1/*
2 *  linux/mm/nommu.c
3 *
4 *  Replacement code for mm functions to support CPU's that don't
5 *  have any form of memory management unit (thus no virtual memory).
6 *
7 *  See Documentation/nommu-mmap.txt
8 *
9 *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13 *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14 */
15
16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18#include <linux/export.h>
19#include <linux/mm.h>
20#include <linux/vmacache.h>
21#include <linux/mman.h>
22#include <linux/swap.h>
23#include <linux/file.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <linux/slab.h>
27#include <linux/vmalloc.h>
28#include <linux/blkdev.h>
29#include <linux/backing-dev.h>
30#include <linux/compiler.h>
31#include <linux/mount.h>
32#include <linux/personality.h>
33#include <linux/security.h>
34#include <linux/syscalls.h>
35#include <linux/audit.h>
36#include <linux/sched/sysctl.h>
37#include <linux/printk.h>
38
39#include <asm/uaccess.h>
40#include <asm/tlb.h>
41#include <asm/tlbflush.h>
42#include <asm/mmu_context.h>
43#include "internal.h"
44
45#if 0
46#define kenter(FMT, ...) \
47	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
48#define kleave(FMT, ...) \
49	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
50#define kdebug(FMT, ...) \
51	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
52#else
53#define kenter(FMT, ...) \
54	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
55#define kleave(FMT, ...) \
56	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
57#define kdebug(FMT, ...) \
58	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
59#endif
60
61void *high_memory;
62EXPORT_SYMBOL(high_memory);
63struct page *mem_map;
64unsigned long max_mapnr;
65EXPORT_SYMBOL(max_mapnr);
66unsigned long highest_memmap_pfn;
67struct percpu_counter vm_committed_as;
68int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
69int sysctl_overcommit_ratio = 50; /* default is 50% */
70unsigned long sysctl_overcommit_kbytes __read_mostly;
71int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
72int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
73unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
74unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
75int heap_stack_gap = 0;
76
77atomic_long_t mmap_pages_allocated;
78
79/*
80 * The global memory commitment made in the system can be a metric
81 * that can be used to drive ballooning decisions when Linux is hosted
82 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
83 * balancing memory across competing virtual machines that are hosted.
84 * Several metrics drive this policy engine including the guest reported
85 * memory commitment.
86 */
87unsigned long vm_memory_committed(void)
88{
89	return percpu_counter_read_positive(&vm_committed_as);
90}
91
92EXPORT_SYMBOL_GPL(vm_memory_committed);
93
94EXPORT_SYMBOL(mem_map);
95
96/* list of mapped, potentially shareable regions */
97static struct kmem_cache *vm_region_jar;
98struct rb_root nommu_region_tree = RB_ROOT;
99DECLARE_RWSEM(nommu_region_sem);
100
101const struct vm_operations_struct generic_file_vm_ops = {
102};
103
104/*
105 * Return the total memory allocated for this pointer, not
106 * just what the caller asked for.
107 *
108 * Doesn't have to be accurate, i.e. may have races.
109 */
110unsigned int kobjsize(const void *objp)
111{
112	struct page *page;
113
114	/*
115	 * If the object we have should not have ksize performed on it,
116	 * return size of 0
117	 */
118	if (!objp || !virt_addr_valid(objp))
119		return 0;
120
121	page = virt_to_head_page(objp);
122
123	/*
124	 * If the allocator sets PageSlab, we know the pointer came from
125	 * kmalloc().
126	 */
127	if (PageSlab(page))
128		return ksize(objp);
129
130	/*
131	 * If it's not a compound page, see if we have a matching VMA
132	 * region. This test is intentionally done in reverse order,
133	 * so if there's no VMA, we still fall through and hand back
134	 * PAGE_SIZE for 0-order pages.
135	 */
136	if (!PageCompound(page)) {
137		struct vm_area_struct *vma;
138
139		vma = find_vma(current->mm, (unsigned long)objp);
140		if (vma)
141			return vma->vm_end - vma->vm_start;
142	}
143
144	/*
145	 * The ksize() function is only guaranteed to work for pointers
146	 * returned by kmalloc(). So handle arbitrary pointers here.
147	 */
148	return PAGE_SIZE << compound_order(page);
149}
150
151long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
152		      unsigned long start, unsigned long nr_pages,
153		      unsigned int foll_flags, struct page **pages,
154		      struct vm_area_struct **vmas, int *nonblocking)
155{
156	struct vm_area_struct *vma;
157	unsigned long vm_flags;
158	int i;
159
160	/* calculate required read or write permissions.
161	 * If FOLL_FORCE is set, we only require the "MAY" flags.
162	 */
163	vm_flags  = (foll_flags & FOLL_WRITE) ?
164			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
165	vm_flags &= (foll_flags & FOLL_FORCE) ?
166			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
167
168	for (i = 0; i < nr_pages; i++) {
169		vma = find_vma(mm, start);
170		if (!vma)
171			goto finish_or_fault;
172
173		/* protect what we can, including chardevs */
174		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
175		    !(vm_flags & vma->vm_flags))
176			goto finish_or_fault;
177
178		if (pages) {
179			pages[i] = virt_to_page(start);
180			if (pages[i])
181				page_cache_get(pages[i]);
182		}
183		if (vmas)
184			vmas[i] = vma;
185		start = (start + PAGE_SIZE) & PAGE_MASK;
186	}
187
188	return i;
189
190finish_or_fault:
191	return i ? : -EFAULT;
192}
193
194/*
195 * get a list of pages in an address range belonging to the specified process
196 * and indicate the VMA that covers each page
197 * - this is potentially dodgy as we may end incrementing the page count of a
198 *   slab page or a secondary page from a compound page
199 * - don't permit access to VMAs that don't support it, such as I/O mappings
200 */
201long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
202		    unsigned long start, unsigned long nr_pages,
203		    int write, int force, struct page **pages,
204		    struct vm_area_struct **vmas)
205{
206	int flags = 0;
207
208	if (write)
209		flags |= FOLL_WRITE;
210	if (force)
211		flags |= FOLL_FORCE;
212
213	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
214				NULL);
215}
216EXPORT_SYMBOL(get_user_pages);
217
218long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
219			   unsigned long start, unsigned long nr_pages,
220			   int write, int force, struct page **pages,
221			   int *locked)
222{
223	return get_user_pages(tsk, mm, start, nr_pages, write, force,
224			      pages, NULL);
225}
226EXPORT_SYMBOL(get_user_pages_locked);
227
228long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
229			       unsigned long start, unsigned long nr_pages,
230			       int write, int force, struct page **pages,
231			       unsigned int gup_flags)
232{
233	long ret;
234	down_read(&mm->mmap_sem);
235	ret = get_user_pages(tsk, mm, start, nr_pages, write, force,
236			     pages, NULL);
237	up_read(&mm->mmap_sem);
238	return ret;
239}
240EXPORT_SYMBOL(__get_user_pages_unlocked);
241
242long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
243			     unsigned long start, unsigned long nr_pages,
244			     int write, int force, struct page **pages)
245{
246	return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
247					 force, pages, 0);
248}
249EXPORT_SYMBOL(get_user_pages_unlocked);
250
251/**
252 * follow_pfn - look up PFN at a user virtual address
253 * @vma: memory mapping
254 * @address: user virtual address
255 * @pfn: location to store found PFN
256 *
257 * Only IO mappings and raw PFN mappings are allowed.
258 *
259 * Returns zero and the pfn at @pfn on success, -ve otherwise.
260 */
261int follow_pfn(struct vm_area_struct *vma, unsigned long address,
262	unsigned long *pfn)
263{
264	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
265		return -EINVAL;
266
267	*pfn = address >> PAGE_SHIFT;
268	return 0;
269}
270EXPORT_SYMBOL(follow_pfn);
271
272LIST_HEAD(vmap_area_list);
273
274void vfree(const void *addr)
275{
276	kfree(addr);
277}
278EXPORT_SYMBOL(vfree);
279
280void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
281{
282	/*
283	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
284	 * returns only a logical address.
