1/*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002	Andrew Morton
11 *		Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/export.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
25#include <linux/task_io_accounting_ops.h>
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
28#include <linux/rmap.h>
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36#include <linux/pagevec.h>
37#include <linux/timer.h>
38#include <linux/sched/rt.h>
39#include <linux/mm_inline.h>
40#include <trace/events/writeback.h>
41
42#include "internal.h"
43
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE		max(HZ/5, 1)
48
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
54
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL	max(HZ/5, 1)
59
60#define RATELIMIT_CALC_SHIFT	10
61
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
71 * Start background writeback (via writeback threads) at this percentage
72 */
73int dirty_background_ratio = 10;
74
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79unsigned long dirty_background_bytes;
80
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85int vm_highmem_is_dirtyable;
86
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
90int vm_dirty_ratio = 20;
91
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96unsigned long vm_dirty_bytes;
97
98/*
99 * The interval between `kupdate'-style writebacks
100 */
101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105/*
106 * The longest time for which data is allowed to remain dirty
107 */
108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110/*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113int block_dump;
114
115/*
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
118 */
119int laptop_mode;
120
121EXPORT_SYMBOL(laptop_mode);
122
123/* End of sysctl-exported parameters */
124
125unsigned long global_dirty_limit;
126
127/*
128 * Scale the writeback cache size proportional to the relative writeout speeds.
129 *
130 * We do this by keeping a floating proportion between BDIs, based on page
131 * writeback completions [end_page_writeback()]. Those devices that write out
132 * pages fastest will get the larger share, while the slower will get a smaller
133 * share.
134 *
135 * We use page writeout completions because we are interested in getting rid of
136 * dirty pages. Having them written out is the primary goal.
137 *
138 * We introduce a concept of time, a period over which we measure these events,
139 * because demand can/will vary over time. The length of this period itself is
140 * measured in page writeback completions.
141 *
142 */
143static struct fprop_global writeout_completions;
144
145static void writeout_period(unsigned long t);
146/* Timer for aging of writeout_completions */
147static struct timer_list writeout_period_timer =
148		TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
149static unsigned long writeout_period_time = 0;
150
151/*
152 * Length of period for aging writeout fractions of bdis. This is an
153 * arbitrarily chosen number. The longer the period, the slower fractions will
154 * reflect changes in current writeout rate.
155 */
156#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
157
158/*
159 * In a memory zone, there is a certain amount of pages we consider
160 * available for the page cache, which is essentially the number of
161 * free and reclaimable pages, minus some zone reserves to protect
162 * lowmem and the ability to uphold the zone's watermarks without
163 * requiring writeback.
164 *
165 * This number of dirtyable pages is the base value of which the
166 * user-configurable dirty ratio is the effictive number of pages that
167 * are allowed to be actually dirtied.  Per individual zone, or
168 * globally by using the sum of dirtyable pages over all zones.
169 *
170 * Because the user is allowed to specify the dirty limit globally as
171 * absolute number of bytes, calculating the per-zone dirty limit can
172 * require translating the configured limit into a percentage of
173 * global dirtyable memory first.
174 */
175
176/**
177 * zone_dirtyable_memory - number of dirtyable pages in a zone
178 * @zone: the zone
179 *
180 * Returns the zone's number of pages potentially available for dirty
181 * page cache.  This is the base value for the per-zone dirty limits.
182 */
183static unsigned long zone_dirtyable_memory(struct zone *zone)
184{
185	unsigned long nr_pages;
186
187	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
188	nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
189
190	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
191	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
192
193	return nr_pages;
194}
195
196static unsigned long highmem_dirtyable_memory(unsigned long total)
197{
198#ifdef CONFIG_HIGHMEM
199	int node;
200	unsigned long x = 0;
201
202	for_each_node_state(node, N_HIGH_MEMORY) {
203		struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
204
205		x += zone_dirtyable_memory(z);
206	}
207	/*
208	 * Unreclaimable memory (kernel memory or anonymous memory
209	 * without swap) can bring down the dirtyable pages below
210	 * the zone's dirty balance reserve and the above calculation
211	 * will underflow.  However we still want to add in nodes
212	 * which are below threshold (negative values) to get a more
213	 * accurate calculation but make sure that the total never
214	 * underflows.
215	 */
216	if ((long)x < 0)
217		x = 0;
218
219	/*
220	 * Make sure that the number of highmem pages is never larger
221	 * than the number of the total dirtyable memory. This can only
222	 * occur in very strange VM situations but we want to make sure
223	 * that this does not occur.
224	 */
225	return min(x, total);
226#else
227	return 0;
228#endif
229}
230
231/**
232 * global_dirtyable_memory - number of globally dirtyable pages
233 *
234 * Returns the global number of pages potentially available for dirty
235 * page cache.  This is the base value for the global dirty limits.
236 */
237static unsigned long global_dirtyable_memory(void)
238{
239	unsigned long x;
240
241	x = global_page_state(NR_FREE_PAGES);
242	x -= min(x, dirty_balance_reserve);
243
244	x += global_page_state(NR_INACTIVE_FILE);
245	x += global_page_state(NR_ACTIVE_FILE);
246
247	if (!vm_highmem_is_dirtyable)
248		x -= highmem_dirtyable_memory(x);
249
250	return x + 1;	/* Ensure that we never return 0 */
251}
252
253/*
254 * global_dirty_limits - background-writeback and dirty-throttling thresholds
255 *
256 * Calculate the dirty thresholds based on sysctl parameters
257 * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
258 * - vm.dirty_ratio             or  vm.dirty_bytes
259 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
260 * real-time tasks.
261 */
262void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
263{
264	const unsigned long available_memory = global_dirtyable_memory();
265	unsigned long background;
266	unsigned long dirty;
267	struct task_struct *tsk;
268
269	if (vm_dirty_bytes)
270		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
271	else
272		dirty = (vm_dirty_ratio * available_memory) / 100;
273
274	if (dirty_background_bytes)
275		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
276	else
277		background = (dirty_background_ratio * available_memory) / 100;
278
279	if (background >= dirty)
280		background = dirty / 2;
281	tsk = current;
282	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
283		background += background / 4;
284		dirty += dirty / 4;
285	}
286	*pbackground = background;
287	*pdirty = dirty;
288	trace_global_dirty_state(background, dirty);
289}
290
291/**
292 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
293 * @zone: the zone
294 *
295 * Returns the maximum number of dirty pages allowed in a zone, based
296 * on the zone's dirtyable memory.
297 */
298static unsigned long zone_dirty_limit(struct zone *zone)
299{
300	unsigned long zone_memory = zone_dirtyable_memory(zone);
301	struct task_struct *tsk = current;
302	unsigned long dirty;
303
304	if (vm_dirty_bytes)
305		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
306			zone_memory / global_dirtyable_memory();
307	else
308		dirty = vm_dirty_ratio * zone_memory / 100;
309
310	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
311		dirty += dirty / 4;
312
313	return dirty;
314}
315
316/**
317 * zone_dirty_ok - tells whether a zone is within its dirty limits
318 * @zone: the zone to check
319 *
320 * Returns %true when the dirty pages in @zone are within the zone's
321 * dirty limit, %false if the limit is exceeded.
322 */
323bool zone_dirty_ok(struct zone *zone)
324{
325	unsigned long limit = zone_dirty_limit(zone);
326
327	return zone_page_state(zone, NR_FILE_DIRTY) +
328	       zone_page_state(zone, NR_UNSTABLE_NFS) +
329	       zone_page_state(zone, NR_WRITEBACK) <= limit;
330}
331
332int dirty_background_ratio_handler(struct ctl_table *table, int write,
333		void __user *buffer, size_t *lenp,
334		loff_t *ppos)
335{
336	int ret;
337
338	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
339	if (ret == 0 && write)
340		dirty_background_bytes = 0;
341	return ret;
342}
343
344int dirty_background_bytes_handler(struct ctl_table *table, int write,
345		void __user *buffer, size_t *lenp,
346		loff_t *ppos)
347{
348	int ret;
349
350	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
351	if (ret == 0 && write)
352		dirty_background_ratio = 0;
353	return ret;
354}
355
356int dirty_ratio_handler(struct ctl_table *table, int write,
357		void __user *buffer, size_t *lenp,
358		loff_t *ppos)
359{
360	int old_ratio = vm_dirty_ratio;
361	int ret;
362
363	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
364	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
365		writeback_set_ratelimit();
366		vm_dirty_bytes = 0;
367	}
368	return ret;
369}
370
371int dirty_bytes_handler(struct ctl_table *table, int write,
372		void __user *buffer, size_t *lenp,
373		loff_t *ppos)
374{
375	unsigned long old_bytes = vm_dirty_bytes;
376	int ret;
377
378	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
379	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
380		writeback_set_ratelimit();
381		vm_dirty_ratio = 0;
382	}
383	return ret;
384}
385
386static unsigned long wp_next_time(unsigned long cur_time)
387{
388	cur_time += VM_COMPLETIONS_PERIOD_LEN;
389	/* 0 has a special meaning... */
390	if (!cur_time)
391		return 1;
392	return cur_time;
393}
394
395/*
396 * Increment the BDI's writeout completion count and the global writeout
397 * completion count. Called from test_clear_page_writeback().
398 */
399static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
400{
401	__inc_bdi_stat(bdi, BDI_WRITTEN);
402	__fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
403			       bdi->max_prop_frac);
404	/* First event after period switching was turned off? */
405	if (!unlikely(writeout_period_time)) {
406		/*
407		 * We can race with other __bdi_writeout_inc calls here but
408		 * it does not cause any harm since the resulting time when
409		 * timer will fire and what is in writeout_period_time will be
410		 * roughly the same.
