1/* 2 * mm/kmemleak.c 3 * 4 * Copyright (C) 2008 ARM Limited 5 * Written by Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 * 21 * For more information on the algorithm and kmemleak usage, please see 22 * Documentation/kmemleak.txt. 23 * 24 * Notes on locking 25 * ---------------- 26 * 27 * The following locks and mutexes are used by kmemleak: 28 * 29 * - kmemleak_lock (rwlock): protects the object_list modifications and 30 * accesses to the object_tree_root. The object_list is the main list 31 * holding the metadata (struct kmemleak_object) for the allocated memory 32 * blocks. The object_tree_root is a red black tree used to look-up 33 * metadata based on a pointer to the corresponding memory block. The 34 * kmemleak_object structures are added to the object_list and 35 * object_tree_root in the create_object() function called from the 36 * kmemleak_alloc() callback and removed in delete_object() called from the 37 * kmemleak_free() callback 38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to 39 * the metadata (e.g. count) are protected by this lock. Note that some 40 * members of this structure may be protected by other means (atomic or 41 * kmemleak_lock). This lock is also held when scanning the corresponding 42 * memory block to avoid the kernel freeing it via the kmemleak_free() 43 * callback. This is less heavyweight than holding a global lock like 44 * kmemleak_lock during scanning 45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 46 * unreferenced objects at a time. The gray_list contains the objects which 47 * are already referenced or marked as false positives and need to be 48 * scanned. This list is only modified during a scanning episode when the 49 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 50 * Note that the kmemleak_object.use_count is incremented when an object is 51 * added to the gray_list and therefore cannot be freed. This mutex also 52 * prevents multiple users of the "kmemleak" debugfs file together with 53 * modifications to the memory scanning parameters including the scan_thread 54 * pointer 55 * 56 * The kmemleak_object structures have a use_count incremented or decremented 57 * using the get_object()/put_object() functions. When the use_count becomes 58 * 0, this count can no longer be incremented and put_object() schedules the 59 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 60 * function must be protected by rcu_read_lock() to avoid accessing a freed 61 * structure. 62 */ 63 64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 65 66#include <linux/init.h> 67#include <linux/kernel.h> 68#include <linux/list.h> 69#include <linux/sched.h> 70#include <linux/jiffies.h> 71#include <linux/delay.h> 72#include <linux/export.h> 73#include <linux/kthread.h> 74#include <linux/rbtree.h> 75#include <linux/fs.h> 76#include <linux/debugfs.h> 77#include <linux/seq_file.h> 78#include <linux/cpumask.h> 79#include <linux/spinlock.h> 80#include <linux/mutex.h> 81#include <linux/rcupdate.h> 82#include <linux/stacktrace.h> 83#include <linux/cache.h> 84#include <linux/percpu.h> 85#include <linux/hardirq.h> 86#include <linux/mmzone.h> 87#include <linux/slab.h> 88#include <linux/thread_info.h> 89#include <linux/err.h> 90#include <linux/uaccess.h> 91#include <linux/string.h> 92#include <linux/nodemask.h> 93#include <linux/mm.h> 94#include <linux/workqueue.h> 95#include <linux/crc32.h> 96 97#include <asm/sections.h> 98#include <asm/processor.h> 99#include <linux/atomic.h> 100 101#include <linux/kasan.h> 102#include <linux/kmemcheck.h> 103#include <linux/kmemleak.h> 104#include <linux/memory_hotplug.h> 105 106/* 107 * Kmemleak configuration and common defines. 108 */ 109#define MAX_TRACE 16 /* stack trace length */ 110#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 111#define SECS_FIRST_SCAN 60 /* delay before the first scan */ 112#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 113#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 114 115#define BYTES_PER_POINTER sizeof(void *) 116 117/* GFP bitmask for kmemleak internal allocations */ 118#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \ 119 __GFP_NOACCOUNT)) | \ 120 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 121 __GFP_NOWARN) 122 123/* scanning area inside a memory block */ 124struct kmemleak_scan_area { 125 struct hlist_node node; 126 unsigned long start; 127 size_t size; 128}; 129 130#define KMEMLEAK_GREY 0 131#define KMEMLEAK_BLACK -1 132 133/* 134 * Structure holding the metadata for each allocated memory block. 135 * Modifications to such objects should be made while holding the 136 * object->lock. Insertions or deletions from object_list, gray_list or 137 * rb_node are already protected by the corresponding locks or mutex (see 138 * the notes on locking above). These objects are reference-counted 139 * (use_count) and freed using the RCU mechanism. 140 */ 141struct kmemleak_object { 142 spinlock_t lock; 143 unsigned long flags; /* object status flags */ 144 struct list_head object_list; 145 struct list_head gray_list; 146 struct rb_node rb_node; 147 struct rcu_head rcu; /* object_list lockless traversal */ 148 /* object usage count; object freed when use_count == 0 */ 149 atomic_t use_count; 150 unsigned long pointer; 151 size_t size; 152 /* minimum number of a pointers found before it is considered leak */ 153 int min_count; 154 /* the total number of pointers found pointing to this object */ 155 int count; 156 /* checksum for detecting modified objects */ 157 u32 checksum; 158 /* memory ranges to be scanned inside an object (empty for all) */ 159 struct hlist_head area_list; 160 unsigned long trace[MAX_TRACE]; 161 unsigned int trace_len; 162 unsigned long jiffies; /* creation timestamp */ 163 pid_t pid; /* pid of the current task */ 164 char comm[TASK_COMM_LEN]; /* executable name */ 165}; 166 167/* flag representing the memory block allocation status */ 168#define OBJECT_ALLOCATED (1 << 0) 169/* flag set after the first reporting of an unreference object */ 170#define OBJECT_REPORTED (1 << 1) 171/* flag set to not scan the object */ 172#define OBJECT_NO_SCAN (1 << 2) 173 174/* number of bytes to print per line; must be 16 or 32 */ 175#define HEX_ROW_SIZE 16 176/* number of bytes to print at a time (1, 2, 4, 8) */ 177#define HEX_GROUP_SIZE 1 178/* include ASCII after the hex output */ 179#define HEX_ASCII 1 180/* max number of lines to be printed */ 181#define HEX_MAX_LINES 2 182 183/* the list of all allocated objects */ 184static LIST_HEAD(object_list); 185/* the list of gray-colored objects (see color_gray comment below) */ 186static LIST_HEAD(gray_list); 187/* search tree for object boundaries */ 188static struct rb_root object_tree_root = RB_ROOT; 189/* rw_lock protecting the access to object_list and object_tree_root */ 190static DEFINE_RWLOCK(kmemleak_lock); 191 192/* allocation caches for kmemleak internal data */ 193static struct kmem_cache *object_cache; 194static struct kmem_cache *scan_area_cache; 195 196/* set if tracing memory operations is enabled */ 197static int kmemleak_enabled; 198/* same as above but only for the kmemleak_free() callback */ 199static int kmemleak_free_enabled; 200/* set in the late_initcall if there were no errors */ 201static int kmemleak_initialized; 202/* enables or disables early logging of the memory operations */ 203static int kmemleak_early_log = 1; 204/* set if a kmemleak warning was issued */ 205static int kmemleak_warning; 