285	 */
286	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
287}
288EXPORT_SYMBOL(__vmalloc);
289
290void *vmalloc_user(unsigned long size)
291{
292	void *ret;
293
294	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
295			PAGE_KERNEL);
296	if (ret) {
297		struct vm_area_struct *vma;
298
299		down_write(&current->mm->mmap_sem);
300		vma = find_vma(current->mm, (unsigned long)ret);
301		if (vma)
302			vma->vm_flags |= VM_USERMAP;
303		up_write(&current->mm->mmap_sem);
304	}
305
306	return ret;
307}
308EXPORT_SYMBOL(vmalloc_user);
309
310struct page *vmalloc_to_page(const void *addr)
311{
312	return virt_to_page(addr);
313}
314EXPORT_SYMBOL(vmalloc_to_page);
315
316unsigned long vmalloc_to_pfn(const void *addr)
317{
318	return page_to_pfn(virt_to_page(addr));
319}
320EXPORT_SYMBOL(vmalloc_to_pfn);
321
322long vread(char *buf, char *addr, unsigned long count)
323{
324	/* Don't allow overflow */
325	if ((unsigned long) buf + count < count)
326		count = -(unsigned long) buf;
327
328	memcpy(buf, addr, count);
329	return count;
330}
331
332long vwrite(char *buf, char *addr, unsigned long count)
333{
334	/* Don't allow overflow */
335	if ((unsigned long) addr + count < count)
336		count = -(unsigned long) addr;
337
338	memcpy(addr, buf, count);
339	return count;
340}
341
342/*
343 *	vmalloc  -  allocate virtually continguos memory
344 *
345 *	@size:		allocation size
346 *
347 *	Allocate enough pages to cover @size from the page level
348 *	allocator and map them into continguos kernel virtual space.
349 *
350 *	For tight control over page level allocator and protection flags
351 *	use __vmalloc() instead.
352 */
353void *vmalloc(unsigned long size)
354{
355       return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
356}
357EXPORT_SYMBOL(vmalloc);
358
359/*
360 *	vzalloc - allocate virtually continguos memory with zero fill
361 *
362 *	@size:		allocation size
363 *
364 *	Allocate enough pages to cover @size from the page level
365 *	allocator and map them into continguos kernel virtual space.
366 *	The memory allocated is set to zero.
367 *
368 *	For tight control over page level allocator and protection flags
369 *	use __vmalloc() instead.
370 */
371void *vzalloc(unsigned long size)
372{
373	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
374			PAGE_KERNEL);
375}
376EXPORT_SYMBOL(vzalloc);
377
378/**
379 * vmalloc_node - allocate memory on a specific node
380 * @size:	allocation size
381 * @node:	numa node
382 *
383 * Allocate enough pages to cover @size from the page level
384 * allocator and map them into contiguous kernel virtual space.
385 *
386 * For tight control over page level allocator and protection flags
387 * use __vmalloc() instead.
388 */
389void *vmalloc_node(unsigned long size, int node)
390{
391	return vmalloc(size);
392}
393EXPORT_SYMBOL(vmalloc_node);
394
395/**
396 * vzalloc_node - allocate memory on a specific node with zero fill
397 * @size:	allocation size
398 * @node:	numa node
399 *
400 * Allocate enough pages to cover @size from the page level
401 * allocator and map them into contiguous kernel virtual space.
402 * The memory allocated is set to zero.
403 *
404 * For tight control over page level allocator and protection flags
405 * use __vmalloc() instead.
406 */
407void *vzalloc_node(unsigned long size, int node)
408{
409	return vzalloc(size);
410}
411EXPORT_SYMBOL(vzalloc_node);
412
413#ifndef PAGE_KERNEL_EXEC
414# define PAGE_KERNEL_EXEC PAGE_KERNEL
415#endif
416
417/**
418 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
419 *	@size:		allocation size
420 *
421 *	Kernel-internal function to allocate enough pages to cover @size
422 *	the page level allocator and map them into contiguous and
423 *	executable kernel virtual space.
424 *
425 *	For tight control over page level allocator and protection flags
426 *	use __vmalloc() instead.
427 */
428
429void *vmalloc_exec(unsigned long size)
430{
431	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
432}
433
434/**
435 * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
436 *	@size:		allocation size
437 *
438 *	Allocate enough 32bit PA addressable pages to cover @size from the
439 *	page level allocator and map them into continguos kernel virtual space.
440 */
441void *vmalloc_32(unsigned long size)
442{
443	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
444}
445EXPORT_SYMBOL(vmalloc_32);
446
447/**
448 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
449 *	@size:		allocation size
450 *
451 * The resulting memory area is 32bit addressable and zeroed so it can be
452 * mapped to userspace without leaking data.
453 *
454 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
455 * remap_vmalloc_range() are permissible.
456 */
457void *vmalloc_32_user(unsigned long size)
458{
459	/*
460	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
461	 * but for now this can simply use vmalloc_user() directly.
462	 */
463	return vmalloc_user(size);
464}
465EXPORT_SYMBOL(vmalloc_32_user);
466
467void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
468{
469	BUG();
470	return NULL;
471}
472EXPORT_SYMBOL(vmap);
473
474void vunmap(const void *addr)
475{
476	BUG();
477}
478EXPORT_SYMBOL(vunmap);
479
480void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
481{
482	BUG();
483	return NULL;
484}
485EXPORT_SYMBOL(vm_map_ram);
486
487void vm_unmap_ram(const void *mem, unsigned int count)
488{
489	BUG();
490}
491EXPORT_SYMBOL(vm_unmap_ram);
492
493void vm_unmap_aliases(void)
494{
495}
496EXPORT_SYMBOL_GPL(vm_unmap_aliases);
497
498/*
499 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
500 * have one.
501 */
502void __weak vmalloc_sync_all(void)
503{
504}
505
506/**
507 *	alloc_vm_area - allocate a range of kernel address space
508 *	@size:		size of the area
509 *
510 *	Returns:	NULL on failure, vm_struct on success
511 *
512 *	This function reserves a range of kernel address space, and
513 *	allocates pagetables to map that range.  No actual mappings
514 *	are created.  If the kernel address space is not shared
515 *	between processes, it syncs the pagetable across all
516 *	processes.
517 */
518struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
519{
520	BUG();
521	return NULL;
522}
523EXPORT_SYMBOL_GPL(alloc_vm_area);
524
525void free_vm_area(struct vm_struct *area)
526{
527	BUG();
528}
529EXPORT_SYMBOL_GPL(free_vm_area);
530
531int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
532		   struct page *page)
533{
534	return -EINVAL;
535}
536EXPORT_SYMBOL(vm_insert_page);
537
538/*
539 *  sys_brk() for the most part doesn't need the global kernel
540 *  lock, except when an application is doing something nasty
541 *  like trying to un-brk an area that has already been mapped
542 *  to a regular file.  in this case, the unmapping will need
543 *  to invoke file system routines that need the global lock.
544 */
545SYSCALL_DEFINE1(brk, unsigned long, brk)
546{
547	struct mm_struct *mm = current->mm;
548
549	if (brk < mm->start_brk || brk > mm->context.end_brk)
550		return mm->brk;
551
552	if (mm->brk == brk)
553		return mm->brk;
554
555	/*
556	 * Always allow shrinking brk
557	 */
558	if (brk <= mm->brk) {
559		mm->brk = brk;
560		return brk;
561	}
562
563	/*
564	 * Ok, looks good - let it rip.
