 1509 /* 1510 * In the case of an unresponding NFS server and the NFS dirty 1511 * pages exceeds dirty_thresh, give the other good bdi's a pipe 1512 * to go through, so that tasks on them still remain responsive. 1513 * 1514 * In theory 1 page is enough to keep the comsumer-producer 1515 * pipe going: the flusher cleans 1 page => the task dirties 1 1516 * more page. However bdi_dirty has accounting errors. So use 1517 * the larger and more IO friendly bdi_stat_error. 1518 */ 1519 if (bdi_dirty <= bdi_stat_error(bdi)) 1520 break; 1521 1522 if (fatal_signal_pending(current)) 1523 break; 1524 } 1525 1526 if (!dirty_exceeded && bdi->dirty_exceeded) 1527 bdi->dirty_exceeded = 0; 1528 1529 if (writeback_in_progress(bdi)) 1530 return; 1531 1532 /* 1533 * In laptop mode, we wait until hitting the higher threshold before 1534 * starting background writeout, and then write out all the way down 1535 * to the lower threshold. So slow writers cause minimal disk activity. 1536 * 1537 * In normal mode, we start background writeout at the lower 1538 * background_thresh, to keep the amount of dirty memory low. 1539 */ 1540 if (laptop_mode) 1541 return; 1542 1543 if (nr_reclaimable > background_thresh) 1544 bdi_start_background_writeback(bdi); 1545} 1546 1547static DEFINE_PER_CPU(int, bdp_ratelimits); 1548 1549/* 1550 * Normal tasks are throttled by 1551 * loop { 1552 * dirty tsk->nr_dirtied_pause pages; 1553 * take a snap in balance_dirty_pages(); 1554 * } 1555 * However there is a worst case. If every task exit immediately when dirtied 1556 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1557 * called to throttle the page dirties. The solution is to save the not yet 1558 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1559 * randomly into the running tasks. This works well for the above worst case, 1560 * as the new task will pick up and accumulate the old task's leaked dirty 1561 * count and eventually get throttled. 1562 */ 1563DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1564 1565/** 1566 * balance_dirty_pages_ratelimited - balance dirty memory state 1567 * @mapping: address_space which was dirtied 1568 * 1569 * Processes which are dirtying memory should call in here once for each page 1570 * which was newly dirtied. The function will periodically check the system's 1571 * dirty state and will initiate writeback if needed. 1572 * 1573 * On really big machines, get_writeback_state is expensive, so try to avoid 1574 * calling it too often (ratelimiting). But once we're over the dirty memory 1575 * limit we decrease the ratelimiting by a lot, to prevent individual processes 1576 * from overshooting the limit by (ratelimit_pages) each. 1577 */ 1578void balance_dirty_pages_ratelimited(struct address_space *mapping) 1579{ 1580 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 1581 int ratelimit; 1582 int *p; 1583 1584 if (!bdi_cap_account_dirty(bdi)) 1585 return; 1586 1587 ratelimit = current->nr_dirtied_pause; 1588 if (bdi->dirty_exceeded) 1589 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 1590 1591 preempt_disable(); 1592 /* 1593 * This prevents one CPU to accumulate too many dirtied pages without 1594 * calling into balance_dirty_pages(), which can happen when there are 1595 * 1000+ tasks, all of them start dirtying pages at exactly the same 1596 * time, hence all honoured too large initial task->nr_dirtied_pause. 1597 */ 1598 p = this_cpu_ptr(&bdp_ratelimits); 1599 if (unlikely(current->nr_dirtied >= ratelimit)) 1600 *p = 0; 1601 else if (unlikely(*p >= ratelimit_pages)) { 1602 *p = 0; 1603 ratelimit = 0; 1604 } 1605 /* 1606 * Pick up the dirtied pages by the exited tasks. This avoids lots of 1607 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 1608 * the dirty throttling and livelock other long-run dirtiers. 