206/* set if a fatal kmemleak error has occurred */ 207static int kmemleak_error; 208 209/* minimum and maximum address that may be valid pointers */ 210static unsigned long min_addr = ULONG_MAX; 211static unsigned long max_addr; 212 213static struct task_struct *scan_thread; 214/* used to avoid reporting of recently allocated objects */ 215static unsigned long jiffies_min_age; 216static unsigned long jiffies_last_scan; 217/* delay between automatic memory scannings */ 218static signed long jiffies_scan_wait; 219/* enables or disables the task stacks scanning */ 220static int kmemleak_stack_scan = 1; 221/* protects the memory scanning, parameters and debug/kmemleak file access */ 222static DEFINE_MUTEX(scan_mutex); 223/* setting kmemleak=on, will set this var, skipping the disable */ 224static int kmemleak_skip_disable; 225/* If there are leaks that can be reported */ 226static bool kmemleak_found_leaks; 227 228/* 229 * Early object allocation/freeing logging. Kmemleak is initialized after the 230 * kernel allocator. However, both the kernel allocator and kmemleak may 231 * allocate memory blocks which need to be tracked. Kmemleak defines an 232 * arbitrary buffer to hold the allocation/freeing information before it is 233 * fully initialized. 234 */ 235 236/* kmemleak operation type for early logging */ 237enum { 238 KMEMLEAK_ALLOC, 239 KMEMLEAK_ALLOC_PERCPU, 240 KMEMLEAK_FREE, 241 KMEMLEAK_FREE_PART, 242 KMEMLEAK_FREE_PERCPU, 243 KMEMLEAK_NOT_LEAK, 244 KMEMLEAK_IGNORE, 245 KMEMLEAK_SCAN_AREA, 246 KMEMLEAK_NO_SCAN 247}; 248 249/* 250 * Structure holding the information passed to kmemleak callbacks during the 251 * early logging. 252 */ 253struct early_log { 254 int op_type; /* kmemleak operation type */ 255 const void *ptr; /* allocated/freed memory block */ 256 size_t size; /* memory block size */ 257 int min_count; /* minimum reference count */ 258 unsigned long trace[MAX_TRACE]; /* stack trace */ 259 unsigned int trace_len; /* stack trace length */ 260}; 261 262/* early logging buffer and current position */ 263static struct early_log 264 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata; 265static int crt_early_log __initdata; 266 267static void kmemleak_disable(void); 268 269/* 270 * Print a warning and dump the stack trace. 271 */ 272#define kmemleak_warn(x...) do { \ 273 pr_warning(x); \ 274 dump_stack(); \ 275 kmemleak_warning = 1; \ 276} while (0) 277 278/* 279 * Macro invoked when a serious kmemleak condition occurred and cannot be 280 * recovered from. Kmemleak will be disabled and further allocation/freeing 281 * tracing no longer available. 282 */ 283#define kmemleak_stop(x...) do { \ 284 kmemleak_warn(x); \ 285 kmemleak_disable(); \ 286} while (0) 287 288/* 289 * Printing of the objects hex dump to the seq file. The number of lines to be 290 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 291 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 292 * with the object->lock held. 293 */ 294static void hex_dump_object(struct seq_file *seq, 295 struct kmemleak_object *object) 296{ 297 const u8 *ptr = (const u8 *)object->pointer; 298 int i, len, remaining; 299 unsigned char linebuf[HEX_ROW_SIZE * 5]; 300 301 /* limit the number of lines to HEX_MAX_LINES */ 302 remaining = len = 303 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE)); 304 305 seq_printf(seq, " hex dump (first %d bytes):\n", len); 306 for (i = 0; i < len; i += HEX_ROW_SIZE) { 307 int linelen = min(remaining, HEX_ROW_SIZE); 308 309 remaining -= HEX_ROW_SIZE; 310 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE, 311 HEX_GROUP_SIZE, linebuf, sizeof(linebuf), 312 HEX_ASCII); 313 seq_printf(seq, " %s\n", linebuf); 314 } 315} 316 317/* 318 * Object colors, encoded with count and min_count: 319 * - white - orphan object, not enough references to it (count < min_count) 320 * - gray - not orphan, not marked as false positive (min_count == 0) or 321 * sufficient references to it (count >= min_count) 322 * - black - ignore, it doesn't contain references (e.g. text section) 323 * (min_count == -1). No function defined for this color. 324 * Newly created objects don't have any color assigned (object->count == -1) 325 * before the next memory scan when they become white. 326 */ 327static bool color_white(const struct kmemleak_object *object) 328{ 329 return object->count != KMEMLEAK_BLACK && 330 object->count < object->min_count; 331} 332 333static bool color_gray(const struct kmemleak_object *object) 334{ 335 return object->min_count != KMEMLEAK_BLACK && 336 object->count >= object->min_count; 337} 338 339/* 340 * Objects are considered unreferenced only if their color is white, they have 341 * not be deleted and have a minimum age to avoid false positives caused by 342 * pointers temporarily stored in CPU registers. 343 */ 344static bool unreferenced_object(struct kmemleak_object *object) 345{ 346 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 347 time_before_eq(object->jiffies + jiffies_min_age, 348 jiffies_last_scan); 349} 350 351/* 352 * Printing of the unreferenced objects information to the seq file. The 353 * print_unreferenced function must be called with the object->lock held. 354 */ 355static void print_unreferenced(struct seq_file *seq, 356 struct kmemleak_object *object) 357{ 358 int i; 359 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 360 361 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 362 object->pointer, object->size); 363 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 364 object->comm, object->pid, object->jiffies, 365 msecs_age / 1000, msecs_age % 1000); 366 hex_dump_object(seq, object); 367 seq_printf(seq, " backtrace:\n"); 368 369 for (i = 0; i < object->trace_len; i++) { 370 void *ptr = (void *)object->trace[i]; 371 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 372 } 373} 374 375/* 376 * Print the kmemleak_object information. This function is used mainly for 377 * debugging special cases when kmemleak operations. It must be called with 378 * the object->lock held. 379 */ 380static void dump_object_info(struct kmemleak_object *object) 381{ 382 struct stack_trace trace; 383 384 trace.nr_entries = object->trace_len; 385 trace.entries = object->trace; 386 387 pr_notice("Object 0x%08lx (size %zu):\n", 388 object->pointer, object->size); 389 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 390 object->comm, object->pid, object->jiffies); 391 pr_notice(" min_count = %d\n", object->min_count); 392 pr_notice(" count = %d\n", object->count); 393 pr_notice(" flags = 0x%lx\n", object->flags); 394 pr_notice(" checksum = %u\n", object->checksum); 395 pr_notice(" backtrace:\n"); 396 print_stack_trace(&trace, 4); 397} 398 399/* 400 * Look-up a memory block metadata (kmemleak_object) in the object search 401 * tree based on a pointer value. If alias is 0, only values pointing to the 402 * beginning of the memory block are allowed. The kmemleak_lock must be held 403 * when calling this function. 404 */ 405static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 406{ 407 struct rb_node *rb = object_tree_root.rb_node; 408 409 while (rb) { 410 struct kmemleak_object *object = 411 rb_entry(rb, struct kmemleak_object, rb_node); 412 if (ptr < object->pointer) 413 rb = object->rb_node.rb_left; 414 else if (object->pointer + object->size <= ptr) 415 rb = object->rb_node.rb_right; 416 else if (object->pointer == ptr || alias) 417 return object; 418 else { 419 kmemleak_warn("Found object by alias at 0x%08lx\n", 420 ptr); 421 dump_object_info(object); 422 break; 423 } 424 } 425 return NULL; 426} 427 428/* 429 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 430 * that once an object's use_count reached 0, the RCU freeing was already 431 * registered and the object should no longer be used. This function must be 432 * called under the protection of rcu_read_lock(). 