1/* 2 * linux/mm/nommu.c 3 * 4 * Replacement code for mm functions to support CPU's that don't 5 * have any form of memory management unit (thus no virtual memory). 6 * 7 * See Documentation/nommu-mmap.txt 8 * 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 14 */ 15 16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18#include <linux/export.h> 19#include <linux/mm.h> 20#include <linux/vmacache.h> 21#include <linux/mman.h> 22#include <linux/swap.h> 23#include <linux/file.h> 24#include <linux/highmem.h> 25#include <linux/pagemap.h> 26#include <linux/slab.h> 27#include <linux/vmalloc.h> 28#include <linux/blkdev.h> 29#include <linux/backing-dev.h> 30#include <linux/compiler.h> 31#include <linux/mount.h> 32#include <linux/personality.h> 33#include <linux/security.h> 34#include <linux/syscalls.h> 35#include <linux/audit.h> 36#include <linux/sched/sysctl.h> 37#include <linux/printk.h> 38 39#include <asm/uaccess.h> 40#include <asm/tlb.h> 41#include <asm/tlbflush.h> 42#include <asm/mmu_context.h> 43#include "internal.h" 44 45#if 0 46#define kenter(FMT, ...) \ 47 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 48#define kleave(FMT, ...) \ 49 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 50#define kdebug(FMT, ...) \ 51 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__) 52#else 53#define kenter(FMT, ...) \ 54 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 55#define kleave(FMT, ...) \ 56 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 57#define kdebug(FMT, ...) \ 58 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__) 59#endif 60 61void *high_memory; 62EXPORT_SYMBOL(high_memory); 63struct page *mem_map; 64unsigned long max_mapnr; 65EXPORT_SYMBOL(max_mapnr); 66unsigned long highest_memmap_pfn; 67struct percpu_counter vm_committed_as; 68int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 69int sysctl_overcommit_ratio = 50; /* default is 50% */ 70unsigned long sysctl_overcommit_kbytes __read_mostly; 71int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT; 72int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 73unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 74unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 75int heap_stack_gap = 0; 76 77atomic_long_t mmap_pages_allocated; 78 79/* 80 * The global memory commitment made in the system can be a metric 81 * that can be used to drive ballooning decisions when Linux is hosted 82 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 83 * balancing memory across competing virtual machines that are hosted. 84 * Several metrics drive this policy engine including the guest reported 85 * memory commitment. 86 */ 87unsigned long vm_memory_committed(void) 88{ 89 return percpu_counter_read_positive(&vm_committed_as); 90} 91 92EXPORT_SYMBOL_GPL(vm_memory_committed); 93 94EXPORT_SYMBOL(mem_map); 95 96/* list of mapped, potentially shareable regions */ 97static struct kmem_cache *vm_region_jar; 98struct rb_root nommu_region_tree = RB_ROOT; 99DECLARE_RWSEM(nommu_region_sem); 100 101const struct vm_operations_struct generic_file_vm_ops = { 102}; 103 104/* 105 * Return the total memory allocated for this pointer, not 106 * just what the caller asked for. 107 * 108 * Doesn't have to be accurate, i.e. may have races. 109 */ 110unsigned int kobjsize(const void *objp) 111{ 112 struct page *page; 113 114 /* 115 * If the object we have should not have ksize performed on it, 116 * return size of 0 117 */ 118 if (!objp || !virt_addr_valid(objp)) 119 return 0; 120 121 page = virt_to_head_page(objp); 122 123 /* 124 * If the allocator sets PageSlab, we know the pointer came from 125 * kmalloc(). 126 */ 127 if (PageSlab(page)) 128 return ksize(objp); 129 130 /* 131 * If it's not a compound page, see if we have a matching VMA 132 * region. This test is intentionally done in reverse order, 133 * so if there's no VMA, we still fall through and hand back 134 * PAGE_SIZE for 0-order pages. 135 */ 136 if (!PageCompound(page)) { 137 struct vm_area_struct *vma; 138 139 vma = find_vma(current->mm, (unsigned long)objp); 140 if (vma) 141 return vma->vm_end - vma->vm_start; 142 } 143 144 /* 145 * The ksize() function is only guaranteed to work for pointers 146 * returned by kmalloc(). So handle arbitrary pointers here. 147 */ 148 return PAGE_SIZE << compound_order(page); 149} 150 151long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 152 unsigned long start, unsigned long nr_pages, 153 unsigned int foll_flags, struct page **pages, 154 struct vm_area_struct **vmas, int *nonblocking) 155{ 156 struct vm_area_struct *vma; 157 unsigned long vm_flags; 158 int i; 159 160 /* calculate required read or write permissions. 161 * If FOLL_FORCE is set, we only require the "MAY" flags. 162 */ 163 vm_flags = (foll_flags & FOLL_WRITE) ? 164 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 165 vm_flags &= (foll_flags & FOLL_FORCE) ? 166 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 167 168 for (i = 0; i < nr_pages; i++) { 169 vma = find_vma(mm, start); 170 if (!vma) 171 goto finish_or_fault; 172 173 /* protect what we can, including chardevs */ 174 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 175 !(vm_flags & vma->vm_flags)) 176 goto finish_or_fault; 177 178 if (pages) { 179 pages[i] = virt_to_page(start); 180 if (pages[i]) 181 page_cache_get(pages[i]); 182 } 183 if (vmas) 184 vmas[i] = vma; 185 start = (start + PAGE_SIZE) & PAGE_MASK; 186 } 187 188 return i; 189 190finish_or_fault: 191 return i ? : -EFAULT; 192} 193 194/* 195 * get a list of pages in an address range belonging to the specified process 196 * and indicate the VMA that covers each page 197 * - this is potentially dodgy as we may end incrementing the page count of a 198 * slab page or a secondary page from a compound page 199 * - don't permit access to VMAs that don't support it, such as I/O mappings 200 */ 201long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 202 unsigned long start, unsigned long nr_pages, 203 int write, int force, struct page **pages, 204 struct vm_area_struct **vmas) 205{ 206 int flags = 0; 207 208 if (write) 209 flags |= FOLL_WRITE; 210 if (force) 211 flags |= FOLL_FORCE; 212 213 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 214 NULL); 215} 216EXPORT_SYMBOL(get_user_pages); 217 218long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm, 219 unsigned long start, unsigned long nr_pages, 220 int write, int force, struct page **pages, 221 int *locked) 222{ 223 return get_user_pages(tsk, mm, start, nr_pages, write, force, 224 pages, NULL); 225} 226EXPORT_SYMBOL(get_user_pages_locked); 227 228long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 229 unsigned long start, unsigned long nr_pages, 230 int write, int force, struct page **pages, 231 unsigned int gup_flags) 232{ 233 long ret; 234 down_read(&mm->mmap_sem); 235 ret = get_user_pages(tsk, mm, start, nr_pages, write, force, 236 pages, NULL); 237 up_read(&mm->mmap_sem); 238 return ret; 239} 240EXPORT_SYMBOL(__get_user_pages_unlocked); 241 242long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 243 unsigned long start, unsigned long nr_pages, 244 int write, int force, struct page **pages) 245{ 246 return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write, 247 force, pages, 0); 248} 249EXPORT_SYMBOL(get_user_pages_unlocked); 250 251/** 252 * follow_pfn - look up PFN at a user virtual address 253 * @vma: memory mapping 254 * @address: user virtual address 255 * @pfn: location to store found PFN 256 * 257 * Only IO mappings and raw PFN mappings are allowed. 