1609 */ 1610 p = this_cpu_ptr(&dirty_throttle_leaks); 1611 if (*p > 0 && current->nr_dirtied < ratelimit) { 1612 unsigned long nr_pages_dirtied; 1613 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 1614 *p -= nr_pages_dirtied; 1615 current->nr_dirtied += nr_pages_dirtied; 1616 } 1617 preempt_enable(); 1618 1619 if (unlikely(current->nr_dirtied >= ratelimit)) 1620 balance_dirty_pages(mapping, current->nr_dirtied); 1621} 1622EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 1623 1624void throttle_vm_writeout(gfp_t gfp_mask) 1625{ 1626 unsigned long background_thresh; 1627 unsigned long dirty_thresh; 1628 1629 for ( ; ; ) { 1630 global_dirty_limits(&background_thresh, &dirty_thresh); 1631 dirty_thresh = hard_dirty_limit(dirty_thresh); 1632 1633 /* 1634 * Boost the allowable dirty threshold a bit for page 1635 * allocators so they don't get DoS'ed by heavy writers 1636 */ 1637 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 1638 1639 if (global_page_state(NR_UNSTABLE_NFS) + 1640 global_page_state(NR_WRITEBACK) <= dirty_thresh) 1641 break; 1642 congestion_wait(BLK_RW_ASYNC, HZ/10); 1643 1644 /* 1645 * The caller might hold locks which can prevent IO completion 1646 * or progress in the filesystem. So we cannot just sit here 1647 * waiting for IO to complete. 1648 */ 1649 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 1650 break; 1651 } 1652} 1653 1654/* 1655 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 1656 */ 1657int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 1658 void __user *buffer, size_t *length, loff_t *ppos) 1659{ 1660 proc_dointvec(table, write, buffer, length, ppos); 1661 return 0; 1662} 1663 1664#ifdef CONFIG_BLOCK 1665void laptop_mode_timer_fn(unsigned long data) 1666{ 1667 struct request_queue *q = (struct request_queue *)data; 1668 int nr_pages = global_page_state(NR_FILE_DIRTY) + 1669 global_page_state(NR_UNSTABLE_NFS); 1670 1671 /* 1672 * We want to write everything out, not just down to the dirty 1673 * threshold 1674 */ 1675 if (bdi_has_dirty_io(&q->backing_dev_info)) 1676 bdi_start_writeback(&q->backing_dev_info, nr_pages, 1677 WB_REASON_LAPTOP_TIMER); 1678} 1679 1680/* 1681 * We've spun up the disk and we're in laptop mode: schedule writeback 1682 * of all dirty data a few seconds from now. If the flush is already scheduled 1683 * then push it back - the user is still using the disk. 1684 */ 1685void laptop_io_completion(struct backing_dev_info *info) 1686{ 1687 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 1688} 1689 1690/* 1691 * We're in laptop mode and we've just synced. The sync's writes will have 1692 * caused another writeback to be scheduled by laptop_io_completion. 1693 * Nothing needs to be written back anymore, so we unschedule the writeback. 1694 */ 1695void laptop_sync_completion(void) 1696{ 1697 struct backing_dev_info *bdi; 1698 1699 rcu_read_lock(); 1700 1701 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 1702 del_timer(&bdi->laptop_mode_wb_timer); 1703 1704 rcu_read_unlock(); 1705} 1706#endif 1707 1708/* 1709 * If ratelimit_pages is too high then we can get into dirty-data overload 1710 * if a large number of processes all perform writes at the same time. 1711 * If it is too low then SMP machines will call the (expensive) 1712 * get_writeback_state too often. 1713 * 1714 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 1715 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 1716 * thresholds. 