433 */ 434static int get_object(struct kmemleak_object *object) 435{ 436 return atomic_inc_not_zero(&object->use_count); 437} 438 439/* 440 * RCU callback to free a kmemleak_object. 441 */ 442static void free_object_rcu(struct rcu_head *rcu) 443{ 444 struct hlist_node *tmp; 445 struct kmemleak_scan_area *area; 446 struct kmemleak_object *object = 447 container_of(rcu, struct kmemleak_object, rcu); 448 449 /* 450 * Once use_count is 0 (guaranteed by put_object), there is no other 451 * code accessing this object, hence no need for locking. 452 */ 453 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 454 hlist_del(&area->node); 455 kmem_cache_free(scan_area_cache, area); 456 } 457 kmem_cache_free(object_cache, object); 458} 459 460/* 461 * Decrement the object use_count. Once the count is 0, free the object using 462 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 463 * delete_object() path, the delayed RCU freeing ensures that there is no 464 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 465 * is also possible. 466 */ 467static void put_object(struct kmemleak_object *object) 468{ 469 if (!atomic_dec_and_test(&object->use_count)) 470 return; 471 472 /* should only get here after delete_object was called */ 473 WARN_ON(object->flags & OBJECT_ALLOCATED); 474 475 call_rcu(&object->rcu, free_object_rcu); 476} 477 478/* 479 * Look up an object in the object search tree and increase its use_count. 480 */ 481static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 482{ 483 unsigned long flags; 484 struct kmemleak_object *object = NULL; 485 486 rcu_read_lock(); 487 read_lock_irqsave(&kmemleak_lock, flags); 488 if (ptr >= min_addr && ptr < max_addr) 489 object = lookup_object(ptr, alias); 490 read_unlock_irqrestore(&kmemleak_lock, flags); 491 492 /* check whether the object is still available */ 493 if (object && !get_object(object)) 494 object = NULL; 495 rcu_read_unlock(); 496 497 return object; 498} 499 500/* 501 * Save stack trace to the given array of MAX_TRACE size. 502 */ 503static int __save_stack_trace(unsigned long *trace) 504{ 505 struct stack_trace stack_trace; 506 507 stack_trace.max_entries = MAX_TRACE; 508 stack_trace.nr_entries = 0; 509 stack_trace.entries = trace; 510 stack_trace.skip = 2; 511 save_stack_trace(&stack_trace); 512 513 return stack_trace.nr_entries; 514} 515 516/* 517 * Create the metadata (struct kmemleak_object) corresponding to an allocated 518 * memory block and add it to the object_list and object_tree_root. 519 */ 520static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 521 int min_count, gfp_t gfp) 522{ 523 unsigned long flags; 524 struct kmemleak_object *object, *parent; 525 struct rb_node **link, *rb_parent; 526 527 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 528 if (!object) { 529 pr_warning("Cannot allocate a kmemleak_object structure\n"); 530 kmemleak_disable(); 531 return NULL; 532 } 533 534 INIT_LIST_HEAD(&object->object_list); 535 INIT_LIST_HEAD(&object->gray_list); 536 INIT_HLIST_HEAD(&object->area_list); 537 spin_lock_init(&object->lock); 538 atomic_set(&object->use_count, 1); 539 object->flags = OBJECT_ALLOCATED; 540 object->pointer = ptr; 541 object->size = size; 542 object->min_count = min_count; 543 object->count = 0; /* white color initially */ 544 object->jiffies = jiffies; 545 object->checksum = 0; 546 547 /* task information */ 548 if (in_irq()) { 549 object->pid = 0; 550 strncpy(object->comm, "hardirq", sizeof(object->comm)); 551 } else if (in_softirq()) { 552 object->pid = 0; 553 strncpy(object->comm, "softirq", sizeof(object->comm)); 554 } else { 555 object->pid = current->pid; 556 /* 557 * There is a small chance of a race with set_task_comm(), 558 * however using get_task_comm() here may cause locking 559 * dependency issues with current->alloc_lock. In the worst 560 * case, the command line is not correct. 561 */ 562 strncpy(object->comm, current->comm, sizeof(object->comm)); 563 } 564 565 /* kernel backtrace */ 566 object->trace_len = __save_stack_trace(object->trace); 567 568 write_lock_irqsave(&kmemleak_lock, flags); 569 570 min_addr = min(min_addr, ptr); 571 max_addr = max(max_addr, ptr + size); 572 link = &object_tree_root.rb_node; 573 rb_parent = NULL; 574 while (*link) { 575 rb_parent = *link; 576 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 577 if (ptr + size <= parent->pointer) 578 link = &parent->rb_node.rb_left; 579 else if (parent->pointer + parent->size <= ptr) 580 link = &parent->rb_node.rb_right; 581 else { 582 kmemleak_stop("Cannot insert 0x%lx into the object " 583 "search tree (overlaps existing)\n", 584 ptr); 585 kmem_cache_free(object_cache, object); 586 object = parent; 587 spin_lock(&object->lock); 588 dump_object_info(object); 589 spin_unlock(&object->lock); 590 goto out; 591 } 592 } 593 rb_link_node(&object->rb_node, rb_parent, link); 594 rb_insert_color(&object->rb_node, &object_tree_root); 595 596 list_add_tail_rcu(&object->object_list, &object_list); 597out: 598 write_unlock_irqrestore(&kmemleak_lock, flags); 599 return object; 600} 601 602/* 603 * Remove the metadata (struct kmemleak_object) for a memory block from the 604 * object_list and object_tree_root and decrement its use_count. 605 */ 606static void __delete_object(struct kmemleak_object *object) 607{ 608 unsigned long flags; 609 610 write_lock_irqsave(&kmemleak_lock, flags); 611 rb_erase(&object->rb_node, &object_tree_root); 612 list_del_rcu(&object->object_list); 613 write_unlock_irqrestore(&kmemleak_lock, flags); 614 615 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 616 WARN_ON(atomic_read(&object->use_count) < 2); 617 618 /* 619 * Locking here also ensures that the corresponding memory block 620 * cannot be freed when it is being scanned. 621 */ 622 spin_lock_irqsave(&object->lock, flags); 623 object->flags &= ~OBJECT_ALLOCATED; 624 spin_unlock_irqrestore(&object->lock, flags); 625 put_object(object); 626} 627 628/* 629 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 630 * delete it. 631 */ 632static void delete_object_full(unsigned long ptr) 633{ 634 struct kmemleak_object *object; 635 636 object = find_and_get_object(ptr, 0); 637 if (!object) { 638#ifdef DEBUG 639 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 640 ptr); 641#endif 642 return; 643 } 644 __delete_object(object); 645 put_object(object); 646} 647 648/* 649 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 650 * delete it. If the memory block is partially freed, the function may create 651 * additional metadata for the remaining parts of the block. 652 */ 653static void delete_object_part(unsigned long ptr, size_t size) 654{ 655 struct kmemleak_object *object; 656 unsigned long start, end; 657 658 object = find_and_get_object(ptr, 1); 659 if (!object) { 660#ifdef DEBUG 661 kmemleak_warn("Partially freeing unknown object at 0x%08lx " 662 "(size %zu)\n", ptr, size); 663#endif 664 return; 665 } 666 __delete_object(object); 667 668 /* 669 * Create one or two objects that may result from the memory block 670 * split. Note that partial freeing is only done by free_bootmem() and 671 * this happens before kmemleak_init() is called. The path below is 672 * only executed during early log recording in kmemleak_init(), so 673 * GFP_KERNEL is enough. 