258 * 259 * Returns zero and the pfn at @pfn on success, -ve otherwise. 260 */ 261int follow_pfn(struct vm_area_struct *vma, unsigned long address, 262 unsigned long *pfn) 263{ 264 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 265 return -EINVAL; 266 267 *pfn = address >> PAGE_SHIFT; 268 return 0; 269} 270EXPORT_SYMBOL(follow_pfn); 271 272LIST_HEAD(vmap_area_list); 273 274void vfree(const void *addr) 275{ 276 kfree(addr); 277} 278EXPORT_SYMBOL(vfree); 279 280void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 281{ 282 /* 283 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 284 * returns only a logical address. 285 */ 286 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 287} 288EXPORT_SYMBOL(__vmalloc); 289 290void *vmalloc_user(unsigned long size) 291{ 292 void *ret; 293 294 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 295 PAGE_KERNEL); 296 if (ret) { 297 struct vm_area_struct *vma; 298 299 down_write(¤t->mm->mmap_sem); 300 vma = find_vma(current->mm, (unsigned long)ret); 301 if (vma) 302 vma->vm_flags |= VM_USERMAP; 303 up_write(¤t->mm->mmap_sem); 304 } 305 306 return ret; 307} 308EXPORT_SYMBOL(vmalloc_user); 309 310struct page *vmalloc_to_page(const void *addr) 311{ 312 return virt_to_page(addr); 313} 314EXPORT_SYMBOL(vmalloc_to_page); 315 316unsigned long vmalloc_to_pfn(const void *addr) 317{ 318 return page_to_pfn(virt_to_page(addr)); 319} 320EXPORT_SYMBOL(vmalloc_to_pfn); 321 322long vread(char *buf, char *addr, unsigned long count) 323{ 324 /* Don't allow overflow */ 325 if ((unsigned long) buf + count < count) 326 count = -(unsigned long) buf; 327 328 memcpy(buf, addr, count); 329 return count; 330} 331 332long vwrite(char *buf, char *addr, unsigned long count) 333{ 334 /* Don't allow overflow */ 335 if ((unsigned long) addr + count < count) 336 count = -(unsigned long) addr; 337 338 memcpy(addr, buf, count); 339 return count; 340} 341 342/* 343 * vmalloc - allocate virtually continguos memory 344 * 345 * @size: allocation size 346 * 347 * Allocate enough pages to cover @size from the page level 348 * allocator and map them into continguos kernel virtual space. 349 * 350 * For tight control over page level allocator and protection flags 351 * use __vmalloc() instead. 352 */ 353void *vmalloc(unsigned long size) 354{ 355 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 356} 357EXPORT_SYMBOL(vmalloc); 358 359/* 360 * vzalloc - allocate virtually continguos memory with zero fill 361 * 362 * @size: allocation size 363 * 364 * Allocate enough pages to cover @size from the page level 365 * allocator and map them into continguos kernel virtual space. 366 * The memory allocated is set to zero. 367 * 368 * For tight control over page level allocator and protection flags 369 * use __vmalloc() instead. 370 */ 371void *vzalloc(unsigned long size) 372{ 373 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 374 PAGE_KERNEL); 375} 376EXPORT_SYMBOL(vzalloc); 377 378/** 379 * vmalloc_node - allocate memory on a specific node 380 * @size: allocation size 381 * @node: numa node 382 * 383 * Allocate enough pages to cover @size from the page level 384 * allocator and map them into contiguous kernel virtual space. 385 * 386 * For tight control over page level allocator and protection flags 387 * use __vmalloc() instead. 388 */ 389void *vmalloc_node(unsigned long size, int node) 390{ 391 return vmalloc(size); 392} 393EXPORT_SYMBOL(vmalloc_node); 394 395/** 396 * vzalloc_node - allocate memory on a specific node with zero fill 397 * @size: allocation size 398 * @node: numa node 399 * 400 * Allocate enough pages to cover @size from the page level 401 * allocator and map them into contiguous kernel virtual space. 402 * The memory allocated is set to zero. 403 * 404 * For tight control over page level allocator and protection flags 405 * use __vmalloc() instead. 406 */ 407void *vzalloc_node(unsigned long size, int node) 408{ 409 return vzalloc(size); 410} 411EXPORT_SYMBOL(vzalloc_node); 412 413#ifndef PAGE_KERNEL_EXEC 414# define PAGE_KERNEL_EXEC PAGE_KERNEL 415#endif 416 417/** 418 * vmalloc_exec - allocate virtually contiguous, executable memory 419 * @size: allocation size 420 * 421 * Kernel-internal function to allocate enough pages to cover @size 422 * the page level allocator and map them into contiguous and 423 * executable kernel virtual space. 424 * 425 * For tight control over page level allocator and protection flags 426 * use __vmalloc() instead. 427 */ 428 429void *vmalloc_exec(unsigned long size) 430{ 431 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 432} 433 434/** 435 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 436 * @size: allocation size 437 * 438 * Allocate enough 32bit PA addressable pages to cover @size from the 439 * page level allocator and map them into continguos kernel virtual space. 440 */ 441void *vmalloc_32(unsigned long size) 442{ 443 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 444} 445EXPORT_SYMBOL(vmalloc_32); 446 447/** 448 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 449 * @size: allocation size 450 * 451 * The resulting memory area is 32bit addressable and zeroed so it can be 452 * mapped to userspace without leaking data. 453 * 454 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 455 * remap_vmalloc_range() are permissible. 456 */ 457void *vmalloc_32_user(unsigned long size) 458{ 459 /* 460 * We'll have to sort out the ZONE_DMA bits for 64-bit, 461 * but for now this can simply use vmalloc_user() directly. 462 */ 463 return vmalloc_user(size); 464} 465EXPORT_SYMBOL(vmalloc_32_user); 466 467void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 468{ 469 BUG(); 470 return NULL; 471} 472EXPORT_SYMBOL(vmap); 473 474void vunmap(const void *addr) 475{ 476 BUG(); 477} 478EXPORT_SYMBOL(vunmap); 479 480void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 481{ 482 BUG(); 483 return NULL; 484} 485EXPORT_SYMBOL(vm_map_ram); 486 487void vm_unmap_ram(const void *mem, unsigned int count) 488{ 489 BUG(); 490} 491EXPORT_SYMBOL(vm_unmap_ram); 492 493void vm_unmap_aliases(void) 494{ 495} 496EXPORT_SYMBOL_GPL(vm_unmap_aliases); 497 498/* 499 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 500 * have one. 501 */ 502void __weak vmalloc_sync_all(void) 503{ 504} 505 506/** 507 * alloc_vm_area - allocate a range of kernel address space 508 * @size: size of the area 509 * 510 * Returns: NULL on failure, vm_struct on success 511 * 512 * This function reserves a range of kernel address space, and 513 * allocates pagetables to map that range. No actual mappings 514 * are created. If the kernel address space is not shared 515 * between processes, it syncs the pagetable across all 516 * processes. 