565	 */
566	flush_icache_range(mm->brk, brk);
567	return mm->brk = brk;
568}
569
570/*
571 * initialise the VMA and region record slabs
572 */
573void __init mmap_init(void)
574{
575	int ret;
576
577	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
578	VM_BUG_ON(ret);
579	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
580}
581
582/*
583 * validate the region tree
584 * - the caller must hold the region lock
585 */
586#ifdef CONFIG_DEBUG_NOMMU_REGIONS
587static noinline void validate_nommu_regions(void)
588{
589	struct vm_region *region, *last;
590	struct rb_node *p, *lastp;
591
592	lastp = rb_first(&nommu_region_tree);
593	if (!lastp)
594		return;
595
596	last = rb_entry(lastp, struct vm_region, vm_rb);
597	BUG_ON(unlikely(last->vm_end <= last->vm_start));
598	BUG_ON(unlikely(last->vm_top < last->vm_end));
599
600	while ((p = rb_next(lastp))) {
601		region = rb_entry(p, struct vm_region, vm_rb);
602		last = rb_entry(lastp, struct vm_region, vm_rb);
603
604		BUG_ON(unlikely(region->vm_end <= region->vm_start));
605		BUG_ON(unlikely(region->vm_top < region->vm_end));
606		BUG_ON(unlikely(region->vm_start < last->vm_top));
607
608		lastp = p;
609	}
610}
611#else
612static void validate_nommu_regions(void)
613{
614}
615#endif
616
617/*
618 * add a region into the global tree
619 */
620static void add_nommu_region(struct vm_region *region)
621{
622	struct vm_region *pregion;
623	struct rb_node **p, *parent;
624
625	validate_nommu_regions();
626
627	parent = NULL;
628	p = &nommu_region_tree.rb_node;
629	while (*p) {
630		parent = *p;
631		pregion = rb_entry(parent, struct vm_region, vm_rb);
632		if (region->vm_start < pregion->vm_start)
633			p = &(*p)->rb_left;
634		else if (region->vm_start > pregion->vm_start)
635			p = &(*p)->rb_right;
636		else if (pregion == region)
637			return;
638		else
639			BUG();
640	}
641
642	rb_link_node(&region->vm_rb, parent, p);
643	rb_insert_color(&region->vm_rb, &nommu_region_tree);
644
645	validate_nommu_regions();
646}
647
648/*
649 * delete a region from the global tree
650 */
651static void delete_nommu_region(struct vm_region *region)
652{
653	BUG_ON(!nommu_region_tree.rb_node);
654
655	validate_nommu_regions();
656	rb_erase(&region->vm_rb, &nommu_region_tree);
657	validate_nommu_regions();
658}
659
660/*
661 * free a contiguous series of pages
662 */
663static void free_page_series(unsigned long from, unsigned long to)
664{
665	for (; from < to; from += PAGE_SIZE) {
666		struct page *page = virt_to_page(from);
667
668		kdebug("- free %lx", from);
669		atomic_long_dec(&mmap_pages_allocated);
670		if (page_count(page) != 1)
671			kdebug("free page %p: refcount not one: %d",
672			       page, page_count(page));
673		put_page(page);
674	}
675}
676
677/*
678 * release a reference to a region
679 * - the caller must hold the region semaphore for writing, which this releases
680 * - the region may not have been added to the tree yet, in which case vm_top
681 *   will equal vm_start
682 */
683static void __put_nommu_region(struct vm_region *region)
684	__releases(nommu_region_sem)
685{
686	kenter("%p{%d}", region, region->vm_usage);
687
688	BUG_ON(!nommu_region_tree.rb_node);
689
690	if (--region->vm_usage == 0) {
691		if (region->vm_top > region->vm_start)
692			delete_nommu_region(region);
693		up_write(&nommu_region_sem);
694
695		if (region->vm_file)
696			fput(region->vm_file);
697
698		/* IO memory and memory shared directly out of the pagecache
699		 * from ramfs/tmpfs mustn't be released here */
700		if (region->vm_flags & VM_MAPPED_COPY) {
701			kdebug("free series");
702			free_page_series(region->vm_start, region->vm_top);
703		}
704		kmem_cache_free(vm_region_jar, region);
705	} else {
706		up_write(&nommu_region_sem);
707	}
708}
709
710/*
711 * release a reference to a region
712 */
713static void put_nommu_region(struct vm_region *region)
714{
715	down_write(&nommu_region_sem);
716	__put_nommu_region(region);
717}
718
719/*
720 * update protection on a vma
721 */
722static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
723{
724#ifdef CONFIG_MPU
725	struct mm_struct *mm = vma->vm_mm;
726	long start = vma->vm_start & PAGE_MASK;
727	while (start < vma->vm_end) {
728		protect_page(mm, start, flags);
729		start += PAGE_SIZE;
730	}
731	update_protections(mm);
732#endif
733}
734
735/*
736 * add a VMA into a process's mm_struct in the appropriate place in the list
737 * and tree and add to the address space's page tree also if not an anonymous
738 * page
739 * - should be called with mm->mmap_sem held writelocked
740 */
741static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
742{
743	struct vm_area_struct *pvma, *prev;
744	struct address_space *mapping;
745	struct rb_node **p, *parent, *rb_prev;
746
747	kenter(",%p", vma);
748
749	BUG_ON(!vma->vm_region);
750
751	mm->map_count++;
752	vma->vm_mm = mm;
753
754	protect_vma(vma, vma->vm_flags);
755
756	/* add the VMA to the mapping */
757	if (vma->vm_file) {
758		mapping = vma->vm_file->f_mapping;
759
760		i_mmap_lock_write(mapping);
761		flush_dcache_mmap_lock(mapping);
762		vma_interval_tree_insert(vma, &mapping->i_mmap);
763		flush_dcache_mmap_unlock(mapping);
764		i_mmap_unlock_write(mapping);
765	}
766
767	/* add the VMA to the tree */
768	parent = rb_prev = NULL;
769	p = &mm->mm_rb.rb_node;
770	while (*p) {
771		parent = *p;
772		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
773
774		/* sort by: start addr, end addr, VMA struct addr in that order
775		 * (the latter is necessary as we may get identical VMAs) */
776		if (vma->vm_start < pvma->vm_start)
777			p = &(*p)->rb_left;
778		else if (vma->vm_start > pvma->vm_start) {
779			rb_prev = parent;
780			p = &(*p)->rb_right;
781		} else if (vma->vm_end < pvma->vm_end)
782			p = &(*p)->rb_left;
783		else if (vma->vm_end > pvma->vm_end) {
784			rb_prev = parent;
785			p = &(*p)->rb_right;
786		} else if (vma < pvma)
787			p = &(*p)->rb_left;
788		else if (vma > pvma) {
789			rb_prev = parent;
790			p = &(*p)->rb_right;
791		} else
792			BUG();
793	}
794
795	rb_link_node(&vma->vm_rb, parent, p);
796	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
797
798	/* add VMA to the VMA list also */
799	prev = NULL;
800	if (rb_prev)
801		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
802
803	__vma_link_list(mm, vma, prev, parent);
804}
805
806/*
807 * delete a VMA from its owning mm_struct and address space
808 */
809static void delete_vma_from_mm(struct vm_area_struct *vma)
810{
811	int i;
812	struct address_space *mapping;
813	struct mm_struct *mm = vma->vm_mm;
814	struct task_struct *curr = current;
815
816	kenter("%p", vma);
817
818	protect_vma(vma, 0);
819
820	mm->map_count--;
821	for (i = 0; i < VMACACHE_SIZE; i++) {
822		/* if the vma is cached, invalidate the entire cache */
823		if (curr->vmacache[i] == vma) {
824			vmacache_invalidate(mm);
825			break;
826		}
827	}
828
829	/* remove the VMA from the mapping */
830	if (vma->vm_file) {
831		mapping = vma->vm_file->f_mapping;
832
833		i_mmap_lock_write(mapping);
