1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/ksm.h>
49#include <linux/rmap.h>
50#include <linux/export.h>
51#include <linux/delayacct.h>
52#include <linux/init.h>
53#include <linux/writeback.h>
54#include <linux/memcontrol.h>
55#include <linux/mmu_notifier.h>
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
59#include <linux/gfp.h>
60#include <linux/migrate.h>
61#include <linux/string.h>
62#include <linux/dma-debug.h>
63#include <linux/debugfs.h>
64
65#include <asm/io.h>
66#include <asm/pgalloc.h>
67#include <asm/uaccess.h>
68#include <asm/tlb.h>
69#include <asm/tlbflush.h>
70#include <asm/pgtable.h>
71
72#include "internal.h"
73
74#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76#endif
77
78#ifndef CONFIG_NEED_MULTIPLE_NODES
79/* use the per-pgdat data instead for discontigmem - mbligh */
80unsigned long max_mapnr;
81struct page *mem_map;
82
83EXPORT_SYMBOL(max_mapnr);
84EXPORT_SYMBOL(mem_map);
85#endif
86
87/*
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92 * and ZONE_HIGHMEM.
93 */
94void * high_memory;
95
96EXPORT_SYMBOL(high_memory);
97
98/*
99 * Randomize the address space (stacks, mmaps, brk, etc.).
100 *
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 *   as ancient (libc5 based) binaries can segfault. )
103 */
104int randomize_va_space __read_mostly =
105#ifdef CONFIG_COMPAT_BRK
106					1;
107#else
108					2;
109#endif
110
111static int __init disable_randmaps(char *s)
112{
113	randomize_va_space = 0;
114	return 1;
115}
116__setup("norandmaps", disable_randmaps);
117
118unsigned long zero_pfn __read_mostly;
119unsigned long highest_memmap_pfn __read_mostly;
120
121EXPORT_SYMBOL(zero_pfn);
122
123/*
124 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125 */
126static int __init init_zero_pfn(void)
127{
128	zero_pfn = page_to_pfn(ZERO_PAGE(0));
129	return 0;
130}
131core_initcall(init_zero_pfn);
132
133
134#if defined(SPLIT_RSS_COUNTING)
135
136void sync_mm_rss(struct mm_struct *mm)
137{
138	int i;
139
140	for (i = 0; i < NR_MM_COUNTERS; i++) {
141		if (current->rss_stat.count[i]) {
142			add_mm_counter(mm, i, current->rss_stat.count[i]);
143			current->rss_stat.count[i] = 0;
144		}
145	}
146	current->rss_stat.events = 0;
147}
148
149static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150{
151	struct task_struct *task = current;
152
153	if (likely(task->mm == mm))
154		task->rss_stat.count[member] += val;
155	else
156		add_mm_counter(mm, member, val);
157}
158#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160
161/* sync counter once per 64 page faults */
162#define TASK_RSS_EVENTS_THRESH	(64)
163static void check_sync_rss_stat(struct task_struct *task)
164{
165	if (unlikely(task != current))
166		return;
167	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168		sync_mm_rss(task->mm);
169}
170#else /* SPLIT_RSS_COUNTING */
171
172#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174
175static void check_sync_rss_stat(struct task_struct *task)
176{
177}
178
179#endif /* SPLIT_RSS_COUNTING */
180
181#ifdef HAVE_GENERIC_MMU_GATHER
182
183static int tlb_next_batch(struct mmu_gather *tlb)
184{
185	struct mmu_gather_batch *batch;
186
187	batch = tlb->active;
188	if (batch->next) {
189		tlb->active = batch->next;
190		return 1;
191	}
192
193	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194		return 0;
195
196	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197	if (!batch)
198		return 0;
199
200	tlb->batch_count++;
201	batch->next = NULL;
202	batch->nr   = 0;
203	batch->max  = MAX_GATHER_BATCH;
204
205	tlb->active->next = batch;
206	tlb->active = batch;
207
208	return 1;
209}
210
211/* tlb_gather_mmu
212 *	Called to initialize an (on-stack) mmu_gather structure for page-table
213 *	tear-down from @mm. The @fullmm argument is used when @mm is without
214 *	users and we're going to destroy the full address space (exit/execve).
215 */
216void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
217{
218	tlb->mm = mm;
219
220	/* Is it from 0 to ~0? */
221	tlb->fullmm     = !(start | (end+1));
222	tlb->need_flush_all = 0;
223	tlb->local.next = NULL;
224	tlb->local.nr   = 0;
225	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
226	tlb->active     = &tlb->local;
227	tlb->batch_count = 0;
228
229#ifdef CONFIG_HAVE_RCU_TABLE_FREE
230	tlb->batch = NULL;
231#endif
232
233	__tlb_reset_range(tlb);
234}
235
236static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
237{
238	if (!tlb->end)
239		return;
240
241	tlb_flush(tlb);
242	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
243#ifdef CONFIG_HAVE_RCU_TABLE_FREE
244	tlb_table_flush(tlb);
245#endif
246	__tlb_reset_range(tlb);
247}
248
249static void tlb_flush_mmu_free(struct mmu_gather *tlb)
250{
251	struct mmu_gather_batch *batch;
252
253	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
254		free_pages_and_swap_cache(batch->pages, batch->nr);
255		batch->nr = 0;
256	}
257	tlb->active = &tlb->local;
258}
259
260void tlb_flush_mmu(struct mmu_gather *tlb)
261{
262	tlb_flush_mmu_tlbonly(tlb);
263	tlb_flush_mmu_free(tlb);
264}
265
266/* tlb_finish_mmu
267 *	Called at the end of the shootdown operation to free up any resources
268 *	that were required.
269 */
270void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271{
272	struct mmu_gather_batch *batch, *next;
273
274	tlb_flush_mmu(tlb);
275
276	/* keep the page table cache within bounds */
277	check_pgt_cache();
278
279	for (batch = tlb->local.next; batch; batch = next) {
280		next = batch->next;
281		free_pages((unsigned long)batch, 0);
282	}
283	tlb->local.next = NULL;
284}
285
286/* __tlb_remove_page
287 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288 *	handling the additional races in SMP caused by other CPUs caching valid
289 *	mappings in their TLBs. Returns the number of free page slots left.
290 *	When out of page slots we must call tlb_flush_mmu().
291 */
292int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293{
294	struct mmu_gather_batch *batch;
295
296	VM_BUG_ON(!tlb->end);
297
298	batch = tlb->active;
299	batch->pages[batch->nr++] = page;
300	if (batch->nr == batch->max) {
301		if (!tlb_next_batch(tlb))
302			return 0;
303		batch = tlb->active;
304	}
305	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
306
307	return batch->max - batch->nr;
308}
309
310#endif /* HAVE_GENERIC_MMU_GATHER */
311
312#ifdef CONFIG_HAVE_RCU_TABLE_FREE
313
314/*
315 * See the comment near struct mmu_table_batch.
316 */
317
318static void tlb_remove_table_smp_sync(void *arg)
319{
320	/* Simply deliver the interrupt */
321}
322
323static void tlb_remove_table_one(void *table)
324{
325	/*
326	 * This isn't an RCU grace period and hence the page-tables cannot be
327	 * assumed to be actually RCU-freed.
328	 *
329	 * It is however sufficient for software page-table walkers that rely on
330	 * IRQ disabling. See the comment near struct mmu_table_batch.
331	 */
332	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
333	__tlb_remove_table(table);
334}
335
336static void tlb_remove_table_rcu(struct rcu_head *head)
337{
338	struct mmu_table_batch *batch;
339	int i;
340
341	batch = container_of(head, struct mmu_table_batch, rcu);
342
343	for (i = 0; i < batch->nr; i++)
344		__tlb_remove_table(batch->tables[i]);
345
346	free_page((unsigned long)batch);
347}
348
349void tlb_table_flush(struct mmu_gather *tlb)
350{
351	struct mmu_table_batch **batch = &tlb->batch;
352
353	if (*batch) {
354		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
355		*batch = NULL;
356	}
357}
358
359void tlb_remove_table(struct mmu_gather *tlb, void *table)
360{
361	struct mmu_table_batch **batch = &tlb->batch;
362
363	/*
364	 * When there's less then two users of this mm there cannot be a
365	 * concurrent page-table walk.
366	 */
367	if (atomic_read(&tlb->mm->mm_users) < 2) {
368		__tlb_remove_table(table);
369		return;
370	}
371
372	if (*batch == NULL) {
373		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
374		if (*batch == NULL) {
375			tlb_remove_table_one(table);
376			return;
377		}
378		(*batch)->nr = 0;
379	}
380	(*batch)->tables[(*batch)->nr++] = table;
381	if ((*batch)->nr == MAX_TABLE_BATCH)
382		tlb_table_flush(tlb);
383}
384
385#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
386
387/*
388 * Note: this doesn't free the actual pages themselves. That
389 * has been handled earlier when unmapping all the memory regions.
390 */
391static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
392			   unsigned long addr)
393{
394	pgtable_t token = pmd_pgtable(*pmd);
395	pmd_clear(pmd);
396	pte_free_tlb(tlb, token, addr);
397	atomic_long_dec(&tlb->mm->nr_ptes);
398}
399
400static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
401				unsigned long addr, unsigned long end,
402				unsigned long floor, unsigned long ceiling)
403{
404	pmd_t *pmd;
405	unsigned long next;
406	unsigned long start;
407
408	start = addr;
409	pmd = pmd_offset(pud, addr);
410	do {
411		next = pmd_addr_end(addr, end);
412		if (pmd_none_or_clear_bad(pmd))
413			continue;
414		free_pte_range(tlb, pmd, addr);
415	} while (pmd++, addr = next, addr != end);
416
417	start &= PUD_MASK;
418	if (start < floor)
419		return;
420	if (ceiling) {
421		ceiling &= PUD_MASK;
422		if (!ceiling)
423			return;
424	}
425	if (end - 1 > ceiling - 1)
426		return;
427
428	pmd = pmd_offset(pud, start);
429	pud_clear(pud);
430	pmd_free_tlb(tlb, pmd, start);
431	mm_dec_nr_pmds(tlb->mm);
432}
433
434static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
435				unsigned long addr, unsigned long end,
436				unsigned long floor, unsigned long ceiling)
437{
438	pud_t *pud;
439	unsigned long next;
440	unsigned long start;
441
442	start = addr;
443	pud = pud_offset(pgd, addr);
444	do {
445		next = pud_addr_end(addr, end);
446		if (pud_none_or_clear_bad(pud))
447			continue;
448		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
449	} while (pud++, addr = next, addr != end);
450
451	start &= PGDIR_MASK;
452	if (start < floor)
453		return;
454	if (ceiling) {
455		ceiling &= PGDIR_MASK;
456		if (!ceiling)
457			return;
458	}
459	if (end - 1 > ceiling - 1)
460		return;
461
462	pud = pud_offset(pgd, start);
463	pgd_clear(pgd);
464	pud_free_tlb(tlb, pud, start);
465}
466
467/*
468 * This function frees user-level page tables of a process.
469 */
470void free_pgd_range(struct mmu_gather *tlb,
471			unsigned long addr, unsigned long end,
472			unsigned long floor, unsigned long ceiling)
473{
474	pgd_t *pgd;
475	unsigned long next;
476
477	/*
478	 * The next few lines have given us lots of grief...
479	 *
480	 * Why are we testing PMD* at this top level?  Because often
481	 * there will be no work to do at all, and we'd prefer not to
482	 * go all the way down to the bottom just to discover that.
483	 *
484	 * Why all these "- 1"s?  Because 0 represents both the bottom
485	 * of the address space and the top of it (using -1 for the
486	 * top wouldn't help much: the masks would do the wrong thing).
487	 * The rule is that addr 0 and floor 0 refer to the bottom of
488	 * the address space, but end 0 and ceiling 0 refer to the top
489	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
490	 * that end 0 case should be mythical).
491	 *
492	 * Wherever addr is brought up or ceiling brought down, we must
493	 * be careful to reject "the opposite 0" before it confuses the
494	 * subsequent tests.  But what about where end is brought down
495	 * by PMD_SIZE below? no, end can't go down to 0 there.
496	 *
497	 * Whereas we round start (addr) and ceiling down, by different
498	 * masks at different levels, in order to test whether a table
499	 * now has no other vmas using it, so can be freed, we don't
500	 * bother to round floor or end up - the tests don't need that.
501	 */
502
503	addr &= PMD_MASK;
504	if (addr < floor) {
505		addr += PMD_SIZE;
506		if (!addr)
507			return;
508	}
509	if (ceiling) {
510		ceiling &= PMD_MASK;
511		if (!ceiling)
512			return;
513	}
514	if (end - 1 > ceiling - 1)
515		end -= PMD_SIZE;
516	if (addr > end - 1)
517		return;
518
519	pgd = pgd_offset(tlb->mm, addr);
520	do {
521		next = pgd_addr_end(addr, end);
522		if (pgd_none_or_clear_bad(pgd))
523			continue;
524		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
525	} while (pgd++, addr = next, addr != end);
526}
527
528void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
529		unsigned long floor, unsigned long ceiling)
530{
531	while (vma) {
532		struct vm_area_struct *next = vma->vm_next;
533		unsigned long addr = vma->vm_start;
534
535		/*
536		 * Hide vma from rmap and truncate_pagecache before freeing
537		 * pgtables
538		 */
539		unlink_anon_vmas(vma);
540		unlink_file_vma(vma);
541
542		if (is_vm_hugetlb_page(vma)) {
543			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
544				floor, next? next->vm_start: ceiling);
545		} else {
546			/*
547			 * Optimization: gather nearby vmas into one call down
548			 */
549			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
550			       && !is_vm_hugetlb_page(next)) {
551				vma = next;
552				next = vma->vm_next;
553				unlink_anon_vmas(vma);
554				unlink_file_vma(vma);
555			}
556			free_pgd_range(tlb, addr, vma->vm_end,
557				floor, next? next->vm_start: ceiling);
558		}
559		vma = next;
560	}
561}
562
563int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
564		pmd_t *pmd, unsigned long address)
565{
566	spinlock_t *ptl;
567	pgtable_t new = pte_alloc_one(mm, address);
568	int wait_split_huge_page;
569	if (!new)
570		return -ENOMEM;
571
572	/*
573	 * Ensure all pte setup (eg. pte page lock and page clearing) are
574	 * visible before the pte is made visible to other CPUs by being
575	 * put into page tables.
576	 *
577	 * The other side of the story is the pointer chasing in the page
578	 * table walking code (when walking the page table without locking;
579	 * ie. most of the time). Fortunately, these data accesses consist
580	 * of a chain of data-dependent loads, meaning most CPUs (alpha
581	 * being the notable exception) will already guarantee loads are
582	 * seen in-order. See the alpha page table accessors for the
583	 * smp_read_barrier_depends() barriers in page table walking code.