411		 */
412		writeout_period_time = wp_next_time(jiffies);
413		mod_timer(&writeout_period_timer, writeout_period_time);
414	}
415}
416
417void bdi_writeout_inc(struct backing_dev_info *bdi)
418{
419	unsigned long flags;
420
421	local_irq_save(flags);
422	__bdi_writeout_inc(bdi);
423	local_irq_restore(flags);
424}
425EXPORT_SYMBOL_GPL(bdi_writeout_inc);
426
427/*
428 * Obtain an accurate fraction of the BDI's portion.
429 */
430static void bdi_writeout_fraction(struct backing_dev_info *bdi,
431		long *numerator, long *denominator)
432{
433	fprop_fraction_percpu(&writeout_completions, &bdi->completions,
434				numerator, denominator);
435}
436
437/*
438 * On idle system, we can be called long after we scheduled because we use
439 * deferred timers so count with missed periods.
440 */
441static void writeout_period(unsigned long t)
442{
443	int miss_periods = (jiffies - writeout_period_time) /
444						 VM_COMPLETIONS_PERIOD_LEN;
445
446	if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
447		writeout_period_time = wp_next_time(writeout_period_time +
448				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
449		mod_timer(&writeout_period_timer, writeout_period_time);
450	} else {
451		/*
452		 * Aging has zeroed all fractions. Stop wasting CPU on period
453		 * updates.
454		 */
455		writeout_period_time = 0;
456	}
457}
458
459/*
460 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
461 * registered backing devices, which, for obvious reasons, can not
462 * exceed 100%.
463 */
464static unsigned int bdi_min_ratio;
465
466int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
467{
468	int ret = 0;
469
470	spin_lock_bh(&bdi_lock);
471	if (min_ratio > bdi->max_ratio) {
472		ret = -EINVAL;
473	} else {
474		min_ratio -= bdi->min_ratio;
475		if (bdi_min_ratio + min_ratio < 100) {
476			bdi_min_ratio += min_ratio;
477			bdi->min_ratio += min_ratio;
478		} else {
479			ret = -EINVAL;
480		}
481	}
482	spin_unlock_bh(&bdi_lock);
483
484	return ret;
485}
486
487int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
488{
489	int ret = 0;
490
491	if (max_ratio > 100)
492		return -EINVAL;
493
494	spin_lock_bh(&bdi_lock);
495	if (bdi->min_ratio > max_ratio) {
496		ret = -EINVAL;
497	} else {
498		bdi->max_ratio = max_ratio;
499		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
500	}
501	spin_unlock_bh(&bdi_lock);
502
503	return ret;
504}
505EXPORT_SYMBOL(bdi_set_max_ratio);
506
507static unsigned long dirty_freerun_ceiling(unsigned long thresh,
508					   unsigned long bg_thresh)
509{
510	return (thresh + bg_thresh) / 2;
511}
512
513static unsigned long hard_dirty_limit(unsigned long thresh)
514{
515	return max(thresh, global_dirty_limit);
516}
517
518/**
519 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
520 * @bdi: the backing_dev_info to query
521 * @dirty: global dirty limit in pages
522 *
523 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
524 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
525 *
526 * Note that balance_dirty_pages() will only seriously take it as a hard limit
527 * when sleeping max_pause per page is not enough to keep the dirty pages under
528 * control. For example, when the device is completely stalled due to some error
529 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
530 * In the other normal situations, it acts more gently by throttling the tasks
531 * more (rather than completely block them) when the bdi dirty pages go high.
532 *
533 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
534 * - starving fast devices
535 * - piling up dirty pages (that will take long time to sync) on slow devices
536 *
537 * The bdi's share of dirty limit will be adapting to its throughput and
538 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
539 */
540unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
541{
542	u64 bdi_dirty;
543	long numerator, denominator;
544
545	/*
546	 * Calculate this BDI's share of the dirty ratio.
547	 */
548	bdi_writeout_fraction(bdi, &numerator, &denominator);
549
550	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
551	bdi_dirty *= numerator;
552	do_div(bdi_dirty, denominator);
553
554	bdi_dirty += (dirty * bdi->min_ratio) / 100;
555	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
556		bdi_dirty = dirty * bdi->max_ratio / 100;
557
558	return bdi_dirty;
559}
560
561/*
562 *                           setpoint - dirty 3
563 *        f(dirty) := 1.0 + (----------------)
564 *                           limit - setpoint
565 *
566 * it's a 3rd order polynomial that subjects to
567 *
568 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
569 * (2) f(setpoint) = 1.0 => the balance point
570 * (3) f(limit)    = 0   => the hard limit
571 * (4) df/dx      <= 0	 => negative feedback control
572 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
573 *     => fast response on large errors; small oscillation near setpoint
574 */
575static long long pos_ratio_polynom(unsigned long setpoint,
576					  unsigned long dirty,
577					  unsigned long limit)
578{
579	long long pos_ratio;
580	long x;
581
582	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
583		      (limit - setpoint) | 1);
584	pos_ratio = x;
585	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
586	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
587	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
588
589	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
590}
591
592/*
593 * Dirty position control.
594 *
595 * (o) global/bdi setpoints
596 *
597 * We want the dirty pages be balanced around the global/bdi setpoints.
598 * When the number of dirty pages is higher/lower than the setpoint, the
599 * dirty position control ratio (and hence task dirty ratelimit) will be
600 * decreased/increased to bring the dirty pages back to the setpoint.
601 *
602 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
603 *
604 *     if (dirty < setpoint) scale up   pos_ratio
605 *     if (dirty > setpoint) scale down pos_ratio
606 *
607 *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
608 *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
609 *
610 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
611 *
612 * (o) global control line
613 *
614 *     ^ pos_ratio
615 *     |
616 *     |            |<===== global dirty control scope ======>|
617 * 2.0 .............*
618 *     |            .*
619 *     |            . *
620 *     |            .   *
621 *     |            .     *
622 *     |            .        *
623 *     |            .            *
624 * 1.0 ................................*
625 *     |            .                  .     *
626 *     |            .                  .          *
627 *     |            .                  .              *
628 *     |            .                  .                 *
629 *     |            .                  .                    *
630 *   0 +------------.------------------.----------------------*------------->
631 *           freerun^          setpoint^                 limit^   dirty pages
632 *
633 * (o) bdi control line
634 *
635 *     ^ pos_ratio
636 *     |
637 *     |            *
638 *     |              *
639 *     |                *
640 *     |                  *
641 *     |                    * |<=========== span ============>|
642 * 1.0 .......................*
643 *     |                      . *
644 *     |                      .   *
645 *     |                      .     *
646 *     |                      .       *
647 *     |                      .         *
648 *     |                      .           *
649 *     |                      .             *
650 *     |                      .               *
651 *     |                      .                 *
652 *     |                      .                   *
653 *     |                      .                     *
654 * 1/4 ...............................................* * * * * * * * * * * *
655 *     |                      .                         .
656 *     |                      .                           .
657 *     |                      .                             .
658 *   0 +----------------------.-------------------------------.------------->
659 *                bdi_setpoint^                    x_intercept^
660 *
661 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
662 * be smoothly throttled down to normal if it starts high in situations like
663 * - start writing to a slow SD card and a fast disk at the same time. The SD
664 *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
665 * - the bdi dirty thresh drops quickly due to change of JBOD workload
666 */
667static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
668					unsigned long thresh,
669					unsigned long bg_thresh,
670					unsigned long dirty,
671					unsigned long bdi_thresh,
672					unsigned long bdi_dirty)
673{
674	unsigned long write_bw = bdi->avg_write_bandwidth;
675	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
676	unsigned long limit = hard_dirty_limit(thresh);
677	unsigned long x_intercept;
678	unsigned long setpoint;		/* dirty pages' target balance point */
679	unsigned long bdi_setpoint;
680	unsigned long span;
681	long long pos_ratio;		/* for scaling up/down the rate limit */
682	long x;
683
684	if (unlikely(dirty >= limit))
685		return 0;
686
687	/*
688	 * global setpoint
689	 *
690	 * See comment for pos_ratio_polynom().
691	 */
692	setpoint = (freerun + limit) / 2;
693	pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);
694
695	/*
696	 * The strictlimit feature is a tool preventing mistrusted filesystems
697	 * from growing a large number of dirty pages before throttling. For
698	 * such filesystems balance_dirty_pages always checks bdi counters
699	 * against bdi limits. Even if global "nr_dirty" is under "freerun".
700	 * This is especially important for fuse which sets bdi->max_ratio to
701	 * 1% by default. Without strictlimit feature, fuse writeback may
702	 * consume arbitrary amount of RAM because it is accounted in
703	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
704	 *
705	 * Here, in bdi_position_ratio(), we calculate pos_ratio based on
706	 * two values: bdi_dirty and bdi_thresh. Let's consider an example:
707	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
708	 * limits are set by default to 10% and 20% (background and throttle).
709	 * Then bdi_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
710	 * bdi_dirty_limit(bdi, bg_thresh) is about ~4K pages. bdi_setpoint is
711	 * about ~6K pages (as the average of background and throttle bdi
712	 * limits). The 3rd order polynomial will provide positive feedback if
713	 * bdi_dirty is under bdi_setpoint and vice versa.
714	 *
715	 * Note, that we cannot use global counters in these calculations
716	 * because we want to throttle process writing to a strictlimit BDI
717	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
718	 * in the example above).