674 */ 675 start = object->pointer; 676 end = object->pointer + object->size; 677 if (ptr > start) 678 create_object(start, ptr - start, object->min_count, 679 GFP_KERNEL); 680 if (ptr + size < end) 681 create_object(ptr + size, end - ptr - size, object->min_count, 682 GFP_KERNEL); 683 684 put_object(object); 685} 686 687static void __paint_it(struct kmemleak_object *object, int color) 688{ 689 object->min_count = color; 690 if (color == KMEMLEAK_BLACK) 691 object->flags |= OBJECT_NO_SCAN; 692} 693 694static void paint_it(struct kmemleak_object *object, int color) 695{ 696 unsigned long flags; 697 698 spin_lock_irqsave(&object->lock, flags); 699 __paint_it(object, color); 700 spin_unlock_irqrestore(&object->lock, flags); 701} 702 703static void paint_ptr(unsigned long ptr, int color) 704{ 705 struct kmemleak_object *object; 706 707 object = find_and_get_object(ptr, 0); 708 if (!object) { 709 kmemleak_warn("Trying to color unknown object " 710 "at 0x%08lx as %s\n", ptr, 711 (color == KMEMLEAK_GREY) ? "Grey" : 712 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 713 return; 714 } 715 paint_it(object, color); 716 put_object(object); 717} 718 719/* 720 * Mark an object permanently as gray-colored so that it can no longer be 721 * reported as a leak. This is used in general to mark a false positive. 722 */ 723static void make_gray_object(unsigned long ptr) 724{ 725 paint_ptr(ptr, KMEMLEAK_GREY); 726} 727 728/* 729 * Mark the object as black-colored so that it is ignored from scans and 730 * reporting. 731 */ 732static void make_black_object(unsigned long ptr) 733{ 734 paint_ptr(ptr, KMEMLEAK_BLACK); 735} 736 737/* 738 * Add a scanning area to the object. If at least one such area is added, 739 * kmemleak will only scan these ranges rather than the whole memory block. 740 */ 741static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 742{ 743 unsigned long flags; 744 struct kmemleak_object *object; 745 struct kmemleak_scan_area *area; 746 747 object = find_and_get_object(ptr, 1); 748 if (!object) { 749 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 750 ptr); 751 return; 752 } 753 754 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 755 if (!area) { 756 pr_warning("Cannot allocate a scan area\n"); 757 goto out; 758 } 759 760 spin_lock_irqsave(&object->lock, flags); 761 if (size == SIZE_MAX) { 762 size = object->pointer + object->size - ptr; 763 } else if (ptr + size > object->pointer + object->size) { 764 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 765 dump_object_info(object); 766 kmem_cache_free(scan_area_cache, area); 767 goto out_unlock; 768 } 769 770 INIT_HLIST_NODE(&area->node); 771 area->start = ptr; 772 area->size = size; 773 774 hlist_add_head(&area->node, &object->area_list); 775out_unlock: 776 spin_unlock_irqrestore(&object->lock, flags); 777out: 778 put_object(object); 779} 780 781/* 782 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 783 * pointer. Such object will not be scanned by kmemleak but references to it 784 * are searched. 785 */ 786static void object_no_scan(unsigned long ptr) 787{ 788 unsigned long flags; 789 struct kmemleak_object *object; 790 791 object = find_and_get_object(ptr, 0); 792 if (!object) { 793 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 794 return; 795 } 796 797 spin_lock_irqsave(&object->lock, flags); 798 object->flags |= OBJECT_NO_SCAN; 799 spin_unlock_irqrestore(&object->lock, flags); 800 put_object(object); 801} 802 803/* 804 * Log an early kmemleak_* call to the early_log buffer. These calls will be 805 * processed later once kmemleak is fully initialized. 806 */ 807static void __init log_early(int op_type, const void *ptr, size_t size, 808 int min_count) 809{ 810 unsigned long flags; 811 struct early_log *log; 812 813 if (kmemleak_error) { 814 /* kmemleak stopped recording, just count the requests */ 815 crt_early_log++; 816 return; 817 } 818 819 if (crt_early_log >= ARRAY_SIZE(early_log)) { 820 kmemleak_disable(); 821 return; 822 } 823 824 /* 825 * There is no need for locking since the kernel is still in UP mode 826 * at this stage. Disabling the IRQs is enough. 827 */ 828 local_irq_save(flags); 829 log = &early_log[crt_early_log]; 830 log->op_type = op_type; 831 log->ptr = ptr; 832 log->size = size; 833 log->min_count = min_count; 834 log->trace_len = __save_stack_trace(log->trace); 835 crt_early_log++; 836 local_irq_restore(flags); 837} 838 839/* 840 * Log an early allocated block and populate the stack trace. 841 */ 842static void early_alloc(struct early_log *log) 843{ 844 struct kmemleak_object *object; 845 unsigned long flags; 846 int i; 847 848 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr)) 849 return; 850 851 /* 852 * RCU locking needed to ensure object is not freed via put_object(). 853 */ 854 rcu_read_lock(); 855 object = create_object((unsigned long)log->ptr, log->size, 856 log->min_count, GFP_ATOMIC); 857 if (!object) 858 goto out; 859 spin_lock_irqsave(&object->lock, flags); 860 for (i = 0; i < log->trace_len; i++) 861 object->trace[i] = log->trace[i]; 862 object->trace_len = log->trace_len; 863 spin_unlock_irqrestore(&object->lock, flags); 864out: 865 rcu_read_unlock(); 866} 867 868/* 869 * Log an early allocated block and populate the stack trace. 870 */ 871static void early_alloc_percpu(struct early_log *log) 872{ 873 unsigned int cpu; 874 const void __percpu *ptr = log->ptr; 875 876 for_each_possible_cpu(cpu) { 877 log->ptr = per_cpu_ptr(ptr, cpu); 878 early_alloc(log); 879 } 880} 881 882/** 883 * kmemleak_alloc - register a newly allocated object 884 * @ptr: pointer to beginning of the object 885 * @size: size of the object 886 * @min_count: minimum number of references to this object. If during memory 887 * scanning a number of references less than @min_count is found, 888 * the object is reported as a memory leak. If @min_count is 0, 889 * the object is never reported as a leak. If @min_count is -1, 890 * the object is ignored (not scanned and not reported as a leak) 891 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 892 * 893 * This function is called from the kernel allocators when a new object 894 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.). 895 */ 896void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 897 gfp_t gfp) 898{ 899 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 900 901 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 902 create_object((unsigned long)ptr, size, min_count, gfp); 903 else if (kmemleak_early_log) 904 log_early(KMEMLEAK_ALLOC, ptr, size, min_count); 905} 906EXPORT_SYMBOL_GPL(kmemleak_alloc); 907 908/** 909 * kmemleak_alloc_percpu - register a newly allocated __percpu object 910 * @ptr: __percpu pointer to beginning of the object 911 * @size: size of the object 912 * @gfp: flags used for kmemleak internal memory allocations 913 * 914 * This function is called from the kernel percpu allocator when a new object 915 * (memory block) is allocated (alloc_percpu). 916 */ 917void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 918 gfp_t gfp) 919{ 920 unsigned int cpu; 921 922 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 923 924 /* 925 * Percpu allocations are only scanned and not reported as leaks 926 * (min_count is set to 0). 