834		flush_dcache_mmap_lock(mapping);
835		vma_interval_tree_remove(vma, &mapping->i_mmap);
836		flush_dcache_mmap_unlock(mapping);
837		i_mmap_unlock_write(mapping);
838	}
839
840	/* remove from the MM's tree and list */
841	rb_erase(&vma->vm_rb, &mm->mm_rb);
842
843	if (vma->vm_prev)
844		vma->vm_prev->vm_next = vma->vm_next;
845	else
846		mm->mmap = vma->vm_next;
847
848	if (vma->vm_next)
849		vma->vm_next->vm_prev = vma->vm_prev;
850}
851
852/*
853 * destroy a VMA record
854 */
855static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
856{
857	kenter("%p", vma);
858	if (vma->vm_ops && vma->vm_ops->close)
859		vma->vm_ops->close(vma);
860	if (vma->vm_file)
861		fput(vma->vm_file);
862	put_nommu_region(vma->vm_region);
863	kmem_cache_free(vm_area_cachep, vma);
864}
865
866/*
867 * look up the first VMA in which addr resides, NULL if none
868 * - should be called with mm->mmap_sem at least held readlocked
869 */
870struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
871{
872	struct vm_area_struct *vma;
873
874	/* check the cache first */
875	vma = vmacache_find(mm, addr);
876	if (likely(vma))
877		return vma;
878
879	/* trawl the list (there may be multiple mappings in which addr
880	 * resides) */
881	for (vma = mm->mmap; vma; vma = vma->vm_next) {
882		if (vma->vm_start > addr)
883			return NULL;
884		if (vma->vm_end > addr) {
885			vmacache_update(addr, vma);
886			return vma;
887		}
888	}
889
890	return NULL;
891}
892EXPORT_SYMBOL(find_vma);
893
894/*
895 * find a VMA
896 * - we don't extend stack VMAs under NOMMU conditions
897 */
898struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
899{
900	return find_vma(mm, addr);
901}
902
903/*
904 * expand a stack to a given address
905 * - not supported under NOMMU conditions
906 */
907int expand_stack(struct vm_area_struct *vma, unsigned long address)
908{
909	return -ENOMEM;
910}
911
912/*
913 * look up the first VMA exactly that exactly matches addr
914 * - should be called with mm->mmap_sem at least held readlocked
915 */
916static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
917					     unsigned long addr,
918					     unsigned long len)
919{
920	struct vm_area_struct *vma;
921	unsigned long end = addr + len;
922
923	/* check the cache first */
924	vma = vmacache_find_exact(mm, addr, end);
925	if (vma)
926		return vma;
927
928	/* trawl the list (there may be multiple mappings in which addr
929	 * resides) */
930	for (vma = mm->mmap; vma; vma = vma->vm_next) {
931		if (vma->vm_start < addr)
932			continue;
933		if (vma->vm_start > addr)
934			return NULL;
935		if (vma->vm_end == end) {
936			vmacache_update(addr, vma);
937			return vma;
938		}
939	}
940
941	return NULL;
942}
943
944/*
945 * determine whether a mapping should be permitted and, if so, what sort of
946 * mapping we're capable of supporting
947 */
948static int validate_mmap_request(struct file *file,
949				 unsigned long addr,
950				 unsigned long len,
951				 unsigned long prot,
952				 unsigned long flags,
953				 unsigned long pgoff,
954				 unsigned long *_capabilities)
955{
956	unsigned long capabilities, rlen;
957	int ret;
958
959	/* do the simple checks first */
960	if (flags & MAP_FIXED) {
961		printk(KERN_DEBUG
962		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
963		       current->pid);
964		return -EINVAL;
965	}
966
967	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
968	    (flags & MAP_TYPE) != MAP_SHARED)
969		return -EINVAL;
970
971	if (!len)
972		return -EINVAL;
973
974	/* Careful about overflows.. */
975	rlen = PAGE_ALIGN(len);
976	if (!rlen || rlen > TASK_SIZE)
977		return -ENOMEM;
978
979	/* offset overflow? */
980	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
981		return -EOVERFLOW;
982
983	if (file) {
984		/* files must support mmap */
985		if (!file->f_op->mmap)
986			return -ENODEV;
987
988		/* work out if what we've got could possibly be shared
989		 * - we support chardevs that provide their own "memory"
990		 * - we support files/blockdevs that are memory backed
991		 */
992		if (file->f_op->mmap_capabilities) {
993			capabilities = file->f_op->mmap_capabilities(file);
994		} else {
995			/* no explicit capabilities set, so assume some
996			 * defaults */
997			switch (file_inode(file)->i_mode & S_IFMT) {
998			case S_IFREG:
999			case S_IFBLK:
1000				capabilities = NOMMU_MAP_COPY;
1001				break;
1002
1003			case S_IFCHR:
1004				capabilities =
1005					NOMMU_MAP_DIRECT |
1006					NOMMU_MAP_READ |
1007					NOMMU_MAP_WRITE;
1008				break;
1009
1010			default:
1011				return -EINVAL;
1012			}
1013		}
1014
1015		/* eliminate any capabilities that we can't support on this
1016		 * device */
1017		if (!file->f_op->get_unmapped_area)
1018			capabilities &= ~NOMMU_MAP_DIRECT;
1019		if (!(file->f_mode & FMODE_CAN_READ))
1020			capabilities &= ~NOMMU_MAP_COPY;
1021
1022		/* The file shall have been opened with read permission. */
1023		if (!(file->f_mode & FMODE_READ))
1024			return -EACCES;
1025
1026		if (flags & MAP_SHARED) {
1027			/* do checks for writing, appending and locking */
1028			if ((prot & PROT_WRITE) &&
1029			    !(file->f_mode & FMODE_WRITE))
1030				return -EACCES;
1031
1032			if (IS_APPEND(file_inode(file)) &&
1033			    (file->f_mode & FMODE_WRITE))
1034				return -EACCES;
1035
1036			if (locks_verify_locked(file))
1037				return -EAGAIN;
1038
1039			if (!(capabilities & NOMMU_MAP_DIRECT))
1040				return -ENODEV;
1041
1042			/* we mustn't privatise shared mappings */
1043			capabilities &= ~NOMMU_MAP_COPY;
1044		} else {
1045			/* we're going to read the file into private memory we
1046			 * allocate */
1047			if (!(capabilities & NOMMU_MAP_COPY))
1048				return -ENODEV;
1049
1050			/* we don't permit a private writable mapping to be
1051			 * shared with the backing device */
1052			if (prot & PROT_WRITE)
1053				capabilities &= ~NOMMU_MAP_DIRECT;
1054		}
1055
1056		if (capabilities & NOMMU_MAP_DIRECT) {
1057			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
1058			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
1059			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
1060			    ) {
1061				capabilities &= ~NOMMU_MAP_DIRECT;
1062				if (flags & MAP_SHARED) {
1063					printk(KERN_WARNING
1064					       "MAP_SHARED not completely supported on !MMU\n");
1065					return -EINVAL;
1066				}
1067			}
1068		}
1069
1070		/* handle executable mappings and implied executable
1071		 * mappings */
1072		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1073			if (prot & PROT_EXEC)
1074				return -EPERM;
1075		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1076			/* handle implication of PROT_EXEC by PROT_READ */
1077			if (current->personality & READ_IMPLIES_EXEC) {
1078				if (capabilities & NOMMU_MAP_EXEC)
1079					prot |= PROT_EXEC;
1080			}
1081		} else if ((prot & PROT_READ) &&
1082			 (prot & PROT_EXEC) &&
1083			 !(capabilities & NOMMU_MAP_EXEC)
1084			 ) {
1085			/* backing file is not executable, try to copy */