719	 */
720	if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
721		long long bdi_pos_ratio;
722		unsigned long bdi_bg_thresh;
723
724		if (bdi_dirty < 8)
725			return min_t(long long, pos_ratio * 2,
726				     2 << RATELIMIT_CALC_SHIFT);
727
728		if (bdi_dirty >= bdi_thresh)
729			return 0;
730
731		bdi_bg_thresh = div_u64((u64)bdi_thresh * bg_thresh, thresh);
732		bdi_setpoint = dirty_freerun_ceiling(bdi_thresh,
733						     bdi_bg_thresh);
734
735		if (bdi_setpoint == 0 || bdi_setpoint == bdi_thresh)
736			return 0;
737
738		bdi_pos_ratio = pos_ratio_polynom(bdi_setpoint, bdi_dirty,
739						  bdi_thresh);
740
741		/*
742		 * Typically, for strictlimit case, bdi_setpoint << setpoint
743		 * and pos_ratio >> bdi_pos_ratio. In the other words global
744		 * state ("dirty") is not limiting factor and we have to
745		 * make decision based on bdi counters. But there is an
746		 * important case when global pos_ratio should get precedence:
747		 * global limits are exceeded (e.g. due to activities on other
748		 * BDIs) while given strictlimit BDI is below limit.
749		 *
750		 * "pos_ratio * bdi_pos_ratio" would work for the case above,
751		 * but it would look too non-natural for the case of all
752		 * activity in the system coming from a single strictlimit BDI
753		 * with bdi->max_ratio == 100%.
754		 *
755		 * Note that min() below somewhat changes the dynamics of the
756		 * control system. Normally, pos_ratio value can be well over 3
757		 * (when globally we are at freerun and bdi is well below bdi
758		 * setpoint). Now the maximum pos_ratio in the same situation
759		 * is 2. We might want to tweak this if we observe the control
760		 * system is too slow to adapt.
761		 */
762		return min(pos_ratio, bdi_pos_ratio);
763	}
764
765	/*
766	 * We have computed basic pos_ratio above based on global situation. If
767	 * the bdi is over/under its share of dirty pages, we want to scale
768	 * pos_ratio further down/up. That is done by the following mechanism.
769	 */
770
771	/*
772	 * bdi setpoint
773	 *
774	 *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
775	 *
776	 *                        x_intercept - bdi_dirty
777	 *                     := --------------------------
778	 *                        x_intercept - bdi_setpoint
779	 *
780	 * The main bdi control line is a linear function that subjects to
781	 *
782	 * (1) f(bdi_setpoint) = 1.0
783	 * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
784	 *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
785	 *
786	 * For single bdi case, the dirty pages are observed to fluctuate
787	 * regularly within range
788	 *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
789	 * for various filesystems, where (2) can yield in a reasonable 12.5%
790	 * fluctuation range for pos_ratio.
791	 *
792	 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
793	 * own size, so move the slope over accordingly and choose a slope that
794	 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
795	 */
796	if (unlikely(bdi_thresh > thresh))
797		bdi_thresh = thresh;
798	/*
799	 * It's very possible that bdi_thresh is close to 0 not because the
800	 * device is slow, but that it has remained inactive for long time.
801	 * Honour such devices a reasonable good (hopefully IO efficient)
802	 * threshold, so that the occasional writes won't be blocked and active
803	 * writes can rampup the threshold quickly.
804	 */
805	bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
806	/*
807	 * scale global setpoint to bdi's:
808	 *	bdi_setpoint = setpoint * bdi_thresh / thresh
809	 */
810	x = div_u64((u64)bdi_thresh << 16, thresh | 1);
811	bdi_setpoint = setpoint * (u64)x >> 16;
812	/*
813	 * Use span=(8*write_bw) in single bdi case as indicated by
814	 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
815	 *
816	 *        bdi_thresh                    thresh - bdi_thresh
817	 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
818	 *          thresh                            thresh
819	 */
820	span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
821	x_intercept = bdi_setpoint + span;
822
823	if (bdi_dirty < x_intercept - span / 4) {
824		pos_ratio = div64_u64(pos_ratio * (x_intercept - bdi_dirty),
825				      (x_intercept - bdi_setpoint) | 1);
826	} else
827		pos_ratio /= 4;
828
829	/*
830	 * bdi reserve area, safeguard against dirty pool underrun and disk idle
831	 * It may push the desired control point of global dirty pages higher
832	 * than setpoint.
833	 */
834	x_intercept = bdi_thresh / 2;
835	if (bdi_dirty < x_intercept) {
836		if (bdi_dirty > x_intercept / 8)
837			pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
838		else
839			pos_ratio *= 8;
840	}
841
842	return pos_ratio;
843}
844
845static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
846				       unsigned long elapsed,
847				       unsigned long written)
848{
849	const unsigned long period = roundup_pow_of_two(3 * HZ);
850	unsigned long avg = bdi->avg_write_bandwidth;
851	unsigned long old = bdi->write_bandwidth;
852	u64 bw;
853
854	/*
855	 * bw = written * HZ / elapsed
856	 *
857	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
858	 * write_bandwidth = ---------------------------------------------------
859	 *                                          period
860	 *
861	 * @written may have decreased due to account_page_redirty().
862	 * Avoid underflowing @bw calculation.
863	 */
864	bw = written - min(written, bdi->written_stamp);
865	bw *= HZ;
866	if (unlikely(elapsed > period)) {
867		do_div(bw, elapsed);
868		avg = bw;
869		goto out;
870	}
871	bw += (u64)bdi->write_bandwidth * (period - elapsed);
872	bw >>= ilog2(period);
873
874	/*
875	 * one more level of smoothing, for filtering out sudden spikes
876	 */
877	if (avg > old && old >= (unsigned long)bw)
878		avg -= (avg - old) >> 3;
879
880	if (avg < old && old <= (unsigned long)bw)
881		avg += (old - avg) >> 3;
882
883out:
884	bdi->write_bandwidth = bw;
885	bdi->avg_write_bandwidth = avg;
886}
887
888/*
889 * The global dirtyable memory and dirty threshold could be suddenly knocked
890 * down by a large amount (eg. on the startup of KVM in a swapless system).
891 * This may throw the system into deep dirty exceeded state and throttle
892 * heavy/light dirtiers alike. To retain good responsiveness, maintain
893 * global_dirty_limit for tracking slowly down to the knocked down dirty
894 * threshold.
895 */
896static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
897{
898	unsigned long limit = global_dirty_limit;
899
900	/*
901	 * Follow up in one step.
902	 */
903	if (limit < thresh) {
904		limit = thresh;
905		goto update;
906	}
907
908	/*
909	 * Follow down slowly. Use the higher one as the target, because thresh
910	 * may drop below dirty. This is exactly the reason to introduce
911	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
912	 */
913	thresh = max(thresh, dirty);
914	if (limit > thresh) {
915		limit -= (limit - thresh) >> 5;
916		goto update;
917	}
918	return;
919update:
920	global_dirty_limit = limit;
921}
922
923static void global_update_bandwidth(unsigned long thresh,
924				    unsigned long dirty,
925				    unsigned long now)
926{
927	static DEFINE_SPINLOCK(dirty_lock);
928	static unsigned long update_time = INITIAL_JIFFIES;
929
930	/*
931	 * check locklessly first to optimize away locking for the most time
932	 */
933	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
934		return;
935
936	spin_lock(&dirty_lock);
937	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
938		update_dirty_limit(thresh, dirty);
939		update_time = now;
940	}
941	spin_unlock(&dirty_lock);
942}
943
944/*
945 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
946 *
947 * Normal bdi tasks will be curbed at or below it in long term.
948 * Obviously it should be around (write_bw / N) when there are N dd tasks.
949 */
950static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
951				       unsigned long thresh,
952				       unsigned long bg_thresh,
953				       unsigned long dirty,
954				       unsigned long bdi_thresh,
955				       unsigned long bdi_dirty,
956				       unsigned long dirtied,
957				       unsigned long elapsed)
958{
959	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
960	unsigned long limit = hard_dirty_limit(thresh);
961	unsigned long setpoint = (freerun + limit) / 2;
962	unsigned long write_bw = bdi->avg_write_bandwidth;
963	unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
964	unsigned long dirty_rate;
965	unsigned long task_ratelimit;
966	unsigned long balanced_dirty_ratelimit;
967	unsigned long pos_ratio;
968	unsigned long step;
969	unsigned long x;
970
971	/*
972	 * The dirty rate will match the writeout rate in long term, except
973	 * when dirty pages are truncated by userspace or re-dirtied by FS.
974	 */
975	dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
976
977	pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
978				       bdi_thresh, bdi_dirty);
979	/*
980	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
981	 */
982	task_ratelimit = (u64)dirty_ratelimit *
983					pos_ratio >> RATELIMIT_CALC_SHIFT;
984	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
985
986	/*
987	 * A linear estimation of the "balanced" throttle rate. The theory is,
988	 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
989	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
990	 * formula will yield the balanced rate limit (write_bw / N).
991	 *
992	 * Note that the expanded form is not a pure rate feedback:
993	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
994	 * but also takes pos_ratio into account:
995	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
996	 *
997	 * (1) is not realistic because pos_ratio also takes part in balancing
998	 * the dirty rate.  Consider the state
999	 *	pos_ratio = 0.5						     (3)
1000	 *	rate = 2 * (write_bw / N)				     (4)
1001	 * If (1) is used, it will stuck in that state! Because each dd will
1002	 * be throttled at
1003	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1004	 * yielding
1005	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1006	 * put (6) into (1) we get
1007	 *	rate_(i+1) = rate_(i)					     (7)
1008	 *
1009	 * So we end up using (2) to always keep
1010	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1011	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1012	 * pos_ratio is able to drive itself to 1.0, which is not only where
1013	 * the dirty count meet the setpoint, but also where the slope of
1014	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1015	 */
1016	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1017					   dirty_rate | 1);
1018	/*
1019	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1020	 */
1021	if (unlikely(balanced_dirty_ratelimit > write_bw))
1022		balanced_dirty_ratelimit = write_bw;
1023
1024	/*
1025	 * We could safely do this and return immediately:
1026	 *
1027	 *	bdi->dirty_ratelimit = balanced_dirty_ratelimit;
1028	 *
1029	 * However to get a more stable dirty_ratelimit, the below elaborated
1030	 * code makes use of task_ratelimit to filter out singular points and
1031	 * limit the step size.