927 */ 928 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 929 for_each_possible_cpu(cpu) 930 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 931 size, 0, gfp); 932 else if (kmemleak_early_log) 933 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0); 934} 935EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 936 937/** 938 * kmemleak_free - unregister a previously registered object 939 * @ptr: pointer to beginning of the object 940 * 941 * This function is called from the kernel allocators when an object (memory 942 * block) is freed (kmem_cache_free, kfree, vfree etc.). 943 */ 944void __ref kmemleak_free(const void *ptr) 945{ 946 pr_debug("%s(0x%p)\n", __func__, ptr); 947 948 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 949 delete_object_full((unsigned long)ptr); 950 else if (kmemleak_early_log) 951 log_early(KMEMLEAK_FREE, ptr, 0, 0); 952} 953EXPORT_SYMBOL_GPL(kmemleak_free); 954 955/** 956 * kmemleak_free_part - partially unregister a previously registered object 957 * @ptr: pointer to the beginning or inside the object. This also 958 * represents the start of the range to be freed 959 * @size: size to be unregistered 960 * 961 * This function is called when only a part of a memory block is freed 962 * (usually from the bootmem allocator). 963 */ 964void __ref kmemleak_free_part(const void *ptr, size_t size) 965{ 966 pr_debug("%s(0x%p)\n", __func__, ptr); 967 968 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 969 delete_object_part((unsigned long)ptr, size); 970 else if (kmemleak_early_log) 971 log_early(KMEMLEAK_FREE_PART, ptr, size, 0); 972} 973EXPORT_SYMBOL_GPL(kmemleak_free_part); 974 975/** 976 * kmemleak_free_percpu - unregister a previously registered __percpu object 977 * @ptr: __percpu pointer to beginning of the object 978 * 979 * This function is called from the kernel percpu allocator when an object 980 * (memory block) is freed (free_percpu). 981 */ 982void __ref kmemleak_free_percpu(const void __percpu *ptr) 983{ 984 unsigned int cpu; 985 986 pr_debug("%s(0x%p)\n", __func__, ptr); 987 988 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 989 for_each_possible_cpu(cpu) 990 delete_object_full((unsigned long)per_cpu_ptr(ptr, 991 cpu)); 992 else if (kmemleak_early_log) 993 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0); 994} 995EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 996 997/** 998 * kmemleak_update_trace - update object allocation stack trace 999 * @ptr: pointer to beginning of the object 1000 * 1001 * Override the object allocation stack trace for cases where the actual 1002 * allocation place is not always useful. 1003 */ 1004void __ref kmemleak_update_trace(const void *ptr) 1005{ 1006 struct kmemleak_object *object; 1007 unsigned long flags; 1008 1009 pr_debug("%s(0x%p)\n", __func__, ptr); 1010 1011 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1012 return; 1013 1014 object = find_and_get_object((unsigned long)ptr, 1); 1015 if (!object) { 1016#ifdef DEBUG 1017 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1018 ptr); 1019#endif 1020 return; 1021 } 1022 1023 spin_lock_irqsave(&object->lock, flags); 1024 object->trace_len = __save_stack_trace(object->trace); 1025 spin_unlock_irqrestore(&object->lock, flags); 1026 1027 put_object(object); 1028} 1029EXPORT_SYMBOL(kmemleak_update_trace); 1030 1031/** 1032 * kmemleak_not_leak - mark an allocated object as false positive 1033 * @ptr: pointer to beginning of the object 1034 * 1035 * Calling this function on an object will cause the memory block to no longer 1036 * be reported as leak and always be scanned. 1037 */ 1038void __ref kmemleak_not_leak(const void *ptr) 1039{ 1040 pr_debug("%s(0x%p)\n", __func__, ptr); 1041 1042 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1043 make_gray_object((unsigned long)ptr); 1044 else if (kmemleak_early_log) 1045 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0); 1046} 1047EXPORT_SYMBOL(kmemleak_not_leak); 1048 1049/** 1050 * kmemleak_ignore - ignore an allocated object 1051 * @ptr: pointer to beginning of the object 1052 * 1053 * Calling this function on an object will cause the memory block to be 1054 * ignored (not scanned and not reported as a leak). This is usually done when 1055 * it is known that the corresponding block is not a leak and does not contain 1056 * any references to other allocated memory blocks. 1057 */ 1058void __ref kmemleak_ignore(const void *ptr) 1059{ 1060 pr_debug("%s(0x%p)\n", __func__, ptr); 1061 1062 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1063 make_black_object((unsigned long)ptr); 1064 else if (kmemleak_early_log) 1065 log_early(KMEMLEAK_IGNORE, ptr, 0, 0); 1066} 1067EXPORT_SYMBOL(kmemleak_ignore); 1068 1069/** 1070 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1071 * @ptr: pointer to beginning or inside the object. This also 1072 * represents the start of the scan area 1073 * @size: size of the scan area 1074 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1075 * 1076 * This function is used when it is known that only certain parts of an object 1077 * contain references to other objects. Kmemleak will only scan these areas 1078 * reducing the number false negatives. 1079 */ 1080void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1081{ 1082 pr_debug("%s(0x%p)\n", __func__, ptr); 1083 1084 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1085 add_scan_area((unsigned long)ptr, size, gfp); 1086 else if (kmemleak_early_log) 1087 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0); 1088} 1089EXPORT_SYMBOL(kmemleak_scan_area); 1090 1091/** 1092 * kmemleak_no_scan - do not scan an allocated object 1093 * @ptr: pointer to beginning of the object 1094 * 1095 * This function notifies kmemleak not to scan the given memory block. Useful 1096 * in situations where it is known that the given object does not contain any 1097 * references to other objects. Kmemleak will not scan such objects reducing 1098 * the number of false negatives. 1099 */ 1100void __ref kmemleak_no_scan(const void *ptr) 1101{ 1102 pr_debug("%s(0x%p)\n", __func__, ptr); 1103 1104 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1105 object_no_scan((unsigned long)ptr); 1106 else if (kmemleak_early_log) 1107 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0); 1108} 1109EXPORT_SYMBOL(kmemleak_no_scan); 1110 1111/* 1112 * Update an object's checksum and return true if it was modified. 1113 */ 1114static bool update_checksum(struct kmemleak_object *object) 1115{ 1116 u32 old_csum = object->checksum; 1117 1118 if (!kmemcheck_is_obj_initialized(object->pointer, object->size)) 1119 return false; 1120 1121 kasan_disable_current(); 1122 object->checksum = crc32(0, (void *)object->pointer, object->size); 1123 kasan_enable_current(); 1124 1125 return object->checksum != old_csum; 1126} 1127 1128/* 1129 * Memory scanning is a long process and it needs to be interruptable. This 1130 * function checks whether such interrupt condition occurred. 1131 */ 1132static int scan_should_stop(void) 1133{ 1134 if (!kmemleak_enabled) 1135 return 1; 1136 1137 /* 1138 * This function may be called from either process or kthread context, 1139 * hence the need to check for both stop conditions. 