1717 */ 1718 1719void writeback_set_ratelimit(void) 1720{ 1721 unsigned long background_thresh; 1722 unsigned long dirty_thresh; 1723 global_dirty_limits(&background_thresh, &dirty_thresh); 1724 global_dirty_limit = dirty_thresh; 1725 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 1726 if (ratelimit_pages < 16) 1727 ratelimit_pages = 16; 1728} 1729 1730static int 1731ratelimit_handler(struct notifier_block *self, unsigned long action, 1732 void *hcpu) 1733{ 1734 1735 switch (action & ~CPU_TASKS_FROZEN) { 1736 case CPU_ONLINE: 1737 case CPU_DEAD: 1738 writeback_set_ratelimit(); 1739 return NOTIFY_OK; 1740 default: 1741 return NOTIFY_DONE; 1742 } 1743} 1744 1745static struct notifier_block ratelimit_nb = { 1746 .notifier_call = ratelimit_handler, 1747 .next = NULL, 1748}; 1749 1750/* 1751 * Called early on to tune the page writeback dirty limits. 1752 * 1753 * We used to scale dirty pages according to how total memory 1754 * related to pages that could be allocated for buffers (by 1755 * comparing nr_free_buffer_pages() to vm_total_pages. 1756 * 1757 * However, that was when we used "dirty_ratio" to scale with 1758 * all memory, and we don't do that any more. "dirty_ratio" 1759 * is now applied to total non-HIGHPAGE memory (by subtracting 1760 * totalhigh_pages from vm_total_pages), and as such we can't 1761 * get into the old insane situation any more where we had 1762 * large amounts of dirty pages compared to a small amount of 1763 * non-HIGHMEM memory. 1764 * 1765 * But we might still want to scale the dirty_ratio by how 1766 * much memory the box has.. 1767 */ 1768void __init page_writeback_init(void) 1769{ 1770 writeback_set_ratelimit(); 1771 register_cpu_notifier(&ratelimit_nb); 1772 1773 fprop_global_init(&writeout_completions, GFP_KERNEL); 1774} 1775 1776/** 1777 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 1778 * @mapping: address space structure to write 1779 * @start: starting page index 1780 * @end: ending page index (inclusive) 1781 * 1782 * This function scans the page range from @start to @end (inclusive) and tags 1783 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 1784 * that write_cache_pages (or whoever calls this function) will then use 1785 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 1786 * used to avoid livelocking of writeback by a process steadily creating new 1787 * dirty pages in the file (thus it is important for this function to be quick 1788 * so that it can tag pages faster than a dirtying process can create them). 1789 */ 1790/* 1791 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. 1792 */ 1793void tag_pages_for_writeback(struct address_space *mapping, 1794 pgoff_t start, pgoff_t end) 1795{ 1796#define WRITEBACK_TAG_BATCH 4096 1797 unsigned long tagged; 1798 1799 do { 1800 spin_lock_irq(&mapping->tree_lock); 1801 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree, 1802 &start, end, WRITEBACK_TAG_BATCH, 1803 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE); 1804 spin_unlock_irq(&mapping->tree_lock); 1805 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH); 1806 cond_resched(); 1807 /* We check 'start' to handle wrapping when end == ~0UL */ 1808 } while (tagged >= WRITEBACK_TAG_BATCH && start); 1809} 1810EXPORT_SYMBOL(tag_pages_for_writeback); 1811 1812/** 1813 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 1814 * @mapping: address space structure to write 1815 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1816 * @writepage: function called for each page 1817 * @data: data passed to writepage function 1818 * 1819 * If a page is already under I/O, write_cache_pages() skips it, even 1820 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 1821 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 1822 * and msync() need to guarantee that all the data which was dirty at the time 1823 * the call was made get new I/O started against them. If wbc->sync_mode is 1824 * WB_SYNC_ALL then we were called for data integrity and we must wait for 1825 * existing IO to complete. 