1086			capabilities &= ~NOMMU_MAP_DIRECT;
1087		}
1088	} else {
1089		/* anonymous mappings are always memory backed and can be
1090		 * privately mapped
1091		 */
1092		capabilities = NOMMU_MAP_COPY;
1093
1094		/* handle PROT_EXEC implication by PROT_READ */
1095		if ((prot & PROT_READ) &&
1096		    (current->personality & READ_IMPLIES_EXEC))
1097			prot |= PROT_EXEC;
1098	}
1099
1100	/* allow the security API to have its say */
1101	ret = security_mmap_addr(addr);
1102	if (ret < 0)
1103		return ret;
1104
1105	/* looks okay */
1106	*_capabilities = capabilities;
1107	return 0;
1108}
1109
1110/*
1111 * we've determined that we can make the mapping, now translate what we
1112 * now know into VMA flags
1113 */
1114static unsigned long determine_vm_flags(struct file *file,
1115					unsigned long prot,
1116					unsigned long flags,
1117					unsigned long capabilities)
1118{
1119	unsigned long vm_flags;
1120
1121	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1122	/* vm_flags |= mm->def_flags; */
1123
1124	if (!(capabilities & NOMMU_MAP_DIRECT)) {
1125		/* attempt to share read-only copies of mapped file chunks */
1126		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1127		if (file && !(prot & PROT_WRITE))
1128			vm_flags |= VM_MAYSHARE;
1129	} else {
1130		/* overlay a shareable mapping on the backing device or inode
1131		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1132		 * romfs/cramfs */
1133		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1134		if (flags & MAP_SHARED)
1135			vm_flags |= VM_SHARED;
1136	}
1137
1138	/* refuse to let anyone share private mappings with this process if
1139	 * it's being traced - otherwise breakpoints set in it may interfere
1140	 * with another untraced process
1141	 */
1142	if ((flags & MAP_PRIVATE) && current->ptrace)
1143		vm_flags &= ~VM_MAYSHARE;
1144
1145	return vm_flags;
1146}
1147
1148/*
1149 * set up a shared mapping on a file (the driver or filesystem provides and
1150 * pins the storage)
1151 */
1152static int do_mmap_shared_file(struct vm_area_struct *vma)
1153{
1154	int ret;
1155
1156	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1157	if (ret == 0) {
1158		vma->vm_region->vm_top = vma->vm_region->vm_end;
1159		return 0;
1160	}
1161	if (ret != -ENOSYS)
1162		return ret;
1163
1164	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1165	 * opposed to tried but failed) so we can only give a suitable error as
1166	 * it's not possible to make a private copy if MAP_SHARED was given */
1167	return -ENODEV;
1168}
1169
1170/*
1171 * set up a private mapping or an anonymous shared mapping
1172 */
1173static int do_mmap_private(struct vm_area_struct *vma,
1174			   struct vm_region *region,
1175			   unsigned long len,
1176			   unsigned long capabilities)
1177{
1178	unsigned long total, point;
1179	void *base;
1180	int ret, order;
1181
1182	/* invoke the file's mapping function so that it can keep track of
1183	 * shared mappings on devices or memory
1184	 * - VM_MAYSHARE will be set if it may attempt to share
1185	 */
1186	if (capabilities & NOMMU_MAP_DIRECT) {
1187		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1188		if (ret == 0) {
1189			/* shouldn't return success if we're not sharing */
1190			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1191			vma->vm_region->vm_top = vma->vm_region->vm_end;
1192			return 0;
1193		}
1194		if (ret != -ENOSYS)
1195			return ret;
1196
1197		/* getting an ENOSYS error indicates that direct mmap isn't
1198		 * possible (as opposed to tried but failed) so we'll try to
1199		 * make a private copy of the data and map that instead */
1200	}
1201
1202
1203	/* allocate some memory to hold the mapping
1204	 * - note that this may not return a page-aligned address if the object
1205	 *   we're allocating is smaller than a page
1206	 */
1207	order = get_order(len);
1208	kdebug("alloc order %d for %lx", order, len);
1209
1210	total = 1 << order;
1211	point = len >> PAGE_SHIFT;
1212
1213	/* we don't want to allocate a power-of-2 sized page set */
1214	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1215		total = point;
1216		kdebug("try to alloc exact %lu pages", total);
1217	}
1218
1219	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1220	if (!base)
1221		goto enomem;
1222
1223	atomic_long_add(total, &mmap_pages_allocated);
1224
1225	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1226	region->vm_start = (unsigned long) base;
1227	region->vm_end   = region->vm_start + len;
1228	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1229
1230	vma->vm_start = region->vm_start;
1231	vma->vm_end   = region->vm_start + len;
1232
1233	if (vma->vm_file) {
1234		/* read the contents of a file into the copy */
1235		mm_segment_t old_fs;
1236		loff_t fpos;
1237
1238		fpos = vma->vm_pgoff;
1239		fpos <<= PAGE_SHIFT;
1240
1241		old_fs = get_fs();
1242		set_fs(KERNEL_DS);
1243		ret = __vfs_read(vma->vm_file, base, len, &fpos);
1244		set_fs(old_fs);
1245
1246		if (ret < 0)
1247			goto error_free;
1248
1249		/* clear the last little bit */
1250		if (ret < len)
1251			memset(base + ret, 0, len - ret);
1252
1253	}
1254
1255	return 0;
1256
1257error_free:
1258	free_page_series(region->vm_start, region->vm_top);
1259	region->vm_start = vma->vm_start = 0;
1260	region->vm_end   = vma->vm_end = 0;
1261	region->vm_top   = 0;
1262	return ret;
1263
1264enomem:
1265	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1266	       len, current->pid, current->comm);
1267	show_free_areas(0);
1268	return -ENOMEM;
1269}
1270
1271/*
1272 * handle mapping creation for uClinux
1273 */
1274unsigned long do_mmap_pgoff(struct file *file,
1275			    unsigned long addr,
1276			    unsigned long len,
1277			    unsigned long prot,
1278			    unsigned long flags,
1279			    unsigned long pgoff,
1280			    unsigned long *populate)
1281{
1282	struct vm_area_struct *vma;
1283	struct vm_region *region;
1284	struct rb_node *rb;
1285	unsigned long capabilities, vm_flags, result;
1286	int ret;
1287
1288	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1289
1290	*populate = 0;
1291
1292	/* decide whether we should attempt the mapping, and if so what sort of
1293	 * mapping */
1294	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1295				    &capabilities);
1296	if (ret < 0) {
1297		kleave(" = %d [val]", ret);
1298		return ret;
1299	}
1300
1301	/* we ignore the address hint */
1302	addr = 0;
1303	len = PAGE_ALIGN(len);
1304
1305	/* we've determined that we can make the mapping, now translate what we
1306	 * now know into VMA flags */
1307	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1308
1309	/* we're going to need to record the mapping */
1310	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1311	if (!region)
1312		goto error_getting_region;
1313
1314	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1315	if (!vma)
1316		goto error_getting_vma;
1317
1318	region->vm_usage = 1;
1319	region->vm_flags = vm_flags;
1320	region->vm_pgoff = pgoff;
1321
1322	INIT_LIST_HEAD(&vma->anon_vma_chain);