1140 */ 1141 if (current->mm) 1142 return signal_pending(current); 1143 else 1144 return kthread_should_stop(); 1145 1146 return 0; 1147} 1148 1149/* 1150 * Scan a memory block (exclusive range) for valid pointers and add those 1151 * found to the gray list. 1152 */ 1153static void scan_block(void *_start, void *_end, 1154 struct kmemleak_object *scanned, int allow_resched) 1155{ 1156 unsigned long *ptr; 1157 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1158 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1159 1160 for (ptr = start; ptr < end; ptr++) { 1161 struct kmemleak_object *object; 1162 unsigned long flags; 1163 unsigned long pointer; 1164 1165 if (allow_resched) 1166 cond_resched(); 1167 if (scan_should_stop()) 1168 break; 1169 1170 /* don't scan uninitialized memory */ 1171 if (!kmemcheck_is_obj_initialized((unsigned long)ptr, 1172 BYTES_PER_POINTER)) 1173 continue; 1174 1175 kasan_disable_current(); 1176 pointer = *ptr; 1177 kasan_enable_current(); 1178 1179 object = find_and_get_object(pointer, 1); 1180 if (!object) 1181 continue; 1182 if (object == scanned) { 1183 /* self referenced, ignore */ 1184 put_object(object); 1185 continue; 1186 } 1187 1188 /* 1189 * Avoid the lockdep recursive warning on object->lock being 1190 * previously acquired in scan_object(). These locks are 1191 * enclosed by scan_mutex. 1192 */ 1193 spin_lock_irqsave_nested(&object->lock, flags, 1194 SINGLE_DEPTH_NESTING); 1195 if (!color_white(object)) { 1196 /* non-orphan, ignored or new */ 1197 spin_unlock_irqrestore(&object->lock, flags); 1198 put_object(object); 1199 continue; 1200 } 1201 1202 /* 1203 * Increase the object's reference count (number of pointers 1204 * to the memory block). If this count reaches the required 1205 * minimum, the object's color will become gray and it will be 1206 * added to the gray_list. 1207 */ 1208 object->count++; 1209 if (color_gray(object)) { 1210 list_add_tail(&object->gray_list, &gray_list); 1211 spin_unlock_irqrestore(&object->lock, flags); 1212 continue; 1213 } 1214 1215 spin_unlock_irqrestore(&object->lock, flags); 1216 put_object(object); 1217 } 1218} 1219 1220/* 1221 * Scan a memory block corresponding to a kmemleak_object. A condition is 1222 * that object->use_count >= 1. 1223 */ 1224static void scan_object(struct kmemleak_object *object) 1225{ 1226 struct kmemleak_scan_area *area; 1227 unsigned long flags; 1228 1229 /* 1230 * Once the object->lock is acquired, the corresponding memory block 1231 * cannot be freed (the same lock is acquired in delete_object). 1232 */ 1233 spin_lock_irqsave(&object->lock, flags); 1234 if (object->flags & OBJECT_NO_SCAN) 1235 goto out; 1236 if (!(object->flags & OBJECT_ALLOCATED)) 1237 /* already freed object */ 1238 goto out; 1239 if (hlist_empty(&object->area_list)) { 1240 void *start = (void *)object->pointer; 1241 void *end = (void *)(object->pointer + object->size); 1242 1243 while (start < end && (object->flags & OBJECT_ALLOCATED) && 1244 !(object->flags & OBJECT_NO_SCAN)) { 1245 scan_block(start, min(start + MAX_SCAN_SIZE, end), 1246 object, 0); 1247 start += MAX_SCAN_SIZE; 1248 1249 spin_unlock_irqrestore(&object->lock, flags); 1250 cond_resched(); 1251 spin_lock_irqsave(&object->lock, flags); 1252 } 1253 } else 1254 hlist_for_each_entry(area, &object->area_list, node) 1255 scan_block((void *)area->start, 1256 (void *)(area->start + area->size), 1257 object, 0); 1258out: 1259 spin_unlock_irqrestore(&object->lock, flags); 1260} 1261 1262/* 1263 * Scan the objects already referenced (gray objects). More objects will be 1264 * referenced and, if there are no memory leaks, all the objects are scanned. 1265 */ 1266static void scan_gray_list(void) 1267{ 1268 struct kmemleak_object *object, *tmp; 1269 1270 /* 1271 * The list traversal is safe for both tail additions and removals 1272 * from inside the loop. The kmemleak objects cannot be freed from 1273 * outside the loop because their use_count was incremented. 1274 */ 1275 object = list_entry(gray_list.next, typeof(*object), gray_list); 1276 while (&object->gray_list != &gray_list) { 1277 cond_resched(); 1278 1279 /* may add new objects to the list */ 1280 if (!scan_should_stop()) 1281 scan_object(object); 1282 1283 tmp = list_entry(object->gray_list.next, typeof(*object), 1284 gray_list); 1285 1286 /* remove the object from the list and release it */ 1287 list_del(&object->gray_list); 1288 put_object(object); 1289 1290 object = tmp; 1291 } 1292 WARN_ON(!list_empty(&gray_list)); 1293} 1294 1295/* 1296 * Scan data sections and all the referenced memory blocks allocated via the 1297 * kernel's standard allocators. This function must be called with the 1298 * scan_mutex held. 1299 */ 1300static void kmemleak_scan(void) 1301{ 1302 unsigned long flags; 1303 struct kmemleak_object *object; 1304 int i; 1305 int new_leaks = 0; 1306 1307 jiffies_last_scan = jiffies; 1308 1309 /* prepare the kmemleak_object's */ 1310 rcu_read_lock(); 1311 list_for_each_entry_rcu(object, &object_list, object_list) { 1312 spin_lock_irqsave(&object->lock, flags); 1313#ifdef DEBUG 1314 /* 1315 * With a few exceptions there should be a maximum of 1316 * 1 reference to any object at this point. 1317 */ 1318 if (atomic_read(&object->use_count) > 1) { 1319 pr_debug("object->use_count = %d\n", 1320 atomic_read(&object->use_count)); 1321 dump_object_info(object); 1322 } 1323#endif 1324 /* reset the reference count (whiten the object) */ 1325 object->count = 0; 1326 if (color_gray(object) && get_object(object)) 1327 list_add_tail(&object->gray_list, &gray_list); 1328 1329 spin_unlock_irqrestore(&object->lock, flags); 1330 } 1331 rcu_read_unlock(); 1332 1333 /* data/bss scanning */ 1334 scan_block(_sdata, _edata, NULL, 1); 1335 scan_block(__bss_start, __bss_stop, NULL, 1); 1336 1337#ifdef CONFIG_SMP 1338 /* per-cpu sections scanning */ 1339 for_each_possible_cpu(i) 1340 scan_block(__per_cpu_start + per_cpu_offset(i), 1341 __per_cpu_end + per_cpu_offset(i), NULL, 1); 1342#endif 1343 1344 /* 1345 * Struct page scanning for each node. 1346 */ 1347 get_online_mems(); 1348 for_each_online_node(i) { 1349 unsigned long start_pfn = node_start_pfn(i); 1350 unsigned long end_pfn = node_end_pfn(i); 1351 unsigned long pfn; 1352 1353 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1354 struct page *page; 1355 1356 if (!pfn_valid(pfn)) 1357 continue; 1358 page = pfn_to_page(pfn); 1359 /* only scan if page is in use */ 1360 if (page_count(page) == 0) 1361 continue; 1362 scan_block(page, page + 1, NULL, 1); 1363 } 1364 } 1365 put_online_mems(); 1366 1367 /* 1368 * Scanning the task stacks (may introduce false negatives). 1369 */ 1370 if (kmemleak_stack_scan) { 1371 struct task_struct *p, *g; 1372 1373 read_lock(&tasklist_lock); 1374 do_each_thread(g, p) { 1375 scan_block(task_stack_page(p), task_stack_page(p) + 1376 THREAD_SIZE, NULL, 0); 1377 } while_each_thread(g, p); 1378 read_unlock(&tasklist_lock); 1379 } 1380 1381 /* 1382 * Scan the objects already referenced from the sections scanned 1383 * above. 1384 */ 1385 scan_gray_list(); 1386 1387 /* 1388 * Check for new or unreferenced objects modified since the previous 1389 * scan and color them gray until the next scan. 1390 */ 1391 rcu_read_lock(); 1392 list_for_each_entry_rcu(object, &object_list, object_list) { 1393 spin_lock_irqsave(&object->lock, flags); 1394 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1395 && update_checksum(object) && get_object(object)) { 1396 /* color it gray temporarily */ 1397 object->count = object->min_count; 1398 list_add_tail(&object->gray_list, &gray_list); 1399 } 1400 spin_unlock_irqrestore(&object->lock, flags); 1401 } 1402 rcu_read_unlock(); 1403 1404 /* 1405 * Re-scan the gray list for modified unreferenced objects. 