584	 */
585	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
586
587	ptl = pmd_lock(mm, pmd);
588	wait_split_huge_page = 0;
589	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
590		atomic_long_inc(&mm->nr_ptes);
591		pmd_populate(mm, pmd, new);
592		new = NULL;
593	} else if (unlikely(pmd_trans_splitting(*pmd)))
594		wait_split_huge_page = 1;
595	spin_unlock(ptl);
596	if (new)
597		pte_free(mm, new);
598	if (wait_split_huge_page)
599		wait_split_huge_page(vma->anon_vma, pmd);
600	return 0;
601}
602
603int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
604{
605	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
606	if (!new)
607		return -ENOMEM;
608
609	smp_wmb(); /* See comment in __pte_alloc */
610
611	spin_lock(&init_mm.page_table_lock);
612	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
613		pmd_populate_kernel(&init_mm, pmd, new);
614		new = NULL;
615	} else
616		VM_BUG_ON(pmd_trans_splitting(*pmd));
617	spin_unlock(&init_mm.page_table_lock);
618	if (new)
619		pte_free_kernel(&init_mm, new);
620	return 0;
621}
622
623static inline void init_rss_vec(int *rss)
624{
625	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
626}
627
628static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
629{
630	int i;
631
632	if (current->mm == mm)
633		sync_mm_rss(mm);
634	for (i = 0; i < NR_MM_COUNTERS; i++)
635		if (rss[i])
636			add_mm_counter(mm, i, rss[i]);
637}
638
639/*
640 * This function is called to print an error when a bad pte
641 * is found. For example, we might have a PFN-mapped pte in
642 * a region that doesn't allow it.
643 *
644 * The calling function must still handle the error.
645 */
646static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
647			  pte_t pte, struct page *page)
648{
649	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
650	pud_t *pud = pud_offset(pgd, addr);
651	pmd_t *pmd = pmd_offset(pud, addr);
652	struct address_space *mapping;
653	pgoff_t index;
654	static unsigned long resume;
655	static unsigned long nr_shown;
656	static unsigned long nr_unshown;
657
658	/*
659	 * Allow a burst of 60 reports, then keep quiet for that minute;
660	 * or allow a steady drip of one report per second.
661	 */
662	if (nr_shown == 60) {
663		if (time_before(jiffies, resume)) {
664			nr_unshown++;
665			return;
666		}
667		if (nr_unshown) {
668			printk(KERN_ALERT
669				"BUG: Bad page map: %lu messages suppressed\n",
670				nr_unshown);
671			nr_unshown = 0;
672		}
673		nr_shown = 0;
674	}
675	if (nr_shown++ == 0)
676		resume = jiffies + 60 * HZ;
677
678	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
679	index = linear_page_index(vma, addr);
680
681	printk(KERN_ALERT
682		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
683		current->comm,
684		(long long)pte_val(pte), (long long)pmd_val(*pmd));
685	if (page)
686		dump_page(page, "bad pte");
687	printk(KERN_ALERT
688		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
689		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
690	/*
691	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
692	 */
693	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
694		 vma->vm_file,
695		 vma->vm_ops ? vma->vm_ops->fault : NULL,
696		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
697		 mapping ? mapping->a_ops->readpage : NULL);
698	dump_stack();
699	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
700}
701
702/*
703 * vm_normal_page -- This function gets the "struct page" associated with a pte.
704 *
705 * "Special" mappings do not wish to be associated with a "struct page" (either
706 * it doesn't exist, or it exists but they don't want to touch it). In this
707 * case, NULL is returned here. "Normal" mappings do have a struct page.
708 *
709 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
710 * pte bit, in which case this function is trivial. Secondly, an architecture
711 * may not have a spare pte bit, which requires a more complicated scheme,
712 * described below.
713 *
714 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
715 * special mapping (even if there are underlying and valid "struct pages").
716 * COWed pages of a VM_PFNMAP are always normal.
717 *
718 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
719 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
720 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
721 * mapping will always honor the rule
722 *
723 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
724 *
725 * And for normal mappings this is false.
726 *
727 * This restricts such mappings to be a linear translation from virtual address
728 * to pfn. To get around this restriction, we allow arbitrary mappings so long
729 * as the vma is not a COW mapping; in that case, we know that all ptes are
730 * special (because none can have been COWed).
731 *
732 *
733 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
734 *
735 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
736 * page" backing, however the difference is that _all_ pages with a struct
737 * page (that is, those where pfn_valid is true) are refcounted and considered
738 * normal pages by the VM. The disadvantage is that pages are refcounted
739 * (which can be slower and simply not an option for some PFNMAP users). The
740 * advantage is that we don't have to follow the strict linearity rule of
741 * PFNMAP mappings in order to support COWable mappings.
742 *
743 */
744#ifdef __HAVE_ARCH_PTE_SPECIAL
745# define HAVE_PTE_SPECIAL 1
746#else
747# define HAVE_PTE_SPECIAL 0
748#endif
749struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
750				pte_t pte)
751{
752	unsigned long pfn = pte_pfn(pte);
753
754	if (HAVE_PTE_SPECIAL) {
755		if (likely(!pte_special(pte)))
756			goto check_pfn;
757		if (vma->vm_ops && vma->vm_ops->find_special_page)
758			return vma->vm_ops->find_special_page(vma, addr);
759		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
760			return NULL;
761		if (!is_zero_pfn(pfn))
762			print_bad_pte(vma, addr, pte, NULL);
763		return NULL;
764	}
765
766	/* !HAVE_PTE_SPECIAL case follows: */
767
768	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
769		if (vma->vm_flags & VM_MIXEDMAP) {
770			if (!pfn_valid(pfn))
771				return NULL;
772			goto out;
773		} else {
774			unsigned long off;
775			off = (addr - vma->vm_start) >> PAGE_SHIFT;
776			if (pfn == vma->vm_pgoff + off)
777				return NULL;
778			if (!is_cow_mapping(vma->vm_flags))
779				return NULL;
780		}
781	}
782
783	if (is_zero_pfn(pfn))
784		return NULL;
785check_pfn:
786	if (unlikely(pfn > highest_memmap_pfn)) {
787		print_bad_pte(vma, addr, pte, NULL);
788		return NULL;
789	}
790
791	/*
792	 * NOTE! We still have PageReserved() pages in the page tables.
793	 * eg. VDSO mappings can cause them to exist.
794	 */
795out:
796	return pfn_to_page(pfn);
797}
798
799/*
800 * copy one vm_area from one task to the other. Assumes the page tables
801 * already present in the new task to be cleared in the whole range
802 * covered by this vma.
803 */
804
805static inline unsigned long
806copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
807		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
808		unsigned long addr, int *rss)
809{
810	unsigned long vm_flags = vma->vm_flags;
811	pte_t pte = *src_pte;
812	struct page *page;
813
814	/* pte contains position in swap or file, so copy. */
815	if (unlikely(!pte_present(pte))) {
816		swp_entry_t entry = pte_to_swp_entry(pte);
817
818		if (likely(!non_swap_entry(entry))) {
819			if (swap_duplicate(entry) < 0)
820				return entry.val;
821
822			/* make sure dst_mm is on swapoff's mmlist. */
823			if (unlikely(list_empty(&dst_mm->mmlist))) {
824				spin_lock(&mmlist_lock);
825				if (list_empty(&dst_mm->mmlist))
826					list_add(&dst_mm->mmlist,
827							&src_mm->mmlist);
828				spin_unlock(&mmlist_lock);
829			}
830			rss[MM_SWAPENTS]++;
831		} else if (is_migration_entry(entry)) {
832			page = migration_entry_to_page(entry);
833
834			if (PageAnon(page))
835				rss[MM_ANONPAGES]++;
836			else
837				rss[MM_FILEPAGES]++;
838
839			if (is_write_migration_entry(entry) &&
840					is_cow_mapping(vm_flags)) {
841				/*
842				 * COW mappings require pages in both
843				 * parent and child to be set to read.
844				 */
845				make_migration_entry_read(&entry);
846				pte = swp_entry_to_pte(entry);
847				if (pte_swp_soft_dirty(*src_pte))
848					pte = pte_swp_mksoft_dirty(pte);
849				set_pte_at(src_mm, addr, src_pte, pte);
850			}
851		}
852		goto out_set_pte;
853	}
854
855	/*
856	 * If it's a COW mapping, write protect it both
857	 * in the parent and the child
858	 */
859	if (is_cow_mapping(vm_flags)) {
860		ptep_set_wrprotect(src_mm, addr, src_pte);
861		pte = pte_wrprotect(pte);
862	}
863
864	/*
865	 * If it's a shared mapping, mark it clean in
866	 * the child
867	 */
868	if (vm_flags & VM_SHARED)
869		pte = pte_mkclean(pte);
870	pte = pte_mkold(pte);
871
872	page = vm_normal_page(vma, addr, pte);
873	if (page) {
874		get_page(page);
875		page_dup_rmap(page);
876		if (PageAnon(page))
877			rss[MM_ANONPAGES]++;
878		else
879			rss[MM_FILEPAGES]++;
880	}
881
882out_set_pte:
883	set_pte_at(dst_mm, addr, dst_pte, pte);
884	return 0;
885}
886
887static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
888		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
889		   unsigned long addr, unsigned long end)
890{
891	pte_t *orig_src_pte, *orig_dst_pte;
892	pte_t *src_pte, *dst_pte;
893	spinlock_t *src_ptl, *dst_ptl;
894	int progress = 0;
895	int rss[NR_MM_COUNTERS];
896	swp_entry_t entry = (swp_entry_t){0};
897
898again:
899	init_rss_vec(rss);
900
901	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
902	if (!dst_pte)
903		return -ENOMEM;
904	src_pte = pte_offset_map(src_pmd, addr);
905	src_ptl = pte_lockptr(src_mm, src_pmd);
906	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
907	orig_src_pte = src_pte;
908	orig_dst_pte = dst_pte;
909	arch_enter_lazy_mmu_mode();
910
911	do {
912		/*
913		 * We are holding two locks at this point - either of them
914		 * could generate latencies in another task on another CPU.
915		 */
916		if (progress >= 32) {
917			progress = 0;
918			if (need_resched() ||
919			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
920				break;
921		}
922		if (pte_none(*src_pte)) {
923			progress++;
924			continue;
925		}
926		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
927							vma, addr, rss);
928		if (entry.val)
929			break;
930		progress += 8;
931	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
932
933	arch_leave_lazy_mmu_mode();
934	spin_unlock(src_ptl);
935	pte_unmap(orig_src_pte);
936	add_mm_rss_vec(dst_mm, rss);
937	pte_unmap_unlock(orig_dst_pte, dst_ptl);
938	cond_resched();
939
940	if (entry.val) {
941		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
942			return -ENOMEM;
943		progress = 0;
944	}
945	if (addr != end)
946		goto again;
947	return 0;
948}
949
950static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
951		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
952		unsigned long addr, unsigned long end)
953{
954	pmd_t *src_pmd, *dst_pmd;
955	unsigned long next;
956
957	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
958	if (!dst_pmd)
959		return -ENOMEM;
960	src_pmd = pmd_offset(src_pud, addr);
961	do {
962		next = pmd_addr_end(addr, end);
963		if (pmd_trans_huge(*src_pmd)) {
964			int err;
965			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
966			err = copy_huge_pmd(dst_mm, src_mm,
967					    dst_pmd, src_pmd, addr, vma);
968			if (err == -ENOMEM)
969				return -ENOMEM;
970			if (!err)
971				continue;
972			/* fall through */
973		}
974		if (pmd_none_or_clear_bad(src_pmd))
975			continue;
976		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
977						vma, addr, next))
978			return -ENOMEM;
979	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
980	return 0;
981}
982
983static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
984		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
985		unsigned long addr, unsigned long end)
986{
987	pud_t *src_pud, *dst_pud;
988	unsigned long next;
989
990	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
991	if (!dst_pud)
992		return -ENOMEM;
993	src_pud = pud_offset(src_pgd, addr);
994	do {
995		next = pud_addr_end(addr, end);
996		if (pud_none_or_clear_bad(src_pud))
997			continue;
998		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
999						vma, addr, next))
1000			return -ENOMEM;
1001	} while (dst_pud++, src_pud++, addr = next, addr != end);
1002	return 0;
1003}
1004
1005int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1006		struct vm_area_struct *vma)
1007{
1008	pgd_t *src_pgd, *dst_pgd;
1009	unsigned long next;
1010	unsigned long addr = vma->vm_start;
1011	unsigned long end = vma->vm_end;
1012	unsigned long mmun_start;	/* For mmu_notifiers */
1013	unsigned long mmun_end;		/* For mmu_notifiers */
1014	bool is_cow;
1015	int ret;
1016
1017	/*
1018	 * Don't copy ptes where a page fault will fill them correctly.
1019	 * Fork becomes much lighter when there are big shared or private
1020	 * readonly mappings. The tradeoff is that copy_page_range is more
1021	 * efficient than faulting.
1022	 */
1023	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1024			!vma->anon_vma)
1025		return 0;
1026
1027	if (is_vm_hugetlb_page(vma))
1028		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1029
1030	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1031		/*
1032		 * We do not free on error cases below as remove_vma
1033		 * gets called on error from higher level routine
1034		 */
1035		ret = track_pfn_copy(vma);
1036		if (ret)
1037			return ret;
1038	}
1039
1040	/*
1041	 * We need to invalidate the secondary MMU mappings only when
1042	 * there could be a permission downgrade on the ptes of the
1043	 * parent mm. And a permission downgrade will only happen if
1044	 * is_cow_mapping() returns true.
1045	 */
1046	is_cow = is_cow_mapping(vma->vm_flags);
1047	mmun_start = addr;
1048	mmun_end   = end;
1049	if (is_cow)
1050		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1051						    mmun_end);
1052
1053	ret = 0;
1054	dst_pgd = pgd_offset(dst_mm, addr);
1055	src_pgd = pgd_offset(src_mm, addr);
1056	do {
1057		next = pgd_addr_end(addr, end);
1058		if (pgd_none_or_clear_bad(src_pgd))
1059			continue;
1060		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1061					    vma, addr, next))) {
1062			ret = -ENOMEM;
1063			break;
1064		}
1065	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1066
1067	if (is_cow)
1068		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1069	return ret;
1070}
1071
1072static unsigned long zap_pte_range(struct mmu_gather *tlb,
1073				struct vm_area_struct *vma, pmd_t *pmd,
1074				unsigned long addr, unsigned long end,
1075				struct zap_details *details)
1076{
1077	struct mm_struct *mm = tlb->mm;
1078	int force_flush = 0;
1079	int rss[NR_MM_COUNTERS];
1080	spinlock_t *ptl;
1081	pte_t *start_pte;
1082	pte_t *pte;
1083	swp_entry_t entry;
1084
1085again:
1086	init_rss_vec(rss);
1087	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1088	pte = start_pte;
1089	arch_enter_lazy_mmu_mode();
1090	do {
1091		pte_t ptent = *pte;
1092		if (pte_none(ptent)) {
1093			continue;
1094		}
1095
1096		if (pte_present(ptent)) {
1097			struct page *page;
1098
1099			page = vm_normal_page(vma, addr, ptent);
1100			if (unlikely(details) && page) {
1101				/*
1102				 * unmap_shared_mapping_pages() wants to
1103				 * invalidate cache without truncating:
1104				 * unmap shared but keep private pages.