1826 * 1827 * To avoid livelocks (when other process dirties new pages), we first tag 1828 * pages which should be written back with TOWRITE tag and only then start 1829 * writing them. For data-integrity sync we have to be careful so that we do 1830 * not miss some pages (e.g., because some other process has cleared TOWRITE 1831 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 1832 * by the process clearing the DIRTY tag (and submitting the page for IO). 1833 */ 1834int write_cache_pages(struct address_space *mapping, 1835 struct writeback_control *wbc, writepage_t writepage, 1836 void *data) 1837{ 1838 int ret = 0; 1839 int done = 0; 1840 struct pagevec pvec; 1841 int nr_pages; 1842 pgoff_t uninitialized_var(writeback_index); 1843 pgoff_t index; 1844 pgoff_t end; /* Inclusive */ 1845 pgoff_t done_index; 1846 int cycled; 1847 int range_whole = 0; 1848 int tag; 1849 1850 pagevec_init(&pvec, 0); 1851 if (wbc->range_cyclic) { 1852 writeback_index = mapping->writeback_index; /* prev offset */ 1853 index = writeback_index; 1854 if (index == 0) 1855 cycled = 1; 1856 else 1857 cycled = 0; 1858 end = -1; 1859 } else { 1860 index = wbc->range_start >> PAGE_CACHE_SHIFT; 1861 end = wbc->range_end >> PAGE_CACHE_SHIFT; 1862 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1863 range_whole = 1; 1864 cycled = 1; /* ignore range_cyclic tests */ 1865 } 1866 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1867 tag = PAGECACHE_TAG_TOWRITE; 1868 else 1869 tag = PAGECACHE_TAG_DIRTY; 1870retry: 1871 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1872 tag_pages_for_writeback(mapping, index, end); 1873 done_index = index; 1874 while (!done && (index <= end)) { 1875 int i; 1876 1877 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1878 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1879 if (nr_pages == 0) 1880 break; 1881 1882 for (i = 0; i < nr_pages; i++) { 1883 struct page *page = pvec.pages[i]; 1884 1885 /* 1886 * At this point, the page may be truncated or 1887 * invalidated (changing page->mapping to NULL), or 1888 * even swizzled back from swapper_space to tmpfs file 1889 * mapping. However, page->index will not change 1890 * because we have a reference on the page. 1891 */ 1892 if (page->index > end) { 1893 /* 1894 * can't be range_cyclic (1st pass) because 1895 * end == -1 in that case. 1896 */ 1897 done = 1; 1898 break; 1899 } 1900 1901 done_index = page->index; 1902 1903 lock_page(page); 1904 1905 /* 1906 * Page truncated or invalidated. We can freely skip it 1907 * then, even for data integrity operations: the page 1908 * has disappeared concurrently, so there could be no 1909 * real expectation of this data interity operation 1910 * even if there is now a new, dirty page at the same 1911 * pagecache address. 1912 */ 1913 if (unlikely(page->mapping != mapping)) { 1914continue_unlock: 1915 unlock_page(page); 1916 continue; 1917 } 1918 1919 if (!PageDirty(page)) { 1920 /* someone wrote it for us */ 1921 goto continue_unlock; 1922 } 1923 1924 if (PageWriteback(page)) { 1925 if (wbc->sync_mode != WB_SYNC_NONE) 1926 wait_on_page_writeback(page); 1927 else 1928 goto continue_unlock; 1929 } 1930 1931 BUG_ON(PageWriteback(page)); 1932 if (!clear_page_dirty_for_io(page)) 1933 goto continue_unlock; 1934 1935 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 1936 ret = (*writepage)(page, wbc, data); 1937 if (unlikely(ret)) { 1938 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1939 unlock_page(page); 1940 ret = 0; 1941 } else { 1942 /* 1943 * done_index is set past this page, 1944 * so media errors will not choke 1945 * background writeout for the entire 1946 * file. This has consequences for 1947 * range_cyclic semantics (ie. it may 1948 * not be suitable for data integrity 1949 * writeout). 