1032	 *
1033	 * The below code essentially only uses the relative value of
1034	 *
1035	 *	task_ratelimit - dirty_ratelimit
1036	 *	= (pos_ratio - 1) * dirty_ratelimit
1037	 *
1038	 * which reflects the direction and size of dirty position error.
1039	 */
1040
1041	/*
1042	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1043	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1044	 * For example, when
1045	 * - dirty_ratelimit > balanced_dirty_ratelimit
1046	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1047	 * lowering dirty_ratelimit will help meet both the position and rate
1048	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1049	 * only help meet the rate target. After all, what the users ultimately
1050	 * feel and care are stable dirty rate and small position error.
1051	 *
1052	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1053	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1054	 * keeps jumping around randomly and can even leap far away at times
1055	 * due to the small 200ms estimation period of dirty_rate (we want to
1056	 * keep that period small to reduce time lags).
1057	 */
1058	step = 0;
1059
1060	/*
1061	 * For strictlimit case, calculations above were based on bdi counters
1062	 * and limits (starting from pos_ratio = bdi_position_ratio() and up to
1063	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1064	 * Hence, to calculate "step" properly, we have to use bdi_dirty as
1065	 * "dirty" and bdi_setpoint as "setpoint".
1066	 *
1067	 * We rampup dirty_ratelimit forcibly if bdi_dirty is low because
1068	 * it's possible that bdi_thresh is close to zero due to inactivity
1069	 * of backing device (see the implementation of bdi_dirty_limit()).
1070	 */
1071	if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1072		dirty = bdi_dirty;
1073		if (bdi_dirty < 8)
1074			setpoint = bdi_dirty + 1;
1075		else
1076			setpoint = (bdi_thresh +
1077				    bdi_dirty_limit(bdi, bg_thresh)) / 2;
1078	}
1079
1080	if (dirty < setpoint) {
1081		x = min3(bdi->balanced_dirty_ratelimit,
1082			 balanced_dirty_ratelimit, task_ratelimit);
1083		if (dirty_ratelimit < x)
1084			step = x - dirty_ratelimit;
1085	} else {
1086		x = max3(bdi->balanced_dirty_ratelimit,
1087			 balanced_dirty_ratelimit, task_ratelimit);
1088		if (dirty_ratelimit > x)
1089			step = dirty_ratelimit - x;
1090	}
1091
1092	/*
1093	 * Don't pursue 100% rate matching. It's impossible since the balanced
1094	 * rate itself is constantly fluctuating. So decrease the track speed
1095	 * when it gets close to the target. Helps eliminate pointless tremors.
1096	 */
1097	step >>= dirty_ratelimit / (2 * step + 1);
1098	/*
1099	 * Limit the tracking speed to avoid overshooting.
1100	 */
1101	step = (step + 7) / 8;
1102
1103	if (dirty_ratelimit < balanced_dirty_ratelimit)
1104		dirty_ratelimit += step;
1105	else
1106		dirty_ratelimit -= step;
1107
1108	bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1109	bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1110
1111	trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
1112}
1113
1114void __bdi_update_bandwidth(struct backing_dev_info *bdi,
1115			    unsigned long thresh,
1116			    unsigned long bg_thresh,
1117			    unsigned long dirty,
1118			    unsigned long bdi_thresh,
1119			    unsigned long bdi_dirty,
1120			    unsigned long start_time)
1121{
1122	unsigned long now = jiffies;
1123	unsigned long elapsed = now - bdi->bw_time_stamp;
1124	unsigned long dirtied;
1125	unsigned long written;
1126
1127	/*
1128	 * rate-limit, only update once every 200ms.
1129	 */
1130	if (elapsed < BANDWIDTH_INTERVAL)
1131		return;
1132
1133	dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1134	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1135
1136	/*
1137	 * Skip quiet periods when disk bandwidth is under-utilized.
1138	 * (at least 1s idle time between two flusher runs)
1139	 */
1140	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1141		goto snapshot;
1142
1143	if (thresh) {
1144		global_update_bandwidth(thresh, dirty, now);
1145		bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1146					   bdi_thresh, bdi_dirty,
1147					   dirtied, elapsed);
1148	}
1149	bdi_update_write_bandwidth(bdi, elapsed, written);
1150
1151snapshot:
1152	bdi->dirtied_stamp = dirtied;
1153	bdi->written_stamp = written;
1154	bdi->bw_time_stamp = now;
1155}
1156
1157static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1158				 unsigned long thresh,
1159				 unsigned long bg_thresh,
1160				 unsigned long dirty,
1161				 unsigned long bdi_thresh,
1162				 unsigned long bdi_dirty,
1163				 unsigned long start_time)
1164{
1165	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1166		return;
1167	spin_lock(&bdi->wb.list_lock);
1168	__bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1169			       bdi_thresh, bdi_dirty, start_time);
1170	spin_unlock(&bdi->wb.list_lock);
1171}
1172
1173/*
1174 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1175 * will look to see if it needs to start dirty throttling.
1176 *
1177 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1178 * global_page_state() too often. So scale it near-sqrt to the safety margin
1179 * (the number of pages we may dirty without exceeding the dirty limits).
1180 */
1181static unsigned long dirty_poll_interval(unsigned long dirty,
1182					 unsigned long thresh)
1183{
1184	if (thresh > dirty)
1185		return 1UL << (ilog2(thresh - dirty) >> 1);
1186
1187	return 1;
1188}
1189
1190static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
1191				   unsigned long bdi_dirty)
1192{
1193	unsigned long bw = bdi->avg_write_bandwidth;
1194	unsigned long t;
1195
1196	/*
1197	 * Limit pause time for small memory systems. If sleeping for too long
1198	 * time, a small pool of dirty/writeback pages may go empty and disk go
1199	 * idle.
1200	 *
1201	 * 8 serves as the safety ratio.
1202	 */
1203	t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1204	t++;
1205
1206	return min_t(unsigned long, t, MAX_PAUSE);
1207}
1208
1209static long bdi_min_pause(struct backing_dev_info *bdi,
1210			  long max_pause,
1211			  unsigned long task_ratelimit,
1212			  unsigned long dirty_ratelimit,
1213			  int *nr_dirtied_pause)
1214{
1215	long hi = ilog2(bdi->avg_write_bandwidth);
1216	long lo = ilog2(bdi->dirty_ratelimit);
1217	long t;		/* target pause */
1218	long pause;	/* estimated next pause */
1219	int pages;	/* target nr_dirtied_pause */
1220
1221	/* target for 10ms pause on 1-dd case */
1222	t = max(1, HZ / 100);
1223
1224	/*
1225	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1226	 * overheads.
1227	 *
1228	 * (N * 10ms) on 2^N concurrent tasks.
1229	 */
1230	if (hi > lo)
1231		t += (hi - lo) * (10 * HZ) / 1024;
1232
1233	/*
1234	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1235	 * on the much more stable dirty_ratelimit. However the next pause time
1236	 * will be computed based on task_ratelimit and the two rate limits may
1237	 * depart considerably at some time. Especially if task_ratelimit goes
1238	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1239	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1240	 * result task_ratelimit won't be executed faithfully, which could
1241	 * eventually bring down dirty_ratelimit.
1242	 *
1243	 * We apply two rules to fix it up:
1244	 * 1) try to estimate the next pause time and if necessary, use a lower
1245	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1246	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1247	 * 2) limit the target pause time to max_pause/2, so that the normal
1248	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1249	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1250	 */
1251	t = min(t, 1 + max_pause / 2);
1252	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1253
1254	/*
1255	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1256	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1257	 * When the 16 consecutive reads are often interrupted by some dirty
1258	 * throttling pause during the async writes, cfq will go into idles
1259	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1260	 * until reaches DIRTY_POLL_THRESH=32 pages.
1261	 */
1262	if (pages < DIRTY_POLL_THRESH) {
1263		t = max_pause;
1264		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1265		if (pages > DIRTY_POLL_THRESH) {
1266			pages = DIRTY_POLL_THRESH;
1267			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1268		}
1269	}
1270
1271	pause = HZ * pages / (task_ratelimit + 1);
1272	if (pause > max_pause) {
1273		t = max_pause;
1274		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1275	}
1276
1277	*nr_dirtied_pause = pages;
1278	/*
1279	 * The minimal pause time will normally be half the target pause time.
1280	 */
1281	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1282}
1283
1284static inline void bdi_dirty_limits(struct backing_dev_info *bdi,
1285				    unsigned long dirty_thresh,
1286				    unsigned long background_thresh,
1287				    unsigned long *bdi_dirty,
1288				    unsigned long *bdi_thresh,
1289				    unsigned long *bdi_bg_thresh)
1290{
1291	unsigned long bdi_reclaimable;
1292
1293	/*
1294	 * bdi_thresh is not treated as some limiting factor as
1295	 * dirty_thresh, due to reasons
1296	 * - in JBOD setup, bdi_thresh can fluctuate a lot
1297	 * - in a system with HDD and USB key, the USB key may somehow
1298	 *   go into state (bdi_dirty >> bdi_thresh) either because
1299	 *   bdi_dirty starts high, or because bdi_thresh drops low.