1406 */ 1407 scan_gray_list(); 1408 1409 /* 1410 * If scanning was stopped do not report any new unreferenced objects. 1411 */ 1412 if (scan_should_stop()) 1413 return; 1414 1415 /* 1416 * Scanning result reporting. 1417 */ 1418 rcu_read_lock(); 1419 list_for_each_entry_rcu(object, &object_list, object_list) { 1420 spin_lock_irqsave(&object->lock, flags); 1421 if (unreferenced_object(object) && 1422 !(object->flags & OBJECT_REPORTED)) { 1423 object->flags |= OBJECT_REPORTED; 1424 new_leaks++; 1425 } 1426 spin_unlock_irqrestore(&object->lock, flags); 1427 } 1428 rcu_read_unlock(); 1429 1430 if (new_leaks) { 1431 kmemleak_found_leaks = true; 1432 1433 pr_info("%d new suspected memory leaks (see " 1434 "/sys/kernel/debug/kmemleak)\n", new_leaks); 1435 } 1436 1437} 1438 1439/* 1440 * Thread function performing automatic memory scanning. Unreferenced objects 1441 * at the end of a memory scan are reported but only the first time. 1442 */ 1443static int kmemleak_scan_thread(void *arg) 1444{ 1445 static int first_run = 1; 1446 1447 pr_info("Automatic memory scanning thread started\n"); 1448 set_user_nice(current, 10); 1449 1450 /* 1451 * Wait before the first scan to allow the system to fully initialize. 1452 */ 1453 if (first_run) { 1454 first_run = 0; 1455 ssleep(SECS_FIRST_SCAN); 1456 } 1457 1458 while (!kthread_should_stop()) { 1459 signed long timeout = jiffies_scan_wait; 1460 1461 mutex_lock(&scan_mutex); 1462 kmemleak_scan(); 1463 mutex_unlock(&scan_mutex); 1464 1465 /* wait before the next scan */ 1466 while (timeout && !kthread_should_stop()) 1467 timeout = schedule_timeout_interruptible(timeout); 1468 } 1469 1470 pr_info("Automatic memory scanning thread ended\n"); 1471 1472 return 0; 1473} 1474 1475/* 1476 * Start the automatic memory scanning thread. This function must be called 1477 * with the scan_mutex held. 1478 */ 1479static void start_scan_thread(void) 1480{ 1481 if (scan_thread) 1482 return; 1483 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1484 if (IS_ERR(scan_thread)) { 1485 pr_warning("Failed to create the scan thread\n"); 1486 scan_thread = NULL; 1487 } 1488} 1489 1490/* 1491 * Stop the automatic memory scanning thread. This function must be called 1492 * with the scan_mutex held. 1493 */ 1494static void stop_scan_thread(void) 1495{ 1496 if (scan_thread) { 1497 kthread_stop(scan_thread); 1498 scan_thread = NULL; 1499 } 1500} 1501 1502/* 1503 * Iterate over the object_list and return the first valid object at or after 1504 * the required position with its use_count incremented. The function triggers 1505 * a memory scanning when the pos argument points to the first position. 1506 */ 1507static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1508{ 1509 struct kmemleak_object *object; 1510 loff_t n = *pos; 1511 int err; 1512 1513 err = mutex_lock_interruptible(&scan_mutex); 1514 if (err < 0) 1515 return ERR_PTR(err); 1516 1517 rcu_read_lock(); 1518 list_for_each_entry_rcu(object, &object_list, object_list) { 1519 if (n-- > 0) 1520 continue; 1521 if (get_object(object)) 1522 goto out; 1523 } 1524 object = NULL; 1525out: 1526 return object; 1527} 1528 1529/* 1530 * Return the next object in the object_list. The function decrements the 1531 * use_count of the previous object and increases that of the next one. 1532 */ 1533static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1534{ 1535 struct kmemleak_object *prev_obj = v; 1536 struct kmemleak_object *next_obj = NULL; 1537 struct kmemleak_object *obj = prev_obj; 1538 1539 ++(*pos); 1540 1541 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1542 if (get_object(obj)) { 1543 next_obj = obj; 1544 break; 1545 } 1546 } 1547 1548 put_object(prev_obj); 1549 return next_obj; 1550} 1551 1552/* 1553 * Decrement the use_count of the last object required, if any. 1554 */ 1555static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1556{ 1557 if (!IS_ERR(v)) { 1558 /* 1559 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1560 * waiting was interrupted, so only release it if !IS_ERR. 1561 */ 1562 rcu_read_unlock(); 1563 mutex_unlock(&scan_mutex); 1564 if (v) 1565 put_object(v); 1566 } 1567} 1568 1569/* 1570 * Print the information for an unreferenced object to the seq file. 1571 */ 1572static int kmemleak_seq_show(struct seq_file *seq, void *v) 1573{ 1574 struct kmemleak_object *object = v; 1575 unsigned long flags; 1576 1577 spin_lock_irqsave(&object->lock, flags); 1578 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1579 print_unreferenced(seq, object); 1580 spin_unlock_irqrestore(&object->lock, flags); 1581 return 0; 1582} 1583 1584static const struct seq_operations kmemleak_seq_ops = { 1585 .start = kmemleak_seq_start, 1586 .next = kmemleak_seq_next, 1587 .stop = kmemleak_seq_stop, 1588 .show = kmemleak_seq_show, 1589}; 1590 1591static int kmemleak_open(struct inode *inode, struct file *file) 1592{ 1593 return seq_open(file, &kmemleak_seq_ops); 1594} 1595 1596static int dump_str_object_info(const char *str) 1597{ 1598 unsigned long flags; 1599 struct kmemleak_object *object; 1600 unsigned long addr; 1601 1602 if (kstrtoul(str, 0, &addr)) 1603 return -EINVAL; 1604 object = find_and_get_object(addr, 0); 1605 if (!object) { 1606 pr_info("Unknown object at 0x%08lx\n", addr); 1607 return -EINVAL; 1608 } 1609 1610 spin_lock_irqsave(&object->lock, flags); 1611 dump_object_info(object); 1612 spin_unlock_irqrestore(&object->lock, flags); 1613 1614 put_object(object); 1615 return 0; 1616} 1617 1618/* 1619 * We use grey instead of black to ensure we can do future scans on the same 1620 * objects. If we did not do future scans these black objects could 1621 * potentially contain references to newly allocated objects in the future and 1622 * we'd end up with false positives. 1623 */ 1624static void kmemleak_clear(void) 1625{ 1626 struct kmemleak_object *object; 1627 unsigned long flags; 1628 1629 rcu_read_lock(); 1630 list_for_each_entry_rcu(object, &object_list, object_list) { 1631 spin_lock_irqsave(&object->lock, flags); 1632 if ((object->flags & OBJECT_REPORTED) && 1633 unreferenced_object(object)) 1634 __paint_it(object, KMEMLEAK_GREY); 1635 spin_unlock_irqrestore(&object->lock, flags); 1636 } 1637 rcu_read_unlock(); 1638 1639 kmemleak_found_leaks = false; 1640} 1641 1642static void __kmemleak_do_cleanup(void); 1643 1644/* 1645 * File write operation to configure kmemleak at run-time. The following 1646 * commands can be written to the /sys/kernel/debug/kmemleak file: 1647 * off - disable kmemleak (irreversible) 1648 * stack=on - enable the task stacks scanning 1649 * stack=off - disable the tasks stacks scanning 1650 * scan=on - start the automatic memory scanning thread 1651 * scan=off - stop the automatic memory scanning thread 1652 * scan=... - set the automatic memory scanning period in seconds (0 to 1653 * disable it) 1654 * scan - trigger a memory scan 1655 * clear - mark all current reported unreferenced kmemleak objects as 1656 * grey to ignore printing them, or free all kmemleak objects 1657 * if kmemleak has been disabled. 