1950 */ 1951 done_index = page->index + 1; 1952 done = 1; 1953 break; 1954 } 1955 } 1956 1957 /* 1958 * We stop writing back only if we are not doing 1959 * integrity sync. In case of integrity sync we have to 1960 * keep going until we have written all the pages 1961 * we tagged for writeback prior to entering this loop. 1962 */ 1963 if (--wbc->nr_to_write <= 0 && 1964 wbc->sync_mode == WB_SYNC_NONE) { 1965 done = 1; 1966 break; 1967 } 1968 } 1969 pagevec_release(&pvec); 1970 cond_resched(); 1971 } 1972 if (!cycled && !done) { 1973 /* 1974 * range_cyclic: 1975 * We hit the last page and there is more work to be done: wrap 1976 * back to the start of the file 1977 */ 1978 cycled = 1; 1979 index = 0; 1980 end = writeback_index - 1; 1981 goto retry; 1982 } 1983 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1984 mapping->writeback_index = done_index; 1985 1986 return ret; 1987} 1988EXPORT_SYMBOL(write_cache_pages); 1989 1990/* 1991 * Function used by generic_writepages to call the real writepage 1992 * function and set the mapping flags on error 1993 */ 1994static int __writepage(struct page *page, struct writeback_control *wbc, 1995 void *data) 1996{ 1997 struct address_space *mapping = data; 1998 int ret = mapping->a_ops->writepage(page, wbc); 1999 mapping_set_error(mapping, ret); 2000 return ret; 2001} 2002 2003/** 2004 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 2005 * @mapping: address space structure to write 2006 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2007 * 2008 * This is a library function, which implements the writepages() 2009 * address_space_operation. 2010 */ 2011int generic_writepages(struct address_space *mapping, 2012 struct writeback_control *wbc) 2013{ 2014 struct blk_plug plug; 2015 int ret; 2016 2017 /* deal with chardevs and other special file */ 2018 if (!mapping->a_ops->writepage) 2019 return 0; 2020 2021 blk_start_plug(&plug); 2022 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2023 blk_finish_plug(&plug); 2024 return ret; 2025} 2026 2027EXPORT_SYMBOL(generic_writepages); 2028 2029int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2030{ 2031 int ret; 2032 2033 if (wbc->nr_to_write <= 0) 2034 return 0; 2035 if (mapping->a_ops->writepages) 2036 ret = mapping->a_ops->writepages(mapping, wbc); 2037 else 2038 ret = generic_writepages(mapping, wbc); 2039 return ret; 2040} 2041 2042/** 2043 * write_one_page - write out a single page and optionally wait on I/O 2044 * @page: the page to write 2045 * @wait: if true, wait on writeout 2046 * 2047 * The page must be locked by the caller and will be unlocked upon return. 2048 * 2049 * write_one_page() returns a negative error code if I/O failed. 2050 */ 2051int write_one_page(struct page *page, int wait) 2052{ 2053 struct address_space *mapping = page->mapping; 2054 int ret = 0; 2055 struct writeback_control wbc = { 2056 .sync_mode = WB_SYNC_ALL, 2057 .nr_to_write = 1, 2058 }; 2059 2060 BUG_ON(!PageLocked(page)); 2061 2062 if (wait) 2063 wait_on_page_writeback(page); 2064 2065 if (clear_page_dirty_for_io(page)) { 2066 page_cache_get(page); 2067 ret = mapping->a_ops->writepage(page, &wbc); 2068 if (ret == 0 && wait) { 2069 wait_on_page_writeback(page); 2070 if (PageError(page)) 2071 ret = -EIO; 2072 } 2073 page_cache_release(page); 2074 } else { 2075 unlock_page(page); 2076 } 2077 return ret; 2078} 2079EXPORT_SYMBOL(write_one_page); 2080 2081/* 2082 * For address_spaces which do not use buffers nor write back. 2083 */ 2084int __set_page_dirty_no_writeback(struct page *page) 2085{ 2086 if (!PageDirty(page)) 2087 return !TestSetPageDirty(page); 2088 return 0; 2089} 2090 2091/* 2092 * Helper function for set_page_dirty family. 2093 * NOTE: This relies on being atomic wrt interrupts. 