517 */ 518struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 519{ 520 BUG(); 521 return NULL; 522} 523EXPORT_SYMBOL_GPL(alloc_vm_area); 524 525void free_vm_area(struct vm_struct *area) 526{ 527 BUG(); 528} 529EXPORT_SYMBOL_GPL(free_vm_area); 530 531int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 532 struct page *page) 533{ 534 return -EINVAL; 535} 536EXPORT_SYMBOL(vm_insert_page); 537 538/* 539 * sys_brk() for the most part doesn't need the global kernel 540 * lock, except when an application is doing something nasty 541 * like trying to un-brk an area that has already been mapped 542 * to a regular file. in this case, the unmapping will need 543 * to invoke file system routines that need the global lock. 544 */ 545SYSCALL_DEFINE1(brk, unsigned long, brk) 546{ 547 struct mm_struct *mm = current->mm; 548 549 if (brk < mm->start_brk || brk > mm->context.end_brk) 550 return mm->brk; 551 552 if (mm->brk == brk) 553 return mm->brk; 554 555 /* 556 * Always allow shrinking brk 557 */ 558 if (brk <= mm->brk) { 559 mm->brk = brk; 560 return brk; 561 } 562 563 /* 564 * Ok, looks good - let it rip. 565 */ 566 flush_icache_range(mm->brk, brk); 567 return mm->brk = brk; 568} 569 570/* 571 * initialise the VMA and region record slabs 572 */ 573void __init mmap_init(void) 574{ 575 int ret; 576 577 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 578 VM_BUG_ON(ret); 579 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC); 580} 581 582/* 583 * validate the region tree 584 * - the caller must hold the region lock 585 */ 586#ifdef CONFIG_DEBUG_NOMMU_REGIONS 587static noinline void validate_nommu_regions(void) 588{ 589 struct vm_region *region, *last; 590 struct rb_node *p, *lastp; 591 592 lastp = rb_first(&nommu_region_tree); 593 if (!lastp) 594 return; 595 596 last = rb_entry(lastp, struct vm_region, vm_rb); 597 BUG_ON(unlikely(last->vm_end <= last->vm_start)); 598 BUG_ON(unlikely(last->vm_top < last->vm_end)); 599 600 while ((p = rb_next(lastp))) { 601 region = rb_entry(p, struct vm_region, vm_rb); 602 last = rb_entry(lastp, struct vm_region, vm_rb); 603 604 BUG_ON(unlikely(region->vm_end <= region->vm_start)); 605 BUG_ON(unlikely(region->vm_top < region->vm_end)); 606 BUG_ON(unlikely(region->vm_start < last->vm_top)); 607 608 lastp = p; 609 } 610} 611#else 612static void validate_nommu_regions(void) 613{ 614} 615#endif 616 617/* 618 * add a region into the global tree 619 */ 620static void add_nommu_region(struct vm_region *region) 621{ 622 struct vm_region *pregion; 623 struct rb_node **p, *parent; 624 625 validate_nommu_regions(); 626 627 parent = NULL; 628 p = &nommu_region_tree.rb_node; 629 while (*p) { 630 parent = *p; 631 pregion = rb_entry(parent, struct vm_region, vm_rb); 632 if (region->vm_start < pregion->vm_start) 633 p = &(*p)->rb_left; 634 else if (region->vm_start > pregion->vm_start) 635 p = &(*p)->rb_right; 636 else if (pregion == region) 637 return; 638 else 639 BUG(); 640 } 641 642 rb_link_node(®ion->vm_rb, parent, p); 643 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 644 645 validate_nommu_regions(); 646} 647 648/* 649 * delete a region from the global tree 650 */ 651static void delete_nommu_region(struct vm_region *region) 652{ 653 BUG_ON(!nommu_region_tree.rb_node); 654 655 validate_nommu_regions(); 656 rb_erase(®ion->vm_rb, &nommu_region_tree); 657 validate_nommu_regions(); 658} 659 660/* 661 * free a contiguous series of pages 662 */ 663static void free_page_series(unsigned long from, unsigned long to) 664{ 665 for (; from < to; from += PAGE_SIZE) { 666 struct page *page = virt_to_page(from); 667 668 kdebug("- free %lx", from); 669 atomic_long_dec(&mmap_pages_allocated); 670 if (page_count(page) != 1) 671 kdebug("free page %p: refcount not one: %d", 672 page, page_count(page)); 673 put_page(page); 674 } 675} 676 677/* 678 * release a reference to a region 679 * - the caller must hold the region semaphore for writing, which this releases 680 * - the region may not have been added to the tree yet, in which case vm_top 681 * will equal vm_start 682 */ 683static void __put_nommu_region(struct vm_region *region) 684 __releases(nommu_region_sem) 685{ 686 kenter("%p{%d}", region, region->vm_usage); 687 688 BUG_ON(!nommu_region_tree.rb_node); 689 690 if (--region->vm_usage == 0) { 691 if (region->vm_top > region->vm_start) 692 delete_nommu_region(region); 693 up_write(&nommu_region_sem); 694 695 if (region->vm_file) 696 fput(region->vm_file); 697 698 /* IO memory and memory shared directly out of the pagecache 699 * from ramfs/tmpfs mustn't be released here */ 700 if (region->vm_flags & VM_MAPPED_COPY) { 701 kdebug("free series"); 702 free_page_series(region->vm_start, region->vm_top); 703 } 704 kmem_cache_free(vm_region_jar, region); 705 } else { 706 up_write(&nommu_region_sem); 707 } 708} 709 710/* 711 * release a reference to a region 712 */ 713static void put_nommu_region(struct vm_region *region) 714{ 715 down_write(&nommu_region_sem); 716 __put_nommu_region(region); 717} 718 719/* 720 * update protection on a vma 721 */ 722static void protect_vma(struct vm_area_struct *vma, unsigned long flags) 723{ 724#ifdef CONFIG_MPU 725 struct mm_struct *mm = vma->vm_mm; 726 long start = vma->vm_start & PAGE_MASK; 727 while (start < vma->vm_end) { 728 protect_page(mm, start, flags); 729 start += PAGE_SIZE; 730 } 731 update_protections(mm); 732#endif 733} 734 735/* 736 * add a VMA into a process's mm_struct in the appropriate place in the list 737 * and tree and add to the address space's page tree also if not an anonymous 738 * page 739 * - should be called with mm->mmap_sem held writelocked 740 */ 741static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 742{ 743 struct vm_area_struct *pvma, *prev; 744 struct address_space *mapping; 745 struct rb_node **p, *parent, *rb_prev; 746 747 kenter(",%p", vma); 748 749 BUG_ON(!vma->vm_region); 750 751 mm->map_count++; 752 vma->vm_mm = mm; 753 754 protect_vma(vma, vma->vm_flags); 755 756 /* add the VMA to the mapping */ 757 if (vma->vm_file) { 758 mapping = vma->vm_file->f_mapping; 759 760 i_mmap_lock_write(mapping); 761 flush_dcache_mmap_lock(mapping); 762 vma_interval_tree_insert(vma, &mapping->i_mmap); 763 flush_dcache_mmap_unlock(mapping); 764 i_mmap_unlock_write(mapping); 765 } 766 767 /* add the VMA to the tree */ 768 parent = rb_prev = NULL; 769 p = &mm->mm_rb.rb_node; 770 while (*p) { 771 parent = *p; 772 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 773 774 /* sort by: start addr, end addr, VMA struct addr in that order 775 * (the latter is necessary as we may get identical VMAs) */ 776 if (vma->vm_start < pvma->vm_start) 777 p = &(*p)->rb_left; 778 else if (vma->vm_start > pvma->vm_start) { 779 rb_prev = parent; 780 p = &(*p)->rb_right; 781 } else if (vma->vm_end < pvma->vm_end) 782 p = &(*p)->rb_left; 783 else if (vma->vm_end > pvma->vm_end) { 784 rb_prev = parent; 785 p = &(*p)->rb_right; 786 } else if (vma < pvma) 787 p = &(*p)->rb_left; 788 else if (vma > pvma) { 789 rb_prev = parent; 790 p = &(*p)->rb_right; 791 } else 792 BUG(); 793 } 794 795 rb_link_node(&vma->vm_rb, parent, p); 796 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 797 798 /* add VMA to the VMA list also */ 799 prev = NULL; 800 if (rb_prev) 801 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 802 803 __vma_link_list(mm, vma, prev, parent); 804} 805 806/* 807 * delete a VMA from its owning mm_struct and address space 808 */ 809static void delete_vma_from_mm(struct vm_area_struct *vma) 810{ 811 int i; 812 struct address_space *mapping; 813 struct mm_struct *mm = vma->vm_mm; 814 struct task_struct *curr = current; 815 816 kenter("%p", vma); 817 818 protect_vma(vma, 0); 819 820 mm->map_count--; 821 for (i = 0; i < VMACACHE_SIZE; i++) { 822 /* if the vma is cached, invalidate the entire cache */ 823 if (curr->vmacache[i] == vma) { 824 vmacache_invalidate(mm); 825 break; 826 } 827 } 828 829 /* remove the VMA from the mapping */ 830 if (vma->vm_file) { 831 mapping = vma->vm_file->f_mapping; 832 833 i_mmap_lock_write(mapping); 834 flush_dcache_mmap_lock(mapping); 835 vma_interval_tree_remove(vma, &mapping->i_mmap); 836 