1323	vma->vm_flags = vm_flags;
1324	vma->vm_pgoff = pgoff;
1325
1326	if (file) {
1327		region->vm_file = get_file(file);
1328		vma->vm_file = get_file(file);
1329	}
1330
1331	down_write(&nommu_region_sem);
1332
1333	/* if we want to share, we need to check for regions created by other
1334	 * mmap() calls that overlap with our proposed mapping
1335	 * - we can only share with a superset match on most regular files
1336	 * - shared mappings on character devices and memory backed files are
1337	 *   permitted to overlap inexactly as far as we are concerned for in
1338	 *   these cases, sharing is handled in the driver or filesystem rather
1339	 *   than here
1340	 */
1341	if (vm_flags & VM_MAYSHARE) {
1342		struct vm_region *pregion;
1343		unsigned long pglen, rpglen, pgend, rpgend, start;
1344
1345		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1346		pgend = pgoff + pglen;
1347
1348		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1349			pregion = rb_entry(rb, struct vm_region, vm_rb);
1350
1351			if (!(pregion->vm_flags & VM_MAYSHARE))
1352				continue;
1353
1354			/* search for overlapping mappings on the same file */
1355			if (file_inode(pregion->vm_file) !=
1356			    file_inode(file))
1357				continue;
1358
1359			if (pregion->vm_pgoff >= pgend)
1360				continue;
1361
1362			rpglen = pregion->vm_end - pregion->vm_start;
1363			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1364			rpgend = pregion->vm_pgoff + rpglen;
1365			if (pgoff >= rpgend)
1366				continue;
1367
1368			/* handle inexactly overlapping matches between
1369			 * mappings */
1370			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1371			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1372				/* new mapping is not a subset of the region */
1373				if (!(capabilities & NOMMU_MAP_DIRECT))
1374					goto sharing_violation;
1375				continue;
1376			}
1377
1378			/* we've found a region we can share */
1379			pregion->vm_usage++;
1380			vma->vm_region = pregion;
1381			start = pregion->vm_start;
1382			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1383			vma->vm_start = start;
1384			vma->vm_end = start + len;
1385
1386			if (pregion->vm_flags & VM_MAPPED_COPY) {
1387				kdebug("share copy");
1388				vma->vm_flags |= VM_MAPPED_COPY;
1389			} else {
1390				kdebug("share mmap");
1391				ret = do_mmap_shared_file(vma);
1392				if (ret < 0) {
1393					vma->vm_region = NULL;
1394					vma->vm_start = 0;
1395					vma->vm_end = 0;
1396					pregion->vm_usage--;
1397					pregion = NULL;
1398					goto error_just_free;
1399				}
1400			}
1401			fput(region->vm_file);
1402			kmem_cache_free(vm_region_jar, region);
1403			region = pregion;
1404			result = start;
1405			goto share;
1406		}
1407
1408		/* obtain the address at which to make a shared mapping
1409		 * - this is the hook for quasi-memory character devices to
1410		 *   tell us the location of a shared mapping
1411		 */
1412		if (capabilities & NOMMU_MAP_DIRECT) {
1413			addr = file->f_op->get_unmapped_area(file, addr, len,
1414							     pgoff, flags);
1415			if (IS_ERR_VALUE(addr)) {
1416				ret = addr;
1417				if (ret != -ENOSYS)
1418					goto error_just_free;
1419
1420				/* the driver refused to tell us where to site
1421				 * the mapping so we'll have to attempt to copy
1422				 * it */
1423				ret = -ENODEV;
1424				if (!(capabilities & NOMMU_MAP_COPY))
1425					goto error_just_free;
1426
1427				capabilities &= ~NOMMU_MAP_DIRECT;
1428			} else {
1429				vma->vm_start = region->vm_start = addr;
1430				vma->vm_end = region->vm_end = addr + len;
1431			}
1432		}
1433	}
1434
1435	vma->vm_region = region;
1436
1437	/* set up the mapping
1438	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1439	 */
1440	if (file && vma->vm_flags & VM_SHARED)
1441		ret = do_mmap_shared_file(vma);
1442	else
1443		ret = do_mmap_private(vma, region, len, capabilities);
1444	if (ret < 0)
1445		goto error_just_free;
1446	add_nommu_region(region);
1447
1448	/* clear anonymous mappings that don't ask for uninitialized data */
1449	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1450		memset((void *)region->vm_start, 0,
1451		       region->vm_end - region->vm_start);
1452
1453	/* okay... we have a mapping; now we have to register it */
1454	result = vma->vm_start;
1455
1456	current->mm->total_vm += len >> PAGE_SHIFT;
1457
1458share:
1459	add_vma_to_mm(current->mm, vma);
1460
1461	/* we flush the region from the icache only when the first executable
1462	 * mapping of it is made  */
1463	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1464		flush_icache_range(region->vm_start, region->vm_end);
1465		region->vm_icache_flushed = true;
1466	}
1467
1468	up_write(&nommu_region_sem);
1469
1470	kleave(" = %lx", result);
1471	return result;
1472
1473error_just_free:
1474	up_write(&nommu_region_sem);
1475error:
1476	if (region->vm_file)
1477		fput(region->vm_file);
1478	kmem_cache_free(vm_region_jar, region);
1479	if (vma->vm_file)
1480		fput(vma->vm_file);
1481	kmem_cache_free(vm_area_cachep, vma);
1482	kleave(" = %d", ret);
1483	return ret;
1484
1485sharing_violation:
1486	up_write(&nommu_region_sem);
1487	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1488	ret = -EINVAL;
1489	goto error;
1490
1491error_getting_vma:
1492	kmem_cache_free(vm_region_jar, region);
1493	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1494	       " from process %d failed\n",
1495	       len, current->pid);
1496	show_free_areas(0);
1497	return -ENOMEM;
1498
1499error_getting_region:
1500	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1501	       " from process %d failed\n",
1502	       len, current->pid);
1503	show_free_areas(0);
1504	return -ENOMEM;
1505}
1506
1507SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1508		unsigned long, prot, unsigned long, flags,
1509		unsigned long, fd, unsigned long, pgoff)
1510{
1511	struct file *file = NULL;
1512	unsigned long retval = -EBADF;
1513
1514	audit_mmap_fd(fd, flags);
1515	if (!(flags & MAP_ANONYMOUS)) {
1516		file = fget(fd);
1517		if (!file)
1518			goto out;
1519	}
1520
1521	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1522
1523	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1524
1525	if (file)
1526		fput(file);
1527out:
1528	return retval;
1529}
1530
1531#ifdef __ARCH_WANT_SYS_OLD_MMAP
1532struct mmap_arg_struct {
1533	unsigned long addr;
1534	unsigned long len;
1535	unsigned long prot;
1536	unsigned long flags;
1537	unsigned long fd;
1538	unsigned long offset;
1539};
1540
1541SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1542{
1543	struct mmap_arg_struct a;
1544
1545	if (copy_from_user(&a, arg, sizeof(a)))
1546		return -EFAULT;
1547	if (a.offset & ~PAGE_MASK)
1548		return -EINVAL;
1549
1550	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1551			      a.offset >> PAGE_SHIFT);
1552}
1553#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1554
1555/*
1556 * split a vma into two pieces at address 'addr', a new vma is allocated either
1557 * for the first part or the tail.