2094 */ 2095void account_page_dirtied(struct page *page, struct address_space *mapping) 2096{ 2097 trace_writeback_dirty_page(page, mapping); 2098 2099 if (mapping_cap_account_dirty(mapping)) { 2100 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 2101 2102 __inc_zone_page_state(page, NR_FILE_DIRTY); 2103 __inc_zone_page_state(page, NR_DIRTIED); 2104 __inc_bdi_stat(bdi, BDI_RECLAIMABLE); 2105 __inc_bdi_stat(bdi, BDI_DIRTIED); 2106 task_io_account_write(PAGE_CACHE_SIZE); 2107 current->nr_dirtied++; 2108 this_cpu_inc(bdp_ratelimits); 2109 } 2110} 2111EXPORT_SYMBOL(account_page_dirtied); 2112 2113/* 2114 * Helper function for deaccounting dirty page without writeback. 2115 * 2116 * Doing this should *normally* only ever be done when a page 2117 * is truncated, and is not actually mapped anywhere at all. However, 2118 * fs/buffer.c does this when it notices that somebody has cleaned 2119 * out all the buffers on a page without actually doing it through 2120 * the VM. Can you say "ext3 is horribly ugly"? Thought you could. 2121 */ 2122void account_page_cleaned(struct page *page, struct address_space *mapping) 2123{ 2124 if (mapping_cap_account_dirty(mapping)) { 2125 dec_zone_page_state(page, NR_FILE_DIRTY); 2126 dec_bdi_stat(inode_to_bdi(mapping->host), BDI_RECLAIMABLE); 2127 task_io_account_cancelled_write(PAGE_CACHE_SIZE); 2128 } 2129} 2130EXPORT_SYMBOL(account_page_cleaned); 2131 2132/* 2133 * For address_spaces which do not use buffers. Just tag the page as dirty in 2134 * its radix tree. 2135 * 2136 * This is also used when a single buffer is being dirtied: we want to set the 2137 * page dirty in that case, but not all the buffers. This is a "bottom-up" 2138 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 2139 * 2140 * The caller must ensure this doesn't race with truncation. Most will simply 2141 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and 2142 * the pte lock held, which also locks out truncation. 2143 */ 2144int __set_page_dirty_nobuffers(struct page *page) 2145{ 2146 if (!TestSetPageDirty(page)) { 2147 struct address_space *mapping = page_mapping(page); 2148 unsigned long flags; 2149 2150 if (!mapping) 2151 return 1; 2152 2153 spin_lock_irqsave(&mapping->tree_lock, flags); 2154 BUG_ON(page_mapping(page) != mapping); 2155 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 2156 account_page_dirtied(page, mapping); 2157 radix_tree_tag_set(&mapping->page_tree, page_index(page), 2158 PAGECACHE_TAG_DIRTY); 2159 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2160 if (mapping->host) { 2161 /* !PageAnon && !swapper_space */ 2162 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2163 } 2164 return 1; 2165 } 2166 return 0; 2167} 2168EXPORT_SYMBOL(__set_page_dirty_nobuffers); 2169 2170/* 2171 * Call this whenever redirtying a page, to de-account the dirty counters 2172 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written 2173 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to 2174 * systematic errors in balanced_dirty_ratelimit and the dirty pages position 2175 * control. 2176 */ 2177void account_page_redirty(struct page *page) 2178{ 2179 struct address_space *mapping = page->mapping; 2180 if (mapping && mapping_cap_account_dirty(mapping)) { 2181 current->nr_dirtied--; 2182 dec_zone_page_state(page, NR_DIRTIED); 2183 dec_bdi_stat(inode_to_bdi(mapping->host), BDI_DIRTIED); 2184 } 2185} 2186EXPORT_SYMBOL(account_page_redirty); 2187 2188/* 2189 * When a writepage implementation decides that it doesn't want to write this 2190 * page for some reason, it should redirty the locked page via 2191 * redirty_page_for_writepage() and it should then unlock the page and return 0 2192 */ 2193int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 2194{ 2195 int ret; 2196 2197 wbc->pages_skipped++; 2198 ret = __set_page_dirty_nobuffers(page); 2199 account_page_redirty(page); 2200 return ret; 2201} 2202EXPORT_SYMBOL(redirty_page_for_writepage); 2203 2204/* 2205 * Dirty a page. 2206 * 2207 * For pages with a mapping this should be done under the page lock 2208 * for the benefit of asynchronous memory errors who prefer a consistent 2209 * dirty state. This rule can be broken in some special cases, 2210 * but should be better not to. 2211 * 2212 * If the mapping doesn't provide a set_page_dirty a_op, then 2213 * just fall through and assume that it wants buffer_heads. 