flush_dcache_mmap_unlock(mapping); 837 i_mmap_unlock_write(mapping); 838 } 839 840 /* remove from the MM's tree and list */ 841 rb_erase(&vma->vm_rb, &mm->mm_rb); 842 843 if (vma->vm_prev) 844 vma->vm_prev->vm_next = vma->vm_next; 845 else 846 mm->mmap = vma->vm_next; 847 848 if (vma->vm_next) 849 vma->vm_next->vm_prev = vma->vm_prev; 850} 851 852/* 853 * destroy a VMA record 854 */ 855static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 856{ 857 kenter("%p", vma); 858 if (vma->vm_ops && vma->vm_ops->close) 859 vma->vm_ops->close(vma); 860 if (vma->vm_file) 861 fput(vma->vm_file); 862 put_nommu_region(vma->vm_region); 863 kmem_cache_free(vm_area_cachep, vma); 864} 865 866/* 867 * look up the first VMA in which addr resides, NULL if none 868 * - should be called with mm->mmap_sem at least held readlocked 869 */ 870struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 871{ 872 struct vm_area_struct *vma; 873 874 /* check the cache first */ 875 vma = vmacache_find(mm, addr); 876 if (likely(vma)) 877 return vma; 878 879 /* trawl the list (there may be multiple mappings in which addr 880 * resides) */ 881 for (vma = mm->mmap; vma; vma = vma->vm_next) { 882 if (vma->vm_start > addr) 883 return NULL; 884 if (vma->vm_end > addr) { 885 vmacache_update(addr, vma); 886 return vma; 887 } 888 } 889 890 return NULL; 891} 892EXPORT_SYMBOL(find_vma); 893 894/* 895 * find a VMA 896 * - we don't extend stack VMAs under NOMMU conditions 897 */ 898struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 899{ 900 return find_vma(mm, addr); 901} 902 903/* 904 * expand a stack to a given address 905 * - not supported under NOMMU conditions 906 */ 907int expand_stack(struct vm_area_struct *vma, unsigned long address) 908{ 909 return -ENOMEM; 910} 911 912/* 913 * look up the first VMA exactly that exactly matches addr 914 * - should be called with mm->mmap_sem at least held readlocked 915 */ 916static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 917 unsigned long addr, 918 unsigned long len) 919{ 920 struct vm_area_struct *vma; 921 unsigned long end = addr + len; 922 923 /* check the cache first */ 924 vma = vmacache_find_exact(mm, addr, end); 925 if (vma) 926 return vma; 927 928 /* trawl the list (there may be multiple mappings in which addr 929 * resides) */ 930 for (vma = mm->mmap; vma; vma = vma->vm_next) { 931 if (vma->vm_start < addr) 932 continue; 933 if (vma->vm_start > addr) 934 return NULL; 935 if (vma->vm_end == end) { 936 vmacache_update(addr, vma); 937 return vma; 938 } 939 } 940 941 return NULL; 942} 943 944/* 945 * determine whether a mapping should be permitted and, if so, what sort of 946 * mapping we're capable of supporting 947 */ 948static int validate_mmap_request(struct file *file, 949 unsigned long addr, 950 unsigned long len, 951 unsigned long prot, 952 unsigned long flags, 953 unsigned long pgoff, 954 unsigned long *_capabilities) 955{ 956 unsigned long capabilities, rlen; 957 int ret; 958 959 /* do the simple checks first */ 960 if (flags & MAP_FIXED) { 961 printk(KERN_DEBUG 962 "%d: Can't do fixed-address/overlay mmap of RAM\n", 963 current->pid); 964 return -EINVAL; 965 } 966 967 if ((flags & MAP_TYPE) != MAP_PRIVATE && 968 (flags & MAP_TYPE) != MAP_SHARED) 969 return -EINVAL; 970 971 if (!len) 972 return -EINVAL; 973 974 /* Careful about overflows.. */ 975 rlen = PAGE_ALIGN(len); 976 if (!rlen || rlen > TASK_SIZE) 977 return -ENOMEM; 978 979 /* offset overflow? */ 980 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 981 return -EOVERFLOW; 982 983 if (file) { 984 /* files must support mmap */ 985 if (!file->f_op->mmap) 986 return -ENODEV; 987 988 /* work out if what we've got could possibly be shared 989 * - we support chardevs that provide their own "memory" 990 * - we support files/blockdevs that are memory backed 991 */ 992 if (file->f_op->mmap_capabilities) { 993 capabilities = file->f_op->mmap_capabilities(file); 994 } else { 995 /* no explicit capabilities set, so assume some 996 * defaults */ 997 switch (file_inode(file)->i_mode & S_IFMT) { 998 case S_IFREG: 999 case S_IFBLK: 1000 capabilities = NOMMU_MAP_COPY; 1001 break; 1002 1003 case S_IFCHR: 1004 capabilities = 1005 NOMMU_MAP_DIRECT | 1006 NOMMU_MAP_READ | 1007 NOMMU_MAP_WRITE; 1008 break; 1009 1010 default: 1011 return -EINVAL; 1012 } 1013 } 1014 1015 /* eliminate any capabilities that we can't support on this 1016 * device */ 1017 if (!file->f_op->get_unmapped_area) 1018 capabilities &= ~NOMMU_MAP_DIRECT; 1019 if (!(file->f_mode & FMODE_CAN_READ)) 1020 capabilities &= ~NOMMU_MAP_COPY; 1021 1022 /* The file shall have been opened with read permission. */ 1023 if (!(file->f_mode & FMODE_READ)) 1024 return -EACCES; 1025 1026 if (flags & MAP_SHARED) { 1027 /* do checks for writing, appending and locking */ 1028 if ((prot & PROT_WRITE) && 1029 !(file->f_mode & FMODE_WRITE)) 1030 return -EACCES; 1031 1032 if (IS_APPEND(file_inode(file)) && 1033 (file->f_mode & FMODE_WRITE)) 1034 return -EACCES; 1035 1036 if (locks_verify_locked(file)) 1037 return -EAGAIN; 1038 1039 if (!(capabilities & NOMMU_MAP_DIRECT)) 1040 return -ENODEV; 1041 1042 /* we mustn't privatise shared mappings */ 1043 capabilities &= ~NOMMU_MAP_COPY; 1044 } else { 1045 /* we're going to read the file into private memory we 1046 * allocate */ 1047 if (!(capabilities & NOMMU_MAP_COPY)) 1048 return -ENODEV; 1049 1050 /* we don't permit a private writable mapping to be 1051 * shared with the backing device */ 1052 if (prot & PROT_WRITE) 1053 capabilities &= ~NOMMU_MAP_DIRECT; 1054 } 1055 1056 if (capabilities & NOMMU_MAP_DIRECT) { 1057 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 1058 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 1059 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 1060 ) { 1061 capabilities &= ~NOMMU_MAP_DIRECT; 1062 if (flags & MAP_SHARED) { 1063 printk(KERN_WARNING 1064 "MAP_SHARED not completely supported on !MMU\n"); 1065 return -EINVAL; 1066 } 1067 } 1068 } 1069 1070 /* handle executable mappings and implied executable 1071 * mappings */ 1072 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1073 if (prot & PROT_EXEC) 1074 return -EPERM; 1075 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 1076 /* handle implication of PROT_EXEC by PROT_READ */ 1077 if (current->personality & READ_IMPLIES_EXEC) { 1078 if (capabilities & NOMMU_MAP_EXEC) 1079 prot |= PROT_EXEC; 1080 } 1081 } else if ((prot & PROT_READ) && 1082 (prot & PROT_EXEC) && 1083 !(capabilities & NOMMU_MAP_EXEC) 1084 ) { 1085 /* backing file is not executable, try to copy */ 1086 capabilities &= ~NOMMU_MAP_DIRECT; 1087 } 1088 } else { 1089 /* anonymous mappings are always memory backed and can be 1090 * privately mapped 1091 */ 1092 capabilities = NOMMU_MAP_COPY; 1093 1094 /* handle PROT_EXEC implication by PROT_READ */ 1095 if ((prot & PROT_READ) && 1096 (current->personality & READ_IMPLIES_EXEC)) 1097 prot |= PROT_EXEC; 1098 } 1099 1100 /* allow the security API to have its say */ 1101 ret = security_mmap_addr(addr); 1102 if (ret < 0) 1103 return ret; 1104 1105 /* looks okay */ 1106 *_capabilities = capabilities; 1107 return 0; 1108} 1109 1110/* 1111 * we've determined that we can make the mapping, now translate what we 1112 * now know into VMA flags 1113 */ 1114static unsigned long determine_vm_flags(struct file *file, 1115 unsigned long prot, 1116 unsigned long flags, 1117 unsigned long capabilities) 1118{ 1119 unsigned long vm_flags; 1120 1121 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags); 1122 /* vm_flags |= mm->def_flags; */ 1123 1124 if (!