1105				 */
1106				if (details->check_mapping &&
1107				    details->check_mapping != page->mapping)
1108					continue;
1109			}
1110			ptent = ptep_get_and_clear_full(mm, addr, pte,
1111							tlb->fullmm);
1112			tlb_remove_tlb_entry(tlb, pte, addr);
1113			if (unlikely(!page))
1114				continue;
1115			if (PageAnon(page))
1116				rss[MM_ANONPAGES]--;
1117			else {
1118				if (pte_dirty(ptent)) {
1119					force_flush = 1;
1120					set_page_dirty(page);
1121				}
1122				if (pte_young(ptent) &&
1123				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1124					mark_page_accessed(page);
1125				rss[MM_FILEPAGES]--;
1126			}
1127			page_remove_rmap(page);
1128			if (unlikely(page_mapcount(page) < 0))
1129				print_bad_pte(vma, addr, ptent, page);
1130			if (unlikely(!__tlb_remove_page(tlb, page))) {
1131				force_flush = 1;
1132				addr += PAGE_SIZE;
1133				break;
1134			}
1135			continue;
1136		}
1137		/* If details->check_mapping, we leave swap entries. */
1138		if (unlikely(details))
1139			continue;
1140
1141		entry = pte_to_swp_entry(ptent);
1142		if (!non_swap_entry(entry))
1143			rss[MM_SWAPENTS]--;
1144		else if (is_migration_entry(entry)) {
1145			struct page *page;
1146
1147			page = migration_entry_to_page(entry);
1148
1149			if (PageAnon(page))
1150				rss[MM_ANONPAGES]--;
1151			else
1152				rss[MM_FILEPAGES]--;
1153		}
1154		if (unlikely(!free_swap_and_cache(entry)))
1155			print_bad_pte(vma, addr, ptent, NULL);
1156		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1157	} while (pte++, addr += PAGE_SIZE, addr != end);
1158
1159	add_mm_rss_vec(mm, rss);
1160	arch_leave_lazy_mmu_mode();
1161
1162	/* Do the actual TLB flush before dropping ptl */
1163	if (force_flush)
1164		tlb_flush_mmu_tlbonly(tlb);
1165	pte_unmap_unlock(start_pte, ptl);
1166
1167	/*
1168	 * If we forced a TLB flush (either due to running out of
1169	 * batch buffers or because we needed to flush dirty TLB
1170	 * entries before releasing the ptl), free the batched
1171	 * memory too. Restart if we didn't do everything.
1172	 */
1173	if (force_flush) {
1174		force_flush = 0;
1175		tlb_flush_mmu_free(tlb);
1176
1177		if (addr != end)
1178			goto again;
1179	}
1180
1181	return addr;
1182}
1183
1184static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1185				struct vm_area_struct *vma, pud_t *pud,
1186				unsigned long addr, unsigned long end,
1187				struct zap_details *details)
1188{
1189	pmd_t *pmd;
1190	unsigned long next;
1191
1192	pmd = pmd_offset(pud, addr);
1193	do {
1194		next = pmd_addr_end(addr, end);
1195		if (pmd_trans_huge(*pmd)) {
1196			if (next - addr != HPAGE_PMD_SIZE) {
1197#ifdef CONFIG_DEBUG_VM
1198				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1199					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1200						__func__, addr, end,
1201						vma->vm_start,
1202						vma->vm_end);
1203					BUG();
1204				}
1205#endif
1206				split_huge_page_pmd(vma, addr, pmd);
1207			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1208				goto next;
1209			/* fall through */
1210		}
1211		/*
1212		 * Here there can be other concurrent MADV_DONTNEED or
1213		 * trans huge page faults running, and if the pmd is
1214		 * none or trans huge it can change under us. This is
1215		 * because MADV_DONTNEED holds the mmap_sem in read
1216		 * mode.
1217		 */
1218		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1219			goto next;
1220		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1221next:
1222		cond_resched();
1223	} while (pmd++, addr = next, addr != end);
1224
1225	return addr;
1226}
1227
1228static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1229				struct vm_area_struct *vma, pgd_t *pgd,
1230				unsigned long addr, unsigned long end,
1231				struct zap_details *details)
1232{
1233	pud_t *pud;
1234	unsigned long next;
1235
1236	pud = pud_offset(pgd, addr);
1237	do {
1238		next = pud_addr_end(addr, end);
1239		if (pud_none_or_clear_bad(pud))
1240			continue;
1241		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1242	} while (pud++, addr = next, addr != end);
1243
1244	return addr;
1245}
1246
1247static void unmap_page_range(struct mmu_gather *tlb,
1248			     struct vm_area_struct *vma,
1249			     unsigned long addr, unsigned long end,
1250			     struct zap_details *details)
1251{
1252	pgd_t *pgd;
1253	unsigned long next;
1254
1255	if (details && !details->check_mapping)
1256		details = NULL;
1257
1258	BUG_ON(addr >= end);
1259	tlb_start_vma(tlb, vma);
1260	pgd = pgd_offset(vma->vm_mm, addr);
1261	do {
1262		next = pgd_addr_end(addr, end);
1263		if (pgd_none_or_clear_bad(pgd))
1264			continue;
1265		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1266	} while (pgd++, addr = next, addr != end);
1267	tlb_end_vma(tlb, vma);
1268}
1269
1270
1271static void unmap_single_vma(struct mmu_gather *tlb,
1272		struct vm_area_struct *vma, unsigned long start_addr,
1273		unsigned long end_addr,
1274		struct zap_details *details)
1275{
1276	unsigned long start = max(vma->vm_start, start_addr);
1277	unsigned long end;
1278
1279	if (start >= vma->vm_end)
1280		return;
1281	end = min(vma->vm_end, end_addr);
1282	if (end <= vma->vm_start)
1283		return;
1284
1285	if (vma->vm_file)
1286		uprobe_munmap(vma, start, end);
1287
1288	if (unlikely(vma->vm_flags & VM_PFNMAP))
1289		untrack_pfn(vma, 0, 0);
1290
1291	if (start != end) {
1292		if (unlikely(is_vm_hugetlb_page(vma))) {
1293			/*
1294			 * It is undesirable to test vma->vm_file as it
1295			 * should be non-null for valid hugetlb area.
1296			 * However, vm_file will be NULL in the error
1297			 * cleanup path of mmap_region. When
1298			 * hugetlbfs ->mmap method fails,
1299			 * mmap_region() nullifies vma->vm_file
1300			 * before calling this function to clean up.
1301			 * Since no pte has actually been setup, it is
1302			 * safe to do nothing in this case.
1303			 */
1304			if (vma->vm_file) {
1305				i_mmap_lock_write(vma->vm_file->f_mapping);
1306				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1307				i_mmap_unlock_write(vma->vm_file->f_mapping);
1308			}
1309		} else
1310			unmap_page_range(tlb, vma, start, end, details);
1311	}
1312}
1313
1314/**
1315 * unmap_vmas - unmap a range of memory covered by a list of vma's
1316 * @tlb: address of the caller's struct mmu_gather
1317 * @vma: the starting vma
1318 * @start_addr: virtual address at which to start unmapping
1319 * @end_addr: virtual address at which to end unmapping
1320 *
1321 * Unmap all pages in the vma list.
1322 *
1323 * Only addresses between `start' and `end' will be unmapped.
1324 *
1325 * The VMA list must be sorted in ascending virtual address order.
1326 *
1327 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1328 * range after unmap_vmas() returns.  So the only responsibility here is to
1329 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1330 * drops the lock and schedules.
1331 */
1332void unmap_vmas(struct mmu_gather *tlb,
1333		struct vm_area_struct *vma, unsigned long start_addr,
1334		unsigned long end_addr)
1335{
1336	struct mm_struct *mm = vma->vm_mm;
1337
1338	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1339	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1340		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1341	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1342}
1343
1344/**
1345 * zap_page_range - remove user pages in a given range
1346 * @vma: vm_area_struct holding the applicable pages
1347 * @start: starting address of pages to zap
1348 * @size: number of bytes to zap
1349 * @details: details of shared cache invalidation
1350 *
1351 * Caller must protect the VMA list
1352 */
1353void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1354		unsigned long size, struct zap_details *details)
1355{
1356	struct mm_struct *mm = vma->vm_mm;
1357	struct mmu_gather tlb;
1358	unsigned long end = start + size;
1359
1360	lru_add_drain();
1361	tlb_gather_mmu(&tlb, mm, start, end);
1362	update_hiwater_rss(mm);
1363	mmu_notifier_invalidate_range_start(mm, start, end);
1364	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1365		unmap_single_vma(&tlb, vma, start, end, details);
1366	mmu_notifier_invalidate_range_end(mm, start, end);
1367	tlb_finish_mmu(&tlb, start, end);
1368}
1369
1370/**
1371 * zap_page_range_single - remove user pages in a given range
1372 * @vma: vm_area_struct holding the applicable pages
1373 * @address: starting address of pages to zap
1374 * @size: number of bytes to zap
1375 * @details: details of shared cache invalidation
1376 *
1377 * The range must fit into one VMA.
1378 */
1379static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1380		unsigned long size, struct zap_details *details)
1381{
1382	struct mm_struct *mm = vma->vm_mm;
1383	struct mmu_gather tlb;
1384	unsigned long end = address + size;
1385
1386	lru_add_drain();
1387	tlb_gather_mmu(&tlb, mm, address, end);
1388	update_hiwater_rss(mm);
1389	mmu_notifier_invalidate_range_start(mm, address, end);
1390	unmap_single_vma(&tlb, vma, address, end, details);
1391	mmu_notifier_invalidate_range_end(mm, address, end);
1392	tlb_finish_mmu(&tlb, address, end);
1393}
1394
1395/**
1396 * zap_vma_ptes - remove ptes mapping the vma
1397 * @vma: vm_area_struct holding ptes to be zapped
1398 * @address: starting address of pages to zap
1399 * @size: number of bytes to zap
1400 *
1401 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1402 *
1403 * The entire address range must be fully contained within the vma.
1404 *
1405 * Returns 0 if successful.
1406 */
1407int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1408		unsigned long size)
1409{
1410	if (address < vma->vm_start || address + size > vma->vm_end ||
1411	    		!(vma->vm_flags & VM_PFNMAP))
1412		return -1;
1413	zap_page_range_single(vma, address, size, NULL);
1414	return 0;
1415}
1416EXPORT_SYMBOL_GPL(zap_vma_ptes);
1417
1418pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1419			spinlock_t **ptl)
1420{
1421	pgd_t * pgd = pgd_offset(mm, addr);
1422	pud_t * pud = pud_alloc(mm, pgd, addr);
1423	if (pud) {
1424		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1425		if (pmd) {
1426			VM_BUG_ON(pmd_trans_huge(*pmd));
1427			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1428		}
1429	}
1430	return NULL;
1431}
1432
1433/*
1434 * This is the old fallback for page remapping.
1435 *
1436 * For historical reasons, it only allows reserved pages. Only
1437 * old drivers should use this, and they needed to mark their
1438 * pages reserved for the old functions anyway.
1439 */
1440static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1441			struct page *page, pgprot_t prot)
1442{
1443	struct mm_struct *mm = vma->vm_mm;
1444	int retval;
1445	pte_t *pte;
1446	spinlock_t *ptl;
1447
1448	retval = -EINVAL;
1449	if (PageAnon(page))
1450		goto out;
1451	retval = -ENOMEM;
1452	flush_dcache_page(page);
1453	pte = get_locked_pte(mm, addr, &ptl);
1454	if (!pte)
1455		goto out;
1456	retval = -EBUSY;
1457	if (!pte_none(*pte))
1458		goto out_unlock;
1459
1460	/* Ok, finally just insert the thing.. */
1461	get_page(page);
1462	inc_mm_counter_fast(mm, MM_FILEPAGES);
1463	page_add_file_rmap(page);
1464	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1465
1466	retval = 0;
1467	pte_unmap_unlock(pte, ptl);
1468	return retval;
1469out_unlock:
1470	pte_unmap_unlock(pte, ptl);
1471out:
1472	return retval;
1473}
1474
1475/**
1476 * vm_insert_page - insert single page into user vma
1477 * @vma: user vma to map to
1478 * @addr: target user address of this page
1479 * @page: source kernel page
1480 *
1481 * This allows drivers to insert individual pages they've allocated
1482 * into a user vma.
1483 *
1484 * The page has to be a nice clean _individual_ kernel allocation.
1485 * If you allocate a compound page, you need to have marked it as
1486 * such (__GFP_COMP), or manually just split the page up yourself
1487 * (see split_page()).
1488 *
1489 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1490 * took an arbitrary page protection parameter. This doesn't allow
1491 * that. Your vma protection will have to be set up correctly, which
1492 * means that if you want a shared writable mapping, you'd better
1493 * ask for a shared writable mapping!
1494 *
1495 * The page does not need to be reserved.
1496 *
1497 * Usually this function is called from f_op->mmap() handler
1498 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1499 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1500 * function from other places, for example from page-fault handler.
1501 */
1502int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1503			struct page *page)
1504{
1505	if (addr < vma->vm_start || addr >= vma->vm_end)
1506		return -EFAULT;
1507	if (!page_count(page))
1508		return -EINVAL;
1509	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1510		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1511		BUG_ON(vma->vm_flags & VM_PFNMAP);
1512		vma->vm_flags |= VM_MIXEDMAP;
1513	}
1514	return insert_page(vma, addr, page, vma->vm_page_prot);
1515}
1516EXPORT_SYMBOL(vm_insert_page);
1517
1518static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1519			unsigned long pfn, pgprot_t prot)
1520{
1521	struct mm_struct *mm = vma->vm_mm;
1522	int retval;
1523	pte_t *pte, entry;
1524	spinlock_t *ptl;
1525
1526	retval = -ENOMEM;
1527	pte = get_locked_pte(mm, addr, &ptl);
1528	if (!pte)
1529		goto out;
1530	retval = -EBUSY;
1531	if (!pte_none(*pte))
1532		goto out_unlock;
1533
1534	/* Ok, finally just insert the thing.. */
1535	entry = pte_mkspecial(pfn_pte(pfn, prot));
1536	set_pte_at(mm, addr, pte, entry);
1537	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1538
1539	retval = 0;
1540out_unlock:
1541	pte_unmap_unlock(pte, ptl);
1542out:
1543	return retval;
1544}
1545
1546/**
1547 * vm_insert_pfn - insert single pfn into user vma
1548 * @vma: user vma to map to
1549 * @addr: target user address of this page
1550 * @pfn: source kernel pfn
1551 *
1552 * Similar to vm_insert_page, this allows drivers to insert individual pages
1553 * they've allocated into a user vma. Same comments apply.