1300	 *   In this case we don't want to hard throttle the USB key
1301	 *   dirtiers for 100 seconds until bdi_dirty drops under
1302	 *   bdi_thresh. Instead the auxiliary bdi control line in
1303	 *   bdi_position_ratio() will let the dirtier task progress
1304	 *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1305	 */
1306	*bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1307
1308	if (bdi_bg_thresh)
1309		*bdi_bg_thresh = dirty_thresh ? div_u64((u64)*bdi_thresh *
1310							background_thresh,
1311							dirty_thresh) : 0;
1312
1313	/*
1314	 * In order to avoid the stacked BDI deadlock we need
1315	 * to ensure we accurately count the 'dirty' pages when
1316	 * the threshold is low.
1317	 *
1318	 * Otherwise it would be possible to get thresh+n pages
1319	 * reported dirty, even though there are thresh-m pages
1320	 * actually dirty; with m+n sitting in the percpu
1321	 * deltas.
1322	 */
1323	if (*bdi_thresh < 2 * bdi_stat_error(bdi)) {
1324		bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1325		*bdi_dirty = bdi_reclaimable +
1326			bdi_stat_sum(bdi, BDI_WRITEBACK);
1327	} else {
1328		bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1329		*bdi_dirty = bdi_reclaimable +
1330			bdi_stat(bdi, BDI_WRITEBACK);
1331	}
1332}
1333
1334/*
1335 * balance_dirty_pages() must be called by processes which are generating dirty
1336 * data.  It looks at the number of dirty pages in the machine and will force
1337 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1338 * If we're over `background_thresh' then the writeback threads are woken to
1339 * perform some writeout.
1340 */
1341static void balance_dirty_pages(struct address_space *mapping,
1342				unsigned long pages_dirtied)
1343{
1344	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1345	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1346	unsigned long background_thresh;
1347	unsigned long dirty_thresh;
1348	long period;
1349	long pause;
1350	long max_pause;
1351	long min_pause;
1352	int nr_dirtied_pause;
1353	bool dirty_exceeded = false;
1354	unsigned long task_ratelimit;
1355	unsigned long dirty_ratelimit;
1356	unsigned long pos_ratio;
1357	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
1358	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1359	unsigned long start_time = jiffies;
1360
1361	for (;;) {
1362		unsigned long now = jiffies;
1363		unsigned long uninitialized_var(bdi_thresh);
1364		unsigned long thresh;
1365		unsigned long uninitialized_var(bdi_dirty);
1366		unsigned long dirty;
1367		unsigned long bg_thresh;
1368
1369		/*
1370		 * Unstable writes are a feature of certain networked
1371		 * filesystems (i.e. NFS) in which data may have been
1372		 * written to the server's write cache, but has not yet
1373		 * been flushed to permanent storage.
1374		 */
1375		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1376					global_page_state(NR_UNSTABLE_NFS);
1377		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1378
1379		global_dirty_limits(&background_thresh, &dirty_thresh);
1380
1381		if (unlikely(strictlimit)) {
1382			bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
1383					 &bdi_dirty, &bdi_thresh, &bg_thresh);
1384
1385			dirty = bdi_dirty;
1386			thresh = bdi_thresh;
1387		} else {
1388			dirty = nr_dirty;
1389			thresh = dirty_thresh;
1390			bg_thresh = background_thresh;
1391		}
1392
1393		/*
1394		 * Throttle it only when the background writeback cannot
1395		 * catch-up. This avoids (excessively) small writeouts
1396		 * when the bdi limits are ramping up in case of !strictlimit.
1397		 *
1398		 * In strictlimit case make decision based on the bdi counters
1399		 * and limits. Small writeouts when the bdi limits are ramping
1400		 * up are the price we consciously pay for strictlimit-ing.
1401		 */
1402		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
1403			current->dirty_paused_when = now;
1404			current->nr_dirtied = 0;
1405			current->nr_dirtied_pause =
1406				dirty_poll_interval(dirty, thresh);
1407			break;
1408		}
1409
1410		if (unlikely(!writeback_in_progress(bdi)))
1411			bdi_start_background_writeback(bdi);
1412
1413		if (!strictlimit)
1414			bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
1415					 &bdi_dirty, &bdi_thresh, NULL);
1416
1417		dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1418				 ((nr_dirty > dirty_thresh) || strictlimit);
1419		if (dirty_exceeded && !bdi->dirty_exceeded)
1420			bdi->dirty_exceeded = 1;
1421
1422		bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1423				     nr_dirty, bdi_thresh, bdi_dirty,
1424				     start_time);
1425
1426		dirty_ratelimit = bdi->dirty_ratelimit;
1427		pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1428					       background_thresh, nr_dirty,
1429					       bdi_thresh, bdi_dirty);
1430		task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1431							RATELIMIT_CALC_SHIFT;
1432		max_pause = bdi_max_pause(bdi, bdi_dirty);
1433		min_pause = bdi_min_pause(bdi, max_pause,
1434					  task_ratelimit, dirty_ratelimit,
1435					  &nr_dirtied_pause);
1436
1437		if (unlikely(task_ratelimit == 0)) {
1438			period = max_pause;
1439			pause = max_pause;
1440			goto pause;
1441		}
1442		period = HZ * pages_dirtied / task_ratelimit;
1443		pause = period;
1444		if (current->dirty_paused_when)
1445			pause -= now - current->dirty_paused_when;
1446		/*
1447		 * For less than 1s think time (ext3/4 may block the dirtier
1448		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1449		 * however at much less frequency), try to compensate it in
1450		 * future periods by updating the virtual time; otherwise just
1451		 * do a reset, as it may be a light dirtier.
1452		 */
1453		if (pause < min_pause) {
1454			trace_balance_dirty_pages(bdi,
1455						  dirty_thresh,
1456						  background_thresh,
1457						  nr_dirty,
1458						  bdi_thresh,
1459						  bdi_dirty,
1460						  dirty_ratelimit,
1461						  task_ratelimit,
1462						  pages_dirtied,
1463						  period,
1464						  min(pause, 0L),
1465						  start_time);
1466			if (pause < -HZ) {
1467				current->dirty_paused_when = now;
1468				current->nr_dirtied = 0;
1469			} else if (period) {
1470				current->dirty_paused_when += period;
1471				current->nr_dirtied = 0;
1472			} else if (current->nr_dirtied_pause <= pages_dirtied)
1473				current->nr_dirtied_pause += pages_dirtied;
1474			break;
1475		}
1476		if (unlikely(pause > max_pause)) {
1477			/* for occasional dropped task_ratelimit */
1478			now += min(pause - max_pause, max_pause);
1479			pause = max_pause;
1480		}
1481
1482pause:
1483		trace_balance_dirty_pages(bdi,
1484					  dirty_thresh,
1485					  background_thresh,
1486					  nr_dirty,
1487					  bdi_thresh,
1488					  bdi_dirty,
1489					  dirty_ratelimit,
1490					  task_ratelimit,
1491					  pages_dirtied,
1492					  period,
1493					  pause,
1494					  start_time);
1495		__set_current_state(TASK_KILLABLE);
1496		io_schedule_timeout(pause);
1497
1498		current->dirty_paused_when = now + pause;
1499		current->nr_dirtied = 0;
1500		current->nr_dirtied_pause = nr_dirtied_pause;
1501
1502		/*
1503		 * This is typically equal to (nr_dirty < dirty_thresh) and can
1504		 * also keep "1000+ dd on a slow USB stick" under control.
1505		 */
1506		if (task_ratelimit)
1507			break;
1508
1509		/*
1510		 * In the case of an unresponding NFS server and the NFS dirty
1511		 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1512		 * to go through, so that tasks on them still remain responsive.
1513		 *
1514		 * In theory 1 page is enough to keep the comsumer-producer
1515		 * pipe going: the flusher cleans 1 page => the task dirties 1
1516		 * more page. However bdi_dirty has accounting errors.  So use
1517		 * the larger and more IO friendly bdi_stat_error.
1518		 */
1519		if (bdi_dirty <= bdi_stat_error(bdi))
1520			break;
1521
1522		if (fatal_signal_pending(current))
1523			break;
1524	}
1525
1526	if (!dirty_exceeded && bdi->dirty_exceeded)
1527		bdi->dirty_exceeded = 0;
1528
1529	if (writeback_in_progress(bdi))
1530		return;
1531
1532	/*
1533	 * In laptop mode, we wait until hitting the higher threshold before
1534	 * starting background writeout, and then write out all the way down
1535	 * to the lower threshold.  So slow writers cause minimal disk activity.
1536	 *
1537	 * In normal mode, we start background writeout at the lower
1538	 * background_thresh, to keep the amount of dirty memory low.
1539	 */
1540	if (laptop_mode)
1541		return;
1542
1543	if (nr_reclaimable > background_thresh)
1544		bdi_start_background_writeback(bdi);
1545}
1546
1547static DEFINE_PER_CPU(int, bdp_ratelimits);
1548
1549/*
1550 * Normal tasks are throttled by
1551 *	loop {
1552 *		dirty tsk->nr_dirtied_pause pages;
1553 *		take a snap in balance_dirty_pages();
1554 *	}
1555 * However there is a worst case. If every task exit immediately when dirtied
1556 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1557 * called to throttle the page dirties. The solution is to save the not yet
1558 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1559 * randomly into the running tasks. This works well for the above worst case,
1560 * as the new task will pick up and accumulate the old task's leaked dirty
1561 * count and eventually get throttled.