(capabilities & NOMMU_MAP_DIRECT)) { 1125 /* attempt to share read-only copies of mapped file chunks */ 1126 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1127 if (file && !(prot & PROT_WRITE)) 1128 vm_flags |= VM_MAYSHARE; 1129 } else { 1130 /* overlay a shareable mapping on the backing device or inode 1131 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 1132 * romfs/cramfs */ 1133 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS); 1134 if (flags & MAP_SHARED) 1135 vm_flags |= VM_SHARED; 1136 } 1137 1138 /* refuse to let anyone share private mappings with this process if 1139 * it's being traced - otherwise breakpoints set in it may interfere 1140 * with another untraced process 1141 */ 1142 if ((flags & MAP_PRIVATE) && current->ptrace) 1143 vm_flags &= ~VM_MAYSHARE; 1144 1145 return vm_flags; 1146} 1147 1148/* 1149 * set up a shared mapping on a file (the driver or filesystem provides and 1150 * pins the storage) 1151 */ 1152static int do_mmap_shared_file(struct vm_area_struct *vma) 1153{ 1154 int ret; 1155 1156 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1157 if (ret == 0) { 1158 vma->vm_region->vm_top = vma->vm_region->vm_end; 1159 return 0; 1160 } 1161 if (ret != -ENOSYS) 1162 return ret; 1163 1164 /* getting -ENOSYS indicates that direct mmap isn't possible (as 1165 * opposed to tried but failed) so we can only give a suitable error as 1166 * it's not possible to make a private copy if MAP_SHARED was given */ 1167 return -ENODEV; 1168} 1169 1170/* 1171 * set up a private mapping or an anonymous shared mapping 1172 */ 1173static int do_mmap_private(struct vm_area_struct *vma, 1174 struct vm_region *region, 1175 unsigned long len, 1176 unsigned long capabilities) 1177{ 1178 unsigned long total, point; 1179 void *base; 1180 int ret, order; 1181 1182 /* invoke the file's mapping function so that it can keep track of 1183 * shared mappings on devices or memory 1184 * - VM_MAYSHARE will be set if it may attempt to share 1185 */ 1186 if (capabilities & NOMMU_MAP_DIRECT) { 1187 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1188 if (ret == 0) { 1189 /* shouldn't return success if we're not sharing */ 1190 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1191 vma->vm_region->vm_top = vma->vm_region->vm_end; 1192 return 0; 1193 } 1194 if (ret != -ENOSYS) 1195 return ret; 1196 1197 /* getting an ENOSYS error indicates that direct mmap isn't 1198 * possible (as opposed to tried but failed) so we'll try to 1199 * make a private copy of the data and map that instead */ 1200 } 1201 1202 1203 /* allocate some memory to hold the mapping 1204 * - note that this may not return a page-aligned address if the object 1205 * we're allocating is smaller than a page 1206 */ 1207 order = get_order(len); 1208 kdebug("alloc order %d for %lx", order, len); 1209 1210 total = 1 << order; 1211 point = len >> PAGE_SHIFT; 1212 1213 /* we don't want to allocate a power-of-2 sized page set */ 1214 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) { 1215 total = point; 1216 kdebug("try to alloc exact %lu pages", total); 1217 } 1218 1219 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 1220 if (!base) 1221 goto enomem; 1222 1223 atomic_long_add(total, &mmap_pages_allocated); 1224 1225 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1226 region->vm_start = (unsigned long) base; 1227 region->vm_end = region->vm_start + len; 1228 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1229 1230 vma->vm_start = region->vm_start; 1231 vma->vm_end = region->vm_start + len; 1232 1233 if (vma->vm_file) { 1234 /* read the contents of a file into the copy */ 1235 mm_segment_t old_fs; 1236 loff_t fpos; 1237 1238 fpos = vma->vm_pgoff; 1239 fpos <<= PAGE_SHIFT; 1240 1241 old_fs = get_fs(); 1242 set_fs(KERNEL_DS); 1243 ret = __vfs_read(vma->vm_file, base, len, &fpos); 1244 set_fs(old_fs); 1245 1246 if (ret < 0) 1247 goto error_free; 1248 1249 /* clear the last little bit */ 1250 if (ret < len) 1251 memset(base + ret, 0, len - ret); 1252 1253 } 1254 1255 return 0; 1256 1257error_free: 1258 free_page_series(region->vm_start, region->vm_top); 1259 region->vm_start = vma->vm_start = 0; 1260 region->vm_end = vma->vm_end = 0; 1261 region->vm_top = 0; 1262 return ret; 1263 1264enomem: 1265 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1266 len, current->pid, current->comm); 1267 show_free_areas(0); 1268 return -ENOMEM; 1269} 1270 1271/* 1272 * handle mapping creation for uClinux 1273 */ 1274unsigned long do_mmap_pgoff(struct file *file, 1275 unsigned long addr, 1276 unsigned long len, 1277 unsigned long prot, 1278 unsigned long flags, 1279 unsigned long pgoff, 1280 unsigned long *populate) 1281{ 1282 struct vm_area_struct *vma; 1283 struct vm_region *region; 1284 struct rb_node *rb; 1285 unsigned long capabilities, vm_flags, result; 1286 int ret; 1287 1288 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff); 1289 1290 *populate = 0; 1291 1292 /* decide whether we should attempt the mapping, and if so what sort of 1293 * mapping */ 1294 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1295 &capabilities); 1296 if (ret < 0) { 1297 kleave(" = %d [val]", ret); 1298 return ret; 1299 } 1300 1301 /* we ignore the address hint */ 1302 addr = 0; 1303 len = PAGE_ALIGN(len); 1304 1305 /* we've determined that we can make the mapping, now translate what we 1306 * now know into VMA flags */ 1307 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1308 1309 /* we're going to need to record the mapping */ 1310 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1311 if (!region) 1312 goto error_getting_region; 1313 1314 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1315 if (!vma) 1316 goto error_getting_vma; 1317 1318 region->vm_usage = 1; 1319 region->vm_flags = vm_flags; 1320 region->vm_pgoff = pgoff; 1321 1322 INIT_LIST_HEAD(&vma->anon_vma_chain); 1323 vma->vm_flags = vm_flags; 1324 vma->vm_pgoff = pgoff; 1325 1326 if (file) { 1327 region->vm_file = get_file(file); 1328 vma->vm_file = get_file(file); 1329 } 1330 1331 down_write(&nommu_region_sem); 1332 1333 /* if we want to share, we need to check for regions created by other 1334 * mmap() calls that overlap with our proposed mapping 1335 * - we can only share with a superset match on most regular files 1336 * - shared mappings on character devices and memory backed files are 1337 * permitted to overlap inexactly as far as we are concerned for in 1338 * these cases, sharing is handled in the driver or filesystem rather 1339 * than here 1340 */ 1341 if (vm_flags & VM_MAYSHARE) { 1342 struct vm_region *pregion; 1343 unsigned long pglen, rpglen, pgend, rpgend, start; 1344 1345 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1346 pgend = pgoff + pglen; 1347 1348 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1349 pregion = rb_entry(rb, struct vm_region, vm_rb); 1350 1351 if (!(pregion->vm_flags & VM_MAYSHARE)) 1352 continue; 1353 1354 /* search for overlapping mappings on the same file */ 1355 if (file_inode(pregion->vm_file) != 1356 file_inode(file)) 1357 continue; 1358 1359 if (pregion->vm_pgoff >= pgend) 1360 continue; 1361 1362 rpglen = pregion->vm_end - pregion->vm_start; 1363 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1364 rpgend = pregion->vm_pgoff + rpglen; 1365 if (pgoff >= rpgend) 1366 continue; 1367 1368 /* handle inexactly overlapping matches between 1369 * mappings */ 1370 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1371 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1372 /* new mapping is not a subset of the region */ 1373 if (!