1554 *
1555 * This function should only be called from a vm_ops->fault handler, and
1556 * in that case the handler should return NULL.
1557 *
1558 * vma cannot be a COW mapping.
1559 *
1560 * As this is called only for pages that do not currently exist, we
1561 * do not need to flush old virtual caches or the TLB.
1562 */
1563int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1564			unsigned long pfn)
1565{
1566	int ret;
1567	pgprot_t pgprot = vma->vm_page_prot;
1568	/*
1569	 * Technically, architectures with pte_special can avoid all these
1570	 * restrictions (same for remap_pfn_range).  However we would like
1571	 * consistency in testing and feature parity among all, so we should
1572	 * try to keep these invariants in place for everybody.
1573	 */
1574	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1575	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1576						(VM_PFNMAP|VM_MIXEDMAP));
1577	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1578	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1579
1580	if (addr < vma->vm_start || addr >= vma->vm_end)
1581		return -EFAULT;
1582	if (track_pfn_insert(vma, &pgprot, pfn))
1583		return -EINVAL;
1584
1585	ret = insert_pfn(vma, addr, pfn, pgprot);
1586
1587	return ret;
1588}
1589EXPORT_SYMBOL(vm_insert_pfn);
1590
1591int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1592			unsigned long pfn)
1593{
1594	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1595
1596	if (addr < vma->vm_start || addr >= vma->vm_end)
1597		return -EFAULT;
1598
1599	/*
1600	 * If we don't have pte special, then we have to use the pfn_valid()
1601	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1602	 * refcount the page if pfn_valid is true (hence insert_page rather
1603	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1604	 * without pte special, it would there be refcounted as a normal page.
1605	 */
1606	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1607		struct page *page;
1608
1609		page = pfn_to_page(pfn);
1610		return insert_page(vma, addr, page, vma->vm_page_prot);
1611	}
1612	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1613}
1614EXPORT_SYMBOL(vm_insert_mixed);
1615
1616/*
1617 * maps a range of physical memory into the requested pages. the old
1618 * mappings are removed. any references to nonexistent pages results
1619 * in null mappings (currently treated as "copy-on-access")
1620 */
1621static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1622			unsigned long addr, unsigned long end,
1623			unsigned long pfn, pgprot_t prot)
1624{
1625	pte_t *pte;
1626	spinlock_t *ptl;
1627
1628	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1629	if (!pte)
1630		return -ENOMEM;
1631	arch_enter_lazy_mmu_mode();
1632	do {
1633		BUG_ON(!pte_none(*pte));
1634		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1635		pfn++;
1636	} while (pte++, addr += PAGE_SIZE, addr != end);
1637	arch_leave_lazy_mmu_mode();
1638	pte_unmap_unlock(pte - 1, ptl);
1639	return 0;
1640}
1641
1642static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1643			unsigned long addr, unsigned long end,
1644			unsigned long pfn, pgprot_t prot)
1645{
1646	pmd_t *pmd;
1647	unsigned long next;
1648
1649	pfn -= addr >> PAGE_SHIFT;
1650	pmd = pmd_alloc(mm, pud, addr);
1651	if (!pmd)
1652		return -ENOMEM;
1653	VM_BUG_ON(pmd_trans_huge(*pmd));
1654	do {
1655		next = pmd_addr_end(addr, end);
1656		if (remap_pte_range(mm, pmd, addr, next,
1657				pfn + (addr >> PAGE_SHIFT), prot))
1658			return -ENOMEM;
1659	} while (pmd++, addr = next, addr != end);
1660	return 0;
1661}
1662
1663static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1664			unsigned long addr, unsigned long end,
1665			unsigned long pfn, pgprot_t prot)
1666{
1667	pud_t *pud;
1668	unsigned long next;
1669
1670	pfn -= addr >> PAGE_SHIFT;
1671	pud = pud_alloc(mm, pgd, addr);
1672	if (!pud)
1673		return -ENOMEM;
1674	do {
1675		next = pud_addr_end(addr, end);
1676		if (remap_pmd_range(mm, pud, addr, next,
1677				pfn + (addr >> PAGE_SHIFT), prot))
1678			return -ENOMEM;
1679	} while (pud++, addr = next, addr != end);
1680	return 0;
1681}
1682
1683/**
1684 * remap_pfn_range - remap kernel memory to userspace
1685 * @vma: user vma to map to
1686 * @addr: target user address to start at
1687 * @pfn: physical address of kernel memory
1688 * @size: size of map area
1689 * @prot: page protection flags for this mapping
1690 *
1691 *  Note: this is only safe if the mm semaphore is held when called.
1692 */
1693int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1694		    unsigned long pfn, unsigned long size, pgprot_t prot)
1695{
1696	pgd_t *pgd;
1697	unsigned long next;
1698	unsigned long end = addr + PAGE_ALIGN(size);
1699	struct mm_struct *mm = vma->vm_mm;
1700	int err;
1701
1702	/*
1703	 * Physically remapped pages are special. Tell the
1704	 * rest of the world about it:
1705	 *   VM_IO tells people not to look at these pages
1706	 *	(accesses can have side effects).
1707	 *   VM_PFNMAP tells the core MM that the base pages are just
1708	 *	raw PFN mappings, and do not have a "struct page" associated
1709	 *	with them.
1710	 *   VM_DONTEXPAND
1711	 *      Disable vma merging and expanding with mremap().
1712	 *   VM_DONTDUMP
1713	 *      Omit vma from core dump, even when VM_IO turned off.
1714	 *
1715	 * There's a horrible special case to handle copy-on-write
1716	 * behaviour that some programs depend on. We mark the "original"
1717	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1718	 * See vm_normal_page() for details.
1719	 */
1720	if (is_cow_mapping(vma->vm_flags)) {
1721		if (addr != vma->vm_start || end != vma->vm_end)
1722			return -EINVAL;
1723		vma->vm_pgoff = pfn;
1724	}
1725
1726	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1727	if (err)
1728		return -EINVAL;
1729
1730	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1731
1732	BUG_ON(addr >= end);
1733	pfn -= addr >> PAGE_SHIFT;
1734	pgd = pgd_offset(mm, addr);
1735	flush_cache_range(vma, addr, end);
1736	do {
1737		next = pgd_addr_end(addr, end);
1738		err = remap_pud_range(mm, pgd, addr, next,
1739				pfn + (addr >> PAGE_SHIFT), prot);
1740		if (err)
1741			break;
1742	} while (pgd++, addr = next, addr != end);
1743
1744	if (err)
1745		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1746
1747	return err;
1748}
1749EXPORT_SYMBOL(remap_pfn_range);
1750
1751/**
1752 * vm_iomap_memory - remap memory to userspace
1753 * @vma: user vma to map to
1754 * @start: start of area
1755 * @len: size of area
1756 *
1757 * This is a simplified io_remap_pfn_range() for common driver use. The
1758 * driver just needs to give us the physical memory range to be mapped,
1759 * we'll figure out the rest from the vma information.
1760 *
1761 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1762 * whatever write-combining details or similar.
1763 */
1764int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1765{
1766	unsigned long vm_len, pfn, pages;
1767
1768	/* Check that the physical memory area passed in looks valid */
1769	if (start + len < start)
1770		return -EINVAL;
1771	/*
1772	 * You *really* shouldn't map things that aren't page-aligned,
1773	 * but we've historically allowed it because IO memory might
1774	 * just have smaller alignment.
1775	 */
1776	len += start & ~PAGE_MASK;
1777	pfn = start >> PAGE_SHIFT;
1778	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1779	if (pfn + pages < pfn)
1780		return -EINVAL;
1781
1782	/* We start the mapping 'vm_pgoff' pages into the area */
1783	if (vma->vm_pgoff > pages)
1784		return -EINVAL;
1785	pfn += vma->vm_pgoff;
1786	pages -= vma->vm_pgoff;
1787
1788	/* Can we fit all of the mapping? */
1789	vm_len = vma->vm_end - vma->vm_start;
1790	if (vm_len >> PAGE_SHIFT > pages)
1791		return -EINVAL;
1792
1793	/* Ok, let it rip */
1794	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1795}
1796EXPORT_SYMBOL(vm_iomap_memory);
1797
1798static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1799				     unsigned long addr, unsigned long end,
1800				     pte_fn_t fn, void *data)
1801{
1802	pte_t *pte;
1803	int err;
1804	pgtable_t token;
1805	spinlock_t *uninitialized_var(ptl);
1806
1807	pte = (mm == &init_mm) ?
1808		pte_alloc_kernel(pmd, addr) :
1809		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1810	if (!pte)
1811		return -ENOMEM;
1812
1813	BUG_ON(pmd_huge(*pmd));
1814
1815	arch_enter_lazy_mmu_mode();
1816
1817	token = pmd_pgtable(*pmd);
1818
1819	do {
1820		err = fn(pte++, token, addr, data);
1821		if (err)
1822			break;
1823	} while (addr += PAGE_SIZE, addr != end);
1824
1825	arch_leave_lazy_mmu_mode();
1826
1827	if (mm != &init_mm)
1828		pte_unmap_unlock(pte-1, ptl);
1829	return err;
1830}
1831
1832static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1833				     unsigned long addr, unsigned long end,
1834				     pte_fn_t fn, void *data)
1835{
1836	pmd_t *pmd;
1837	unsigned long next;
1838	int err;
1839
1840	BUG_ON(pud_huge(*pud));
1841
1842	pmd = pmd_alloc(mm, pud, addr);
1843	if (!pmd)
1844		return -ENOMEM;
1845	do {
1846		next = pmd_addr_end(addr, end);
1847		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1848		if (err)
1849			break;
1850	} while (pmd++, addr = next, addr != end);
1851	return err;
1852}
1853
1854static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1855				     unsigned long addr, unsigned long end,
1856				     pte_fn_t fn, void *data)
1857{
1858	pud_t *pud;
1859	unsigned long next;
1860	int err;
1861
1862	pud = pud_alloc(mm, pgd, addr);
1863	if (!pud)
1864		return -ENOMEM;
1865	do {
1866		next = pud_addr_end(addr, end);
1867		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1868		if (err)
1869			break;
1870	} while (pud++, addr = next, addr != end);
1871	return err;
1872}
1873
1874/*
1875 * Scan a region of virtual memory, filling in page tables as necessary
1876 * and calling a provided function on each leaf page table.
1877 */
1878int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1879			unsigned long size, pte_fn_t fn, void *data)
1880{
1881	pgd_t *pgd;
1882	unsigned long next;
1883	unsigned long end = addr + size;
1884	int err;
1885
1886	BUG_ON(addr >= end);
1887	pgd = pgd_offset(mm, addr);
1888	do {
1889		next = pgd_addr_end(addr, end);
1890		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1891		if (err)
1892			break;
1893	} while (pgd++, addr = next, addr != end);
1894
1895	return err;
1896}
1897EXPORT_SYMBOL_GPL(apply_to_page_range);
1898
1899/*
1900 * handle_pte_fault chooses page fault handler according to an entry which was
1901 * read non-atomically.  Before making any commitment, on those architectures
1902 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1903 * parts, do_swap_page must check under lock before unmapping the pte and
1904 * proceeding (but do_wp_page is only called after already making such a check;
1905 * and do_anonymous_page can safely check later on).
1906 */
1907static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1908				pte_t *page_table, pte_t orig_pte)
1909{
1910	int same = 1;
1911#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1912	if (sizeof(pte_t) > sizeof(unsigned long)) {
1913		spinlock_t *ptl = pte_lockptr(mm, pmd);
1914		spin_lock(ptl);
1915		same = pte_same(*page_table, orig_pte);
1916		spin_unlock(ptl);
1917	}
1918#endif
1919	pte_unmap(page_table);
1920	return same;
1921}
1922
1923static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1924{
1925	debug_dma_assert_idle(src);
1926
1927	/*
1928	 * If the source page was a PFN mapping, we don't have
1929	 * a "struct page" for it. We do a best-effort copy by
1930	 * just copying from the original user address. If that
1931	 * fails, we just zero-fill it. Live with it.
1932	 */
1933	if (unlikely(!src)) {
1934		void *kaddr = kmap_atomic(dst);
1935		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1936
1937		/*
1938		 * This really shouldn't fail, because the page is there
1939		 * in the page tables. But it might just be unreadable,
1940		 * in which case we just give up and fill the result with
1941		 * zeroes.
1942		 */
1943		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1944			clear_page(kaddr);
1945		kunmap_atomic(kaddr);
1946		flush_dcache_page(dst);
1947	} else
1948		copy_user_highpage(dst, src, va, vma);
1949}
1950
1951/*
1952 * Notify the address space that the page is about to become writable so that
1953 * it can prohibit this or wait for the page to get into an appropriate state.
1954 *
1955 * We do this without the lock held, so that it can sleep if it needs to.
1956 */
1957static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1958	       unsigned long address)
1959{
1960	struct vm_fault vmf;
1961	int ret;
1962
1963	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1964	vmf.pgoff = page->index;
1965	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1966	vmf.page = page;
1967	vmf.cow_page = NULL;
1968
1969	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1970	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1971		return ret;
1972	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1973		lock_page(page);
1974		if (!page->mapping) {
1975			unlock_page(page);
1976			return 0; /* retry */
1977		}
1978		ret |= VM_FAULT_LOCKED;
1979	} else
1980		VM_BUG_ON_PAGE(!PageLocked(page), page);
1981	return ret;
1982}
1983
1984/*
1985 * Handle write page faults for pages that can be reused in the current vma
1986 *
1987 * This can happen either due to the mapping being with the VM_SHARED flag,
1988 * or due to us being the last reference standing to the page. In either
1989 * case, all we need to do here is to mark the page as writable and update
1990 * any related book-keeping.
1991 */
1992static inline int wp_page_reuse(struct mm_struct *mm,
1993			struct vm_area_struct *vma, unsigned long address,
1994			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
1995			struct page *page, int page_mkwrite,
1996			int dirty_shared)
1997	__releases(ptl)
1998{
1999	pte_t entry;
2000	/*
2001	 * Clear the pages cpupid information as the existing
2002	 * information potentially belongs to a now completely
2003	 * unrelated process.