1562 */
1563DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1564
1565/**
1566 * balance_dirty_pages_ratelimited - balance dirty memory state
1567 * @mapping: address_space which was dirtied
1568 *
1569 * Processes which are dirtying memory should call in here once for each page
1570 * which was newly dirtied.  The function will periodically check the system's
1571 * dirty state and will initiate writeback if needed.
1572 *
1573 * On really big machines, get_writeback_state is expensive, so try to avoid
1574 * calling it too often (ratelimiting).  But once we're over the dirty memory
1575 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1576 * from overshooting the limit by (ratelimit_pages) each.
1577 */
1578void balance_dirty_pages_ratelimited(struct address_space *mapping)
1579{
1580	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
1581	int ratelimit;
1582	int *p;
1583
1584	if (!bdi_cap_account_dirty(bdi))
1585		return;
1586
1587	ratelimit = current->nr_dirtied_pause;
1588	if (bdi->dirty_exceeded)
1589		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1590
1591	preempt_disable();
1592	/*
1593	 * This prevents one CPU to accumulate too many dirtied pages without
1594	 * calling into balance_dirty_pages(), which can happen when there are
1595	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1596	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1597	 */
1598	p =  this_cpu_ptr(&bdp_ratelimits);
1599	if (unlikely(current->nr_dirtied >= ratelimit))
1600		*p = 0;
1601	else if (unlikely(*p >= ratelimit_pages)) {
1602		*p = 0;
1603		ratelimit = 0;
1604	}
1605	/*
1606	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1607	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1608	 * the dirty throttling and livelock other long-run dirtiers.
1609	 */
1610	p = this_cpu_ptr(&dirty_throttle_leaks);
1611	if (*p > 0 && current->nr_dirtied < ratelimit) {
1612		unsigned long nr_pages_dirtied;
1613		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1614		*p -= nr_pages_dirtied;
1615		current->nr_dirtied += nr_pages_dirtied;
1616	}
1617	preempt_enable();
1618
1619	if (unlikely(current->nr_dirtied >= ratelimit))
1620		balance_dirty_pages(mapping, current->nr_dirtied);
1621}
1622EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1623
1624void throttle_vm_writeout(gfp_t gfp_mask)
1625{
1626	unsigned long background_thresh;
1627	unsigned long dirty_thresh;
1628
1629        for ( ; ; ) {
1630		global_dirty_limits(&background_thresh, &dirty_thresh);
1631		dirty_thresh = hard_dirty_limit(dirty_thresh);
1632
1633                /*
1634                 * Boost the allowable dirty threshold a bit for page
1635                 * allocators so they don't get DoS'ed by heavy writers
1636                 */
1637                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1638
1639                if (global_page_state(NR_UNSTABLE_NFS) +
1640			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1641                        	break;
1642                congestion_wait(BLK_RW_ASYNC, HZ/10);
1643
1644		/*
1645		 * The caller might hold locks which can prevent IO completion
1646		 * or progress in the filesystem.  So we cannot just sit here
1647		 * waiting for IO to complete.
1648		 */
1649		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1650			break;
1651        }
1652}
1653
1654/*
1655 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1656 */
1657int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1658	void __user *buffer, size_t *length, loff_t *ppos)
1659{
1660	proc_dointvec(table, write, buffer, length, ppos);
1661	return 0;
1662}
1663
1664#ifdef CONFIG_BLOCK
1665void laptop_mode_timer_fn(unsigned long data)
1666{
1667	struct request_queue *q = (struct request_queue *)data;
1668	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1669		global_page_state(NR_UNSTABLE_NFS);
1670
1671	/*
1672	 * We want to write everything out, not just down to the dirty
1673	 * threshold
1674	 */
1675	if (bdi_has_dirty_io(&q->backing_dev_info))
1676		bdi_start_writeback(&q->backing_dev_info, nr_pages,
1677					WB_REASON_LAPTOP_TIMER);
1678}
1679
1680/*
1681 * We've spun up the disk and we're in laptop mode: schedule writeback
1682 * of all dirty data a few seconds from now.  If the flush is already scheduled
1683 * then push it back - the user is still using the disk.
1684 */
1685void laptop_io_completion(struct backing_dev_info *info)
1686{
1687	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1688}
1689
1690/*
1691 * We're in laptop mode and we've just synced. The sync's writes will have
1692 * caused another writeback to be scheduled by laptop_io_completion.
1693 * Nothing needs to be written back anymore, so we unschedule the writeback.
1694 */
1695void laptop_sync_completion(void)
1696{
1697	struct backing_dev_info *bdi;
1698
1699	rcu_read_lock();
1700
1701	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1702		del_timer(&bdi->laptop_mode_wb_timer);
1703
1704	rcu_read_unlock();
1705}
1706#endif
1707
1708/*
1709 * If ratelimit_pages is too high then we can get into dirty-data overload
1710 * if a large number of processes all perform writes at the same time.
1711 * If it is too low then SMP machines will call the (expensive)
1712 * get_writeback_state too often.
1713 *
1714 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1715 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1716 * thresholds.
1717 */
1718
1719void writeback_set_ratelimit(void)
1720{
1721	unsigned long background_thresh;
1722	unsigned long dirty_thresh;
1723	global_dirty_limits(&background_thresh, &dirty_thresh);
1724	global_dirty_limit = dirty_thresh;
1725	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1726	if (ratelimit_pages < 16)
1727		ratelimit_pages = 16;
1728}
1729
1730static int
1731ratelimit_handler(struct notifier_block *self, unsigned long action,
1732		  void *hcpu)
1733{
1734
1735	switch (action & ~CPU_TASKS_FROZEN) {
1736	case CPU_ONLINE:
1737	case CPU_DEAD:
1738		writeback_set_ratelimit();
1739		return NOTIFY_OK;
1740	default:
1741		return NOTIFY_DONE;
1742	}
1743}
1744
1745static struct notifier_block ratelimit_nb = {
1746	.notifier_call	= ratelimit_handler,
1747	.next		= NULL,
1748};
1749
1750/*
1751 * Called early on to tune the page writeback dirty limits.
1752 *
1753 * We used to scale dirty pages according to how total memory
1754 * related to pages that could be allocated for buffers (by
1755 * comparing nr_free_buffer_pages() to vm_total_pages.
1756 *
1757 * However, that was when we used "dirty_ratio" to scale with
1758 * all memory, and we don't do that any more. "dirty_ratio"
1759 * is now applied to total non-HIGHPAGE memory (by subtracting
1760 * totalhigh_pages from vm_total_pages), and as such we can't
1761 * get into the old insane situation any more where we had
1762 * large amounts of dirty pages compared to a small amount of
1763 * non-HIGHMEM memory.
1764 *
1765 * But we might still want to scale the dirty_ratio by how
1766 * much memory the box has..
1767 */
1768void __init page_writeback_init(void)
1769{
1770	writeback_set_ratelimit();
1771	register_cpu_notifier(&ratelimit_nb);
1772
1773	fprop_global_init(&writeout_completions, GFP_KERNEL);
1774}
1775
1776/**
1777 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1778 * @mapping: address space structure to write
1779 * @start: starting page index
1780 * @end: ending page index (inclusive)
1781 *
1782 * This function scans the page range from @start to @end (inclusive) and tags
1783 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1784 * that write_cache_pages (or whoever calls this function) will then use
1785 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1786 * used to avoid livelocking of writeback by a process steadily creating new
1787 * dirty pages in the file (thus it is important for this function to be quick
1788 * so that it can tag pages faster than a dirtying process can create them).
1789 */
1790/*
1791 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1792 */
1793void tag_pages_for_writeback(struct address_space *mapping,
1794			     pgoff_t start, pgoff_t end)
1795{
1796#define WRITEBACK_TAG_BATCH 4096
1797	unsigned long tagged;
1798
1799	do {
1800		spin_lock_irq(&mapping->tree_lock);
1801		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1802				&start, end, WRITEBACK_TAG_BATCH,
1803				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1804		spin_unlock_irq(&mapping->tree_lock);
1805		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1806		cond_resched();
1807		/* We check 'start' to handle wrapping when end == ~0UL */
1808	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1809}
1810EXPORT_SYMBOL(tag_pages_for_writeback);
1811
1812/**
1813 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1814 * @mapping: address space structure to write
1815 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1816 * @writepage: function called for each page
1817 * @data: data passed to writepage function
1818 *
1819 * If a page is already under I/O, write_cache_pages() skips it, even
1820 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1821 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1822 * and msync() need to guarantee that all the data which was dirty at the time
1823 * the call was made get new I/O started against them.  If wbc->sync_mode is
1824 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1825 * existing IO to complete.
1826 *
1827 * To avoid livelocks (when other process dirties new pages), we first tag
1828 * pages which should be written back with TOWRITE tag and only then start
1829 * writing them. For data-integrity sync we have to be careful so that we do
1830 * not miss some pages (e.g., because some other process has cleared TOWRITE
1831 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1832 * by the process clearing the DIRTY tag (and submitting the page for IO).