2214 */ 2215int set_page_dirty(struct page *page) 2216{ 2217 struct address_space *mapping = page_mapping(page); 2218 2219 if (likely(mapping)) { 2220 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 2221 /* 2222 * readahead/lru_deactivate_page could remain 2223 * PG_readahead/PG_reclaim due to race with end_page_writeback 2224 * About readahead, if the page is written, the flags would be 2225 * reset. So no problem. 2226 * About lru_deactivate_page, if the page is redirty, the flag 2227 * will be reset. So no problem. but if the page is used by readahead 2228 * it will confuse readahead and make it restart the size rampup 2229 * process. But it's a trivial problem. 2230 */ 2231 if (PageReclaim(page)) 2232 ClearPageReclaim(page); 2233#ifdef CONFIG_BLOCK 2234 if (!spd) 2235 spd = __set_page_dirty_buffers; 2236#endif 2237 return (*spd)(page); 2238 } 2239 if (!PageDirty(page)) { 2240 if (!TestSetPageDirty(page)) 2241 return 1; 2242 } 2243 return 0; 2244} 2245EXPORT_SYMBOL(set_page_dirty); 2246 2247/* 2248 * set_page_dirty() is racy if the caller has no reference against 2249 * page->mapping->host, and if the page is unlocked. This is because another 2250 * CPU could truncate the page off the mapping and then free the mapping. 2251 * 2252 * Usually, the page _is_ locked, or the caller is a user-space process which 2253 * holds a reference on the inode by having an open file. 2254 * 2255 * In other cases, the page should be locked before running set_page_dirty(). 2256 */ 2257int set_page_dirty_lock(struct page *page) 2258{ 2259 int ret; 2260 2261 lock_page(page); 2262 ret = set_page_dirty(page); 2263 unlock_page(page); 2264 return ret; 2265} 2266EXPORT_SYMBOL(set_page_dirty_lock); 2267 2268/* 2269 * Clear a page's dirty flag, while caring for dirty memory accounting. 2270 * Returns true if the page was previously dirty. 2271 * 2272 * This is for preparing to put the page under writeout. We leave the page 2273 * tagged as dirty in the radix tree so that a concurrent write-for-sync 2274 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 2275 * implementation will run either set_page_writeback() or set_page_dirty(), 2276 * at which stage we bring the page's dirty flag and radix-tree dirty tag 2277 * back into sync. 2278 * 2279 * This incoherency between the page's dirty flag and radix-tree tag is 2280 * unfortunate, but it only exists while the page is locked. 2281 */ 2282int clear_page_dirty_for_io(struct page *page) 2283{ 2284 struct address_space *mapping = page_mapping(page); 2285 2286 BUG_ON(!PageLocked(page)); 2287 2288 if (mapping && mapping_cap_account_dirty(mapping)) { 2289 /* 2290 * Yes, Virginia, this is indeed insane. 2291 * 2292 * We use this sequence to make sure that 2293 * (a) we account for dirty stats properly 2294 * (b) we tell the low-level filesystem to 2295 * mark the whole page dirty if it was 2296 * dirty in a pagetable. Only to then 2297 * (c) clean the page again and return 1 to 2298 * cause the writeback. 2299 * 2300 * This way we avoid all nasty races with the 2301 * dirty bit in multiple places and clearing 2302 * them concurrently from different threads. 2303 * 2304 * Note! Normally the "set_page_dirty(page)" 2305 * has no effect on the actual dirty bit - since 2306 * that will already usually be set. But we 2307 * need the side effects, and it can help us 2308 * avoid races. 2309 * 2310 * We basically use the page "master dirty bit" 2311 * as a serialization point for all the different 2312 * threads doing their things. 