2004	 */
2005	if (page)
2006		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2007
2008	flush_cache_page(vma, address, pte_pfn(orig_pte));
2009	entry = pte_mkyoung(orig_pte);
2010	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2011	if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2012		update_mmu_cache(vma, address, page_table);
2013	pte_unmap_unlock(page_table, ptl);
2014
2015	if (dirty_shared) {
2016		struct address_space *mapping;
2017		int dirtied;
2018
2019		if (!page_mkwrite)
2020			lock_page(page);
2021
2022		dirtied = set_page_dirty(page);
2023		VM_BUG_ON_PAGE(PageAnon(page), page);
2024		mapping = page->mapping;
2025		unlock_page(page);
2026		page_cache_release(page);
2027
2028		if ((dirtied || page_mkwrite) && mapping) {
2029			/*
2030			 * Some device drivers do not set page.mapping
2031			 * but still dirty their pages
2032			 */
2033			balance_dirty_pages_ratelimited(mapping);
2034		}
2035
2036		if (!page_mkwrite)
2037			file_update_time(vma->vm_file);
2038	}
2039
2040	return VM_FAULT_WRITE;
2041}
2042
2043/*
2044 * Handle the case of a page which we actually need to copy to a new page.
2045 *
2046 * Called with mmap_sem locked and the old page referenced, but
2047 * without the ptl held.
2048 *
2049 * High level logic flow:
2050 *
2051 * - Allocate a page, copy the content of the old page to the new one.
2052 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2053 * - Take the PTL. If the pte changed, bail out and release the allocated page
2054 * - If the pte is still the way we remember it, update the page table and all
2055 *   relevant references. This includes dropping the reference the page-table
2056 *   held to the old page, as well as updating the rmap.
2057 * - In any case, unlock the PTL and drop the reference we took to the old page.
2058 */
2059static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2060			unsigned long address, pte_t *page_table, pmd_t *pmd,
2061			pte_t orig_pte, struct page *old_page)
2062{
2063	struct page *new_page = NULL;
2064	spinlock_t *ptl = NULL;
2065	pte_t entry;
2066	int page_copied = 0;
2067	const unsigned long mmun_start = address & PAGE_MASK;	/* For mmu_notifiers */
2068	const unsigned long mmun_end = mmun_start + PAGE_SIZE;	/* For mmu_notifiers */
2069	struct mem_cgroup *memcg;
2070
2071	if (unlikely(anon_vma_prepare(vma)))
2072		goto oom;
2073
2074	if (is_zero_pfn(pte_pfn(orig_pte))) {
2075		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2076		if (!new_page)
2077			goto oom;
2078	} else {
2079		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2080		if (!new_page)
2081			goto oom;
2082		cow_user_page(new_page, old_page, address, vma);
2083	}
2084	__SetPageUptodate(new_page);
2085
2086	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2087		goto oom_free_new;
2088
2089	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2090
2091	/*
2092	 * Re-check the pte - we dropped the lock
2093	 */
2094	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2095	if (likely(pte_same(*page_table, orig_pte))) {
2096		if (old_page) {
2097			if (!PageAnon(old_page)) {
2098				dec_mm_counter_fast(mm, MM_FILEPAGES);
2099				inc_mm_counter_fast(mm, MM_ANONPAGES);
2100			}
2101		} else {
2102			inc_mm_counter_fast(mm, MM_ANONPAGES);
2103		}
2104		flush_cache_page(vma, address, pte_pfn(orig_pte));
2105		entry = mk_pte(new_page, vma->vm_page_prot);
2106		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2107		/*
2108		 * Clear the pte entry and flush it first, before updating the
2109		 * pte with the new entry. This will avoid a race condition
2110		 * seen in the presence of one thread doing SMC and another
2111		 * thread doing COW.
2112		 */
2113		ptep_clear_flush_notify(vma, address, page_table);
2114		page_add_new_anon_rmap(new_page, vma, address);
2115		mem_cgroup_commit_charge(new_page, memcg, false);
2116		lru_cache_add_active_or_unevictable(new_page, vma);
2117		/*
2118		 * We call the notify macro here because, when using secondary
2119		 * mmu page tables (such as kvm shadow page tables), we want the
2120		 * new page to be mapped directly into the secondary page table.
2121		 */
2122		set_pte_at_notify(mm, address, page_table, entry);
2123		update_mmu_cache(vma, address, page_table);
2124		if (old_page) {
2125			/*
2126			 * Only after switching the pte to the new page may
2127			 * we remove the mapcount here. Otherwise another
2128			 * process may come and find the rmap count decremented
2129			 * before the pte is switched to the new page, and
2130			 * "reuse" the old page writing into it while our pte
2131			 * here still points into it and can be read by other
2132			 * threads.
2133			 *
2134			 * The critical issue is to order this
2135			 * page_remove_rmap with the ptp_clear_flush above.
2136			 * Those stores are ordered by (if nothing else,)
2137			 * the barrier present in the atomic_add_negative
2138			 * in page_remove_rmap.
2139			 *
2140			 * Then the TLB flush in ptep_clear_flush ensures that
2141			 * no process can access the old page before the
2142			 * decremented mapcount is visible. And the old page
2143			 * cannot be reused until after the decremented
2144			 * mapcount is visible. So transitively, TLBs to
2145			 * old page will be flushed before it can be reused.
2146			 */
2147			page_remove_rmap(old_page);
2148		}
2149
2150		/* Free the old page.. */
2151		new_page = old_page;
2152		page_copied = 1;
2153	} else {
2154		mem_cgroup_cancel_charge(new_page, memcg);
2155	}
2156
2157	if (new_page)
2158		page_cache_release(new_page);
2159
2160	pte_unmap_unlock(page_table, ptl);
2161	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2162	if (old_page) {
2163		/*
2164		 * Don't let another task, with possibly unlocked vma,
2165		 * keep the mlocked page.
2166		 */
2167		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2168			lock_page(old_page);	/* LRU manipulation */
2169			munlock_vma_page(old_page);
2170			unlock_page(old_page);
2171		}
2172		page_cache_release(old_page);
2173	}
2174	return page_copied ? VM_FAULT_WRITE : 0;
2175oom_free_new:
2176	page_cache_release(new_page);
2177oom:
2178	if (old_page)
2179		page_cache_release(old_page);
2180	return VM_FAULT_OOM;
2181}
2182
2183/*
2184 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2185 * mapping
2186 */
2187static int wp_pfn_shared(struct mm_struct *mm,
2188			struct vm_area_struct *vma, unsigned long address,
2189			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2190			pmd_t *pmd)
2191{
2192	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2193		struct vm_fault vmf = {
2194			.page = NULL,
2195			.pgoff = linear_page_index(vma, address),
2196			.virtual_address = (void __user *)(address & PAGE_MASK),
2197			.flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2198		};
2199		int ret;
2200
2201		pte_unmap_unlock(page_table, ptl);
2202		ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2203		if (ret & VM_FAULT_ERROR)
2204			return ret;
2205		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2206		/*
2207		 * We might have raced with another page fault while we
2208		 * released the pte_offset_map_lock.
2209		 */
2210		if (!pte_same(*page_table, orig_pte)) {
2211			pte_unmap_unlock(page_table, ptl);
2212			return 0;
2213		}
2214	}
2215	return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2216			     NULL, 0, 0);
2217}
2218
2219static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2220			  unsigned long address, pte_t *page_table,
2221			  pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2222			  struct page *old_page)
2223	__releases(ptl)
2224{
2225	int page_mkwrite = 0;
2226
2227	page_cache_get(old_page);
2228
2229	/*
2230	 * Only catch write-faults on shared writable pages,
2231	 * read-only shared pages can get COWed by
2232	 * get_user_pages(.write=1, .force=1).
2233	 */
2234	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2235		int tmp;
2236
2237		pte_unmap_unlock(page_table, ptl);
2238		tmp = do_page_mkwrite(vma, old_page, address);
2239		if (unlikely(!tmp || (tmp &
2240				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2241			page_cache_release(old_page);
2242			return tmp;
2243		}
2244		/*
2245		 * Since we dropped the lock we need to revalidate
2246		 * the PTE as someone else may have changed it.  If
2247		 * they did, we just return, as we can count on the
2248		 * MMU to tell us if they didn't also make it writable.
2249		 */
2250		page_table = pte_offset_map_lock(mm, pmd, address,
2251						 &ptl);
2252		if (!pte_same(*page_table, orig_pte)) {
2253			unlock_page(old_page);
2254			pte_unmap_unlock(page_table, ptl);
2255			page_cache_release(old_page);
2256			return 0;
2257		}
2258		page_mkwrite = 1;
2259	}
2260
2261	return wp_page_reuse(mm, vma, address, page_table, ptl,
2262			     orig_pte, old_page, page_mkwrite, 1);
2263}
2264
2265/*
2266 * This routine handles present pages, when users try to write
2267 * to a shared page. It is done by copying the page to a new address
2268 * and decrementing the shared-page counter for the old page.
2269 *
2270 * Note that this routine assumes that the protection checks have been
2271 * done by the caller (the low-level page fault routine in most cases).
2272 * Thus we can safely just mark it writable once we've done any necessary
2273 * COW.
2274 *
2275 * We also mark the page dirty at this point even though the page will
2276 * change only once the write actually happens. This avoids a few races,
2277 * and potentially makes it more efficient.
2278 *
2279 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2280 * but allow concurrent faults), with pte both mapped and locked.
2281 * We return with mmap_sem still held, but pte unmapped and unlocked.
2282 */
2283static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2284		unsigned long address, pte_t *page_table, pmd_t *pmd,
2285		spinlock_t *ptl, pte_t orig_pte)
2286	__releases(ptl)
2287{
2288	struct page *old_page;
2289
2290	old_page = vm_normal_page(vma, address, orig_pte);
2291	if (!old_page) {
2292		/*
2293		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2294		 * VM_PFNMAP VMA.
2295		 *
2296		 * We should not cow pages in a shared writeable mapping.
2297		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2298		 */
2299		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2300				     (VM_WRITE|VM_SHARED))
2301			return wp_pfn_shared(mm, vma, address, page_table, ptl,
2302					     orig_pte, pmd);
2303
2304		pte_unmap_unlock(page_table, ptl);
2305		return wp_page_copy(mm, vma, address, page_table, pmd,
2306				    orig_pte, old_page);
2307	}
2308
2309	/*
2310	 * Take out anonymous pages first, anonymous shared vmas are
2311	 * not dirty accountable.
2312	 */
2313	if (PageAnon(old_page) && !PageKsm(old_page)) {
2314		if (!trylock_page(old_page)) {
2315			page_cache_get(old_page);
2316			pte_unmap_unlock(page_table, ptl);
2317			lock_page(old_page);
2318			page_table = pte_offset_map_lock(mm, pmd, address,
2319							 &ptl);
2320			if (!pte_same(*page_table, orig_pte)) {
2321				unlock_page(old_page);
2322				pte_unmap_unlock(page_table, ptl);
2323				page_cache_release(old_page);
2324				return 0;
2325			}
2326			page_cache_release(old_page);
2327		}
2328		if (reuse_swap_page(old_page)) {
2329			/*
2330			 * The page is all ours.  Move it to our anon_vma so
2331			 * the rmap code will not search our parent or siblings.
2332			 * Protected against the rmap code by the page lock.
2333			 */
2334			page_move_anon_rmap(old_page, vma, address);
2335			unlock_page(old_page);
2336			return wp_page_reuse(mm, vma, address, page_table, ptl,
2337					     orig_pte, old_page, 0, 0);
2338		}
2339		unlock_page(old_page);
2340	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2341					(VM_WRITE|VM_SHARED))) {
2342		return wp_page_shared(mm, vma, address, page_table, pmd,
2343				      ptl, orig_pte, old_page);
2344	}
2345
2346	/*
2347	 * Ok, we need to copy. Oh, well..
2348	 */
2349	page_cache_get(old_page);
2350
2351	pte_unmap_unlock(page_table, ptl);
2352	return wp_page_copy(mm, vma, address, page_table, pmd,
2353			    orig_pte, old_page);
2354}
2355
2356static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2357		unsigned long start_addr, unsigned long end_addr,
2358		struct zap_details *details)
2359{
2360	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2361}
2362
2363static inline void unmap_mapping_range_tree(struct rb_root *root,
2364					    struct zap_details *details)
2365{
2366	struct vm_area_struct *vma;
2367	pgoff_t vba, vea, zba, zea;
2368
2369	vma_interval_tree_foreach(vma, root,
2370			details->first_index, details->last_index) {
2371
2372		vba = vma->vm_pgoff;
2373		vea = vba + vma_pages(vma) - 1;
2374		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2375		zba = details->first_index;
2376		if (zba < vba)
2377			zba = vba;
2378		zea = details->last_index;
2379		if (zea > vea)
2380			zea = vea;
2381
2382		unmap_mapping_range_vma(vma,
2383			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2384			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2385				details);
2386	}
2387}
2388
2389/**
2390 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2391 * address_space corresponding to the specified page range in the underlying
2392 * file.
2393 *
2394 * @mapping: the address space containing mmaps to be unmapped.
2395 * @holebegin: byte in first page to unmap, relative to the start of
2396 * the underlying file.  This will be rounded down to a PAGE_SIZE
2397 * boundary.  Note that this is different from truncate_pagecache(), which
2398 * must keep the partial page.  In contrast, we must get rid of
2399 * partial pages.
2400 * @holelen: size of prospective hole in bytes.  This will be rounded
2401 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2402 * end of the file.
2403 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2404 * but 0 when invalidating pagecache, don't throw away private data.
2405 */
2406void unmap_mapping_range(struct address_space *mapping,
2407		loff_t const holebegin, loff_t const holelen, int even_cows)
2408{
2409	struct zap_details details;
2410	pgoff_t hba = holebegin >> PAGE_SHIFT;
2411	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2412
2413	/* Check for overflow. */
2414	if (sizeof(holelen) > sizeof(hlen)) {
2415		long long holeend =
2416			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2417		if (holeend & ~(long long)ULONG_MAX)
2418			hlen = ULONG_MAX - hba + 1;
2419	}
2420
2421	details.check_mapping = even_cows? NULL: mapping;
2422	details.first_index = hba;
2423	details.last_index = hba + hlen - 1;
2424	if (details.last_index < details.first_index)
2425		details.last_index = ULONG_MAX;
2426
2427
2428	/* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2429	i_mmap_lock_write(mapping);
2430	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2431		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2432	i_mmap_unlock_write(mapping);
2433}
2434EXPORT_SYMBOL(unmap_mapping_range);
2435
2436/*
2437 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2438 * but allow concurrent faults), and pte mapped but not yet locked.
2439 * We return with pte unmapped and unlocked.
2440 *
2441 * We return with the mmap_sem locked or unlocked in the same cases
2442 * as does filemap_fault().