1558 */
1559int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1560	      unsigned long addr, int new_below)
1561{
1562	struct vm_area_struct *new;
1563	struct vm_region *region;
1564	unsigned long npages;
1565
1566	kenter("");
1567
1568	/* we're only permitted to split anonymous regions (these should have
1569	 * only a single usage on the region) */
1570	if (vma->vm_file)
1571		return -ENOMEM;
1572
1573	if (mm->map_count >= sysctl_max_map_count)
1574		return -ENOMEM;
1575
1576	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1577	if (!region)
1578		return -ENOMEM;
1579
1580	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1581	if (!new) {
1582		kmem_cache_free(vm_region_jar, region);
1583		return -ENOMEM;
1584	}
1585
1586	/* most fields are the same, copy all, and then fixup */
1587	*new = *vma;
1588	*region = *vma->vm_region;
1589	new->vm_region = region;
1590
1591	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1592
1593	if (new_below) {
1594		region->vm_top = region->vm_end = new->vm_end = addr;
1595	} else {
1596		region->vm_start = new->vm_start = addr;
1597		region->vm_pgoff = new->vm_pgoff += npages;
1598	}
1599
1600	if (new->vm_ops && new->vm_ops->open)
1601		new->vm_ops->open(new);
1602
1603	delete_vma_from_mm(vma);
1604	down_write(&nommu_region_sem);
1605	delete_nommu_region(vma->vm_region);
1606	if (new_below) {
1607		vma->vm_region->vm_start = vma->vm_start = addr;
1608		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1609	} else {
1610		vma->vm_region->vm_end = vma->vm_end = addr;
1611		vma->vm_region->vm_top = addr;
1612	}
1613	add_nommu_region(vma->vm_region);
1614	add_nommu_region(new->vm_region);
1615	up_write(&nommu_region_sem);
1616	add_vma_to_mm(mm, vma);
1617	add_vma_to_mm(mm, new);
1618	return 0;
1619}
1620
1621/*
1622 * shrink a VMA by removing the specified chunk from either the beginning or
1623 * the end
1624 */
1625static int shrink_vma(struct mm_struct *mm,
1626		      struct vm_area_struct *vma,
1627		      unsigned long from, unsigned long to)
1628{
1629	struct vm_region *region;
1630
1631	kenter("");
1632
1633	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1634	 * and list */
1635	delete_vma_from_mm(vma);
1636	if (from > vma->vm_start)
1637		vma->vm_end = from;
1638	else
1639		vma->vm_start = to;
1640	add_vma_to_mm(mm, vma);
1641
1642	/* cut the backing region down to size */
1643	region = vma->vm_region;
1644	BUG_ON(region->vm_usage != 1);
1645
1646	down_write(&nommu_region_sem);
1647	delete_nommu_region(region);
1648	if (from > region->vm_start) {
1649		to = region->vm_top;
1650		region->vm_top = region->vm_end = from;
1651	} else {
1652		region->vm_start = to;
1653	}
1654	add_nommu_region(region);
1655	up_write(&nommu_region_sem);
1656
1657	free_page_series(from, to);
1658	return 0;
1659}
1660
1661/*
1662 * release a mapping
1663 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1664 *   VMA, though it need not cover the whole VMA
1665 */
1666int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1667{
1668	struct vm_area_struct *vma;
1669	unsigned long end;
1670	int ret;
1671
1672	kenter(",%lx,%zx", start, len);
1673
1674	len = PAGE_ALIGN(len);
1675	if (len == 0)
1676		return -EINVAL;
1677
1678	end = start + len;
1679
1680	/* find the first potentially overlapping VMA */
1681	vma = find_vma(mm, start);
1682	if (!vma) {
1683		static int limit;
1684		if (limit < 5) {
1685			printk(KERN_WARNING
1686			       "munmap of memory not mmapped by process %d"
1687			       " (%s): 0x%lx-0x%lx\n",
1688			       current->pid, current->comm,
1689			       start, start + len - 1);
1690			limit++;
1691		}
1692		return -EINVAL;
1693	}
1694
1695	/* we're allowed to split an anonymous VMA but not a file-backed one */
1696	if (vma->vm_file) {
1697		do {
1698			if (start > vma->vm_start) {
1699				kleave(" = -EINVAL [miss]");
1700				return -EINVAL;
1701			}
1702			if (end == vma->vm_end)
1703				goto erase_whole_vma;
1704			vma = vma->vm_next;
1705		} while (vma);
1706		kleave(" = -EINVAL [split file]");
1707		return -EINVAL;
1708	} else {
1709		/* the chunk must be a subset of the VMA found */
1710		if (start == vma->vm_start && end == vma->vm_end)
1711			goto erase_whole_vma;
1712		if (start < vma->vm_start || end > vma->vm_end) {
1713			kleave(" = -EINVAL [superset]");
1714			return -EINVAL;
1715		}
1716		if (start & ~PAGE_MASK) {
1717			kleave(" = -EINVAL [unaligned start]");
1718			return -EINVAL;
1719		}
1720		if (end != vma->vm_end && end & ~PAGE_MASK) {
1721			kleave(" = -EINVAL [unaligned split]");
1722			return -EINVAL;
1723		}
1724		if (start != vma->vm_start && end != vma->vm_end) {
1725			ret = split_vma(mm, vma, start, 1);
1726			if (ret < 0) {
1727				kleave(" = %d [split]", ret);
1728				return ret;
1729			}
1730		}
1731		return shrink_vma(mm, vma, start, end);
1732	}
1733
1734erase_whole_vma:
1735	delete_vma_from_mm(vma);
1736	delete_vma(mm, vma);
1737	kleave(" = 0");
1738	return 0;
1739}
1740EXPORT_SYMBOL(do_munmap);
1741
1742int vm_munmap(unsigned long addr, size_t len)
1743{
1744	struct mm_struct *mm = current->mm;
1745	int ret;
1746
1747	down_write(&mm->mmap_sem);
1748	ret = do_munmap(mm, addr, len);
1749	up_write(&mm->mmap_sem);
1750	return ret;
1751}
1752EXPORT_SYMBOL(vm_munmap);
1753
1754SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1755{
1756	return vm_munmap(addr, len);
1757}
1758
1759/*
1760 * release all the mappings made in a process's VM space
1761 */
1762void exit_mmap(struct mm_struct *mm)
1763{
1764	struct vm_area_struct *vma;
1765
1766	if (!mm)
1767		return;
1768
1769	kenter("");
1770
1771	mm->total_vm = 0;
1772
1773	while ((vma = mm->mmap)) {
1774		mm->mmap = vma->vm_next;
1775		delete_vma_from_mm(vma);
1776		delete_vma(mm, vma);
1777		cond_resched();
1778	}
1779
1780	kleave("");
1781}
1782
1783unsigned long vm_brk(unsigned long addr, unsigned long len)
1784{
1785	return -ENOMEM;
1786}
1787
1788/*
1789 * expand (or shrink) an existing mapping, potentially moving it at the same
1790 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1791 *
1792 * under NOMMU conditions, we only permit changing a mapping's size, and only
1793 * as long as it stays within the region allocated by do_mmap_private() and the
1794 * block is not shareable
1795 *
1796 * MREMAP_FIXED is not supported under NOMMU conditions
1797 */
1798static unsigned long do_mremap(unsigned long addr,
1799			unsigned long old_len, unsigned long new_len,
1800			unsigned long flags, unsigned long new_addr)
1801{
1802	struct vm_area_struct *vma;
1803
1804	/* insanity checks first */
1805	old_len = PAGE_ALIGN(old_len);
1806	new_len = PAGE_ALIGN(new_len);
1807	if (old_len == 0 || new_len == 0)
1808		return (unsigned long) -EINVAL;
1809
1810	if (addr & ~PAGE_MASK)
1811		return -EINVAL;
1812
1813	if (flags & MREMAP_FIXED && new_addr != addr)
1814		return (unsigned long) -EINVAL;
1815
1816	vma = find_vma_exact(current->mm, addr, old_len);
1817	if (!vma)
1818		return (unsigned long) -EINVAL;
1819
1820	if (vma->vm_end != vma->vm_start + old_len)
1821		return (unsigned long) -EFAULT;
1822
1823	if (vma->vm_flags & VM_MAYSHARE)
1824		return (unsigned long) -EPERM;
1825
1826	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1827		return (unsigned long) -ENOMEM;
1828
1829	/* all checks complete - do it */
1830	vma->vm_end = vma->vm_start + new_len;
1831	return vma->vm_start;
1832}
1833
1834SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1835		unsigned long, new_len, unsigned long, flags,
1836		unsigned long, new_addr)
1837{
1838	unsigned long ret;
1839
1840	down_write(&current->mm->mmap_sem);
1841	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1842	up_write(&current->mm->mmap_sem);
1843	return ret;
1844}
1845
1846struct page *follow_page_mask(struct vm_area_struct *vma,
1847			      unsigned long address, unsigned int flags,
1848			      unsigned int *page_mask)
1849{
1850	*page_mask = 0;
1851	return NULL;
1852}
1853
1854int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1855		unsigned long pfn, unsigned long size, pgprot_t prot)
1856{
1857	if (addr != (pfn << PAGE_SHIFT))
1858		return -EINVAL;
1859
1860	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1861	return 0;
1862}
1863EXPORT_SYMBOL(remap_pfn_range);
1864
1865int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1866{
1867	unsigned long pfn = start >> PAGE_SHIFT;
1868	unsigned long vm_len = vma->vm_end - vma->vm_start;
1869
1870	pfn += vma->vm_pgoff;
1871	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1872}
1873EXPORT_SYMBOL(vm_iomap_memory);
1874
1875int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1876			unsigned long pgoff)
1877{
1878	unsigned int size = vma->vm_end - vma->vm_start;
1879
1880	if (!(vma->vm_flags & VM_USERMAP))
1881		return -EINVAL;
1882
1883	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1884	vma->vm_end = vma->vm_start + size;
1885
1886	return 0;
1887}
1888EXPORT_SYMBOL(remap_vmalloc_range);
1889
1890unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1891	unsigned long len, unsigned long pgoff, unsigned long flags)
1892{
1893	return -ENOMEM;
1894}
1895
1896void unmap_mapping_range(struct address_space *mapping,
1897			 loff_t const holebegin, loff_t const holelen,
1898			 int even_cows)
1899{
1900}
1901EXPORT_SYMBOL(unmap_mapping_range);
1902
1903/*
1904 * Check that a process has enough memory to allocate a new virtual
1905 * mapping. 0 means there is enough memory for the allocation to
1906 * succeed and -ENOMEM implies there is not.