1833 */
1834int write_cache_pages(struct address_space *mapping,
1835		      struct writeback_control *wbc, writepage_t writepage,
1836		      void *data)
1837{
1838	int ret = 0;
1839	int done = 0;
1840	struct pagevec pvec;
1841	int nr_pages;
1842	pgoff_t uninitialized_var(writeback_index);
1843	pgoff_t index;
1844	pgoff_t end;		/* Inclusive */
1845	pgoff_t done_index;
1846	int cycled;
1847	int range_whole = 0;
1848	int tag;
1849
1850	pagevec_init(&pvec, 0);
1851	if (wbc->range_cyclic) {
1852		writeback_index = mapping->writeback_index; /* prev offset */
1853		index = writeback_index;
1854		if (index == 0)
1855			cycled = 1;
1856		else
1857			cycled = 0;
1858		end = -1;
1859	} else {
1860		index = wbc->range_start >> PAGE_CACHE_SHIFT;
1861		end = wbc->range_end >> PAGE_CACHE_SHIFT;
1862		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1863			range_whole = 1;
1864		cycled = 1; /* ignore range_cyclic tests */
1865	}
1866	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1867		tag = PAGECACHE_TAG_TOWRITE;
1868	else
1869		tag = PAGECACHE_TAG_DIRTY;
1870retry:
1871	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1872		tag_pages_for_writeback(mapping, index, end);
1873	done_index = index;
1874	while (!done && (index <= end)) {
1875		int i;
1876
1877		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1878			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1879		if (nr_pages == 0)
1880			break;
1881
1882		for (i = 0; i < nr_pages; i++) {
1883			struct page *page = pvec.pages[i];
1884
1885			/*
1886			 * At this point, the page may be truncated or
1887			 * invalidated (changing page->mapping to NULL), or
1888			 * even swizzled back from swapper_space to tmpfs file
1889			 * mapping. However, page->index will not change
1890			 * because we have a reference on the page.
1891			 */
1892			if (page->index > end) {
1893				/*
1894				 * can't be range_cyclic (1st pass) because
1895				 * end == -1 in that case.
1896				 */
1897				done = 1;
1898				break;
1899			}
1900
1901			done_index = page->index;
1902
1903			lock_page(page);
1904
1905			/*
1906			 * Page truncated or invalidated. We can freely skip it
1907			 * then, even for data integrity operations: the page
1908			 * has disappeared concurrently, so there could be no
1909			 * real expectation of this data interity operation
1910			 * even if there is now a new, dirty page at the same
1911			 * pagecache address.
1912			 */
1913			if (unlikely(page->mapping != mapping)) {
1914continue_unlock:
1915				unlock_page(page);
1916				continue;
1917			}
1918
1919			if (!PageDirty(page)) {
1920				/* someone wrote it for us */
1921				goto continue_unlock;
1922			}
1923
1924			if (PageWriteback(page)) {
1925				if (wbc->sync_mode != WB_SYNC_NONE)
1926					wait_on_page_writeback(page);
1927				else
1928					goto continue_unlock;
1929			}
1930
1931			BUG_ON(PageWriteback(page));
1932			if (!clear_page_dirty_for_io(page))
1933				goto continue_unlock;
1934
1935			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
1936			ret = (*writepage)(page, wbc, data);
1937			if (unlikely(ret)) {
1938				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1939					unlock_page(page);
1940					ret = 0;
1941				} else {
1942					/*
1943					 * done_index is set past this page,
1944					 * so media errors will not choke
1945					 * background writeout for the entire
1946					 * file. This has consequences for
1947					 * range_cyclic semantics (ie. it may
1948					 * not be suitable for data integrity
1949					 * writeout).
1950					 */
1951					done_index = page->index + 1;
1952					done = 1;
1953					break;
1954				}
1955			}
1956
1957			/*
1958			 * We stop writing back only if we are not doing
1959			 * integrity sync. In case of integrity sync we have to
1960			 * keep going until we have written all the pages
1961			 * we tagged for writeback prior to entering this loop.
1962			 */
1963			if (--wbc->nr_to_write <= 0 &&
1964			    wbc->sync_mode == WB_SYNC_NONE) {
1965				done = 1;
1966				break;
1967			}
1968		}
1969		pagevec_release(&pvec);
1970		cond_resched();
1971	}
1972	if (!cycled && !done) {
1973		/*
1974		 * range_cyclic:
1975		 * We hit the last page and there is more work to be done: wrap
1976		 * back to the start of the file
1977		 */
1978		cycled = 1;
1979		index = 0;
1980		end = writeback_index - 1;
1981		goto retry;
1982	}
1983	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1984		mapping->writeback_index = done_index;
1985
1986	return ret;
1987}
1988EXPORT_SYMBOL(write_cache_pages);
1989
1990/*
1991 * Function used by generic_writepages to call the real writepage
1992 * function and set the mapping flags on error
1993 */
1994static int __writepage(struct page *page, struct writeback_control *wbc,
1995		       void *data)
1996{
1997	struct address_space *mapping = data;
1998	int ret = mapping->a_ops->writepage(page, wbc);
1999	mapping_set_error(mapping, ret);
2000	return ret;
2001}
2002
2003/**
2004 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2005 * @mapping: address space structure to write
2006 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2007 *
2008 * This is a library function, which implements the writepages()
2009 * address_space_operation.
2010 */
2011int generic_writepages(struct address_space *mapping,
2012		       struct writeback_control *wbc)
2013{
2014	struct blk_plug plug;
2015	int ret;
2016
2017	/* deal with chardevs and other special file */
2018	if (!mapping->a_ops->writepage)
2019		return 0;
2020
2021	blk_start_plug(&plug);
2022	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2023	blk_finish_plug(&plug);
2024	return ret;
2025}
2026
2027EXPORT_SYMBOL(generic_writepages);
2028
2029int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2030{
2031	int ret;
2032
2033	if (wbc->nr_to_write <= 0)
2034		return 0;
2035	if (mapping->a_ops->writepages)
2036		ret = mapping->a_ops->writepages(mapping, wbc);
2037	else
2038		ret = generic_writepages(mapping, wbc);
2039	return ret;
2040}
2041
2042/**
2043 * write_one_page - write out a single page and optionally wait on I/O
2044 * @page: the page to write
2045 * @wait: if true, wait on writeout
2046 *
2047 * The page must be locked by the caller and will be unlocked upon return.
2048 *
2049 * write_one_page() returns a negative error code if I/O failed.
2050 */
2051int write_one_page(struct page *page, int wait)
2052{
2053	struct address_space *mapping = page->mapping;
2054	int ret = 0;
2055	struct writeback_control wbc = {
2056		.sync_mode = WB_SYNC_ALL,
2057		.nr_to_write = 1,
2058	};
2059
2060	BUG_ON(!PageLocked(page));
2061
2062	if (wait)
2063		wait_on_page_writeback(page);
2064
2065	if (clear_page_dirty_for_io(page)) {
2066		page_cache_get(page);
2067		ret = mapping->a_ops->writepage(page, &wbc);
2068		if (ret == 0 && wait) {
2069			wait_on_page_writeback(page);
2070			if (PageError(page))
2071				ret = -EIO;
2072		}
2073		page_cache_release(page);
2074	} else {
2075		unlock_page(page);
2076	}
2077	return ret;
2078}
2079EXPORT_SYMBOL(write_one_page);
2080
2081/*
2082 * For address_spaces which do not use buffers nor write back.
2083 */
2084int __set_page_dirty_no_writeback(struct page *page)
2085{
2086	if (!PageDirty(page))
2087		return !TestSetPageDirty(page);
2088	return 0;
2089}
2090
2091/*
2092 * Helper function for set_page_dirty family.
2093 * NOTE: This relies on being atomic wrt interrupts.
2094 */
2095void account_page_dirtied(struct page *page, struct address_space *mapping)
2096{
2097	trace_writeback_dirty_page(page, mapping);
2098
2099	if (mapping_cap_account_dirty(mapping)) {
2100		struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
2101
2102		__inc_zone_page_state(page, NR_FILE_DIRTY);
2103		__inc_zone_page_state(page, NR_DIRTIED);
2104		__inc_bdi_stat(bdi, BDI_RECLAIMABLE);
2105		__inc_bdi_stat(bdi, BDI_DIRTIED);
2106		task_io_account_write(PAGE_CACHE_SIZE);
2107		current->nr_dirtied++;
2108		this_cpu_inc(bdp_ratelimits);
2109	}
2110}
2111EXPORT_SYMBOL(account_page_dirtied);
2112
2113/*
2114 * Helper function for deaccounting dirty page without writeback.
2115 *
2116 * Doing this should *normally* only ever be done when a page
2117 * is truncated, and is not actually mapped anywhere at all. However,
2118 * fs/buffer.c does this when it notices that somebody has cleaned
2119 * out all the buffers on a page without actually doing it through
2120 * the VM. Can you say "ext3 is horribly ugly"? Thought you could.
2121 */
2122void account_page_cleaned(struct page *page, struct address_space *mapping)
2123{
2124	if (mapping_cap_account_dirty(mapping)) {
2125		dec_zone_page_state(page, NR_FILE_DIRTY);
2126		dec_bdi_stat(inode_to_bdi(mapping->host), BDI_RECLAIMABLE);
2127		task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2128	}
2129}
2130EXPORT_SYMBOL(account_page_cleaned);
2131
2132/*
2133 * For address_spaces which do not use buffers.  Just tag the page as dirty in
2134 * its radix tree.
2135 *
2136 * This is also used when a single buffer is being dirtied: we want to set the
2137 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2138 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2139 *
2140 * The caller must ensure this doesn't race with truncation.  Most will simply
2141 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2142 * the pte lock held, which also locks out truncation.
2143 */
2144int __set_page_dirty_nobuffers(struct page *page)
2145{
2146	if (!TestSetPageDirty(page)) {
2147		struct address_space *mapping = page_mapping(page);
2148		unsigned long flags;
2149
2150		if (!mapping)
2151			return 1;
2152
2153		spin_lock_irqsave(&mapping->tree_lock, flags);
2154		BUG_ON(page_mapping(page) != mapping);
2155		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2156		account_page_dirtied(page, mapping);
2157		radix_tree_tag_set(&mapping->page_tree, page_index(page),
2158				   PAGECACHE_TAG_DIRTY);
2159		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2160		if (mapping->host) {
2161			/* !PageAnon && !swapper_space */
2162			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2163		}
2164		return 1;
2165	}
2166	return 0;
2167}
2168EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2169
2170/*
2171 * Call this whenever redirtying a page, to de-account the dirty counters
2172 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2173 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2174 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2175 * control.