(capabilities & NOMMU_MAP_DIRECT)) 1374 goto sharing_violation; 1375 continue; 1376 } 1377 1378 /* we've found a region we can share */ 1379 pregion->vm_usage++; 1380 vma->vm_region = pregion; 1381 start = pregion->vm_start; 1382 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1383 vma->vm_start = start; 1384 vma->vm_end = start + len; 1385 1386 if (pregion->vm_flags & VM_MAPPED_COPY) { 1387 kdebug("share copy"); 1388 vma->vm_flags |= VM_MAPPED_COPY; 1389 } else { 1390 kdebug("share mmap"); 1391 ret = do_mmap_shared_file(vma); 1392 if (ret < 0) { 1393 vma->vm_region = NULL; 1394 vma->vm_start = 0; 1395 vma->vm_end = 0; 1396 pregion->vm_usage--; 1397 pregion = NULL; 1398 goto error_just_free; 1399 } 1400 } 1401 fput(region->vm_file); 1402 kmem_cache_free(vm_region_jar, region); 1403 region = pregion; 1404 result = start; 1405 goto share; 1406 } 1407 1408 /* obtain the address at which to make a shared mapping 1409 * - this is the hook for quasi-memory character devices to 1410 * tell us the location of a shared mapping 1411 */ 1412 if (capabilities & NOMMU_MAP_DIRECT) { 1413 addr = file->f_op->get_unmapped_area(file, addr, len, 1414 pgoff, flags); 1415 if (IS_ERR_VALUE(addr)) { 1416 ret = addr; 1417 if (ret != -ENOSYS) 1418 goto error_just_free; 1419 1420 /* the driver refused to tell us where to site 1421 * the mapping so we'll have to attempt to copy 1422 * it */ 1423 ret = -ENODEV; 1424 if (!(capabilities & NOMMU_MAP_COPY)) 1425 goto error_just_free; 1426 1427 capabilities &= ~NOMMU_MAP_DIRECT; 1428 } else { 1429 vma->vm_start = region->vm_start = addr; 1430 vma->vm_end = region->vm_end = addr + len; 1431 } 1432 } 1433 } 1434 1435 vma->vm_region = region; 1436 1437 /* set up the mapping 1438 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1439 */ 1440 if (file && vma->vm_flags & VM_SHARED) 1441 ret = do_mmap_shared_file(vma); 1442 else 1443 ret = do_mmap_private(vma, region, len, capabilities); 1444 if (ret < 0) 1445 goto error_just_free; 1446 add_nommu_region(region); 1447 1448 /* clear anonymous mappings that don't ask for uninitialized data */ 1449 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED)) 1450 memset((void *)region->vm_start, 0, 1451 region->vm_end - region->vm_start); 1452 1453 /* okay... we have a mapping; now we have to register it */ 1454 result = vma->vm_start; 1455 1456 current->mm->total_vm += len >> PAGE_SHIFT; 1457 1458share: 1459 add_vma_to_mm(current->mm, vma); 1460 1461 /* we flush the region from the icache only when the first executable 1462 * mapping of it is made */ 1463 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1464 flush_icache_range(region->vm_start, region->vm_end); 1465 region->vm_icache_flushed = true; 1466 } 1467 1468 up_write(&nommu_region_sem); 1469 1470 kleave(" = %lx", result); 1471 return result; 1472 1473error_just_free: 1474 up_write(&nommu_region_sem); 1475error: 1476 if (region->vm_file) 1477 fput(region->vm_file); 1478 kmem_cache_free(vm_region_jar, region); 1479 if (vma->vm_file) 1480 fput(vma->vm_file); 1481 kmem_cache_free(vm_area_cachep, vma); 1482 kleave(" = %d", ret); 1483 return ret; 1484 1485sharing_violation: 1486 up_write(&nommu_region_sem); 1487 printk(KERN_WARNING "Attempt to share mismatched mappings\n"); 1488 ret = -EINVAL; 1489 goto error; 1490 1491error_getting_vma: 1492 kmem_cache_free(vm_region_jar, region); 1493 printk(KERN_WARNING "Allocation of vma for %lu byte allocation" 1494 " from process %d failed\n", 1495 len, current->pid); 1496 show_free_areas(0); 1497 return -ENOMEM; 1498 1499error_getting_region: 1500 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation" 1501 " from process %d failed\n", 1502 len, current->pid); 1503 show_free_areas(0); 1504 return -ENOMEM; 1505} 1506 1507SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1508 unsigned long, prot, unsigned long, flags, 1509 unsigned long, fd, unsigned long, pgoff) 1510{ 1511 struct file *file = NULL; 1512 unsigned long retval = -EBADF; 1513 1514 audit_mmap_fd(fd, flags); 1515 if (!(flags & MAP_ANONYMOUS)) { 1516 file = fget(fd); 1517 if (!file) 1518 goto out; 1519 } 1520 1521 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1522 1523 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1524 1525 if (file) 1526 fput(file); 1527out: 1528 return retval; 1529} 1530 1531#ifdef __ARCH_WANT_SYS_OLD_MMAP 1532struct mmap_arg_struct { 1533 unsigned long addr; 1534 unsigned long len; 1535 unsigned long prot; 1536 unsigned long flags; 1537 unsigned long fd; 1538 unsigned long offset; 1539}; 1540 1541SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1542{ 1543 struct mmap_arg_struct a; 1544 1545 if (copy_from_user(&a, arg, sizeof(a))) 1546 return -EFAULT; 1547 if (a.offset & ~PAGE_MASK) 1548 return -EINVAL; 1549 1550 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1551 a.offset >> PAGE_SHIFT); 1552} 1553#endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1554 1555/* 1556 * split a vma into two pieces at address 'addr', a new vma is allocated either 1557 * for the first part or the tail. 1558 */ 1559int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1560 unsigned long addr, int new_below) 1561{ 1562 struct vm_area_struct *new; 1563 struct vm_region *region; 1564 unsigned long npages; 1565 1566 kenter(""); 1567 1568 /* we're only permitted to split anonymous regions (these should have 1569 * only a single usage on the region) */ 1570 if (vma->vm_file) 1571 return -ENOMEM; 1572 1573 if (mm->map_count >= sysctl_max_map_count) 1574 return -ENOMEM; 1575 1576 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1577 if (!region) 1578 return -ENOMEM; 1579 1580 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1581 if (!new) { 1582 kmem_cache_free(vm_region_jar, region); 1583 return -ENOMEM; 1584 } 1585 1586 /* most fields are the same, copy all, and then fixup */ 1587 *new = *vma; 1588 *region = *vma->vm_region; 1589 new->vm_region = region; 1590 1591 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1592 1593 if (new_below) { 1594 region->vm_top = region->vm_end = new->vm_end = addr; 1595 } else { 1596 region->vm_start = new->vm_start = addr; 1597 region->vm_pgoff = new->vm_pgoff += npages; 1598 } 1599 1600 if (new->vm_ops && new->vm_ops->open) 1601 new->vm_ops->open(new); 1602 1603 delete_vma_from_mm(vma); 1604 down_write(&nommu_region_sem); 1605 delete_nommu_region(vma->vm_region); 1606 if (new_below) { 1607 vma->vm_region->vm_start = vma->vm_start = addr; 1608 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1609 } else { 1610 vma->vm_region->vm_end = vma->vm_end = addr; 1611 vma->vm_region->vm_top = addr; 1612 } 1613 add_nommu_region(vma->vm_region); 1614 add_nommu_region(new->vm_region); 1615 up_write(&nommu_region_sem); 1616 add_vma_to_mm(mm, vma); 1617 add_vma_to_mm(mm, new); 1618 return 0; 1619} 1620 1621/* 1622 * shrink a VMA by removing the specified chunk from either the beginning or 1623 * the end 1624 */ 1625static int shrink_vma(struct mm_struct *mm, 1626 struct vm_area_struct *vma, 1627 unsigned long from, unsigned long to) 1628{ 1629 struct vm_region *region; 1630 1631 kenter(""); 1632 1633 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1634 * and list */ 1635 delete_vma_from_mm(vma); 1636 if (from > vma->vm_start) 1637 