2443 */
2444static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2445		unsigned long address, pte_t *page_table, pmd_t *pmd,
2446		unsigned int flags, pte_t orig_pte)
2447{
2448	spinlock_t *ptl;
2449	struct page *page, *swapcache;
2450	struct mem_cgroup *memcg;
2451	swp_entry_t entry;
2452	pte_t pte;
2453	int locked;
2454	int exclusive = 0;
2455	int ret = 0;
2456
2457	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2458		goto out;
2459
2460	entry = pte_to_swp_entry(orig_pte);
2461	if (unlikely(non_swap_entry(entry))) {
2462		if (is_migration_entry(entry)) {
2463			migration_entry_wait(mm, pmd, address);
2464		} else if (is_hwpoison_entry(entry)) {
2465			ret = VM_FAULT_HWPOISON;
2466		} else {
2467			print_bad_pte(vma, address, orig_pte, NULL);
2468			ret = VM_FAULT_SIGBUS;
2469		}
2470		goto out;
2471	}
2472	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2473	page = lookup_swap_cache(entry);
2474	if (!page) {
2475		page = swapin_readahead(entry,
2476					GFP_HIGHUSER_MOVABLE, vma, address);
2477		if (!page) {
2478			/*
2479			 * Back out if somebody else faulted in this pte
2480			 * while we released the pte lock.
2481			 */
2482			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2483			if (likely(pte_same(*page_table, orig_pte)))
2484				ret = VM_FAULT_OOM;
2485			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2486			goto unlock;
2487		}
2488
2489		/* Had to read the page from swap area: Major fault */
2490		ret = VM_FAULT_MAJOR;
2491		count_vm_event(PGMAJFAULT);
2492		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2493	} else if (PageHWPoison(page)) {
2494		/*
2495		 * hwpoisoned dirty swapcache pages are kept for killing
2496		 * owner processes (which may be unknown at hwpoison time)
2497		 */
2498		ret = VM_FAULT_HWPOISON;
2499		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2500		swapcache = page;
2501		goto out_release;
2502	}
2503
2504	swapcache = page;
2505	locked = lock_page_or_retry(page, mm, flags);
2506
2507	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2508	if (!locked) {
2509		ret |= VM_FAULT_RETRY;
2510		goto out_release;
2511	}
2512
2513	/*
2514	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2515	 * release the swapcache from under us.  The page pin, and pte_same
2516	 * test below, are not enough to exclude that.  Even if it is still
2517	 * swapcache, we need to check that the page's swap has not changed.
2518	 */
2519	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2520		goto out_page;
2521
2522	page = ksm_might_need_to_copy(page, vma, address);
2523	if (unlikely(!page)) {
2524		ret = VM_FAULT_OOM;
2525		page = swapcache;
2526		goto out_page;
2527	}
2528
2529	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2530		ret = VM_FAULT_OOM;
2531		goto out_page;
2532	}
2533
2534	/*
2535	 * Back out if somebody else already faulted in this pte.
2536	 */
2537	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2538	if (unlikely(!pte_same(*page_table, orig_pte)))
2539		goto out_nomap;
2540
2541	if (unlikely(!PageUptodate(page))) {
2542		ret = VM_FAULT_SIGBUS;
2543		goto out_nomap;
2544	}
2545
2546	/*
2547	 * The page isn't present yet, go ahead with the fault.
2548	 *
2549	 * Be careful about the sequence of operations here.
2550	 * To get its accounting right, reuse_swap_page() must be called
2551	 * while the page is counted on swap but not yet in mapcount i.e.
2552	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2553	 * must be called after the swap_free(), or it will never succeed.
2554	 */
2555
2556	inc_mm_counter_fast(mm, MM_ANONPAGES);
2557	dec_mm_counter_fast(mm, MM_SWAPENTS);
2558	pte = mk_pte(page, vma->vm_page_prot);
2559	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2560		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2561		flags &= ~FAULT_FLAG_WRITE;
2562		ret |= VM_FAULT_WRITE;
2563		exclusive = 1;
2564	}
2565	flush_icache_page(vma, page);
2566	if (pte_swp_soft_dirty(orig_pte))
2567		pte = pte_mksoft_dirty(pte);
2568	set_pte_at(mm, address, page_table, pte);
2569	if (page == swapcache) {
2570		do_page_add_anon_rmap(page, vma, address, exclusive);
2571		mem_cgroup_commit_charge(page, memcg, true);
2572	} else { /* ksm created a completely new copy */
2573		page_add_new_anon_rmap(page, vma, address);
2574		mem_cgroup_commit_charge(page, memcg, false);
2575		lru_cache_add_active_or_unevictable(page, vma);
2576	}
2577
2578	swap_free(entry);
2579	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2580		try_to_free_swap(page);
2581	unlock_page(page);
2582	if (page != swapcache) {
2583		/*
2584		 * Hold the lock to avoid the swap entry to be reused
2585		 * until we take the PT lock for the pte_same() check
2586		 * (to avoid false positives from pte_same). For
2587		 * further safety release the lock after the swap_free
2588		 * so that the swap count won't change under a
2589		 * parallel locked swapcache.
2590		 */
2591		unlock_page(swapcache);
2592		page_cache_release(swapcache);
2593	}
2594
2595	if (flags & FAULT_FLAG_WRITE) {
2596		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2597		if (ret & VM_FAULT_ERROR)
2598			ret &= VM_FAULT_ERROR;
2599		goto out;
2600	}
2601
2602	/* No need to invalidate - it was non-present before */
2603	update_mmu_cache(vma, address, page_table);
2604unlock:
2605	pte_unmap_unlock(page_table, ptl);
2606out:
2607	return ret;
2608out_nomap:
2609	mem_cgroup_cancel_charge(page, memcg);
2610	pte_unmap_unlock(page_table, ptl);
2611out_page:
2612	unlock_page(page);
2613out_release:
2614	page_cache_release(page);
2615	if (page != swapcache) {
2616		unlock_page(swapcache);
2617		page_cache_release(swapcache);
2618	}
2619	return ret;
2620}
2621
2622/*
2623 * This is like a special single-page "expand_{down|up}wards()",
2624 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2625 * doesn't hit another vma.
2626 */
2627static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2628{
2629	address &= PAGE_MASK;
2630	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2631		struct vm_area_struct *prev = vma->vm_prev;
2632
2633		/*
2634		 * Is there a mapping abutting this one below?
2635		 *
2636		 * That's only ok if it's the same stack mapping
2637		 * that has gotten split..
2638		 */
2639		if (prev && prev->vm_end == address)
2640			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2641
2642		return expand_downwards(vma, address - PAGE_SIZE);
2643	}
2644	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2645		struct vm_area_struct *next = vma->vm_next;
2646
2647		/* As VM_GROWSDOWN but s/below/above/ */
2648		if (next && next->vm_start == address + PAGE_SIZE)
2649			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2650
2651		return expand_upwards(vma, address + PAGE_SIZE);
2652	}
2653	return 0;
2654}
2655
2656/*
2657 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2658 * but allow concurrent faults), and pte mapped but not yet locked.
2659 * We return with mmap_sem still held, but pte unmapped and unlocked.
2660 */
2661static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2662		unsigned long address, pte_t *page_table, pmd_t *pmd,
2663		unsigned int flags)
2664{
2665	struct mem_cgroup *memcg;
2666	struct page *page;
2667	spinlock_t *ptl;
2668	pte_t entry;
2669
2670	pte_unmap(page_table);
2671
2672	/* File mapping without ->vm_ops ? */
2673	if (vma->vm_flags & VM_SHARED)
2674		return VM_FAULT_SIGBUS;
2675
2676	/* Check if we need to add a guard page to the stack */
2677	if (check_stack_guard_page(vma, address) < 0)
2678		return VM_FAULT_SIGSEGV;
2679
2680	/* Use the zero-page for reads */
2681	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2682		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2683						vma->vm_page_prot));
2684		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2685		if (!pte_none(*page_table))
2686			goto unlock;
2687		goto setpte;
2688	}
2689
2690	/* Allocate our own private page. */
2691	if (unlikely(anon_vma_prepare(vma)))
2692		goto oom;
2693	page = alloc_zeroed_user_highpage_movable(vma, address);
2694	if (!page)
2695		goto oom;
2696	/*
2697	 * The memory barrier inside __SetPageUptodate makes sure that
2698	 * preceeding stores to the page contents become visible before
2699	 * the set_pte_at() write.
2700	 */
2701	__SetPageUptodate(page);
2702
2703	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2704		goto oom_free_page;
2705
2706	entry = mk_pte(page, vma->vm_page_prot);
2707	if (vma->vm_flags & VM_WRITE)
2708		entry = pte_mkwrite(pte_mkdirty(entry));
2709
2710	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2711	if (!pte_none(*page_table))
2712		goto release;
2713
2714	inc_mm_counter_fast(mm, MM_ANONPAGES);
2715	page_add_new_anon_rmap(page, vma, address);
2716	mem_cgroup_commit_charge(page, memcg, false);
2717	lru_cache_add_active_or_unevictable(page, vma);
2718setpte:
2719	set_pte_at(mm, address, page_table, entry);
2720
2721	/* No need to invalidate - it was non-present before */
2722	update_mmu_cache(vma, address, page_table);
2723unlock:
2724	pte_unmap_unlock(page_table, ptl);
2725	return 0;
2726release:
2727	mem_cgroup_cancel_charge(page, memcg);
2728	page_cache_release(page);
2729	goto unlock;
2730oom_free_page:
2731	page_cache_release(page);
2732oom:
2733	return VM_FAULT_OOM;
2734}
2735
2736/*
2737 * The mmap_sem must have been held on entry, and may have been
2738 * released depending on flags and vma->vm_ops->fault() return value.
2739 * See filemap_fault() and __lock_page_retry().
2740 */
2741static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2742			pgoff_t pgoff, unsigned int flags,
2743			struct page *cow_page, struct page **page)
2744{
2745	struct vm_fault vmf;
2746	int ret;
2747
2748	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2749	vmf.pgoff = pgoff;
2750	vmf.flags = flags;
2751	vmf.page = NULL;
2752	vmf.cow_page = cow_page;
2753
2754	ret = vma->vm_ops->fault(vma, &vmf);
2755	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2756		return ret;
2757	if (!vmf.page)
2758		goto out;
2759
2760	if (unlikely(PageHWPoison(vmf.page))) {
2761		if (ret & VM_FAULT_LOCKED)
2762			unlock_page(vmf.page);
2763		page_cache_release(vmf.page);
2764		return VM_FAULT_HWPOISON;
2765	}
2766
2767	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2768		lock_page(vmf.page);
2769	else
2770		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2771
2772 out:
2773	*page = vmf.page;
2774	return ret;
2775}
2776
2777/**
2778 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2779 *
2780 * @vma: virtual memory area
2781 * @address: user virtual address
2782 * @page: page to map
2783 * @pte: pointer to target page table entry
2784 * @write: true, if new entry is writable
2785 * @anon: true, if it's anonymous page
2786 *
2787 * Caller must hold page table lock relevant for @pte.
2788 *
2789 * Target users are page handler itself and implementations of
2790 * vm_ops->map_pages.
2791 */
2792void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2793		struct page *page, pte_t *pte, bool write, bool anon)
2794{
2795	pte_t entry;
2796
2797	flush_icache_page(vma, page);
2798	entry = mk_pte(page, vma->vm_page_prot);
2799	if (write)
2800		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2801	if (anon) {
2802		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2803		page_add_new_anon_rmap(page, vma, address);
2804	} else {
2805		inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2806		page_add_file_rmap(page);
2807	}
2808	set_pte_at(vma->vm_mm, address, pte, entry);
2809
2810	/* no need to invalidate: a not-present page won't be cached */
2811	update_mmu_cache(vma, address, pte);
2812}
2813
2814static unsigned long fault_around_bytes __read_mostly =
2815	rounddown_pow_of_two(65536);
2816
2817#ifdef CONFIG_DEBUG_FS
2818static int fault_around_bytes_get(void *data, u64 *val)
2819{
2820	*val = fault_around_bytes;
2821	return 0;
2822}
2823
2824/*
2825 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2826 * rounded down to nearest page order. It's what do_fault_around() expects to
2827 * see.
2828 */
2829static int fault_around_bytes_set(void *data, u64 val)
2830{
2831	if (val / PAGE_SIZE > PTRS_PER_PTE)
2832		return -EINVAL;
2833	if (val > PAGE_SIZE)
2834		fault_around_bytes = rounddown_pow_of_two(val);
2835	else
2836		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2837	return 0;
2838}
2839DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2840		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2841
2842static int __init fault_around_debugfs(void)
2843{
2844	void *ret;
2845
2846	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2847			&fault_around_bytes_fops);
2848	if (!ret)
2849		pr_warn("Failed to create fault_around_bytes in debugfs");
2850	return 0;
2851}
2852late_initcall(fault_around_debugfs);
2853#endif
2854
2855/*
2856 * do_fault_around() tries to map few pages around the fault address. The hope
2857 * is that the pages will be needed soon and this will lower the number of
2858 * faults to handle.
2859 *
2860 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2861 * not ready to be mapped: not up-to-date, locked, etc.
2862 *
2863 * This function is called with the page table lock taken. In the split ptlock
2864 * case the page table lock only protects only those entries which belong to
2865 * the page table corresponding to the fault address.
2866 *
2867 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2868 * only once.
2869 *
2870 * fault_around_pages() defines how many pages we'll try to map.
2871 * do_fault_around() expects it to return a power of two less than or equal to
2872 * PTRS_PER_PTE.
2873 *
2874 * The virtual address of the area that we map is naturally aligned to the
2875 * fault_around_pages() value (and therefore to page order).  This way it's
2876 * easier to guarantee that we don't cross page table boundaries.
2877 */
2878static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2879		pte_t *pte, pgoff_t pgoff, unsigned int flags)
2880{
2881	unsigned long start_addr, nr_pages, mask;
2882	pgoff_t max_pgoff;
2883	struct vm_fault vmf;
2884	int off;
2885
2886	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2887	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2888
2889	start_addr = max(address & mask, vma->vm_start);
2890	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2891	pte -= off;
2892	pgoff -= off;
2893
2894	/*
2895	 *  max_pgoff is either end of page table or end of vma
2896	 *  or fault_around_pages() from pgoff, depending what is nearest.
2897	 */
2898	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2899		PTRS_PER_PTE - 1;
2900	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2901			pgoff + nr_pages - 1);
2902
2903	/* Check if it makes any sense to call ->map_pages */
2904	while (!pte_none(*pte)) {
2905		if (++pgoff > max_pgoff)
2906			return;
2907		start_addr += PAGE_SIZE;
2908		if (start_addr >= vma->vm_end)
2909			return;
2910		pte++;
2911	}
2912
2913	vmf.virtual_address = (void __user *) start_addr;
2914	vmf.pte = pte;
2915	vmf.pgoff = pgoff;
2916	vmf.max_pgoff = max_pgoff;
2917	vmf.flags = flags;
2918	vma->vm_ops->map_pages(vma, &vmf);
2919}
2920
2921static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2922		unsigned long address, pmd_t *pmd,
2923		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2924{
2925	struct page *fault_page;
2926	spinlock_t *ptl;
2927	pte_t *pte;
2928	int ret = 0;
2929
2930	/*
2931	 * Let's call ->map_pages() first and use ->fault() as fallback
2932	 * if page by the offset is not ready to be mapped (cold cache or
2933	 * something).