2176 */
2177void account_page_redirty(struct page *page)
2178{
2179	struct address_space *mapping = page->mapping;
2180	if (mapping && mapping_cap_account_dirty(mapping)) {
2181		current->nr_dirtied--;
2182		dec_zone_page_state(page, NR_DIRTIED);
2183		dec_bdi_stat(inode_to_bdi(mapping->host), BDI_DIRTIED);
2184	}
2185}
2186EXPORT_SYMBOL(account_page_redirty);
2187
2188/*
2189 * When a writepage implementation decides that it doesn't want to write this
2190 * page for some reason, it should redirty the locked page via
2191 * redirty_page_for_writepage() and it should then unlock the page and return 0
2192 */
2193int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2194{
2195	int ret;
2196
2197	wbc->pages_skipped++;
2198	ret = __set_page_dirty_nobuffers(page);
2199	account_page_redirty(page);
2200	return ret;
2201}
2202EXPORT_SYMBOL(redirty_page_for_writepage);
2203
2204/*
2205 * Dirty a page.
2206 *
2207 * For pages with a mapping this should be done under the page lock
2208 * for the benefit of asynchronous memory errors who prefer a consistent
2209 * dirty state. This rule can be broken in some special cases,
2210 * but should be better not to.
2211 *
2212 * If the mapping doesn't provide a set_page_dirty a_op, then
2213 * just fall through and assume that it wants buffer_heads.
2214 */
2215int set_page_dirty(struct page *page)
2216{
2217	struct address_space *mapping = page_mapping(page);
2218
2219	if (likely(mapping)) {
2220		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2221		/*
2222		 * readahead/lru_deactivate_page could remain
2223		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2224		 * About readahead, if the page is written, the flags would be
2225		 * reset. So no problem.
2226		 * About lru_deactivate_page, if the page is redirty, the flag
2227		 * will be reset. So no problem. but if the page is used by readahead
2228		 * it will confuse readahead and make it restart the size rampup
2229		 * process. But it's a trivial problem.
2230		 */
2231		if (PageReclaim(page))
2232			ClearPageReclaim(page);
2233#ifdef CONFIG_BLOCK
2234		if (!spd)
2235			spd = __set_page_dirty_buffers;
2236#endif
2237		return (*spd)(page);
2238	}
2239	if (!PageDirty(page)) {
2240		if (!TestSetPageDirty(page))
2241			return 1;
2242	}
2243	return 0;
2244}
2245EXPORT_SYMBOL(set_page_dirty);
2246
2247/*
2248 * set_page_dirty() is racy if the caller has no reference against
2249 * page->mapping->host, and if the page is unlocked.  This is because another
2250 * CPU could truncate the page off the mapping and then free the mapping.
2251 *
2252 * Usually, the page _is_ locked, or the caller is a user-space process which
2253 * holds a reference on the inode by having an open file.
2254 *
2255 * In other cases, the page should be locked before running set_page_dirty().
2256 */
2257int set_page_dirty_lock(struct page *page)
2258{
2259	int ret;
2260
2261	lock_page(page);
2262	ret = set_page_dirty(page);
2263	unlock_page(page);
2264	return ret;
2265}
2266EXPORT_SYMBOL(set_page_dirty_lock);
2267
2268/*
2269 * Clear a page's dirty flag, while caring for dirty memory accounting.
2270 * Returns true if the page was previously dirty.
2271 *
2272 * This is for preparing to put the page under writeout.  We leave the page
2273 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2274 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2275 * implementation will run either set_page_writeback() or set_page_dirty(),
2276 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2277 * back into sync.
2278 *
2279 * This incoherency between the page's dirty flag and radix-tree tag is
2280 * unfortunate, but it only exists while the page is locked.
2281 */
2282int clear_page_dirty_for_io(struct page *page)
2283{
2284	struct address_space *mapping = page_mapping(page);
2285
2286	BUG_ON(!PageLocked(page));
2287
2288	if (mapping && mapping_cap_account_dirty(mapping)) {
2289		/*
2290		 * Yes, Virginia, this is indeed insane.
2291		 *
2292		 * We use this sequence to make sure that
2293		 *  (a) we account for dirty stats properly
2294		 *  (b) we tell the low-level filesystem to
2295		 *      mark the whole page dirty if it was
2296		 *      dirty in a pagetable. Only to then
2297		 *  (c) clean the page again and return 1 to
2298		 *      cause the writeback.
2299		 *
2300		 * This way we avoid all nasty races with the
2301		 * dirty bit in multiple places and clearing
2302		 * them concurrently from different threads.
2303		 *
2304		 * Note! Normally the "set_page_dirty(page)"
2305		 * has no effect on the actual dirty bit - since
2306		 * that will already usually be set. But we
2307		 * need the side effects, and it can help us
2308		 * avoid races.
2309		 *
2310		 * We basically use the page "master dirty bit"
2311		 * as a serialization point for all the different
2312		 * threads doing their things.
2313		 */
2314		if (page_mkclean(page))
2315			set_page_dirty(page);
2316		/*
2317		 * We carefully synchronise fault handlers against
2318		 * installing a dirty pte and marking the page dirty
2319		 * at this point.  We do this by having them hold the
2320		 * page lock while dirtying the page, and pages are
2321		 * always locked coming in here, so we get the desired
2322		 * exclusion.
2323		 */
2324		if (TestClearPageDirty(page)) {
2325			dec_zone_page_state(page, NR_FILE_DIRTY);
2326			dec_bdi_stat(inode_to_bdi(mapping->host),
2327					BDI_RECLAIMABLE);
2328			return 1;
2329		}
2330		return 0;
2331	}
2332	return TestClearPageDirty(page);
2333}
2334EXPORT_SYMBOL(clear_page_dirty_for_io);
2335
2336int test_clear_page_writeback(struct page *page)
2337{
2338	struct address_space *mapping = page_mapping(page);
2339	struct mem_cgroup *memcg;
2340	int ret;
2341
2342	memcg = mem_cgroup_begin_page_stat(page);
2343	if (mapping) {
2344		struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
2345		unsigned long flags;
2346
2347		spin_lock_irqsave(&mapping->tree_lock, flags);
2348		ret = TestClearPageWriteback(page);
2349		if (ret) {
2350			radix_tree_tag_clear(&mapping->page_tree,
2351						page_index(page),
2352						PAGECACHE_TAG_WRITEBACK);
2353			if (bdi_cap_account_writeback(bdi)) {
2354				__dec_bdi_stat(bdi, BDI_WRITEBACK);
2355				__bdi_writeout_inc(bdi);
2356			}
2357		}
2358		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2359	} else {
2360		ret = TestClearPageWriteback(page);
2361	}
2362	if (ret) {
2363		mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2364		dec_zone_page_state(page, NR_WRITEBACK);
2365		inc_zone_page_state(page, NR_WRITTEN);
2366	}
2367	mem_cgroup_end_page_stat(memcg);
2368	return ret;
2369}
2370
2371int __test_set_page_writeback(struct page *page, bool keep_write)
2372{
2373	struct address_space *mapping = page_mapping(page);
2374	struct mem_cgroup *memcg;
2375	int ret;
2376
2377	memcg = mem_cgroup_begin_page_stat(page);
2378	if (mapping) {
2379		struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
2380		unsigned long flags;
2381
2382		spin_lock_irqsave(&mapping->tree_lock, flags);
2383		ret = TestSetPageWriteback(page);
2384		if (!ret) {
2385			radix_tree_tag_set(&mapping->page_tree,
2386						page_index(page),
2387						PAGECACHE_TAG_WRITEBACK);
2388			if (bdi_cap_account_writeback(bdi))
2389				__inc_bdi_stat(bdi, BDI_WRITEBACK);
2390		}
2391		if (!PageDirty(page))
2392			radix_tree_tag_clear(&mapping->page_tree,
2393						page_index(page),
2394						PAGECACHE_TAG_DIRTY);
2395		if (!keep_write)
2396			radix_tree_tag_clear(&mapping->page_tree,
2397						page_index(page),
2398						PAGECACHE_TAG_TOWRITE);
2399		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2400	} else {
2401		ret = TestSetPageWriteback(page);
2402	}
2403	if (!ret) {
2404		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2405		inc_zone_page_state(page, NR_WRITEBACK);
2406	}
2407	mem_cgroup_end_page_stat(memcg);
2408	return ret;
2409
2410}
2411EXPORT_SYMBOL(__test_set_page_writeback);
2412
2413/*
2414 * Return true if any of the pages in the mapping are marked with the
2415 * passed tag.
2416 */
2417int mapping_tagged(struct address_space *mapping, int tag)
2418{
2419	return radix_tree_tagged(&mapping->page_tree, tag);
2420}
2421EXPORT_SYMBOL(mapping_tagged);
2422
2423/**
2424 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2425 * @page:	The page to wait on.
2426 *
2427 * This function determines if the given page is related to a backing device
2428 * that requires page contents to be held stable during writeback.  If so, then
2429 * it will wait for any pending writeback to complete.
2430 */
2431void wait_for_stable_page(struct page *page)
2432{
2433	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2434		wait_on_page_writeback(page);
2435}
2436EXPORT_SYMBOL_GPL(wait_for_stable_page);
2437