vma->vm_end = from; 1638 else 1639 vma->vm_start = to; 1640 add_vma_to_mm(mm, vma); 1641 1642 /* cut the backing region down to size */ 1643 region = vma->vm_region; 1644 BUG_ON(region->vm_usage != 1); 1645 1646 down_write(&nommu_region_sem); 1647 delete_nommu_region(region); 1648 if (from > region->vm_start) { 1649 to = region->vm_top; 1650 region->vm_top = region->vm_end = from; 1651 } else { 1652 region->vm_start = to; 1653 } 1654 add_nommu_region(region); 1655 up_write(&nommu_region_sem); 1656 1657 free_page_series(from, to); 1658 return 0; 1659} 1660 1661/* 1662 * release a mapping 1663 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1664 * VMA, though it need not cover the whole VMA 1665 */ 1666int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1667{ 1668 struct vm_area_struct *vma; 1669 unsigned long end; 1670 int ret; 1671 1672 kenter(",%lx,%zx", start, len); 1673 1674 len = PAGE_ALIGN(len); 1675 if (len == 0) 1676 return -EINVAL; 1677 1678 end = start + len; 1679 1680 /* find the first potentially overlapping VMA */ 1681 vma = find_vma(mm, start); 1682 if (!vma) { 1683 static int limit; 1684 if (limit < 5) { 1685 printk(KERN_WARNING 1686 "munmap of memory not mmapped by process %d" 1687 " (%s): 0x%lx-0x%lx\n", 1688 current->pid, current->comm, 1689 start, start + len - 1); 1690 limit++; 1691 } 1692 return -EINVAL; 1693 } 1694 1695 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1696 if (vma->vm_file) { 1697 do { 1698 if (start > vma->vm_start) { 1699 kleave(" = -EINVAL [miss]"); 1700 return -EINVAL; 1701 } 1702 if (end == vma->vm_end) 1703 goto erase_whole_vma; 1704 vma = vma->vm_next; 1705 } while (vma); 1706 kleave(" = -EINVAL [split file]"); 1707 return -EINVAL; 1708 } else { 1709 /* the chunk must be a subset of the VMA found */ 1710 if (start == vma->vm_start && end == vma->vm_end) 1711 goto erase_whole_vma; 1712 if (start < vma->vm_start || end > vma->vm_end) { 1713 kleave(" = -EINVAL [superset]"); 1714 return -EINVAL; 1715 } 1716 if (start & ~PAGE_MASK) { 1717 kleave(" = -EINVAL [unaligned start]"); 1718 return -EINVAL; 1719 } 1720 if (end != vma->vm_end && end & ~PAGE_MASK) { 1721 kleave(" = -EINVAL [unaligned split]"); 1722 return -EINVAL; 1723 } 1724 if (start != vma->vm_start && end != vma->vm_end) { 1725 ret = split_vma(mm, vma, start, 1); 1726 if (ret < 0) { 1727 kleave(" = %d [split]", ret); 1728 return ret; 1729 } 1730 } 1731 return shrink_vma(mm, vma, start, end); 1732 } 1733 1734erase_whole_vma: 1735 delete_vma_from_mm(vma); 1736 delete_vma(mm, vma); 1737 kleave(" = 0"); 1738 return 0; 1739} 1740EXPORT_SYMBOL(do_munmap); 1741 1742int vm_munmap(unsigned long addr, size_t len) 1743{ 1744 struct mm_struct *mm = current->mm; 1745 int ret; 1746 1747 down_write(&mm->mmap_sem); 1748 ret = do_munmap(mm, addr, len); 1749 up_write(&mm->mmap_sem); 1750 return ret; 1751} 1752EXPORT_SYMBOL(vm_munmap); 1753 1754SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1755{ 1756 return vm_munmap(addr, len); 1757} 1758 1759/* 1760 * release all the mappings made in a process's VM space 1761 */ 1762void exit_mmap(struct mm_struct *mm) 1763{ 1764 struct vm_area_struct *vma; 1765 1766 if (!mm) 1767 return; 1768 1769 kenter(""); 1770 1771 mm->total_vm = 0; 1772 1773 while ((vma = mm->mmap)) { 1774 mm->mmap = vma->vm_next; 1775 delete_vma_from_mm(vma); 1776 delete_vma(mm, vma); 1777 cond_resched(); 1778 } 1779 1780 kleave(""); 1781} 1782 1783unsigned long vm_brk(unsigned long addr, unsigned long len) 1784{ 1785 return -ENOMEM; 1786} 1787 1788/* 1789 * expand (or shrink) an existing mapping, potentially moving it at the same 1790 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1791 * 1792 * under NOMMU conditions, we only permit changing a mapping's size, and only 1793 * as long as it stays within the region allocated by do_mmap_private() and the 1794 * block is not shareable 1795 * 1796 * MREMAP_FIXED is not supported under NOMMU conditions 1797 */ 1798static unsigned long do_mremap(unsigned long addr, 1799 unsigned long old_len, unsigned long new_len, 1800 unsigned long flags, unsigned long new_addr) 1801{ 1802 struct vm_area_struct *vma; 1803 1804 /* insanity checks first */ 1805 old_len = PAGE_ALIGN(old_len); 1806 new_len = PAGE_ALIGN(new_len); 1807 if (old_len == 0 || new_len == 0) 1808 return (unsigned long) -EINVAL; 1809 1810 if (addr & ~PAGE_MASK) 1811 return -EINVAL; 1812 1813 if (flags & MREMAP_FIXED && new_addr != addr) 1814 return (unsigned long) -EINVAL; 1815 1816 vma = find_vma_exact(current->mm, addr, old_len); 1817 if (!vma) 1818 return (unsigned long) -EINVAL; 1819 1820 if (vma->vm_end != vma->vm_start + old_len) 1821 return (unsigned long) -EFAULT; 1822 1823 if (vma->vm_flags & VM_MAYSHARE) 1824 return (unsigned long) -EPERM; 1825 1826 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1827 return (unsigned long) -ENOMEM; 1828 1829 /* all checks complete - do it */ 1830 vma->vm_end = vma->vm_start + new_len; 1831 return vma->vm_start; 1832} 1833 1834SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1835 unsigned long, new_len, unsigned long, flags, 1836 unsigned long, new_addr) 1837{ 1838 unsigned long ret; 1839 1840 down_write(¤t->mm->mmap_sem); 1841 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1842 up_write(¤t->mm->mmap_sem); 1843 return ret; 1844} 1845 1846struct page *follow_page_mask(struct vm_area_struct *vma, 1847 unsigned long address, unsigned int flags, 1848 unsigned int *page_mask) 1849{ 1850 *page_mask = 0; 1851 return NULL; 1852} 1853 1854int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1855 unsigned long pfn, unsigned long size, pgprot_t prot) 1856{ 1857 if (addr != (pfn << PAGE_SHIFT)) 1858 return -EINVAL; 1859 1860 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1861 return 0; 1862} 1863EXPORT_SYMBOL(remap_pfn_range); 1864 1865int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1866{ 1867 unsigned long pfn = start >> PAGE_SHIFT; 1868 unsigned long vm_len = vma->vm_end - vma->vm_start; 1869 1870 pfn += vma->vm_pgoff; 1871 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1872} 1873EXPORT_SYMBOL(vm_iomap_memory); 1874 1875int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1876 unsigned long pgoff) 1877{ 1878 unsigned int size = vma->vm_end - vma->vm_start; 1879 1880 if (!(vma->vm_flags & VM_USERMAP)) 1881 return -EINVAL; 1882 1883 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1884 vma->vm_end = vma->vm_start + size; 1885 1886 return 0; 1887} 1888EXPORT_SYMBOL(remap_vmalloc_range); 1889 1890unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1891 unsigned long len, unsigned long pgoff, unsigned long flags) 1892{ 1893 return -ENOMEM; 1894} 1895 1896void unmap_mapping_range(struct address_space *mapping, 1897 loff_t const holebegin, loff_t const holelen, 1898 int even_cows) 1899{ 1900} 1901EXPORT_SYMBOL(unmap_mapping_range); 1902 1903/* 1904 * Check that a process has enough memory to allocate a new virtual 1905 * mapping. 0 means there is enough memory for the allocation to 1906 * succeed and -ENOMEM implies there is not. 1907 * 1908 * We currently support three overcommit policies, which are set via the 1909 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 1910 * 1911 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 1912 * Additional code 2002 Jul 20 by Robert Love. 1913 * 1914 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 1915 * 1916 * Note this is a helper function intended to be used by LSMs which 1917 * wish to use this logic. 