2313 */ 2314 if (page_mkclean(page)) 2315 set_page_dirty(page); 2316 /* 2317 * We carefully synchronise fault handlers against 2318 * installing a dirty pte and marking the page dirty 2319 * at this point. We do this by having them hold the 2320 * page lock while dirtying the page, and pages are 2321 * always locked coming in here, so we get the desired 2322 * exclusion. 2323 */ 2324 if (TestClearPageDirty(page)) { 2325 dec_zone_page_state(page, NR_FILE_DIRTY); 2326 dec_bdi_stat(inode_to_bdi(mapping->host), 2327 BDI_RECLAIMABLE); 2328 return 1; 2329 } 2330 return 0; 2331 } 2332 return TestClearPageDirty(page); 2333} 2334EXPORT_SYMBOL(clear_page_dirty_for_io); 2335 2336int test_clear_page_writeback(struct page *page) 2337{ 2338 struct address_space *mapping = page_mapping(page); 2339 struct mem_cgroup *memcg; 2340 int ret; 2341 2342 memcg = mem_cgroup_begin_page_stat(page); 2343 if (mapping) { 2344 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 2345 unsigned long flags; 2346 2347 spin_lock_irqsave(&mapping->tree_lock, flags); 2348 ret = TestClearPageWriteback(page); 2349 if (ret) { 2350 radix_tree_tag_clear(&mapping->page_tree, 2351 page_index(page), 2352 PAGECACHE_TAG_WRITEBACK); 2353 if (bdi_cap_account_writeback(bdi)) { 2354 __dec_bdi_stat(bdi, BDI_WRITEBACK); 2355 __bdi_writeout_inc(bdi); 2356 } 2357 } 2358 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2359 } else { 2360 ret = TestClearPageWriteback(page); 2361 } 2362 if (ret) { 2363 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK); 2364 dec_zone_page_state(page, NR_WRITEBACK); 2365 inc_zone_page_state(page, NR_WRITTEN); 2366 } 2367 mem_cgroup_end_page_stat(memcg); 2368 return ret; 2369} 2370 2371int __test_set_page_writeback(struct page *page, bool keep_write) 2372{ 2373 struct address_space *mapping = page_mapping(page); 2374 struct mem_cgroup *memcg; 2375 int ret; 2376 2377 memcg = mem_cgroup_begin_page_stat(page); 2378 if (mapping) { 2379 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 2380 unsigned long flags; 2381 2382 spin_lock_irqsave(&mapping->tree_lock, flags); 2383 ret = TestSetPageWriteback(page); 2384 if (!ret) { 2385 radix_tree_tag_set(&mapping->page_tree, 2386 page_index(page), 2387 PAGECACHE_TAG_WRITEBACK); 2388 if (bdi_cap_account_writeback(bdi)) 2389 __inc_bdi_stat(bdi, BDI_WRITEBACK); 2390 } 2391 if (!PageDirty(page)) 2392 radix_tree_tag_clear(&mapping->page_tree, 2393 page_index(page), 2394 PAGECACHE_TAG_DIRTY); 2395 if (!keep_write) 2396 radix_tree_tag_clear(&mapping->page_tree, 2397 page_index(page), 2398 PAGECACHE_TAG_TOWRITE); 2399 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2400 } else { 2401 ret = TestSetPageWriteback(page); 2402 } 2403 if (!ret) { 2404 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK); 2405 inc_zone_page_state(page, NR_WRITEBACK); 2406 } 2407 mem_cgroup_end_page_stat(memcg); 2408 return ret; 2409 2410} 2411EXPORT_SYMBOL(__test_set_page_writeback); 2412 2413/* 2414 * Return true if any of the pages in the mapping are marked with the 2415 * passed tag. 2416 */ 2417int mapping_tagged(struct address_space *mapping, int tag) 2418{ 2419 return radix_tree_tagged(&mapping->page_tree, tag); 2420} 2421EXPORT_SYMBOL(mapping_tagged); 2422 2423/** 2424 * wait_for_stable_page() - wait for writeback to finish, if necessary. 2425 * @page: The page to wait on. 2426 * 2427 * This function determines if the given page is related to a backing device 2428 * that requires page contents to be held stable during writeback. If so, then 2429 * it will wait for any pending writeback to complete. 2430 */ 2431void wait_for_stable_page(struct page *page) 2432{ 2433 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host))) 2434 wait_on_page_writeback(page); 2435} 2436EXPORT_SYMBOL_GPL(wait_for_stable_page); 2437