2934	 */
2935	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2936		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2937		do_fault_around(vma, address, pte, pgoff, flags);
2938		if (!pte_same(*pte, orig_pte))
2939			goto unlock_out;
2940		pte_unmap_unlock(pte, ptl);
2941	}
2942
2943	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2944	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2945		return ret;
2946
2947	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2948	if (unlikely(!pte_same(*pte, orig_pte))) {
2949		pte_unmap_unlock(pte, ptl);
2950		unlock_page(fault_page);
2951		page_cache_release(fault_page);
2952		return ret;
2953	}
2954	do_set_pte(vma, address, fault_page, pte, false, false);
2955	unlock_page(fault_page);
2956unlock_out:
2957	pte_unmap_unlock(pte, ptl);
2958	return ret;
2959}
2960
2961static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2962		unsigned long address, pmd_t *pmd,
2963		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2964{
2965	struct page *fault_page, *new_page;
2966	struct mem_cgroup *memcg;
2967	spinlock_t *ptl;
2968	pte_t *pte;
2969	int ret;
2970
2971	if (unlikely(anon_vma_prepare(vma)))
2972		return VM_FAULT_OOM;
2973
2974	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2975	if (!new_page)
2976		return VM_FAULT_OOM;
2977
2978	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2979		page_cache_release(new_page);
2980		return VM_FAULT_OOM;
2981	}
2982
2983	ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
2984	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2985		goto uncharge_out;
2986
2987	if (fault_page)
2988		copy_user_highpage(new_page, fault_page, address, vma);
2989	__SetPageUptodate(new_page);
2990
2991	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2992	if (unlikely(!pte_same(*pte, orig_pte))) {
2993		pte_unmap_unlock(pte, ptl);
2994		if (fault_page) {
2995			unlock_page(fault_page);
2996			page_cache_release(fault_page);
2997		} else {
2998			/*
2999			 * The fault handler has no page to lock, so it holds
3000			 * i_mmap_lock for read to protect against truncate.
3001			 */
3002			i_mmap_unlock_read(vma->vm_file->f_mapping);
3003		}
3004		goto uncharge_out;
3005	}
3006	do_set_pte(vma, address, new_page, pte, true, true);
3007	mem_cgroup_commit_charge(new_page, memcg, false);
3008	lru_cache_add_active_or_unevictable(new_page, vma);
3009	pte_unmap_unlock(pte, ptl);
3010	if (fault_page) {
3011		unlock_page(fault_page);
3012		page_cache_release(fault_page);
3013	} else {
3014		/*
3015		 * The fault handler has no page to lock, so it holds
3016		 * i_mmap_lock for read to protect against truncate.
3017		 */
3018		i_mmap_unlock_read(vma->vm_file->f_mapping);
3019	}
3020	return ret;
3021uncharge_out:
3022	mem_cgroup_cancel_charge(new_page, memcg);
3023	page_cache_release(new_page);
3024	return ret;
3025}
3026
3027static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3028		unsigned long address, pmd_t *pmd,
3029		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3030{
3031	struct page *fault_page;
3032	struct address_space *mapping;
3033	spinlock_t *ptl;
3034	pte_t *pte;
3035	int dirtied = 0;
3036	int ret, tmp;
3037
3038	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3039	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3040		return ret;
3041
3042	/*
3043	 * Check if the backing address space wants to know that the page is
3044	 * about to become writable
3045	 */
3046	if (vma->vm_ops->page_mkwrite) {
3047		unlock_page(fault_page);
3048		tmp = do_page_mkwrite(vma, fault_page, address);
3049		if (unlikely(!tmp ||
3050				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3051			page_cache_release(fault_page);
3052			return tmp;
3053		}
3054	}
3055
3056	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3057	if (unlikely(!pte_same(*pte, orig_pte))) {
3058		pte_unmap_unlock(pte, ptl);
3059		unlock_page(fault_page);
3060		page_cache_release(fault_page);
3061		return ret;
3062	}
3063	do_set_pte(vma, address, fault_page, pte, true, false);
3064	pte_unmap_unlock(pte, ptl);
3065
3066	if (set_page_dirty(fault_page))
3067		dirtied = 1;
3068	/*
3069	 * Take a local copy of the address_space - page.mapping may be zeroed
3070	 * by truncate after unlock_page().   The address_space itself remains
3071	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3072	 * release semantics to prevent the compiler from undoing this copying.
3073	 */
3074	mapping = fault_page->mapping;
3075	unlock_page(fault_page);
3076	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3077		/*
3078		 * Some device drivers do not set page.mapping but still
3079		 * dirty their pages
3080		 */
3081		balance_dirty_pages_ratelimited(mapping);
3082	}
3083
3084	if (!vma->vm_ops->page_mkwrite)
3085		file_update_time(vma->vm_file);
3086
3087	return ret;
3088}
3089
3090/*
3091 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3092 * but allow concurrent faults).
3093 * The mmap_sem may have been released depending on flags and our
3094 * return value.  See filemap_fault() and __lock_page_or_retry().
3095 */
3096static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3097		unsigned long address, pte_t *page_table, pmd_t *pmd,
3098		unsigned int flags, pte_t orig_pte)
3099{
3100	pgoff_t pgoff = (((address & PAGE_MASK)
3101			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3102
3103	pte_unmap(page_table);
3104	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3105	if (!vma->vm_ops->fault)
3106		return VM_FAULT_SIGBUS;
3107	if (!(flags & FAULT_FLAG_WRITE))
3108		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3109				orig_pte);
3110	if (!(vma->vm_flags & VM_SHARED))
3111		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3112				orig_pte);
3113	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3114}
3115
3116static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3117				unsigned long addr, int page_nid,
3118				int *flags)
3119{
3120	get_page(page);
3121
3122	count_vm_numa_event(NUMA_HINT_FAULTS);
3123	if (page_nid == numa_node_id()) {
3124		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3125		*flags |= TNF_FAULT_LOCAL;
3126	}
3127
3128	return mpol_misplaced(page, vma, addr);
3129}
3130
3131static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3132		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3133{
3134	struct page *page = NULL;
3135	spinlock_t *ptl;
3136	int page_nid = -1;
3137	int last_cpupid;
3138	int target_nid;
3139	bool migrated = false;
3140	bool was_writable = pte_write(pte);
3141	int flags = 0;
3142
3143	/* A PROT_NONE fault should not end up here */
3144	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3145
3146	/*
3147	* The "pte" at this point cannot be used safely without
3148	* validation through pte_unmap_same(). It's of NUMA type but
3149	* the pfn may be screwed if the read is non atomic.
3150	*
3151	* We can safely just do a "set_pte_at()", because the old
3152	* page table entry is not accessible, so there would be no
3153	* concurrent hardware modifications to the PTE.
3154	*/
3155	ptl = pte_lockptr(mm, pmd);
3156	spin_lock(ptl);
3157	if (unlikely(!pte_same(*ptep, pte))) {
3158		pte_unmap_unlock(ptep, ptl);
3159		goto out;
3160	}
3161
3162	/* Make it present again */
3163	pte = pte_modify(pte, vma->vm_page_prot);
3164	pte = pte_mkyoung(pte);
3165	if (was_writable)
3166		pte = pte_mkwrite(pte);
3167	set_pte_at(mm, addr, ptep, pte);
3168	update_mmu_cache(vma, addr, ptep);
3169
3170	page = vm_normal_page(vma, addr, pte);
3171	if (!page) {
3172		pte_unmap_unlock(ptep, ptl);
3173		return 0;
3174	}
3175
3176	/*
3177	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3178	 * much anyway since they can be in shared cache state. This misses
3179	 * the case where a mapping is writable but the process never writes
3180	 * to it but pte_write gets cleared during protection updates and
3181	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3182	 * background writeback, dirty balancing and application behaviour.
3183	 */
3184	if (!(vma->vm_flags & VM_WRITE))
3185		flags |= TNF_NO_GROUP;
3186
3187	/*
3188	 * Flag if the page is shared between multiple address spaces. This
3189	 * is later used when determining whether to group tasks together
3190	 */
3191	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3192		flags |= TNF_SHARED;
3193
3194	last_cpupid = page_cpupid_last(page);
3195	page_nid = page_to_nid(page);
3196	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3197	pte_unmap_unlock(ptep, ptl);
3198	if (target_nid == -1) {
3199		put_page(page);
3200		goto out;
3201	}
3202
3203	/* Migrate to the requested node */
3204	migrated = migrate_misplaced_page(page, vma, target_nid);
3205	if (migrated) {
3206		page_nid = target_nid;
3207		flags |= TNF_MIGRATED;
3208	} else
3209		flags |= TNF_MIGRATE_FAIL;
3210
3211out:
3212	if (page_nid != -1)
3213		task_numa_fault(last_cpupid, page_nid, 1, flags);
3214	return 0;
3215}
3216
3217/*
3218 * These routines also need to handle stuff like marking pages dirty
3219 * and/or accessed for architectures that don't do it in hardware (most
3220 * RISC architectures).  The early dirtying is also good on the i386.
3221 *
3222 * There is also a hook called "update_mmu_cache()" that architectures
3223 * with external mmu caches can use to update those (ie the Sparc or
3224 * PowerPC hashed page tables that act as extended TLBs).
3225 *
3226 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3227 * but allow concurrent faults), and pte mapped but not yet locked.
3228 * We return with pte unmapped and unlocked.
3229 *
3230 * The mmap_sem may have been released depending on flags and our
3231 * return value.  See filemap_fault() and __lock_page_or_retry().
3232 */
3233static int handle_pte_fault(struct mm_struct *mm,
3234		     struct vm_area_struct *vma, unsigned long address,
3235		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3236{
3237	pte_t entry;
3238	spinlock_t *ptl;
3239
3240	/*
3241	 * some architectures can have larger ptes than wordsize,
3242	 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3243	 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3244	 * The code below just needs a consistent view for the ifs and
3245	 * we later double check anyway with the ptl lock held. So here
3246	 * a barrier will do.
3247	 */
3248	entry = *pte;
3249	barrier();
3250	if (!pte_present(entry)) {
3251		if (pte_none(entry)) {
3252			if (vma->vm_ops)
3253				return do_fault(mm, vma, address, pte, pmd,
3254						flags, entry);
3255
3256			return do_anonymous_page(mm, vma, address, pte, pmd,
3257					flags);
3258		}
3259		return do_swap_page(mm, vma, address,
3260					pte, pmd, flags, entry);
3261	}
3262
3263	if (pte_protnone(entry))
3264		return do_numa_page(mm, vma, address, entry, pte, pmd);
3265
3266	ptl = pte_lockptr(mm, pmd);
3267	spin_lock(ptl);
3268	if (unlikely(!pte_same(*pte, entry)))
3269		goto unlock;
3270	if (flags & FAULT_FLAG_WRITE) {
3271		if (!pte_write(entry))
3272			return do_wp_page(mm, vma, address,
3273					pte, pmd, ptl, entry);
3274		entry = pte_mkdirty(entry);
3275	}
3276	entry = pte_mkyoung(entry);
3277	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3278		update_mmu_cache(vma, address, pte);
3279	} else {
3280		/*
3281		 * This is needed only for protection faults but the arch code
3282		 * is not yet telling us if this is a protection fault or not.
3283		 * This still avoids useless tlb flushes for .text page faults
3284		 * with threads.
3285		 */
3286		if (flags & FAULT_FLAG_WRITE)
3287			flush_tlb_fix_spurious_fault(vma, address);
3288	}
3289unlock:
3290	pte_unmap_unlock(pte, ptl);
3291	return 0;
3292}
3293
3294/*
3295 * By the time we get here, we already hold the mm semaphore
3296 *
3297 * The mmap_sem may have been released depending on flags and our
3298 * return value.  See filemap_fault() and __lock_page_or_retry().
3299 */
3300static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3301			     unsigned long address, unsigned int flags)
3302{
3303	pgd_t *pgd;
3304	pud_t *pud;
3305	pmd_t *pmd;
3306	pte_t *pte;
3307
3308	if (unlikely(is_vm_hugetlb_page(vma)))
3309		return hugetlb_fault(mm, vma, address, flags);
3310
3311	pgd = pgd_offset(mm, address);
3312	pud = pud_alloc(mm, pgd, address);
3313	if (!pud)
3314		return VM_FAULT_OOM;
3315	pmd = pmd_alloc(mm, pud, address);
3316	if (!pmd)
3317		return VM_FAULT_OOM;
3318	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3319		int ret = VM_FAULT_FALLBACK;
3320		if (!vma->vm_ops)
3321			ret = do_huge_pmd_anonymous_page(mm, vma, address,
3322					pmd, flags);
3323		if (!(ret & VM_FAULT_FALLBACK))
3324			return ret;
3325	} else {
3326		pmd_t orig_pmd = *pmd;
3327		int ret;
3328
3329		barrier();
3330		if (pmd_trans_huge(orig_pmd)) {
3331			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3332
3333			/*
3334			 * If the pmd is splitting, return and retry the
3335			 * the fault.  Alternative: wait until the split
3336			 * is done, and goto retry.
3337			 */
3338			if (pmd_trans_splitting(orig_pmd))
3339				return 0;
3340
3341			if (pmd_protnone(orig_pmd))
3342				return do_huge_pmd_numa_page(mm, vma, address,
3343							     orig_pmd, pmd);
3344
3345			if (dirty && !pmd_write(orig_pmd)) {
3346				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3347							  orig_pmd);
3348				if (!(ret & VM_FAULT_FALLBACK))
3349					return ret;
3350			} else {
3351				huge_pmd_set_accessed(mm, vma, address, pmd,
3352						      orig_pmd, dirty);
3353				return 0;
3354			}
3355		}
3356	}
3357
3358	/*
3359	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3360	 * run pte_offset_map on the pmd, if an huge pmd could
3361	 * materialize from under us from a different thread.
3362	 */
3363	if (unlikely(pmd_none(*pmd)) &&
3364	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3365		return VM_FAULT_OOM;
3366	/*
3367	 * If a huge pmd materialized under us just retry later.  Use
3368	 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3369	 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3370	 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3371	 * in a different thread of this mm, in turn leading to a misleading
3372	 * pmd_trans_huge() retval.  All we have to ensure is that it is a
3373	 * regular pmd that we can walk with pte_offset_map() and we can do that
3374	 * through an atomic read in C, which is what pmd_trans_unstable()
3375	 * provides.