1907 *
1908 * We currently support three overcommit policies, which are set via the
1909 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1910 *
1911 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1912 * Additional code 2002 Jul 20 by Robert Love.
1913 *
1914 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1915 *
1916 * Note this is a helper function intended to be used by LSMs which
1917 * wish to use this logic.
1918 */
1919int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1920{
1921	long free, allowed, reserve;
1922
1923	vm_acct_memory(pages);
1924
1925	/*
1926	 * Sometimes we want to use more memory than we have
1927	 */
1928	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1929		return 0;
1930
1931	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1932		free = global_page_state(NR_FREE_PAGES);
1933		free += global_page_state(NR_FILE_PAGES);
1934
1935		/*
1936		 * shmem pages shouldn't be counted as free in this
1937		 * case, they can't be purged, only swapped out, and
1938		 * that won't affect the overall amount of available
1939		 * memory in the system.
1940		 */
1941		free -= global_page_state(NR_SHMEM);
1942
1943		free += get_nr_swap_pages();
1944
1945		/*
1946		 * Any slabs which are created with the
1947		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1948		 * which are reclaimable, under pressure.  The dentry
1949		 * cache and most inode caches should fall into this
1950		 */
1951		free += global_page_state(NR_SLAB_RECLAIMABLE);
1952
1953		/*
1954		 * Leave reserved pages. The pages are not for anonymous pages.
1955		 */
1956		if (free <= totalreserve_pages)
1957			goto error;
1958		else
1959			free -= totalreserve_pages;
1960
1961		/*
1962		 * Reserve some for root
1963		 */
1964		if (!cap_sys_admin)
1965			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1966
1967		if (free > pages)
1968			return 0;
1969
1970		goto error;
1971	}
1972
1973	allowed = vm_commit_limit();
1974	/*
1975	 * Reserve some 3% for root
1976	 */
1977	if (!cap_sys_admin)
1978		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1979
1980	/*
1981	 * Don't let a single process grow so big a user can't recover
1982	 */
1983	if (mm) {
1984		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1985		allowed -= min_t(long, mm->total_vm / 32, reserve);
1986	}
1987
1988	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1989		return 0;
1990
1991error:
1992	vm_unacct_memory(pages);
1993
1994	return -ENOMEM;
1995}
1996
1997int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1998{
1999	BUG();
2000	return 0;
2001}
2002EXPORT_SYMBOL(filemap_fault);
2003
2004void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2005{
2006	BUG();
2007}
2008EXPORT_SYMBOL(filemap_map_pages);
2009
2010static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
2011		unsigned long addr, void *buf, int len, int write)
2012{
2013	struct vm_area_struct *vma;
2014
2015	down_read(&mm->mmap_sem);
2016
2017	/* the access must start within one of the target process's mappings */
2018	vma = find_vma(mm, addr);
2019	if (vma) {
2020		/* don't overrun this mapping */
2021		if (addr + len >= vma->vm_end)
2022			len = vma->vm_end - addr;
2023
2024		/* only read or write mappings where it is permitted */
2025		if (write && vma->vm_flags & VM_MAYWRITE)
2026			copy_to_user_page(vma, NULL, addr,
2027					 (void *) addr, buf, len);
2028		else if (!write && vma->vm_flags & VM_MAYREAD)
2029			copy_from_user_page(vma, NULL, addr,
2030					    buf, (void *) addr, len);
2031		else
2032			len = 0;
2033	} else {
2034		len = 0;
2035	}
2036
2037	up_read(&mm->mmap_sem);
2038
2039	return len;
2040}
2041
2042/**
2043 * @access_remote_vm - access another process' address space
2044 * @mm:		the mm_struct of the target address space
2045 * @addr:	start address to access
2046 * @buf:	source or destination buffer
2047 * @len:	number of bytes to transfer
2048 * @write:	whether the access is a write
2049 *
2050 * The caller must hold a reference on @mm.
2051 */
2052int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2053		void *buf, int len, int write)
2054{
2055	return __access_remote_vm(NULL, mm, addr, buf, len, write);
2056}
2057
2058/*
2059 * Access another process' address space.
2060 * - source/target buffer must be kernel space
2061 */
2062int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2063{
2064	struct mm_struct *mm;
2065
2066	if (addr + len < addr)
2067		return 0;
2068
2069	mm = get_task_mm(tsk);
2070	if (!mm)
2071		return 0;
2072
2073	len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2074
2075	mmput(mm);
2076	return len;
2077}
2078
2079/**
2080 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2081 * @inode: The inode to check
2082 * @size: The current filesize of the inode
2083 * @newsize: The proposed filesize of the inode
2084 *
2085 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2086 * make sure that that any outstanding VMAs aren't broken and then shrink the
2087 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2088 * automatically grant mappings that are too large.
2089 */
2090int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2091				size_t newsize)
2092{
2093	struct vm_area_struct *vma;
2094	struct vm_region *region;
2095	pgoff_t low, high;
2096	size_t r_size, r_top;
2097
2098	low = newsize >> PAGE_SHIFT;
2099	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2100
2101	down_write(&nommu_region_sem);
2102	i_mmap_lock_read(inode->i_mapping);
2103
2104	/* search for VMAs that fall within the dead zone */
2105	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2106		/* found one - only interested if it's shared out of the page
2107		 * cache */
2108		if (vma->vm_flags & VM_SHARED) {
2109			i_mmap_unlock_read(inode->i_mapping);
2110			up_write(&nommu_region_sem);
2111			return -ETXTBSY; /* not quite true, but near enough */
2112		}
2113	}
2114
2115	/* reduce any regions that overlap the dead zone - if in existence,
2116	 * these will be pointed to by VMAs that don't overlap the dead zone
2117	 *
2118	 * we don't check for any regions that start beyond the EOF as there
2119	 * shouldn't be any
2120	 */
2121	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
2122		if (!(vma->vm_flags & VM_SHARED))
2123			continue;
2124
2125		region = vma->vm_region;
2126		r_size = region->vm_top - region->vm_start;
2127		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2128
2129		if (r_top > newsize) {
2130			region->vm_top -= r_top - newsize;
2131			if (region->vm_end > region->vm_top)
2132				region->vm_end = region->vm_top;
2133		}
2134	}
2135
2136	i_mmap_unlock_read(inode->i_mapping);
2137	up_write(&nommu_region_sem);
2138	return 0;
2139}
2140
2141/*
2142 * Initialise sysctl_user_reserve_kbytes.
2143 *
2144 * This is intended to prevent a user from starting a single memory hogging
2145 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2146 * mode.
2147 *
2148 * The default value is min(3% of free memory, 128MB)
2149 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2150 */
2151static int __meminit init_user_reserve(void)
2152{
2153	unsigned long free_kbytes;
2154
2155	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2156
2157	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2158	return 0;
2159}
2160module_init(init_user_reserve)
2161
2162/*
2163 * Initialise sysctl_admin_reserve_kbytes.
2164 *
2165 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2166 * to log in and kill a memory hogging process.
2167 *
2168 * Systems with more than 256MB will reserve 8MB, enough to recover
2169 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2170 * only reserve 3% of free pages by default.
2171 */
2172static int __meminit init_admin_reserve(void)
2173{
2174	unsigned long free_kbytes;
2175
2176	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2177
2178	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2179	return 0;
2180}
2181module_init(init_admin_reserve)
2182