1918 */ 1919int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 1920{ 1921 long free, allowed, reserve; 1922 1923 vm_acct_memory(pages); 1924 1925 /* 1926 * Sometimes we want to use more memory than we have 1927 */ 1928 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 1929 return 0; 1930 1931 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 1932 free = global_page_state(NR_FREE_PAGES); 1933 free += global_page_state(NR_FILE_PAGES); 1934 1935 /* 1936 * shmem pages shouldn't be counted as free in this 1937 * case, they can't be purged, only swapped out, and 1938 * that won't affect the overall amount of available 1939 * memory in the system. 1940 */ 1941 free -= global_page_state(NR_SHMEM); 1942 1943 free += get_nr_swap_pages(); 1944 1945 /* 1946 * Any slabs which are created with the 1947 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 1948 * which are reclaimable, under pressure. The dentry 1949 * cache and most inode caches should fall into this 1950 */ 1951 free += global_page_state(NR_SLAB_RECLAIMABLE); 1952 1953 /* 1954 * Leave reserved pages. The pages are not for anonymous pages. 1955 */ 1956 if (free <= totalreserve_pages) 1957 goto error; 1958 else 1959 free -= totalreserve_pages; 1960 1961 /* 1962 * Reserve some for root 1963 */ 1964 if (!cap_sys_admin) 1965 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 1966 1967 if (free > pages) 1968 return 0; 1969 1970 goto error; 1971 } 1972 1973 allowed = vm_commit_limit(); 1974 /* 1975 * Reserve some 3% for root 1976 */ 1977 if (!cap_sys_admin) 1978 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 1979 1980 /* 1981 * Don't let a single process grow so big a user can't recover 1982 */ 1983 if (mm) { 1984 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 1985 allowed -= min_t(long, mm->total_vm / 32, reserve); 1986 } 1987 1988 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 1989 return 0; 1990 1991error: 1992 vm_unacct_memory(pages); 1993 1994 return -ENOMEM; 1995} 1996 1997int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1998{ 1999 BUG(); 2000 return 0; 2001} 2002EXPORT_SYMBOL(filemap_fault); 2003 2004void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf) 2005{ 2006 BUG(); 2007} 2008EXPORT_SYMBOL(filemap_map_pages); 2009 2010static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 2011 unsigned long addr, void *buf, int len, int write) 2012{ 2013 struct vm_area_struct *vma; 2014 2015 down_read(&mm->mmap_sem); 2016 2017 /* the access must start within one of the target process's mappings */ 2018 vma = find_vma(mm, addr); 2019 if (vma) { 2020 /* don't overrun this mapping */ 2021 if (addr + len >= vma->vm_end) 2022 len = vma->vm_end - addr; 2023 2024 /* only read or write mappings where it is permitted */ 2025 if (write && vma->vm_flags & VM_MAYWRITE) 2026 copy_to_user_page(vma, NULL, addr, 2027 (void *) addr, buf, len); 2028 else if (!write && vma->vm_flags & VM_MAYREAD) 2029 copy_from_user_page(vma, NULL, addr, 2030 buf, (void *) addr, len); 2031 else 2032 len = 0; 2033 } else { 2034 len = 0; 2035 } 2036 2037 up_read(&mm->mmap_sem); 2038 2039 return len; 2040} 2041 2042/** 2043 * @access_remote_vm - access another process' address space 2044 * @mm: the mm_struct of the target address space 2045 * @addr: start address to access 2046 * @buf: source or destination buffer 2047 * @len: number of bytes to transfer 2048 * @write: whether the access is a write 2049 * 2050 * The caller must hold a reference on @mm. 2051 */ 2052int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2053 void *buf, int len, int write) 2054{ 2055 return __access_remote_vm(NULL, mm, addr, buf, len, write); 2056} 2057 2058/* 2059 * Access another process' address space. 2060 * - source/target buffer must be kernel space 2061 */ 2062int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 2063{ 2064 struct mm_struct *mm; 2065 2066 if (addr + len < addr) 2067 return 0; 2068 2069 mm = get_task_mm(tsk); 2070 if (!mm) 2071 return 0; 2072 2073 len = __access_remote_vm(tsk, mm, addr, buf, len, write); 2074 2075 mmput(mm); 2076 return len; 2077} 2078 2079/** 2080 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 2081 * @inode: The inode to check 2082 * @size: The current filesize of the inode 2083 * @newsize: The proposed filesize of the inode 2084 * 2085 * Check the shared mappings on an inode on behalf of a shrinking truncate to 2086 * make sure that that any outstanding VMAs aren't broken and then shrink the 2087 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't 2088 * automatically grant mappings that are too large. 2089 */ 2090int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 2091 size_t newsize) 2092{ 2093 struct vm_area_struct *vma; 2094 struct vm_region *region; 2095 pgoff_t low, high; 2096 size_t r_size, r_top; 2097 2098 low = newsize >> PAGE_SHIFT; 2099 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2100 2101 down_write(&nommu_region_sem); 2102 i_mmap_lock_read(inode->i_mapping); 2103 2104 /* search for VMAs that fall within the dead zone */ 2105 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 2106 /* found one - only interested if it's shared out of the page 2107 * cache */ 2108 if (vma->vm_flags & VM_SHARED) { 2109 i_mmap_unlock_read(inode->i_mapping); 2110 up_write(&nommu_region_sem); 2111 return -ETXTBSY; /* not quite true, but near enough */ 2112 } 2113 } 2114 2115 /* reduce any regions that overlap the dead zone - if in existence, 2116 * these will be pointed to by VMAs that don't overlap the dead zone 2117 * 2118 * we don't check for any regions that start beyond the EOF as there 2119 * shouldn't be any 2120 */ 2121 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 2122 if (!(vma->vm_flags & VM_SHARED)) 2123 continue; 2124 2125 region = vma->vm_region; 2126 r_size = region->vm_top - region->vm_start; 2127 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 2128 2129 if (r_top > newsize) { 2130 region->vm_top -= r_top - newsize; 2131 if (region->vm_end > region->vm_top) 2132 region->vm_end = region->vm_top; 2133 } 2134 } 2135 2136 i_mmap_unlock_read(inode->i_mapping); 2137 up_write(&nommu_region_sem); 2138 return 0; 2139} 2140 2141/* 2142 * Initialise sysctl_user_reserve_kbytes. 2143 * 2144 * This is intended to prevent a user from starting a single memory hogging 2145 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 2146 * mode. 2147 * 2148 * The default value is min(3% of free memory, 128MB) 2149 * 128MB is enough to recover with sshd/login, bash, and top/kill. 2150 */ 2151static int __meminit init_user_reserve(void) 2152{ 2153 unsigned long free_kbytes; 2154 2155 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 2156 2157 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 2158 return 0; 2159} 2160module_init(init_user_reserve) 2161 2162/* 2163 * Initialise sysctl_admin_reserve_kbytes. 2164 * 2165 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 2166 * to log in and kill a memory hogging process. 2167 * 2168 * Systems with more than 256MB will reserve 8MB, enough to recover 2169 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 2170 * only reserve 3% of free pages by default. 2171 */ 2172static int __meminit init_admin_reserve(void) 2173{ 2174 unsigned long free_kbytes; 2175 2176 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 2177 2178 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 2179 return 0; 2180} 2181module_init(init_admin_reserve) 2182