3376	 */
3377	if (unlikely(pmd_trans_unstable(pmd)))
3378		return 0;
3379	/*
3380	 * A regular pmd is established and it can't morph into a huge pmd
3381	 * from under us anymore at this point because we hold the mmap_sem
3382	 * read mode and khugepaged takes it in write mode. So now it's
3383	 * safe to run pte_offset_map().
3384	 */
3385	pte = pte_offset_map(pmd, address);
3386
3387	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3388}
3389
3390/*
3391 * By the time we get here, we already hold the mm semaphore
3392 *
3393 * The mmap_sem may have been released depending on flags and our
3394 * return value.  See filemap_fault() and __lock_page_or_retry().
3395 */
3396int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3397		    unsigned long address, unsigned int flags)
3398{
3399	int ret;
3400
3401	__set_current_state(TASK_RUNNING);
3402
3403	count_vm_event(PGFAULT);
3404	mem_cgroup_count_vm_event(mm, PGFAULT);
3405
3406	/* do counter updates before entering really critical section. */
3407	check_sync_rss_stat(current);
3408
3409	/*
3410	 * Enable the memcg OOM handling for faults triggered in user
3411	 * space.  Kernel faults are handled more gracefully.
3412	 */
3413	if (flags & FAULT_FLAG_USER)
3414		mem_cgroup_oom_enable();
3415
3416	ret = __handle_mm_fault(mm, vma, address, flags);
3417
3418	if (flags & FAULT_FLAG_USER) {
3419		mem_cgroup_oom_disable();
3420                /*
3421                 * The task may have entered a memcg OOM situation but
3422                 * if the allocation error was handled gracefully (no
3423                 * VM_FAULT_OOM), there is no need to kill anything.
3424                 * Just clean up the OOM state peacefully.
3425                 */
3426                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3427                        mem_cgroup_oom_synchronize(false);
3428	}
3429
3430	return ret;
3431}
3432EXPORT_SYMBOL_GPL(handle_mm_fault);
3433
3434#ifndef __PAGETABLE_PUD_FOLDED
3435/*
3436 * Allocate page upper directory.
3437 * We've already handled the fast-path in-line.
3438 */
3439int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3440{
3441	pud_t *new = pud_alloc_one(mm, address);
3442	if (!new)
3443		return -ENOMEM;
3444
3445	smp_wmb(); /* See comment in __pte_alloc */
3446
3447	spin_lock(&mm->page_table_lock);
3448	if (pgd_present(*pgd))		/* Another has populated it */
3449		pud_free(mm, new);
3450	else
3451		pgd_populate(mm, pgd, new);
3452	spin_unlock(&mm->page_table_lock);
3453	return 0;
3454}
3455#endif /* __PAGETABLE_PUD_FOLDED */
3456
3457#ifndef __PAGETABLE_PMD_FOLDED
3458/*
3459 * Allocate page middle directory.
3460 * We've already handled the fast-path in-line.
3461 */
3462int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3463{
3464	pmd_t *new = pmd_alloc_one(mm, address);
3465	if (!new)
3466		return -ENOMEM;
3467
3468	smp_wmb(); /* See comment in __pte_alloc */
3469
3470	spin_lock(&mm->page_table_lock);
3471#ifndef __ARCH_HAS_4LEVEL_HACK
3472	if (!pud_present(*pud)) {
3473		mm_inc_nr_pmds(mm);
3474		pud_populate(mm, pud, new);
3475	} else	/* Another has populated it */
3476		pmd_free(mm, new);
3477#else
3478	if (!pgd_present(*pud)) {
3479		mm_inc_nr_pmds(mm);
3480		pgd_populate(mm, pud, new);
3481	} else /* Another has populated it */
3482		pmd_free(mm, new);
3483#endif /* __ARCH_HAS_4LEVEL_HACK */
3484	spin_unlock(&mm->page_table_lock);
3485	return 0;
3486}
3487#endif /* __PAGETABLE_PMD_FOLDED */
3488
3489static int __follow_pte(struct mm_struct *mm, unsigned long address,
3490		pte_t **ptepp, spinlock_t **ptlp)
3491{
3492	pgd_t *pgd;
3493	pud_t *pud;
3494	pmd_t *pmd;
3495	pte_t *ptep;
3496
3497	pgd = pgd_offset(mm, address);
3498	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3499		goto out;
3500
3501	pud = pud_offset(pgd, address);
3502	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3503		goto out;
3504
3505	pmd = pmd_offset(pud, address);
3506	VM_BUG_ON(pmd_trans_huge(*pmd));
3507	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3508		goto out;
3509
3510	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3511	if (pmd_huge(*pmd))
3512		goto out;
3513
3514	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3515	if (!ptep)
3516		goto out;
3517	if (!pte_present(*ptep))
3518		goto unlock;
3519	*ptepp = ptep;
3520	return 0;
3521unlock:
3522	pte_unmap_unlock(ptep, *ptlp);
3523out:
3524	return -EINVAL;
3525}
3526
3527static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3528			     pte_t **ptepp, spinlock_t **ptlp)
3529{
3530	int res;
3531
3532	/* (void) is needed to make gcc happy */
3533	(void) __cond_lock(*ptlp,
3534			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3535	return res;
3536}
3537
3538/**
3539 * follow_pfn - look up PFN at a user virtual address
3540 * @vma: memory mapping
3541 * @address: user virtual address
3542 * @pfn: location to store found PFN
3543 *
3544 * Only IO mappings and raw PFN mappings are allowed.
3545 *
3546 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3547 */
3548int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3549	unsigned long *pfn)
3550{
3551	int ret = -EINVAL;
3552	spinlock_t *ptl;
3553	pte_t *ptep;
3554
3555	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3556		return ret;
3557
3558	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3559	if (ret)
3560		return ret;
3561	*pfn = pte_pfn(*ptep);
3562	pte_unmap_unlock(ptep, ptl);
3563	return 0;
3564}
3565EXPORT_SYMBOL(follow_pfn);
3566
3567#ifdef CONFIG_HAVE_IOREMAP_PROT
3568int follow_phys(struct vm_area_struct *vma,
3569		unsigned long address, unsigned int flags,
3570		unsigned long *prot, resource_size_t *phys)
3571{
3572	int ret = -EINVAL;
3573	pte_t *ptep, pte;
3574	spinlock_t *ptl;
3575
3576	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3577		goto out;
3578
3579	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3580		goto out;
3581	pte = *ptep;
3582
3583	if ((flags & FOLL_WRITE) && !pte_write(pte))
3584		goto unlock;
3585
3586	*prot = pgprot_val(pte_pgprot(pte));
3587	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3588
3589	ret = 0;
3590unlock:
3591	pte_unmap_unlock(ptep, ptl);
3592out:
3593	return ret;
3594}
3595
3596int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3597			void *buf, int len, int write)
3598{
3599	resource_size_t phys_addr;
3600	unsigned long prot = 0;
3601	void __iomem *maddr;
3602	int offset = addr & (PAGE_SIZE-1);
3603
3604	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3605		return -EINVAL;
3606
3607	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3608	if (write)
3609		memcpy_toio(maddr + offset, buf, len);
3610	else
3611		memcpy_fromio(buf, maddr + offset, len);
3612	iounmap(maddr);
3613
3614	return len;
3615}
3616EXPORT_SYMBOL_GPL(generic_access_phys);
3617#endif
3618
3619/*
3620 * Access another process' address space as given in mm.  If non-NULL, use the
3621 * given task for page fault accounting.
3622 */
3623static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3624		unsigned long addr, void *buf, int len, int write)
3625{
3626	struct vm_area_struct *vma;
3627	void *old_buf = buf;
3628
3629	down_read(&mm->mmap_sem);
3630	/* ignore errors, just check how much was successfully transferred */
3631	while (len) {
3632		int bytes, ret, offset;
3633		void *maddr;
3634		struct page *page = NULL;
3635
3636		ret = get_user_pages(tsk, mm, addr, 1,
3637				write, 1, &page, &vma);
3638		if (ret <= 0) {
3639#ifndef CONFIG_HAVE_IOREMAP_PROT
3640			break;
3641#else
3642			/*
3643			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3644			 * we can access using slightly different code.
3645			 */
3646			vma = find_vma(mm, addr);
3647			if (!vma || vma->vm_start > addr)
3648				break;
3649			if (vma->vm_ops && vma->vm_ops->access)
3650				ret = vma->vm_ops->access(vma, addr, buf,
3651							  len, write);
3652			if (ret <= 0)
3653				break;
3654			bytes = ret;
3655#endif
3656		} else {
3657			bytes = len;
3658			offset = addr & (PAGE_SIZE-1);
3659			if (bytes > PAGE_SIZE-offset)
3660				bytes = PAGE_SIZE-offset;
3661
3662			maddr = kmap(page);
3663			if (write) {
3664				copy_to_user_page(vma, page, addr,
3665						  maddr + offset, buf, bytes);
3666				set_page_dirty_lock(page);
3667			} else {
3668				copy_from_user_page(vma, page, addr,
3669						    buf, maddr + offset, bytes);
3670			}
3671			kunmap(page);
3672			page_cache_release(page);
3673		}
3674		len -= bytes;
3675		buf += bytes;
3676		addr += bytes;
3677	}
3678	up_read(&mm->mmap_sem);
3679
3680	return buf - old_buf;
3681}
3682
3683/**
3684 * access_remote_vm - access another process' address space
3685 * @mm:		the mm_struct of the target address space
3686 * @addr:	start address to access
3687 * @buf:	source or destination buffer
3688 * @len:	number of bytes to transfer
3689 * @write:	whether the access is a write
3690 *
3691 * The caller must hold a reference on @mm.
3692 */
3693int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3694		void *buf, int len, int write)
3695{
3696	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3697}
3698
3699/*
3700 * Access another process' address space.
3701 * Source/target buffer must be kernel space,
3702 * Do not walk the page table directly, use get_user_pages
3703 */
3704int access_process_vm(struct task_struct *tsk, unsigned long addr,
3705		void *buf, int len, int write)
3706{
3707	struct mm_struct *mm;
3708	int ret;
3709
3710	mm = get_task_mm(tsk);
3711	if (!mm)
3712		return 0;
3713
3714	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3715	mmput(mm);
3716
3717	return ret;
3718}
3719
3720/*
3721 * Print the name of a VMA.
3722 */
3723void print_vma_addr(char *prefix, unsigned long ip)
3724{
3725	struct mm_struct *mm = current->mm;
3726	struct vm_area_struct *vma;
3727
3728	/*
3729	 * Do not print if we are in atomic
3730	 * contexts (in exception stacks, etc.):
3731	 */
3732	if (preempt_count())
3733		return;
3734
3735	down_read(&mm->mmap_sem);
3736	vma = find_vma(mm, ip);
3737	if (vma && vma->vm_file) {
3738		struct file *f = vma->vm_file;
3739		char *buf = (char *)__get_free_page(GFP_KERNEL);
3740		if (buf) {
3741			char *p;
3742
3743			p = d_path(&f->f_path, buf, PAGE_SIZE);
3744			if (IS_ERR(p))
3745				p = "?";
3746			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3747					vma->vm_start,
3748					vma->vm_end - vma->vm_start);
3749			free_page((unsigned long)buf);
3750		}
3751	}
3752	up_read(&mm->mmap_sem);
3753}
3754
3755#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3756void might_fault(void)
3757{
3758	/*
3759	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3760	 * holding the mmap_sem, this is safe because kernel memory doesn't
3761	 * get paged out, therefore we'll never actually fault, and the
3762	 * below annotations will generate false positives.
3763	 */
3764	if (segment_eq(get_fs(), KERNEL_DS))
3765		return;
3766
3767	/*
3768	 * it would be nicer only to annotate paths which are not under
3769	 * pagefault_disable, however that requires a larger audit and
3770	 * providing helpers like get_user_atomic.
3771	 */
3772	if (in_atomic())
3773		return;
3774
3775	__might_sleep(__FILE__, __LINE__, 0);
3776
3777	if (current->mm)
3778		might_lock_read(&current->mm->mmap_sem);
3779}
3780EXPORT_SYMBOL(might_fault);
3781#endif
3782
3783#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3784static void clear_gigantic_page(struct page *page,
3785				unsigned long addr,
3786				unsigned int pages_per_huge_page)
3787{
3788	int i;
3789	struct page *p = page;
3790
3791	might_sleep();
3792	for (i = 0; i < pages_per_huge_page;
3793	     i++, p = mem_map_next(p, page, i)) {
3794		cond_resched();
3795		clear_user_highpage(p, addr + i * PAGE_SIZE);
3796	}
3797}
3798void clear_huge_page(struct page *page,
3799		     unsigned long addr, unsigned int pages_per_huge_page)
3800{
3801	int i;
3802
3803	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3804		clear_gigantic_page(page, addr, pages_per_huge_page);
3805		return;
3806	}
3807
3808	might_sleep();
3809	for (i = 0; i < pages_per_huge_page; i++) {
3810		cond_resched();
3811		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3812	}
3813}
3814
3815static void copy_user_gigantic_page(struct page *dst, struct page *src,
3816				    unsigned long addr,
3817				    struct vm_area_struct *vma,
3818				    unsigned int pages_per_huge_page)
3819{
3820	int i;
3821	struct page *dst_base = dst;
3822	struct page *src_base = src;
3823
3824	for (i = 0; i < pages_per_huge_page; ) {
3825		cond_resched();
3826		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3827
3828		i++;
3829		dst = mem_map_next(dst, dst_base, i);
3830		src = mem_map_next(src, src_base, i);
3831	}
3832}
3833
3834void copy_user_huge_page(struct page *dst, struct page *src,
3835			 unsigned long addr, struct vm_area_struct *vma,
3836			 unsigned int pages_per_huge_page)
3837{
3838	int i;
3839
3840	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3841		copy_user_gigantic_page(dst, src, addr, vma,
3842					pages_per_huge_page);
3843		return;
3844	}
3845
3846	might_sleep();
3847	for (i = 0; i < pages_per_huge_page; i++) {
3848		cond_resched();
3849		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3850	}
3851}
3852#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3853
3854#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3855
3856static struct kmem_cache *page_ptl_cachep;
3857
3858void __init ptlock_cache_init(void)
3859{
3860	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3861			SLAB_PANIC, NULL);
3862}
3863
3864bool ptlock_alloc(struct page *page)
3865{
3866	spinlock_t *ptl;
3867
3868	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3869	if (!ptl)
3870		return false;
3871	page->ptl = ptl;
3872	return true;
3873}
3874
3875void ptlock_free(struct page *page)
3876{
3877	kmem_cache_free(page_ptl_cachep, page->ptl);
3878}
3879#endif
3880