1658 * dump=... - dump information about the object found at the given address 1659 */ 1660static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1661 size_t size, loff_t *ppos) 1662{ 1663 char buf[64]; 1664 int buf_size; 1665 int ret; 1666 1667 buf_size = min(size, (sizeof(buf) - 1)); 1668 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1669 return -EFAULT; 1670 buf[buf_size] = 0; 1671 1672 ret = mutex_lock_interruptible(&scan_mutex); 1673 if (ret < 0) 1674 return ret; 1675 1676 if (strncmp(buf, "clear", 5) == 0) { 1677 if (kmemleak_enabled) 1678 kmemleak_clear(); 1679 else 1680 __kmemleak_do_cleanup(); 1681 goto out; 1682 } 1683 1684 if (!kmemleak_enabled) { 1685 ret = -EBUSY; 1686 goto out; 1687 } 1688 1689 if (strncmp(buf, "off", 3) == 0) 1690 kmemleak_disable(); 1691 else if (strncmp(buf, "stack=on", 8) == 0) 1692 kmemleak_stack_scan = 1; 1693 else if (strncmp(buf, "stack=off", 9) == 0) 1694 kmemleak_stack_scan = 0; 1695 else if (strncmp(buf, "scan=on", 7) == 0) 1696 start_scan_thread(); 1697 else if (strncmp(buf, "scan=off", 8) == 0) 1698 stop_scan_thread(); 1699 else if (strncmp(buf, "scan=", 5) == 0) { 1700 unsigned long secs; 1701 1702 ret = kstrtoul(buf + 5, 0, &secs); 1703 if (ret < 0) 1704 goto out; 1705 stop_scan_thread(); 1706 if (secs) { 1707 jiffies_scan_wait = msecs_to_jiffies(secs * 1000); 1708 start_scan_thread(); 1709 } 1710 } else if (strncmp(buf, "scan", 4) == 0) 1711 kmemleak_scan(); 1712 else if (strncmp(buf, "dump=", 5) == 0) 1713 ret = dump_str_object_info(buf + 5); 1714 else 1715 ret = -EINVAL; 1716 1717out: 1718 mutex_unlock(&scan_mutex); 1719 if (ret < 0) 1720 return ret; 1721 1722 /* ignore the rest of the buffer, only one command at a time */ 1723 *ppos += size; 1724 return size; 1725} 1726 1727static const struct file_operations kmemleak_fops = { 1728 .owner = THIS_MODULE, 1729 .open = kmemleak_open, 1730 .read = seq_read, 1731 .write = kmemleak_write, 1732 .llseek = seq_lseek, 1733 .release = seq_release, 1734}; 1735 1736static void __kmemleak_do_cleanup(void) 1737{ 1738 struct kmemleak_object *object; 1739 1740 rcu_read_lock(); 1741 list_for_each_entry_rcu(object, &object_list, object_list) 1742 delete_object_full(object->pointer); 1743 rcu_read_unlock(); 1744} 1745 1746/* 1747 * Stop the memory scanning thread and free the kmemleak internal objects if 1748 * no previous scan thread (otherwise, kmemleak may still have some useful 1749 * information on memory leaks). 1750 */ 1751static void kmemleak_do_cleanup(struct work_struct *work) 1752{ 1753 mutex_lock(&scan_mutex); 1754 stop_scan_thread(); 1755 1756 /* 1757 * Once the scan thread has stopped, it is safe to no longer track 1758 * object freeing. Ordering of the scan thread stopping and the memory 1759 * accesses below is guaranteed by the kthread_stop() function. 1760 */ 1761 kmemleak_free_enabled = 0; 1762 1763 if (!kmemleak_found_leaks) 1764 __kmemleak_do_cleanup(); 1765 else 1766 pr_info("Kmemleak disabled without freeing internal data. " 1767 "Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n"); 1768 mutex_unlock(&scan_mutex); 1769} 1770 1771static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1772 1773/* 1774 * Disable kmemleak. No memory allocation/freeing will be traced once this 1775 * function is called. Disabling kmemleak is an irreversible operation. 1776 */ 1777static void kmemleak_disable(void) 1778{ 1779 /* atomically check whether it was already invoked */ 1780 if (cmpxchg(&kmemleak_error, 0, 1)) 1781 return; 1782 1783 /* stop any memory operation tracing */ 1784 kmemleak_enabled = 0; 1785 1786 /* check whether it is too early for a kernel thread */ 1787 if (kmemleak_initialized) 1788 schedule_work(&cleanup_work); 1789 else 1790 kmemleak_free_enabled = 0; 1791 1792 pr_info("Kernel memory leak detector disabled\n"); 1793} 1794 1795/* 1796 * Allow boot-time kmemleak disabling (enabled by default). 1797 */ 1798static int kmemleak_boot_config(char *str) 1799{ 1800 if (!str) 1801 return -EINVAL; 1802 if (strcmp(str, "off") == 0) 1803 kmemleak_disable(); 1804 else if (strcmp(str, "on") == 0) 1805 kmemleak_skip_disable = 1; 1806 else 1807 return -EINVAL; 1808 return 0; 1809} 1810early_param("kmemleak", kmemleak_boot_config); 1811 1812static void __init print_log_trace(struct early_log *log) 1813{ 1814 struct stack_trace trace; 1815 1816 trace.nr_entries = log->trace_len; 1817 trace.entries = log->trace; 1818 1819 pr_notice("Early log backtrace:\n"); 1820 print_stack_trace(&trace, 2); 1821} 1822 1823/* 1824 * Kmemleak initialization. 1825 */ 1826void __init kmemleak_init(void) 1827{ 1828 int i; 1829 unsigned long flags; 1830 1831#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 1832 if (!kmemleak_skip_disable) { 1833 kmemleak_early_log = 0; 1834 kmemleak_disable(); 1835 return; 1836 } 1837#endif 1838 1839 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 1840 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 1841 1842 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 1843 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 1844 1845 if (crt_early_log >= ARRAY_SIZE(early_log)) 1846 pr_warning("Early log buffer exceeded (%d), please increase " 1847 "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log); 1848 1849 /* the kernel is still in UP mode, so disabling the IRQs is enough */ 1850 local_irq_save(flags); 1851 kmemleak_early_log = 0; 1852 if (kmemleak_error) { 1853 local_irq_restore(flags); 1854 return; 1855 } else { 1856 kmemleak_enabled = 1; 1857 kmemleak_free_enabled = 1; 1858 } 1859 local_irq_restore(flags); 1860 1861 /* 1862 * This is the point where tracking allocations is safe. Automatic 1863 * scanning is started during the late initcall. Add the early logged 1864 * callbacks to the kmemleak infrastructure. 1865 */ 1866 for (i = 0; i < crt_early_log; i++) { 1867 struct early_log *log = &early_log[i]; 1868 1869 switch (log->op_type) { 1870 case KMEMLEAK_ALLOC: 1871 early_alloc(log); 1872 break; 1873 case KMEMLEAK_ALLOC_PERCPU: 1874 early_alloc_percpu(log); 1875 break; 1876 case KMEMLEAK_FREE: 1877 kmemleak_free(log->ptr); 1878 break; 1879 case KMEMLEAK_FREE_PART: 1880 kmemleak_free_part(log->ptr, log->size); 1881 break; 1882 case KMEMLEAK_FREE_PERCPU: 1883 kmemleak_free_percpu(log->ptr); 1884 break; 1885 case KMEMLEAK_NOT_LEAK: 1886 kmemleak_not_leak(log->ptr); 1887 break; 1888 case KMEMLEAK_IGNORE: 1889 kmemleak_ignore(log->ptr); 1890 break; 1891 case KMEMLEAK_SCAN_AREA: 1892 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL); 1893 break; 1894 case KMEMLEAK_NO_SCAN: 1895 kmemleak_no_scan(log->ptr); 1896 break; 1897 default: 1898 kmemleak_warn("Unknown early log operation: %d\n", 1899 log->op_type); 1900 } 1901 1902 if (kmemleak_warning) { 1903 print_log_trace(log); 1904 kmemleak_warning = 0; 1905 } 1906 } 1907} 1908 1909/* 1910 * Late initialization function. 1911 */ 1912static int __init kmemleak_late_init(void) 1913{ 1914 struct dentry *dentry; 1915 1916 kmemleak_initialized = 1; 1917 1918 if (kmemleak_error) { 1919 /* 1920 * Some error occurred and kmemleak was disabled. There is a 1921 * small chance that kmemleak_disable() was called immediately 1922 * after setting kmemleak_initialized and we may end up with 1923 * two clean-up threads but serialized by scan_mutex. 1924 */ 1925 schedule_work(&cleanup_work); 1926 return -ENOMEM; 1927 } 1928 1929 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL, 1930 &kmemleak_fops); 1931 if (!dentry) 1932 pr_warning("Failed to create the debugfs kmemleak file\n"); 1933 mutex_lock(&scan_mutex); 1934 start_scan_thread(); 1935 mutex_unlock(&scan_mutex); 1936 1937 pr_info("Kernel memory leak detector initialized\n"); 1938 1939 return 0; 1940} 1941late_initcall(kmemleak_late_init); 1942